1
|
Dehghani Z, Ranjbar S, Shahabinezhad F, Sabouri P, Mohammadi Bardbori A. A toxicogenomics-based identification of potential mechanisms and signaling pathways involved in PFCs-induced cancer in human. Toxicol Res (Camb) 2024; 13:tfae151. [PMID: 39323479 PMCID: PMC11420517 DOI: 10.1093/toxres/tfae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction The number of new diagnosed cancer cases and cancer deaths are increasing worldwide. Perfluorinated compounds (PFCs) are synthetic chemicals, which are possible inducers of cancer in human and laboratory animals. Studies showed that PFCs induce breast, prostate, kidney, liver and pancreas cancer by inducing genes being involved in carcinogenic pathways. Methodology This study reviews the association between PFCs induced up-regulation/down-regulation of genes and signaling pathways that are important in promoting different types of cancer. To obtain chemical-gene interactions, an advanced search was performed in the Comparative Toxicogenomics Database platform. Results Five most prevalent cancers were studied and the maps of their signaling pathways were drawn, and colored borders indicate significantly differentially expressed genes if there had been reports of alterations in expression in the presence of PFCs. Conclusion In general, PFCs are capable of inducing cancer in human via altering PPARα and PI3K pathways, evading apoptosis, inducing sustained angiogenesis, alterations in proliferation and blocking differentiation. However, more epidemiological data and mechanistic studies are needed to better understand the carcinogenic effects of PFCs in human.
Collapse
Affiliation(s)
- Zahra Dehghani
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz
University of Medical Sciences, Rokn Abad, Karafarin St., 7146864685,
Shiraz, Iran
| | - Sara Ranjbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical
Sciences, Rokn Abad, Karafarin St., 7146864685, Shiraz, Iran
| | - Farbod Shahabinezhad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz
University of Medical Sciences, Rokn Abad, Karafarin St., 7146864685,
Shiraz, Iran
| | - Pooria Sabouri
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz
University of Medical Sciences, Rokn Abad, Karafarin St., 7146864685,
Shiraz, Iran
| | - Afshin Mohammadi Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz
University of Medical Sciences, Rokn Abad, Karafarin St., 7146864685,
Shiraz, Iran
| |
Collapse
|
2
|
Verley JC, McLennon E, Rein KS, Dikgang J, Kankarla V. Current trends and patterns of PFAS in agroecosystems and environment: A review. JOURNAL OF ENVIRONMENTAL QUALITY 2024. [PMID: 39256956 DOI: 10.1002/jeq2.20607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 06/13/2024] [Indexed: 09/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are one of the more well-known highly persistent organic pollutants with potential risks to agroecological systems. These compounds are of global concern due to their persistence and mobility, and they often lead to serious impacts on environmental, agricultural, and human health. In the past 20 years, the number of science publications on PFAS has risen; despite this, certain fundamental questions about PFAS occurrence, sources, mechanism of transport, and impacts on agroecosystems and the societies dependent on them are still open and evolving. There is a lack of systematic and comprehensive analysis of these concerns in agroecosystems. Therefore, we reviewed the current literature on PFAS with a focus on agroecosystems; our review suggests that PFASs are nearly ubiquitous in agricultural systems. We found the current research has limitations in analyzing PFAS in complex matrices because of their small size, distribution, and persistence within various environmental systems. There is consistency in the properties and composition of PFAS in and around agroecosystems, suggesting evidence of shared sources and similar components within different tropic levels. The introduction of new and varied sources of PFAS appear to be growing, adding to their residual accumulation in environmental matrices and leading to possible new types of chemical compounds that are difficult to assess accurately. This review determines existing research trends, understands mechanisms and incidence of PFAS within agroecosystems and their impact on human health, and thereby recommends further studies to remedy research gaps.
Collapse
Affiliation(s)
- Jackson C Verley
- Department of Marine and Earth Science, The Water School, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Everald McLennon
- Crop and Soil Science Department, Klamath Basin Research and Extension Center, Oregon State University, Klamath Falls, Oregon, USA
| | - Kathleen S Rein
- Department of Marine and Earth Science, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Johane Dikgang
- Department of Economics and Finance, The Water School, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Vanaja Kankarla
- Department of Marine and Earth Science, The Water School, Florida Gulf Coast University, Fort Myers, Florida, USA
| |
Collapse
|
3
|
Koval AM, Jenness GR, Shukla MK. Structural investigation of the complexation between vitamin B12 and per- and polyfluoroalkyl substances: Insights into degradation using density functional theory. CHEMOSPHERE 2024; 364:143213. [PMID: 39214410 DOI: 10.1016/j.chemosphere.2024.143213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Environmental remediation of per- and polyfluoroalkyl substances (PFAS) has become a significant research topic in recent years due to the fact that these materials are omnipresent, resistant to degradation and thus environmentally persistent. Unfortunately, they have also been shown to cause health concerns. PFAS are widely used in industrial applications and consumer products. Vitamin B12 (B12) has been identified as being catalytically active towards a variety of halogenated compounds such as PFAS. It has also been shown to be effective when using sulfide as a reducing agent for B12. This is promising as sulfide is readily available in the environment. However, there are many unknowns with respect to PFAS interactions with B12. These include the reaction mechanism and B12's specificity for PFAS with certain functionalization(s). In order to understand the specificity of B12 towards branched PFAS, we examined the atomistic interactions between B12 and eight different PFAS molecules using Density Functional Theory (B3LYP/cc-pVDZ). The PFAS test set included linear PFAS and their branched analogs, carboxylic acid and sulfonic acid headgroups, and aromatic and non-aromatic cyclic structures. Conformational analyses were carried out to determine the lowest energy configurations. This analysis showed that small chain PFAS such as perfluorobutanoic acid interact with the cobalt center of B12. Bulkier PFAS prefer to interact with the amine and carbonyl groups on the sidechains of the B12 ring system. Furthermore, computed complexation energies determined that, in general, branched PFAS (e.g. perfluoro-5-methylheptane sulfonic acid) interact more strongly than linear molecules (e.g. perfluorooctanesulfonic acid). Our results indicate that it may be possible to alter the interactions between B12 and PFAS by synthetically modifying the sidechains of the ring structure.
Collapse
Affiliation(s)
- Ashlyn M Koval
- Simetri, Inc., 7005 University Blvd, Winter Park, FL, 32792, United States
| | - Glen R Jenness
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, United States
| | - Manoj K Shukla
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, United States.
| |
Collapse
|
4
|
Robarts DR, Paine-Cabrera D, Kotulkar M, Venneman KK, Gunewardena S, Foquet L, Bial G, Apte U. Identifying novel mechanisms of per- and polyfluoroalkyl substance-induced hepatotoxicity using FRG humanized mice. Arch Toxicol 2024; 98:3063-3075. [PMID: 38782768 DOI: 10.1007/s00204-024-03789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) and perfluoro-2-methyl-3-oxahexanoic acid (GenX), the new replacement PFAS, are major environmental contaminants. In rodents, these PFAS induce several adverse effects on the liver, including increased proliferation, hepatomegaly, steatosis, hypercholesterolemia, nonalcoholic fatty liver disease and liver cancers. Activation of peroxisome proliferator receptor alpha by PFAS is considered the primary mechanism of action in rodent hepatocyte-induced proliferation. However, the human relevance of this mechanism is uncertain. We investigated human-relevant mechanisms of PFAS-induced adverse hepatic effects using FRG liver-chimeric humanized mice with livers repopulated with functional human hepatocytes. Male FRG humanized mice were treated with 0.067 mg/L of PFOA, 0.145 mg/L of PFOS, or 1 mg/L of GenX in drinking water for 28 days. PFOS caused a significant decrease in total serum cholesterol and LDL/VLDL, whereas GenX caused a significant elevation in LDL/VLDL with no change in total cholesterol and HDL. All three PFAS induced significant hepatocyte proliferation. RNA-sequencing with alignment to the human genome showed a total of 240, 162, and 619 differentially expressed genes after PFOA, PFOS, and GenX exposure, respectively. Upstream regulator analysis revealed that all three PFAS induced activation of p53 and inhibition of androgen receptor and NR1D1, a transcriptional repressor important in circadian rhythm. Further biochemical studies confirmed NR1D1 inhibition and in silico modeling indicated potential interaction of all three PFAS with the DNA-binding domain of NR1D1. In conclusion, our studies using FRG humanized mice have revealed new human-relevant molecular mechanisms of PFAS including their previously unknown effect on circadian rhythm.
Collapse
Affiliation(s)
- Dakota R Robarts
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., MS1018, Kansas City, KS, 66160, USA
| | - Diego Paine-Cabrera
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., MS1018, Kansas City, KS, 66160, USA
| | - Manasi Kotulkar
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., MS1018, Kansas City, KS, 66160, USA
| | - Kaitlyn K Venneman
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., MS1018, Kansas City, KS, 66160, USA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Greg Bial
- Yecuris Corporation, Tualatin, OR, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., MS1018, Kansas City, KS, 66160, USA.
| |
Collapse
|
5
|
Perera S, Shaurya A, Baptiste M, Zavalij PY, Isaacs L. Acyclic Cucurbit[n]uril Receptors Function as Solid State Sequestrants for Organic Micropollutants. Angew Chem Int Ed Engl 2024; 63:e202407169. [PMID: 38661568 DOI: 10.1002/anie.202407169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
The accumulation of organic micropollutants (OMP) in aquatic systems is a major societal problem that can be addressed by approaches including nanofiltration, flocculation, reverse osmosis and adsorptive methods using insoluble materials (e.g. activated carbon, MOFs, nanocomposites). More recently, polymeric versions of supramolecular hosts (e.g. cyclodextrins, calixarenes, pillararenes) have been investigated as OMP sequestrants. Herein, we report our study of the use of water insoluble dimethylcatechol walled acyclic cucurbit[n]uril (CB[n]) hosts as solid state sequestrants for a panel of five OMPs. A series of hosts (H1-H4) were synthesized by reaction of glycoluril oligomer (monomer-tetramer) with 3,6-dimethylcatechol and fully characterized by spectroscopic means and x-ray crystallography. The solid hosts sequester OMPs from water with removal efficiencies exceeding 90 % in some cases. The removal efficiencies of the new hosts parallel the known molecular recognition properties of analogous water soluble acyclic CB[n]. OMP uptake by solid host occurs rapidly (≈120 seconds). Head-to-head comparison with CB[6] in batch-mode separation and DARCO activated carbon in flow-through separation mode show that tetramer derived host (H4) performs very well under identical conditions. The work establishes insoluble acyclic CB[n]-type receptors as a promising new platform for OMP sequestration.
Collapse
Affiliation(s)
- Suvenika Perera
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| | - Alok Shaurya
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| | - Michael Baptiste
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| |
Collapse
|
6
|
Qin W, Henneberger L, Glüge J, König M, Escher BI. Baseline Toxicity Model to Identify the Specific and Nonspecific Effects of Per- and Polyfluoroalkyl Substances in Cell-Based Bioassays. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5727-5738. [PMID: 38394616 PMCID: PMC10993398 DOI: 10.1021/acs.est.3c09950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
High-throughput screening is a strategy to identify potential adverse outcome pathways (AOP) for thousands of per- and polyfluoroalkyl substances (PFAS) if the specific effects can be distinguished from nonspecific effects. We hypothesize that baseline toxicity may serve as a reference to determine the specificity of the cell responses. Baseline toxicity is the minimum (cyto)toxicity caused by the accumulation of chemicals in cell membranes, which disturbs their structure and function. A mass balance model linking the critical membrane concentration for baseline toxicity to nominal (i.e., dosed) concentrations of PFAS in cell-based bioassays yielded separate baseline toxicity prediction models for anionic and neutral PFAS, which were based on liposome-water distribution ratios as the sole model descriptors. The specificity of cell responses to 30 PFAS on six target effects (activation of peroxisome proliferator-activated receptor (PPAR) gamma, aryl hydrocarbon receptor, oxidative stress response, and neurotoxicity in own experiments, and literature data for activation of several PPARs and the estrogen receptor) were assessed by comparing effective concentrations to predicted baseline toxic concentrations. HFPO-DA, HFPO-DA-AS, and PFMOAA showed high specificity on PPARs, which provides information on key events in AOPs relevant to PFAS. However, PFAS were of low specificity in the other experimentally evaluated assays and others from the literature. Even if PFAS are not highly specific for certain defined targets but disturb many toxicity pathways with low potency, such effects are toxicologically relevant, especially for hydrophobic PFAS and because PFAS are highly persistent and cause chronic effects. This implicates a heightened need for the risk assessment of PFAS mixtures because nonspecific effects behave concentration-additive in mixtures.
Collapse
Affiliation(s)
- Weiping Qin
- Department
of Cell Toxicology, UFZ−Helmholtz
Centre for Environmental Research, Leipzig 04318, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, Schnarrenbergstr. 94-96, Tübingen DE-72076, Germany
| | - Luise Henneberger
- Department
of Cell Toxicology, UFZ−Helmholtz
Centre for Environmental Research, Leipzig 04318, Germany
| | - Juliane Glüge
- Department
of Cell Toxicology, UFZ−Helmholtz
Centre for Environmental Research, Leipzig 04318, Germany
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich 8092, Switzerland
| | - Maria König
- Department
of Cell Toxicology, UFZ−Helmholtz
Centre for Environmental Research, Leipzig 04318, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, UFZ−Helmholtz
Centre for Environmental Research, Leipzig 04318, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, Schnarrenbergstr. 94-96, Tübingen DE-72076, Germany
| |
Collapse
|
7
|
Boyd RI, Shokry D, Fazal Z, Rennels BC, Freemantle SJ, La Frano MR, Prins GS, Madak Erdogan Z, Irudayaraj J, Singh R, Spinella MJ. Perfluorooctanesulfonic Acid Alters Pro-Cancer Phenotypes and Metabolic and Transcriptional Signatures in Testicular Germ Cell Tumors. TOXICS 2024; 12:232. [PMID: 38668455 PMCID: PMC11054796 DOI: 10.3390/toxics12040232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/29/2024]
Abstract
The potential effects of poly- and perfluoroalkyl substances (PFAS) are a recently emergent human and environmental health concern. There is a consistent link between PFAS exposure and cancer, but the mechanisms are poorly understood. Although epidemiological evidence supporting PFAS exposure and cancer in general is conflicting, there is relatively strong evidence linking PFAS and testicular germ cell tumors (TGCTs). However, no mechanistic studies have been performed to date concerning PFAS and TGCTs. In this report, the effects of the legacy PFAS perfluorooctanesulfonic acid (PFOS) and the newer "clean energy" PFAS lithium bis(trifluoromethylsulfonyl)imide (LiTFSi, called HQ-115), on the tumorigenicity of TGCTs in mice, TGCT cell survival, and metabolite production, as well as gene regulation were investigated. In vitro, the proliferation and survival of both chemo-sensitive and -resistant TGCT cells were minimally affected by a wide range of PFOS and HQ-115 concentrations. However, both chemicals promoted the growth of TGCT cells in mouse xenografts at doses consistent with human exposure but induced minimal acute toxicity, as assessed by total body, kidney, and testis weight. PFOS, but not HQ-115, increased liver weight. Transcriptomic alterations of PFOS-exposed normal mouse testes were dominated by cancer-related pathways and gene expression alterations associated with the H3K27me3 polycomb pathway and DNA methylation, epigenetic pathways that were previously showed to be critical for the survival of TGCT cells after cisplatin-based chemotherapy. Similar patterns of PFOS-mediated gene expression occurred in PFOS-exposed cells in vitro. Metabolomic studies revealed that PFOS also altered metabolites associated with steroid biosynthesis and fatty acid metabolism in TGCT cells, consistent with the proposed ability of PFAS to mimic fatty acid-based ligands controlling lipid metabolism and the proposed role of PFAS as endocrine disrupters. Our data, is the first cell and animal based study on PFAS in TGCTs, support a pro-tumorigenic effect of PFAS on TGCT biology and suggests epigenetic, metabolic, and endocrine disruption as potential mechanisms of action that are consistent with the non-mutagenic nature of the PFAS class.
Collapse
Affiliation(s)
- Raya I. Boyd
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61801, USA; (R.I.B.); (D.S.); (Z.F.); (B.C.R.); (S.J.F.)
| | - Doha Shokry
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61801, USA; (R.I.B.); (D.S.); (Z.F.); (B.C.R.); (S.J.F.)
| | - Zeeshan Fazal
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61801, USA; (R.I.B.); (D.S.); (Z.F.); (B.C.R.); (S.J.F.)
| | - Brayden C. Rennels
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61801, USA; (R.I.B.); (D.S.); (Z.F.); (B.C.R.); (S.J.F.)
| | - Sarah J. Freemantle
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61801, USA; (R.I.B.); (D.S.); (Z.F.); (B.C.R.); (S.J.F.)
| | - Michael R. La Frano
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| | - Gail S. Prins
- Departments of Urology, Pathology and Physiology, College of Medicine and Chicago Center for Health and Environment, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Ratnakar Singh
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61801, USA; (R.I.B.); (D.S.); (Z.F.); (B.C.R.); (S.J.F.)
| | - Michael J. Spinella
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61801, USA; (R.I.B.); (D.S.); (Z.F.); (B.C.R.); (S.J.F.)
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Li X, Wang Z, Wu Q, Klaunig JE. Evaluating the mode of action of perfluorooctanoic acid-induced liver tumors in male Sprague-Dawley rats using a toxicogenomic approach. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:189-213. [PMID: 38494990 DOI: 10.1080/26896583.2024.2327969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The mode of action (MOA) underlying perfluorooctanoic acid (PFOA)-induced liver tumors in rats is proposed to involve peroxisome proliferator-activated receptor α (PPARα) agonism. Despite clear PPARα activation evidence in rodent livers, the mechanisms driving cell growth remain elusive. Herein, we used dose-responsive apical endpoints and transcriptomic data to examine the proposed MOA. Male Sprague-Dawley rats were treated with 0, 1, 5, and 15 mg/kg PFOA for 7, 14, and 28 days via oral gavage. We showed PFOA induced hepatomegaly along with hepatocellular hypertrophy in rats. PPARα was activated in a dose-dependent manner. Toxicogenomic analysis revealed six early biomarkers (Cyp4a1, Nr1d1, Acot1, Acot2, Ehhadh, and Vnn1) in response to PPARα activation. A transient rise in hepatocellular DNA synthesis was demonstrated while Ki-67 labeling index showed no change. Transcriptomic analysis indicated no significant enrichment in pathways related to DNA synthesis, apoptosis, or the cell cycle. Key cyclins including Ccnd1, Ccnb1, Ccna2, and Ccne2 were dose-dependently suppressed by PFOA. Oxidative stress and the nuclear factor-κB signaling pathway were unaffected. Overall, evidence for PFOA-induced hepatocellular proliferation was transient within the studied timeframe. Our findings underscore the importance of considering inter-species differences and chemical-specific effects when evaluating the carcinogenic risk of PFOA in humans.
Collapse
Affiliation(s)
- Xilin Li
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana University, Bloomington, IN, USA
| | - Zemin Wang
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana University, Bloomington, IN, USA
| | - Qiangen Wu
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana University, Bloomington, IN, USA
| | - James E Klaunig
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana University, Bloomington, IN, USA
| |
Collapse
|
9
|
Hmila I, Hill J, Shalaby KE, Ouararhni K, Abedsselem H, Modaresi SMS, Bihaqi SW, Marques E, Sondhi A, Slitt AL, Zawia NH. Perinatal exposure to PFOS and sustained high-fat diet promote neurodevelopmental disorders via genomic reprogramming of pathways associated with neuromotor development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116070. [PMID: 38340603 DOI: 10.1016/j.ecoenv.2024.116070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a neurotoxic widespread organic contaminant which affects several brain functions including memory, motor coordination and social activity. PFOS has the ability to traverse the placenta and the blood brain barrier (BBB) and cause weight gain in female mice. It's also known that obesity and consumption of a high fat diet have negative effects on the brain, impairs cognition and increases the risk for the development of dementia. The combination effect of developmental exposure to PFOS and the intake of a high-fat diet (HFD) has not been explored. This study investigates the effect of PFOS and /or HFD on weight gain, behavior and transcriptomic and proteomic analysis of adult brain mice. We found that female mice exposed to PFOS alone showed an increase in weight, while HFD expectedly increased body weight. The combination of HFD and PFOS exacerbated generalized behavior such as time spent in the center and rearing, while PFOS alone impacted the distance travelled. These results suggest that PFOS exposure may promote hyperactivity. The combination of PFOS and HFD alter social behavior such as rearing and withdrawal. Although HFD interfered with memory retrieval, biomarkers of dementia did not change except for total Tau and phosphorylated Tau. Tau was impacted by either or both PFOS exposure and HFD. Consistent with behavioral observations, global cerebral transcriptomic analysis showed that PFOS exposure affects calcium signaling, MAPK pathways, ion transmembrane transport, and developmental processes. The combination of HFD with PFOS enhances the effect of PFOS in the brain and affects pathways related to ER stress, axon guidance and extension, and neural migration. Proteomic analysis showed that HFD enhances the impact of PFOS on inflammatory pathways, regulation of cell migration and proliferation, and MAPK signaling pathways. Overall, these data show that PFOS combined with HFD may reprogram the genome and modulate neuromotor development and may promote symptoms linked to attention deficit-hyperactivity disorders (ADHD) and autism spectrum disorders (ASD). Future work will be needed to confirm these connections.
Collapse
Affiliation(s)
- Issam Hmila
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Jaunetta Hill
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Karim E Shalaby
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Khalid Ouararhni
- Genomics Core Facility, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Houari Abedsselem
- Proteomic Core Facility, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Seyed Mohamad Sadegh Modaresi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Syed Waseem Bihaqi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Emily Marques
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Anya Sondhi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Angela L Slitt
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Nasser H Zawia
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA; Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
10
|
Du D, Lu Y, Yang S, Wang R, Wang C, Yu M, Chen C, Zhang M. Biomagnification and health risks of perflfluoroalkyl acids (PFAAs) in seafood from the Yangtze river estuary of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122930. [PMID: 37972680 DOI: 10.1016/j.envpol.2023.122930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Bioaccumulation and human health risk assessment of Perfluoroalkyl acids (PFAAs) is important for pollutant hazard assessment. In this study, 26 aquatic organisms were collected from the Yangtze River estuary, the PFAAs concentrations in organisms were detected by liquid chromatography-mass spectrometry, and the trophic levels of organisms were constructed using nitrogen isotope analysis. The results showed that Perfluorobutane sulfonate (PFBS) was predominant in organisms with the mean concentration of 6.43 ± 8.21 ng/g ww. The biomagnification of organisms along the food chain was widespread, and the biomagnification factor (BMF) of perfluorooctane sulfonic (PFOS) was the most prominent. Trophic magnifcation factors (TMFs) of PFAAs were estimated in the marine food web, and TMFs >1 were observed in Perfluorodecanoic acid (PFDA), Perfluoroundecanoic acid (PFUnDA), Perfluorododecanoic acid (PFDoDA), and PFOS, indicating the biomagnifcation effects of these 4 individual PFAAs in organisms at Yangtze River estuary. The estimated daily intake (EDI) of PFBS was highest in adolescents aged 6-18 years, with EDIs of 18.9 ng/kg·bw/day for males and 14.0 ng/kg·bw/day for females. The hazard ratio (HR) of PFAAs reported in different age and gender groups were lower than 1.
Collapse
Affiliation(s)
- Di Du
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonglong Lu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shengjie Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Ecology, School of Life Science, Nanjing University, Nanjing, 210023, China
| | - Rui Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenchen Wang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Mingzhao Yu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunci Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Zhang R, Yu G, Luo T, Zeng X, Sun Y, Huang B, Liu Y, Zhang J. Transcriptomic and metabolomic profile changes in the liver of Sprague Dawley rat offspring after maternal PFOS exposure during gestation and lactation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115862. [PMID: 38157801 DOI: 10.1016/j.ecoenv.2023.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Epidemiological and experimental research has indicated an association between perfluorooctane sulfonate (PFOS) exposure and liver disease. However, the potential hepatotoxic effects and mechanisms of low-level prenatal PFOS exposure in offspring remain ambiguous. The objective of this research was to examine the alterations in liver transcriptomic and metabolomic profiles in offspring rats at postnatal day (PND) 30 following gestational and lactational exposure to PFOS (from gestational day 1 to 20 and PND 1 to 21). Pregnant Sprague-Dawley rats were separated into a control group (3% starch gel solution, oral gavage) and a PFOS exposure group (0.03 mg/kg body weight per day, oral gavage). Histopathological changes in liver sections were observed by hematoxylin and eosin staining. Biochemical analysis was conducted to evaluate changes in glucose and lipid metabolism. Transcriptomic and metabolomic analyses were utilized to identify significant genes and metabolites associated with alterations of liver glucose and lipid metabolism through an integrated multi-omics analysis. No significant differences were found in the measured biochemical parameters. In total, 167 significant differentially expressed genes (DEGs) related to processes such as steroid biosynthesis, PPAR signaling pathway, and fat digestion and absorption were identified in offspring rats in the PFOS exposure group. Ninety-five altered metabolites were exhibited in the PFOS exposure group, such as heptaethylene glycol, lysoPE (0:0/18:0), lucidenic acid K, and p-Cresol sulfate. DEGs associated with steroid biosynthesis, PPAR signaling pathway, fat digestion and absorption were significantly upregulated in the PFOS exposure group (P < 0.05). The analysis of correlations indicated that there was a significant inverse correlation between all identified differential metabolites and the levels of fasting blood glucose, high-density lipoprotein, and triglycerides in the PFOS exposure group (P < 0.05). Our findings demystify that early-life PFOS exposure can lead to alterations in transcriptomic and metabolomic profiles in the offspring's liver, which provided mechanistic insights into the potential hepatotoxicity and developmental toxicity associated with environmentally relevant levels of PFOS exposure.
Collapse
Affiliation(s)
- Ruiyuan Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Guoqi Yu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; Global Center for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Singapore
| | - Tingyu Luo
- School of Public Health, Guilin Medical University, 541001 Guilin, Guangxi, China
| | - Xiaojing Zeng
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China
| | - Yan Sun
- School of Public Health, Guilin Medical University, 541001 Guilin, Guangxi, China
| | - Bo Huang
- School of Public Health, Guilin Medical University, 541001 Guilin, Guangxi, China
| | - Yongjie Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, 200233, Shanghai, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
12
|
Zheng J, Sun B, Berardi D, Lu L, Yan H, Zheng S, Aladelokun O, Xie Y, Cai Y, Godri Pollitt KJ, Khan SA, Johnson CH. Perfluorooctanesulfonic Acid and Perfluorooctanoic Acid Promote Migration of Three-Dimensional Colorectal Cancer Spheroids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21016-21028. [PMID: 38064429 DOI: 10.1021/acs.est.3c04844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are persistent environmental contaminants that are of increasing public concern worldwide. However, their relationship with colorectal cancer (CRC) is poorly understood. This study aims to comprehensively investigate the effect of PFOS and PFOA on the development and progression of CRC in vitro using a series of biological techniques and metabolic profiling. Herein, the migration of three-dimensional (3D) spheroids of two CRC cell lines, SW48 KRAS wide-type (WT) and SW48 KRAS G12A, were observed after exposure to PFOS and PFOA at 2 μM and 10 μM for 7 days. The time and dose-dependent migration phenotype induced by 10 μM PFOS and PFOA was further confirmed by wound healing and trans-well migration assays. To investigate the mechanism of action, derivatization-mass spectrometry-based metabolic profiles were examined from 3D spheroids of SW48 cell lines exposed to PFOS and PFOA (2 μM and 10 μM). Our findings revealed this exposure altered epithelial-mesenchymal transition related metabolic pathways, including fatty acid β-oxidation and synthesis of proteins, nucleotides, and lipids. Furthermore, this phenotype was confirmed by the downregulation of E-cadherin and upregulation of N-cadherin and vimentin. These findings show novel insight into the relationship between PFOS, PFOA, and CRC.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Boshi Sun
- Division of Surgical Oncology, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut 06510, United States
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Domenica Berardi
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Hong Yan
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Shujian Zheng
- Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, United States
| | - Oladimeji Aladelokun
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Yangzhouyun Xie
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Yujun Cai
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Sajid A Khan
- Division of Surgical Oncology, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| |
Collapse
|
13
|
Winquist A, Hodge JM, Diver WR, Rodriguez JL, Troeschel AN, Daniel J, Teras LR. Case-Cohort Study of the Association between PFAS and Selected Cancers among Participants in the American Cancer Society's Cancer Prevention Study II LifeLink Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127007. [PMID: 38088576 PMCID: PMC10718084 DOI: 10.1289/ehp13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Previous epidemiological studies found associations between exposure to per- and polyfluoroalkyl substances (PFAS) and some cancer types. Many studies considered highly exposed populations, so relevance to less-exposed populations can be uncertain. Additionally, many studies considered only cancer site, not histology. OBJECTIVES We conducted a case-cohort study within the American Cancer Society's prospective Cancer Prevention Study II (CPS-II) LifeLink cohort to examine associations between PFAS exposure and risk of selected cancers, considering histologic subtypes. METHODS Serum specimens were collected from cohort participants during the period 1998-2001. This study included a subcohort (500 men, 499 women) randomly selected from participants without prior cancer diagnoses at serum collection, and all participants with incident (after serum collection) first cancers of the breast (females only, n = 786 ), bladder (n = 401 ), kidney (n = 158 ), pancreas (n = 172 ), prostate (males only, n = 1,610 ) or hematologic system (n = 635 ). PFAS concentrations [perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA)] were measured in stored serum. We assessed associations between PFAS concentrations and incident cancers, by site and histologic subtype, using multivariable Cox proportional hazards models stratified by sex and controlling for age and year at blood draw, education, race/ethnicity, smoking, and alcohol use. RESULTS Serum PFOA concentrations were positively associated with renal cell carcinoma of the kidney among women [hazard ratio (HR) and 95% confidence interval (CI) per PFOA doubling: 1.54 (95% CI: 1.05, 2.26)] but not men. Among men, we observed a positive association between PFHxS concentrations and chronic lymphocytic leukemia/small lymphocytic lymphoma [CLL/SLL, HR and 95% CI per PFHxS doubling: 1.34 (95% CI: 1.02, 1.75)]. We observed some heterogeneity of associations by histologic subtype within sites. DISCUSSION This study supports the previously observed association between PFOA and renal cell carcinoma among women and suggests an association between PFHxS and CLL/SLL among men. Consideration of histologic subtypes might be important in future studies of PFAS-cancer associations. https://doi.org/10.1289/EHP13174.
Collapse
Affiliation(s)
- Andrea Winquist
- Division of Environmental Health Science and Practice, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - James M. Hodge
- Department of Population Science, American Cancer Society, Atlanta, Georgia, USA
| | - W. Ryan Diver
- Department of Population Science, American Cancer Society, Atlanta, Georgia, USA
| | - Juan L. Rodriguez
- Division of Cancer Prevention and Control, National Center for Chronic Disease Prevention and Health Promotion, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alyssa N. Troeschel
- Division of Environmental Health Science and Practice, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Epidemic Intelligence Service, Center for Surveillance, Epidemiology and Laboratory Services, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Johnni Daniel
- Division of Environmental Health Science and Practice, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lauren R. Teras
- Department of Population Science, American Cancer Society, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Mazumder NUS, Lu J, Hall AS, Kasebi A, Girase A, Masoud F, Stull JO, Ormond RB. Toward the future of firefighter gear: Assessing fluorinated and non-fluorinated outer shells following simulated on-the-job exposures. JOURNAL OF INDUSTRIAL TEXTILES 2023; 53:10.1177/15280837231217401. [PMID: 38529520 PMCID: PMC10962281 DOI: 10.1177/15280837231217401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
In 2022, the occupation of firefighting was categorized as a "Group 1" carcinogen, meaning it is known to be carcinogenic to humans. The personal protective equipment that structural firefighters wear is designed to safeguard them from thermal, physical, and chemical hazards while maintaining thermo-physiological comfort. Typically, the outer layer of structural turnout gear is finished with a durable water and oil-repellent (DWR) based on per- and polyfluoroalkyl substances (PFAS) that helps limit exposure to water and hazardous liquids. The PFAS-based aqueous emulsion typically used in DWR finishes is highly persistent and can cause various health problems if absorbed into the body through ingestion, inhalation, and/or dermal absorption. In response, the U.S. Fire Service has begun using non-PFAS water repellants in firefighter turnout gear. This study aims to evaluate the performance of both traditional PFAS-based and alternative non-PFAS outer shell materials. The study involved exposing both PFAS-based and non-PFAS DWR outer shell materials in turnout composites to simulated job exposures (i.e., weathering, thermal exposure, and laundering) that artificially aged the materials. After exposures, samples were evaluated for repellency, durability, thermal protection, and surface chemistry analysis to determine any potential performance trade-offs that may exist. Non-PFAS outer shell fabrics were found not to be diesel/oil-repellent, posing a potential flammability hazard if exposed to diesel and subsequent flame on an emergency response. Both PFAS-based and non-PFAS sets of fabrics performed similarly in terms of thermal protective performance, tearing strength, and water repellency. The surface analysis suggests that both PFAS and non-PFAS chemistries can degrade and shed from fabrics during the aging process. The study indicates that firefighters should be educated and trained regarding the potential performance trade-offs, such as oil absorption and flammability concerns when transitioning to non-PFAS outer shell materials.
Collapse
Affiliation(s)
- Nur-Us-Shafa Mazumder
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, USA
| | - Jingtian Lu
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, USA
| | - Andrew Stephen Hall
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, USA
| | - Arash Kasebi
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, USA
| | - Arjunsing Girase
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, USA
| | - Farzaneh Masoud
- Illinois Fire Service Institute, University of Illinois at Urbana Champaign, Champaign, IL, USA
| | | | - R. Bryan Ormond
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
15
|
Ivantsova E, Lopez-Scarim V, Sultan A, English C, Biju A, Souders CL, Padillo-Anthemides NE, Konig I, Martyniuk CJ. Evidence for neurotoxicity and oxidative stress in zebrafish embryos/larvae treated with HFPO-DA ammonium salt (GenX). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104315. [PMID: 37984673 DOI: 10.1016/j.etap.2023.104315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
"GenX" [ammonium perfluoro (2-methyl-3-oxahexanoate] was developed as a replacement chemical for toxic perfluorinated compounds to be used in product manufacturing. Here, we assessed developmental, mitochondrial, and behavioral toxicity endpoints in zebrafish embryos/larvae exposed to GenX. GenX exerted low toxicity to zebrafish embryos/larvae up to 20 mg/L. GenX did not affect mitochondrial oxidative phosphorylation nor ATP levels. ROS levels were reduced in larvae fish exposed to 10 and 100 µg/L, indicative of an antioxidant defense; however, ROS levels were elevated in fish exposed to 1000 µg/L. Increased expression of cox1 and sod2 in GenX exposed 7-day larvae was noted. GenX (0.1 or 1 µg/L) altered transcripts associated with neurotoxicity (elavl3, gfap, gap43, manf, and tubb). Locomotor activity of larvae was reduced by 100 µg/L GenX, but only in light periods. Perturbations of anxiety-related behaviors in larvae were not observed with GenX exposure. These data inform risk assessments for long-lived perfluorinated chemicals of concern.
Collapse
Affiliation(s)
- Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Victoria Lopez-Scarim
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Amany Sultan
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Animal Health Research Institute, Agriculture Research Center (ARC), Egypt
| | - Cole English
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Angel Biju
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Natalia E Padillo-Anthemides
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA; UF Genetics Institute, Genetics and Genomics Graduate Program, USA; Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Isaac Konig
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Department of Chemistry, Federal University of Lavras (UFLA), Minas Gerais, Brazil
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; UF Genetics Institute and the Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, USA.
| |
Collapse
|
16
|
Fujiwara Y, Miyasaka Y, Ninomiya A, Miyazaki W, Iwasaki T, Ariyani W, Amano I, Koibuchi N. Effects of Perfluorooctane Sulfonate on Cerebellar Cells via Inhibition of Type 2 Iodothyronine Deiodinase Activity. Int J Mol Sci 2023; 24:12765. [PMID: 37628946 PMCID: PMC10454525 DOI: 10.3390/ijms241612765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Perfluorooctane sulfonate (PFOS) has been used in a wide variety of industrial and commercial products. The adverse effects of PFOS on the developing brain are becoming of a great concern. However, the molecular mechanisms of PFOS on brain development have not yet been clarified. We investigated the effect of early-life exposure to PFOS on brain development and the mechanism involved. We investigated the change in thyroid hormone (TH)-induced dendrite arborization of Purkinje cells in the primary culture of newborn rat cerebellum. We further examined the mechanism of PFOS on TH signaling by reporter gene assay, quantitative RT-PCR, and type 2 iodothyronine deiodinase (D2) assay. As low as 10-7 M PFOS suppressed thyroxine (T4)-, but not triiodothyronine (T3)-induced dendrite arborization of Purkinje cells. Reporter gene assay showed that PFOS did not affect TRα1- and TRβ1-mediated transcription in CV-1 cells. RT-PCR showed that PFOS suppressed D2 mRNA expression in the absence of T4 in primary cerebellar cells. D2 activity was also suppressed by PFOS in C6 glioma-derived cells. These results indicate that early-life exposure of PFOS disrupts TH-mediated cerebellar development possibly through the disruption of D2 activity and/or mRNA expression, which may cause cerebellar dysfunction.
Collapse
Affiliation(s)
- Yuki Fujiwara
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (Y.F.); (A.N.); (W.A.); (I.A.)
| | - Yuhei Miyasaka
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan;
| | - Ayane Ninomiya
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (Y.F.); (A.N.); (W.A.); (I.A.)
| | - Wataru Miyazaki
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Science, Hirosaki 036-8564, Japan;
| | | | - Winda Ariyani
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (Y.F.); (A.N.); (W.A.); (I.A.)
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (Y.F.); (A.N.); (W.A.); (I.A.)
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (Y.F.); (A.N.); (W.A.); (I.A.)
| |
Collapse
|
17
|
Peritore AF, Gugliandolo E, Cuzzocrea S, Crupi R, Britti D. Current Review of Increasing Animal Health Threat of Per- and Polyfluoroalkyl Substances (PFAS): Harms, Limitations, and Alternatives to Manage Their Toxicity. Int J Mol Sci 2023; 24:11707. [PMID: 37511474 PMCID: PMC10380748 DOI: 10.3390/ijms241411707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Perfluorinated and polyfluorinated alkyl substances (PFAS), more than 4700 in number, are a group of widely used man-made chemicals that accumulate in living things and the environment over time. They are known as "forever chemicals" because they are extremely persistent in our environment and body. Because PFAS have been widely used for many decades, their presence is evident globally, and their persistence and potential toxicity create concern for animals, humans and environmental health. They can have multiple adverse health effects, such as liver damage, thyroid disease, obesity, fertility problems, and cancer. The most significant source of living exposure to PFAS is dietary intake (food and water), but given massive industrial and domestic use, these substances are now punctually present not only domestically but also in the outdoor environment. For example, livestock and wildlife can be exposed to PFAS through contaminated water, soil, substrate, air, or food. In this review, we have analyzed and exposed the characteristics of PFAS and their various uses and reported data on their presence in the environment, from industrialized to less populated areas. In several areas of the planet, even in areas far from large population centers, the presence of PFAS was confirmed, both in marine and terrestrial animals (organisms). Among the most common PFAS identified are undoubtedly perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), two of the most widely used and, to date, among the most studied in terms of toxicokinetics and toxicodynamics. The objective of this review is to provide insights into the toxic potential of PFAS, their exposure, and related mechanisms.
Collapse
Affiliation(s)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, Saint Louis, MO 63103, USA
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy
| | - Domenico Britti
- Department of Health Sciences, Campus Universitario "Salvatore Venuta" Viale Europa, "Magna Græcia University" of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
18
|
González-Alvarez ME, Roach CM, Keating AF. Scrambled eggs-Negative impacts of heat stress and chemical exposures on ovarian function in swine. Mol Reprod Dev 2023; 90:503-516. [PMID: 36652419 DOI: 10.1002/mrd.23669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023]
Abstract
Exposure to environmental toxicants and hyperthermia can hamper reproduction in female mammals including swine. Phenotypic manifestations include poor quality oocytes, endocrine disruption, infertility, lengthened time to conceive, pregnancy loss, and embryonic defects. The ovary has the capacity for toxicant biotransformation, regulated in part by the phosphatidylinositol-3 kinase signaling pathway. The impacts of exposure to mycotoxins and pesticides on swine reproduction and the potential for an emerging chemical class of concern, the per- and polyfluoroalkylated substances, to hamper porcine reproduction are reviewed. The negative impairments of heat stress (HS) on swine reproductive outcomes are also described and the cumulative effect of environmental exposures, such as HS, when present in conjunction with a toxicant is considered.
Collapse
Affiliation(s)
- M Estefanía González-Alvarez
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa, USA
| | - Crystal M Roach
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa, USA
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
19
|
Zhao C, Wang S, Zhai Y, Wang M, Tang Y, Li H, Im YJ, Ge RS. Direct inhibition of human and rat 11β-hydroxysteroid dehydrogenase 2 by per- and polyfluoroalkyl substances: Structure-activity relationship and in silico docking analysis. Toxicology 2023; 488:153484. [PMID: 36878351 DOI: 10.1016/j.tox.2023.153484] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/16/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent in the environment and may disrupt the endocrine system. Our previous study showed that perfluorooctanoic acid (PFOA, C8) and perfluorooctanesulfonic acid (PFOS, C8S) can inhibit 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) activity leading to an active glucocorticoid accumulation. In this study, we extended investigation for 17 PFAS, including carboxylic and sulfonic acids, with different carbon-chain lengths, to determine their inhibitory potency and structure-activity relationship in human placental and rat renal 11β-HSD2. C8-C14 PFAS at 100 μM significantly inhibited human 11β-HSD2 with a potency as C10 (half-maximal inhibitory concentration, IC50, 9.19 μM) > C11 (15.09 μM) > C12 (18.43 μM) > C9 (20.93 μM) > C13 (124 μM) > C14 (147.3 μM) > other C4-C7 carboxylic acids, and C8S > C7S = C10S > other sulfonic acids. For rat 11β-HSD2, only C9 and C10 and C7S and C8S PFAS exhibited significant inhibitory effects. PFAS are primarily mixed/competitive inhibitors of human 11β-HSD2. Preincubation and simultaneous incubation with the reducing agent dithiothreitol significantly increased human 11β-HSD2 but not rat 11β-HSD2, and preincubation but not simultaneous incubation with dithiothreitol partially reversed C10-mediated inhibition on human 11β-HSD2. Docking analysis showed that all PFAS bound to the steroid-binding site and carbon-chain length determined the potency of inhibition, with the optimal molecular length (12.6 Å) for potent inhibitors PFDA and PFOS, which is comparable to the molecular length (12.7 Å) of the substrate cortisol. The length between 8.9 and 17.2 Å is the probable threshold molecular length to inhibit human 11β-HSD2. In conclusion, the carbon-chain length determines the inhibitory effect of PFAS on human and rat 11β-HSD2, and the inhibitory potency of long-chain PFAS on human and rat 11β-HSD2 showed V-shaped pattern. Long-chain PFAS may partially act on the cysteine residues of human 11β-HSD2.
Collapse
Affiliation(s)
- Congcong Zhao
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shaowei Wang
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yingna Zhai
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Mengyun Wang
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yunbing Tang
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huitao Li
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Young Jun Im
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ren-Shan Ge
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
20
|
Mazumder NUS, Hossain MT, Jahura FT, Girase A, Hall AS, Lu J, Ormond RB. Firefighters' exposure to per-and polyfluoroalkyl substances (PFAS) as an occupational hazard: A review. FRONTIERS IN MATERIALS 2023; 10:10.3389/fmats.2023.1143411. [PMID: 38074949 PMCID: PMC10698640 DOI: 10.3389/fmats.2023.1143411] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
The term "firefighter" and "cancer" have become so intertwined in the past decade that they are now nearly inseparable. Occupational exposure of firefighters to carcinogenic chemicals may increase their risk of developing different types of cancer. PFAS are one of the major classes of carcinogenic chemicals that firefighters are exposed to as occupational hazard. Elevated levels of PFAS have been observed in firefighters' blood serum in recent studies. Possible sources of occupational exposure to PFAS include turnout gear, aqueous film-forming foam, and air and dust at both the fire scene and fire station. Preliminary discussion on PFAS includes definition, classification, and chemical structure. The review is then followed by identifying the sources of PFAS that firefighters may encounter as an occupational hazard. The structural properties of the PFAS used in identified sources, their degradation, and exposure pathways are reviewed. The elevated level of PFAS in the blood serum and how this might associate with an increased risk of cancer is discussed. Our review shows a significant amount of PFAS on turnout gear and their migration to untreated layers, and how turnout gear itself might be a potential source of PFAS exposure. PFAS from aqueous film-forming foams (AFFF), air, and dust of fire stations have been already established as potential exposure sources. Studies on firefighters' cancer suggest that firefighters have a higher cancer risk compared to the general population. This review suggests that increased exposure to PFAS as an occupational hazard could be a potential cancer risk for firefighters.
Collapse
Affiliation(s)
- Nur-Us-Shafa Mazumder
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, United States
| | - Md Tanjim Hossain
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, United States
| | - Fatema Tuj Jahura
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, United States
| | - Arjunsing Girase
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, United States
| | - Andrew Stephen Hall
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, United States
| | - Jingtian Lu
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, United States
| | - R. Bryan Ormond
- Textile Protection and Comfort Center, Wilson College of Textiles, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
21
|
Li YF, Fang T, Lee YC, Liu YJ, Hu CY, Lo SL. Cationic surfactants influencing the enhancement of energy efficiency for perfluorooctanoic acid (PFOA) removal in the electrocoagulation-flotation (ECF) system. CHEMOSPHERE 2023; 318:137932. [PMID: 36690258 DOI: 10.1016/j.chemosphere.2023.137932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/24/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
From an environmental perspective, approaching sustainability requires a fundamental conceptual shift from the wastewater treatment process toward integrated treatment systems that consider efficient and effective utilization. This study aims to investigate the effects of different surfactants on the removal of perfluorooctanoic acid (PFOA). We used cationic surfactants as both frothers and collectors in the electrocoagulation-flotation (ECF) method to improve the removal efficiency of PFOA. The results showed that, under a monopolar aluminum electrode and with an initial PFOA concentration of 0.25 mM, the ECF method with decyl-trimethyl-ammonium bromide (DTAB) was able to remove over 98% of PFOA within 10 min. Cationic surfactants with a similar linear alkyl chain shape to PFOA, but a longer chain length, are more effective at removing PFOA through the ECF process. The removal mechanism is thought to involve co-precipitation with aluminum hydroxides through Al-F bonding, co-flotation with cationic surfactants, and mixed micelle formation with cationic surfactants. The optimal conditions were tested in both synthetic and realistic wastewater matrices and produced similar results. It has the potential for real wastewater application. The energy yield (G50) of ECF with 5 mM DTAB is 497 g·kWh-1, superior to other treatments, and is an extremely energy-effective method for separating PFOA from wastewater.
Collapse
Affiliation(s)
- Yueh-Feng Li
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chuo-Shan Rd., Taipei, 10673, Taiwan
| | - Ting Fang
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chuo-Shan Rd., Taipei, 10673, Taiwan
| | - Yu-Chi Lee
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chuo-Shan Rd., Taipei, 10673, Taiwan
| | - Yu-Jung Liu
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chuo-Shan Rd., Taipei, 10673, Taiwan
| | - Ching-Yao Hu
- School of Public Health, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
| | - Shang-Lien Lo
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chuo-Shan Rd., Taipei, 10673, Taiwan; Water Innovation, Low Carbon and Environmental Sustainability Research Center, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
22
|
Jain RB. Co-variate adjusted associations between serum concentrations of selected perfluoroalkyl substances and urinary concentrations of selected arsenic species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34750-34759. [PMID: 36520294 DOI: 10.1007/s11356-022-24745-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Data from National Health and Nutrition Examination Survey for 2011-2012 were used to estimate associations of the serum concentrations of perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluoroundecanoic acid (PFUnDA), and 2-(N-methyl-perfluorooctane sulfonamido) acetic acid (Me-PFOSA) with urinary concentrations of total arsenic (UAS), inorganic arsenic (IAS), arsenobetaine (UAB), and dimethyl arsinic acid (UDMA) among US adults aged > = 20 years. Concentrations of PFNA were positively associated with all four arsenic variables but statistical significance was observed for IAS only (β = 0.33364, P = 0.04). Concentrations of PFDA were positively associated with UAS (β = 0.20688, P = 0.01), IAS (β = 0.23712, P = 0.02), and UAB (β = 0.26049, P = 0.02). Concentrations of PFUnDA were positively associated with UAS (β = 0.49946, P < 0.01), IAS (β = 0.51782, P < 0.01), UAB (β = 0.62924, P < 0.01), and UDMA (β = 0.26375, P < 0.01). Concentrations of Me-PFOSA with PFAS were inversely associated with every PFAS but statistical significance was observed for UDMA only (β = - 0.05613, P = 0.03). PFOA, PFHxS, and PFOS were, in general, negatively associated with concentrations of all four arsenic variables but without reaching statistical significance. Positive associations of PFDA, PFNA, and PFUnDA with arsenic necessitate investigation about impact of the co-exposure of these PFAS with arsenic and their impact on health. Fluorinated carbon chain length > 8 as opposed to ≤ 8 may have a role in defining associations of PFAS with arsenic.
Collapse
Affiliation(s)
- Ram B Jain
- 4331 Kendrick Circle, Loganville, GA, 30052, USA.
| |
Collapse
|
23
|
Pierozan P, Kosnik M, Karlsson O. High-content analysis shows synergistic effects of low perfluorooctanoic acid (PFOS) and perfluorooctane sulfonic acid (PFOA) mixture concentrations on human breast epithelial cell carcinogenesis. ENVIRONMENT INTERNATIONAL 2023; 172:107746. [PMID: 36731186 DOI: 10.1016/j.envint.2023.107746] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Perfluoroalkyl substances (PFAS) have been associated with cancer, but the potential underlying mechanisms need to be further elucidated and include studies of PFAS mixtures. This mechanistic study revealed that very low concentrations (500 pM) of the binary PFOS and PFOA mixture induced synergistic effects on human epithelial breast cell (MCF-10A) proliferation. The cell proliferation was mediated by pregnane X receptor (PXR) activation, an increase in cyclin D1 and CDK6/4 levels, decrease in p21 and p53 levels, and by regulation of phosphor-Akt and β-catenin. The PFAS mixture also altered histone modifications, epigenetic mechanisms implicated in tumorigenesis, and promoted cell migration and invasion by reducing the levels of occludin. High-content screening using the cell painting assay, revealed that hundreds of cell features were affected by the PFAS mixture even at the lowest concentration tested (100 pM). The detailed phenotype profiling further demonstrated that the PFAS mixture altered cell morphology, mostly in parameters related to intensity and texture associated with mitochondria, endoplasmic reticulum, and nucleoli. Exposure to higher concentrations (≥50 µM) of the PFOS and PFOA mixture caused cell death through synergistic interactions that induced oxidative stress, DNA/RNA damage, and lipid peroxidation, illustrating the complexity of mixture toxicology. Increased knowledge about mixture-induced effects is important for better understanding of PFAS' possible role in cancer etiology, and may impact the risk assessment of these and other compounds. This study shows the potential of image-based multiplexed fluorescence assays and high-content screening for development of new approach methodologies in toxicology.
Collapse
Affiliation(s)
- Paula Pierozan
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Marissa Kosnik
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden.
| |
Collapse
|
24
|
Gui SY, Qiao JC, Xu KX, Li ZL, Chen YN, Wu KJ, Jiang ZX, Hu CY. Association between per- and polyfluoroalkyl substances exposure and risk of diabetes: a systematic review and meta-analysis. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:40-55. [PMID: 35970987 DOI: 10.1038/s41370-022-00464-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Emerging evidence suggests that per- and polyfluoroalkyl substances (PFAS) are endocrine disruptors and may contribute to the etiology of diabetes. OBJECTIVES This study aimed to systematically review the epidemiological evidence on the associations of PFAS with mortality and morbidity of diabetes and to quantitatively evaluate the summary effect estimates of the existing literature. METHODS We searched three electronic databases for epidemiological studies concerning PFAS and diabetes published before April 1, 2022. Summary odds ratio (OR), hazard ratio (HR), or β and their 95% confidence intervals (CIs) were respectively calculated to evaluate the association between PFAS and diabetes using random-effects model by the exposure type, and dose-response meta-analyses were also performed when possible. We also assessed the risk of bias of the studies included and the confidence in the body of evidence. RESULTS An initial literature search identified 1969 studies, of which 22 studies were eventually included. The meta-analyses indicated that the observed statistically significant PFAS-T2DM associations were consistent in cohort studies, while the associations were almost non-significant in case-control and cross-sectional studies. Dose-response meta-analysis showed a "parabolic-shaped" association between perfluorooctanoate acid (PFOA) exposure and T2DM risk. Available evidence was rated with "low" risk of bias, and the level of evidence for PFAS and incident T2DM was considered "moderate". CONCLUSIONS Our findings suggest that PFAS exposure may increase the risk of incident T2DM, and that PFOA may exert non-monotonic dose-response effect on T2DM risk. Considering the widespread exposure, persistence, and potential for adverse health effects of PFAS, further cohort studies with improvements in expanding the sample size, adjusting the covariates, and considering different types of PFAS exposure at various doses, are needed to elucidate the putative causal associations and potential mode of action of different PFAS on diabetes. IMPACT STATEMENT A growing body of evidence suggests that per- and polyfluoroalkyl substances (PFAS) are endocrine disruptors and may contribute to the development of diabetes. However, epidemiological evidence on the associations of PFAS and diabetes is inconsistent. We performed this comprehensive systematic review and meta-analysis to quantitatively synthesize the evidence. The findings of this study suggest that exposure to PFAS may increase diabetes risk among the general population. Reduced exposure to these "forever and everywhere chemicals" may be an important preventative approach to reducing the risk of diabetes across the population.
Collapse
Affiliation(s)
- Si-Yu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Jian-Chao Qiao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Ke-Xin Xu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Ze-Lian Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
| | - Yue-Nan Chen
- Department of Pharmacy, School of Clinical Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Ke-Jia Wu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zheng-Xuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China.
| | - Cheng-Yang Hu
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
25
|
Zhang X, Flaws JA, Spinella MJ, Irudayaraj J. The Relationship between Typical Environmental Endocrine Disruptors and Kidney Disease. TOXICS 2022; 11:32. [PMID: 36668758 PMCID: PMC9863798 DOI: 10.3390/toxics11010032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 05/12/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that alter the endocrine function of an organism, to result in adverse effects on growth and development, metabolism, and reproductive function. The kidney is one of the most important organs in the urinary system and an accumulation point. Studies have shown that EDCs can cause proteinuria, affect glomeruli and renal tubules, and even lead to diabetes and renal fibrosis in animal and human studies. In this review, we discuss renal accumulation of select EDCs such as dioxins, per- and polyfluoroalkyl substances (PFAS), bisphenol A (BPA), and phthalates, and delineate how exposures to such EDCs cause renal lesions and diseases, including cancer. The regulation of typical EDCs with specific target genes and the activation of related pathways are summarized.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jodi A. Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J. Spinella
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
26
|
Nilsson S, Smurthwaite K, Aylward LL, Kay M, Toms LM, King L, Marrington S, Kirk MD, Mueller JF, Bräunig J. Associations between serum perfluoroalkyl acid (PFAA) concentrations and health related biomarkers in firefighters. ENVIRONMENTAL RESEARCH 2022; 215:114370. [PMID: 36174755 DOI: 10.1016/j.envres.2022.114370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Firefighters who used aqueous film forming foam in the past have experienced elevated exposures to perfluoroalkyl acids (PFAAs). The objective of this study was to examine the associations between clinical chemistry endpoints and serum concentrations of perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), perfluoroheptane sulfonate (PFHpS) and perfluorooctane sulfonate (PFOS) in firefighters. Multiple linear regression was used to assess relationships between PFAA serum concentrations and biochemical markers for cardiovascular disease, kidney-, liver- and thyroid function, in a cross-sectional survey of 783 firefighters with elevated levels of PFHxS, PFHpS and PFOS in relation to the most recently reported levels in the general Australian population. Linear logistic regression was used to assess the odds ratios for selected self-reported health outcomes. Repeated measures linear mixed models were further used to assess relationships between PFAAs and biomarkers for cardiovascular disease and kidney function longitudinally in a subset of the firefighters (n = 130) where serum measurements were available from two timepoints, five years apart. In the cross-sectional analysis, higher levels of all PFAAs were significantly associated with higher levels of biomarkers for cardiovascular disease (total-cholesterol, and LDL-cholesterol). For example, doubling in PFOS serum concentration were associated with increases in total cholesterol (β:0.111, 95% confidence interval (95%CI): 0.026, 0.195 mmol/L) and LDL-cholesterol (β: 0.104, 95%CI:0.03, 0.178 mmol/L). Doubling in PFOA concentration, despite not being elevated in the study population, were additionally positively associated with kidney function marker urate (e.g., β: 0.010, 95%CI; 0.004, 0.016 mmol/L) and thyroid function marker TSH (e.g., β: 0.087, 95%CI: 0.014, 0.161 mIU/L). PFAAs were not associated with any assessed self-reported health conditions. No significant relationships were observed in the longitudinal analysis. Findings support previous studies, particularly on the association between PFAAs and serum lipids.
Collapse
Affiliation(s)
- Sandra Nilsson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia.
| | - Kayla Smurthwaite
- National Centre for Epidemiology and Population Health, The Australian National University, Cnr of Eggleston and Mills Roads Acton 2600, Australia
| | - Lesa L Aylward
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia; Summit Toxicology, LLP, La Quinta, 92253, CA, USA
| | - Margaret Kay
- General Practice Clinical Unit, Faculty of Medicine, The University of Queensland, Health Sciences Building, RBWH Complex, Herston, 4029, QLD, Australia
| | - Leisa-Maree Toms
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Musk Avenue, Kelvin Grove, 4059, QLD, Australia
| | - Leisa King
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia
| | - Shelby Marrington
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia
| | - Martyn D Kirk
- National Centre for Epidemiology and Population Health, The Australian National University, Cnr of Eggleston and Mills Roads Acton 2600, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia
| |
Collapse
|
27
|
Tang W, Meng Y, Yang B, He D, Li Y, Li B, Shi Z, Zhao C. Preparation of hollow-fiber nanofiltration membranes of high performance for effective removal of PFOA and high resistance to BSA fouling. J Environ Sci (China) 2022; 122:14-24. [PMID: 35717080 DOI: 10.1016/j.jes.2021.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 06/15/2023]
Abstract
Nanofiltration (NF) process has become one of the most promising technologies to remove micro-organic combined water pollution. Developing a NF membrane material with efficient separation for perfluorooctanoic acid (PFOA) combined pollution is highly desired, this manuscript targets this unmet need specifically. In this work, hydrophilic SiO2 nanoparticles with various contents blended with carboxylic multiwalled carbon nanotube were used to modify poly (m-phenylene isophthal amide) (SiO2/CMWCNT/PMIA) hollow fiber NF membrane. The modified membrane with 0.1 wt% SiO2 doping exhibits way better fouling resistance with irreversible fouling ratio decreased dramatically from 18.7% to 2.3%, and the recovery rate of water flux increases significantly from 81.2% to 97.7%. The separation experiment results had confirmed that the modified membrane could improve the rejection from 97.2% to 98.6% for perfluorooctanoic acid (PFOA) and its combined pollution with bovine serum albumin (BSA). It is clear that this reported SiO2/CMWCNT/PMIA hollow fiber NF membrane potentially could be applied in water treatment. This research also provides a theoretical basis for efficiently removal of PFOA and its combined pollution by NF membrane.
Collapse
Affiliation(s)
- Wenjing Tang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yunyi Meng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bin Yang
- The Fourth Construction CO. LTD of China Electronics System Engineering, Tianjin 300130, China
| | - Dongyu He
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Bojun Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zheming Shi
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Changwei Zhao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
28
|
Estefanía González-Alvarez M, Severin A, Sayadi M, Keating AF. PFOA-Induced Ovotoxicity Differs Between Lean and Obese Mice With Impacts on Ovarian Reproductive and DNA Damage Sensing and Repair Proteins. Toxicol Sci 2022; 190:173-188. [PMID: 36214631 PMCID: PMC9789752 DOI: 10.1093/toxsci/kfac104] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Perfluorooctanoic acid (PFOA) is an environmentally persistent perfluoroalkyl substance that is widely used in consumer products. Exposure to PFOA is associated with reproductive and developmental effects including endocrine disruption, delayed puberty in girls, and decreased fetal growth. In the United States, obesity affects 40% of women and 20% of girls, with higher rates in minority females. Obesity causes infertility, poor oocyte quality, miscarriage, and offspring defects. This study proposed that PFOA exposure would impact estrous cyclicity, ovarian steroid hormones, and the ovarian proteome and further hypothesized that obesity would impact PFOA-induced ovotoxicity. Female wild type (KK.Cg-a/a; lean) or KK.Cg-Ay/J mice (obese) received saline (CT) or PFOA (2.5 mg/kg) per os for 15 days beginning at 7 weeks of age. There were no effects on food intake, body weight, estrous cyclicity, serum progesterone, and heart, spleen, kidney, or uterus weight (p > .05). Ovary weight was decreased (p < .05) by PFOA exposure relative to vehicle control-treated mice in lean but not obese mice. Liquid chromatography-tandem mass spectrometry was performed on isolated ovarian protein and PFOA exposure altered the ovarian abundance of proteins involved in DNA damage sensing and repair pathways and reproduction pathways (p < .05) differentially in lean and obese mice. The data suggest that PFOA exposure alters ovary weight and differentially targets ovarian proteins in lean and obese females in ways that might reduce female fecundity.
Collapse
Affiliation(s)
| | - Andrew Severin
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa 50011, USA
| | - Maryam Sayadi
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa 50011, USA
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
29
|
Nguyen A, Crespi CM, Vergara X, Kheifets L. Commercial outdoor plant nurseries as a confounder for electromagnetic fields and childhood leukemia risk. ENVIRONMENTAL RESEARCH 2022; 212:113446. [PMID: 35550811 DOI: 10.1016/j.envres.2022.113446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Close residential proximity to powerlines and high magnetic fields exposure may be associated with elevated childhood leukemia risks as reported by prior studies and pooled analyses. Magnetic fields exposure from high-voltage powerlines is associated with proximity to these powerlines and consequently with any factor varying with distance. Areas underneath powerlines in California may be sites for commercial plant nurseries that can use pesticides, a potential childhood leukemia risk factor. OBJECTIVES Assess if potential pesticide exposure from commercial plant nurseries is a confounder or interacts with proximity or magnetic fields exposure from high-voltage powerlines to increase childhood leukemia risk. METHODS A comprehensive childhood leukemia record-based case-control study with 5788 cases and 5788 controls (born and diagnosed in California, 1986-2008) was conducted. Pesticide, powerline, and magnetic field exposure assessment utilized models that incorporated geographical information systems, aerial satellite images, site visits and other historical information. RESULTS The relationship for calculated fields with childhood leukemia (odds ratio (OR) 1.51, 95% confidence interval (CI) 0.70-3.23) slightly attenuated when controlling for nursery proximity (OR 1.43, 95% CI 0.65-3.16) or restricting analysis to subjects living far (>300 m) from nurseries (OR 1.43, 95% CI 0.79-2.60). A similar association pattern was observed between distance to high-voltage powerlines and childhood leukemia. The association between nursery proximity and childhood leukemia was unchanged or only slightly attenuated when controlling for calculated fields or powerline distance; ORs remained above 2 when excluding subjects with high calculated fields or close powerline proximity (OR 2.16, 95% CI 0.82-5.67 and OR 2.15, 95% CI 0.82-5.64, respectively). The observed relationships were robust to different time periods, reference categories, and cut points. DISCUSSION Close residential proximity to nurseries is suggested as an independent childhood leukemia risk factor. Our results do not support plant nurseries as an explanation for observed childhood leukemia risks for powerline proximity and magnetic fields exposure, although small numbers of subjects concurrently exposed to high magnetic fields, close powerline proximity and plant nurseries limited our ability to fully assess potential confounding.
Collapse
Affiliation(s)
- A Nguyen
- Department of Epidemiology, University of California Los Angeles Fielding School of Public Health, 650 Charles E. Young Drive South, Los Angeles, CA 90095-1772, USA.
| | - C M Crespi
- Department of Biostatistics, University of California Los Angeles Fielding School of Public Health, 650 Charles E. Young Drive South, Los Angeles, CA 90095-1772, USA.
| | - X Vergara
- Department of Epidemiology, University of California Los Angeles Fielding School of Public Health, 650 Charles E. Young Drive South, Los Angeles, CA 90095-1772, USA.
| | - L Kheifets
- Department of Epidemiology, University of California Los Angeles Fielding School of Public Health, 650 Charles E. Young Drive South, Los Angeles, CA 90095-1772, USA.
| |
Collapse
|
30
|
Liu S, Yan L, Zhang Y, Junaid M, Wang J. Toxicological effects of polystyrene nanoplastics and perfluorooctanoic acid to Gambusia affinis. FISH & SHELLFISH IMMUNOLOGY 2022; 127:1100-1112. [PMID: 35835386 DOI: 10.1016/j.fsi.2022.06.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Plastic pollution has attracted huge attention from public and scientific community in recent years. In the environment, nanoplastics (NPs, <100 nm) can interact with persistent organic pollutants (POPs) such as perfluorooctanoic acid (PFOA) and may exacerbate associated toxic impacts. The present study aims to explore the single and combined ecotoxicological effects of PFOA and polystyrene nanoplastics (PS-NPs, 80 nm) on the PI3K/AKT3 signaling pathway using a freshwater fish model Gambusia affinis. Fish were exposed individually to PS-NPs (200 μg/L) and PFOA (50, 500, 5000 μg/L) and their chemical mixtures for 96 h. Our results showed that the co-exposure significantly altered the mRNA relative expression of PI3K, AKT3, IKKβ and IL-1β, compared to corresponding single exposure and control groups, indicating that the PFOA-NP co-exposure can activate the PI3K/AKT3 signaling pathway. The bioinformatic analyses showed that AKT3 had more probes and exhibited a significantly sensitive correlation with DNA methylation, compared to other genes (PIK3CA, IKBKB, and IL1B). Further, the mRNA expressions of PIK3CA, AKT3, and IKBKB had a significant correlation with copy number variation (CNV) in human liver hepatocellular carcinoma (LIHC). And PIK3CA had the highest mutation rate among other genes of interest for LIHC. Moreover, AKT3 showed a relatively lower expression in TAM and CAF cells, compared to PIK3CA, IKBKB, and IL1B. Besides, hsa-mir-155-5p was closely correlated with AKT3, PIK3CA, IKBKB, and IL1B. In summary, these results provide evidence that NPs could enhance the carcinogenic effects of POPs on aquatic organisms and highlight possible targets of LIHC induced by PFOA-NP co-exposure.
Collapse
Affiliation(s)
- Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lei Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanling Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 528478, China.
| |
Collapse
|
31
|
Robarts DR, Venneman KK, Gunewardena S, Apte U. GenX induces fibroinflammatory gene expression in primary human hepatocytes. Toxicology 2022; 477:153259. [PMID: 35850385 PMCID: PMC9741548 DOI: 10.1016/j.tox.2022.153259] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 01/09/2023]
Abstract
The toxicity induced by the persistent organic pollutants per- and polyfluoroalkyl substances (PFAS) is dependent on the length of their polyfluorinated tail. Long-chain PFASs have significantly longer half-lives and profound toxic effects compared to their short-chain counterparts. Recently, production of a short-chain PFAS substitute called ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoate, also known as GenX, has significantly increased. However, the adverse health effects of GenX are not completely known. In this study, we investigated the dose-dependent effects of GenX on primary human hepatocytes (PHH). Freshly isolated PHH were treated with either 0.1, 10, or 100 μM of GenX for 48 and 96 h; then, global transcriptomic changes were determined using Human Clariom™ D arrays. GenX-induced transcriptional changes were similar at 0.1 and 10 μM doses but were significantly different at the 100 μM dose. Genes involved in lipid, monocarboxylic acid, and ketone metabolism were significantly altered following exposure of PHH at all doses. However, at the 100 μM dose, GenX caused changes in genes involved in cell proliferation, inflammation and fibrosis. A correlation analysis of concentration and differential gene expression revealed that 576 genes positively (R > 0.99) and 375 genes negatively (R < -0.99) correlated with GenX concentration. The upstream regulator analysis indicated HIF1α was inhibited at the lower doses but were activated at the higher dose. Additionally, VEGF, PPARα, STAT3, and SMAD4 signaling was induced at the 100 µM dose. These data indicate that at lower doses GenX can interfere with metabolic pathways and at higher doses can induce fibroinflammatory changes in human hepatocytes.
Collapse
Affiliation(s)
- Dakota R Robarts
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Kaitlyn K Venneman
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
32
|
Boyd RI, Ahmad S, Singh R, Fazal Z, Prins GS, Madak Erdogan Z, Irudayaraj J, Spinella MJ. Toward a Mechanistic Understanding of Poly- and Perfluoroalkylated Substances and Cancer. Cancers (Basel) 2022; 14:2919. [PMID: 35740585 PMCID: PMC9220899 DOI: 10.3390/cancers14122919] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
Poly- and perfluoroalkylated substances (PFAS) are chemicals that persist and bioaccumulate in the environment and are found in nearly all human populations through several routes of exposure. Human occupational and community exposure to PFAS has been associated with several cancers, including cancers of the kidney, testis, prostate, and liver. While evidence suggests that PFAS are not directly mutagenic, many diverse mechanisms of carcinogenicity have been proposed. In this mini-review, we organize these mechanisms into three major proposed pathways of PFAS action-metabolism, endocrine disruption, and epigenetic perturbation-and discuss how these distinct but interdependent pathways may explain many of the proposed pro-carcinogenic effects of the PFAS class of environmental contaminants. Notably, each of the pathways is predicted to be highly sensitive to the dose and window of exposure which may, in part, explain the variable epidemiologic and experimental evidence linking PFAS and cancer. We highlight testicular and prostate cancer as models to validate this concept.
Collapse
Affiliation(s)
- Raya I. Boyd
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Saeed Ahmad
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (S.A.); (J.I.)
| | - Ratnakar Singh
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Zeeshan Fazal
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Gail S. Prins
- Departments of Urology, Pathology and Physiology, College of Medicine, Chicago Center for Health and Environment, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (S.A.); (J.I.)
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J. Spinella
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
33
|
Wang P, Liu D, Yan S, Cui J, Liang Y, Ren S. Adverse Effects of Perfluorooctane Sulfonate on the Liver and Relevant Mechanisms. TOXICS 2022; 10:toxics10050265. [PMID: 35622678 PMCID: PMC9144769 DOI: 10.3390/toxics10050265] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent, widely present organic pollutant. PFOS can enter the human body through drinking water, ingestion of food, contact with utensils containing PFOS, and occupational exposure to PFOS, and can have adverse effects on human health. Increasing research shows that the liver is the major target of PFOS, and that PFOS can damage liver tissue and disrupt its function; however, the exact mechanisms remain unclear. In this study, we reviewed the adverse effects of PFOS on liver tissue and cells, as well as on liver function, to provide a reference for subsequent studies related to the toxicity of PFOS and liver injury caused by PFOS.
Collapse
|
34
|
Liu Y, Ptacek CJ, Groza LG, Staples R, Blowes DW. Occurrence and distribution of emerging contaminants in mine-impacted lake water and potential use as co-tracers of anthropogenic activity in the subarctic region, Northwest Territories, Canada. ENVIRONMENTAL RESEARCH 2022; 207:112034. [PMID: 34562482 DOI: 10.1016/j.envres.2021.112034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/13/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
The emerging contaminant (EC) perchlorate (ClO4-), a blasting agent widely used in mining and refining operations, has been used as a practical indicator of mining activities. Widespread occurrence of ECs, such as pharmaceutical compounds, artificial sweeteners, and perfluoroalkyl substances, and their use as co-tracers of wastewater associated with anthropogenic activities in the urban and Arctic environments have been previously investigated. However, limited studies have reported the occurrence of these ECs and the feasibility of their use as co-tracers of anthropogenic activities in pristine waterbodies (e.g., continuous permafrost region) that receive effluent from mine sites. In this study, water samples were collected from the surface of 10 lakes within the Coppermine and Lockhart Watersheds in the continuous permafrost region in the Northwest Territories, Canada during the open water seasons of 2016, 2017, and 2018. Concentrations of 16 ECs were determined to delineate the spatial and temporal distribution of these compounds in waterbodies receiving effluent from mine sites. Slightly elevated concentrations of ClO4- (100-700 ng L-1), caffeine (0.2-5.9 ng L-1), acesulfame-K (0.5-1.5 ng L-1), perfluorooctanoic acid (PFOA; 5-34 ng L-1), perfluorooctane sulfonic acid (PFOS; 11-40 ng L-1), chloride (1.5-2.3 mg L-1), and sulfate (1.0-3.6 mg L-1) were observed across the two investigated watersheds, especially downstream of the mining sites. The concurrence of elevated concentrations of these target ECs combined with other dissolved constituents (chloride and sulfate) may indicate the influence of mining activity on the receiving waterbodies and the potential use of these compounds as co-indicators of anthropogenic activity. Results from this study provide novel information on the distribution of 16 ECs in pristine waterbodies that receive effluents from mining sites in the Canadian subarctic in advance of more expansive human development and increased warming and melting of mine sites, including mine wastes.
Collapse
Affiliation(s)
- YingYing Liu
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Carol J Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Laura G Groza
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Robin Staples
- Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, Northwest Territories, X1A 2L9, Canada
| | - David W Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
35
|
Gui SY, Chen YN, Wu KJ, Liu W, Wang WJ, Liang HR, Jiang ZX, Li ZL, Hu CY. Association Between Exposure to Per- and Polyfluoroalkyl Substances and Birth Outcomes: A Systematic Review and Meta-Analysis. Front Public Health 2022; 10:855348. [PMID: 35400049 PMCID: PMC8988915 DOI: 10.3389/fpubh.2022.855348] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
Background A large body of emerging evidence suggests that per- and polyfluoroalkyl substances (PFAS) affect birth outcomes in various pathways, but the evidence is inconsistent. Therefore, this study aimed to systematically review the epidemiological evidence on PFAS exposure and birth outcomes. Methods Three electronic databases were searched for epidemiological studies through February 13, 2021. We used random-effects meta-analysis for eight birth outcome indicators to calculate summary effect estimates for various exposure types. The risk of bias and the overall quality and level of evidence for each exposure-outcome pair were assessed. Results The initial search identified 58 potentially eligible studies, of which 46 were ultimately included. Many PFAS were found to have previously unrecognized statistically significant associations with birth outcomes. Specifically, birth weight (BW) was associated with PFAS, with effect sizes ranging from −181.209 g (95% confidence interval (CI) = −360.620 to −1.798) per 1 ng/ml increase in perfluoroheptanesulfonate (PFHpS) to −24.252 g (95% CI = −38.574 to −9.930) per 1 ln (ng/ml) increase in perfluorodecaoic acid (PFDA). Similar patterns were observed between other PFAS and birth outcomes: perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) with birth length (BL) and ponderal index (PI), PFOS and perfluorododecanoic acid (PFDoDA) with head circumference (HC), PFHpS with gestational age (GA), and perfluorononanoic acid (PFNA) and PFHpS with preterm birth (PTB). Additionally, PFDA showed a statistically significant association with small for gestational age (SGA). The level of the combined evidence for each exposure-outcome pair was considered to be “moderate”. Conclusion This study showed that PFAS exposure was significantly associated with increased risks of various adverse birth outcomes and that different birth outcome indicators had different degrees of sensitivity to PFAS. Further studies are needed to confirm our results by expanding the sample size, clarifying the effects of different types or doses of PFAS and the time of blood collection on birth outcomes, and fully considering the possible confounders.
Collapse
Affiliation(s)
- Si-Yu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yue-Nan Chen
- Department of Pharmacy, School of Clinical Pharmacy, Anhui Medical University, Hefei, China
| | - Ke-Jia Wu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Wen Liu
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Wen-Jing Wang
- Department of Pharmacy, School of Clinical Pharmacy, Anhui Medical University, Hefei, China
| | - Huan-Ru Liang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zheng-Xuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ze-Lian Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Ze-Lian Li
| | - Cheng-Yang Hu
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, Hefei, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Cheng-Yang Hu
| |
Collapse
|
36
|
Field demonstration of coupling ion-exchange resin with electrochemical oxidation for enhanced treatment of per- and polyfluoroalkyl substances (PFAS) in groundwater. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2021.100216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
37
|
Wang L, Bu T, Wu X, Gao S, Li X, De Jesus AB, Wong CKC, Chen H, Chung NPY, Sun F, Cheng CY. Cell-Cell Interaction-Mediated Signaling in the Testis Induces Reproductive Dysfunction—Lesson from the Toxicant/Pharmaceutical Models. Cells 2022; 11:cells11040591. [PMID: 35203242 PMCID: PMC8869896 DOI: 10.3390/cells11040591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Emerging evidence has shown that cell-cell interactions between testicular cells, in particular at the Sertoli cell-cell and Sertoli-germ cell interface, are crucial to support spermatogenesis. The unique ultrastructures that support cell-cell interactions in the testis are the basal ES (ectoplasmic specialization) and the apical ES. The basal ES is found between adjacent Sertoli cells near the basement membrane that also constitute the blood-testis barrier (BTB). The apical ES is restrictively expressed at the Sertoli-spermatid contact site in the apical (adluminal) compartment of the seminiferous epithelium. These ultrastructures are present in both rodent and human testes, but the majority of studies found in the literature were done in rodent testes. As such, our discussion herein, unless otherwise specified, is focused on studies in testes of adult rats. Studies have shown that the testicular cell-cell interactions crucial to support spermatogenesis are mediated through distinctive signaling proteins and pathways, most notably involving FAK, Akt1/2 and Cdc42 GTPase. Thus, manipulation of some of these signaling proteins, such as FAK, through the use of phosphomimetic mutants for overexpression in Sertoli cell epithelium in vitro or in the testis in vivo, making FAK either constitutively active or inactive, we can modify the outcome of spermatogenesis. For instance, using the toxicant-induced Sertoli cell or testis injury in rats as study models, we can either block or rescue toxicant-induced infertility through overexpression of p-FAK-Y397 or p-FAK-Y407 (and their mutants), including the use of specific activator(s) of the involved signaling proteins against pAkt1/2. These findings thus illustrate that a potential therapeutic approach can be developed to manage toxicant-induced male reproductive dysfunction. In this review, we critically evaluate these recent findings, highlighting the direction for future investigations by bringing the laboratory-based research through a translation path to clinical investigations.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Sheng Gao
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Xinyao Li
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | | | - Chris K. C. Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong, China;
| | - Hao Chen
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Nancy P. Y. Chung
- Department of Genetic Medicine, Cornell Medical College, New York, NY 10065, USA;
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Correspondence: (F.S.); (C.Y.C.)
| | - C. Yan Cheng
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
- Correspondence: (F.S.); (C.Y.C.)
| |
Collapse
|
38
|
Li YF, Hu CY, Lee YC, Lo SL. Effects of zinc salt addition on perfluorooctanoic acid (PFOA) removal by electrocoagulation with aluminum electrodes. CHEMOSPHERE 2022; 288:132665. [PMID: 34710459 DOI: 10.1016/j.chemosphere.2021.132665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
In this study, the electrocoagulation (EC) of perfluorooctanoic acid (PFOA) by an aluminum electrode with the addition of zinc salt was investigated. Adding ZnCl2 successfully prevented a rise in pH during EC and increased the efficiency from 73.7% to over 99%. In addition, the longer the carbon chain of a PFA was, the better the removal of that PFA by electrocoagulation. The main functions of ZnCl2 were to prevent the rise in pH and improve flotation because the flocs with added ZnCl2 were easy to gather together and had a faster floating speed. The XPS results demonstrated the occurrence of bonding between aluminum and fluoride. This finding indicates that complexation between aluminum and fluoride may be the main mechanism for removal when aluminum electrodes are used to remove perfluoroalkyl (PFA) compounds.
Collapse
Affiliation(s)
- Yueh-Feng Li
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei, 10673, Taiwan, ROC
| | - Ching-Yao Hu
- School of Public Health, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan, ROC
| | - Yu-Chi Lee
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei, 10673, Taiwan, ROC
| | - Shang-Lien Lo
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei, 10673, Taiwan, ROC; Water Innovation, Low Carbon and Environmental Sustainability Research Center, National Taiwan University, Taipei, 10617, Taiwan, ROC.
| |
Collapse
|
39
|
Snitsiriwat S, Hudzik JM, Chaisaward K, Stoler LR, Bozzelli JW. Thermodynamic Properties: Enthalpy, Entropy, Heat Capacity, and Bond Energies of Fluorinated Carboxylic Acids. J Phys Chem A 2022; 126:3-15. [PMID: 34978833 DOI: 10.1021/acs.jpca.1c05484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorinated carboxylic acids and their radicals are becoming more prevalent in environmental waters and soils as they have been produced and used for numerous commercial applications. Understanding the thermochemical properties of fluorinated carboxylic acids will provide insights into the stability and reaction paths of these molecules in the environment, in body fluids, and in biological and biochemical processes. Structures and thermodynamic properties for over 50 species related to fluorinated carboxylic acids with two and three carbons are determined with density functional computational calculations B3LYP, M06-2X, and MN15 and higher ab initio levels CBS-QB3, CBS-APNO, and G4 of theory. The lowest energy structures, moments of inertia, vibrational frequencies, and internal rotor potentials of each target species are determined. Standard enthalpies of formation, ΔfH298°, from CBS-APNO calculations show the smallest standard deviation among methods used in this work. ΔfH298° values are determined via several series of isodesmic and/or isogyric reactions. Enthalpies of formation are determined for fluorinated acetic and propionic acids and their respective radicals corresponding to the loss of hydrogen and fluorine atoms. Heat capacities as a function of temperature, Cp(T), and entropy at 298 K, S298°, are determined. Thermochemical properties for the fluorinated carbon groups used in group additivity are also developed. Bond dissociation energies (BDEs) for the carbon-hydrogen, carbon-fluorine, and oxygen-hydrogen (C-H, C-F, and O-H BDEs) in the acids are reported. The C-H, C-F, and O-H bond energies of the fluorinated carboxylic acids are in the range of 89-104, 101-125, and 109-113 kcal mol-1, respectively. General trends show that the O-H bond energies on the acid group increase with the increase in the fluorine substitution. The strong carbon fluorine bonds in a fluorinated acid support the higher stability of the perfluorinated acids in the environment.
Collapse
Affiliation(s)
- Suarwee Snitsiriwat
- Department of Chemistry, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Jason M Hudzik
- Chemistry, Chemical Engineering and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Kingkan Chaisaward
- Department of Chemistry, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Loryn R Stoler
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore, Maryland 21250, United States
| | - Joseph W Bozzelli
- Chemistry, Chemical Engineering and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
40
|
Yang Y, Chen S, Li P, Jing Y, Cheng B, Hu Y, Zheng Q, Wang C. PFOI stimulates the motility of T24 bladder cancer cells: Possible involvement and activation of lncRNA malat1. CHEMOSPHERE 2022; 287:131967. [PMID: 34438215 DOI: 10.1016/j.chemosphere.2021.131967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Perfluorinated iodine alkanes (PFIs) can serve as an important raw materials for the synthesis of various perfluorinated chemical products through telomerization reaction. The estrogenic effects of PFIs have been reported previously by some in vitro and in vivo screening assays. To explore the potential epigenetic toxicity of PFIs, activation of lncRNAs was screened, and the cell motility changes induced by perfluorooctyl iodide (PFOI) were analyzed in this study. High metastatic bladder cell line (T24) was used to investigate the cellular migration function affected by PFOI. PFOI exposure significantly induced the upregulation of lncRNA anril, thorlnc, hotairm1, meg3, and malat1. The migration and invasion of T24 cells were also enhanced upon PFOI exposure. The transcription level of matrix metalloenzyme genes, epidermal growth factors, cytoskeleton genes, and the upstream factors involved in cell motility pathways were examined to illustrate possible mechanisms. Additionally, the basic role of malat1 in cellular motility was investigated by lncRNA knockdown and migration assays. The knockdown of malat1 inhibited the cellular motility induced by PFOI. The levels of MMP-2/-9 genes were also down-regulated by the treatment of si-malat1. Overall, the perturbation of cytoskeleton genes (E-cadherin/N-cadherin) may account for the impact on the motility of T24 cells. Our studies indicate that perfluorinated chemicals might regulate the lncRNAs, thus promoting the metastasis of the tumor cells.
Collapse
Affiliation(s)
- Yuying Yang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China; School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430025, China
| | - Siyi Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Pingdeng Li
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China; School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430025, China
| | - Yingwei Jing
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China; School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430025, China
| | - Bo Cheng
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430025, China
| | - Yeli Hu
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430025, China
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Jianghan University, Wuhan, 430056, China
| | - Chang Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
41
|
Ninomiya A, Mshaty A, Haijima A, Yajima H, Kokubo M, Khairinisa MA, Ariyani W, Fujiwara Y, Ishii S, Hosoi N, Hirai H, Amano I, Koibuchi N. The neurotoxic effect of lactational PFOS exposure on cerebellar functional development in male mice. Food Chem Toxicol 2021; 159:112751. [PMID: 34871666 DOI: 10.1016/j.fct.2021.112751] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 01/09/2023]
Abstract
Recent studies showed a possible association between perfluorooctane sulfonate (PFOS) and developmental disabilities. We previously found the specific effects of PFOS exposure on learning and memory, however, its effect on the other developmental disabilities such as motor and social deficits remains unclear. We examined the effect of early lactational PFOS exposure on motor coordination, social activity, and anxiety in male mice. We orally administered a PFOS solution to dams from postnatal day 1-14. At 10 weeks old, we conducted a behavior test battery to evaluate motor performance, social activity, and anxiety, followed by electrophysiology and Western blot analysis. PFOS-exposed mice displayed impaired motor coordination. Whole-cell patch-clamp recordings from Purkinje cells revealed that the short-term and long-term plasticity at parallel fiber-Purkinje cell synapses are affected by PFOS exposure. Western blot analysis indicated that PFOS exposure increased syntaxin binding protein 1 (Munc18-1) and glutamate metabotropic receptor 1 (mGluR1) protein levels, which may be associated with the change in neurotransmitter release from parallel fibers and the level of long-term depression, respectively. The present study demonstrates that lactational PFOS exposure may have disrupted the pre- and postsynaptic plasticity at parallel fiber-Purkinje cell synapses, causing profound, long-lasting abnormal effects on the cerebellar function.
Collapse
Affiliation(s)
- Ayane Ninomiya
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Abdallah Mshaty
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Asahi Haijima
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan; Laboratory for Environmental Brain Science, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Hiroyuki Yajima
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Michifumi Kokubo
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Miski Aghnia Khairinisa
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM.21, Hegarmanah, Jatinangor, Sumedang, West Java, 45363, Indonesia
| | - Winda Ariyani
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Yuki Fujiwara
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Sumiyasu Ishii
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Nobutake Hosoi
- Department of Neurophysiology and Neural Repair, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan.
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan.
| |
Collapse
|
42
|
Wan HT, Cheung LY, Chan TF, Li M, Lai KP, Wong CKC. Characterization of PFOS toxicity on in-vivo and ex-vivo mouse pancreatic islets. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117857. [PMID: 34330010 DOI: 10.1016/j.envpol.2021.117857] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Considerable human data have shown that the exposure to perfluorooctane sulfonate (PFOS) correlates to the risk of metabolic diseases, however the underlying effects are not clearly elucidated. In this study, we investigated the impacts of PFOS treatment, using in-vivo, ex-vivo and in-vitro approaches, on pancreatic β-cell functions. Mice were oral-gavage with 1 and 5 μg PFOS/g body weight/day for 21 days. The animals showed a significant increase in liver triglycerides, accompanied by a reduction of triglycerides in blood sera and glycogen in livers and muscles. Histological examination of pancreases showed no noticeable changes in the size and number of islets from the control and treatment groups. Immunohistochemistry showed a reduction of staining intensities of insulin and the transcriptional factors (Pdx-1, islet-1) in islets of pancreatic sections from PFOS-treated groups, but no changes in the intensity of Glut2 and glucagon were noted. Transcriptomic study of isolated pancreatic islets treated ex vivo with 1 μM and 10 μM PFOS for 24 h, underlined perturbations of the insulin signaling pathways. Western blot analysis of ex-vivo PFOS-treated islets revealed a significant reduction in the expression levels of the insulin receptor, the IGF1 receptor-β, Pdk1-Akt-mTOR pathways, and Pdx-1. Using the mouse β-cells (Min-6) treated with 1 μM and 10 μM PFOS for 24 h, Western blot analysis consistently showed the PFOS-treatment inhibited Akt-pathway and reduced cellular insulin contents. Moreover, functional studies revealed the inhibitory effects of PFOS on glucose-stimulated insulin-secretion (GSIS) and the rate of ATP production. Our data support the perturbing effects of PFOS on animal metabolism and demonstrate the underlying molecular targets to impair β-cell functions.
Collapse
Affiliation(s)
- Hin Ting Wan
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lok Yi Cheung
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ting Fung Chan
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Marco Li
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Chris Kong Chu Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
43
|
Kancharla S, Jahan R, Bedrov D, Tsianou M, Alexandridis P. Role of chain length and electrolyte on the micellization of anionic fluorinated surfactants in water. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Imir OB, Kaminsky AZ, Zuo QY, Liu YJ, Singh R, Spinella MJ, Irudayaraj J, Hu WY, Prins GS, Madak Erdogan Z. Per- and Polyfluoroalkyl Substance Exposure Combined with High-Fat Diet Supports Prostate Cancer Progression. Nutrients 2021; 13:3902. [PMID: 34836157 PMCID: PMC8623692 DOI: 10.3390/nu13113902] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/25/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals utilized in various industrial settings and include products such as flame retardants, artificial film-forming foams, cosmetics, and non-stick cookware, among others. Epidemiological studies suggest a link between increased blood PFAS levels and prostate cancer incidence, but the mechanism through which PFAS impact cancer development is unclear. To investigate the link between PFAS and prostate cancer, we evaluated the impact of metabolic alterations resulting from a high-fat diet combined with PFAS exposure on prostate tumor progression. We evaluated in vivo prostate cancer xenograft models exposed to perfluorooctane sulfonate (PFOS), a type of PFAS compound, and different diets to study the effects of PFAS on prostate cancer progression and metabolic activity. Metabolomics and transcriptomics were used to understand the metabolic landscape shifts upon PFAS exposure. We evaluated metabolic changes in benign or tumor cells that lead to epigenomic reprogramming and altered signaling, which ultimately increase tumorigenic risk and tumor aggressiveness. Our studies are the first in the field to provide new and clinically relevant insights regarding novel metabolic and epigenetic states as well as to support the future development of effective preventative and therapeutic strategies for PFAS-induced prostate cancers. Our findings enhance understanding of how PFAS synergize with high-fat diets to contribute to prostate cancer development and establish an important basis to mitigate PFAS exposure.
Collapse
Affiliation(s)
- Ozan Berk Imir
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA;
| | - Alanna Zoe Kaminsky
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (A.Z.K.); (Q.-Y.Z.); (Y.-J.L.)
| | - Qian-Ying Zuo
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (A.Z.K.); (Q.-Y.Z.); (Y.-J.L.)
| | - Yu-Jeh Liu
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (A.Z.K.); (Q.-Y.Z.); (Y.-J.L.)
| | - Ratnakar Singh
- Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (R.S.); (M.J.S.)
| | - Michael J. Spinella
- Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (R.S.); (M.J.S.)
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA;
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA;
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Departments of Urology, Pathology and Physiology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (W.-Y.H.); (G.S.P.)
| | - Wen-Yang Hu
- Departments of Urology, Pathology and Physiology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (W.-Y.H.); (G.S.P.)
- Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Gail S. Prins
- Departments of Urology, Pathology and Physiology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (W.-Y.H.); (G.S.P.)
- Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zeynep Madak Erdogan
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA;
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (A.Z.K.); (Q.-Y.Z.); (Y.-J.L.)
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA;
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
45
|
Jain RB. Impact of the increasing concentrations of selected perfluoroalkyl acids on the observed concentrations of red blood cell folate among US adults aged ≥20 years. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52357-52369. [PMID: 34009570 DOI: 10.1007/s11356-021-14454-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
For the first time (N = 6291), a study was undertaken to estimate associations between the concentratio ns of red blood cell folate (RBCF) and concentration of six perfluoroalkyl acids (PFAAs), namely, perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), perfluorodecanoic acid (PFDA), perfluorononanoic acid (PFNA), and perfluoroundecanoic acid (PFUnDA) for US adults aged ≥20 years by fitting regression models for the data from National Health and Nutrition Examination Survey for 2007-2014. In almost consistent fashion, increasing concentrations of PFAAs were associated with decreasing concentrations of RBCF. For the total population, for a 10% increase in the concentrations of PFOA, PFOS, PFDA, PFHxS, PFNA, and PFUnDA, percent decreases in RBCF concentrations were found to be 0.33%, 0.66%, 0.83%, 0.16%, 0.89%, and 0.43%, respectively. RBCF concentrations of PFAAs were found to be 1104, 1042, 100, and 936 nmol/L across the four quartiles of PFOS; 112, 1068, 1009, and 948 nmol/L across the four quartiles of PFDA; 1125, 1054, 1005, and 967 nmol/L across the four quartiles of PFNA; and 1099, 1094, 989, and 952 nmol/L across the four quartiles of PFUnDA. Perfluorinated carboxylic acids with carbon chain length > 8 decreased concentrations of RBCF to a greater degree than those carbon chain length ≤ 8. Perfluorinated chemicals with a sulfonic group with carbon chain length > 6 decreased concentrations of RBCF to a greater degree than those carbon chain length ≤ 6. The degree to which concentrations of RBCF decrease varied by age, gender, and race/ethnicity. Non-Hispanic blacks as compared to non-Hispanic whites and Hispanics had the lowest decreases in RBCF concentrations. Mechanisms responsible for negative associations between RBCF and PFAA concentrations are not known and will need to be researched further.
Collapse
|
46
|
Lu Y, Gao J, Nguyen HT, Vijayasarathy S, Du P, Li X, Yao H, Mueller JF, Thai PK. Occurrence of per- and polyfluoroalkyl substances (PFASs) in wastewater of major cities across China in 2014 and 2016. CHEMOSPHERE 2021; 279:130590. [PMID: 33895675 DOI: 10.1016/j.chemosphere.2021.130590] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
China produced and consumed a large amount of per- and polyfluoroalkyl substances (PFASs). whose persistency and possible toxicity to organisms have raised public health concerns. Analyzing influent wastewater could help to assess the composition and mass load of PFASs discharged into a wastewater treatment plant (WWTP) from its catchment. In this study, we analyzed 27 PFASs in wastewater samples collected from 42 WWTPs across China in 2014 and 2016. Results indicated that perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were the most common PFASs in wastewater. Population normalized mass loads of PFOA and PFOS were higher in Eastern China than in the other three regions, possibly due to their higher usage. Although the concentrations of PFASs in Central and West areas were showed lower than in East area, Wuhan (in Central area) and Lanzhou (in West area) were hotspots of PFASs pollution because of their industry structure. Population density and per capita Gross Domestic Product (GDP) have positive correlations with the concentration of PFBA, PFOA, PFHxA, and ∑PFASs in wastewater. The estimated annual release of PFASs to WWTPs in our study is much lower than the total emission to the environment. Our results suggest that although there was some reduction in the production volume, certain legacy PFASs were still released into wastewater and their composition and concentration vary among WWTPs.
Collapse
Affiliation(s)
- Yintao Lu
- School of Civil Engineering, Beijing Jiaotong University, 100044, Beijing, China; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, QLD, 4102, Australia; Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, 100044, Beijing, China
| | - Jianfa Gao
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, QLD, 4102, Australia; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Hue T Nguyen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Soumini Vijayasarathy
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, PR China.
| | - Xiqing Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, PR China
| | - Hong Yao
- School of Civil Engineering, Beijing Jiaotong University, 100044, Beijing, China
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, QLD, 4102, Australia
| |
Collapse
|
47
|
Rowan-Carroll A, Reardon A, Leingartner K, Gagné R, Williams A, Meier MJ, Kuo B, Bourdon-Lacombe J, Moffat I, Carrier R, Nong A, Lorusso L, Ferguson SS, Atlas E, Yauk C. High-Throughput Transcriptomic Analysis of Human Primary Hepatocyte Spheroids Exposed to Per- and Polyfluoroalkyl Substances as a Platform for Relative Potency Characterization. Toxicol Sci 2021; 181:199-214. [PMID: 33772556 DOI: 10.1093/toxsci/kfab039] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are widely found in the environment because of their extensive use and persistence. Although several PFAS are well studied, most lack toxicity data to inform human health hazard and risk assessment. This study focused on 4 model PFAS: perfluorooctanoic acid (PFOA; 8 carbon), perfluorobutane sulfonate (PFBS; 4 carbon), perfluorooctane sulfonate (PFOS; 8 carbon), and perfluorodecane sulfonate (PFDS; 10 carbon). Human primary liver cell spheroids (pooled from 10 donors) were exposed to 10 concentrations of each PFAS and analyzed at 4 time points. The approach aimed to: (1) identify gene expression changes mediated by the PFAS, (2) identify similarities in biological responses, (3) compare PFAS potency through benchmark concentration analysis, and (4) derive bioactivity exposure ratios (ratio of the concentration at which biological responses occur, relative to daily human exposure). All PFAS induced transcriptional changes in cholesterol biosynthesis and lipid metabolism pathways, and predicted PPARα activation. PFOS exhibited the most transcriptional activity and had a highly similar gene expression profile to PFDS. PFBS induced the least transcriptional changes and the highest benchmark concentration (ie, was the least potent). The data indicate that these PFAS may have common molecular targets and toxicities, but that PFOS and PFDS are the most similar. The transcriptomic bioactivity exposure ratios derived here for PFOA and PFOS were comparable to those derived using rodent apical endpoints in risk assessments. These data provide a baseline level of toxicity for comparison with other known PFAS using this testing strategy.
Collapse
Affiliation(s)
- Andrea Rowan-Carroll
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB) Health Canada, Ottawa, Ontario K1N 6N5, Canada
| | - Anthony Reardon
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB) Health Canada, Ottawa, Ontario K1N 6N5, Canada
| | - Karen Leingartner
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB) Health Canada, Ottawa, Ontario K1N 6N5, Canada
| | - Remi Gagné
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB) Health Canada, Ottawa, Ontario K1N 6N5, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB) Health Canada, Ottawa, Ontario K1N 6N5, Canada
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB) Health Canada, Ottawa, Ontario K1N 6N5, Canada
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB) Health Canada, Ottawa, Ontario K1N 6N5, Canada
| | - Julie Bourdon-Lacombe
- Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch (HECSB) Health Canada, Ottawa, Ontario K1N 6N5, Canada
| | - Ivy Moffat
- Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch (HECSB) Health Canada, Ottawa, Ontario K1N 6N5, Canada
| | - Richard Carrier
- Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch (HECSB) Health Canada, Ottawa, Ontario K1N 6N5, Canada
| | - Andy Nong
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB) Health Canada, Ottawa, Ontario K1N 6N5, Canada
| | - Luigi Lorusso
- Chemicals and Environmental Health Management Bureau, Healthy Environments and Consumer Safety Branch (HECSB) Health Canada, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen S Ferguson
- U.S. National Institute of Environmental Health Sciences (NIEHS), Ottawa, Ontario K1N 6N5, Canada
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB) Health Canada, Ottawa, Ontario K1N 6N5, Canada
| | - Carole Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB) Health Canada, Ottawa, Ontario K1N 6N5, Canada.,Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
48
|
Servadio JL, Deere JR, Jankowski MD, Ferrey M, Isaac EJ, Chenaux-Ibrahim Y, Primus A, Convertino M, Phelps NBD, Streets S, Travis DA, Moore S, Wolf TM. Anthropogenic factors associated with contaminants of emerging concern detected in inland Minnesota lakes (Phase II). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:146188. [PMID: 33715861 PMCID: PMC9365396 DOI: 10.1016/j.scitotenv.2021.146188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 04/15/2023]
Abstract
Contaminants of emerging concern (CECs) include a variety of pharmaceuticals, personal care products, and hormones commonly detected in surface waters. Human activities, such as wastewater treatment and discharge, contribute to the distribution of CECs in water, but other sources and pathways are less frequently examined. This study aimed to identify anthropogenic activities and environmental characteristics associated with the presence of CECs, previously determined to be of high priority for further research and mitigation, in rural inland lakes in northeastern Minnesota, United States. The setting for this study consisted of 21 lakes located within both the Grand Portage Indian Reservation and the 1854 Ceded Territory, where subsistence hunting and fishing are important to the cultural heritage of the indigenous community. We used data pertaining to numbers of buildings, healthcare facilities, wastewater treatment plants, impervious surfaces, and wetlands within defined areas surrounding the lakes as potential predictors of the detection of high priority CECs in water, sediment, and fish. Separate models were run for each contaminant detected in each sample media. We used least absolute shrinkage and selection operator (LASSO) models to account for both predictor selection and parameter estimation for CEC detection. Across contaminants and sample media, the percentage of impervious surface was consistently positively associated with CEC detection. Number of buildings in the surrounding area was often negatively associated with CEC detection, though nonsignificant. Surrounding population, presence of wastewater treatment facilities, and percentage of wetlands in surrounding areas were positively, but inconsistently, associated with CECs, while catchment area and healthcare centers were generally not associated. The results of this study highlight human activities and environmental characteristics associated with CEC presence in a rural area, informing future work regarding specific sources and transport pathways. We also demonstrate the utility of LASSO modeling in the identification of these important relationships.
Collapse
Affiliation(s)
- Joseph L Servadio
- University of Minnesota, School of Public Health, Division of Environmental Health Sciences, 420 Delaware St. SE, Minneapolis, MN 55455, United States of America.
| | - Jessica R Deere
- University of Minnesota, College of Veterinary Medicine, Department of Veterinary Population Medicine, 1988 Fitch Avenue, St. Paul, MN 55108, United States of America.
| | - Mark D Jankowski
- University of Minnesota, College of Veterinary Medicine, Department of Veterinary Population Medicine, 1988 Fitch Avenue, St. Paul, MN 55108, United States of America; United States Environmental Protection Agency, Region 10, Seattle, WA 98101, United States of America.
| | - Mark Ferrey
- University of Minnesota, College of Veterinary Medicine, Department of Veterinary Population Medicine, 1988 Fitch Avenue, St. Paul, MN 55108, United States of America; Minnesota Pollution Control Agency, 520 Lafayette Rd, St. Paul, MN 55155, United States of America.
| | - E J Isaac
- Grand Portage Band of Lake Superior Chippewa, Biology and Environment, 27 Store Rd., Grand Portage, MN 55605, United States of America.
| | - Yvette Chenaux-Ibrahim
- Grand Portage Band of Lake Superior Chippewa, Biology and Environment, 27 Store Rd., Grand Portage, MN 55605, United States of America.
| | - Alexander Primus
- University of Minnesota, College of Veterinary Medicine, Department of Veterinary Population Medicine, 1988 Fitch Avenue, St. Paul, MN 55108, United States of America.
| | - Matteo Convertino
- Hokkaido University, Graduate School of Information Science and Technology, Gi-CoRE Station for Big Data & Cybersecurity, Nexus Group, Kita 14, Nishi 9, Kita-ku, Room 11-11, 060-0814 Sapporo, Hokkaido, Japan.
| | - Nicholas B D Phelps
- University of Minnesota, College of Food, Agricultural, and Natural Resource Sciences, Department of Fisheries, Wildlife, and Conservation Biology, 2003 Upper Buford Cir., St. Paul, MN 55108, United States of America.
| | - Summer Streets
- Minnesota Pollution Control Agency, 520 Lafayette Rd, St. Paul, MN 55155, United States of America.
| | - Dominic A Travis
- University of Minnesota, College of Veterinary Medicine, Department of Veterinary Population Medicine, 1988 Fitch Avenue, St. Paul, MN 55108, United States of America.
| | - Seth Moore
- University of Minnesota, College of Veterinary Medicine, Department of Veterinary Population Medicine, 1988 Fitch Avenue, St. Paul, MN 55108, United States of America; Grand Portage Band of Lake Superior Chippewa, Biology and Environment, 27 Store Rd., Grand Portage, MN 55605, United States of America.
| | - Tiffany M Wolf
- University of Minnesota, College of Veterinary Medicine, Department of Veterinary Population Medicine, 1988 Fitch Avenue, St. Paul, MN 55108, United States of America.
| |
Collapse
|
49
|
Zou C, Yan H, Wen Z, Li C, Zhang S, Ying Y, Pan P, Li Y, Li H, Li X, Wang Y, Zhong Y, Ge RS, Rao D. Perfluorotridecanoic Acid Inhibits Leydig Cell Maturation in Male Rats in Late Puberty via Changing Testicular Lipid Component. Chem Res Toxicol 2021; 34:1542-1555. [PMID: 34081457 DOI: 10.1021/acs.chemrestox.0c00458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Perfluorotridecanoic acid (PFTrDA) is a long-chain (C13) perfluoroalkyl carboxylic acid. Here, we report the influence of PFTrDA exposure on the maturation of rat Leydig cells in late puberty in vivo. Male Sprague-Dawley rats were administered PFTrDA by gavage of 0, 1, 5, and 10 mg/kg/day from 35 days to 56 days postpartum. PFTrDA had no effect on body weight, testis weight, and epididymis weight. It significantly decreased the serum testosterone level after 5 and 10 mg/kg exposure, while it did not alter the serum estradiol level. The serum luteinizing hormone level was markedly reduced after 10 mg/kg PFTrDA exposure, while the follicle-stimulating hormone level was unchanged. Star, Cyp11a1, Cyp17a1, Hsd3b1, and Insl3 transcript levels in the testis were markedly lowered in the 1-5 mg/kg PFTrDA group and the Lhb transcript level in the pituitary in the 10 mg/kg group. CYP11A1 and HSD11B1-positive Leydig cell numbers were markedly reduced after 10 mg/kg PFTrDA exposure. Testicular triglyceride and free fatty acid (palmitic acid, oleic acid, and linoleic acid) levels were significantly reduced by PFTrDA, while Mgll (up-regulation) and Scarb1 and Elovl5 (down-regulation) expression were altered. AKT1 and AMPK phosphorylation was stimulated after 10 PFTrDA mg/kg exposure. In conclusion, PFTrDA delays the maturation of Leydig cells in late puberty mainly by altering the free fatty acid profile.
Collapse
Affiliation(s)
- Cheng Zou
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Haoni Yan
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Zina Wen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.,Chengdu Xi'nan Gynecological Hospital, Chengdu 610066, Sichuan, China
| | - Changchang Li
- Department of Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Song Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yingfen Ying
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Peipei Pan
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yang Li
- Department of Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Huitao Li
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xiaoheng Li
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Ying Zhong
- Chengdu Xi'nan Gynecological Hospital, Chengdu 610066, Sichuan, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Dapang Rao
- Department of Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
50
|
Jain RB. Associations between perfluoroalkyl acids in serum and lead and mercury in whole blood among US children aged 3-11 years. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31933-31940. [PMID: 33616824 DOI: 10.1007/s11356-021-13042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Data for 639 US children aged 3-11 years who participated in the National Health and Nutrition Examination Survey during 2013-2014 were analyzed by fitting regression models with log10-transformed values of blood lead and methyl and total mercury as dependent variables and log10-transformed values of perfluoroalkyl acids (PFAA) as one of the independent variables. PFAAs considered were 2-(N-methyl-perfluorooctane sulfonamido) acetic acid (MPAH), linear isomer of perfluorooctanoic acid (NPFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorohexane sulfonic acid (PFHxS), linear isomer of perfluorooctane sulfonic acid (NPFOS), and monomethyl branch isomer of perfluorooctane sulfonic acid (MPFOS). Adjusted regression slopes (β) indicating associations between the concentrations of PFAAs with blood lead and mercury were estimated. Statistically significant associations between concentrations of each PFAA and blood lead were observed. For 10% increases in concentrations of MPAH, NPFOA, PFNA, PFDA, PFHxS, NPFOS, and MPFOS, percent increases in the concentrations of blood lead were 0.45%, 1.59%, 0.78%, 0.32%, 0.65%, 1.32%, and 0.89% respectively. For 10% increases in concentrations of MPAH, PFNA, PFDA, and NPFOS, percent increases in the concentrations of total mercury in the blood were 1.62%, 1.44%, and 3.24% respectively. For 10% increases in concentrations of PFDA and NPFOS, percent increases in the concentrations of methyl mercury in the blood were 2.07% and 4.57% respectively. While concentrations of each of the seven PFAAs were positively associated with the concentrations of blood lead, concentrations of only PFDA and NPFOS were positively associated with increases in total and methyl mercury. PFAAs having positive associations with lead and mercury imply co-exposure and/or co-existence of high concentrations of PFAAs and lead/mercury. Since PFAAs as well as lead/mercury are known to be neurotoxic, nephrotoxic, and endocrine disruptors, their co-existence/co-exposure may lead to neurodevelopmental deficits that are additive/synergistic than neurodevelopmental deficits associated with exposures to PFAAs and lead/mercury alone. Future studies are needed to investigate additive/synergistic neurodevelopmental deficits associated with co-exposures to PFAAs and lead/mercury.
Collapse
|