1
|
Quist AJL, Johnston JE. Malodors as environmental injustice: health symptoms in the aftermath of a hydrogen sulfide emergency in Carson, California, USA. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:935-940. [PMID: 37391609 PMCID: PMC10792538 DOI: 10.1038/s41370-023-00561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 07/02/2023]
Affiliation(s)
- Arbor J L Quist
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto St., Los Angeles, CA, 90032, USA.
| | - Jill E Johnston
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto St., Los Angeles, CA, 90032, USA
| |
Collapse
|
2
|
Milovavnović MR, Zarić SD. How Flexible Is the Hydrogen Sulfide Molecule Structure? Influence of Hydrogen Sulfide Molecule Geometry on Its Hydrogen Bonds. Chempluschem 2024:e202400511. [PMID: 39305482 DOI: 10.1002/cplu.202400511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Indexed: 11/21/2024]
Abstract
The geometry of hydrogen sulfide was studied by calculating potential energy surface (PES) with over 1800 configurations. The calculations were performed at very accurate CCSD(T)/aug-cc-pvz5 level. The most stable geometry on the PES has bond angle (H-S-H) of 92.40° and bond length (S-H) of 1.338 Å. The PES shows that hydrogen sulfide is a quite flexible molecule. Namely, it can change the bonding angle (H-S-H) in the range of 15.6° (from 84.6° to 100.2°) and the bond lengths (S-H) in the range of 0.082 Å (from 1.299 Å to 1.381 Å) with an energy increase of only 1.0 kcal/mol. An influence of hydrogen sulfide geometry on its hydrogen bonds was studied on several hydrogen sulfide/hydrogen sulfide and water/hydrogen sulfide dimers. It showed that the change of hydrogen sulfide geometry does not influence the strength of hydrogen bond. Fully optimized geometries in gas and water solution phases revealed structural differences of both monomers and dimers in gas phase and water phase. SAPT analysis of the optimized dimer geometries showed that in all the dimers electrostatic is the most dominant contribution, while, in the dimers with hydrogen sulfide, the influence of dispersion contribution becomes quite pronounced.
Collapse
Affiliation(s)
- Milan R Milovavnović
- Innovative Centre of the Faculty of Chemistry, Studentski trg 12-16, Belgrade, 11000, Serbia
| | - Snežana D Zarić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, 11000, Serbia
| |
Collapse
|
3
|
Bag J, Das S, Pal K. Terminal {Ni(II)-SH} complex promoted anaerobic catalytic sulfur atom transfer reaction: implication to the sulfide oxidase function of Cu/Zn-superoxide dismutase. Dalton Trans 2024; 53:12773-12782. [PMID: 39023184 DOI: 10.1039/d4dt01364f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In mitochondria, the detoxification of molar excess H2S as polysulfide proceeded via an oxidation process promoted by Cu/Zn containing superoxide dismutase (SOD1) enzyme, which has been very recently reported as the alternative enzyme for cytosolic H2S oxidation. Herein, we present Ni(II) complexes bearing the terminal SH group as a synthetic functional analogue for the sulfide oxidase function of SOD1. Synthesis, crystal structure and complete spectroscopic characterization of two sets of complexes, [NiLOMe/tBu(PPh3)] (2OMe/tBu) and tetraethyl salt of [NiLOMe/tBu(SH)]-1 (3OMe/tBu), were described (LOMe = (E)-2-methoxy-6-(((2-sulfidophenyl)imino)methyl)phenolate and LtBu = (E)-2,4-di-tert-butyl-6-(((2-sulfidophenyl)imino)methyl)phenolate). Under anaerobic conditions, 3OMe/tBu responded to a catalytic sulfur atom transfer (SAT) reaction with PPh3 to produce SPPh3. The SAT reaction was analyzed using detailed studies of 1H and 31P NMR spectra. Finally, the SAT reactivity pattern was compared with the same in the native enzyme of SOD1.
Collapse
Affiliation(s)
- Jayanta Bag
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India.
| | - Surajit Das
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India.
| | - Kuntal Pal
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India.
| |
Collapse
|
4
|
Coffman CN, Carroll-Portillo A, Alcock J, Singh SB, Rumsey K, Braun CA, Xue B, Lin HC. Magnesium Oxide Reduces Anxiety-like Behavior in Mice by Inhibiting Sulfate-Reducing Bacteria. Microorganisms 2024; 12:1429. [PMID: 39065198 PMCID: PMC11279233 DOI: 10.3390/microorganisms12071429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The gut microbiota-brain axis allows for bidirectional communication between the microbes in our gastrointestinal (GI) tract and the central nervous system. Psychological stress has been known to disrupt the gut microbiome (dysbiosis) leading to anxiety-like behavior. Pathogens administered into the gut have been reported to cause anxiety. Whether commensal bacteria affect the gut-brain axis is not well understood. In this study, we examined the impact of a commensal sulfate-reducing bacteria (SRB) and its metabolite, hydrogen sulfide (H2S), on anxiety-like behavior. We found that mice gavaged with SRB had increased anxiety-like behavior as measured by the open field test. We also tested the effects of magnesium oxide (MgO) on SRB growth both in vitro and in vivo using a water avoidance stress (WAS) model. We found that MgO inhibited SRB growth and H2S production in a dose-dependent fashion. Mice that underwent psychological stress using the WAS model were observed to have an overgrowth (bloom) of SRB (Deferribacterota) and increased anxiety-like behavior. However, WAS-induced overgrowth of SRB and anxiety-like behavioral effects were attenuated in animals fed a MgO-enriched diet. These findings supported a potential MgO-reversible relationship between WAS-induced SRB blooms and anxiety-like behavior.
Collapse
Affiliation(s)
- Cristina N. Coffman
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, USA; (C.N.C.); (S.B.S.); (C.A.B.); (B.X.)
- New Mexico VA Health Care System, Albuquerque, NM 87108, USA;
| | - Amanda Carroll-Portillo
- New Mexico VA Health Care System, Albuquerque, NM 87108, USA;
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Joe Alcock
- Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Sudha B. Singh
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, USA; (C.N.C.); (S.B.S.); (C.A.B.); (B.X.)
- New Mexico VA Health Care System, Albuquerque, NM 87108, USA;
| | - Kellin Rumsey
- Statistical Sciences, Los Alamos National Laboratory, Los Alamos, NM 87545, USA;
| | - Cody A. Braun
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, USA; (C.N.C.); (S.B.S.); (C.A.B.); (B.X.)
- New Mexico VA Health Care System, Albuquerque, NM 87108, USA;
| | - Bingye Xue
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, USA; (C.N.C.); (S.B.S.); (C.A.B.); (B.X.)
- New Mexico VA Health Care System, Albuquerque, NM 87108, USA;
| | - Henry C. Lin
- New Mexico VA Health Care System, Albuquerque, NM 87108, USA;
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
5
|
Fernandes-Martins MC, Colman DR, Boyd ES. Sulfide oxidation by members of the Sulfolobales. PNAS NEXUS 2024; 3:pgae201. [PMID: 38827816 PMCID: PMC11143483 DOI: 10.1093/pnasnexus/pgae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Abstract
The oxidation of sulfur compounds drives the acidification of geothermal waters. At high temperatures (>80°C) and in acidic conditions (pH <6.0), oxidation of sulfide has historically been considered an abiotic process that generates elemental sulfur (S0) that, in turn, is oxidized by thermoacidophiles of the model archaeal order Sulfolobales to generate sulfuric acid (i.e. sulfate and protons). Here, we describe five new aerobic and autotrophic strains of Sulfolobales comprising two species that were isolated from acidic hot springs in Yellowstone National Park (YNP) and that can use sulfide as an electron donor. These strains significantly accelerated the rate and extent of sulfide oxidation to sulfate relative to abiotic controls, concomitant with production of cells. Yields of sulfide-grown cultures were ∼2-fold greater than those of S0-grown cultures, consistent with thermodynamic calculations indicating more available energy in the former condition than the latter. Homologs of sulfide:quinone oxidoreductase (Sqr) were identified in nearly all Sulfolobales genomes from YNP metagenomes as well as those from other reference Sulfolobales, suggesting a widespread ability to accelerate sulfide oxidation. These observations expand the role of Sulfolobales in the oxidative sulfur cycle, the geobiological feedbacks that drive the formation of acidic hot springs, and landscape evolution.
Collapse
Affiliation(s)
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
6
|
Tomczak W, Gryta M, Daniluk M, Żak S. Biogas Upgrading Using a Single-Membrane System: A Review. MEMBRANES 2024; 14:80. [PMID: 38668108 PMCID: PMC11051867 DOI: 10.3390/membranes14040080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
In recent years, the use of biogas as a natural gas substitute has gained great attention. Typically, in addition to methane (CH4), biogas contains carbon dioxide (CO2), as well as small amounts of impurities, e.g., hydrogen sulfide (H2S), nitrogen (N2), oxygen (O2) and volatile organic compounds (VOCs). One of the latest trends in biogas purification is the application of membrane processes. However, literature reports are ambiguous regarding the specific requirement for biogas pretreatment prior to its upgrading using membranes. Therefore, the main aim of the present study was to comprehensively examine and discuss the most recent achievements in the use of single-membrane separation units for biogas upgrading. Performing a literature review allowed to indicate that, in recent years, considerable progress has been made on the use of polymeric membranes for this purpose. For instance, it has been documented that the application of thin-film composite (TFC) membranes with a swollen polyamide (PA) layer ensures the successful upgrading of raw biogas and eliminates the need for its pretreatment. The importance of the performed literature review is the inference drawn that biogas enrichment performed in a single step allows to obtain upgraded biogas that could be employed for household uses. Nevertheless, this solution may not be sufficient for obtaining high-purity gas at high recovery efficiency. Hence, in order to obtain biogas that could be used for applications designed for natural gas, a membrane cascade may be required. Moreover, it has been documented that a significant number of experimental studies have been focused on the upgrading of synthetic biogas; meanwhile, the data on the raw biogas are very limited. In addition, it has been noted that, although ceramic membranes demonstrate several advantages, experimental studies on their applications in single-membrane systems have been neglected. Summarizing the literature data, it can be concluded that, in order to thoroughly evaluate the presented issue, the long-term experimental studies on the upgrading of raw biogas with the use of polymeric and ceramic membranes in pilot-scale systems are required. The presented literature review has practical implications as it would be beneficial in supporting the development of membrane processes used for biogas upgrading.
Collapse
Affiliation(s)
- Wirginia Tomczak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland; (M.D.); (S.Ż.)
| | - Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
| | - Monika Daniluk
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland; (M.D.); (S.Ż.)
| | - Sławomir Żak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland; (M.D.); (S.Ż.)
| |
Collapse
|
7
|
Sun YL, Zhu L, Zheng K, Qian ZM, Cheng HY, Zhang XN, Wang AJ. Thermodynamic Inhibition of Microbial Sulfur Disproportionation in a Multisubunit Designed Sulfur-Siderite Packed Bioreactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4193-4203. [PMID: 38393778 DOI: 10.1021/acs.est.3c06120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Sulfur disproportionation (S0DP) poses a challenge to the robust application of sulfur autotrophic denitrification due to unpredictable sulfide production, which risks the safety of downstream ecosystems. This study explored the S0DP occurrence boundaries with nitrate loading and temperature effects. The boundary values increased with the increase in temperature, exhibiting below 0.15 and 0.53 kg-N/m3/d of nitrate loading at 20 and 30 °C, respectively. A pilot-scale sulfur-siderite packed bioreactor (150 m3/d treatment capacity) was optimally designed with multiple subunits to dynamically distribute the loading of sulfur-heterologous electron acceptors. Operating two active and one standby subunit achieved an effective denitrification rate of 0.31 kg-N/m3/d at 20 °C. For the standby subunit, involving oxygen by aeration effectively transformed the facultative S0DP functional community from S0DP metabolism to aerobic respiration, but with enormous sulfur consumption resulting in ongoing sulfate production of over 3000 mg/L. Meanwhile, acidification by the sulfur oxidation process could reduce the pH to as low as 2.5, which evaluated the Gibbs free energy (ΔG) of the S0DP reaction to +2.56 kJ, thermodynamically suppressing the S0DP occurrence. Therefore, a multisubunit design along with S0DP inhibition strategies of short-term aeration and long-term acidification is suggested for managing S0DP in various practical sulfur-packed bioreactors.
Collapse
Affiliation(s)
- Yi-Lu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Lin Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Kun Zheng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Zhi-Min Qian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, P. R. China
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, P. R. China
| | - Xue-Ning Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, P. R. China
| |
Collapse
|
8
|
Banydeen R, Lacavalerie MR, Florentin J, Boullanger C, Medhaoui H, Resiere D, Neviere R. Central sleep apnea and exposure to ambient hydrogen sulfide emissions from massive strandings of decomposing sargassum in the Caribbean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168886. [PMID: 38016560 DOI: 10.1016/j.scitotenv.2023.168886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Sargassum invasion of Caribbean and American shorelines is a recurring environmental hazard. Potential health effects of long-term chronic exposure to sargassum gaseous emissions, notably hydrogen sulfide (H2S), are overlooked. H2S plays an important role in neurotransmission and is involved in generating and transmitting respiratory rhythm. Central sleep apnea (CSA) has been attributed to the depression of respiratory centers. OBJECTIVE Evaluate the effects of exposure to sargassum-H2S on CSA. METHODS This study, set in the Caribbean, describes the clinical and polysomnographic characteristics of individuals living and/or working in areas impacted by sargassum strandings, in comparison with non-exposed subjects. Environmental exposure was estimated by the closest ground H2S sensor. Multivariate linear regression was applied to analyze CSA changes according to cumulative H2S exposure over time. Effects of air pollution and other sargassum toxic compounds (NH3) on CSA were also controlled. RESULTS Among the 685 study patients, 27 % were living and/or working in sargassum impacted areas. Compared with non-exposed patients, exposed ones had similar sleep apnea syndrome risk factors, but had increased levels of CSA events (expressed as absolute number or % of total sleep apnea). Multivariate regression retained only male gender and mean H2S concentration over a 6-month exposure period as independent predictors of an increase in CSA events. A minimal exposure length of 1 month generated a significant rise in CSA events, with the latter increasing proportionally with a cumulative increase in H2S concentration over time. CONCLUSION This pioneer work highlights a potential effect of sargassum-H2S on the central nervous system, notably on the modulation of the activity of the brain's respiratory control center. These observations, jointly with previous studies from our group, constitute a body of evidence strongly supporting a deleterious effect of sargassum-H2S on the health of individuals chronically exposed to low to moderate concentration levels over time.
Collapse
Affiliation(s)
- Rishika Banydeen
- Department of Toxicology and Critical Care Medicine, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France; Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort de France, France
| | - Mickael Rejaudry Lacavalerie
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort de France, France; Department of Neurophysiology, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France
| | - Jonathan Florentin
- Department of Toxicology and Critical Care Medicine, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France; Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort de France, France
| | - Carole Boullanger
- Martinique Observatory of Air Quality (Madininair), 97200 Fort-de-France, France
| | - Hossein Medhaoui
- Department of Toxicology and Critical Care Medicine, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France; Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort de France, France
| | - Dabor Resiere
- Department of Toxicology and Critical Care Medicine, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France; Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort de France, France
| | - Remi Neviere
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort de France, France; Department of Neurophysiology, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France.
| |
Collapse
|
9
|
Kim DS, Santana Maldonado CM, Giulivi C, Rumbeiha WK. Metabolomic Signatures of Brainstem in Mice following Acute and Subchronic Hydrogen Sulfide Exposure. Metabolites 2024; 14:53. [PMID: 38248856 PMCID: PMC10819975 DOI: 10.3390/metabo14010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Hydrogen sulfide (H2S) is an environmental toxicant of significant health concern. The brain is a major target in acute H2S poisoning. This study was conducted to test the hypothesis that acute and subchronic ambient H2S exposures alter the brain metabolome. Male 7-8-week-old C57BL/6J mice were exposed by whole-body inhalation to 1000 ppm H2S for 45 min and euthanized at 5 min or 72 h for acute exposure. For subchronic study, mice were exposed to 5 ppm H2S 2 h/day, 5 days/week for 5 weeks. Control mice were exposed to room air. The brainstem was removed for metabolomic analysis. Enrichment analysis showed that the metabolomic profiles in acute and subchronic H2S exposures matched with those of cerebral spinal fluid from patients with seizures or Alzheimer's disease. Acute H2S exposure decreased excitatory neurotransmitters, aspartate, and glutamate, while the inhibitory neurotransmitter, serotonin, was increased. Branched-chain amino acids and glucose were increased by acute H2S exposure. Subchronic H2S exposure within OSHA guidelines surprisingly decreased serotonin concentration. In subchronic H2S exposure, glucose was decreased, while polyunsaturated fatty acids, inosine, and hypoxanthine were increased. Collectively, these results provide important mechanistic clues for acute and subchronic ambient H2S poisoning and show that H2S alters brainstem metabolome.
Collapse
Affiliation(s)
- Dong-Suk Kim
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616, USA; (D.-S.K.); (C.M.S.M.); (C.G.)
| | - Cristina M. Santana Maldonado
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616, USA; (D.-S.K.); (C.M.S.M.); (C.G.)
- MRI Global, Kansas City, MO 64110, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616, USA; (D.-S.K.); (C.M.S.M.); (C.G.)
| | - Wilson Kiiza Rumbeiha
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616, USA; (D.-S.K.); (C.M.S.M.); (C.G.)
| |
Collapse
|
10
|
Abolfazli S, Ebrahimi N, Morabi E, Asgari Yazdi MA, Zengin G, Sathyapalan T, Jamialahmadi T, Sahebkar A. Hydrogen Sulfide: Physiological Roles and Therapeutic Implications against COVID-19. Curr Med Chem 2024; 31:3132-3148. [PMID: 37138436 DOI: 10.2174/0929867330666230502111227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/19/2023] [Accepted: 02/10/2023] [Indexed: 05/05/2023]
Abstract
The COVID-19 pandemic due to severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) poses a major menace to economic and public health worldwide. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) are two host proteins that play an essential function in the entry of SARS-- COV-2 into host cells. Hydrogen sulfide (H2S), a new gasotransmitter, has been shown to protect the lungs from potential damage through its anti-inflammatory, antioxidant, antiviral, and anti-aging effects. It is well known that H2S is crucial in controlling the inflammatory reaction and the pro-inflammatory cytokine storm. Therefore, it has been suggested that some H2S donors may help treat acute lung inflammation. Furthermore, recent research illuminates a number of mechanisms of action that may explain the antiviral properties of H2S. Some early clinical findings indicate a negative correlation between endogenous H2S concentrations and COVID-19 intensity. Therefore, reusing H2S-releasing drugs could represent a curative option for COVID-19 therapy.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Nima Ebrahimi
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Etekhar Morabi
- Student Research Committee, School of Pharmacy, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | | | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, United Kingdom of Great Britain and Northern Ireland
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Andrés CMC, Pérez de la Lastra JM, Andrés Juan C, Plou FJ, Pérez-Lebeña E. Chemistry of Hydrogen Sulfide-Pathological and Physiological Functions in Mammalian Cells. Cells 2023; 12:2684. [PMID: 38067112 PMCID: PMC10705518 DOI: 10.3390/cells12232684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Hydrogen sulfide (H2S) was recognized as a gaseous signaling molecule, similar to nitric oxide (-NO) and carbon monoxide (CO). The aim of this review is to provide an overview of the formation of hydrogen sulfide (H2S) in the human body. H2S is synthesized by enzymatic processes involving cysteine and several enzymes, including cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE), cysteine aminotransferase (CAT), 3-mercaptopyruvate sulfurtransferase (3MST) and D-amino acid oxidase (DAO). The physiological and pathological effects of hydrogen sulfide (H2S) on various systems in the human body have led to extensive research efforts to develop appropriate methods to deliver H2S under conditions that mimic physiological settings and respond to various stimuli. These functions span a wide spectrum, ranging from effects on the endocrine system and cellular lifespan to protection of liver and kidney function. The exact physiological and hazardous thresholds of hydrogen sulfide (H2S) in the human body are currently not well understood and need to be researched in depth. This article provides an overview of the physiological significance of H2S in the human body. It highlights the various sources of H2S production in different situations and examines existing techniques for detecting this gas.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain;
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain;
| | | |
Collapse
|
12
|
Liu Z, Huang Y, Chen H, Liu C, Wang M, Bian C, Wang L, Song L. Chromosome-level genome assembly of the deep-sea snail Phymorhynchus buccinoides provides insights into the adaptation to the cold seep habitat. BMC Genomics 2023; 24:679. [PMID: 37950158 PMCID: PMC10638732 DOI: 10.1186/s12864-023-09760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The deep-sea snail Phymorhynchus buccinoides belongs to the genus Phymorhynchus (Neogastropoda: Raphitomidae), and it is a dominant specie in the cold seep habitat. As the environment of the cold seep is characterized by darkness, hypoxia and high concentrations of toxic substances such as hydrogen sulfide (H2S), exploration of the diverse fauna living around cold seeps will help to uncover the adaptive mechanisms to this unique habitat. In the present study, a chromosome-level genome of P. buccinoides was constructed and a series of genomic and transcriptomic analyses were conducted to explore its molecular adaptation mechanisms to the cold seep environments. RESULTS The assembled genome size of the P. buccinoides was approximately 2.1 Gb, which is larger than most of the reported snail genomes, possibly due to the high proportion of repetitive elements. About 92.0% of the assembled base pairs of contigs were anchored to 34 pseudo-chromosomes with a scaffold N50 size of 60.0 Mb. Compared with relative specie in the shallow water, the glutamate regulative and related genes were expanded in P. buccinoides, which contributes to the acclimation to hypoxia and coldness. Besides, the relatively high mRNA expression levels of the olfactory/chemosensory genes in osphradium indicate that P. buccinoides might have evolved a highly developed and sensitive olfactory organ for its orientation and predation. Moreover, the genome and transcriptome analyses demonstrate that P. buccinoides has evolved a sulfite-tolerance mechanism by performing H2S detoxification. Many genes involved in H2S detoxification were highly expressed in ctenidium and hepatopancreas, suggesting that these tissues might be critical for H2S detoxification and sulfite tolerance. CONCLUSIONS In summary, our report of this chromosome-level deep-sea snail genome provides a comprehensive genomic basis for the understanding of the adaptation strategy of P. buccinoides to the extreme environment at the deep-sea cold seeps.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuting Huang
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Chen
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Minxiao Wang
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chao Bian
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
13
|
Qin CK, Yan L, Wang ZQ, Yu G, Mao GJ, Xu F, Li CY. A near-infrared fluorescent probe for detecting hydrogen sulfide with high selectivity in cells and ulcerative colitis in mice. Analyst 2023; 148:5724-5730. [PMID: 37840316 DOI: 10.1039/d3an01442h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Although hydrogen sulfide (H2S) is a well-known toxic gas, its vital role as a gas transmitter in various physiological and pathological processes of living systems cannot be ignored. Relevant investigations indicate that endogenous H2S is involved in the development of ulcerative colitis pathology and is overexpressed in ulcerative colitis, and hence can be considered as an ulcerative colitis biomarker. Herein, an isophorone-xanthene-based NIR fluorescent probe (IX-H2S) was constructed to image H2S. Owing to its large conjugated structure, the probe exhibits a near-infrared emission wavelength of 770 nm with a large Stokes shift (186 nm). Moreover, IX-H2S has excellent selectivity for the detection of H2S without interference from other analytes including thiols. In addition, the probe has been successfully applied not only in fluorescence imaging of endogenous and exogenous H2S in living cells, but also in imaging of H2S in normal and ulcerative colitis mice. Encouraged by the eminent performance, IX-H2S is expected to be a potent "assistant" for the diagnosis of ulcerative colitis.
Collapse
Affiliation(s)
- Chong-Kang Qin
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| | - Ling Yan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| | - Zhi-Qing Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| | - Guo Yu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, PR China
| | - Fen Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| |
Collapse
|
14
|
Switzer CH. How super is supersulfide?: Reconsidering persulfide reactivity in cellular biology. Redox Biol 2023; 67:102899. [PMID: 37748320 PMCID: PMC10522965 DOI: 10.1016/j.redox.2023.102899] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023] Open
Abstract
In an attempt to understand the cellular mechanisms of H2S signalling, recent research has focused on supersulfide (i.e., alkyl and inorganic hydropersulfide) formation and subsequent reactivity. While our understanding of supersulfides in biology has rapidly advanced, there are some chemical features of this unique functional group that require re-evaluation. Persulfides, such as glutathione hydropersulfide, have been called "supersulfide" as it is assumed that the alkyl hydropersulfide (RSSH) functional group is a superior nucleophile compared to the corresponding thiol (RSH) due to the alpha effect. However, recent quantum mechanical calculations and experimental data show that persulfides are not "super" nucleophiles, but rather potent electrophiles in cellular biology. It is proposed here that persulfides, via their electrophilic signalling effects, induces a cellular hormesis effect, which may explain the observed effects of altered RSSH production. Therefore, the electrophilic and thiol oxidant properties of persulfides should considered in cellular biology.
Collapse
Affiliation(s)
- Christopher H Switzer
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom.
| |
Collapse
|
15
|
Banik D, Karak A, Halder S, Banerjee S, Mandal M, Maiti A, Jana K, Mahapatra AK. A turn-on fluorescent probe for selective detection of H 2S in environmental samples and bio-imaging in human breast cancer cells. Org Biomol Chem 2023; 21:8020-8030. [PMID: 37772332 DOI: 10.1039/d3ob01319g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
A triphenylamine-benzothaizole-based turn-on fluorescent probe TPB-NO2 was designed and synthesized for tracking H2S in both environmental and biological samples depending upon the sensing strategy of thiolysis of 2,4-dinitrophenyl (DNP) ether. Due to PET (photoinduced electron transfer), occurring from donor triphenylamine moiety to acceptor DNP moiety, the probe TPB-NO2 itself is very weakly fluorescent and colorless in DMSO/H2O solution (1 : 1, v/v; 10 mM HEPES buffer, pH 7.4). But the addition of H2S leads to thiolysis of 2,4-dinitrophenyl ether to block the initial PET process and hence it exhibits naked eye detectable turn-on response with bright cyan fluorescence and intense brown color. Not only that, the probe exhibits excellent selectivity over other bio-thiols like Cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), fast response time (<2 min), and high sensitivity with a detection limit of 9.81 nM. Moreover, to explore the practical applicability of our probe we employed it to monitor H2S successfully in environmental water samples, solid-state TLC strip study, Quantitative determination of H2S in eggs, and in the bioimaging of human breast cancer cells (MDA-MB 231).
Collapse
Affiliation(s)
- Dipanjan Banik
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Anirban Karak
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Satyajit Halder
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Shilpita Banerjee
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Moumi Mandal
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Anwesha Maiti
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Ajit Kumar Mahapatra
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| |
Collapse
|
16
|
Dugbartey GJ. Physiological role of hydrogen sulfide in the kidney and its therapeutic implications for kidney diseases. Biomed Pharmacother 2023; 166:115396. [PMID: 37647689 DOI: 10.1016/j.biopha.2023.115396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023] Open
Abstract
For over three centuries, hydrogen sulfide (H2S) has been known as a toxic and deadly gas at high concentrations, with a distinctive smell of rotten eggs. However, studies over the past two decades have shown that H2S has risen above its historically notorious label and has now received significant scientific attention as an endogenously produced gaseous signaling molecule that participates in cellular homeostasis and influences a myriad of physiological and pathological processes at low concentrations. Its endogenous production is enzymatically regulated, and when dysregulated, contributes to pathogenesis of renal diseases. In addition, exogenous H2S administration has been reported to exhibit important therapeutic characteristics that target multiple molecular pathways in common renal pathologies in which reduced levels of renal and plasma H2S were observed. This review highlights functional anatomy of the kidney and renal production of H2S. The review also discusses current understanding of H2S in renal physiology and seeks to lay the foundation as a new targeted therapeutic agent for renal pathologies such as hypertensive nephropathy, diabetic kidney disease and water balance disorders.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Accra College of Medicine, Magnolia St, JVX5+FX9, East Legon, Accra, Ghana.
| |
Collapse
|
17
|
Wang C, Zhang Y, Huang R, Wei X, Zhao X, Geng S, Xue Y, Hou J, Duan Q. First-principles study on α/β/γ-FeB 6 monolayers as potential gas sensor for H 2S and SO 2. J Mol Model 2023; 29:314. [PMID: 37707644 DOI: 10.1007/s00894-023-05713-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
CONTEXT The adsorptions of toxic gases SO2 and H2S on 2D α/β/γ-FeB6 monolayer were investigated using density functional theory calculations. To analyze the interaction between gas molecule H2S/SO2 and α/β/γ-FeB6 monolayer, we calculated adsorption energy, adsorption distance, Mullikan charge, charge density difference, band structure, the density of states, work function, and theoretical recovery time. The adsorption energies show that H2S/SO2 is chemisorbed on α/β-FeB6 while H2S/SO2 is physiosorbed on γ-FeB6 monolayer. As a result, γ-FeB6 has a short recovery time for H2S (5.71×10-8 s)/SO2 (1.94×10-5 s) due to modest adsorption. Therefore, γ-FeB6 may be a promising candidate for reusable H2S/SO2 sensors at room temperature. Although H2S is chemisorbed on α/β-FeB6, as the working temperature rises to 500 K, the recovery time of α/β-FeB6 for H2S can decrease to 1.13×10-1 s and 2.08×10-1 s, respectively, which are well within the detectable range. So, α/β-FeB6 monolayer also may be a good candidate for H2S gas sensor. METHODS Calculations were performed at GGA-PBE/DNP level using the Dmol3 module implemented in the Material Studio 2018 software package.
Collapse
Affiliation(s)
- Chao Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, PR China
- Jilin Tobacco Industrial CO.,LTD, Shiji Rd No, Changchun, .99 130031, China
| | - Yuhang Zhang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, PR China
| | - Rongfang Huang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, PR China
| | - Xueqian Wei
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, PR China
| | - Xiaoxiao Zhao
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, PR China
| | - Shiyi Geng
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, PR China
| | - Yuxin Xue
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, PR China
| | - Jianhua Hou
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, PR China.
- Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun, 130022, PR China.
| | - Qian Duan
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, PR China.
- Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun, 130022, PR China.
| |
Collapse
|
18
|
Cortese-Krott MM. The Reactive Species Interactome in Red Blood Cells: Oxidants, Antioxidants, and Molecular Targets. Antioxidants (Basel) 2023; 12:1736. [PMID: 37760039 PMCID: PMC10525652 DOI: 10.3390/antiox12091736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Beyond their established role as oxygen carriers, red blood cells have recently been found to contribute to systemic NO and sulfide metabolism and act as potent circulating antioxidant cells. Emerging evidence indicates that reactive species derived from the metabolism of O2, NO, and H2S can interact with each other, potentially influencing common biological targets. These interactions have been encompassed in the concept of the reactive species interactome. This review explores the potential application of the concept of reactive species interactome to understand the redox physiology of RBCs. It specifically examines how reactive species are generated and detoxified, their interactions with each other, and their targets. Hemoglobin is a key player in the reactive species interactome within RBCs, given its abundance and fundamental role in O2/CO2 exchange, NO transport/metabolism, and sulfur species binding/production. Future research should focus on understanding how modulation of the reactive species interactome may regulate RBC biology, physiology, and their systemic effects.
Collapse
Affiliation(s)
- Miriam M. Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology and Angiology, Medical Faculty, Heinrich-Heine-University, Universitätstrasse 1, 40225 Düsseldorf, Germany;
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
- CARID, Cardiovascular Research Institute, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
19
|
Sun YL, Zhai SY, Qian ZM, Yi S, Zhuang WQ, Cheng HY, Zhang XN, Wang AJ. Managing microbial sulfur disproportionation for optimal sulfur autotrophic denitrification in a pilot-scale elemental sulfur packed-bed bioreactor. WATER RESEARCH 2023; 243:120356. [PMID: 37516076 DOI: 10.1016/j.watres.2023.120356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/22/2023] [Accepted: 07/13/2023] [Indexed: 07/31/2023]
Abstract
Elemental sulfur packed-bed (S0PB) bioreactors for autotrophic denitrification have gained more attention in wastewater treatment due to their organic carbon-free operation, low operating cost, and minimal carbon emissions. However, the rapid development of microbial S0-disproportionation (MS0D) in S0PB reactor during deep denitrification poses a significant drawback to this new technology. MS0D, the process in which sulfur is used as both an electron donor and acceptor by bacteria, plays a crucial role in the microbial-driven sulfur cycle but remains poorly understood in wastewater treatment setups. In this study, we induced MS0D in a pilot-scale S0PB reactor capable of denitrifying over 1000 m3/d nitrate-containing wastewater. Initially, the S0PB reactor stably removed 6.6 mg-NO3--N/L nitrate at an empty bed contact time (EBCT) of 20 mins, which was designated the S0-denitrification stage. To induce MS0D, we reduced the influent nitrate concentrations to allow deep nitrate removal, resulted in the production of large quantities of sulfate and sulfide (SO42-:S2- 3.2 w/w). Meanwhile, other sulfur-heterologous electron acceptors (SHEAs), e.g., nitrite and DO, were also kept at trace levels. The negative correlations between the SHEAs concentrations and the sulfide productions indicated that the absence of SHEAs was a primary inducing factor to MS0D. The microbial community drastically diverged in response to the depletion of SHEAs during the switch from S0-denitrification to S0-disproportionation. An evident enrichment of sulfur-disproportionating bacteria (SDBs) was found at the S0-disproportionation stage, accompanied by the decline of sulfur-oxidizing bacteria (SOBs). In the end, we discovered that shortening the EBCT and increasing the reflux ratio could inhibit sulfide production by reducing it from 43.9 mg/L to 3.2 mg/L or 25.5 mg/L. In conclusion, our study highlights the importance of considering MS0D when designing and optimizing S0PB reactors for sustainable autotrophic sulfur denitrification in real-life applications.
Collapse
Affiliation(s)
- Yi-Lu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Si-Yuan Zhai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Zhi-Min Qian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Shan Yi
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland 1010, New Zealand
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Xue-Ning Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China.
| |
Collapse
|
20
|
Dirak M, Turan SE, Kolemen S. Hydrogen Sulfide Responsive Phototherapy Agents: Design Strategies and Biological Applications. ACS BIO & MED CHEM AU 2023; 3:305-321. [PMID: 37599789 PMCID: PMC10436264 DOI: 10.1021/acsbiomedchemau.3c00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 08/22/2023]
Abstract
Hydrogen sulfide (H2S) is one of the critical gasotransmitters, which play important roles in regular physiological processes, especially in vital signaling pathways. However, fluctuations in endogenous H2S concentration can be linked to serious health problems, such as neurodegenerative diseases, cancer, diabetes, inflammation, cardiovascular diseases, and hypertension. Thus, it has attracted a great deal of attention in therapeutic applications, specifically in the field of phototherapy. Photodynamic therapy (PDT) and photothermal therapy (PTT) are two subclasses of phototherapy, which utilize either reactive oxygen species (ROS) or local temperature increase upon irradiation of a photosensitizer (PS) to realize the therapeutic action. Phototherapies offer unique advantages compared to conventional methods; thus, they are highly promising and popular. One of the design principles followed in new generation PSs is to build activity-based PSs, which stay inactive before getting activated by disease-associated stimuli. These activatable PSs dramatically improve the selectivity and efficacy of the therapy. In this review, we summarize small molecule and nanomaterial-based PDT and PTT agents that are activated selectively by H2S to initiate their cytotoxic effect. We incorporate single mode PDT and PTT agents along with synergistic and/or multimodal photosensitizers that can combine more than one therapeutic approach. Additionally, H2S-responsive theranostic agents, which offer therapy and imaging at the same time, are highlighted. Design approaches, working principles, and biological applications for each example are discussed in detail.
Collapse
Affiliation(s)
- Musa Dirak
- Koç
University, Department of Chemistry, 34450 Istanbul, Turkey
| | - Sarp E. Turan
- Koç
University, Department of Chemistry, 34450 Istanbul, Turkey
| | - Safacan Kolemen
- Koç
University, Department of Chemistry, 34450 Istanbul, Turkey
- Koç
University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| |
Collapse
|
21
|
Basic A, Dahlén G. Microbial metabolites in the pathogenesis of periodontal diseases: a narrative review. FRONTIERS IN ORAL HEALTH 2023; 4:1210200. [PMID: 37388417 PMCID: PMC10300593 DOI: 10.3389/froh.2023.1210200] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
The purpose of this narrative review is to highlight the importance of microbial metabolites in the pathogenesis of periodontal diseases. These diseases, involving gingivitis and periodontitis are inflammatory conditions initiated and maintained by the polymicrobial dental plaque/biofilm. Gingivitis is a reversible inflammatory condition while periodontitis involves also irreversible destruction of the periodontal tissues including the alveolar bone. The inflammatory response of the host is a natural reaction to the formation of plaque and the continuous release of metabolic waste products. The microorganisms grow in a nutritious and shielded niche in the periodontal pocket, protected from natural cleaning forces such as saliva. It is a paradox that the consequences of the enhanced inflammatory reaction also enable more slow-growing, fastidious, anaerobic bacteria, with often complex metabolic pathways, to colonize and thrive. Based on complex food chains, nutrient networks and bacterial interactions, a diverse microbial community is formed and established in the gingival pocket. This microbiota is dominated by anaerobic, often motile, Gram-negatives with proteolytic metabolism. Although this alternation in bacterial composition often is considered pathologic, it is a natural development that is promoted by ecological factors and not necessarily a true "dysbiosis". Normal commensals are adapting to the gingival crevice when tooth cleaning procedures are absent. The proteolytic metabolism is highly complex and involves a number of metabolic pathways with production of a cascade of metabolites in an unspecific manner. The metabolites involve short chain fatty acids (SCFAs; formic, acetic, propionic, butyric, and valeric acid), amines (indole, scatole, cadaverine, putrescine, spermine, spermidine) and gases (NH3, CO, NO, H2S, H2). A homeostatic condition is often present between the colonizers and the host response, where continuous metabolic fluctuations are balanced by the inflammatory response. While it is well established that the effect of the dental biofilm on the host response and tissue repair is mediated by microbial metabolites, the mechanisms behind the tissue destruction (loss of clinical attachment and bone) are still poorly understood. Studies addressing the functions of the microbiota, the metabolites, and how they interplay with host tissues and cells, are therefore warranted.
Collapse
|
22
|
Abstract
Beef cattle are less prone to metabolic diseases as compared with dairy cattle; however, there are disease entities of concern in feedlot and cow-calf beef cattle operations. In one study, a prevalence of 2% was found for ruminant acidosis in a feedlot; however, there is little prevalence information published with regard to metabolic diseases in beef cattle.1 Metabolic diseases covered in this article are hypomagnesemia, ruminal acidosis, and all of the common sequelae, polioencephalomalacia, manganese deficiency, and protein-energy malnutrition (PEM).
Collapse
Affiliation(s)
- Megan S Hindman
- Veterinary Production Animal Medicine Department, Iowa State University, 1712 S Riverside Dr, Ames, IA 50010, USA.
| |
Collapse
|
23
|
Batterman S, Grant-Alfieri A, Seo SH. Low level exposure to hydrogen sulfide: a review of emissions, community exposure, health effects, and exposure guidelines. Crit Rev Toxicol 2023; 53:244-295. [PMID: 37431804 PMCID: PMC10395451 DOI: 10.1080/10408444.2023.2229925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Hydrogen sulfide (H2S) is a toxic gas that is well-known for its acute health risks in occupational settings, but less is known about effects of chronic and low-level exposures. This critical review investigates toxicological and experimental studies, exposure sources, standards, and epidemiological studies pertaining to chronic exposure to H2S from both natural and anthropogenic sources. H2S releases, while poorly documented, appear to have increased in recent years from oil and gas and possibly other facilities. Chronic exposures below 10 ppm have long been associated with odor aversion, ocular, nasal, respiratory and neurological effects. However, exposure to much lower levels, below 0.03 ppm (30 ppb), has been associated with increased prevalence of neurological effects, and increments below 0.001 ppm (1 ppb) in H2S concentrations have been associated with ocular, nasal, and respiratory effects. Many of the studies in the epidemiological literature are limited by exposure measurement error, co-pollutant exposures and potential confounding, small sample size, and concerns of representativeness, and studies have yet to consider vulnerable populations. Long-term community-based studies are needed to confirm the low concentration findings and to refine exposure guidelines. Revised guidelines that incorporate both short- and long-term limits are needed to protect communities, especially sensitive populations living near H2S sources.
Collapse
Affiliation(s)
- Stuart Batterman
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Amelia Grant-Alfieri
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Sung-Hee Seo
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| |
Collapse
|
24
|
Advances of H2S in Regulating Neurodegenerative Diseases by Preserving Mitochondria Function. Antioxidants (Basel) 2023; 12:antiox12030652. [PMID: 36978900 PMCID: PMC10044936 DOI: 10.3390/antiox12030652] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Neurotoxicity is induced by different toxic substances, including environmental chemicals, drugs, and pathogenic toxins, resulting in oxidative damage and neurodegeneration in mammals. The nervous system is extremely vulnerable to oxidative stress because of its high oxygen demand. Mitochondria are the main source of ATP production in the brain neuron, and oxidative stress-caused mitochondrial dysfunction is implicated in neurodegenerative diseases. H2S was initially identified as a toxic gas; however, more recently, it has been recognized as a neuromodulator as well as a neuroprotectant. Specifically, it modulates mitochondrial activity, and H2S oxidation in mitochondria produces various reactive sulfur species, thus modifying proteins through sulfhydration. This review focused on highlighting the neuron modulation role of H2S in regulating neurodegenerative diseases through anti-oxidative, anti-inflammatory, anti-apoptotic and S-sulfhydration, and emphasized the importance of H2S as a therapeutic molecule for neurological diseases.
Collapse
|
25
|
H2S Donors with Cytoprotective Effects in Models of MI/R Injury and Chemotherapy-Induced Cardiotoxicity. Antioxidants (Basel) 2023; 12:antiox12030650. [PMID: 36978898 PMCID: PMC10045576 DOI: 10.3390/antiox12030650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous signaling molecule that greatly influences several important (patho)physiological processes related to cardiovascular health and disease, including vasodilation, angiogenesis, inflammation, and cellular redox homeostasis. Consequently, H2S supplementation is an emerging area of interest, especially for the treatment of cardiovascular-related diseases. To fully unlock the medicinal properties of hydrogen sulfide, however, the development and refinement of H2S releasing compounds (or donors) are required to augment its bioavailability and to better mimic its natural enzymatic production. Categorizing donors by the biological stimulus that triggers their H2S release, this review highlights the fundamental chemistry and releasing mechanisms of a range of H2S donors that have exhibited promising protective effects in models of myocardial ischemia-reperfusion (MI/R) injury and cancer chemotherapy-induced cardiotoxicity, specifically. Thus, in addition to serving as important investigative tools that further advance our knowledge and understanding of H2S chemical biology, the compounds highlighted in this review have the potential to serve as vital therapeutic agents for the treatment (or prevention) of various cardiomyopathies.
Collapse
|
26
|
The phylogeography and ecology of oligobrachia frenulate species suggest a generalist chemosynthesis-based fauna in the arctic. Heliyon 2023; 9:e14232. [PMID: 36967935 PMCID: PMC10034460 DOI: 10.1016/j.heliyon.2023.e14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
We used ancient DNA (aDNA) extraction methods to sequence museum voucher samples of Oligobrachia webbi, a frenulate siboglinid polychaete described from a northern Norwegian fjord over fifty years ago. Our sequencing results indicate a genetic match with the cryptic seep species, Oligobrachia haakonmosbiensis (99% pairwise identity for 574 bp mtCOI fragments). Due to its similarity with O. webbi, the identity of O. haakonmosbiensis has been a matter of debate since its description, which we have now resolved. Furthermore, our results demonstrate that chemosynthesis-based siboglinids, that constitute the bulk of the biomass at Arctic seeps are not seep specialists. Our data on sediment geochemistry and carbon and nitrogen content reveal reduced conditions in fjords/sounds, similar to those at seep systems. Accumulation and decomposition of both terrestrial and marine organic matter results in the buildup of methane and sulfide that apparently can sustain chemosymbiotic fauna. The occurrence of fjords and by extension, highly reducing habitats, could have led to Arctic chemosymbiotic species being relatively generalist with their habitat, as opposed to being seep or vent specialists. Our stable isotope analyses indicate the incorporation of photosynthetically derived carbon in some individuals, which aligns with experiments conducted on frenulates before the discovery of chemosynthesis that demonstrated their ability to take up organic molecules from the surrounding sediment. Since reduced gases in non-seep environments are ultimately sourced from photosynthetic processes, we suggest that the extreme seasonality of the Arctic has resulted in Arctic chemosymbiotic animals seasonally changing their degree of reliance on chemosynthetic partners. Overall, the role of chemosynthesis in Arctic benthos and marine ecosystems and links to photosynthesis may be complex, and more extensive than currently known.
Collapse
|
27
|
Santana Maldonado C, Weir A, Rumbeiha WK. A comprehensive review of treatments for hydrogen sulfide poisoning: past, present, and future. Toxicol Mech Methods 2023; 33:183-196. [PMID: 36076319 DOI: 10.1080/15376516.2022.2121192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Hydrogen sulfide (H2S) poisoning remains a significant source of occupational fatalities and is the second most common cause of toxic gas-induced deaths. It is a rapidly metabolized systemic toxicant targeting the mitochondria, among other organelles. Intoxication is mostly acute, but chronic or in-between exposure scenarios also occur. Some genetic defects in H2S metabolism lead to lethal chronic H2S poisoning. In acute exposures, the neural, respiratory, and cardiovascular systems are the primary target organs resulting in respiratory distress, convulsions, hypotension, and cardiac irregularities. Some survivors of acute poisoning develop long-term sequelae, particularly in the central nervous system. Currently, treatment for H2S poisoning is primarily supportive care as there are no FDA-approved drugs. Besides hyperbaric oxygen treatment, drugs in current use for the management of H2S poisoning are controversial. Novel potential drugs are under pre-clinical research development, most of which target binding the H2S. However, there is an acute need to discover new drugs to prevent and treat H2S poisoning, including reducing mortality and morbidity, preventing sequalae from acute exposures, and for treating cumulative pathology from chronic exposures. In this paper, we perform a comprehensive review of H2S poisoning including perspectives on past, present, and future.
Collapse
Affiliation(s)
| | - Abigail Weir
- Molecular Biosciences, University of California, Davis, Davis, CA, USA
| | - Wilson K Rumbeiha
- Molecular Biosciences, University of California, Davis, Davis, CA, USA
| |
Collapse
|
28
|
Influences of increasing levels of sulfate in drinking water on the intake and use of low-quality forages by beef cattle. APPLIED ANIMAL SCIENCE 2023. [DOI: 10.15232/aas.2022-02336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
29
|
Santana Maldonado CM, Kim DS, Purnell B, Li R, Buchanan GF, Smith J, Thedens DR, Gauger P, Rumbeiha WK. Acute hydrogen sulfide-induced neurochemical and morphological changes in the brainstem. Toxicology 2023; 485:153424. [PMID: 36610655 DOI: 10.1016/j.tox.2023.153424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Hydrogen sulfide (H2S) is a toxin affecting the cardiovascular, respiratory, and central nervous systems. Acute H2S exposure is associated with a high rate of mortality and morbidity. The precise pathophysiology of H2S-induced death is a controversial topic; however, inhibition of the respiratory center in the brainstem is commonly cited as a cause of death. There is a knowledge gap on toxicity and toxic mechanisms of acute H2S poisoning on the brainstem, a brain region responsible for regulating many reflective and vital functions. Serotonin (5-HT), dopamine (DA), and γ-aminobutyric acid (GABA) play a role in maintaining a normal stable respiratory rhythmicity. We hypothesized that the inhibitory respiratory effects of H2S poisoning are mediated by 5-HT in the respiratory center of the brainstem. Male C57BL/6 mice were exposed once to an LCt50 concentration of H2S (1000 ppm). Batches of surviving mice were euthanized at 5 min, 2 h, 12 h, 24 h, 72 h, and on day 7 post-exposure. Pulmonary function, vigilance state, and mortality were monitored during exposure. The brainstem was analyzed for DA, 3,4-dehydroxyphenyl acetic acid (DOPAC), 5-HT, 5-hydroxyindoleatic acid (5-HIAA), norepinephrine (NE), GABA, glutamate, and glycine using HPLC. Enzymatic activities of monoamine oxidases (MAO) were also measured in the brainstem using commercial kits. Neurodegeneration was assessed using immunohistochemistry and magnetic resonance imaging. Results showed that DA and DOPAC were significantly increased at 5 min post H2S exposure. However, by 2 h DA returned to normal. Activities of MAO were significantly increased at 5 min and 2 h post-exposure. In contrast, NE was significantly decreased at 5 min and 2 h post-exposure. Glutamate was overly sensitive to H2S-induced toxicity manifesting a time-dependent concentration reduction throughout the 7 day duration of the study. Remarkably, there were no changes in 5-HT, 5-HIAA, glycine, or GABA concentrations. Cytochrome c oxidase activity was inhibited but recovered by 24 h. Neurodegeneration was observed starting at 72 h post H2S exposure in select brainstem regions. We conclude that acute H2S exposure causes differential effects on brainstem neurotransmitters. H2S also induces neurodegeneration and biochemical changes in the brainstem. Additional work is needed to fully understand the implications of both the short- and long-term effects of acute H2S poisoning on vital functions regulated by the brainstem.
Collapse
Affiliation(s)
- Cristina M Santana Maldonado
- Veterinary Diagnostic Production and Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA.
| | - Dong-Suk Kim
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| | - Benton Purnell
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| | - Rui Li
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| | - Gordon F Buchanan
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| | - Jodi Smith
- Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA.
| | - Daniel R Thedens
- Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242, USA.
| | - Phillip Gauger
- Veterinary Diagnostic Production and Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA.
| | - Wilson K Rumbeiha
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
30
|
Zhang B, Zhao X, Chen Y, Ge Z, Jin H. Investigation of H 2S Diffusion in Transcritical and Supercritical Water: A Molecular Dynamics Simulation Study. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Bowei Zhang
- State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi’an Jiaotong University, 28 Xianning West Road, Xi’an, Shaanxi710049, China
| | - Xiao Zhao
- State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi’an Jiaotong University, 28 Xianning West Road, Xi’an, Shaanxi710049, China
- Key Laboratory of Combustion, Thermal Structure and Internal Flow, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi710072, China
| | - Yunan Chen
- State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi’an Jiaotong University, 28 Xianning West Road, Xi’an, Shaanxi710049, China
| | - Zhiwei Ge
- State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi’an Jiaotong University, 28 Xianning West Road, Xi’an, Shaanxi710049, China
| | - Hui Jin
- State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi’an Jiaotong University, 28 Xianning West Road, Xi’an, Shaanxi710049, China
| |
Collapse
|
31
|
Yongchao Z, Lei T, Wenming Z, Yiping Z, Lei F, Tuqiao Z. Iron carbon particle dosing for odor control in sewers: Laboratory tests. ENVIRONMENTAL RESEARCH 2023; 216:114476. [PMID: 36202246 DOI: 10.1016/j.envres.2022.114476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Treatment of malodor in the sewer system is a priority in many municipalities for human health concerns, sewer pipe corrosion prevention. In this study, the removal effects of iron-carbon (Fe-C) particles on the inhibition of sulfide in the liquid phase, as well as hydrogen sulfide (H2S) and methyl mercaptan (MeSH) in the headspace were investigated using laboratory-scale reactors simulating gravity-flow sewer system. The results indicated that the sulfide in the liquid phase can be reduced from 15.1 to 16.5 mg S/L to 0.05 and 0.14 mg S/L after 70 g/L and 50 g/L Fe-C particles dosing. The flux of H2S and MeSH in the headspace was also inhibited, and its flux decreased by up to 99%. Meanwhile, the microbial community structures of sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) in the sediment surface and water were also analyzed, and the results revealed that the relative abundance of SRB in the water and sediment surface was inhibited greatly after adding Fe-C particles, especially for Sulfurospirillum, Clostridium, and Desulfovibrio, while Fe-C particles promoted the growth of SOB. Moreover, the surface deposition was collected and analyzed through X-ray photoelectron spectroscopy (XPS), and the results indicated that sulfide can be removed by co-precipitation with ferrous ions formed through micro-electrolysis of Fe-C. This study provides a new approach to control the in-situ odor pollution for sewage systems.
Collapse
Affiliation(s)
- Zhou Yongchao
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - Tang Lei
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - Zhang Wenming
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada
| | - Zhang Yiping
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - Fang Lei
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China.
| | - Zhang Tuqiao
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
32
|
Haouzi P, MacCann M, Brenner M, Mahon S, Bebarta VS, Chan A, Judenherc-Haouzi A, Tubbs N, Boss GR. Treatment of life-threatening H2S intoxication: Lessons from the trapping agent tetranitrocobinamide. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103998. [PMID: 36228991 DOI: 10.1016/j.etap.2022.103998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
We sought to evaluate the efficacy of trapping free hydrogen sulfide (H2S) following severe H2S intoxication. Sodium hydrosulfide solution (NaHS, 20 mg/kg) was administered intraperitoneally in 69 freely moving rats. In a first group (protocol 1), 40 rats were randomly assigned to receive saline (n = 20) or the cobalt compound tetranitrocobinamide (TNCbi) (n = 20, 75 mg/kg iv), one minute into coma, when free H2S was still present in the blood. A second group of 27 rats received TNCbi or saline, following epinephrine, 5 min into coma, when the concentration of free H2S has drastically decreased in the blood. In protocol 1, TNCbi significantly increased immediate survival (65 vs 20 %, p < 0.01) while in protocol 2, administration of TNCbi led to the same outcome as untreated animals. We hypothesize that the decreased efficacy of TNCbi with time likely reflects the rapid spontaneous disappearance of the pool of free H2S in the blood following H2S exposure.
Collapse
Affiliation(s)
- Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, USA.
| | - Marissa MacCann
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Matthew Brenner
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, Irvine, CA, USA
| | - Sari Mahon
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA
| | - Vikhyat S Bebarta
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Rocky Mountain Poison and Drug Center, Denver Health and Hospital Authority, Denver, CO, USA
| | - Adriano Chan
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Annick Judenherc-Haouzi
- Heart and Vascular Institute, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Nicole Tubbs
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Gerry R Boss
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
33
|
Kuryłek A, Stasiak M, Kern-Zdanowicz I. Virulence factors of Streptococcus anginosus - a molecular perspective. Front Microbiol 2022; 13:1025136. [PMID: 36386673 PMCID: PMC9643698 DOI: 10.3389/fmicb.2022.1025136] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 07/21/2023] Open
Abstract
Streptococcus anginosus together with S. constellatus and S. intermedius constitute the Streptococcus anginosus group (SAG), until recently considered to be benign commensals of the human mucosa isolated predominantly from oral cavity, but also from upper respiratory, intestinal, and urogenital tracts. For years the virulence potential of SAG was underestimated, mainly due to complications in correct species identification and their assignment to the physiological microbiota. Still, SAG representatives have been associated with purulent infections at oral and non-oral sites resulting in abscesses formation and empyema. Also, life threatening blood infections caused by SAG have been reported. However, the understanding of SAG as potential pathogen is only fragmentary, albeit certain aspects of SAG infection seem sufficiently well described to deserve a systematic overview. In this review we summarize the current state of knowledge of the S. anginosus pathogenicity factors and their mechanisms of action.
Collapse
|
34
|
Lee JH, Im SS. Function of gaseous hydrogen sulfide in liver fibrosis. BMB Rep 2022. [PMID: 36195563 PMCID: PMC9623240 DOI: 10.5483/bmbrep.2022.55.10.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Over the past few years, hydrogen sulfide (H2S) has been shown to exert several biological functions in mammalian. The endogenous production of H2S is mainly mediated by cystathione β-synthase, cystathione γ-lyase and 3-mercaptopyruvate sulfur transferase. These enzymes are broadly expressed in liver tissue and regulates liver function by working on a variety of molecular targets. As an important regulator of liver function, H2S is critically involved in the pathogenesis of various liver diseases, such as non-alcoholic steatohepatitis and liver cancer. Targeting H2S-generating enzymes may be a therapeutic strategy for controlling liver diseases. This review described the function of H2S in liver disease and summarized recent characterized role of H2S in several cellular process of the liver.
Collapse
Affiliation(s)
- Jae-Ho Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Korea
| |
Collapse
|
35
|
Dunning SG, Gupta NK, Reynolds JE, Sagastuy-Breña M, Flores JG, Martínez-Ahumada E, Sánchez-González E, Lynch VM, Gutiérrez-Alejandre A, Aguilar-Pliego J, Kim KS, Ibarra IA, Humphrey SM. Mn-CUK-1: A Flexible MOF for SO 2, H 2O, and H 2S Capture. Inorg Chem 2022; 61:15037-15044. [PMID: 36083270 DOI: 10.1021/acs.inorgchem.2c02012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The environmentally benign metal-organic framework (MOF) CUK-1 based on 2,4-pyridine dicarboxylate has been prepared for the first time using Mn(II) as the inorganic node and water as the only solvent. Mn-CUK-1 shows reversible and efficient capture of H2O, SO2, and H2S. Compared to previously studied Co(II) and Mg(II) versions of the same MOF, Mn-CUK-1 also exhibited unique temperature-induced structural flexibility due to organic linker torsion, as detailed by variable-temperature single-crystal X-ray diffraction studies. Owing to this inherent solid-state flexibility, Mn-CUK-1 showed stepwise adsorption for polar gases, which induce structural deformations upon adsorption, while the nonpolar guest adsorbates were reversibly sorbed in a more classical manner. Notably, Mn-CUK-1 demonstrates the highest reported H2S capacity-to-surface area ratio among MOFs that are chemically stable toward this reactive acidic molecule. Moreover, Mn-CUK-1 displays exceptional structural stability in the presence of high relative humidity and corrosive gases and shows soft crystalline behavior triggered by changes in both the adsorption temperature and guest molecule identity.
Collapse
Affiliation(s)
- Samuel G Dunning
- Department of Chemistry, The University of Texas at Austin, Welch Hall 2.204, 105 CE. 24th St. Stop A5300, Austin Texas 78712-1224, United States
| | - Nishesh Kumar Gupta
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyocán, 04510 Ciudad de México, Mexico.,University of Science and Technology (UST), Daejeon 34113, Republic of Korea.,Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang 10223, Republic of Korea
| | - Joseph E Reynolds
- Department of Chemistry, The University of Texas at Austin, Welch Hall 2.204, 105 CE. 24th St. Stop A5300, Austin Texas 78712-1224, United States.,Sandia National Laboratories, 7011 East Avenue, Livermore California 94550, United States
| | - Mónica Sagastuy-Breña
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyocán, 04510 Ciudad de México, Mexico
| | - J Gabriel Flores
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyocán, 04510 Ciudad de México, Mexico
| | - Eva Martínez-Ahumada
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyocán, 04510 Ciudad de México, Mexico
| | - Elí Sánchez-González
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyocán, 04510 Ciudad de México, Mexico
| | - Vincent M Lynch
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyocán, 04510 Ciudad de México, Mexico
| | - Aída Gutiérrez-Alejandre
- UNICAT, Departamento de Ingeniería Química, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, Mexico
| | | | - Kwang-Soo Kim
- University of Science and Technology (UST), Daejeon 34113, Republic of Korea.,Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang 10223, Republic of Korea
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyocán, 04510 Ciudad de México, Mexico
| | - Simon M Humphrey
- Department of Chemistry, The University of Texas at Austin, Welch Hall 2.204, 105 CE. 24th St. Stop A5300, Austin Texas 78712-1224, United States
| |
Collapse
|
36
|
Daglar H, Altintas C, Erucar I, Heidari G, Zare EN, Moradi O, Srivastava V, Iftekhar S, Keskin S, Sillanpää M. Metal-organic framework-based materials for the abatement of air pollution and decontamination of wastewater. CHEMOSPHERE 2022; 303:135082. [PMID: 35618068 DOI: 10.1016/j.chemosphere.2022.135082] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Developing new and efficient technologies for environmental remediation is becoming significant due to the increase in global concerns such as climate change, severe epidemics, and energy crises. Air pollution, primarily due to increased levels of H2S, SOx, NH3, NOx, CO, volatile organic compounds (VOC), and particulate matter (PM) in the atmosphere, has a significant impact on public health, and exhaust gases harm the natural sulfur, nitrogen, and carbon cycles. Similarly, wastewater discharged to the environment with metal ions, herbicides, pharmaceuticals, personal care products, dyes, and aromatics/organic compounds is a risk for health since it may lead to an outbreak of waterborne pathogens and increase the exposure to endocrine-disrupting agents. Therefore, developing new and efficient air and water quality management systems is critical. Metal-organic frameworks (MOFs) are novel materials for which the main application areas include gas storage and separation, water harvesting from the atmosphere, chemical sensing, power storage, drug delivery, and food preservation. Due to their versatile structural motifs that can be modified during synthesis, MOFs also have a great promise for green applications including air and water pollution remediation. The motivation to use MOFs for environmental applications prompted the modification of their structures via the addition of metal and functional groups, as well as the creation of heterostructures by mixing MOFs with other nanomaterials, to effectively remove hazardous contaminants from wastewater and the atmosphere. In this review, we focus on the state-of-the-art environmental applications of MOFs, particularly for water treatment and air pollution, by highlighting the groundbreaking studies in which MOFs have been used as adsorbents, membranes, and photocatalysts for the abatement of air and water pollution. We finally address the opportunities and challenges for the environmental applications of MOFs.
Collapse
Affiliation(s)
- Hilal Daglar
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - Cigdem Altintas
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - Ilknur Erucar
- Department of Natural and Mathematical Sciences, Faculty of Engineering, Ozyegin University, Cekmekoy, 34794, Istanbul, Turkey
| | - Golnaz Heidari
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, 41938-33697, Iran
| | | | - Omid Moradi
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Varsha Srivastava
- Research Unit of Sustainable Chemistry, Faculty of Technology, University of Oulu, Oulu, 90014, Finland
| | - Sidra Iftekhar
- Department of Applied Physics, University of Eastern Finland, Kuopio, 70120, Finland
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang, 314213, PR China; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| |
Collapse
|
37
|
Liu R, Shan Y, Xi S, Zhang X, Sun C. A deep-sea sulfate-reducing bacterium generates zero-valent sulfur via metabolizing thiosulfate. MLIFE 2022; 1:257-271. [PMID: 38818226 PMCID: PMC10989961 DOI: 10.1002/mlf2.12038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 06/01/2024]
Abstract
Zero-valent sulfur (ZVS) is a crucial intermediate in the sulfur geobiochemical circulation and is widespread in deep-sea cold seeps. Sulfur-oxidizing bacteria are thought to be the major contributors to the formation of ZVS. However, ZVS production mediated by sulfate-reducing bacteria (SRB) has rarely been reported. In this study, we isolated and cultured a typical SRB designated Oceanidesulfovibrio marinus CS1 from deep-sea cold seep sediment in the South China Sea. We show that O. marinus CS1 forms ZVS in the medium supplemented with thiosulfate. Proteomic and protein activity assays revealed that thiosulfate reductase (PhsA) and the sulfide:quinone oxidoreductase (SQR) played key roles in driving ZVS formation in O. marinus CS1. During this process, thiosulfate firstly was reduced by PhsA to form sulfide, then sulfide was oxidized by SQR to produce ZVS. The expressions of PhsA and SQR were significantly upregulated when O. marinus CS1 was cultured in a deep-sea cold seep, strongly indicating that strain CS1 might form ZVS in the deep-sea environment. Notably, homologs of phsA and sqr were widely identified from microbes living in sediments of deep-sea cold seep in the South China Sea by the metagenomic analysis. We thus propose that SRB containing phsA and sqr genes potentially contribute to the formation of ZVS in deep-sea cold seep environments.
Collapse
Affiliation(s)
- Rui Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine BiologyCenter of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center of Ocean Mega‐Science, Chinese Academy of SciencesQingdaoChina
| | - Yeqi Shan
- CAS and Shandong Province Key Laboratory of Experimental Marine BiologyCenter of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center of Ocean Mega‐Science, Chinese Academy of SciencesQingdaoChina
- College of Earth Science, University of Chinese Academy of SciencesBeijingChina
| | - Shichuan Xi
- Center of Ocean Mega‐Science, Chinese Academy of SciencesQingdaoChina
- College of Earth Science, University of Chinese Academy of SciencesBeijingChina
- CAS Key Laboratory of Marine Geology and EnvironmentCenter of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Xin Zhang
- Center of Ocean Mega‐Science, Chinese Academy of SciencesQingdaoChina
- CAS Key Laboratory of Marine Geology and EnvironmentCenter of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine BiologyCenter of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center of Ocean Mega‐Science, Chinese Academy of SciencesQingdaoChina
| |
Collapse
|
38
|
Decomposition kinetics and postmortem production of hydrogen sulfide and its metabolites. Forensic Sci Int 2022; 340:111426. [PMID: 36007360 DOI: 10.1016/j.forsciint.2022.111426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/02/2022] [Accepted: 08/13/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Hydrogen sulfide (H2S), an endogenous gas, can also be generated from organics putrefaction. It is difficult for suspected cases of H2S poisoning to determine whether H2S in specimens is ingested by antemortem poisoning or generated from organics putrefaction. The aim of this study was to find the biomarkers of acute H2S poisoning via comparing the concentrations of H2S and its metabolites over time in specimens. METHODS The H2S-spiked blood and blank blood group were established. The decomposition kinetics and the postmortem production of H2S were studied due to organics putrefaction. The specimens were placed under 4 conditions of 37, 20, 4 and - 20 ℃. The content of H2S in specimens was quantified by gas chromatography-mass spectrometry, and the contents of its metabolites (thiosulfate and trimethylsulfonium) were measured by liquid chromatography-mass spectrometry, and the variation of its concentration was evaluated. RESULTS In H2S-spiked blood, H2S decreased sharply in the initial stage at 37, 20 and 4 °C, and increased first and then decreased later; but it was relatively stable at - 20 °C. In spiked blood, thiosulfate was 9-fold higher than endogenous concentrations, which increased at first and then decreased during storage. Except for thiosulfate at 37 °C, H2S and thiosulfate in blank blood both increased at first and then decreased in storage; but trimethylsulfonium (TMS) gradually decreased over time in both groups. CONCLUSIONS Thiosulfate is a reliable biomarker of acute H2S poisoning at - 20℃ within 7 days. But H2S, because of instability and volatility, is not an ideal poisoning marker. TMS is not an appropriate biomarker due to extremely low concentration in blood.
Collapse
|
39
|
Pose M, Dillon KM, Denicola A, Alvarez B, Matson JB, Möller MN, Cuevasanta E. Fluorescent detection of hydrogen sulfide (H 2S) through the formation of pyrene excimers enhances H 2S quantification in biochemical systems. J Biol Chem 2022; 298:102402. [PMID: 35988644 PMCID: PMC9493391 DOI: 10.1016/j.jbc.2022.102402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022] Open
Abstract
Hydrogen sulfide (H2S) is produced endogenously by several enzymatic pathways and modulates physiological functions in mammals. Quantification of H2S in biochemical systems remains challenging because of the presence of interferents with similar reactivity, particularly thiols. Herein, we present a new quantification method based on the formation of pyrene excimers in solution. We synthesized the probe 2-(maleimido)ethyl 4-pyrenylbutanoate (MEPB) and determined that MEPB reacted with H2S in a two-step reaction to yield the thioether-linked dimer (MEPB)2S, which formed excimers upon excitation, with a broad peak of fluorescence emission centered at 480 nm. In contrast, we found that the products formed with thiols showed peaks at 378 and 398 nm. The difference in emission between the products prevented the interference. Furthermore, we showed that the excimer fluorescence signal yielded a linear response to H2S, with a limit of detection of 54 nM in a fluorometer. Our quantification method with MEPB was successfully applied to follow the reaction of H2S with glutathione disulfide and to quantify the production of H2S from cysteine by Escherichia coli. In conclusion, this method represents an addition to the toolkit of biochemists to quantify H2S specifically and sensitively in biochemical systems.
Collapse
Affiliation(s)
- Manuela Pose
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Kearsley M Dillon
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - John B Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Matías N Möller
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.
| | - Ernesto Cuevasanta
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay; Unidad de Bioquímica Analítica, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
40
|
Synechococcus sp. PCC7002 Uses Peroxiredoxin to Cope with Reactive Sulfur Species Stress. mBio 2022; 13:e0103922. [PMID: 35861504 PMCID: PMC9426444 DOI: 10.1128/mbio.01039-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria are a widely distributed group of microorganisms in the ocean, and they often need to cope with the stress of reactive sulfur species, such as sulfide and sulfane sulfur. Sulfane sulfur refers to the various forms of zero-valent sulfur, including persulfide, polysulfide, and element sulfur (S8). Although sulfane sulfur participates in signaling transduction and resistance to reactive oxygen species in cyanobacteria, it is toxic at high concentrations and induces sulfur stress, which has similar effects to oxidative stress. In this study, we report that Synechococcus sp. PCC7002 uses peroxiredoxin to cope with the stress of cellular sulfane sulfur. Synechococcus sp. PCC7002 contains six peroxiredoxins, and all were induced by S8. Peroxiredoxin I (PrxI) reduced S8 to H2S by forming a disulfide bond between residues Cys53 and Cys153 of the enzyme. A partial deletion strain of Synechococcus sp. PCC7002 with decreased copy numbers of the prxI gene was more sensitive to S8 than was the wild type. Thus, peroxiredoxin is involved in maintaining the homeostasis of cellular sulfane sulfur in cyanobacteria. Given that peroxiredoxin evolved before the occurrence of O2 on Earth, its original function could have been to cope with reactive sulfur species stress, and that function has been preserved. IMPORTANCE Cyanobacteria are the earliest microorganisms that perform oxygenic photosynthesis, which has played a key role in the evolution of life on Earth, and they are the most important primary producers in the modern oceans. The cyanobacterium Synechococcus sp. PCC7002 uses peroxiredoxin to reduce high levels of sulfane sulfur. That function is possibly the original role of peroxiredoxin, as the enzyme evolved before the appearance of O2 on Earth. The preservation of the reduction of sulfane sulfur by peroxiredoxin5-type peroxiredoxins may offer cyanobacteria an advantage in the complex environment of the modern oceans.
Collapse
|
41
|
Dugbartey GJ, Wonje QL, Alornyo KK, Adams I, Diaba DE. Alpha-lipoic acid treatment improves adverse cardiac remodelling in the diabetic heart - The role of cardiac hydrogen sulfide-synthesizing enzymes. Biochem Pharmacol 2022; 203:115179. [PMID: 35853498 DOI: 10.1016/j.bcp.2022.115179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 07/12/2022] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Alpha-lipoic acid (ALA) is a licensed drug for the treatment of diabetic neuropathy. We recently reported that it also improves diabetic cardiomyopathy (DCM) in type 2 diabetes mellitus (T2DM). In this study, we present evidence supporting our hypothesis that the cardioprotective effect of ALA is via upregulation of cardiac hydrogen sulfide (H2S)-synthesizing enzymes. METHODS Following 12 h of overnight fasting, T2DM was induced in 23 out of 30 male Sprague-Dawley rats by intraperitoneal administration of nicotinamide (110 mg/kg) followed by streptozotocin (55 mg/kg) while the rest served as healthy control (HC). T2DM rats then received either oral administration of ALA (60 mg/kg/day; n = 7) or 40 mg/kg/day DL-propargylglycine (PAG, an endogenous H2S inhibitor; n = 7) intraperitoneally for 6 weeks after which all rats were sacrificed and samples collected for analysis. Untreated T2DM rats served as diabetic control (DCM; n = 9). RESULTS T2DM resulted in weight loss, islet destruction, reduced pancreatic β-cell function and hyperglycemia. Histologically, DCM rats showed significant myocardial damage evidenced by myocardial degeneration, cardiomyocyte vacuolation and apoptosis, cardiac fibrosis and inflammation, which positively correlated with elevated levels of cardiac damage markers compared to HC rats (p < 0.001). These pathological alterations worsened significantly in PAG-treated rats (p < 0.05). However, ALA treatment restored normoinsulemia, normoglycemia, prevented DCM, and improved lipid and antioxidant status. Mechanistically, ALA significantly upregulated the expression of cardiac H2S-synthesizing enzymes and increased plasma H2S concentration compared to DCM rats (p < 0.001). CONCLUSION ALA preserves myocardial integrity in T2DM likely by maintaining the expression of cardiac H2S-synthezing enzymes and increasing plasma H2S level.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Quinsker L Wonje
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ismaila Adams
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Deborah E Diaba
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
42
|
Gao Y, Kong D, Han J, Zhou W, Gao Y, Wang T, Lu G. Cadmium sulfide in-situ derived heterostructure hybrids with tunable component ratio for highly sensitive and selective detection of ppb-level H 2S. J Colloid Interface Sci 2022; 627:332-342. [PMID: 35863192 DOI: 10.1016/j.jcis.2022.07.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/28/2022]
Abstract
Herein, we reported cadmium sulfide derivatives pine needles-like CdS/CdO heterostructure hybrids synthesized by hydrothermal treatment and subsequent self-template oxidation approach. The component ratio of the CdS/CdO hybrids can be controlled specifically via tuning the annealing treatment protocol, and thereby giving rise to the optimization of morphology, electrical characteristics, and gas sensing properties of derived hybrids. As proof of concept, the pine needles-like CdS/CdO, which obtained after different annealing temperatures and durations, as sensitive material was employed to manufacture H2S gas sensors. The sensor based on CdS/CdO hybrids (400 °C & 1 h) exhibited high sensitivity (73.5 to 5 ppm), ppb-level limit of detection (10 ppb), and excellent selectivity regardless of the interference of other gases at optimal working temperature of 200 °C. Due to the abnormal resistance variation of n-type cadmium sulfide derived hybrids while contacting with H2S, the sensing mechanism mainly depends on the surface chemical conversion from oxide to sulfide. The pine needles-like hierarchical morphology provided an excellent scaffold for the carriers transportation and the growth of the CdO, which played a key role in resistance modulation both in air and target gas, resulting in the enhanced H2S sensing performance ultimately.
Collapse
Affiliation(s)
- Yubing Gao
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, Jilin Province 130012, China
| | - Dehao Kong
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, Jilin Province 130012, China
| | - Jiayin Han
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, Jilin Province 130012, China
| | - Weirong Zhou
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, Jilin Province 130012, China
| | - Yuan Gao
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, Jilin Province 130012, China.
| | - Tianshuang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, Jilin Province 130012, China.
| | - Geyu Lu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, Jilin Province 130012, China
| |
Collapse
|
43
|
Dugbartey GJ, Alornyo KK, Diaba DE, Adams I. Activation of renal CSE/H 2S pathway by alpha-lipoic acid protects against histological and functional changes in the diabetic kidney. Biomed Pharmacother 2022; 153:113386. [PMID: 35834985 DOI: 10.1016/j.biopha.2022.113386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION We previously reported that alpha-lipoic acid (ALA) supplementation protects against progression of diabetic kidney disease (DKD). In this study, we aim to investigate whether the mechanism of renal protection by ALA involves renal cystathionine γ-lyase/hydrogen sulfide (CSE/H2S) system in type 2 diabetes mellitus (T2DM). METHODS Thirty-seven male Sprague-Dawley rats underwent 12 h of overnight fasting. To induce T2DM, 30 of these rats received intraperitoneal administration of nicotinamide (110 mg/kg) and streptozotocin (55 mg/kg). T2DM rats then received either oral administration of ALA (60 mg/kg/day) or intraperitoneal administration of 40 mg/kg/day DL-propargylglycine (PAG, a CSE inhibitor) or both for 6 weeks after which rats were sacrificed and samples collected for analysis. Untreated diabetic and non-diabetic rats served as diabetic and healthy controls respectively. RESULTS T2DM was characterized by reduced pancreatic β-cell function and hyperglycemia. Histologically, untreated diabetic rats showed significantly damaged pancreatic islets, glomerular and tubular injury, with elevated levels of renal function markers compared to healthy control rats (p < 0.001). These pathological changes worsened significantly following PAG administration (p < 0.05). While some renal protection was observed in ALA+PAG rats, ALA administration in untreated diabetic rats provided superior protection comparable to healthy control rats, with improved antioxidant status, lipid profile and reduced inflammation. Mechanistically, ALA significantly activated renal CSE/H2S system in diabetic rats, which was markedly suppressed in PAG-treated rats (p < 0.001). CONCLUSION Our data suggest that ALA protects against DKD development and progression by activating renal CSE/H2S pathway. Hence, CSE/H2S pathway may represent a therapeutic target in the treatment or prevention of DKD in diabetic patients.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Deborah E Diaba
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ismaila Adams
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
44
|
A Tool for Removing Metal Inclusions from the Surface of Paint and Varnish Car Coatings. COATINGS 2022. [DOI: 10.3390/coatings12060807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In this article, we presents the synthesis and research of a tool for removing metal inclusions from the surface of car paint coatings. The optimal composition of the product was determined, which includes sodium laureth sulfate, citric acid, sulfosalicylic acid, hydrogen peroxide and water. As a result of the conducted studies, a connection was established between the composition and the physicochemical, surface-active properties of the developed agent. Approbation of this tool was carried out, which confirmed its effectiveness and showed that within 30–45 s after applying the developed tool, not only are metal inclusions on the surface of car paint coating removed but also mineral contaminants in the form of sand, earth, clay and other particles. The aim of the work was to develop and optimize a method for obtaining a low-toxicity, highly effective agent for removing metal inclusions from the surface of car paint coatings and to investigate its effectiveness, as well as its physicochemical, optical and surface-active properties.
Collapse
|
45
|
Song ZL, Zhao L, Ma T, Osama A, Shen T, He Y, Fang J. Progress and perspective on hydrogen sulfide donors and their biomedical applications. Med Res Rev 2022; 42:1930-1977. [PMID: 35657029 DOI: 10.1002/med.21913] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Following the discovery of nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2 S) has been identified as the third gasotransmitter in humans. Increasing evidence have shown that H2 S is of preventive or therapeutic effects on diverse pathological complications. As a consequence, it is of great significance to develop suitable approaches of H2 S-based therapeutics for biomedical applications. H2 S-releasing agents (H2 S donors) play important roles in exploring and understanding the physiological functions of H2 S. More importantly, accumulating studies have validated the theranostic potential of H2 S donors in extensive repertoires of in vitro and in vivo disease models. Thus, it is imperative to summarize and update the literatures in this field. In this review, first, the background of H2 S on its chemical and biological aspects is concisely introduced. Second, the studies regarding the H2 S-releasing compounds are categorized and described, and accordingly, their H2 S-donating mechanisms, biological applications, and therapeutic values are also comprehensively delineated and discussed. Necessary comparisons between related H2 S donors are presented, and the drawbacks of many typical H2 S donors are analyzed and revealed. Finally, several critical challenges encountered in the development of multifunctional H2 S donors are discussed, and the direction of their future development as well as their biomedical applications is proposed. We expect that this review will reach extensive audiences across multiple disciplines and promote the innovation of H2 S biomedicine.
Collapse
Affiliation(s)
- Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Lanning Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Tong Shen
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Yilin He
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
46
|
Choudhary AK, Singh S, Khatri N, Gupta R. Hydrogen sulphide: an emerging regulator of plant defence signalling. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:532-539. [PMID: 34904345 DOI: 10.1111/plb.13376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/21/2021] [Indexed: 06/14/2023]
Abstract
Hydrogen sulphide (H2 S), a gaseous signalling molecule in plants, has gained considerable attention in recent years because of its emerging roles in the regulation of plant growth and development and responses to abiotic stressors. Although the involvement of H2 S in biotic stress is not well documented in the literature, a growing body of evidence indicates its potential role in plant defence, particularly against bacterial and fungal pathogens. Recent reports have suggested that H2 S participates in plant defence signalling potentially by (1) regulating glutathione metabolism, (2) inducing expression of pathogenesis-related (PR) and other defence-related genes, (3) modulating enzyme activity through post-translational modifications, and (4) interacting with phytohormones such as jasmonic acid, ethylene and auxin. In this review, we discuss the biosynthesis, metabolism and interaction of H2 S with phytohormones, and highlight evidence gathered so far to support the emerging roles of H2 S in plant defence against invading pathogens.
Collapse
Affiliation(s)
- A K Choudhary
- Department of Botany, University of Delhi, New Delhi, India
| | - S Singh
- Department of Biotechnology, TERI School of Advanced Studies, Vasant Kunj, New Delhi, India
| | - N Khatri
- Department of Botany, Dyal Singh College, New Delhi, India
| | - R Gupta
- College of General Education, Kookmin University, Seoul, South Korea
| |
Collapse
|
47
|
Hydrogen Sulfide Capture and Removal Technologies: A Comprehensive Review of Recent Developments and Emerging Trends. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
49
|
Sun C, Yu W, lv B, Zhang Y, Du S, Zhang H, Du J, Jin H, Sun Y, Huang Y. Role of hydrogen sulfide in sulfur dioxide production and vascular regulation. PLoS One 2022; 17:e0264891. [PMID: 35298485 PMCID: PMC8929647 DOI: 10.1371/journal.pone.0264891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/19/2022] [Indexed: 12/03/2022] Open
Abstract
Both hydrogen sulfide (H2S) and sulfur dioxide (SO2) are produced endogenously from the mammalian metabolic pathway of sulfur-containing amino acids and play important roles in several vascular diseases. However, their interaction during the control of vascular function has not been fully clear. Here, we investigated the potential role of H2S in SO2 production and vascular regulation in vivo and in vitro. Wistar rats were divided into the vehicle, SO2, DL-propargylglycine (PPG) + SO2, β-cyano-L-alanine (BCA) + SO2 and sodium hydrosulfide (NaHS) + SO2 groups. SO2 donor was administered with or without pre-administration of PPG, BCA or NaHS for 30 min after blood pressure was stabilized for 1 h, and then, the change in blood pressure was detected by catheterization via the common carotid artery. Rat plasma SO2 and H2S concentrations were measured by high performance liquid chromatography and sensitive sulfur electrode, respectively. The isolated aortic rings were prepared for the measurement of changes in vasorelaxation stimulated by SO2 after PPG, BCA or NaHS pre-incubation. Results showed that the intravenous injection of SO2 donors caused transient hypotension in rats compared with vehicle group. After PPG or BCA pretreatment, the plasma H2S content decreased but the SO2 content increased markedly, and the hypotensive effect of SO2 was significantly enhanced. Conversely, NaHS pretreatment upregulated the plasma H2S content but reduced SO2 content, and attenuated the hypotensive effect of SO2. After PPG or BCA pre-incubation, the vasorelaxation response to SO2 was enhanced significantly. While NaHS pre-administration weakened the SO2-induced relaxation in aortic rings. In conclusion, our in vivo and in vitro data indicate that H2S negatively controls the plasma content of SO2 and the vasorelaxant effect under physiological conditions.
Collapse
Affiliation(s)
- Chufan Sun
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Wen Yu
- Department of Cardiology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Boyang lv
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yanan Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Shuxu Du
- Department of Pediatrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Heng Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yan Sun
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- * E-mail: (YH); (YS)
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- * E-mail: (YH); (YS)
| |
Collapse
|
50
|
Martín-Clemente E, Melero-Jiménez IJ, Bañares-España E, Flores-Moya A, García-Sánchez MJ. Photosynthetic performance in cyanobacteria with increased sulphide tolerance: an analysis comparing wild-type and experimentally derived strains. PHOTOSYNTHESIS RESEARCH 2022; 151:251-263. [PMID: 34807429 PMCID: PMC8940870 DOI: 10.1007/s11120-021-00882-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/28/2021] [Indexed: 06/02/2023]
Abstract
Sulphide is proposed to have influenced the evolution of primary stages of oxygenic photosynthesis in cyanobacteria. However, sulphide is toxic to most of the species of this phylum, except for some sulphide-tolerant species showing various sulphide-resistance mechanisms. In a previous study, we found that this tolerance can be induced by environmental sulphidic conditions, in which two experimentally derived strains with an enhanced tolerance to sulphide were obtained from Microcystis aeruginosa, a sensitive species, and Oscillatoria, a sulphide-tolerant genus. We have now analysed the photosynthetic performance of the wild-type and derived strains in the presence of sulphide to shed light on the characteristics underlying the increased tolerance. We checked whether the sulphide tolerance was a result of higher PSII sulphide resistance and/or the induction of sulphide-dependent anoxygenic photosynthesis. We observed that growth, maximum quantum yield, maximum electron transport rate and photosynthetic efficiency in the presence of sulphide were less affected in the derived strains compared to their wild-type counterparts. Nevertheless, in 14C photoincoporation assays, neither Oscillatoria nor M. aeruginosa exhibited anoxygenic photosynthesis using sulphide as an electron donor. On the other hand, the content of photosynthetic pigments in the derived strains was different to that observed in the wild-type strains. Thus, an enhanced PSII sulphide resistance appears to be behind the increased sulphide tolerance displayed by the experimentally derived strains, as observed in most natural sulphide-tolerant cyanobacterial strains. However, other changes in the photosynthetic machinery cannot be excluded.
Collapse
Affiliation(s)
- Elena Martín-Clemente
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain.
| | - Ignacio J Melero-Jiménez
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
| | - Elena Bañares-España
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
| | - Antonio Flores-Moya
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
| | - María J García-Sánchez
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
| |
Collapse
|