1
|
Moloi TP, Ziqubu K, Mazibuko-Mbeje SE, Mabaso NH, Ndlovu Z. Aflatoxin B 1-induced hepatotoxicity through mitochondrial dysfunction, oxidative stress, and inflammation as central pathological mechanisms: A review of experimental evidence. Toxicology 2024; 509:153983. [PMID: 39491743 DOI: 10.1016/j.tox.2024.153983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Aflatoxin B1 (AFB1) is a class of mycotoxin known to contaminate agricultural products, animal feed and animal food products, subsequently causing detrimental effects on human and animal health. AFB1 is the most common and potent aflatoxin found in food and contributes significantly to liver injury as well as the development of hepatocellular carcinoma. Although the liver is a primary target organ for AFB1 toxicity and biotransformation, underlying mechanisms implicated in liver injuries induced by these mycotoxins remain to be fully elucidated for therapeutic purposes. This review aims to dissect the complexities of the pathophysiological and molecular mechanisms implicated in hepatotoxicity induced by AFB1, including mitochondrial dysfunction, oxidative stress and hepatic inflammation. Mechanistically, AFB1 disrupt mitochondrial bioenergetics and membrane potential, promotes mitochondrial cholesterol trafficking and induces mitophagy. Moreover, mitochondrial dysfunction may lead to hepatic oxidative stress as a consequence of uncontrolled production of reactive oxygen species and defects in the antioxidant defense system. Retrieved experimental evidence also showed that AFB1 may lead to hepatic inflammation through gut microbiota dysbiosis, the release of DAMPs and cytokines, and immune cell recruitment. Overall, these mechanisms could be utilized as potential targets to extrapolate treatment for liver injury caused by AFB1.
Collapse
Affiliation(s)
- Tsholofelo P Moloi
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | | | - Nonduduzo H Mabaso
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Zibele Ndlovu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa.
| |
Collapse
|
2
|
Maxwell A, Swanson G, Thy Nguyen A, Hu A, Richards D, You Y, Stephan L, Manaloto M, Liao A, Ding J, Mor G. Hydroquinone impairs trophoblast migration and invasion via AHR-twist-IFITM1 axis. Placenta 2024; 155:88-99. [PMID: 39173312 PMCID: PMC11421844 DOI: 10.1016/j.placenta.2024.07.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Embryo implantation is a tightly regulated process, critical for a successful pregnancy. After attachment of the blastocyst to the surface epithelium of the endometrium trophoblast migrate from the trophectoderm and invade into the stromal component of endometrium. Alterations on either process will lead to implantation failure or miscarriage. Volatile organic compounds (VOCs) such as benzene induce pregnancy complications, including preterm birth and miscarriages. The mechanism of this effect is unknown. The objective of this study was to elucidate the impact of benzene metabolite, Hydroquinone, on trophoblast function. We tested the hypothesis that Hydroquinone activates the Aryl hydrocarbon receptor (AhR) pathway modulating trophoblast migration and invasion. METHODS First-trimester trophoblast cells (Sw.71) were treated with hydroquinone (6 and 25 μM). Trophoblast migration and invasion was evaluated using a 3D invasion/migration model. Gene expression was quantified by q-PCR and Western blot analysis. RESULTS Hydroquinone impairs trophoblast migration and invasion. This loss is associated with the activation of the AhR pathway which reduced the expression of Twist1and IFITM1. IFITM1 overexpression can rescue impaired trophoblast migration. DISCUSSION Our study highlights that hydroquinone treatment induces the activation of the AhR pathway in trophoblast cells, which impairs trophoblast invasion and migration. We postulate that activation of the AhR pathway in trophoblast suppress Twist1 and a subsequent IFITM1. Thus, the AhR-Twist1-IFITM1 axis represent a critical pathway involved in the regulation of trophoblast migration and it is sensitive to benzene exposure. These findings provide crucial insights into the molecular mechanisms underlying pregnancy complications induced by air pollution.
Collapse
Affiliation(s)
- Anthony Maxwell
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Grace Swanson
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Annie Thy Nguyen
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Anna Hu
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Darby Richards
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Yuan You
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Laura Stephan
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Marcia Manaloto
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jiahui Ding
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA; Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Gil Mor
- C.S Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA; Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
3
|
Alluli A, Fonseca G, Matthews J, Eidelman DH, Baglole CJ. Regulation of long non-coding RNA expression by aryl hydrocarbon receptor activation. Toxicol Lett 2024; 391:13-25. [PMID: 38036013 DOI: 10.1016/j.toxlet.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytosolic transcription factor that can be activated by endogenous or xenobiotic ligands. Upon activation, the AhR translocates to the nucleus, dimerizes with the AhR nuclear translator (ARNT), and binds to specific DNA sequences called xenobiotic response elements (XRE) to promote target gene transcription, including cytochrome P450 (e.g., CYP1A1) expression. In addition to mRNA, the AhR may also regulate long non-coding RNA (lncRNA) expression. lncRNA are transcripts more than 200 nucleotides in length that do not encode a protein. Herein, we tested whether AhR activation regulates the expression of lncRNA in response to benzo[a]pyrene (B[a]P) using RNA sequencing (RNA-seq). We found that many lncRNA (e.g., SATB1-AS1, MIR4290HG, AC008969.1, LINC01533, VIPR1-AS1) and protein-coding RNA (e.g., CYP1A1, BX005266.2, AQP3, BTG2, DCX, and AhRR) were differentially expressed (DE) in A549 cells treated with B[a]P; many of these genes were dependent on AhR expression including CYP1A1, CYP1B1 and TiPARP. GO analyses indicated that DE protein-coding RNAs in A549WT cells are associated with distinct molecular functions compared to A549KO cells. KEGG analyses showed the hsa01100 pathway was associated with DE lncRNA only in A549WT cells. A549KO cells treated with B[a]P exhibited a distinct set of differentially-regulated lncRNA including upregulation of HOTAIR. We further confirmed that despite AhR activation in A549WT cells, B[a]P did not alter the expression of many well-characterized lncRNA including NEAT1, HOTTIP, SOX2OT, MALAT1, H19, and Linc00673. Thus, there is control over select lncRNA expression in A549 cells exposed to B[a]P, a finding which could yield insight into the molecular function of the AhR.
Collapse
Affiliation(s)
- Aeshah Alluli
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Pathology, McGill University, Montreal, Canada
| | - Gregory Fonseca
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada
| | - Jason Matthews
- Department of Nutrition, University of Oslo, Oslo, Norway; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - David H Eidelman
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada
| | - Carolyn J Baglole
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Pathology, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| |
Collapse
|
4
|
Long M, Wielsøe M, Bech BH, Henriksen TB, Bonefeld-Jørgensen EC. Maternal serum dioxin-like activity and gestational age at birth and indices of foetal growth: The Aarhus birth cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165286. [PMID: 37422229 DOI: 10.1016/j.scitotenv.2023.165286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Human exposure to lipophilic persistent organic pollutants (lipPOP) is ubiquitous and life-long, beginning during foetal development. Exposure to lipPOP elicits a number of species and tissue specific responses including dioxin-like activity which involve the activation of aryl hydrocarbon receptor (AhR). This study aims i) to describe the combined dioxin-like activity in serum from Danish pregnant women collected during 2011-2013; ii) to assess the association between maternal serum dioxin-like activity, gestational age at birth and foetal growth indices. The serum lipPOP fraction was extracted using Solid Phase Extraction and cleaned-up on Supelco multi-layer silica and florisil columns. The combined dioxin-like activity of the extract was determined using the AhR reporter gene bioassay, expressed as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxic equivalent (TEQ) [AhR-TEQ (pg/g lipid)]. The associations of AhR-TEQ and foetal growth indices (birth weight, birth length and head circumference) and gestational age were assessed by linear regression models. We detected AhR-TEQ in 93.9 % of maternal first trimester serum samples, with a median level of 185 pg/g lipid. Each ln-unit increase in AhR-TEQ was associated with an increase in birth weight of 36 g (95 % CI: 5; 68), birth length of 0.2 cm (95 % CI: 0.01; 0.3) and pregnancy duration of 1 day (95 % CI: 0; 1.5). In women who never smoked, higher AhR-TEQ values were associated with higher birth weight and longer duration of gestation, while in smokers the association was the opposite. Mediation analyses suggested that gestational age may mediate the association of AhR-TEQ with foetal growth indices. We conclude that AhR activating substances are present in the bloodstream of almost all pregnant women in Denmark and the AhR-TEQ level was around four times higher than previously reported. The AhR-TEQ was associated with slightly longer gestational duration and thereby higher birth weight and birth length.
Collapse
Affiliation(s)
- Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark.
| | - Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark.
| | - Bodil Hammer Bech
- Research unit for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark.
| | - Tine Brink Henriksen
- Perinatal Epidemiology Research Unit, Department of Clinical Medicine, Aarhus University, Denmark; Department of Pediatrics, Aarhus University Hospital, Denmark.
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark; Greenland Center for Health Research, University of Greenland, Nuuk, Greenland.
| |
Collapse
|
5
|
Alluli A, Rijnbout St James W, Eidelman DH, Baglole CJ. Dynamic relationship between the aryl hydrocarbon receptor and long noncoding RNA balances cellular and toxicological responses. Biochem Pharmacol 2023; 216:115745. [PMID: 37597813 DOI: 10.1016/j.bcp.2023.115745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytosolic transcription factor activated by endogenous ligands and xenobiotic chemicals. Once the AhR is activated, it translocates to the nucleus, dimerizes with the AhR nuclear translator (ARNT) and binds to xenobiotic response elements (XRE) to promote gene transcription, notably the cytochrome P450 CYP1A1. The AhR not only mediates the toxic effects of environmental chemicals, but also has numerous putative physiological functions. This dichotomy in AhR biology may be related to reciprocal regulation of long non-coding RNA (lncRNA). lncRNA are defined as transcripts more than 200 nucleotides in length that do not encode a protein but are implicated in many physiological processes such as cell differentiation, cell proliferation, and apoptosis. lncRNA are also linked to disease pathogenesis, particularly the development of cancer. Recent studies have revealed that AhR activation by environmental chemicals affects the expression and function of lncRNA. In this article, we provide an overview of AhR signaling pathways activated by diverse ligands and highlight key differences in the putative biological versus toxicological response of AhR activation. We also detail the functions of lncRNA and provide current data on their regulation by the AhR. Finally, we outline how overlap in function between AhR and lncRNA may be one way in which AhR can be both a regulator of endogenous functions but also a mediator of toxicological responses to environmental chemicals. Overall, more research is still needed to fully understand the dynamic interplay between the AhR and lncRNA.
Collapse
Affiliation(s)
- Aeshah Alluli
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada
| | - Willem Rijnbout St James
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada
| | - David H Eidelman
- Meakins-Christie Laboratories, McGill University, Canada; Department of Medicine, McGill University, Canada
| | - Carolyn J Baglole
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada; Department of Medicine, McGill University, Canada; Department of Pharmacology and Therapeutics, McGill University, Canada.
| |
Collapse
|
6
|
Shimizu N, Shiraishi H, Hanada T. Zebrafish as a Useful Model System for Human Liver Disease. Cells 2023; 12:2246. [PMID: 37759472 PMCID: PMC10526867 DOI: 10.3390/cells12182246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Liver diseases represent a significant global health challenge, thereby necessitating extensive research to understand their intricate complexities and to develop effective treatments. In this context, zebrafish (Danio rerio) have emerged as a valuable model organism for studying various aspects of liver disease. The zebrafish liver has striking similarities to the human liver in terms of structure, function, and regenerative capacity. Researchers have successfully induced liver damage in zebrafish using chemical toxins, genetic manipulation, and other methods, thereby allowing the study of disease mechanisms and the progression of liver disease. Zebrafish embryos or larvae, with their transparency and rapid development, provide a unique opportunity for high-throughput drug screening and the identification of potential therapeutics. This review highlights how research on zebrafish has provided valuable insights into the pathological mechanisms of human liver disease.
Collapse
Affiliation(s)
- Nobuyuki Shimizu
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| | | | - Toshikatsu Hanada
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| |
Collapse
|
7
|
Shang H, Huang C, Xiao Z, Yang P, Zhang S, Hou X, Zhang L. Gut microbiota-derived tryptophan metabolites alleviate liver injury via AhR/Nrf2 activation in pyrrolizidine alkaloids-induced sinusoidal obstruction syndrome. Cell Biosci 2023; 13:127. [PMID: 37422682 DOI: 10.1186/s13578-023-01078-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND AND AIMS Hepatic sinusoidal obstruction syndrome (HSOS) is caused by toxic injury, such as pyrrolizidine alkaloids, to the liver sinusoidal endothelial cells, and the gut microbiota may be involved. However, the specific role and underlying mechanism of gut microbiota in HSOS is unknown. METHODS HSOS model was established by gavage of monocrotaline (MCT) in rats. Fecal microbiota transplantation (FMT) with HSOS-derived or healthy gut flora was also conducted to validate the role of gut microflora in MCT-induced liver injury. The microbial 16 s rRNA analysis and untargeted metabolomics analysis in the faeces were performed to identify HSOS-related flora and metabolites. Finally, by supplementation with specific tryptophan metabolites, such as indole-3-acetaldehyde (IAAld) and indole acetic acid (IAA), we further confirmed the role of tryptophan metabolism in HSOS and the role of the AhR/Nrf2 pathway in MCT-induced liver injury. RESULTS MCT induced HSOS-like liver injury in rats with significantly altered gut microbiota. Particularly, some tryptophan-metabolizing bacteria reduced in MCT-treated rats, such as Bacteroides, Bifidobacterium, Lactobacillus and Clostridium, and accompanied by a decrease in microbial tryptophan metabolic activity and a series of tryptophan derivatives. Restoring the gut microbiota via FMT improved MCT-induced liver damage, while HSOS-derived gut microbiota aggravated the liver injury induced by MCT. Supplementation with microbial tryptophan derivatives (IAAld or IAA), or 6-formylindolo(3,2-b)carbazole (Ficz, an AhR agonist) could activate the AhR/Nrf2 signaling pathway, thereby attenuating the MCT-induced liver oxidative stress and liver sinusoidal endothelial cells injury. CONCLUSIONS Gut microbiota plays a critical role in MCT-induced HSOS, with inadequate microbial tryptophan metabolism in the gut and consequently a lower activity of the AhR/Nrf2 signaling pathway in the liver, which should be a potential target for the management of HSOS.
Collapse
Affiliation(s)
- Haitao Shang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastroenterology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Chao Huang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhuanglong Xiao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pengcheng Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shengyan Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
8
|
An overview of aryl hydrocarbon receptor ligands in the Last two decades (2002–2022): A medicinal chemistry perspective. Eur J Med Chem 2022; 244:114845. [DOI: 10.1016/j.ejmech.2022.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/21/2022]
|
9
|
Tan Q, Wang M, Yu L, Liang R, Liu W, Dong C, Zhang Y, Li M, Ye Z, Wang B, Zhou M, Chen W. Associations of polychlorinated biphenyls exposure with plasma glucose and diabetes in general Chinese population: The mediating effect of lipid peroxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119660. [PMID: 35738522 DOI: 10.1016/j.envpol.2022.119660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/02/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Polychlorinated biphenyls (PCBs) exposure has been related to the abnormal glucose metabolism and the risk of diabetes. However, the joint effects of various PCBs are uncertain and the potential mechanisms remain unclear. Our objectives were to evaluate the associations of serum PCBs with fasting plasma glucose (FPG) and the risk of diabetes among a general Chinese population, and to estimate the mediating effects of oxidative stress in the above associations. Serum levels of seven indicator-PCBs (PCB-28, 52, 101, 118, 138, 153, and 180) and FPG values were determined among 4498 subjects from the Wuhan-Zhuhai cohort. Oxidative DNA damage biomarker (urinary 8-hydroxy-2'-deoxyguanosine, 8-OHdG) and lipid peroxidation biomarker (urinary 8-isoprostane, 8-iso-PGF2α) were also measured. Positive relationships of serum PCBs with FPG values as well as the risk of diabetes were observed. With each 1% increment in the natural log-transformed values of wet weight serum PCBs, FPG levels increased a 0.125% for PCB-52, 0.168% for PCB-118, 0.221% for PCB-138, 0.273% for PCB-153, and 0.379% for ΣPCB (the sum of seven PCBs). The adjusted odds ratios of diabetes associated with wet weight PCBs were 1.186 for PCB-52, 1.373 for PCB-118, 1.635 for PCB-153, and 1.456 for ΣPCB. The seven serum PCBs showed positive overall effect on the risk of diabetes. Elevated PCB-28, PCB-52, PCB-118, PCB-138, PCB-153, and ΣPCB were associated with the increased urinary 8-iso-PGF2α, which was positively related with FPG values. Furthermore, urinary 8-iso-PGF2α partially mediated the positive associations between PCBs and FPG values, with the mediated proportions ranged from 3.20 to 12.93%. In conclusion, our results suggested that serum PCBs were positively related with increased oxidative stress, FPG values, and the risk of diabetes among a general Chinese population. Serum PCBs mixture had positive overall effect on the risk of diabetes. Lipid peroxidation partly mediated the FPG elevation induced by PCB exposure.
Collapse
Affiliation(s)
- Qiyou Tan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mengyi Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ruyi Liang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chaoqian Dong
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yongfang Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Minjing Li
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
10
|
Lee HA, Kyeong S, Kim DH. Long-term effects of defoliant exposure on brain atrophy progression in humans. Neurotoxicology 2022; 92:25-32. [PMID: 35830900 DOI: 10.1016/j.neuro.2022.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/30/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
As the most toxic dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin is classified as a group 1 human carcinogen. We investigated the long-term effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on the progression of brain atrophy in humans. We retrospectively selected 546 patients exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (exposed group) and 1353 patients not exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (control group). The patients in both groups underwent brain T1-weighted magnetic resonance imaging (MRI) twice. We divided the patients into two propensity score-matched groups, analyzed voxel-wise whole brain atrophy in the MRI images of each patient, and compared the progression of brain atrophy between the two groups. The exposed group showed significant brain atrophy progression in the bilateral frontal and temporal lobes, compared with the control group. The ventrolateral prefrontal area in the frontal lobe and whole temporal lobe were the main atrophic regions in the exposed group, compared with the control group. The neurotoxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin can damage the brain, even in patients exposed to it over 40 years ago. Humans exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin should thus be evaluated for progression of brain atrophy.
Collapse
Affiliation(s)
- Hyun Ah Lee
- Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Seoul, South Korea
| | - Sohyon Kyeong
- Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Seoul, South Korea
| | - Dae Hyun Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
11
|
Jourova L, Anzenbacherova E, Dostal Z, Anzenbacher P, Briolotti P, Rigal E, Daujat-Chavanieu M, Gerbal-Chaloin S. Butyrate, a typical product of gut microbiome, affects function of the AhR gene, being a possible agent of crosstalk between gut microbiome and hepatic drug metabolism. J Nutr Biochem 2022; 107:109042. [PMID: 35533897 DOI: 10.1016/j.jnutbio.2022.109042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/11/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023]
Abstract
Modulation of gut microbiome composition seems to be a promising therapeutic strategy for a wide range of pathological states. However, these microbiota-targeted interventions may affect production of microbial metabolites, circulating factors in the gut-liver axis influencing hepatic drug metabolism with possible clinical relevance. Butyrate, a short-chain fatty acid produced through microbial fermentation of dietary fibers in the colon, has well established anti-inflammatory role in the intestine, while the effect of butyrate on the liver is unknown. In this study, we have evaluated the effect of butyrate on hepatic AhR activity and AhR-regulated gene expression. We have showed that AhR and its target genes were upregulated by butyrate in dose dependent manner in HepG2-C3 as well as in primary human hepatocytes. The involvement of AhR has been proved using specific AhR antagonist and siRNA-mediated AhR silencing. Experiments with AhR reporter cells have shown that butyrate regulates the expression of AhR target genes by modulating the AhR activity. Our results suggest also epigenetic action by butyrate on AhR and its repressor (AHRR) presumably through mechanisms based on HDAC inhibition in the liver. Our results demonstrate that butyrate may influence the drug metabolizing ability of liver enzymes e.g. through the interaction with AhR dependent pathways.
Collapse
Affiliation(s)
- Lenka Jourova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, Olomouc 775 15, Czech Republic.
| | - Eva Anzenbacherova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, Olomouc 775 15, Czech Republic
| | - Zdenek Dostal
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, Olomouc 775 15, Czech Republic
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, Olomouc 775 15, Czech Republic
| | - Philippe Briolotti
- IRMB, University Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Emilie Rigal
- IRMB, University Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | | | | |
Collapse
|
12
|
Targeting HIF-1α Function in Cancer through the Chaperone Action of NQO1: Implications of Genetic Diversity of NQO1. J Pers Med 2022; 12:jpm12050747. [PMID: 35629169 PMCID: PMC9146583 DOI: 10.3390/jpm12050747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
HIF-1α is a master regulator of oxygen homeostasis involved in different stages of cancer development. Thus, HIF-1α inhibition represents an interesting target for anti-cancer therapy. It was recently shown that the HIF-1α interaction with NQO1 inhibits proteasomal degradation of the former, thus suggesting that targeting the stability and/or function of NQO1 could lead to the destabilization of HIF-1α as a therapeutic approach. Since the molecular interactions of NQO1 with HIF-1α are beginning to be unraveled, in this review we discuss: (1) Structure–function relationships of HIF-1α; (2) our current knowledge on the intracellular functions and stability of NQO1; (3) the pharmacological modulation of NQO1 by small ligands regarding function and stability; (4) the potential effects of genetic variability of NQO1 in HIF-1α levels and function; (5) the molecular determinants of NQO1 as a chaperone of many different proteins including cancer-associated factors such as HIF-1α, p53 and p73α. This knowledge is then further discussed in the context of potentially targeting the intracellular stability of HIF-1α by acting on its chaperone, NQO1. This could result in novel anti-cancer therapies, always considering that the substantial genetic variability in NQO1 would likely result in different phenotypic responses among individuals.
Collapse
|
13
|
Bhardwaj P, Kumar M, Dhatwalia SK, Garg ML, Dhawan DK. Protective role of AKBA against benzo(a)pyrene-induced lung carcinogenesis by modulating biotransformation enzymes and oxidative stress. J Biochem Mol Toxicol 2022; 36:e23072. [PMID: 35437857 DOI: 10.1002/jbt.23072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 02/07/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022]
Abstract
The present study was designed to explore the chemopreventive potential of 3-acetyl-11-keto-β-boswellic acid (AKBA) during the initiation and promotion stage of lung carcinogenesis induced by benzo(a)pyrene (BaP) in female Sprague Dawley rats. BaP was administered at a dose level of 50 mg/kg b.wt. twice a week orally in olive oil for 4 weeks. AKBA administration was started 4 weeks before BaP treatment and continued for another 8 weeks at a dose level of 50 mg/kg b.wt. orally in olive oil three times a week. BaP treatment showed significantly increased in the activities of Phase I biotransformation enzymes (Cytochrome P450 , b5 , and aryl hydrocarbon hydrolase) and inhibited the activity of Phase II enzyme (glutathione-S-transferase). Also, a significant elevation in oxidative stress biomarkers lipid peroxidation, reactive oxygen species, and protein carbonyl content concentration. Further, an appreciable decrease was observed in the activities of endogenous antioxidant enzymes superoxide dismutase, CAT, GPx, GR, and a decline in nonenzymatic GSH levels. As a result of BaP induced oxidative stress, alteration in erythrocytes morphology was observed. Fourier transform infrared spectroscopy spectrum of lung tissue showed structural changes due to BaP exposure. Moreover, levels of tumor biomarkers such as total sialic acid, carcinoembryonic antigen, and alkaline phosphatase were significantly elevated following BaP treatment which was substantiated by alterations noticed in the histoarchitecture of lung tissue. Interestingly, AKBA administration to BaP treated rats appreciably alleviated the changes inflicted by BaP on various biochemical indices and histoarchitecture of lungs. Therefore, the study clearly revealed that AKBA by containing oxidative stress shall prove to be quite effective in providing chemoprevention against BaP induced lung carcinogenesis.
Collapse
Affiliation(s)
- Priti Bhardwaj
- Department of Biophysics, Panjab University, Chandigarh, India.,Electron microscopy facility, National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Manoj Kumar
- Department of Biophysics, Panjab University, Chandigarh, India.,Department of Higher Education Shimla, Govt. College Chowari, Shimla, Himachal Pradesh, India
| | - Sunil Kumar Dhatwalia
- Department of Biophysics, Panjab University, Chandigarh, India.,Department of Zoology and Environmental Sciences, Maharaja Agarsen University, Baddi Solan, Himachal Pradesh, India
| | - Mohan Lal Garg
- Department of Biophysics, Panjab University, Chandigarh, India
| | | |
Collapse
|
14
|
The Aryl Hydrocarbon Receptor (AHR): A Novel Therapeutic Target for Pulmonary Diseases? Int J Mol Sci 2022; 23:ijms23031516. [PMID: 35163440 PMCID: PMC8836075 DOI: 10.3390/ijms23031516] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 01/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a cytoplasmic transcription factor that is well-known for regulating xenobiotic metabolism. Studies in knockout and transgenic mice indicate that the AHR plays a vital role in the development of liver and regulation of reproductive, cardiovascular, hematopoietic, and immune homeostasis. In this focused review on lung diseases associated with acute injury and alveolar development, we reviewed and summarized the current literature on the mechanistic role(s) and therapeutic potential of the AHR in acute lung injury, chronic obstructive pulmonary disease, and bronchopulmonary dysplasia (BPD). Pre-clinical studies indicate that endogenous AHR activation is necessary to protect neonatal and adult lungs against hyperoxia- and cigarette smoke-induced injury. Our goal is to provide insight into the high translational potential of the AHR in the meaningful management of infants and adults with these lung disorders that lack curative therapies.
Collapse
|
15
|
Dioxin-like Activity in Pregnant Women and Indices of Fetal Growth: The ACCEPT Birth Cohort. TOXICS 2022; 10:toxics10010026. [PMID: 35051068 PMCID: PMC8781564 DOI: 10.3390/toxics10010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/14/2021] [Accepted: 12/28/2021] [Indexed: 02/01/2023]
Abstract
Exposure to lipophilic persistent organic pollutants (lipPOPs) elicits a number of species- and tissue-specific toxic responses, many of which involve the aryl hydrocarbon receptor (AhR). This study aims to measure the combined serum dioxin-like activity of lipPOPs in Greenlandic Inuit pregnant women and the associations with fetal growth indices. The combined dioxin-like activity of serum lipPOPs extracts was determined using the AhR reporter gene bioassay and expressed as pico-gram (pg) TCDD equivalent (TEQ) per gram serum lipid [AhR-TEQ (pg/g lipid)]. Significant AhR-TEQ was found in >87% of serum samples with the median level of 86.2 pg TEQ/g lipid. The AhR-TEQ level positively correlated with the marine food intake biomarker n-3/n-6 polyunsaturated fatty acids ratio, while negatively correlated with body mass index and parity. Women giving birth to infants with low birth weight (<2500 g) and length (<50 cm) had higher AhR-TEQ level compared to those with normal weight and length infants. For previous smokers, we found significant inverse associations between maternal AhR-TEQ level and fetal growth indices. In conclusion, exposure of Greenlandic Inuit pregnant women to dioxin-like compounds through traditional marine food can adversely influence the fetal growth via induced AhR activity. Smoking might have modifying effects.
Collapse
|
16
|
Requena-Jimenez A, Nabiuni M, Miyan JA. Profound changes in cerebrospinal fluid proteome and metabolic profile are associated with congenital hydrocephalus. J Cereb Blood Flow Metab 2021; 41:3400-3414. [PMID: 34415213 PMCID: PMC8669293 DOI: 10.1177/0271678x211039612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/15/2022]
Abstract
The aetiology of congenital hydrocephalus (cHC) has yet to be resolved. cHC manifests late in rodent gestation, and by 18-22 weeks in human fetuses, coinciding with the start of the major phase of cerebral cortex development. Previously we found that cerebrospinal fluid (CSF) accumulation is associated with compositional changes, folate metabolic impairment and consequential arrest in cortical development. Here, we report a proteomics study on hydrocephalic and normal rat CSF using LC-MSMS and a metabolic pathway analysis to determine the major changes in metabolic and signalling pathways. Non-targeted analysis revealed a proteome transformation across embryonic days 17-20, with the largest changes between day 19 and 20. This provides evidence for a physiological shift in CSF composition and identifies some of the molecular mechanisms unleashed during the onset of cHC. Top molecular regulators that may control the shift in the CSF metabolic signature are also predicted, with potential key biomarkers proposed for early detection of these changes that might be used to develop targeted early therapies for this condition. This study confirms previous findings of a folate metabolic imbalance as well as providing more in depth metabolic analysis and understanding of cHC CSF.
Collapse
Affiliation(s)
- Alicia Requena-Jimenez
- Faculty of Biology, Medicine and Health, The University of Manchester, Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| | - Mohammad Nabiuni
- Faculty of Biology, Medicine and Health, The University of Manchester, Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| | - Jaleel A Miyan
- Faculty of Biology, Medicine and Health, The University of Manchester, Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| |
Collapse
|
17
|
Sahebnasagh A, Hashemi J, Khoshi A, Saghafi F, Avan R, Faramarzi F, Azimi S, Habtemariam S, Sureda A, Khayatkashani M, Safdari M, Rezai Ghaleno H, Soltani H, Khayat Kashani HR. Aromatic hydrocarbon receptors in mitochondrial biogenesis and function. Mitochondrion 2021; 61:85-101. [PMID: 34600156 DOI: 10.1016/j.mito.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Mitochondria are ubiquitous membrane-bound organelles that not only play a key role in maintaining cellular energy homeostasis and metabolism but also in signaling and apoptosis. Aryl hydrocarbons receptors (AhRs) are ligand-activated transcription factors that recognize a wide variety of xenobiotics, including polyaromatic hydrocarbons and dioxins, and activate diverse detoxification pathways. These receptors are also activated by natural dietary compounds and endogenous metabolites. In addition, AhRs can modulate the expression of a diverse array of genes related to mitochondrial biogenesis and function. The aim of the present review is to analyze scientific data available on the AhR signaling pathway and its interaction with the intracellular signaling pathways involved in mitochondrial functions, especially those related to cell cycle progression and apoptosis. Various evidence have reported the crosstalk between the AhR signaling pathway and the nuclear factor κB (NF-κB), tyrosine kinase receptor signaling and mitogen-activated protein kinases (MAPKs). The AhR signaling pathway seems to promote cell cycle progression in the absence of exogenous ligands, whereas the presence of exogenous ligands induces cell cycle arrest. However, its effects on apoptosis are controversial since activation or overexpression of AhR has been observed to induce or inhibit apoptosis depending on the cell type. Regarding the mitochondria, although activation by endogenous ligands is related to mitochondrial dysfunction, the effects of endogenous ligands are not well understood but point towards antiapoptotic effects and inducers of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Javad Hashemi
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhosein Khoshi
- Department of Clinical Biochemistry, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Razieh Avan
- Assistant Professor of Clinical Pharmacy, Department of Clinical Pharmacy, Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Faramarzi
- Clinical Pharmacy Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Azimi
- Student Research Committee, Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, School of Science, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, United Kingdom
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands and Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Maryam Khayatkashani
- School of Iranian Traditional Medicine, Tehran University of Medical Sciences, 14155-6559 Tehran, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hosseinali Soltani
- Department of General Surgery, Imam Ali Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Akinola LK, Uzairu A, Shallangwa GA, Abechi SE. In silico prediction of nuclear receptor binding to polychlorinated dibenzofurans and its implication on endocrine disruption in humans and wildlife. Curr Res Toxicol 2021; 2:357-365. [PMID: 34693345 PMCID: PMC8515090 DOI: 10.1016/j.crtox.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 11/28/2022] Open
Abstract
Polychlorinated dibenzofurans (PCDFs) are known to cause endocrine disruption in humans and wildlife but the mechanisms underlying this disruption have not been adequately investigated. In this paper, the susceptibility of the endocrine system to disruption by PCDF congeners via nuclear receptor binding was studied using molecular docking simulation. Findings revealed that some PCDF congeners exhibit high probabilities of binding to androgen receptor in its agonistic and antagonistic conformations. In depth molecular docking analysis of the receptor-ligand complexes formed by PCDFs with androgen receptor in its agonistic and antagonistic conformations showed that, these complexes were stabilized by electrostatic, van der Waals, pi-effect and hydrophobic interactions. It was also observed that PCDF molecules mimic the modes of interaction observed in androgen-testosterone and androgen-bicalutamide complexes, utilizing between 65 and 83% of the amino acid residues used by the co-crystallized ligands for binding. This computational study suggests that some PCDF congeners may act as agonists and antagonists of androgen receptor in humans and wildlife via inapproprate binding to the receptor.
Collapse
Affiliation(s)
- Lukman K. Akinola
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
- Department of Chemistry, Bauchi State University, Gadau, Nigeria
| | - Adamu Uzairu
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | | |
Collapse
|
19
|
The role of DNA-binding and ARNT dimerization on the nucleo-cytoplasmic translocation of the aryl hydrocarbon receptor. Sci Rep 2021; 11:18194. [PMID: 34521881 PMCID: PMC8440571 DOI: 10.1038/s41598-021-97507-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/24/2021] [Indexed: 01/19/2023] Open
Abstract
The human aryl hydrocarbon receptor (AHR) is predominantly located in the cytoplasm, while activation depends on its nuclear translocation. Binding to endogenous or xenobiotic ligands terminates the basal nucleo-cytoplasmic shuttling and stabilizes an exclusive nuclear population. The precise mechanisms that facilitate such stable nuclear accumulation remain to be clarified as essential step in the activation cascade. In this study, we have tested whether the sustained nuclear compartmentalization of ligand-bound or basal AHR might further require heterodimerization with the AHR-nuclear translocator (ARNT) and binding to the cognate XRE-motif. Mutagenesis of the DNA-binding motif or of selected individual residues in the ARNT-binding motif did not lead to any variation in AHR’s nucleo-cytoplasmic distribution. In response to ligands, all mutants were retained in the nucleus demonstrating that the stable compartmentalization of activated AHR in the nucleus is neither dependent on interactions with DNA, nor ARNT. Knocking down the ARNT gene using small interfering RNA confirmed that ARNT does not play any role in the intracellular trafficking of AHR.
Collapse
|
20
|
Klenov V, Flor S, Ganesan S, Adur M, Eti N, Iqbal K, Soares MJ, Ludewig G, Ross JW, Robertson LW, Keating AF. The Aryl hydrocarbon receptor mediates reproductive toxicity of polychlorinated biphenyl congener 126 in rats. Toxicol Appl Pharmacol 2021; 426:115639. [PMID: 34256052 PMCID: PMC8500329 DOI: 10.1016/j.taap.2021.115639] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/16/2022]
Abstract
Polychlorinated biphenyls (PCBs) are endocrine disrupting chemicals with documented, though mechanistically ill-defined, reproductive toxicity. The toxicity of dioxin-like PCBs, such as PCB126, is mediated via the aryl hydrocarbon receptor (AHR) in non-ovarian tissues. The goal of this study was to examine the uterine and ovarian effects of PCB126 and test the hypothesis that the AHR is required for PCB126-induced reproductive toxicity. Female Holzman-Sprague Dawley wild type (n = 14; WT) and Ahr knock out (n = 11; AHR-/-) rats received a single intraperitoneal injection of either corn oil vehicle (5 ml/kg: WT_O and AHR-/-_O) or PCB126 (1.63 mg/kg in corn oil: WT_PCB and AHR-/-_PCB) at four weeks of age. The estrous cycle was synchronized and ovary and uterus were collected 28 days after exposure. In WT rats, PCB126 exposure reduced (P < 0.05) body and ovary weight, uterine gland number, uterine area, progesterone, 17β-estradiol and anti-Müllerian hormone level, secondary and antral follicle and corpora lutea number but follicle stimulating hormone level increased (P < 0.05). In AHR-/- rats, PCB126 exposure increased (P ≤ 0.05) circulating luteinizing hormone level. Ovarian or uterine mRNA abundance of biotransformation, and inflammation genes were altered (P < 0.05) in WT rats due to PCB126 exposure. In AHR-/- rats, the transcriptional effects of PCB126 were restricted to reductions (P < 0.05) in three inflammatory genes. These findings support a functional role for AHR in the female reproductive tract, illustrate AHR's requirement in PCB126-induced reprotoxicity, and highlight the potential risk of dioxin-like compounds on female reproduction.
Collapse
Affiliation(s)
- Violet Klenov
- Dept of Ob/Gyn, University of Iowa, United States of America
| | - Susanne Flor
- Interdisciplinary Graduate Program in Human Toxicology and Dept of Occupational and Environmental Health, University of Iowa, United States of America
| | - Shanthi Ganesan
- Dept of Animal Science, Iowa State University, United States of America
| | - Malavika Adur
- Dept of Animal Science, Iowa State University, United States of America
| | - Nazmin Eti
- Interdisciplinary Graduate Program in Human Toxicology and Dept of Occupational and Environmental Health, University of Iowa, United States of America
| | - Khursheed Iqbal
- Institute for Reproduction and Perinatal Research and Department of Pathology, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Michael J Soares
- Institute for Reproduction and Perinatal Research and Department of Pathology, University of Kansas Medical Center, Kansas City, KS, United States of America; Departments of Pediatrics and Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, United States of America; Center for Perinatal Research, Children's Research Institute, Children's Mercy, Kansas City, MO, United States of America
| | - Gabriele Ludewig
- Interdisciplinary Graduate Program in Human Toxicology and Dept of Occupational and Environmental Health, University of Iowa, United States of America
| | - Jason W Ross
- Dept of Animal Science, Iowa State University, United States of America
| | - Larry W Robertson
- Interdisciplinary Graduate Program in Human Toxicology and Dept of Occupational and Environmental Health, University of Iowa, United States of America
| | - Aileen F Keating
- Dept of Animal Science, Iowa State University, United States of America.
| |
Collapse
|
21
|
Stoykova P, Inui H. Transport enhancement of hydrophobic pollutants by the expression of zucchini major latex-like protein genes in tobacco plants. JOURNAL OF PLANT PHYSIOLOGY 2021; 263:153464. [PMID: 34225177 DOI: 10.1016/j.jplph.2021.153464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
The environmental spread of hydrophobic pollutants has been receiving attention because of specific characteristics of these compounds that make them resistant to degradation, thus causing various toxic effects on humans as a result of their bioaccumulation. Here, we report the role of zucchini major-latex like proteins (MLPs) on the accumulation of hydrophobic pollutants, as consumption of contaminated crops is one of the main routes for accumulation. Transgenic tobacco plants expressing an aryl hydrocarbon receptor (AhR) gene with a β-glucuronidase (GUS) inducible expression system were transformed with one of the three zucchini MLP genes (PG1, GR1, and GR3). MLP transgenic plants showed a significant increase in the fold induction of GUS activity compared to the parental AhR tobacco plants when one of the most toxic polychlorinated biphenyl (PCB) congeners, 3,3',4,4',5-pentachlorobiphenyl (CB126), was applied. GUS activity was detected in both aerial parts and roots after treatment with the strong carcinogen 3-methylcholanthrene. Phenotypic changes in the MLP tobacco during incubation with CB126 were also observed. The MLP transgenic plant PG1 responded to treatment with 0.32 nM CB126, whereas vector control plants significantly induced GUS activity at 200 nM CB126. Moreover, GUS activities in the MLP plants treated with other PCB congeners were significantly higher than those in the plants given the mock treatment. As GUS activities in the aerial parts of the plants were significantly correlated with the accumulation level of PCBs, these results strongly suggest that zucchini MLPs are related to the translocation of hydrophobic pollutants from the roots to the aerial parts through their binding affinity.
Collapse
Affiliation(s)
- Petya Stoykova
- Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan; AgroBioInstitute, 8 "Dragan Tsankov" Blvd, 1164, Sofia, Bulgaria
| | - Hideyuki Inui
- Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
22
|
Murillo-González FE, García-Aguilar R, Vega L, Elizondo G. Regulation of Parkin expression as the key balance between neural survival and cancer cell death. Biochem Pharmacol 2021; 190:114650. [PMID: 34111426 DOI: 10.1016/j.bcp.2021.114650] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 11/25/2022]
Abstract
Parkin is a cytosolic E3 ubiquitin ligase that plays an important role in neuroprotection by targeting several proteins to be degraded by the 26S proteasome. Its dysfunction has been associated not only with Parkinson's disease (PD) but also with other neurodegenerative pathologies, such as Alzheimer's disease and Huntington's disease. More recently, Parkin has been identified as a tumor suppressor gene implicated in cancer development. Due to the important roles that this E3 ubiquitin ligase plays in cellular homeostasis, its expression, activity, and turnover are tightly regulated. Several reviews have addressed Parkin regulation; however, genetic and epigenetic regulation have been excluded. In addition to posttranslational modifications (PTMs), this review examines the regulatory mechanisms that control Parkin function through gene expression, epigenetic regulation, and degradation. Furthermore, the consequences of disrupting these regulatory processes on human health are discussed.
Collapse
Affiliation(s)
| | | | - Libia Vega
- Department of Toxicology, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Mexico City, Mexico
| | - Guillermo Elizondo
- Department of Cellular Biology, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Mexico City, Mexico.
| |
Collapse
|
23
|
Akinola LK, Uzairu A, Shallangwa GA, Abechi SE. A computational insight into endocrine disruption by polychlorinated biphenyls via non-covalent interactions with human nuclear receptors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112086. [PMID: 33640727 DOI: 10.1016/j.ecoenv.2021.112086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Production of polychlorinated biphenyls (PCBs) was banned a long time ago because of their harmful health effects but humans continue to be exposed to residual PCBs in the environment. In this study, the susceptibility of human nuclear receptors to binding by PCBs was investigated using molecular docking simulation. Findings revealed that PCBs belonging to ortho-substituted, mono-ortho-substituted and non-ortho-substituted congeners could bind to agonistic conformations of androgen (AR), estrogen (ER α and ER β), glucocorticoid (GR) and thyroid hormone (TR α and TR β) receptors as well as antagonistic conformation of androgen receptor (AR an) but only ortho-substituted and mono-ortho-substituted PCBs could bind to estrogen receptors in their antagonistic conformations (ER α an and ER β an). Further molecular docking analyses showed that PCBs mimic the modes of interaction observed for the co-crystallized ligands in the crystal structures of the affected receptors, utilizing 81%, 83%, 78%, 60%, 75%, 60%, 86%, 100% and 75% of the amino acid residues utilized by the co-crystallized ligands for binding in AR, AR an, ER α, ER α an, ER β, ER β an, GR, TR α and TR β respectively. This computational study suggests that PCBs may cause endocrine disruption via formation of non-covalent interactions with androgen, estrogen, glucocorticoid and thyroid hormone receptors.
Collapse
Affiliation(s)
- Lukman K Akinola
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria; Department of Chemistry, Bauchi State University, Gadau, Nigeria.
| | - Adamu Uzairu
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | - Stephen E Abechi
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
24
|
The aryl hydrocarbon receptor facilitates the human cytomegalovirus-mediated G1/S block to cell cycle progression. Proc Natl Acad Sci U S A 2021; 118:2026336118. [PMID: 33723080 DOI: 10.1073/pnas.2026336118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The tryptophan metabolite, kynurenine, is known to be produced at elevated levels within human cytomegalovirus (HCMV)-infected fibroblasts. Kynurenine is an endogenous aryl hydrocarbon receptor (AhR) ligand. Here we show that the AhR is activated following HCMV infection, and pharmacological inhibition of AhR or knockdown of AhR RNA reduced the accumulation of viral RNAs and infectious progeny. RNA-seq analysis of infected cells following AhR knockdown showed that the receptor alters the levels of numerous RNAs, including RNAs related to cell cycle progression. AhR knockdown alleviated the G1/S cell cycle block that is normally instituted in HCMV-infected fibroblasts, consistent with its known ability to regulate cell cycle progression and cell proliferation. In sum, AhR is activated by kynurenine and perhaps other ligands produced during HCMV infection, it profoundly alters the infected-cell transcriptome, and one outcome of its activity is a block to cell cycle progression, providing mechanistic insight to a long-known element of the virus-host cell interaction.
Collapse
|
25
|
Tseng YH, Chen YC, Yu AL, Yu J. Benzo[a]pyrene induces fibrotic changes and impairs differentiation in lung stem cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111892. [PMID: 33429317 DOI: 10.1016/j.ecoenv.2021.111892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Human activities have generated air pollution, with extremely small particles (PM 2.5, particulate matter less than 2.5 µm in diameter) and liquid droplets, which become a menace to human health. Among the pollutants, polycyclic aromatic hydrocarbons (PAHs), which enhance the risks of pulmonary dysfunction and cancer development, have been extensively studied. Numerous studies have addressed the effects of PAHs on the respiratory system, whereas the effects on lung stem/progenitor cells remain unknown. Here, we provide evidence that benzo[a]pyrene (BaP), a major toxic PAH, induces fibrotic changes with a loss of α-1,6-fucosylation in CD54+CD157+CD45- cells (lung stem cells). In studies with aryl hydrocarbon receptor (AHR) antagonist, we found that these effects by BaP are independent of the canonical AHR pathway. In addition, these BaP-induced fibrotic changes are reduced by TGF-β antagonist, suggesting an alternative pathway of BaP toxicity is different from other PAH/AHR signaling pathways. Finally, it was observed that BaP impairs the spheroid formation and the podoplanin expression of CD54+CD157+CD45- cells, indicating that BaP suppresses the differentiation of lung stem cells. Taken together, our findings reveal specific BaP-induced injuries in CD54+CD157+CD45- cells.
Collapse
Affiliation(s)
- Yi-Hsin Tseng
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan 333, Taiwan
| | - Yu-Chi Chen
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan 333, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan 333, Taiwan; Department of Pediatrics, University of California in San Diego, California
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan 333, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
26
|
Elzakra N, Kim Y. HIF-1α Metabolic Pathways in Human Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:243-260. [PMID: 33791987 DOI: 10.1007/978-3-030-51652-9_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxygen is directly involved in many key pathophysiological processes. Oxygen deficiency, also known as hypoxia, could have adverse effects on mammalian cells, with ischemia in vital tissues being the most significant (Michiels C. Physiological and pathological responses to hypoxia. Am J Pathol 164(6): 1875-1882, 2004); therefore, timely adaptive responses to variations in oxygen availability are essential for cellular homeostasis and survival. The most critical molecular event in hypoxic response is the activation and stabilization of a transcriptional factor termed hypoxia-induced factor-1 (HIF-1) that is responsible for the upregulation of many downstream effector genes, collectively known as hypoxia-responsive genes. Multiple key biological pathways such as proliferation, energy metabolism, invasion, and metastasis are governed by these genes; thus, HIF-1-mediated pathways are equally pivotal in both physiology and pathology.As we gain knowledge on the molecular mechanisms underlying the regulation of HIF-1, a great focus has been placed on elucidating the cellular function of HIF-1, particularly the role of HIF-1 in cancer pathogenesis pathways such as proliferation, invasion, angiogenesis, and metastasis. In cancer, HIF-1 is directly involved in the shift of cancer tissues from oxidative phosphorylation to aerobic glycolysis, a phenomenon known as the Warburg effect. Although targeting HIF-1 as a cancer therapy seems like an extremely rational approach, owing to the complex network of its downstream effector genes, the development of specific HIF-1 inhibitors with fewer side effects and more specificity has not been achieved. Therefore, in this review, we provide a brief background about the function of HIF proteins in hypoxia response with a special emphasis on the unique role played by HIF-1α in cancer growth and invasiveness, in the hypoxia response context.
Collapse
Affiliation(s)
- Naseim Elzakra
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
| | - Yong Kim
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA. .,Laboratory of Stem Cell and Cancer Epigenetics, Center for Oral Oncology Research, UCLA School of Dentistry, Los Angeles, CA, USA. .,UCLA's Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA. .,Broad Stem Cell Research Institute, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Zhou Y, Zhao Y, Xu R, Pan L. Study on the AhR signaling pathway and phase II detoxification metabolic enzymes isoforms in scallop Chlamys farreri exposed to single and mixtures of PAHs. ENVIRONMENTAL RESEARCH 2020; 190:109980. [PMID: 32800894 DOI: 10.1016/j.envres.2020.109980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/11/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to investigate the detoxification metabolism responses in scallop Chlamys farreri exposed to phenanthrene (PHE), chrysene (CHR), benzo[a]pyrene (B[a]P) and PHE + CHR + B[a]P for 15 days under laboratory conditions. The mRNA expression levels of AhR signaling pathway (AhR, HSP90, XAP2 and ARNT), detoxification system (phase I: CYP1A1 and CYP1B1; phase II: SULTs, UGT and GSTs) and ATP-binding cassette transporters (phase 0: ABCB1 and phase III: ABCC1, ABCG2) in digestive glands of scallops exposed to PHE (0.7, 2.1 μg/L), CHR (0.7, 2.1 μg/L), B[a]P (0.7, 2.1 μg/L), and PHE + CHR + B[a]P (0.7 + 0.7 +0.7, 2.1 + 2.1 + 2.1 μg/L) were detected. In present study, key genes (AhR, HSP90, XAP2 and ARNT) of the AhR signaling pathway can be significantly induced by pollutants, suggesting that the AhR/ARNT signaling pathway plays a role directly or indirectly. AhR, HSP90 and ARNT reached the maximum value on day 6, which can be preliminarily understood as the synchronization of their functions. Besides, the results also indicated that different genes had specific response to different pollution exposure. CYP1B1, GST-2, GST-omega and GST-microsomal could be potional indexes to PHE, ARNT, GST-sigma 2 and GST-3 were sensitive to CHR exposure, HSP90, GST-theta and ABCG2 were considered as potional indexes to BaP while CYP1A1 and UGT were possible to be indexes for monitoring the mix exposure of these three PAHs. These findings in C. farreri suggested that phase II detoxification metabolic enzymes isoforms played an essential role in detoxification mechanisms and mRNA expression levels of specific SULTs, UGTs and GSTs were potentially to be ideal indexes in PAHs pollution research. In summary, this study provides more valuable information for the risk assessments of different rings of PAHs.
Collapse
Affiliation(s)
- Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yanan Zhao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| |
Collapse
|
28
|
Cellular and Molecular Mechanisms of Environmental Pollutants on Hematopoiesis. Int J Mol Sci 2020; 21:ijms21196996. [PMID: 32977499 PMCID: PMC7583016 DOI: 10.3390/ijms21196996] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Hematopoiesis is a complex and intricate process that aims to replenish blood components in a constant fashion. It is orchestrated mostly by hematopoietic progenitor cells (hematopoietic stem cells (HSCs)) that are capable of self-renewal and differentiation. These cells can originate other cell subtypes that are responsible for maintaining vital functions, mediate innate and adaptive immune responses, provide tissues with oxygen, and control coagulation. Hematopoiesis in adults takes place in the bone marrow, which is endowed with an extensive vasculature conferring an intense flow of cells. A myriad of cell subtypes can be found in the bone marrow at different levels of activation, being also under constant action of an extensive amount of diverse chemical mediators and enzymatic systems. Bone marrow platelets, mature erythrocytes and leukocytes are delivered into the bloodstream readily available to meet body demands. Leukocytes circulate and reach different tissues, returning or not returning to the bloodstream. Senescent leukocytes, specially granulocytes, return to the bone marrow to be phagocytized by macrophages, restarting granulopoiesis. The constant high production and delivery of cells into the bloodstream, alongside the fact that blood cells can also circulate between tissues, makes the hematopoietic system a prime target for toxic agents to act upon, making the understanding of the bone marrow microenvironment vital for both toxicological sciences and risk assessment. Environmental and occupational pollutants, therapeutic molecules, drugs of abuse, and even nutritional status can directly affect progenitor cells at their differentiation and maturation stages, altering behavior and function of blood compounds and resulting in impaired immune responses, anemias, leukemias, and blood coagulation disturbances. This review aims to describe the most recently investigated molecular and cellular toxicity mechanisms of current major environmental pollutants on hematopoiesis in the bone marrow.
Collapse
|
29
|
Palli SR. CncC/Maf-mediated xenobiotic response pathway in insects. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21674. [PMID: 32281173 PMCID: PMC9939232 DOI: 10.1002/arch.21674] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 05/08/2023]
Abstract
Insects have evolved resistance to almost all insecticides developed for their control. Multiple mechanisms of resistance, including enhanced metabolism and excretion of insecticides, target-site insensitivity, reduced penetration of insecticides, and avoidance behavior, have been reported. The genes coding for proteins involved in resistance have been identified in numerous insects. The enzymes and transporters required for all three phases of insecticide metabolism and excretion including cytochrome P450 monooxygenases, glutathione S-transferases, UDP-glucuronosyltransferases, carboxylesterases, and ATP-binding cassette transmembrane transporters have been identified. Recent research in multiple insect species identified CNC-bZIP transcription factor superfamily members as regulators of genes coding for enzymes and transporters involved in insecticide metabolic resistance. The information on the pathway including reactive oxygen species, cap "n" collar isoform-C, and its heterodimer partner, muscle aponeurosis fibromatosis transcription factors involved in overexpression of enzymes and transporters involved insecticide resistance will be summarized.
Collapse
Affiliation(s)
- Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
30
|
Itkin B, Breen A, Turyanska L, Sandes EO, Bradshaw TD, Loaiza-Perez AI. New Treatments in Renal Cancer: The AhR Ligands. Int J Mol Sci 2020; 21:E3551. [PMID: 32443455 PMCID: PMC7279047 DOI: 10.3390/ijms21103551] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/27/2022] Open
Abstract
Kidney cancer rapidly acquires resistance to antiangiogenic agents, such as sunitinib, developing an aggressive migratory phenotype (facilitated by c-Metsignal transduction). The Aryl hydrocarbon receptor (AhR) has recently been postulated as a molecular target for cancer treatment. Currently, there are two antitumor agent AhR ligands, with activity against renal cancer, that have been tested clinically: aminoflavone (AFP 464, NSC710464) and the benzothiazole (5F 203) prodrug Phortress. Our studies investigated the action of AFP 464, the aminoflavone pro-drug currently used in clinical trials, and 5F 203 on renal cancer cells, specifically examining their effects on cell cycle progression, apoptosis and cell migration. Both compounds caused cell cycle arrest and apoptosis but only 5F 203 potently inhibited the migration of TK-10, Caki-1 and SN12C cells as well as the migration signal transduction cascade, involving c-Met signaling, in TK-10 cells. Current investigations are focused on the development of nano-delivery vehicles, apoferritin-encapsulated benzothiazoles 5F 203 and GW610, for the treatment of renal cancer. These compounds have shown improved antitumor effects against TK-10 cells in vitro at lower concentrations compared with a naked agent.
Collapse
Affiliation(s)
- Boris Itkin
- Department of Oncology, Hospital General de Agudos Juan Fernandez, C1425 CABA Buenos Aires, Argentina;
| | - Alastair Breen
- School of Pharmacy, Centre for Biomolecular Sciences, The University of Nottingham, University Park, Nottingham NG72RD, Nottinghamshire, UK; (A.B.); (T.D.B.)
| | - Lyudmila Turyanska
- Faculty of Engineering, University of Nottingham, University Park, Nottingham NG72RD, Nottinghamshire, UK;
| | - Eduardo Omar Sandes
- Facultad de Medicina, Instituto de Oncología Ángel H. Roffo (IOAHR), Universidad de Buenos Aires, Área Investigación, Av. San Martin 5481, C1417 DTB Buenos Aires, Argentina;
| | - Tracey D. Bradshaw
- School of Pharmacy, Centre for Biomolecular Sciences, The University of Nottingham, University Park, Nottingham NG72RD, Nottinghamshire, UK; (A.B.); (T.D.B.)
| | - Andrea Irene Loaiza-Perez
- Facultad de Medicina, Instituto de Oncología Ángel H. Roffo (IOAHR), Universidad de Buenos Aires, Área Investigación, Av. San Martin 5481, C1417 DTB Buenos Aires, Argentina;
| |
Collapse
|
31
|
Zheng X, Zhao P, Yang K, Ning C, Wang H, Zhou L, Liu J. CNV analysis of Meishan pig by next-generation sequencing and effects of AHR gene CNV on pig reproductive traits. J Anim Sci Biotechnol 2020; 11:42. [PMID: 32337028 PMCID: PMC7171861 DOI: 10.1186/s40104-020-00442-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/27/2020] [Indexed: 12/17/2022] Open
Abstract
Background Reproductive performance of livestock is an economically important aspect of global food production. The Chinese Meishan pig is a prolific breed, with an average of three to five more piglets per litter than European breeds; however, the genetic basis for this difference is not well understood. Results In this study, we investigated copy number variations (CNVs) of 32 Meishan pigs and 29 Duroc pigs by next-generation sequencing. A genome-wide analysis of 61 pigs revealed 12,668 copy number variable regions (CNVRs) that were further divided into three categories based on copy number (CN) of the whole population, i.e., gain (n = 7,638), and loss (n = 5,030) CNVRs. We then compared Meishan and Duroc pigs and identified 17.17 Mb of 6,387 CNVRs that only existing in Meishan pigs CNVRs that overlapped the reproduction-related gene encoding the aryl hydrocarbon receptor (AHR) gene. We found that normal AHR CN was more frequent than CN loss in four different pig breeds. An association analysis showed that AHR CN had a positive effect on litter size (P < 0.05) and that a higher CN was associated with higher total number born (P < 0.05), number born alive (P < 0.05), number of weaned piglets, and birth weight. Conclusions The present study provides comprehensive CNVRs for Meishan and Duroc pigs through large-scale population resequencing. Our results provide a supplement for the high-resolution map of copy number variation in the porcine genome and valuable information for the investigation of genomic structural variation underlying traits of interest in pig. In addition, the association results provide evidence for AHR as a candidate gene associated with reproductive traits that can be used as a genetic marker in pig breeding programs.
Collapse
Affiliation(s)
- Xianrui Zheng
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Pengju Zhao
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Kaijie Yang
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Chao Ning
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Haifei Wang
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,2Department of Animal Genetics, Breeding and Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China
| | - Lei Zhou
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Jianfeng Liu
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
32
|
Tucovic D, Mirkov I, Kulas J, Zeljkovic M, Popovic D, Zolotarevski L, Djurdjic S, Mutic J, Kataranovski M, Popov Aleksandrov A. Dermatotoxicity of oral cadmium is strain-dependent and related to differences in skin stress response and inflammatory/immune activity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 75:103326. [PMID: 31924569 DOI: 10.1016/j.etap.2020.103326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/13/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Adverse effects of non-occupational exposure to cadmium (Cd) are increasingly acknowledged. Since our previous study has showed that orally acquired Cd affects skin, the contribution of genetic background to dermatotoxicity of oral cadmium was examined in two rat strains, Albino Oxford (AO) and Dark Agouti (DA), which differed in response to chemicals. While similar accumulation of Cd in the skin of both strains was noted, the skin response to the metal differed. DA rat individuals mounted antioxidant enzyme defense in the skin already at lower Cd dose, in contrast to AO rats which reacted to higher metal dose solely (and less pronounced), implying higher susceptibility of DA strain to Cd dermatotoxicity. Epidermal cells from both strains developed stress response, but higher intensity of antioxidant response in AO rats implied this strain`s better ability to defend against Cd insult. Cd induced epidermal cells' proinflammatory cytokine response only in DA rats. Increased IL-10 seems responsible for the lack of response in AO rats. Differences in the pattern of skin/epidermal cell responsiveness to cadmium give a new insight into repercussion of genetic variability to dermatotoxicity of orally acquired cadmium, bearing relevance for variations in the link between dietary cadmium and inflammation-based skin pathologies.
Collapse
Affiliation(s)
- Dina Tucovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000, Belgrade, Serbia
| | - Ivana Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000, Belgrade, Serbia
| | - Jelena Kulas
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000, Belgrade, Serbia
| | - Milica Zeljkovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000, Belgrade, Serbia
| | - Dusanka Popovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000, Belgrade, Serbia
| | - Lidija Zolotarevski
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000, Belgrade, Serbia
| | - Sladjana Djurdjic
- Innovation Center of the Faculty of Chemistry, University of Belgrade, 12-16 Studentski Trg, 11000, Belgrade, Serbia
| | - Jelena Mutic
- Innovation Center of the Faculty of Chemistry, University of Belgrade, 12-16 Studentski Trg, 11000, Belgrade, Serbia
| | - Milena Kataranovski
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000, Belgrade, Serbia
| | - Aleksandra Popov Aleksandrov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar Despota Stefana, 11000, Belgrade, Serbia.
| |
Collapse
|
33
|
Wang H, Pan L, Zhang X, Ji R, Si L, Cao Y. The molecular mechanism of AhR-ARNT-XREs signaling pathway in the detoxification response induced by polycyclic aromatic hydrocarbons (PAHs) in clam Ruditapes philippinarum. ENVIRONMENTAL RESEARCH 2020; 183:109165. [PMID: 32032812 DOI: 10.1016/j.envres.2020.109165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The aryl hydrocarbon receptor (AhR) has been known primarily for its role in the regulation of several drug and xenobiotic metabolizing enzymes to mitigate environmental stresses. In this study, we interfere the expression of AhR gene to investigate the mechanism of AhR signaling pathway in the detoxification and antioxidation defense system that induced by Polycyclic Aromatic Hydrocarbons (PAHs) exposure by RNA interference (RNAi). The gene expressions of aryl hydrocarbon receptor nuclear translocator (ARNT), heat shock protein 90 (Hsp90) were evaluated after being exposed to benzo(a)pyrene (BaP) (4 μg/L) for 5 days and the positive correlations between AhR, ARNT, HSP90 indirectly indicating that AhR may have the ability to bind to ligands such as PAHs in Ruditapes philippinarum (R. philippinarum). Besides, the activities of detoxification enzymes were determined to investigate the role of AhR signaling pathway played in the metabolic detoxification. What's more, the gene expressions of protein kinase C (PKC) signaling pathway, mitogen-activated protein kinase (MAPKs) signaling pathway, NF-E2-related factor 2 (Nrf2) signaling pathway and antioxidant defense system indicated that AhR may regulate the Nrf2-Keap1 signaling pathway through Kelch-like ECH-associated protein-1 (Keap1) and MAPKs, PKC signaling pathways. In conclusion, adoption of RNA interference technology to explore the role of RpAhR gene played in the detoxification and antioxidation defense system under the PAHs stress at different time points can informe molecular endpoints for application towards ecotoxicology monitoring of bivalves.
Collapse
Affiliation(s)
- Hongdan Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| | - Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Rongwang Ji
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingjun Si
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yunhao Cao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
34
|
Gao H, Ye G, Lin Y, Chi Y, Dong S. Benzo[a]pyrene at human blood equivalent level induces human lung epithelial cell invasion and migration via aryl hydrocarbon receptor signaling. J Appl Toxicol 2020; 40:1087-1098. [PMID: 32166782 DOI: 10.1002/jat.3969] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 01/06/2023]
Abstract
Benzo[a]pyrene (B[a]P), a typical carcinogenic polycyclic aromatic hydrocarbon, exists worldwide in vehicle exhaust, cigarette smoke and other polluted environments. Recent studies have demonstrated a strong association between B[a]P and lung cancer. However, whether B[a]P at human blood equivalent level can promote epithelial-mesenchymal transition (EMT), a crucial molecular event during cell malignant transformation, remains unclear. Besides, whether B[a]P facilitates this progress via aryl hydrocarbon receptor (AhR) signaling pathway also lacks scientific evidence. In our study, the transwell assay showed that 5 μg/L of B[a]P promoted BEAS-2B cell invasion and migration. In addition, the mRNA and protein expression levels of AhR and its target genes involved in B[a]P metabolism, such as AhR nuclear translocator, heat shock protein 90 and CYP1A1, were significantly increased by B[a]P exposure. Moreover, the mRNA expression levels of downstream regulatory factors related to both AhR signaling pathway and EMT, such as NRF2, K-RAS and hypoxia-inducible factor 1-alpha, were significantly increased. Furthermore, the expression level of the epithelial marker E-cadherin was significantly downregulated, while the mRNA expression of mesenchymal phenotype markers, N-cadherin, fibronectin and vimentin, were significantly upregulated. Notably, the above changes induced by B[a]P were significantly attenuated or even stopped by resveratrol (RSV), a natural phenol, also an AhR inhibitor, when the AhR signaling pathway was inhibited by RSV, demonstrating the regulatory role of AhR signaling pathway in B[a]P-induced EMT. In conclusion, B[a]P at the human blood equivalent level induces BEAS-2B cell invasion and migration through the AhR signaling pathway.
Collapse
Affiliation(s)
- Han Gao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guozhu Ye
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yi Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yulang Chi
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Sijun Dong
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
35
|
Ma JK, Saad Eldin WF, El-Ghareeb WR, Elhelaly AE, Khedr MHE, Li X, Huang XC. Effects of Pyrene on Human Liver HepG2 Cells: Cytotoxicity, Oxidative Stress, and Transcriptomic Changes in Xenobiotic Metabolizing Enzymes and Inflammatory Markers with Protection Trial Using Lycopene. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7604851. [PMID: 31687396 PMCID: PMC6803749 DOI: 10.1155/2019/7604851] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/11/2019] [Accepted: 09/20/2019] [Indexed: 01/05/2023]
Abstract
Pyrene is one of the major polycyclic aromatic hydrocarbons formed during heat treatment of meat and in car exhausts; however, few studies have investigated pyrene-induced adverse effects on human cell lines. This study aimed at the investigation of pyrene-induced cytotoxicity and oxidative damage in human liver HepG2 cells at environmentally relevant concentrations. Pyrene-induced changes in mRNA expression of xenobiotic metabolizing enzymes (XMEs), xenobiotic transporters, antioxidant enzymes, and inflammatory markers were investigated using real-time PCR. As a protection trial, the ameliorative effects of lycopene, a carotenoid abundantly found in tomato, were investigated. The possible mechanisms behind such effects were examined via studying the co exposure effects of pyrene and lycopene on regulatory elements including the aryl hydrocarbon receptor (Air) and elytroid 2-related factor 2 (RF). The achieved results indicated that pyrene caused significant cytotoxicity at 50 n, with a clear production of reactive oxygen species (ROS) in a dose-dependent manner. Pyrene upregulated mRNA expression of phase I enzymes including CYP1A1, 1A2, and CYP1B1 and inflammatory markers including TNFα and Cox2. However, pyrene significantly downregulated phase II enzymes, xenobiotic transporters, and antioxidant enzymes. Interestingly, lycopene significantly reduced pyrene-induced cytotoxicity and ROS production. Moreover, lycopene upregulated detoxification and antioxidant enzymes, probably via its regulatory effects on Air- and RF-dependent pathways.
Collapse
Affiliation(s)
- Jin-Kui Ma
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Walaa Fathy Saad Eldin
- Educational Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Waleed Rizk El-Ghareeb
- Department of Veterinary Public Health and Animal Husbandry, College of Veterinary Medicine, King Faisal University, Al Hofuf, Saudi Arabia
| | - Abdelazim Elsayed Elhelaly
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Center for Emerging Infectious Diseases, School of Medicine, Gifu University, Gifu 501-1193, Japan
| | - Mariam H. E. Khedr
- Department of Veterinary Hygiene, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Xiang Li
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Xiao-Chen Huang
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China
| |
Collapse
|
36
|
Comparative toxicoproteogenomics of mouse and rat liver identifies TCDD-resistance genes. Arch Toxicol 2019; 93:2961-2978. [DOI: 10.1007/s00204-019-02560-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/02/2019] [Indexed: 12/21/2022]
|
37
|
Zhao Y, Li D, Zhang Z, Pan L. In vitro recombinant yeast assay reveals the binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and aryl hydrocarbon receptor (AhR) from scallop Chlamys farreri. Toxicol In Vitro 2019; 59:64-69. [PMID: 30954654 DOI: 10.1016/j.tiv.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
|
38
|
González-Barbosa E, García-Aguilar R, Vega L, Cabañas-Cortés MA, Gonzalez FJ, Segovia J, Morales-Lázaro SL, Cisneros B, Elizondo G. Parkin is transcriptionally regulated by the aryl hydrocarbon receptor: Impact on α-synuclein protein levels. Biochem Pharmacol 2019; 168:429-437. [PMID: 31404530 DOI: 10.1016/j.bcp.2019.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/07/2019] [Indexed: 12/20/2022]
Abstract
Parkin (PRKN) is a ubiquitin E3 ligase that catalyzes the ubiquitination of several proteins. Mutations in the human Parkin gene, PRKN, leads to degeneration of dopaminergic (DA) neurons, resulting in autosomal recessive early-onset parkinsonism and the loss of PRKN function is linked to sporadic Parkinson's disease (PD). Additionally, several in vitro studies have shown that overexpression of exogenous PRKN protects against the neurotoxic effects induced by a wide range of cellular stressors, emphasizing the need to study the mechanism(s) governing PRKN expression and induction. Here, Prkn was identified as a novel target gene of the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor and member of the bHLH/PAS (basic helix-loop-helix/Per-Arnt-Sim) superfamily. AhR binds and transactivates the Prkn gene promoter. We also demonstrated that AhR is expressed in DA neurons and that its activation upregulates Prkn mRNA and protein levels in the mouse ventral midbrain. Additionally, the AhR-dependent increase in PRKN levels is associated with a decrease in the protein levels of its target substrate, α-synuclein, in an AhR-dependent manner, because this effect is not observed in Ahr-null mice. These results suggest that treatments designed to induce PRKN expression through the use of nontoxic AhR agonist ligands may be novel strategies to prevent and delay PD.
Collapse
Affiliation(s)
| | - Rosario García-Aguilar
- Departamento de Toxicología, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, Mexico
| | - Libia Vega
- Departamento de Toxicología, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, Mexico
| | | | - Frank J Gonzalez
- Laboratory of Metabolism, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, Mexico
| | - Sara L Morales-Lázaro
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, Mexico
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, Mexico.
| |
Collapse
|
39
|
Villaseñor-Altamirano AB, Watson JD, Prokopec SD, Yao CQ, Boutros PC, Pohjanvirta R, Valdés-Flores J, Elizondo G. 2,3,7,8-Tetrachlorodibenzo-p-dioxin modifies alternative splicing in mouse liver. PLoS One 2019; 14:e0219747. [PMID: 31386671 PMCID: PMC6684058 DOI: 10.1371/journal.pone.0219747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022] Open
Abstract
Alternative splicing is a co-transcriptional mechanism that generates protein diversity by including or excluding exons in different combinations, thereby expanding the diversity of protein isoforms of a single gene. Abnormalities in this process can result in deleterious effects to human health, and several xenobiotics are known to interfere with splicing regulation through multiple mechanisms. These changes could lead to human diseases such as cancer, neurological disorders, autoimmune diseases, and developmental disorders. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant generated as a byproduct of various industrial activities. Exposure to this dioxin has been linked to a wide range of pathologies through the alteration of multiple cellular processes. However, the effects of TCDD exposure on alternative splicing have not yet been studied. Here, we investigated whether a single po. dose of 5 μg/kg or 500 μg/kg TCDD influence hepatic alternative splicing in adult male C57BL/6Kou mouse. We identified several genes whose alternative splicing of precursor messenger RNAs was modified following TCDD exposure. In particular, we demonstrated that alternative splicing of Cyp1a1, Ahrr, and Actn1 was significantly altered after TCDD treatment. These findings show that the exposure to TCDD has an impact on alternative-splicing, and suggest a new avenue for understanding TCDD-mediated toxicity and pathogenesis.
Collapse
Affiliation(s)
- Ana B. Villaseñor-Altamirano
- Cell Biology Department, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAN-IPN, Mexico City, Mexico
- International Laboratory for Human Genome Research, National Autonomous University of Mexico, Queretaro, Mexico
| | | | | | - Cindy Q. Yao
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Paul C. Boutros
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Raimo Pohjanvirta
- Laboratory of Toxicology, National Institute for Health and Welfare, Kuopio, Finland
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Jesús Valdés-Flores
- Biochemistry Department, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
| | - Guillermo Elizondo
- Cell Biology Department, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAN-IPN, Mexico City, Mexico
- * E-mail:
| |
Collapse
|
40
|
Espinosa Ruiz C, Manuguerra S, Cuesta A, Esteban MA, Santulli A, Messina CM. Sub-lethal doses of polybrominated diphenyl ethers affect some biomarkers involved in energy balance and cell cycle, via oxidative stress in the marine fish cell line SAF-1. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:1-10. [PMID: 30797971 DOI: 10.1016/j.aquatox.2019.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of persistent contaminants which are found all over the world in the marine environment. Sparus aurata fibroblast cell line (SAF-1) was exposed to increasing concentrations of PBDEs 47 and 99, until 72 h to evaluate the cytotoxicity, reactive oxygen species (ROS) production and the expression of some selected molecular markers related to cell cycle, cell signaling, energetic balance and oxidative stress (p53, erk-1, hif-1α and nrf-2), by real-time PCR. Furthermore, SAF-1 cells were exposed for 7 and 15 days to sub-lethal concentrations, in order to evaluate the response of some biomarkers by immunoblotting (p53, ERK-1, AMPK, HIF-1α and NRF-2). After 48 and 72 h, the cells showed a significant decrease of cell vitality as well as an increase of intracellular ROS production. Gene expression analysis showed that sub-lethal concentrations of BDE-99 and 47, after 72 h, up-regulated cell cycle and oxidative stress biomarkers, although exposure to 100 μmol L-1 down-regulated the selected markers related to cell cycle, cell signaling, energetic balance. After 7 and 15 days of sub-lethal doses exposure, all the analyzed markers resulted affected by the contaminants. Our results suggest that PBDEs influence the cells homeostasis first of all via oxidative stress, reducing the cell response and defense capacity and affecting its energetic levels. This situation of stress and energy imbalance could represents a condition that, modifying some of the analyzed biochemical pathways, would predispose to cellular transformation.
Collapse
Affiliation(s)
- Cristobal Espinosa Ruiz
- University of Palermo, Dept of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Simona Manuguerra
- University of Palermo, Dept of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Maria Angeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Andrea Santulli
- University of Palermo, Dept of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy; Consorzio Universitario della Provincia di Trapani, Marine Biology Institute, Via Barlotta 4, 91100, Trapani, Italy
| | - Concetta M Messina
- University of Palermo, Dept of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy.
| |
Collapse
|
41
|
Su KY, Li MC, Lee NW, Ho BC, Cheng CL, Chuang YC, Yu SL, Guo YL. Perinatal polychlorinated biphenyls and polychlorinated dibenzofurans exposure are associated with DNA methylation changes lasting to early adulthood: Findings from Yucheng second generation. ENVIRONMENTAL RESEARCH 2019; 170:481-486. [PMID: 30640082 DOI: 10.1016/j.envres.2019.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/29/2018] [Accepted: 01/02/2019] [Indexed: 05/17/2023]
Abstract
Epigenome-wide DNA methylation has not been studied in men perinatally exposed to PCBs and dioxins. Therefore, we examined whether perinatal exposure to polychlorinated biphenyls (PCBs) and polychlorinated dibenzofurans (PCDFs) induces sustained methylation changes lasting to early adulthood. We used the Illumina HumanMethylation450 BeadChip to assess DNA methylation in whole blood among Yucheng second generation (people perinatal exposed to high PCBs and PCDFs) compared with referents. Thirty male offspring from the Yucheng cohort were randomly selected and matched with 30 male offspring from the Yucheng' neighborhood referents with similar backgrounds. Methylation differences between the Yucheng second generation and non-exposed referents were identified using a P value < 1.06 × 10-7. Differential DNA methylation with epigenome-wide statistical significance was observed for 20 CpGs mapped to 11 genes, and 19 CpGs were correlated with gestational levels of PCBs or PCDF toxic equivalency (PCDF-TEQ) with the same direction of effect. Among the 11 genes, AHRR and CYP1A1 are involved in the aryl hydrocarbon receptor signaling pathway known to mediate dioxin toxicity. MYO1G, FRMD4A, ARL4C, OLFM1, and WWC3 were previously reported to be related to carcinogenesis. This is the first study examining genome-wide DNA methylation among people perinatally exposed to high concentrations of PCBs and PCDFs. We observed novel differential methylation of several genes, indicating that modifications of DNA methylation associated with perinatal PCB and PCDF exposure may persist in exposed offspring for more than 20 years. Furthermore, involvement of several carcinogesis-related genes suggested a potential in utero epigenetic mechanisms.
Collapse
Affiliation(s)
- Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan; NTU Center for Genomic Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Ming-Chieh Li
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, 350, Taiwan; Department of Public Health, China Medical University College of Public Health, Taichung 404, Taiwan
| | - Nian-Wei Lee
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, 100, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Yun-Lin Branch, Yunlin, 640, Taiwan
| | - Bing-Ching Ho
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan; NTU Center for Genomic Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Chiou-Ling Cheng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; NTU Center for Genomic Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Yu-Chen Chuang
- Department of Environmental and Occupational Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan; NTU Center for Genomic Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan; Department of Pathology and Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan; Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, 100, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100, Taiwan.
| | - Yue Leon Guo
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, 350, Taiwan; Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, 100, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, 100, Taiwan.
| |
Collapse
|
42
|
Saad AA, Hussein T, El-Sikaily A, Abdel-Mohsen MA, Mokhamer EH, Youssef AI, Mohammed J. Effect of Polycyclic Aromatic Hydrocarbons Exposure on Sperm DNA in Idiopathic Male Infertility. J Health Pollut 2019; 9:190309. [PMID: 30931169 PMCID: PMC6421954 DOI: 10.5696/2156-9614-9.21.190309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 02/11/2019] [Indexed: 06/02/2023]
Abstract
BACKGROUND Biological mechanisms contribute to the relationship between polycyclic aromatic hydrocarbon (PAH) exposure and infertility in males by altering semen quality. OBJECTIVES The aim of the present study was to evaluate the impact of PAHs on male infertility using the sperm chromatin dispersion test (Halo sperm assay). METHODS Sixty-six (66) infertile males under 45 years of age were examined for the determination of urinary metabolite and oxidative stress by measuring lipid peroxidation and antioxidant activity of glutathione and glutathione-s-transferase, as well as hormonal activity of follicle stimulating hormone (FSH), testosterone and prolactin and semen quality. RESULTS There was an increased level of urinary metabolite of 1-hydroxy pyrene, 1-hydroxy naphthalene and 2-hydroxy naphthalene in the urine of the infertile group. In addition, elevated concentrations of malondialdehyde coincided with a decreased level of antioxidants, leading to oxidative stress in the infertile group. Semen samples showed 30% sperm deoxyribonucleic acid (DNA) fragmentation. CONCLUSIONS The data provide strong evidence of a statistical threshold for semen samples containing 30% sperm DNA fragmentation resulting in a reduced level of pregnancy success. PARTICIPANT CONSENT Obtained. ETHICS APPROVAL Study approval was given by the ethics committee of Alexandria University (United States Department of Health and Human Services, institutional review board registration (IRB), IORG0008812 Medical Research Institute, expires 4/8/2019, OMB No: 0990-0279). COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Aziza A. Saad
- Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Tarek Hussein
- Dermatology, Venereology and Andrology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Amany El-Sikaily
- Marine Pollution Department, Marine Environment Division, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Mohamed A. Abdel-Mohsen
- Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - El-Hassan Mokhamer
- Molecular Biology lecturer, Zoology Department, Damnhour University, Damanhur, Egypt
| | - Amany I. Youssef
- Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Jihan Mohammed
- Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
43
|
Fang D, Xiong Z, Xu J, Yin J, Luo R. Chemopreventive mechanisms of galangin against hepatocellular carcinoma: A review. Biomed Pharmacother 2019; 109:2054-2061. [DOI: 10.1016/j.biopha.2018.09.154] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
|
44
|
Alsaad AM, Al-Arifi MN, Maayah ZH, Attafi IM, Alanazi FE, Belali OM, Alhoshani A, Asiri YA, Korashy HM. Genotoxic impact of long-term cigarette and waterpipe smoking on DNA damage and oxidative stress in healthy subjects. Toxicol Mech Methods 2018; 29:119-127. [DOI: 10.1080/15376516.2018.1528650] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Abdulaziz M. Alsaad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed N. Al-Arifi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Zaid H. Maayah
- Cardiovascular Research Centre, Department of Pediatrics and Medicine, Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Ibraheem M. Attafi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz E. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Osamah M. Belali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Yousif A. Asiri
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hesham M. Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha, Qatar
| |
Collapse
|
45
|
Guerrina N, Traboulsi H, Eidelman DH, Baglole CJ. The Aryl Hydrocarbon Receptor and the Maintenance of Lung Health. Int J Mol Sci 2018; 19:E3882. [PMID: 30563036 PMCID: PMC6320801 DOI: 10.3390/ijms19123882] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 01/09/2023] Open
Abstract
Much of what is known about the Aryl Hydrocarbon Receptor (AhR) centers on its ability to mediate the deleterious effects of the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dioxin). However, the AhR is both ubiquitously-expressed and evolutionarily-conserved, suggesting that it evolved for purposes beyond strictly mediating responses to man-made environmental toxicants. There is growing evidence that the AhR is required for the maintenance of health, as it is implicated in physiological processes such as xenobiotic metabolism, organ development and immunity. Dysregulation of AhR expression and activity is also associated with a variety of disease states, particularly those at barrier organs such as the skin, gut and lungs. The lungs are particularly vulnerable to inhaled toxicants such as cigarette smoke. However, the role of the AhR in diseases such as chronic obstructive pulmonary disease (COPD)-a respiratory illness caused predominately by cigarette smoking-and lung cancer remains largely unexplored. This review will discuss the growing body of literature that provides evidence that the AhR protects the lungs against the damaging effects of cigarette smoke.
Collapse
Affiliation(s)
- Necola Guerrina
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| | - David H Eidelman
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| | - Carolyn J Baglole
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada.
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
46
|
Coffin S, Dudley S, Taylor A, Wolf D, Wang J, Lee I, Schlenk D. Comparisons of analytical chemistry and biological activities of extracts from North Pacific gyre plastics with UV-treated and untreated plastics using in vitro and in vivo models. ENVIRONMENT INTERNATIONAL 2018; 121:942-954. [PMID: 30352377 DOI: 10.1016/j.envint.2018.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
Plastic debris is an emerging worldwide threat to marine biota. Marine species may face unique challenges in low-flow estuarine systems with a high abundance of "macro-sized" (>4.75 mm) plastic due to the leaching of constituents and adsorbed contaminants. To simulate this leaching process, plastic samples recovered from the North Pacific Gyre along with corresponding UV-irradiated virgin plastic and non-irradiated virgin plastic counterparts were incubated in saltwater for 30 days at ambient temperatures ranging from 17 to 25 °C. Following solid-phase extraction, water samples were fractionated with sequential methanol elution from 10 to 100% and evaluated using in vitro assays assessing estrogen receptor (ER) and aryl hydrocarbon receptor (AhR) activities. In vivo responses (vitellogenin [vtg] and cytochrome p450 1A [cyp1a] mRNA) were measured following 5-day exposures in Japanese medaka (Oryzias latipes) larvae (3 days post hatch). Estrogenic plasticizers, co-planar PCBs and PAHs were quantified in the extracts using targeted GC-MS/MS and UPLC-MS/MS. In vitro estrogenicity showed highest activity in the 70% methanol fraction for all plastic leachate exposures. Whole extract in vitro estradiol equivalent (EEQ) values were 4.34 ± 2.65, 8.79 ± 2.09 and 13.78 ± 3.64 ng/L, for virgin plastic, UV-irradiated virgin plastic and North Pacific Gyre-recovered plastic, respectively (mean ± SD). Significant vtg induction was observed in medaka larvae exposed to leachate extracts from North Pacific Gyre-recovered plastic and UV-irradiated virgin plastic (9.9-fold, p = 0.039 and 10.1-fold, p = 0.042, respectively). Chemically-determined EEQ values were also localized in the 70% methanol fraction. Whole leachate extract chemical EEQ values were 0.33 ± 0.07, 1.64 ± 0.62 and 11.4 ± 2.13 ng/L, for virgin plastic, UV-irradiated virgin plastic and North Pacific Gyre-recovered plastic, respectively. In-vitro AhR activity was highest in the 70% methanol elution with greater activity in North Pacific Gyre-recovered plastic than in virgin plastic and UV-irradiated virgin plastic (toxic equivalency [TEQ] = 1.06 ± 0.54, 0.38 ± 0.07 and 0.71 ± 0.47 ng/L, respectively). CYP1A mRNA was significantly induced in larval medaka exposed to North Pacific Gyre-recovered plastic leachates (17.8-fold, p = 0.02) while exposure to virgin plastic and UV-irradiated virgin plastic leachates caused no significant change. Chemically-determined TEQ analysis for AhR indicated highest activity in the 90% methanol fraction for all leachates, with whole extract in vitro TEQs being 1.47 ± 0.87, 0.03 ± 0.05 and 0.42 ± 0.38 ng/L for North Pacific Gyre-recovered plastic, virgin plastic and UV-irradiated virgin plastic, respectively. These results indicate that weathering and UV radiation release estrogenic plasticizers and demonstrate the ability for plastics to transport adsorbed persistent organic pollutants at eco-toxicologically relevant concentrations.
Collapse
Affiliation(s)
- Scott Coffin
- Department of Environmental Sciences, University of California, Riverside, CA, United States of America.
| | - Stacia Dudley
- Department of Environmental Sciences, University of California, Riverside, CA, United States of America
| | - Allison Taylor
- Department of Environmental Sciences, University of California, Riverside, CA, United States of America
| | - Douglas Wolf
- Department of Environmental Sciences, University of California, Riverside, CA, United States of America
| | - Jie Wang
- Department of Environmental Sciences, University of California, Riverside, CA, United States of America
| | - Ilkeun Lee
- Department of Chemistry, University of California, Riverside, CA, United States of America
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA, United States of America
| |
Collapse
|
47
|
Urolithin A Is a Dietary Microbiota-Derived Human Aryl Hydrocarbon Receptor Antagonist. Metabolites 2018; 8:metabo8040086. [PMID: 30501068 PMCID: PMC6315438 DOI: 10.3390/metabo8040086] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/16/2022] Open
Abstract
Urolithins (e.g., UroA and B) are gut microbiota-derived metabolites of the natural polyphenol ellagic acid. Urolithins are associated with various health benefits, including attenuation of inflammatory signaling, anti-cancer effects and repression of lipid accumulation. The molecular mechanisms underlying the beneficial effects of urolithins remain unclear. We hypothesize that some of the human health benefits of urolithins are mediated through the aryl hydrocarbon receptor (AHR). Utilizing a cell-based reporter system, we tested urolithins for the capacity to modulate AHR activity. Cytochrome P450 1A1 (CYP1A1) mRNA levels were assessed by real-time quantitative polymerase chain reaction. Competitive ligand binding assays were performed to determine whether UroA is a direct ligand for the AHR. Subcellular AHR protein levels were examined utilizing immunoblotting analysis. AHR expression was repressed in Caco-2 cells by siRNA transfection to investigate AHR-dependency. UroA and B were able to antagonize 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced AHR-mediated transcriptional activity. Furthermore, UroA and B attenuated TCDD-mediated stimulation of CYP1A1 mRNA levels. In addition, competitive ligand binding assays characterized UroA as a direct AHR ligand. Consistent with other AHR antagonists, UroA failed to induce AHR retention in the nucleus. AHR is necessary for UroA-mediated attenuation of cytokine-induced interleukin 6 (IL6) and prostaglandin-endoperoxide synthase 2 (PTGS2) expression in Caco-2 cells. Here we identified UroA as the first dietary-derived human selective AHR antagonist produced by the gut microbiota through multi-step metabolism. Furthermore, previously reported anti-inflammatory activity of UroA may at least in part be mediated through AHR.
Collapse
|
48
|
Pimentel SP, Fontes M, Ribeiro FV, Corrêa MG, Nishii D, Cirano FR, Casati MZ, Casarin RCV. Smoking habit modulates peri-implant microbiome: A case-control study. J Periodontal Res 2018; 53:983-991. [DOI: 10.1111/jre.12597] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/22/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Suzana P. Pimentel
- Dental Research Division; School of Dentistry; Paulista University; São Paulo SP Brazil
| | - Melline Fontes
- Life Sciences Core Facility (LaCTAD); University of Campinas (UNICAMP); Campinas Brazil
| | - Fernanda V. Ribeiro
- Dental Research Division; School of Dentistry; Paulista University; São Paulo SP Brazil
| | - Mônica G. Corrêa
- Dental Research Division; School of Dentistry; Paulista University; São Paulo SP Brazil
| | - Denise Nishii
- Dental Research Division; School of Dentistry; Paulista University; São Paulo SP Brazil
| | - Fabiano R. Cirano
- Dental Research Division; School of Dentistry; Paulista University; São Paulo SP Brazil
| | - Marcio Z. Casati
- Dental Research Division; School of Dentistry; Paulista University; São Paulo SP Brazil
| | - Renato C. V. Casarin
- Dental Research Division; School of Dentistry; Paulista University; São Paulo SP Brazil
- Department of Periodontics and Prosthodontics; Piracicaba Dental School; University of Campinas (UNICAMP); Piracicaba Brazil
| |
Collapse
|
49
|
Eftekhari A, Dizaj SM, Chodari L, Sunar S, Hasanzadeh A, Ahmadian E, Hasanzadeh M. The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed Pharmacother 2018; 103:1018-1027. [DOI: 10.1016/j.biopha.2018.04.126] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/24/2022] Open
|
50
|
Domínguez-Acosta O, Vega L, Estrada-Muñiz E, Rodríguez MS, Gonzalez FJ, Elizondo G. Activation of aryl hydrocarbon receptor regulates the LPS/IFNγ-induced inflammatory response by inducing ubiquitin-proteosomal and lysosomal degradation of RelA/p65. Biochem Pharmacol 2018; 155:141-149. [PMID: 29935959 DOI: 10.1016/j.bcp.2018.06.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/19/2018] [Indexed: 01/20/2023]
Abstract
Several studies have identified the aryl hydrocarbon receptor (AhR) as a negative regulator of the innate and adaptive immune responses. However, the molecular mechanisms by which this transcription factor exerts such modulatory effects are not well understood. Interaction between AhR and RelA/p65 has previously been reported. RelA/p65 is the major NFκB subunit that plays a critical role in immune responses to infection. The aim of the present study was to determine whether the activation of AhR disrupted RelA/p65 signaling in mouse peritoneal macrophages by decreasing its half-life. The data demonstrate that the activation of AhR by TCDD and β-naphthoflavone (β-NF) decreased protein levels of the pro-inflammatory cytokines TNF-α, IL-6 and IL-12 after macrophage activation with LPS/IFNγ. In an AhR-dependent manner, TCDD treatment induces RelA/p65 ubiquitination and proteosomal degradation, an effect dependent on AhR transcriptional activity. Activation of AhR also induced lysosome-like membrane structure formation in mouse peritoneal macrophages and RelA/p65 lysosome-dependent degradation. In conclusion, these results demonstrate that AhR activation promotes RelA/p65 protein degradation through the ubiquitin proteasome system, as well as through the lysosomes, resulting in decreased pro-inflammatory cytokine levels in mouse peritoneal macrophages.
Collapse
Affiliation(s)
- O Domínguez-Acosta
- Departamento de Biología Celular, CINVESTAV-IPN, Zacatenco, México D. F., Av. IPN 2508, C.P. 07360, Mexico
| | - L Vega
- Departamento de Toxicología, CINVESTAV-IPN, Zacatenco, México D. F., Av. IPN 2508, C.P. 07360, Mexico
| | - E Estrada-Muñiz
- Departamento de Toxicología, CINVESTAV-IPN, Zacatenco, México D. F., Av. IPN 2508, C.P. 07360, Mexico
| | - M S Rodríguez
- Institut des Technologies Avancées en Sciences du Vivant (ITAV) CNRS-USR3505, Institut de Pharmacologie et de Biologie Structurale (IPBS) CNRS UMR8601, Université de Toulouse, 31106 Toulouse, France
| | - F J Gonzalez
- Laboratory of Metabolism, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - G Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Zacatenco, México D. F., Av. IPN 2508, C.P. 07360, Mexico.
| |
Collapse
|