1
|
Sathiyaseelan A, Jang Y, Zhang X, Hong IK, Wang MH. Development and efficacy of arbutin-loaded agarose hydrogel for antioxidant and depigmentation applications. Int J Biol Macromol 2025; 309:142642. [PMID: 40158597 DOI: 10.1016/j.ijbiomac.2025.142642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Skin whitening and depigmentation are key strategies in skincare, representing a major global market. However, prolonged use of high concentrations of chemicals in skincare products can lead to skin disorders and premature aging. Biopolymer-based hydrogels offer a promising alternative by enabling sustained transdermal delivery of bioactive molecules while minimizing adverse effects. This study aimed to develop a novel bioactive hydrogel using thermosensitive, low-temperature-melting agarose (AGE) and the non-toxic tyrosinase inhibitor arbutin (ABN). Fourier transform infrared spectroscopy (FTIR) analysis confirmed the successful incorporation of ABN into the AGE hydrogel, while X-ray diffraction (XRD) analysis revealed the formation of new amorphous peaks, indicating composite hydrogel formation. Field emission scanning electron microscope (FE-SEM) imaging showed that freeze-dried AGE-ABN exhibited a smaller, more longitudinal porous structure compared to AGE alone. ABN release was dependent on its initial concentration, with higher release rates correlating with increased antioxidant activity. The 10-minute extract of freeze-dried AGE-ABN (0.1 %) hydrogel demonstrated DPPH (39.16 ± 0.72 %), FRAP (78.37 ± 2.24 %), and ABTS (92.40 ± 0.02 %) radical scavenging activities. Additionally, AGE-ABN (0.1 %) exhibited significant tyrosinase inhibition (27.90 ± 0.02 %), highlighting its potential for depigmentation. Importantly, the hydrogel promoted a human keratinocyte (HaCaT) cell growth without inducing cytotoxicity.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - YoungSun Jang
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - In-Kee Hong
- FB R&D reserch center, Frombio Co., Ltd., Yongin 17108, Republic of Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
2
|
Xu Y, Zhang T, Mu S, Peng Y, Wu D, Yang L, Li Q, Wu Z, Zhang J. Discovery of Arbutin as Novel Potential Antiviral Agent Against Tomato Yellow Leaf Curl Virus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3967-3976. [PMID: 39918282 DOI: 10.1021/acs.jafc.4c11365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Tomato yellow leaf curl virus (TYLCV), a major plant virus, infects multiple plant species, severely threatening global food security. Arbutin, a natural product used in cosmetics to reduce pigmentation, also exhibits antibacterial and anti-inflammatory properties. However, its potential in plant protection remains undocumented. This study reveals arbutin's ability to inhibit TYLCV infection. In Nicotiana benthamiana, 100 μg/mL arbutin inhibited viral gene accumulation by up to 76.8%, surpassing ningnanmycin (65.8%) and ribavirin (39.5%). Besides, microscale thermophoresis indicated that arbutin bound strongly to the TYLCV coat protein (CP). Molecular docking indicated that arbutin interacted with ARG58, VAL65, and CYS69. RT-qPCR and Western blot experiments confirmed the crucial roles of these amino acids, especially VAL65, in viral infection. Transcriptome analysis revealed that mutating VAL65 affected plant-pathogen interaction pathways and MAPK signaling in host defense mechanisms. This study unveils arbutin's novel antiviral function, providing crucial insights for developing new biopesticides against plant viruses.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Tingting Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Shimei Mu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yanqun Peng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Duanpu Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Li Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Qing Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zengxue Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Sisodia R, Sarmadhikari D, Mazumdar PA, Asthana S, Madhurantakam C. Molecular analysis of dUTPase of Helicobacter pylori for identification of novel inhibitors using in silico studies. J Biomol Struct Dyn 2024; 42:8598-8623. [PMID: 37587906 DOI: 10.1080/07391102.2023.2247080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
The human gastric pathogen Helicobacter pylori chronically affects the gastric mucosal layer of approximately half of world's population. The emergence of resistant strains urges the need for identification of novel and selective drug against new molecular targets. A ubiquitous enzyme, Deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase), is considered as first line of defense against uracil mis-incorporation into DNA, and essential for genome integrity. Lack of dUTPase triggers an elevated recombination frequency, DNA breaks and ultimately cell death. Hence, dUTPase can be considered as a promising target for development of novel lead inhibitor compounds in H. pylori treatment. Herein, we report the generation of three-dimensional model of the target protein using comparative modelling and its validation. To identify dUTPase inhibitors, a high throughput virtual screening approach utilizing Knowledge-based inhibitors and DrugBank database was implemented. Top ranked compounds were scrutinized based on investigations of the protein-ligand interaction fingerprints, molecular interaction maps and binding affinities and the drug potentiality. The best ligands were studied further for complex stability and intermolecular interaction profiling with respect to time under 100 ns classical molecular dynamic stimulation, establishing significant stability in dynamic states as observed from RMSD and RMSF parameters and interactions with the catalytic site residues. The binding free energy calculation computed using MM-GBSA method from the MD simulation trajectories demonstrated that our molecules possess strong binding affinity towards the Helicobacter pylori dUTPase protein. We conclude that our proposed molecules may be potential lead molecules for effective inhibition against the H. pylori dUTPase protein subject to experimental validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rinki Sisodia
- Structural and Molecular Biology Laboratory (SMBL), Department of Biotechnology, TERI School of Advanced Studies (TERI SAS), New Delhi, India
| | - Debapriyo Sarmadhikari
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | | | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Chaithanya Madhurantakam
- Structural and Molecular Biology Laboratory (SMBL), Department of Biotechnology, TERI School of Advanced Studies (TERI SAS), New Delhi, India
| |
Collapse
|
4
|
Benković V, Tkalčec I, Knežević A, Jurica K, Knežević F, Brčić Karačonji I, Kopjar N. Effects of Strawberry Tree ( Arbutus unedo L.) Aqueous Leaf Extract and Arbutin on PK-15 and HepG2 Cells. TOXICS 2024; 12:628. [PMID: 39330556 PMCID: PMC11435711 DOI: 10.3390/toxics12090628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024]
Abstract
The antioxidant properties of the leaves of the Mediterranean strawberry tree (Arbutus unedo L.) are mainly attributed to the main bioactive compound, the phenolic glycoside arbutin. In this study, the safety profile of strawberry tree aqueous leaf extract (STE) and arbutin at the DNA level was assessed in vitro using porcine PK-15 kidney cells and HepG2 cells derived from human hepatomas. To examine the effects on cell viability and DNA damage, cells were treated for 24 h with STE or arbutin at three concentrations presumed to be non-toxic (400, 200, and 11.4 µg/mL). Assessments were performed using the MTS viability assay, dual acridine orange/ethidium bromide fluorescent staining, and alkaline comet assay. Results showed that the highest concentration (400 µg/mL) of both tested compounds had no significant cytotoxic effects on either PK-15 or HepG2 cells. Apoptosis was the predominant type of cell death and the total amount of DNA damage in treated cells was within acceptable limits. These results on the in vitro cytocompatibility of arbutin and STE with PK-15 and HepG2 cells could serve to make more reliable judgements about safe levels of arbutin in cosmetic products and functional foods, given the increased popularity of the compound in recent years.
Collapse
Affiliation(s)
- Vesna Benković
- Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia (A.K.)
| | - Ines Tkalčec
- Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia (A.K.)
| | - Anica Knežević
- Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia (A.K.)
| | - Karlo Jurica
- Special Security Operations Directorate, Ministry of the Interior, 10000 Zagreb, Croatia;
| | - Fabijan Knežević
- School of Medicine, Catholic University of Croatia, 10000 Zagreb, Croatia;
| | - Irena Brčić Karačonji
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (I.B.K.); (N.K.)
- Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia
| | - Nevenka Kopjar
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (I.B.K.); (N.K.)
| |
Collapse
|
5
|
Birdal O, Ferah Okkay I, Okkay U, Bayram C, Mokthare B, Ertugrul MS, Hacimuftuoglu A, Aksakal E, Koza Y, Saygi M, Senocak H. Protective effects of arbutin against doxorubicin-induced cardiac damage. Mol Biol Rep 2024; 51:532. [PMID: 38637360 DOI: 10.1007/s11033-024-09488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Doxorubicin is an effective antineoplastic agent but has limited clinical application because of its cumulative toxicities, including cardiotoxicity. Cardiotoxicity causes lipid peroxidation, genetic impairment, oxidative stress, inhibition of autophagy, and disruption of calcium homeostasis. Doxorubicin-induced cardiotoxicity is frequently tried to be mitigated by phytochemicals, which are derived from plants and possess antioxidant, anti-inflammatory, and anti-apoptotic properties. Arbutin, a natural antioxidant found in the leaves of the bearberry plant, has numerous pharmacological benefits, including antioxidant, anti-bacterial, anti-hyperglycemic, anti-inflammatory, and anti-tumor activity. METHODS AND RESULTS The study involved male Wistar rats divided into three groups: a control group, a group treated with doxorubicin (20 mg/kg) to induce cardiac toxicity, a group treated with arbutin (100 mg/kg) daily for two weeks before doxorubicin administration. After treatment, plasma and heart tissue samples were collected for analysis. The samples were evaluated for oxidative stress parameters, including superoxide dismutase, malondialdehyde, and catalase, as well as for cardiac biomarkers, including CK, CK-MB, and LDH. The heart tissues were also analyzed using molecular (TNF-α, IL-1β and Caspase 3), histopathological and immunohistochemical methods (8-OHDG, 4 Hydroxynonenal, and dityrosine). The results showed that arbutin treatment was protective against doxorubicin-induced oxidative damage by increasing SOD and CAT activity and decreasing MDA level. Arbutin treatment was similarly able to reverse the inflammatory response caused by doxorubicin by reducing TNF-α and IL-1β levels and also reverse the apoptosis by decreasing caspase-3 levels. It was able to prevent doxorubicin-induced cardiac damage by reducing cardiac biomarkers CK, CK-MB and LDH levels. In addition to all these results, histopathological analyzes also show that arbutin may be beneficial against the damage caused by doxorubicin on heart tissue. CONCLUSION The study suggests that arbutin has the potential to be used to mitigate doxorubicin-induced cardiotoxicity in cancer patients.
Collapse
Affiliation(s)
- Oguzhan Birdal
- Department of Cardiology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Irmak Ferah Okkay
- Department of Pharmacology, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey.
| | - Ufuk Okkay
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, 25100, Turkey.
| | - Cemil Bayram
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Behzad Mokthare
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | | | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, 25100, Turkey
| | - Emrah Aksakal
- Department of Cardiology, Erzurum State Hospital, Erzurum, Turkey
| | - Yavuzer Koza
- Department of Cardiology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Mehmet Saygi
- Department of Cardiology, Hisar Intercontinental Hospital, Istanbul, Turkey
| | - Huseyin Senocak
- Department of Cardiology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
6
|
Chen M, She W, Zhao X, Chen C, Zhu B, Sun Y, Yao Z. Immobilization of Thermomyces lanuginosus lipase in a novel polysaccharide-based hydrogel by a two-step crosslinking method and its use in the lauroylation of α-arbutin. BIORESOUR BIOPROCESS 2024; 11:7. [PMID: 38647918 PMCID: PMC10991105 DOI: 10.1186/s40643-023-00721-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/17/2023] [Indexed: 04/25/2024] Open
Abstract
The Thermomyces lanuginosus lipase (TLLs) was successfully immobilized within a novel hydrogel matrix through a two-step crosslinking method. TLLs were initially crosslinked through the Schiff base reaction by oxidized carboxymethyl cellulose (OCMC). The water-soluble OCMC@TLLs complex was subsequently crosslinked by carboxymethyl chitosan (CMCSH) in a microfluidic apparatus to form the CMCHS/OCMC@TLLs microspheres. The CD (Circular Dichroism, CD) and FT-IR (Fourier Transform infrared spectroscopy, FT-IR) spectra demonstrated that the crosslinking of TLLs with OCMC resulted in a less significant impact on their structure compared to that with glutaraldehyde. CMCHS/OCMC@TLLs showed decreased catalytic performance due to the mass transfer resistance, while its thermal stability was greatly improved. The CMCHS/OCMC@TLLs were used to catalyze the lauroylation of arbutin in tetrahydrofuran. After 12 h of reaction under optimal conditions, the yield of 6'-O-lauryl arbutin reached an impressive 92.12%. The prepared 6'-O-lauryl arbutin has high lipophilicity and exhibits similar tyrosinase inhibitory activity and higher antioxidant activity compared to its parent compound.
Collapse
Affiliation(s)
- Ming Chen
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Weina She
- Department of Chemical and Pharmaceutical Engineering, Southeast University Chenxian College, Jiangsu, China
| | - Xin Zhao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Cheng Chen
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Yun Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
7
|
Sanna C, Chiocchio I, Mandrone M, Bonvicini F, Gentilomi GA, Trincia S, Poli F. Metabolomic analysis and bioactivities of Arbutus unedo leaves harvested across the seasons in different natural habitats of Sardinia (Italy). BMC PLANT BIOLOGY 2023; 23:490. [PMID: 37828439 PMCID: PMC10571483 DOI: 10.1186/s12870-023-04497-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Arbutus unedo L. is a wild tree of Mediterranean regions used as food and in traditional medicine and important for afforestation programs. There is no detailed information available on the variation of A. unedo leaves metabolome across the seasons. The leaves were analyzed by Proton nuclear magnetic resonance (1 H NMR)-based metabolomics, comparing samples harvested across the seasons and in ten different natural habitats of Sardinia (Italy). RESULTS Multivariate analysis showed the impact of seasonal variation on the metabolome: glucose and quinic acid increased in summer, while in spring sucrose was accumulated. β-Arbutin, the main known active principle of A. unedo, generally reached the highest concentration in autumn. In winter, O-β-methylglucose, γ-aminobutyric acid (GABA), flavonols (quercetin-3-O-α-rhamnoside, myricetin-3-O-α-rhamnoside, kaempferol-3-O-α-rhamnoside), catechin, and gallocatechin increased. Characteristic metabolomic features were found also for samples collected in different locations. For instance, trees growing at the highest altitude and exposed to lower temperatures produced less flavonols and catechins. The only sample collected on trees growing on limestones, dolomites, and dolomitic limestones type of soil showed generally the highest content of arbutin. The highest phenolics content was found during spring, while samples collected on flowering branches in winter were the ones with the highest flavonoid content. The antioxidant activity was also variated, ranging from 1.3 to 10.1 mg of Trolox equivalents (TE)/mL of extract, and it was positively correlated to both total phenolics and flavonoid content. Winter samples showed the lowest antibacterial activity, while summer and autumn ones exhibited the highest activity (IC50 values ranging from 17.3 to 42.3 µg/mL against Staphylococcal species). CONCLUSION This work provides 1 H-NMR fingerprinting of A. unedo leaves, elucidating the main metabolites and their variations during seasons. On the basis of arbutin content, autumn could be considered the balsamic period of this taxon. Samples collected in this season were also the most active ones as antibacterial. Moreover, an interesting metabolomic profile enriched in catechins and flavonols was observed in leaves collected in winter on flowering branches which were endowed with high antioxidant potential.
Collapse
Affiliation(s)
- Cinzia Sanna
- Department of Life and Environmental Sciences, University of Cagliari, via Sant'Ignazio da Laconi 13, Cagliari, 09123, Italy
| | - Ilaria Chiocchio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, Bologna, 40126, Italy
| | - Manuela Mandrone
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, Bologna, 40126, Italy.
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Massarenti 9, Bologna, 40138, Italy
| | - Giovanna A Gentilomi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Massarenti 9, Bologna, 40138, Italy
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, Bologna, 40138, Italy
| | - Simona Trincia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, Bologna, 40126, Italy
| | - Ferruccio Poli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio 42, Bologna, 40126, Italy
| |
Collapse
|
8
|
Piluzza G, Campesi G, D'hallewin G, Molinu MG, Re GA, Sanna F, Sulas L. Antioxidants in Fruit Fractions of Mediterranean Ancient Pear Cultivars. Molecules 2023; 28:molecules28083559. [PMID: 37110793 PMCID: PMC10144750 DOI: 10.3390/molecules28083559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND The genetic diversity of Sardinian pear germplasm has received limited attention regarding its chemical composition. Understanding this composition can aid in the setting up of resilient, extensive groves that offer multiple products and ecosystem services. This research aimed at investigating the antioxidant properties and phenolic compounds of ancient pear cultivars grown extensively in Sardinia (Italy); Methods: the cultivars Buttiru, Camusina, Spadona, and Coscia (as a reference) were compared. Fruit samples were manually peeled and cut. Their flesh, peel, core, and peduncle were frozen separately, lyophilized, and milled before being analysed; Results: The content of total phenolics (TotP), total flavonoids (TotF), condensed tannins (CT), and antioxidant capacity in each fruit part varied significantly among the cultivars. The TotP content was high in the peduncle (42.2-58.8 g GAE kg-1 DM) and low in flesh (6.4-17.7 g GAE kg-1 DM); Conclusions: the highest values of antioxidant capacity, TotP, NTP, TotF, and CT were found in the flesh of the cultivar Buttiru and in the peel of the cultivar Camusina. Chlorogenic acid was the major individual phenolic compound in peel, flesh and core, whereas arbutin was mostly present in the peduncle. Results can contribute to revise target exploitations of underutilized ancient pear cultivars.
Collapse
Affiliation(s)
- Giovanna Piluzza
- National Research Council, Institute for the Animal Production System in Mediterranean Environment, Traversa La Crucca 3, Località Baldinca, 07100 Sassari, Italy
| | - Giuseppe Campesi
- National Research Council, Institute for the Animal Production System in Mediterranean Environment, Traversa La Crucca 3, Località Baldinca, 07100 Sassari, Italy
| | - Guy D'hallewin
- National Research Council, Institute of Sciences of Food Production, Traversa La Crucca 3, Località Baldinca, 07100 Sassari, Italy
| | - Maria Giovanna Molinu
- National Research Council, Institute of Sciences of Food Production, Traversa La Crucca 3, Località Baldinca, 07100 Sassari, Italy
| | - Giovanni Antonio Re
- National Research Council, Institute for the Animal Production System in Mediterranean Environment, Traversa La Crucca 3, Località Baldinca, 07100 Sassari, Italy
| | - Federico Sanna
- National Research Council, Institute for the Animal Production System in Mediterranean Environment, Traversa La Crucca 3, Località Baldinca, 07100 Sassari, Italy
| | - Leonardo Sulas
- National Research Council, Institute for the Animal Production System in Mediterranean Environment, Traversa La Crucca 3, Località Baldinca, 07100 Sassari, Italy
| |
Collapse
|
9
|
Matrose NA, Belay ZA, Obikeze K, Mokwena L, Caleb OJ. Bioprospecting of Helichrysum Species: Chemical Profile, Phytochemical Properties, and Antifungal Efficacy against Botrytis cinerea. PLANTS (BASEL, SWITZERLAND) 2022; 12:58. [PMID: 36616185 PMCID: PMC9824591 DOI: 10.3390/plants12010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Variation in plant species and extraction solvents play a crucial role in the recovery of their bioactive compounds and antifungal efficacy. Thus, in this study, a comparative investigation was carried out using extraction solvents: 70% acetone and 95% ethanol to obtain crude aqueous extracts from Helichrysum odoratissimum and H. patulum. Crude aqueous extracts were screened using gas chromatography-mass spectrometry (GC-MS), to gain insight into their chemical composition. Phytochemical properties (total polyphenols (TP) and radical scavenging capacity via 2,2-diphenyl-1-picrylhydrazyl (DPPH)), and antifungal activity against Botrytis cinerea of the crude extracts were evaluated. Fungicide (Rovral® WP) and extraction solvents were used as controls. Variation in Helichrysum spp. and extraction solvent had influence on the chemical composition, phytochemicals, and antifungal activities. Metabolites such as γ-terpinene (≈0.1%), α-amorphene (≈0.6%) α-gurjunene (≈1.4%), β-selinene (2.2-3.2%), γ-gurjunene (≈3.3%), and methyl cinnamate (≈20%) were detected only in extracts of H. patulum. Crude extract of H. odoratissimum using 70% acetone had the highest TP (19.3 ± 0.76 g GA 100 g-1), and DPPH capacity (13,251.5 ± 700.55 µmol Trolox g-1) compared to H. patulum (p ≤ 0.05). Ethanolic extracts of H. patulum showed highest antifungal efficacy (≈65%) against B. cinerea (p ≤ 0.05) compared to other crude extracts. This study showed that Helichrysum spp. differ in their potential as a source for bioactive compounds and antifungal treatments/formulations.
Collapse
Affiliation(s)
- Neliswa A Matrose
- Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa
- School of Pharmacy, Faculty of Science, University of the Western Cape, Bellville 7535, South Africa
| | - Zinash A Belay
- Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa
| | - Kenechukwu Obikeze
- School of Pharmacy, Faculty of Science, University of the Western Cape, Bellville 7535, South Africa
| | - Lucky Mokwena
- Central Analytical Facility, Stellenbosch University, Matieland 7602, South Africa
| | - Oluwafemi James Caleb
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
- African Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
10
|
In Vitro Antibacterial and Anti-Inflammatory Activity of Arctostaphylos uva-ursi Leaf Extract against Cutibacterium acnes. Pharmaceutics 2022; 14:pharmaceutics14091952. [PMID: 36145700 PMCID: PMC9501556 DOI: 10.3390/pharmaceutics14091952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
Cutibacterium acnes (C. acnes) is the main causative agent of acne vulgaris. The study aims to evaluate the antimicrobial activity of a natural product, Arctostaphylos uva-ursi leaf extract, against C. acnes. Preliminary chemical–physical characterization of the extract was carried out by means of FT-IR, TGA and XPS analyses. Skin permeation kinetics of the extract conveyed by a toning lotion was studied in vitro by Franz diffusion cell, monitoring the permeated arbutin (as the target component of the extract) and the total phenols by HPLC and UV-visible spectrophotometry, respectively. Antimicrobial activity and time-killing assays were performed to evaluate the effects of Arctostaphylos uva-ursi leaf extract against planktonic C. acnes. The influence of different Arctostaphylos uva-ursi leaf extract concentrations on the biofilm biomass inhibition and degradation was evaluated by the crystal violet (CV) method. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) test was used to determine the viability of immortalized human keratinocytes (HaCaT) after exposure to Arctostaphylos uva-ursi leaf extract for 24 and 48 h. Levels of interleukin (IL)-1β, IL-6, IL-8 and tumour necrosis factor (TNF)-α were quantified after HaCaT cells cotreatment with Arctostaphylos uva-ursi leaf extract and heat-killed C. acnes. The minimum inhibitory concentration (MIC) which exerted a bacteriostatic action on 90% of planktonic C. acnes (MIC90) was 0.6 mg/mL. Furthermore, MIC and sub-MIC concentrations influenced the biofilm formation phases, recording a percentage of inhibition that exceeded 50 and 40% at 0.6 and 0.3 mg/mL. Arctostaphylos uva-ursi leaf extract disrupted biofilm biomass of 57 and 45% at the same concentrations mentioned above. Active Arctostaphylos uva-ursi leaf extract doses did not affect the viability of HaCaT cells. On the other hand, at 1.25 and 0.6 mg/mL, complete inhibition of the secretion of pro-inflammatory cytokines was recorded. Taken together, these results indicate that Arctostaphylos uva-ursi leaf extract could represent a natural product to counter the virulence of C. acnes, representing a new alternative therapeutic option for the treatment of acne vulgaris.
Collapse
|
11
|
Sadeghinezhad S, Khodamoradi E, Diojan L, Taeb S, Najafi M. Radioprotective Mechanisms of Arbutin: A Systematic Review. Curr Drug Res Rev 2022; 14:132-138. [PMID: 35319405 DOI: 10.2174/2589977514666220321114415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
PURPOSE Efforts to produce radioprotective agents of high potential are appropriate strategies for overcoming possible IR toxicity in organisms. The present research aims to evaluate the signaling pathways and mechanisms through which arbutin exerts radioprotective effects on organisms. METHODS The databases of PubMed, Web of Sciences, Google Scholar, and Scopus were searched to find studies that reported radioprotective effects for arbutin. Besides, the data were searched within the time period from 2010 to 2020. RESULTS Five research articles met our criteria, which were included in the analysis based on their relevance to the topic. The present systematic review provides conclusions about various mechanisms and pathways through which arbutin induces radioprotection. CONCLUSIONS Based on the relevant studies, various mechanisms can be proposed for inducing radioprotective effects by arbutin, including inhibition of oxidative stress, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Shima Sadeghinezhad
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Loghman Diojan
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahram Taeb
- Department of Radiology, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
12
|
Two faces of arbutin in hepatocellular carcinoma (HepG2) cells: Anticarcinogenic effect in high concentration and protective effect against cisplatin toxicity through its antioxidant and anti-inflammatory activity in low concentration. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Benković V, Marčina N, Horvat Knežević A, Šikić D, Rajevac V, Milić M, Kopjar N. Potential radioprotective properties of arbutin against ionising radiation on human leukocytes in vitro. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 872:503413. [PMID: 34798933 DOI: 10.1016/j.mrgentox.2021.503413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/12/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
Arbutin is a simple phenolic glucoside biosynthesised in many plant families. Some of the everyday foods that contain arbutin are species of the genus Origanum, peaches, cereal products, coffee and tea and Arctostaphyllos uva ursi L. leaves. Arbutin possesses various beneficial effects in the organism, and was confirmed effective in the treatment of urinary tract infections as well as in preventing skin hyperpigmentation. It shows antioxidant and anti-inflammatory properties, and antitumor activity. The aim of this study was to explore potential radioprotective properties of arbutin in concentrations of 11.4 μg/mL, 57 μg/mL, 200 μg/mL and 400 μg/mL administered as a pre-treatment for one hour before exposing human leukocytes to ionising radiation at a therapeutic dose of 2 Gy. The alkaline comet assay was used to establish the levels of primary DNA damage, and cytokinesis-block micronucleus (CBMN) cytome assay to determine the level of cytogenetic damage. None of the tested concentrations of single arbutin showed genotoxic and cytotoxic effects. Even at the lowest tested concentration, 11.4 μg/mL, arbutin demonstrated remarkable potential for radioprotection in vitro, observed both at the level of primary DNA damage, and using CBMN cytome assay. The best dose reduction compared with amifostine was observed after pre-treatment with the highest concentration of arbutin, corresponding to 400 μg/mL. Promising results obtained on the leukocyte model speak in favour of extending similar experiments on other cell and animal models.
Collapse
Affiliation(s)
- Vesna Benković
- Division of Animal Physiology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Nives Marčina
- Division of Animal Physiology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Anica Horvat Knežević
- Division of Animal Physiology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Dunja Šikić
- Division of Animal Physiology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Vedran Rajevac
- University Hospital for Tumours, Sisters of Mercy University Hospital Centre, Zagreb, Croatia
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Nevenka Kopjar
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
14
|
de Falco B, Grauso L, Fiore A, Bochicchio R, Amato M, Lanzotti V. Metabolomic analysis and antioxidant activity of wild type and mutant chia (Salvia hispanica L.) stem and flower grown under different irrigation regimes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6010-6019. [PMID: 33855720 PMCID: PMC8518854 DOI: 10.1002/jsfa.11256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Chia (Salvia hispanica L.) is a functional food from Central America. Interest in it is growing rapidly due to the many health benefits from the seed. However, when chia is grown at high latitudes, seed yield may be low whereas a high stem biomass and immature inflorescences are produced. Little is known about the chemical composition and the properties of stems and flowers. In this work, the metabolite profile, the antioxidant activity, and the total polyphenol content of stems and inflorescences were evaluated in a factorial experiment with different chia populations (commercial black chia and long-day flowering mutants G3, G8, and G17) and irrigation (100% and 50% of evapotranspiration). RESULTS The results show the influence of irrigation and seed source on the antioxidant activity and total polyphenol content of chia flower and stem. Inflorescences exhibit higher antioxidant activity, suggesting their potential use as natural antioxidant. The mutants G3 and G8, at 50% irrigation, contained the highest amounts of compounds with nutraceutical value, especially within the flower. The mutant G17 showed lower antioxidant activity and polyphenol content compared to other seed sources but exhibited high omega 3 content in flowers but low in stems. This indicates that chia varieties should be chosen according to the objective of cultivation. CONCLUSION These findings, indicating a close relation of metabolite content with irrigation and seed source, may provide the basis for the use of chia flower and stem for their nutraceutical value in the food, feed, and supplement industries. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Bruna de Falco
- School of Science, Engineering & Technology, Division of Food & DrinkUniversity of AbertayDundeeUK
- School of Pharmacy, Centre for Analytical BioscienceUniversity of NottinghamNottinghamUK
| | - Laura Grauso
- Department of Agricultural SciencesUniversity of Naples Federico IINaplesItaly
| | - Alberto Fiore
- School of Science, Engineering & Technology, Division of Food & DrinkUniversity of AbertayDundeeUK
| | - Rocco Bochicchio
- Scuola di Scienze Agrarie, Forestali Alimentari ed AmbientaliUniversità della BasilicataPotenzaItaly
| | - Mariana Amato
- Scuola di Scienze Agrarie, Forestali Alimentari ed AmbientaliUniversità della BasilicataPotenzaItaly
| | - Virginia Lanzotti
- Department of Agricultural SciencesUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
15
|
Osteoprotective Effects of ‘Anti-Diabetic’ Polyherbal Mixture in Type 1 Diabetic Rats. ACTA VET-BEOGRAD 2021. [DOI: 10.2478/acve-2021-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Bone loss leading to osteopenia and osteoporosis is a frequent secondary complication of diabetes. This study aimed to evaluate the value of a traditionally used ‘anti-diabetic’ polyherbal mixture as a possible remedy for the prevention of this complication. Diabetes was induced in Wistar female rats with a single intraperitoneal injection of alloxan monohydrate. The animals with blood glucose higher than 20 mmol/L for 14 consecutive days were considered diabetic. For the next 14 days, animals were treated with two concentrations of the polyherbal mixture (10 and 20 g of dry plant material/ kg). Bone histopathology was evaluated using the H&E and Masson’s trichrome staining. Alloxan-induced diabetes triggered bone histological changes characteristic for the development of osteopenia and osteoporosis and treatment with the polyherbal decoction restored these histopathological changes of the bones to the healthy animal level. At the same time, treatment with these tested doses has shown no adverse effects. These findings suggest that this mixture might be used as a remedy for the prevention of diabetic bone loss.
Collapse
|
16
|
Wang R, Mu J. Arbutin attenuates ethanol-induced acute hepatic injury by the modulation of oxidative stress and Nrf-2/HO-1 signaling pathway. J Biochem Mol Toxicol 2021; 35:e22872. [PMID: 34346143 DOI: 10.1002/jbt.22872] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/20/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022]
Abstract
Alcoholic liver disease (ALD) is a pervasive ailment due to the excessive consumption of alcohol and there is no operative drug for its treatment. The current exploration was intended to examine the hepatoprotective efficacy of arbutin against ethanol-provoked liver injury in rats via the modulation of the Nrf-2/HO-1 signaling cascade. Wistar rats were challenged with the 3 g/kg/day (40% v/v) of ethanol for 4 weeks to provoke the ALD and concomitantly supplemented with 40 mg/kg of arbutin. The liver function markers enzymes, inflammatory cytokines, and oxidative stress markers levels were scrutinized by using the respective assay kits. The mRNA expression of Nrf-2/HO-1 signaling proteins was studied by reverse-transcription polymerase chain reaction. The histological alterations of liver tissues were examined. HepG2 cells were used for the in vitro studies. The levels of oxidative stress markers and liver marker enzymes were examined by using kits. Reactive oxygen species (ROS) and apoptotic cell death was detected by using fluorescent staining. There were no major differences in the body weight and liver weight of experimental animals. Arbutin treatment appreciably reduced the liver marker enzymes, upregulated superoxide dismutase, glutathione peroxidase, total antioxidant capacity, and the hydroxyl scavenging ability, and diminished the tumor necrosis factor-α and interleukin-6 levels in the serum of ethanol provoked animals. Arbutin triggered Nrf-2/HO-1 signaling cascade liver tissues of ethanol-provoked animals. Histological findings proved the preventing effects of arbutin. Arbutin did not demonstrate toxicity to the HepG2 cells. It reduced the aspartate aminotransferase and alanine aminotransferase, ROS, apoptotic cell death, lipid peroxidation and improved the antioxidants' levels in the ethanol-challenged HepG2 cells. In conclusion, our findings unveiled the hepatoprotective efficacy of arbutin against ethanol-provoked liver injury in rats. It could be a promising agent to treat alcoholic liver disease in the future.
Collapse
Affiliation(s)
- Rongsheng Wang
- Department of General Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jinji Mu
- Department of Gastroenterology, People's Hospital of Tongchuan, Tongchuan, China
| |
Collapse
|
17
|
Yang Z, Shi H, Chinnathambi A, Salmen SH, Alharbi SA, Veeraraghavan VP, Surapaneni KM, Arulselvan P. Arbutin exerts anticancer activity against rat C6 glioma cells by inducing apoptosis and inhibiting the inflammatory markers and P13/Akt/mTOR cascade. J Biochem Mol Toxicol 2021; 35:e22857. [PMID: 34338399 DOI: 10.1002/jbt.22857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/03/2021] [Accepted: 07/14/2021] [Indexed: 11/08/2022]
Abstract
Gliomas are a type of brain cancer that occurs in the supporting glial cells of the brain. It is highly malignant and accounts for 80% of brain tumors with high mortality and morbidity. Phytomedicines are potent alternatives for allopathic drugs which cause side effects. They have been used from ancient times by traditional Chinese, Ayurveda, and Siddha medicine. Arubtin is a glycoside phytochemical extracted from plants and belongs to the family of Ericaceae. Arbutin possesses various pharmacological properties such as anti-inflammatory, antioxidant, antitumor, and so on. Hence in the present study, we analyzed the anticancer potency of arbutin against rat C6 glioma cells. Rat C6 glioma cells were procured from American Type Culture Collection and the cells were cultured in Roswell Park Memorial Institute-1640 medium. To assess the cytotoxicity effect of the arbutin against C6 glioma cells, an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide test was performed with different doses from 10 to 60 µM. Arbutin effectively induced apoptosis in the cells and the IC50 dose was obtained at 30 µM. For further studies, we selected the 30 µM IC50 dose and a higher dose of 40 µM. Reactive oxygen species (ROS) generated were analyzed with DCFDA/H2DCFDA stain and the destruction of mitochondrial membrane permeability which is the initiator of apoptosis was analyzed with a cationic stain Rhodamine 123. Dual staining with acridine orange and ethidium bromide was performed to assess the viable and dead cells. Cell adhesion properties of glioma cells were analyzed with Matrigel assay. The apoptotic, inflammatory, and phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling molecules were analyzed with quantitative polymerase chain reaction (qPCR) analysis to confirm the anticancer effect of arbutin. Arbutin generated excessive ROS and disrupted the mitochondrial membrane, which induced apoptosis in cells, it also inhibited the cell adhesion property of C6 glioma cells. qPCR analysis clearly indicates arbutin increases the apoptotic genes and decreased the inflammatory and PI3K/mTOR signaling molecules. Overall, our results authentically confirm that arbutin can be a potent alternative for treating glioma.
Collapse
Affiliation(s)
- Zhangkai Yang
- Department of Neurosurgery, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Hangyu Shi
- Department of Neurosurgery, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sulaiman A Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Krishna Mohan Surapaneni
- Department of Biochemistry, Clinical Skills & Simulation, Molecular Virology and Research, Panimalar Medical College Hospital & Research Institute, Chennai, Tamil Nadu, India
| | | |
Collapse
|
18
|
Boo YC. Arbutin as a Skin Depigmenting Agent with Antimelanogenic and Antioxidant Properties. Antioxidants (Basel) 2021; 10:antiox10071129. [PMID: 34356362 PMCID: PMC8301119 DOI: 10.3390/antiox10071129] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/27/2022] Open
Abstract
Arbutin is a compound of hydroquinone and D-glucose, and it has been over 30 years since there have been serious studies on the skin lightening action of this substance. In the meantime, there have been debates and validation studies about the mechanism of action of this substance as well as its skin lightening efficacy and safety. Several analogs or derivatives of arbutin have been developed and studied for their melanin synthesis inhibitory action. Formulations have been developed to improve the stability, transdermal delivery, and release of arbutin, and device usage to promote skin absorption has been developed. Substances that inhibit melanin synthesis synergistically with arbutin have been explored. The skin lightening efficacy of arbutin alone or in combination with other active ingredients has been clinically evaluated. Combined therapy with arbutin and laser could give enhanced depigmenting efficacy. The use of arbutin causes dermatitis rarely, and caution is recommended for the use of arbutin-containing products, especially from the viewpoint that hydroquinone may be generated during product use. Studies on the antioxidant properties of arbutin are emerging, and these antioxidant properties are proposed to contribute to the skin depigmenting action of arbutin. It is hoped that this review will help to understand the pros and cons of arbutin as a cosmetic ingredient, and will lead to future research directions for developing advanced skin lightening and protecting cosmetic products.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
19
|
Biologically Active Compounds in Stizolophus balsamita Inflorescences: Isolation, Phytochemical Characterization and Effects on the Skin Biophysical Parameters. Int J Mol Sci 2021; 22:ijms22094428. [PMID: 33922647 PMCID: PMC8122880 DOI: 10.3390/ijms22094428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Three germacranolides, as well as five flavonoids, natural steroid and simple phenolic compounds, were isolated from the inflorescence of Stizolophus balsamita growing in Iran. The paper presents active compounds found for the first time in the inflorescence of this species. The flavonoids, simple phenolic compounds and natural steroids have been isolated for the first time in the genus Stizolophus. The MTT assay was employed to study in vitro cytotoxic effects of the taxifolin against human fibroblasts. We also evaluate the possible biological properties/cosmetic effects of Stizolophus balsamita extract and taxifolin on the human skin. Sixty healthy Caucasian adult females with no dermatological diseases were investigated. We evaluate the effects of S. balsamita extract and taxifolin on skin hydration and transepidermal water loss (TEWL). It was revealed that S. balsamita extract might decrease TEWL level and fixed the barrier function of the epidermis. The presence of bioactive phytochemical constituents in S. balsamita inflorescences makes them a valuable and safe source for creating new cosmetics and medicines.
Collapse
|
20
|
Zhang Y, Li M, Liu Z, Fu Q. Arbutin ameliorates glucocorticoid-induced osteoporosis through activating autophagy in osteoblasts. Exp Biol Med (Maywood) 2021; 246:1650-1659. [PMID: 33757338 DOI: 10.1177/15353702211002136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chronic long-term glucocorticoid use causes osteoporosis partly by interrupting osteoblast homeostasis and exacerbating bone loss. Arbutin, a natural hydroquinone glycoside, has been reported to have biological activities related to the differentiation of osteoblasts and osteoclasts. However, the role and underlying mechanism of arbutin in glucocorticoid-induced osteoporosis are elusive. In this study, we demonstrated that arbutin administration ameliorated osteoporotic disorders in glucocorticoid dexamethasone (Dex)-induced mouse model, including attenuating the loss of bone mass and trabecular microstructure, promoting bone formation, suppressing bone resorption, and activating autophagy in bone tissues. Furthermore, Dex-stimulated mouse osteoblastic MC3T3-E1 cells were treated with arbutin. Arbutin treatment rescued Dex-induced repression of osteoblast differentiation and mineralization, the downregulation of osteogenic gene expression, reduced autophagic marker expression, and decreased autophagic puncta formation. The application of autophagy inhibitor 3-MA decreased autophagy, differentiation, and mineralization of MC3T3-E1 cells triggered by arbutin. Taken together, our findings suggest that arbutin treatment fends off glucocorticoid-induced osteoporosis, partly through promoting differentiation and mineralization of osteoblasts by autophagy activation.
Collapse
Affiliation(s)
- Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Mingyang Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Qin Fu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| |
Collapse
|
21
|
Saeedi M, Khezri K, Seyed Zakaryaei A, Mohammadamini H. A comprehensive review of the therapeutic potential of α-arbutin. Phytother Res 2021; 35:4136-4154. [PMID: 33724594 DOI: 10.1002/ptr.7076] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/01/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Cosmetic dermatology preparations such as bleaching agents are ingredients with skin-related biological activities for increasing and improving skin beauty. The possibility of controlling skin hyperpigmentation disorders is one of the most important research goals in cosmetic preparations. Recently, cosmetics containing herbal and botanical ingredients have attracted many interests for consumers of cosmetic products because these preparations are found safer than other preparations with synthetic components. However, high-quality trial studies in larger samples are needed to confirm safety and clinical efficacy of phytotherapeutic agents with high therapeutic index. Arbutin (p-hydroxyphenyl-β-d-glucopyranoside) is a bioactive hydrophilic polyphenol with two isomers including alpha-arbutin (4-hydroxyphenyl-α-glucopyranoside) and β-arbutin (4-hydroxyphenyl-β-glucopyranoside). It is used as a medicinal plant in phytopharmacy. Studies have shown that alpha-arbutin is 10 times more effective than natural arbutin. A comparison of IC50 values showed that α-arbutin (with concentration 2.0 mM) has a more potent inhibitory activity on human tyrosinase against natural arbutin (with higher concentration than 30 mM). A review of recent studies showed that arbutin could be beneficial in treatment of various diseases such as hyperpigmentation disorders, types of cancers, central nervous system disorders, osteoporosis, diabetes, etc. This study was designed to describe the therapeutic efficiencies of arbutin.
Collapse
Affiliation(s)
- Majid Saeedi
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | | | | |
Collapse
|
22
|
Zhao J, Kumar M, Sharma J, Yuan Z. Arbutin effectively ameliorates the symptoms of Parkinson's disease: the role of adenosine receptors and cyclic adenosine monophosphate. Neural Regen Res 2021; 16:2030-2040. [PMID: 33642391 PMCID: PMC8343309 DOI: 10.4103/1673-5374.308102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
An antagonistic communication exists between adenosinergic and dopaminergic signaling in the basal ganglia, which suggests that the suppression of adenosine A2A receptors-cyclic adenosine monophosphate pathway may be able to restore the disrupted dopamine transmission that results in motor symptoms in Parkinson’s disease (PD). Arbutin is a natural glycoside that possesses antioxidant, anti-inflammatory, and neuroprotective properties. The purpose of this study was to investigate whether arbutin could ameliorate the symptoms of PD and to examine the underlying mechanism. In this study, Swiss albino mouse models of PD were established by the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine for 4 successive days, with the concurrent intraperitoneal administration of arbutin (50 and 100 mg/kg) for 7 days. The results showed that arbutin significantly reduced lipid peroxidation, total nitrite levels, and inflammation in the substantia nigra and striatum of PD mouse models. In addition, arbutin decreased the activity of endogenous antioxidants, reduced the levels of dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, and γ-aminobutyric acid, and minimized neurodegeneration in the striatum. Arbutin also reduced the abnormal performance of PD mouse models in the open field test, bar test, pole test, and rotarod test. The therapeutic efficacy of arbutin was similar to that of madopar. The intraperitoneal injection of the A2AR agonist CGS21680 (0.5 mg/kg) attenuated the therapeutic effects of arbutin, whereas the intraperitoneal injection of forskolin (3 mg/kg) enhanced arbutin-mediated improvements. These findings suggest that arbutin can improve the performance of PD mouse models by inhibiting the function of the A2AR and enhancing the effects of cyclic adenosine monophosphate. This study was approved by the Institutional Animal Ethics Committee (1616/PO/Re/S/12/CPCSEA) on November 17, 2019 (approval No. IAEC/2019/010).
Collapse
Affiliation(s)
- Jie Zhao
- Department of Neurology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province, China
| | - Manish Kumar
- Department of Pharmacology, Swift School of Pharmacy, Rajpura (Patiala), Punjab, India
| | - Jeevan Sharma
- Department of Pharmacology, Swift School of Pharmacy, Rajpura (Patiala), Punjab, India
| | - Zhihai Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
23
|
Abstract
Arbutin is a glycoside reported for its anti-oxidant, anti-inflammatory and anti-tumor properties. However, the cardioprotective effect of Arbutin is not well established. The study aims to understand the effect of arbutin on isoproterenol (ISO)-induced cardiac hypertrophy in mice. The animals were pretreated with Arbutin for a week and ISO was administered for 10 days and then sacrificed. Cardiac injury markers such as creatinine kinase and lactate dehydrogenase concentrations were measured in the serum. The mRNA expression of cardiac hypertrophy markers namely atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were measured using qRT-PCR. The levels of pro-inflammatory cytokines TNF-α and IL-6 were quantified by ELISA in isolated tissues and serum. Other tissue anti-oxidant parameters such as GST, GSH, SOD and TBARS were also measured. TUNEL assay was performed to detect apoptosis. Histology studies were performed using H & E and Masson trichome staining. Immunoblot analysis was used to quantify the protein expression of TLR-4 and NF-κB. ISO-alone-treated group showed significant increase in CK-MB, LDH along with increase in hypertrophic markers ANP and BNP, TNF-α and IL-6 levels in serum and tissues and increased cardiomyocyte apoptosis. Anti-oxidant parameters were significantly decreased and TLR-4 and NF-κB protein expression was found to be upregulated in comparison to the control group. Pretreatment with Arbutin-exhibited significant inhibition of TLR-4/NF-κB pathway with decreased levels of pro-inflammatory cytokines and enhanced myocardial anti-oxidant status. Our study demonstrated that pretreatment with Arbutin exhibits marked protective effects on ISO-induced cardiac hypertrophy in mice. Thus, Arbutin may be used as potential pharmacological interventions in the management of cardiac hypertrophy.
Collapse
|
24
|
Safari H, Zabihi E, Pouramir M, Morakabati P, Abedian Z, Karkhah A, Nouri HR. Decrease of intracellular ROS by arbutin is associated with apoptosis induction and downregulation of IL-1β and TNF-α in LNCaP; prostate cancer. J Food Biochem 2020; 44:e13360. [PMID: 32614483 DOI: 10.1111/jfbc.13360] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022]
Abstract
Increased reactive oxygen species (ROS) along with inflammation are involved in the prostate cancer (PCa). Therefore, this study was conducted to investigate the molecular mechanisms that were affected by arbutin as an antioxidant on prostate cancer cell line; LNCap. The intracellular ROS measurement confirmed that arbutin significantly (p < .05) decreased the ROS levels in a dose-dependent manner. Detection of cell death profile established that 1,000 μM of arbutin could remarkably induced apoptosis (p < .05), while tert-butyl hydroperoxide (tBHP) as ROS inducer prompted necrosis. In addition, 1,000 µM of arbutin successfully decreased expressions of IL-1β and TNF-α genes (p < .05). Furthermore, evaluation of the IL-1β protein level showed that arbutin could significantly decrease this cytokine (p < .05). In summary, reduction of ROS along with increasing apoptosis and decreasing expression of pro-inflammatory genes following arbutin treatment can open new visions in the treatment of prostate cancer using complementary medicine. PRACTICAL APPLICATIONS: Nowadays, arbutin as a glycosylated hydroquinone is available commercially in both natural and synthetic forms. Arbutin is of interest because of its skin-lightening effect, and used in cosmetic products for cutaneous hyperpigmentation. Arbutin inhibited tyrosinase in melanocytes competitively. Moreover, arbutin was able to attenuate oxidative stress and, its anti-inflammatory activities has been established. In addition, arbutin has represented useful activities for suppression of malignant melanoma development. In addition, arbutin exhibits several pharmacological effects, including antimicrobial, antihyperlipidemic, antihyperglycemic, and alpha amylase inhibitory effects. In this study, we showed its effect on prostate cancer in vitro. Therefore, it opens new insights in the complementary medicine that can maintain or improve human health.
Collapse
Affiliation(s)
- Hajar Safari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahdi Pouramir
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Payam Morakabati
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Zeinab Abedian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ahmad Karkhah
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Reza Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
25
|
Arbutin Improves Functional Recovery and Attenuates Glial Activation in Lysolecethin-Induced Demyelination Model in Rat Optic Chiasm. Mol Neurobiol 2020; 57:3228-3242. [PMID: 32506379 DOI: 10.1007/s12035-020-01962-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Neuroinflammation, glial activation, and oxidative injury are the main pathological mechanisms of demyelination in multiple sclerosis (MS). Arbutin, a natural polyphenol compound, possesses antioxidant, anti-inflammatory, and neuroprotective properties whose therapeutic potential has not been studied in the experimental animal models of MS. In the present study, the efficiency of arbutin on lysolecthin (LPC)-induced local demyelination model was investigated. Demyelination was induced by micro-injection of 2 μl LPC (1%) into the rat optic chiasm and the treated group received daily injection of arbutin (50 mg/kg, i.p) during 2 weeks. Visual-evoked potential (VEP) recordings were used to functionally assess the visual pathway. Gene expression analysis was done to evaluate the arbutin effect on the inflammatory, stress oxidative-related mediators, and myelin markers. The myelin-specific staining was performed to assess demyelination and GFAP staining as an astrocyte marker. We found that arbutin significantly reduced P1-latency of VEPs waves and demyelination at 7 and 14 days post-demyelination. Arbutin decreased inflammatory cytokines (IL-1B, IL-17, TNF-α) and iNOS mRNA expression level. In addition, the expression level of anti-inflammatory cytokine (IL-10) and antioxidant mediators (Nrf-2 and HO-1) was enhanced by arbutin treatment. Arbutin increased MBP and Olig2 expression levels in demyelination context. Finally, arbutin attenuated GFAP as an astrocyte marker. Finally, this study demonstrates that arbutin improves functional recovery and myelin repair in the demyelinated optic chiasm through attenuation of inflammation, astrocyte activation, and oxidative stress. These findings might open new promising avenues for treating demyelinating disorders such as multiple sclerosis. Graphical abstract.
Collapse
|
26
|
Tenuta MC, Deguin B, Loizzo MR, Dugay A, Acquaviva R, Malfa GA, Bonesi M, Bouzidi C, Tundis R. Contribution of Flavonoids and Iridoids to the Hypoglycaemic, Antioxidant, and Nitric Oxide (NO) Inhibitory Activities of Arbutus unedo L. Antioxidants (Basel) 2020; 9:antiox9020184. [PMID: 32098404 PMCID: PMC7071084 DOI: 10.3390/antiox9020184] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/11/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
This study aims at investigating the contribution of two classes of compounds, flavonoids and iridoids, to the bioactivity of Arbutus unedo L. leaves and fruits. The impact of different extraction procedures on phytochemicals content and hypoglycemic, antioxidant, and nitric oxide (NO) inhibitory activities of A. unedo fresh and dried plant materials was investigated. Ellagic acid 4-O-β-D-glucopyranoside, kaempferol 3-O-glucoside, and norbergenin were identified for the first time in this genus by using liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry (LC-ESI-QTOF-MS). Three iridoids (gardenoside, geniposide, unedoside) are specifically identified in the leaves. Interestingly, asperuloside was extracted only from dried fruits by ethanol with Soxhlet apparatus. Extracts were screened for their potential antioxidant activities by using the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), Ferric Reducing Activity Power (FRAP), and β-carotene bleaching tests. Based on the Global Antioxidant Score (GAS) calculation, the most promising antioxidant extract was obtained by hydroalcoholic maceration of dried leaves that showed half maximal inhibitory concentration (IC50) of 0.42 and 0.98 μg/mL in ABTS and DPPH assays, respectively. The hypoglycaemic activity was investigated by α-amylase and α-glucosidase inhibition tests. Extracts obtained by ethanol ultrasound extraction of fresh leaves and hydroalcoholic maceration of fresh fruits (IC50 of 19.56 and 28.42 μg/mL, respectively) are more active against α-glucosidase than the positive control acarbose (IC50 of 35.50 μg/mL). Fruit extracts exhibited the highest anti-inflammatory activity.
Collapse
Affiliation(s)
- Maria Concetta Tenuta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (Cosenza), Italy; (M.C.T.); (M.R.L.); (M.B.); (R.T.)
- Université de Paris, UFR de Pharmacie de Paris, U.M.R. n°8038, -CiTCoM- (CNRS, Université de Paris), F-75006 Paris, France; (A.D.); (C.B.)
| | - Brigitte Deguin
- Université de Paris, UFR de Pharmacie de Paris, U.M.R. n°8038, -CiTCoM- (CNRS, Université de Paris), F-75006 Paris, France; (A.D.); (C.B.)
- Correspondence:
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (Cosenza), Italy; (M.C.T.); (M.R.L.); (M.B.); (R.T.)
| | - Annabelle Dugay
- Université de Paris, UFR de Pharmacie de Paris, U.M.R. n°8038, -CiTCoM- (CNRS, Université de Paris), F-75006 Paris, France; (A.D.); (C.B.)
| | - Rosaria Acquaviva
- Department of Drug Science - Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.A.); (G.A.M.)
| | - Giuseppe Antonio Malfa
- Department of Drug Science - Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.A.); (G.A.M.)
| | - Marco Bonesi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (Cosenza), Italy; (M.C.T.); (M.R.L.); (M.B.); (R.T.)
| | - Chouaha Bouzidi
- Université de Paris, UFR de Pharmacie de Paris, U.M.R. n°8038, -CiTCoM- (CNRS, Université de Paris), F-75006 Paris, France; (A.D.); (C.B.)
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (Cosenza), Italy; (M.C.T.); (M.R.L.); (M.B.); (R.T.)
| |
Collapse
|
27
|
Shang Y, Wei W, Zhang P, Ye BC. Engineering Yarrowia lipolytica for Enhanced Production of Arbutin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1364-1372. [PMID: 31903751 DOI: 10.1021/acs.jafc.9b07151] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Arbutin, a glycoside, is derived from the leaves of several plants, including wheat, pear, and bearberry plants, and has a significant role in the treatment of melanoma, cystitis, and cough. Here, we aimed to modify Yarrowia lipolytica to produce arbutin. To construct the arbutin synthetic pathway in Y. lipolytica, three genes (chorismate pyruvate-lyase (UbiC), 4-hydroxybenzoate 1-hydroxylase (MNX1), and hydroquinone glucosyltransferase (AS)) were codon-optimized and heterologously expressed. To maximize arbutin production, seven arbutin-biosynthesis molecular targets were overexpressed, and we found that the individual strengthening of DHS1 and DHS2 led to an 8.9- and 7.8-fold improvement in arbutin yield, respectively. Through optimization, a maximum arbutin titer of 8.6 ± 0.7 g/L was achieved using the finally engineered strain, po1f-At09. Overall, this is the first report of heterologous arbutin synthesis in Y. lipolytica at a high titer. Furthermore, this work opens a possibility for the overproduction of shikimate pathway derivatives in Y. lipolytica.
Collapse
Affiliation(s)
- Yanzhe Shang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Wenping Wei
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Ping Zhang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , China
- School of Chemistry and Chemical Engineering , Shihezi University , Xinjiang 832000 , China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| |
Collapse
|
28
|
|
29
|
Chemical and Biocatalytic Routes to Arbutin †. Molecules 2019; 24:molecules24183303. [PMID: 31514332 PMCID: PMC6766929 DOI: 10.3390/molecules24183303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
Arbutin (also called β-arbutin) is a natural product occurring in the leaves of a variety of different plants, the bearberries of the Ericaceae and Saxifragaceae families being prominent examples. It is a β-glucoside derived from hydroquinone (HQ; 1,4-dihydroxybenzene). Arbutin has been identified in traditional Chinese folk medicines as having, inter alia, anti-microbial, anti-oxidant, and anti-inflammatory properties that useful in the treatment of different ailments including urinary diseases. Today, it is also used worldwide for the treatment of skin ailments by way of depigmenting, which means that arbutin is a component of many products in the cosmetics and healthcare industries. It is also relevant in the food industry. Hundreds of publications have appeared describing the isolation, structure determination, toxicology, synthesis, and biological properties of arbutin as well as the molecular mechanism of melanogenesis (tyrosinase inhibition). This review covers the most important aspects with special emphasis on the chemical and biocatalytic methods for the production of arbutin.
Collapse
|
30
|
Extraction of phenolic antioxidants from Pyrus elaeagrifolia Pallas: process optimization, investigation of the bioactivity and β-glucuronidase inhibitory potential. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00210-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Ștefănescu BE, Szabo K, Mocan A, Crişan G. Phenolic Compounds from Five Ericaceae Species Leaves and Their Related Bioavailability and Health Benefits. Molecules 2019; 24:E2046. [PMID: 31146359 PMCID: PMC6600139 DOI: 10.3390/molecules24112046] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 01/13/2023] Open
Abstract
Some species of the Ericaceae family have been intensively studied because of the beneficial health impact, known since ancient times, of their chemical components. Since most studies focus on the effects of fruit consumption, this review aims to highlight the phenolic components present in the leaves. For this purpose, five species from Ericaceae family (bilberry-Vaccinium myrtillus L., lingonberry-V. vitis-idaea L., bog bilberry-V. uliginosum L., blueberry-V. corymbosum L. and bearberry-Arctostapylos uva-ursi L.) were considered, four of which can be found in spontaneous flora. The chemical composition of the leaves revealed three major phenolic compounds: chlorogenic acid, quercetin and arbutin. The health promoting functions of these compounds, such as antioxidant and anti-inflammatory properties that could have preventive effects for cardiovascular disease, neurodegenerative disorders, cancer, and obesity, have been exemplified by both in vitro and in vivo studies in this review. Furthermore, the importance of bioaccessibility and bioavailability of the phenolic compounds have been summarized. The findings highlight the fact that leaves of some Ericaceae species deserve increased attention and should be studied more profoundly for their biological activities, especially those from spontaneous flora.
Collapse
Affiliation(s)
- Bianca Eugenia Ștefănescu
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, 23, Ghe. Marinescu Street, 400337 Cluj-Napoca, Romania.
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, CaleaMănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, CaleaMănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, 23, Ghe. Marinescu Street, 400337 Cluj-Napoca, Romania.
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Gianina Crişan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, 23, Ghe. Marinescu Street, 400337 Cluj-Napoca, Romania.
| |
Collapse
|
32
|
Arbutin attenuates LPS-induced lung injury via Sirt1/ Nrf2/ NF-κBp65 pathway. Pulm Pharmacol Ther 2019; 54:53-59. [DOI: 10.1016/j.pupt.2018.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 12/30/2022]
|
33
|
Sroka Z, Zgórka G, Żbikowska B, Sowa A, Franiczek R, Wychowaniec K, Krzyżanowska B. High Antimicrobial Efficacy, Antioxidant Activity, and a Novel Approach to Phytochemical Analysis of Bioactive Polyphenols in Extracts from Leaves of Pyrus communis and Pyrus pyrifolia Collected During One Vegetative Season. Microb Drug Resist 2018; 25:582-593. [PMID: 30547716 DOI: 10.1089/mdr.2018.0149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dried leaf samples of Pyrus communis L. var. 'Conference' and Pyrus pyrifolia Burm. f. (Nakai) var. 'Shinseiki' were subjected to the successful extraction procedures using various solvents, followed by filtering and/or drying liquid plant preparations under reduced pressure. As a result of this, for each Pyrus leaf sample examined, four dried residues were obtained, including methanolic (EA), ethyl acetate (EC), water (EB), and the residue obtained from aqueous solution (ED). Antiradical activity of these preparations was measured using the ABTS+• assay, and antimicrobial activity was examined using various strains of bacteria and yeasts. The highest antiradical activity was observed for EC from leaves of P. communis var. 'Conference' collected in May, but the highest average antibacterial activity was noted for EC residues from P. pyrifolia var. 'Shinseiki' collected in May. Antibacterial activity positively correlated with concentration of hydroquinone in extracts. No antifungal activity was observed for any extract. In addition, qualitative and quantitative analyses of active polyphenolic components in extracts from Pyrus were performed. Hydroquinone and hydroxycinnamic acid derivatives were analyzed using a new optimized method comprising reversed-phase high-performance liquid chromatography (RP-LC) coupled with simultaneous photodiode-array and fluorescence detection.
Collapse
Affiliation(s)
- Zbigniew Sroka
- 1 Department of Pharmacognosy, Faculty of Pharmacy, Wrocław Medical University, Wrocław, Poland
| | - Grażyna Zgórka
- 2 Chair and Department of Pharmacognosy with Medicinal Plant Unit, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, Lublin, Poland
| | - Beata Żbikowska
- 1 Department of Pharmacognosy, Faculty of Pharmacy, Wrocław Medical University, Wrocław, Poland
| | - Alina Sowa
- 1 Department of Pharmacognosy, Faculty of Pharmacy, Wrocław Medical University, Wrocław, Poland
| | - Roman Franiczek
- 3 Department of Microbiology, Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Karolina Wychowaniec
- 1 Department of Pharmacognosy, Faculty of Pharmacy, Wrocław Medical University, Wrocław, Poland
| | - Barbara Krzyżanowska
- 3 Department of Microbiology, Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
34
|
Jurica K, Brčić Karačonji I, Mikolić A, Milojković-Opsenica D, Benković V, Kopjar N. In vitro safety assessment of the strawberry tree (Arbutus unedo L.) water leaf extract and arbutin in human peripheral blood lymphocytes. Cytotechnology 2018; 70:1261-1278. [PMID: 29696482 PMCID: PMC6081932 DOI: 10.1007/s10616-018-0218-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/31/2018] [Indexed: 12/31/2022] Open
Abstract
Strawberry tree (Arbutus unedo L.) leaves have long been used in the traditional medicine of the Mediterranean region. One of their most bioactive constituents is the glycoside arbutin, whose presence makes A. unedo suitable as a potential substitute for bearberry [Arctostaphylos uva ursi (L.) Spreng] leaves, an herbal preparation widely used for treating urinary tract infections. The safety and biocompatibility of strawberry tree water leaf extract have not yet been documented well. This study estimated arbutin content in strawberry tree water leaf extract (STE) using high performance liquid chromatography. Furthermore, we performed an in vitro safety assessment of the 24 h exposure to three presumably non-toxic concentrations of standardized STE and arbutin in human peripheral blood lymphocytes using the apoptosis/necrosis assay, the alkaline comet assay, and the cytokinesis-block micronucleus cytome assay. The STE was also tested for total antioxidant capacity and lipid peroxidation. At a concentration corresponding to the maximum allowable daily intake of arbutin, the tested extract was not cytotoxic, had a negligible potential for causing primary DNA damage and even hindered micronuclei formation in lymphocytes. It also showed a valuable antioxidant capacity, and did not exert marked lipid peroxidation. These promising results represent a solid frame for further development of STE-based herbal preparations. Although arbutin generally had a low DNA damaging potential, the slowing down of lymphocyte proliferation observed after 24 h of exposure points to a cytostatic effect, which merits further research.
Collapse
Affiliation(s)
- K Jurica
- Ministry of the Interior, Zagreb, Croatia
| | - I Brčić Karačonji
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10000, Zagreb, Croatia
| | - A Mikolić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10000, Zagreb, Croatia
| | | | - V Benković
- Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - N Kopjar
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10000, Zagreb, Croatia.
| |
Collapse
|
35
|
Jurica K, Brčić Karačonji I, Kopjar N, Shek-Vugrovečki A, Cikač T, Benković V. The effects of strawberry tree water leaf extract, arbutin and hydroquinone on haematological parameters and levels of primary DNA damage in white blood cells of rats. JOURNAL OF ETHNOPHARMACOLOGY 2018; 215:83-90. [PMID: 29288828 DOI: 10.1016/j.jep.2017.12.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/09/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Strawberry tree (Arbutus unedo L., Ericaceae) leaves represent a potent source of biologically active compounds and have been used for a long to relieve symptoms of various health impairments and diseases. Two major compounds related to their beneficial activities in animals and humans are arbutin and hydroquinone. AIM OF THE STUDY To establish potential benefit/risk ratio associated with daily oral administration of strawberry tree water leaf extract, arbutin and hydroquinone in doses expected to be non-toxic. MATERIALS AND METHODS We performed a 14-day and a 28-day study on male and female Lewis rats and evaluated main haematological parameters and the effects of treatments on the levels of primary DNA damage in white blood cells (WBC) using the alkaline comet assay. RESULTS Our findings suggest no significant changes in the haematological parameters following prolonged exposure to strawberry tree water leaf extract, arbutin, and hydroquinone. However, hydroquinone causes increased, and extract as well as arbutin decreased WBC count in male rats compared to control after 14 days of treatment. DNA damage measured in WBC of rats treated with all compounds was below 10% of the DNA in the comet tail, which indicates low genotoxicity. The genotoxic potential of strawberry water leaf extract was within acceptable limits and reflected effects of a complex chemical composition upon DNA. We also observed slight gender- and exposure time- related differences in primary DNA damage in the leucocytes of control and treated rats. CONCLUSIONS Future studies should investigate which doses of strawberry tree water leaf extract would be most promising for the potential use as a substitute for bearberry leaves for treatment of urinary infection.
Collapse
Affiliation(s)
- Karlo Jurica
- Special Security Operations Directorate, Ministry of the Interior, Zagreb, Croatia
| | | | - Nevenka Kopjar
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Tihana Cikač
- Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Vesna Benković
- Faculty of Science, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
36
|
Li X, Xu H, Zhao G, Wu H, Yu Y, Lai F, Xiao X. Highly efficient synthesis of arbutin esters catalyzed by whole cells ofCandida parapsilosis. RSC Adv 2018; 8:10081-10088. [PMID: 35540808 PMCID: PMC9078728 DOI: 10.1039/c8ra00595h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/06/2018] [Indexed: 11/21/2022] Open
Abstract
Acylation modification of phenol glycosides is currently of great interest due to the improved bioavailability and multiple functions.
Collapse
Affiliation(s)
- Xiaofeng Li
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou 510640
- China
- School of Food Science and Engineering
| | - Haixia Xu
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou 510640
- China
- School of Food Science and Engineering
| | - Guanglei Zhao
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Hui Wu
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Yigang Yu
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Furao Lai
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Xinglong Xiao
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
37
|
Structural evidence for the DPPH radical-scavenging mechanism of 2-O-α-d-glucopyranosyl-l-ascorbic acid. Bioorg Med Chem 2017; 25:5303-5310. [DOI: 10.1016/j.bmc.2017.07.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 11/27/2022]
|
38
|
Colantonio S, Rivers JK. Botanicals With Dermatologic Properties Derived From First Nations Healing: Part 2-Plants and Algae. J Cutan Med Surg 2017; 21:299-307. [PMID: 28300437 DOI: 10.1177/1203475416683390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Plants and algae have played a central role in the treatment of skin conditions in both traditional First Nations healing and in modern dermatology. The objective of this study was to examine the evidence supporting the dermatological use of seaweed, witch hazel, bearberry, and mayapple. METHODS Four plants and algae used in traditional First Nations treatments of skin disease were selected based on expert recommendations. Several databases were searched to identify relevant citations without language restrictions. RESULTS Seaweed has potential clinical use in the treatment of acne and wrinkles and may be incorporated into biofunctional textiles. Witch hazel is an effective and well-tolerated treatment of inflammation and diaper dermatitis. Bearberry leaves contain arbutin, a skin-lightening agent that is an alternative for the treatment of hyperpigmentation. Mayapple contains podophyllotoxin, a treatment for condyloma accuminata, molluscum contagiosum, and recalcitrant palmoplantar warts. DISCUSSION Common plants and algae are replete with bioactive agents that may have beneficial effects on the skin. Further research will open the door to new and innovative products in the future. Limitations of this study include that the scope of our study is limited to 4 plants and algae, a small sample of the breadth of plants used by First Nations for dermatological treatments.
Collapse
Affiliation(s)
- Sophia Colantonio
- 1 The Division of Dermatology, The Department of Medicine, University of Ottawa, Ontario, Canada
| | - Jason K Rivers
- 2 The Department of Dermatology & Skin Science, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
39
|
Souza NC, de Oliveira JM, Morrone MDS, Albanus RD, Amarante MDSM, Camillo CDS, Langassner SMZ, Gelain DP, Moreira JCF, Dalmolin RJS, de Bittencourt Pasquali MA. Turnera subulata Anti-Inflammatory Properties in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. J Med Food 2016; 19:922-930. [DOI: 10.1089/jmf.2016.0047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Natália Cabral Souza
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Juliana Medeiros de Oliveira
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Ricardo D'Oliveira Albanus
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | - Daniel Pens Gelain
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | - Matheus Augusto de Bittencourt Pasquali
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil
| |
Collapse
|
40
|
Tai A, Ohno A, Ito H. Isolation and Characterization of the 2,2'-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Radical Cation-Scavenging Reaction Products of Arbutin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7285-7290. [PMID: 27607833 DOI: 10.1021/acs.jafc.6b02847] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Arbutin, a glucoside of hydroquinone, has shown strong 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation-scavenging activity, especially in reaction stoichiometry. This study investigated the reaction mechanism of arbutin against ABTS radical cation that caused high stoichiometry of arbutin in an ABTS radical cation-scavenging assay. HPLC analysis of the reaction mixture of arbutin and ABTS radical cation indicated the existence of two reaction products. The two reaction products were purified and identified to be a covalent adduct of arbutin with an ABTS degradation fragment and 3-ethyl-6-sulfonate benzothiazolone. A time-course study of the radical-scavenging reactions of arbutin and the two reaction products suggested that one molecule of arbutin scavenges three ABTS radical cation molecules to generate an arbutin-ABTS fragment adduct as a final reaction product. The results suggest that one molecule of arbutin reduced two ABTS radical cation molecules to ABTS and then cleaved the third ABTS radical cation molecule to generate two products, an arbutin-ABTS fragment adduct and 3-ethyl-6-sulfonate benzothiazolone.
Collapse
Affiliation(s)
- Akihiro Tai
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima , Shobara, Hiroshima 727-0023, Japan
| | - Asako Ohno
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima , Shobara, Hiroshima 727-0023, Japan
| | - Hideyuki Ito
- Faculty of Health and Welfare Science, Okayama Prefectural University , Soja, Okayama 719-1197, Japan
| |
Collapse
|
41
|
Kolniak-Ostek J. Identification and quantification of polyphenolic compounds in ten pear cultivars by UPLC-PDA-Q/TOF-MS. J Food Compost Anal 2016. [DOI: 10.1016/j.jfca.2016.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
42
|
Effects of Arbutin on Radiation-Induced Micronuclei in Mice Bone Marrow Cells and Its Definite Dose Reduction Factor. IRANIAN JOURNAL OF MEDICAL SCIENCES 2016; 41:180-5. [PMID: 27217601 PMCID: PMC4876295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Interactions of free radicals from ionizing radiation with DNA can induce DNA damage and lead to mutagenesis and carsinogenesis. With respect to radiation damage to human, it is important to protect humans from side effects induced by ionizing radiation. In the present study, the effects of arbutin were investigated by using the micronucleus test for anti-clastogenic activity, to calculate the ratio of polychromatic erythrocyte to polychromatic erythrocyte plus normochromatic erythrocyte (PCE/PCE+NCE) in order to show cell proliferation activity. METHODS Arbutin (50, 100, and 200 mg/kg) was intraperitoneally (ip)administered to NMRI mice two hours before gamma radiation at 2 and 4 gray (Gy). The frequency of micronuclei in 1000 PCEs (MnPCEs) and the ratio of PCE/PCE+NCE were calculated for each sample. Data were statistically evaluated using one-way ANOVA, Tukey HSD test, and t-test. RESULTS The findings indicated that gamma radiation at 2 and 4 Gy extremely increased the frequencies of MnPCE (P<0.001) while reducing PCE/PCE+NCE (P<0.001) compared to the control group. All three doses of arbutin before irradiation significantly reduced the frequencies of MnPCEs and increased the ratio of PCE/PCE+NCE in mice bone marrow compared to the non-drug-treated irradiated control (P<0.001). All three doses of arbutin had no toxicity effect on bone marrow cells. The calculated dose reduction factor (DRF) showed DRF=1.93 for 2Gy and DRF=2.22 for 4 Gy. CONCLUSION Our results demonstrated that arbutin gives significant protection to rat bone against the clastogenic and cytotoxic effects of gamma irradiation.
Collapse
|
43
|
De Winter K, Dewitte G, Dirks-Hofmeister ME, De Laet S, Pelantová H, Křen V, Desmet T. Enzymatic Glycosylation of Phenolic Antioxidants: Phosphorylase-Mediated Synthesis and Characterization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10131-9. [PMID: 26540621 DOI: 10.1021/acs.jafc.5b04380] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Although numerous biologically active molecules exist as glycosides in nature, information on the activity, stability, and solubility of glycosylated antioxidants is rather limited to date. In this work, a wide variety of antioxidants were glycosylated using different phosphorylase enzymes. The resulting antioxidant library, containing α/β-glucosides, different regioisomers, cellobiosides, and cellotriosides, was then characterized. Glycosylation was found to significantly increase the solubility and stability of all evaluated compounds. Despite decreased radical-scavenging abilities, most glycosides were identified to be potent antioxidants, outperforming the commonly used 2,6-bis(1,1-dimethylethyl)-4-methylphenol (BHT). Moreover, the point of attachment, the anomeric configuration, and the glycosidic chain length were found to influence the properties of these phenolic glycosides.
Collapse
Affiliation(s)
- Karel De Winter
- Centre for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Biosciences Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| | - Griet Dewitte
- Centre for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Biosciences Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| | - Mareike E Dirks-Hofmeister
- Centre for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Biosciences Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| | - Sylvie De Laet
- Centre for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Biosciences Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| | | | | | - Tom Desmet
- Centre for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Biosciences Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
44
|
Nieman DC, Gillitt ND, Sha W, Meaney MP, John C, Pappan KL, Kinchen JM. Metabolomics-Based Analysis of Banana and Pear Ingestion on Exercise Performance and Recovery. J Proteome Res 2015; 14:5367-77. [PMID: 26561314 DOI: 10.1021/acs.jproteome.5b00909] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bananas and pears vary in sugar and phenolic profiles, and metabolomics was utilized to measure their influence on exercise performance and recovery. Male athletes (N = 20) cycled for 75 km while consuming water (WATER), bananas (BAN), or pears (PEAR) (0.6 g carbohydrate/kg each hour) in randomized order. UPLC-MS/MS and the library of purified standards maintained by Metabolon (Durham, NC) were used to analyze metabolite shifts in pre- and postexercise (0-h, 1.5-h, 21-h) blood samples. Performance times were 5.0% and 3.3% faster during BAN and PEAR versus WATER (P = 0.018 and P = 0.091, respectively), with reductions in cortisol, IL-10, and total leukocytes, and increases in blood glucose, insulin, and FRAP. Partial Least Square Discriminant Analysis (PLS-DA) showed a distinct separation between trials immediately (R(2)Y = 0.877, Q(2)Y = 0.457) and 1.5-h postexercise (R(2)Y = 0.773, Q(2)Y = 0.441). A total of 107 metabolites (primarily lipid-related) increased more than 2-fold during WATER, with a 48% and 52% reduction in magnitude during BAN and PEAR recovery (P < 0.001). Increases in metabolites unique to BAN and PEAR included fructose and fruit constituents, and sulfated phenolics that were related to elevated FRAP. These data indicate that BAN and PEAR ingestion improves 75-km cycling performance, attenuates fatty acid utilization and oxidation, and contributes unique phenolics that augment antioxidant capacity.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Appalachian State University , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Nicholas D Gillitt
- Dole Nutrition Research Laboratory , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Wei Sha
- Bioinformatics Services Division, University of North Carolina at Charlotte , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Mary Pat Meaney
- Human Performance Laboratory, Appalachian State University , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Casey John
- Human Performance Laboratory, Appalachian State University , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Kirk L Pappan
- Metabolon, Inc., Durham, North Carolina 27713, United States
| | - Jason M Kinchen
- Metabolon, Inc., Durham, North Carolina 27713, United States
| |
Collapse
|
45
|
Jiang L, Xie X, Yue H, Wu Z, Wang H, Yang F, Wang L, Wang Z. Highly efficient and regioselective acylation of arbutin catalyzed by lipase from Candida sp. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Arbutin and decrease of potentially toxic substances generated in human blood neutrophils. Interdiscip Toxicol 2015; 7:195-200. [PMID: 26109900 PMCID: PMC4436208 DOI: 10.2478/intox-2014-0028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/03/2014] [Accepted: 12/06/2014] [Indexed: 12/14/2022] Open
Abstract
Neutrophils, highly motile phagocytic cells, constitute the first line of host defense and simultaneously they are considered to be central cells of chronic inflammation. In combination with standard therapeutic procedures, natural substances are gaining interest as an option for enhancing the effectiveness of treatment of inflammatory diseases. We investigated the effect of arbutin and carvedilol and of their combination on 4β-phorbol-12β-myristate-13α-acetate- stimulated functions of human isolated neutrophils. Cells were preincubated with the drugs tested and subsequently stimulated. Superoxide (with or without blood platelets, in the rate close to physiological conditions [1:50]) and HOCl generation, elastase and myeloperoxidase release were determined spectrophotometrically and phospholipase D activation spectrofluorometrically. The combined effect of arbutin and carvedilol was found to be more effective than the effect of each compound alone. Our study provided evidence supporting the potential beneficial effect of arbutin alone or in combination with carvedilol in diminishing tissue damage by decreasing phospholipase D, myeloperoxidase and elastase activity and by attenuating the generation of superoxide and the subsequently derived reactive oxygen species. The presented data indicate the ability of arbutin to suppress the onset and progression of inflammation.
Collapse
|
47
|
Liu P, Lindstedt A, Markkinen N, Sinkkonen J, Suomela JP, Yang B. Characterization of metabolite profiles of leaves of bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12015-12026. [PMID: 25408277 DOI: 10.1021/jf503521m] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Leaves of bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.) are potential raw materials for food and health care products. Targeted (HPLC-DAD, HPLC-MS, and GC-FID) and nontargeted ((1)H NMR) approaches were applied to study the metabolomic profiles of these leaves. Chlorogenic acid was the major phenolic compound in bilberry leaves and arbutin in lingonberry leaves. Flavonol glycosides were another major group of phenolics in bilberry [5-28 mg/g DM (dry mass)] and lingonberry (15-20 mg/g DM) leaves. Contents of fatty acids were analyzed using GC-FID. The changes in the metabolomics profile during the season were apparent in bilberry but not lingonberry leaves. Negative correlation was found between the contents of lipids and phenolics. The consistency between the key results obtained by targeted and nontargeted analyses suggests nontargeted metabolomic analysis is an efficient tool for fast screening of various leaf materials.
Collapse
Affiliation(s)
- Pengzhan Liu
- Food Chemistry and Food Development, Department of Biochemistry, and ‡Department of Chemistry, University of Turku , FI-20014 Turku, Finland
| | | | | | | | | | | |
Collapse
|
48
|
Tai A, Fukunaga K, Ohno A, Ito H. Antioxidative properties of ascorbigen in using multiple antioxidant assays. Biosci Biotechnol Biochem 2014; 78:1723-30. [PMID: 25273138 DOI: 10.1080/09168451.2014.932668] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The antioxidative properties of ascorbigen, one of the major indole-derived compounds of Brassica vegetables, were systematically evaluated using multiple assay systems with comparison to the well-known antioxidants ascorbic acid and Trolox. We first performed assays using model radicals, DPPH radical, galvinoxyl radical, and ABTS radical cation (ABTS(•+)). Ascorbigen showed stronger activity than that of ascorbic acid in the ABTS(•+)-scavenging assay but showed no activity in the DPPH radical- and galvinoxyl radical-scavenging assays. In the ABTS(•+)-scavenging assay, the indole moiety of ascorbigen contributed to scavenging of the radicals to produce indole-3-aldehyde as one of the final reaction products. The activity of ascorbigen was then evaluated by an oxygen radical absorbance capacity assay and an oxidative hemolysis inhibition assay using physiologically relevant peroxyl radicals, AAPH-derived radicals. Ascorbigen showed much stronger antioxidant activity than did ascorbic acid and Trolox. Therefore, antioxidant activity of ascorbigen might be more beneficial than has been thought for daily health care.
Collapse
Affiliation(s)
- Akihiro Tai
- a Faculty of Life and Environmental Sciences , Prefectural University of Hiroshima , Shobara , Japan
| | | | | | | |
Collapse
|
49
|
Tundis R, Peruzzi L, Menichini F. Phytochemical and biological studies of Stachys species in relation to chemotaxonomy: a review. PHYTOCHEMISTRY 2014; 102:7-39. [PMID: 24661611 DOI: 10.1016/j.phytochem.2014.01.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/14/2014] [Accepted: 01/31/2014] [Indexed: 05/19/2023]
Abstract
The genus Stachys is comprised of about 300 species spread throughout the world, hence representing one of the largest genera of the Lamiaceae. Several Stachys species have been exploited in traditional medicine as astringent, wound-healing, anti-diarrhoeal, anti-nephritic and anti-inflammatory agents. Moreover, antimicrobial, antioxidant and cytotoxic activities of some Stachys species are documented. Iridoids, flavonoids, phenolic acids and diterpenoids are reported as secondary metabolites of different species of this genus. The aim of the present review is to summarize and to highlight the recent advances in current knowledge on Stachys species and to compile reports of chemical constituents isolated from the genus Stachys over the past decades, together with their structural features, biological activities, and structure-activity relationships. Diversity of chemical constituents is discussed in relationship with current Stachys infrageneric taxonomy, classification and relationships with systematically close genera.
Collapse
Affiliation(s)
- Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy.
| | | | - Francesco Menichini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| |
Collapse
|
50
|
|