1
|
Verschuur AS, King R, Tax CMW, Boomsma MF, van Wezel-Meijler G, Leemans A, Leijser LM. Methodological considerations on diffusion MRI tractography in infants aged 0-2 years: a scoping review. Pediatr Res 2024:10.1038/s41390-024-03463-2. [PMID: 39143201 DOI: 10.1038/s41390-024-03463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Diffusion MRI (dMRI) enables studying the complex architectural organization of the brain's white matter (WM) through virtual reconstruction of WM fiber tracts (tractography). Despite the anticipated clinical importance of applying tractography to study structural connectivity and tract development during the critical period of rapid infant brain maturation, detailed descriptions on how to approach tractography in young infants are limited. Over the past two decades, tractography from infant dMRI has mainly been applied in research settings and focused on diffusion tensor imaging (DTI). Only few studies used techniques superior to DTI in terms of disentangling information on the brain's organizational complexity, including crossing fibers. While more advanced techniques may enhance our understanding of the intricate processes of normal and abnormal brain development and extensive knowledge has been gained from application on adult scans, their applicability in infants has remained underexplored. This may partially be due to the higher technical requirements versus the need to limit scan time in young infants. We review various previously described methodological practices for tractography in the infant brain (0-2 years-of-age) and provide recommendations to optimize advanced tractography approaches to enable more accurate reconstructions of the brain WM's complexity. IMPACT: Diffusion tensor imaging is the technique most frequently used for fiber tracking in the developing infant brain but is limited in capability to disentangle the complex white matter organization. Advanced tractography techniques allow for reconstruction of crossing fiber bundles to better reflect the brain's complex organization. Yet, they pose practical and technical challenges in the fast developing young infant's brain. Methods on how to approach advanced tractography in the young infant's brain have hardly been described. Based on a literature review, recommendations are provided to optimize tractography for the developing infant brain, aiming to advance early diagnosis and neuroprotective strategies.
Collapse
Affiliation(s)
- Anouk S Verschuur
- Department of Radiology, Isala Hospital Zwolle, Zwolle, The Netherlands.
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada.
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Regan King
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada
| | - Chantal M W Tax
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- CUBRIC, School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Martijn F Boomsma
- Department of Radiology, Isala Hospital Zwolle, Zwolle, The Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerda van Wezel-Meijler
- Department of Neonatology, Isala Women and Children's Hospital Zwolle, Zwolle, The Netherlands
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lara M Leijser
- Department of Pediatrics, Section of Newborn Critical Care, University of Calgary, Calgary, Canada
| |
Collapse
|
2
|
Soumier A, Lio G, Demily C. Current and future applications of light-sheet imaging for identifying molecular and developmental processes in autism spectrum disorders. Mol Psychiatry 2024; 29:2274-2284. [PMID: 38443634 DOI: 10.1038/s41380-024-02487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Autism spectrum disorder (ASD) is identified by a set of neurodevelopmental divergences that typically affect the social communication domain. ASD is also characterized by heterogeneous cognitive impairments and is associated with cooccurring physical and medical conditions. As behaviors emerge as the brain matures, it is particularly essential to identify any gaps in neurodevelopmental trajectories during early perinatal life. Here, we introduce the potential of light-sheet imaging for studying developmental biology and cross-scale interactions among genetic, cellular, molecular and macroscale levels of circuitry and connectivity. We first report the core principles of light-sheet imaging and the recent progress in studying brain development in preclinical animal models and human organoids. We also present studies using light-sheet imaging to understand the development and function of other organs, such as the skin and gastrointestinal tract. We also provide information on the potential of light-sheet imaging in preclinical drug development. Finally, we speculate on the translational benefits of light-sheet imaging for studying individual brain-body interactions in advancing ASD research and creating personalized interventions.
Collapse
Affiliation(s)
- Amelie Soumier
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France.
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France.
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France.
- University Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France.
| | - Guillaume Lio
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France
| | - Caroline Demily
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France
- University Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| |
Collapse
|
3
|
Gajawelli N, Paulli A, Deoni S, Paquette N, Darakjian D, Salazar C, Dean D, O'Muircheartaigh J, Nelson MD, Wang Y, Lepore N. Surface-based morphometry of the corpus callosum in young children of ages 1-5. Hum Brain Mapp 2024; 45:e26693. [PMID: 38924235 PMCID: PMC11199824 DOI: 10.1002/hbm.26693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/05/2024] [Accepted: 04/05/2024] [Indexed: 06/28/2024] Open
Abstract
The corpus callosum (CC) is a large white matter fiber bundle in the brain and is involved in various cognitive, sensory, and motor processes. While implicated in various developmental and psychiatric disorders, much is yet to be uncovered about the normal development of this structure, especially in young children. Additionally, while sexual dimorphism has been reported in prior literature, observations have not necessarily been consistent. In this study, we use morphometric measures including surface tensor-based morphometry (TBM) to investigate local changes in the shape of the CC in children between the ages of 12 and 60 months, in intervals of 12 months. We also analyze sex differences in each of these age groups. We observed larger significant clusters in the earlier ages between 12 v 24 m and between 48 v 60 m and localized differences in the anterior region of the body of the CC. Sex differences were most pronounced in the 12 m group. This study adds to the growing literature of work aiming to understand the developing brain and emphasizes the utility of surface TBM as a useful tool for analyzing regional differences in neuroanatomical morphometry.
Collapse
Affiliation(s)
- Niharika Gajawelli
- CIBORG Lab, Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
| | - Athelia Paulli
- CIBORG Lab, Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
| | - Sean Deoni
- Department of PediatricsWarren Alpert Medical School at Brown UniversityProvidenceRhode IslandUSA
- Bill & Melinda Gates FoundationSeattleWashingtonUSA
| | - Natacha Paquette
- CIBORG Lab, Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
- Department of PsychologyCHU Sainte‐JustineMontrealQuebecCanada
| | - Danielle Darakjian
- CIBORG Lab, Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
- College of MedicineCalifornia Northstate UniversityElk GroveCaliforniaUSA
| | - Carlos Salazar
- CIBORG Lab, Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Douglas Dean
- Waisman Laboratory for Brain Imaging and BehaviorUniversity of Wisconsin MadisonMadisonWisconsinUSA
| | | | - Marvin D. Nelson
- Department of PediatricsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
| | - Yalin Wang
- Department of Computer ScienceArizona State UniversityTempeArizonaUSA
| | - Natasha Lepore
- CIBORG Lab, Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of PediatricsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of RadiologyChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
4
|
Bondi BC, Tassone VK, Bucsea O, Desrocher M, Pepler DJ. A Systematic Review of Neurodevelopmental Assessments in Infancy and Early Childhood: Developing a Conceptual Framework, Repository of Measures, and Clinical Recommendations. Neuropsychol Rev 2024:10.1007/s11065-024-09641-7. [PMID: 38693469 DOI: 10.1007/s11065-024-09641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/01/2024] [Indexed: 05/03/2024]
Abstract
The first 6 years of life are when 90% of brain development occurs, setting the foundation for lifelong neurodevelopment. The field of infant and early childhood neurodevelopment has made marginal advancements since introduced in 1988. There remains a gap in knowledge around early neurodevelopmental domains and trajectories given that there are few established assessment procedures for infants and young children and controversies around reserving assessments until school age. Throughout this systematic review, we (1) identified neurodevelopmental assessment measures employed in the literature by domain and age of assessment, (2) compiled a repository of 608 domain-specific neurodevelopmental assessment measures, and (3) established a preliminary conceptual framework for cross-domain neurodevelopmental assessments across infancy and early childhood. This review adhered to PRISMA guidelines and spanned three databases (PsycINFO, MEDLINE, PubMed). Articles were reviewed for (1) infancy and early childhood (0-6 years), (2) neurodevelopmental measures, and (3) English language. This systematic review spanned 795 articles from 1978 to 2020 with international representation. Advancements in assessment methods (e.g. measures, domains, frameworks) are essential for the evaluation of early neurodevelopmental profiles to inform early interventions, thus harnessing the neuroplasticity and dynamic development notable during early childhood. We hope this work catalyzes future research and clinical guidelines around early assessments methods.
Collapse
Affiliation(s)
- Bianca C Bondi
- Department of Psychology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| | - Vanessa K Tassone
- Department of Psychology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Oana Bucsea
- Department of Psychology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Mary Desrocher
- Department of Psychology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Debra J Pepler
- Department of Psychology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
5
|
Wiltgen T, Voon C, Van Leemput K, Wiestler B, Mühlau M. Intensity scaling of conventional brain magnetic resonance images avoiding cerebral reference regions: A systematic review. PLoS One 2024; 19:e0298642. [PMID: 38483873 PMCID: PMC10939249 DOI: 10.1371/journal.pone.0298642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/26/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Conventional brain magnetic resonance imaging (MRI) produces image intensities that have an arbitrary scale, hampering quantification. Intensity scaling aims to overcome this shortfall. As neurodegenerative and inflammatory disorders may affect all brain compartments, reference regions within the brain may be misleading. Here we summarize approaches for intensity scaling of conventional T1-weighted (w) and T2w brain MRI avoiding reference regions within the brain. METHODS Literature was searched in the databases of Scopus, PubMed, and Web of Science. We included only studies that avoided reference regions within the brain for intensity scaling and provided validating evidence, which we divided into four categories: 1) comparative variance reduction, 2) comparative correlation with clinical parameters, 3) relation to quantitative imaging, or 4) relation to histology. RESULTS Of the 3825 studies screened, 24 fulfilled the inclusion criteria. Three studies used scaled T1w images, 2 scaled T2w images, and 21 T1w/T2w-ratio calculation (with double counts). A robust reduction in variance was reported. Twenty studies investigated the relation of scaled intensities to different types of quantitative imaging. Statistically significant correlations with clinical or demographic data were reported in 8 studies. Four studies reporting the relation to histology gave no clear picture of the main signal driver of conventional T1w and T2w MRI sequences. CONCLUSIONS T1w/T2w-ratio calculation was applied most often. Variance reduction and correlations with other measures suggest a biologically meaningful signal harmonization. However, there are open methodological questions and uncertainty on its biological underpinning. Validation evidence on other scaling methods is even sparser.
Collapse
Affiliation(s)
- Tun Wiltgen
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Cuici Voon
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Koen Van Leemput
- Department of Neuroscience and Biomedical Engineering, Aalto University Helsinki, Espoo, Finland
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benedikt Wiestler
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Mark Mühlau
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
6
|
Adeck A, Millwater M, Bragg C, Zhang R, SheikhBahaei S. Morphological deficits of glial cells in a transgenic mouse model for developmental stuttering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574051. [PMID: 38260402 PMCID: PMC10802298 DOI: 10.1101/2024.01.04.574051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Vocal production involves intricate neural coordination across various brain regions. Stuttering, a common speech disorder, has genetic underpinnings, including mutations in lysosomal-targeting pathway genes. Using a Gnptab-mutant mouse model linked to stuttering, we examined neuron and glial cell morphology in vocal production circuits. Our findings revealed altered astrocyte and microglia processes in these circuits in Gnptab-mutant mice, while control regions remained unaffected. Our results shed light on the potential role of glial cells in stuttering pathophysiology and highlight their relevance in modulating vocal production behaviors.
Collapse
|
7
|
Corti M, Byrne BJ, Gessler DJ, Thompson G, Norman S, Lammers J, Coleman KE, Liberati C, Elder ME, Escolar ML, Tuna IS, Mesaros C, Kleiner GI, Barbouth DS, Gray-Edwards HL, Clement N, Cleaver BD, Gao G. Adeno-associated virus-mediated gene therapy in a patient with Canavan disease using dual routes of administration and immune modulation. Mol Ther Methods Clin Dev 2023; 30:303-314. [PMID: 37601414 PMCID: PMC10432950 DOI: 10.1016/j.omtm.2023.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 06/08/2023] [Indexed: 08/22/2023]
Abstract
Gene replacement therapy is a rational therapeutic strategy and clinical intervention for neurodegenerative disorders like Canavan disease, a leukodystrophy caused by biallelic mutations in the aspartoacylase (ASPA) gene. We aimed to investigate whether simultaneous intravenous (i.v.) and intracerebroventricular (i.c.v.) administration of rAAV9-CB6-ASPA provides a safe and effective therapeutic strategy in an open-label, individual-patient, expanded-access trial for Canavan disease. Immunomodulation was given prophylactically prior to adeno-associated virus (AAV) treatment to prevent an immune response to ASPA or the vector capsid. The patient served as his own control, and change from baseline was assessed by clinical pathology tests, vector genomes in the blood, antibodies against ASPA and AAV capsids, levels of cerebrospinal fluid (CSF) N-acetylaspartate (NAA), brain water content and morphology, clinical status, and motor function tests. Two years post treatment, the patient's white matter myelination had increased, motor function was improved, and he remained free of typical severe epilepsy. NAA level was reduced at 3 months and remained stable up to 4 years post treatment. Immunomodulation prior to AAV exposure enables repeat dosing and has prevented an anti-transgene immune response. Dual-route administration of gene therapy may improve treatment outcomes.
Collapse
Affiliation(s)
- Manuela Corti
- Powell Gene Therapy Center, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Barry J. Byrne
- Powell Gene Therapy Center, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Dominic J. Gessler
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Grace Thompson
- Department of Pediatric Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Samantha Norman
- Powell Gene Therapy Center, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jenna Lammers
- Powell Gene Therapy Center, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kirsten E. Coleman
- Powell Gene Therapy Center, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Cristina Liberati
- Powell Gene Therapy Center, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Melissa E. Elder
- Powell Gene Therapy Center, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Health Shands Children’s Hospital, Gainesville, FL, USA
| | - Maria L. Escolar
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ibrahim S. Tuna
- Department of Radiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Clementina Mesaros
- Penn Medicine/Children’s Hospital of Philadelphia Center of Excellence in Friedreich’s Ataxia, University of Pennsylvania, Philadelphia, PA, USA
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gary I. Kleiner
- Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Deborah S. Barbouth
- Division of Clinical and Translational Genetics, Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Heather L. Gray-Edwards
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nathalie Clement
- Powell Gene Therapy Center, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Brian D. Cleaver
- Powell Gene Therapy Center, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
8
|
Easson K, Khairy M, Rohlicek CV, Saint-Martin C, Gilbert G, Nguyen KA, Luu TM, Couture É, Nuyt AM, Wintermark P, Deoni SCL, Descoteaux M, Brossard-Racine M. A comparison of altered white matter microstructure in youth born with congenital heart disease or born preterm. Front Neurol 2023; 14:1167026. [PMID: 37251222 PMCID: PMC10213269 DOI: 10.3389/fneur.2023.1167026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Alterations to white matter microstructure as detected by diffusion tensor imaging have been documented in both individuals born with congenital heart disease (CHD) and individuals born preterm. However, it remains unclear if these disturbances are the consequence of similar underlying microstructural disruptions. This study used multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) and neurite orientation dispersion and density imaging (NODDI) to characterize and compare alterations to three specific microstructural elements of white matter - myelination, axon density, and axon orientation - in youth born with CHD or born preterm. Methods Participants aged 16 to 26 years with operated CHD or born ≤33 weeks gestational age and a group of healthy peers of the same age underwent a brain MRI including mcDESPOT and high angular resolution diffusion imaging acquisitions. Using tractometry, average values of myelin water fraction (MWF), neurite density index (NDI), and orientation dispersion index (ODI) were first calculated and compared between groups for 30 white matter bundles. Afterwards, bundle profiling was performed to further characterize the topology of the detected microstructural alterations. Results The CHD and preterm groups both presented with widespread bundles and bundle segments with lower MWF, accompanied by some occurrences of lower NDI, relative to controls. While there were no differences in ODI between the CHD and control groups, the preterm group presented with both higher and lower ODI compared to the control group and lower ODI compared to the CHD group. Discussion While youth born with CHD or born preterm both presented with apparent deficits in white matter myelination and axon density, youth born preterm presented with a unique profile of altered axonal organization. Future longitudinal studies should aim to better understand the emergence of these common and distinct microstructural alterations, which could orient the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Kaitlyn Easson
- Advances in Brain and Child Development (ABCD) Research Laboratory, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - May Khairy
- Division of Neonatology, Department of Pediatrics, Montreal Children’s Hospital, Montreal, QC, Canada
| | - Charles V. Rohlicek
- Division of Cardiology, Department of Pediatrics, Montreal Children’s Hospital, Montreal, QC, Canada
| | - Christine Saint-Martin
- Department of Medical Imaging, Division of Pediatric Radiology, Montreal Children’s Hospital, Montreal, QC, Canada
| | | | - Kim-Anh Nguyen
- Division of Neonatology, Department of Pediatrics, Jewish General Hospital, Montreal, QC, Canada
| | - Thuy Mai Luu
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Élise Couture
- Division of Neonatology, Department of Pediatrics, Montreal Children’s Hospital, Montreal, QC, Canada
| | - Anne-Monique Nuyt
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Pia Wintermark
- Division of Neonatology, Department of Pediatrics, Montreal Children’s Hospital, Montreal, QC, Canada
| | - Sean C. L. Deoni
- Advanced Baby Imaging Lab, Brown University, Providence, RI, United States
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie Brossard-Racine
- Advances in Brain and Child Development (ABCD) Research Laboratory, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Division of Neonatology, Department of Pediatrics, Montreal Children’s Hospital, Montreal, QC, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
Nazeri A, Krsnik Ž, Kostović I, Ha SM, Kopić J, Alexopoulos D, Kaplan S, Meyer D, Luby JL, Warner BB, Rogers CE, Barch DM, Shimony JS, McKinstry RC, Neil JJ, Smyser CD, Sotiras A. Neurodevelopmental patterns of early postnatal white matter maturation represent distinct underlying microstructure and histology. Neuron 2022; 110:4015-4030.e4. [PMID: 36243003 PMCID: PMC9742299 DOI: 10.1016/j.neuron.2022.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/19/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022]
Abstract
Cerebral white matter undergoes a rapid and complex maturation during the early postnatal period. Prior magnetic resonance imaging (MRI) studies of early postnatal development have often been limited by small sample size, single-modality imaging, and univariate analytics. Here, we applied nonnegative matrix factorization, an unsupervised multivariate pattern analysis technique, to T2w/T1w signal ratio maps from the Developing Human Connectome Project (n = 342 newborns) revealing patterns of coordinated white matter maturation. These patterns showed divergent age-related maturational trajectories, which were replicated in another independent cohort (n = 239). Furthermore, we showed that T2w/T1w signal variations in these maturational patterns are explained by differential contributions of white matter microstructural indices derived from diffusion-weighted MRI. Finally, we demonstrated how white matter maturation patterns relate to distinct histological features by comparing our findings with postmortem late fetal/early postnatal brain tissue staining. Together, these results delineate concise and effective representation of early postnatal white matter reorganization.
Collapse
Affiliation(s)
- Arash Nazeri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Sung Min Ha
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Janja Kopić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Dimitrios Alexopoulos
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sydney Kaplan
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Dominique Meyer
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Deanna M Barch
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA; Psychological & Brain Sciences, Washington University School in St. Louis, Saint Louis, MO 63130, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Robert C McKinstry
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jeffrey J Neil
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Christopher D Smyser
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Aristeidis Sotiras
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Institute for Informatics, Washington University School of Medicine, Saint Louis, MO 63108, USA.
| |
Collapse
|
10
|
Sheng M, Guo T, Mabbott C, Chau V, Synnes A, de Vries LS, Grunau RE, Miller SP. Ventricular Volume in Infants Born Very Preterm: Relationship with Brain Maturation and Neurodevelopment at Age 4.5 Years. J Pediatr 2022; 248:51-58.e2. [PMID: 35561806 DOI: 10.1016/j.jpeds.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/19/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To evaluate the relationship of quantitative ventricular volume with brain maturation and neurodevelopmental outcomes at age 4.5 years in children born very preterm. STUDY DESIGN T1-weighted imaging, diffusion tensor imaging, and magnetic resonance spectroscopy were performed shortly after birth (n = 212) and at term-equivalent age (TEA) (n = 194). Intraventricular hemorrhage (IVH) grade and white matter injury (WMI) volume were measured on early T1-weighted magnetic resonance imaging (MRI) scans. Total cerebral volume and ventricular volume were quantified using the Multiple Automatically Generated Templates-Brain pipeline. At age 4.5 years, 178 children (84%) underwent cognitive and motor assessments. Multivariable linear regression was used to examine the relationships between ventricular volume and neurodevelopmental outcomes. Generalized estimating equations were used to account for repeated measures when analyzing neonatal MRI data. All models accounted for sex, postmenstrual age at scan, WMI volume, IVH grade, and total cerebral volume and were corrected for multiple comparisons. RESULTS On early MRI, 97 infants had IVH (grade 1, n = 22; grade 2, n = 66; grade 3, n = 9), and 68 had WMI (median, 44 mm3; IQR, 21-296 mm3). IQ at 4.5 years was associated with MRI ventricular volume at the early (β = -0.64; P < .001) and TEA (β = -0.44, P < .001) time points. Motor outcomes were associated with ventricular volume at TEA (β = -0.84, P = .01). Greater ventricular volume independently predicted lower fractional anisotropy in corpus callosum (genu: β = -0.0008, P = .002; splenium: β = -0.003, P < .001) and optic radiations (β = -0.001, P = .004); ventricular volume did not predict the N-acetylaspartate/choline ratio. CONCLUSIONS In children born very preterm, neonatal ventricular size was associated with 4.5-year neurodevelopmental outcomes. Our findings suggest that white matter maturation may be abnormal in the setting of enlarged ventricular size beyond that expected from concurrent brain injuries.
Collapse
Affiliation(s)
- Min Sheng
- Department of Paediatrics, University of Toronto and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ting Guo
- Department of Paediatrics, University of Toronto and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Connor Mabbott
- Department of Paediatrics, University of Toronto and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vann Chau
- Department of Paediatrics, University of Toronto and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anne Synnes
- Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Linda S de Vries
- Department of Neonatology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ruth E Grunau
- Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Steven P Miller
- Department of Paediatrics, University of Toronto and the Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pediatrics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
| |
Collapse
|
11
|
Pollatou A, Filippi CA, Aydin E, Vaughn K, Thompson D, Korom M, Dufford AJ, Howell B, Zöllei L, Martino AD, Graham A, Scheinost D, Spann MN. An ode to fetal, infant, and toddler neuroimaging: Chronicling early clinical to research applications with MRI, and an introduction to an academic society connecting the field. Dev Cogn Neurosci 2022; 54:101083. [PMID: 35184026 PMCID: PMC8861425 DOI: 10.1016/j.dcn.2022.101083] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/17/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
Fetal, infant, and toddler neuroimaging is commonly thought of as a development of modern times (last two decades). Yet, this field mobilized shortly after the discovery and implementation of MRI technology. Here, we provide a review of the parallel advancements in the fields of fetal, infant, and toddler neuroimaging, noting the shifts from clinical to research use, and the ongoing challenges in this fast-growing field. We chronicle the pioneering science of fetal, infant, and toddler neuroimaging, highlighting the early studies that set the stage for modern advances in imaging during this developmental period, and the large-scale multi-site efforts which ultimately led to the explosion of interest in the field today. Lastly, we consider the growing pains of the community and the need for an academic society that bridges expertise in developmental neuroscience, clinical science, as well as computational and biomedical engineering, to ensure special consideration of the vulnerable mother-offspring dyad (especially during pregnancy), data quality, and image processing tools that are created, rather than adapted, for the young brain.
Collapse
Affiliation(s)
- Angeliki Pollatou
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Courtney A Filippi
- Section on Development and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA; Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA
| | - Ezra Aydin
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Kelly Vaughn
- Department of Pediatrics, University of Texas Health Sciences Center, Houston, TX, USA
| | - Deanne Thompson
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Marta Korom
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Alexander J Dufford
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Brittany Howell
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA
| | - Lilla Zöllei
- Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Alice Graham
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Dustin Scheinost
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Marisa N Spann
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
12
|
Li X, Li M, Wang M, Wu F, Liu H, Sun Q, Zhang Y, Liu C, Jin C, Yang J. Mapping white matter maturational processes and degrees on neonates by diffusion kurtosis imaging with multiparametric analysis. Hum Brain Mapp 2022; 43:799-815. [PMID: 34708903 PMCID: PMC8720196 DOI: 10.1002/hbm.25689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 11/10/2022] Open
Abstract
White matter maturation has been characterized by diffusion tensor (DT) metrics. However, maturational processes and degrees are not fully investigated due to limitations of univariate approaches and limited specificity/sensitivity. Diffusion kurtosis imaging (DKI) provides kurtosis tensor (KT) and white matter tract integrity (WMTI) metrics, besides DT metrics. Therefore, we tried to investigate performances of DKI with the multiparametric analysis in characterizing white matter maturation. Developmental changes in metrics were investigated by using tract-based spatial statistics and the region of interest analysis on 50 neonates with postmenstrual age (PMA) from 37.43 to 43.57 weeks. Changes in metrics were combined into various patterns to reveal different maturational processes. Mahalanobis distance based on DT metrics (DM,DT ) and that combing DT and KT metrics (DM,DT-KT ) were computed, separately. Performances of DM,DT-KT and DM,DT were compared in revealing correlations with PMA and the neurobehavioral score. Compared with DT metrics, WMTI metrics demonstrated additional changing patterns. Furthermore, variations of DM,DT-KT across regions were in agreement with the maturational sequence. Additionally, DM,DT-KT demonstrated stronger negative correlations with PMA and the neurobehavioral score in more regions than DM,DT . Results suggest that DKI with the multiparametric analysis benefits the understanding of white matter maturational processes and degrees on neonates.
Collapse
Affiliation(s)
- Xianjun Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengxuan Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Miaomiao Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fan Wu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Heng Liu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qinli Sun
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yuli Zhang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Congcong Liu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chao Jin
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Demers CH, Bagonis MM, Al-Ali K, Garcia SE, Styner MA, Gilmore JH, Hoffman MC, Hankin BL, Davis EP. Exposure to prenatal maternal distress and infant white matter neurodevelopment. Dev Psychopathol 2021; 33:1526-1538. [PMID: 35586027 PMCID: PMC9109943 DOI: 10.1017/s0954579421000742] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The prenatal period represents a critical time for brain growth and development. These rapid neurological advances render the fetus susceptible to various influences with life-long implications for mental health. Maternal distress signals are a dominant early life influence, contributing to birth outcomes and risk for offspring psychopathology. This prospective longitudinal study evaluated the association between prenatal maternal distress and infant white matter microstructure. Participants included a racially and socioeconomically diverse sample of 85 mother-infant dyads. Prenatal distress was assessed at 17 and 29 weeks' gestational age (GA). Infant structural data were collected via diffusion tensor imaging at 42-45 weeks' postconceptional age. Findings demonstrated that higher prenatal maternal distress at 29 weeks' GA was associated with increased fractional anisotropy (b = .283, t(64) = 2.319, p = .024) and with increased axial diffusivity (b = .254, t(64) = 2.067, p = .043) within the right anterior cingulate white matter tract. No other significant associations were found with prenatal distress exposure and tract fractional anisotropy or axial diffusivity at 29 weeks' GA, nor earlier in gestation.
Collapse
Affiliation(s)
- Catherine H. Demers
- Department of Psychology University of Denver, Denver CO,
USA
- Department of Psychiatry, University of Colorado Anschutz
Medical Campus, Aurora CO, USA
| | - Maria M. Bagonis
- Department of Psychiatry, University of North Carolina at
Chapel Hill, Chapel Hill NC, USA
| | - Khalid Al-Ali
- Department of Psychiatry, University of North Carolina at
Chapel Hill, Chapel Hill NC, USA
| | - Sarah E. Garcia
- Department of Psychology University of Denver, Denver CO,
USA
| | - Martin A. Styner
- Department of Psychiatry, University of North Carolina at
Chapel Hill, Chapel Hill NC, USA
- Department of Computer Science, University of North
Carolina at Chapel Hill, Chapel Hill NC, USA
| | - John H. Gilmore
- Department of Psychiatry, University of North Carolina at
Chapel Hill, Chapel Hill NC, USA
| | - M. Camille Hoffman
- Department of Psychiatry, University of Colorado Anschutz
Medical Campus, Aurora CO, USA
- Department of Obstetrics and Gynecology, Division of
Maternal and Fetal Medicine, University of Colorado Denver School of Medicine,
Aurora, Colorado, USA
| | - Benjamin L. Hankin
- Department of Psychology, University of Illinois at
Urbana-Champaign, Champaign IL, USA
| | - Elysia Poggi Davis
- Department of Psychology University of Denver, Denver CO,
USA
- Department of Psychiatry and Human Behavior, University of
California, Irvine, CA, USA
| |
Collapse
|
14
|
Nolvi S, Tuulari JJ, Lavonius T, Scheinin NM, Lehtola SJ, Lavonius M, Merisaari H, Saunavaara J, Korja R, Kataja EL, Pelto J, Parkkola R, Karlsson L, Karlsson H. Newborn white matter microstructure moderates the association between maternal postpartum depressive symptoms and infant negative reactivity. Soc Cogn Affect Neurosci 2021; 15:649-660. [PMID: 32577747 PMCID: PMC7393309 DOI: 10.1093/scan/nsaa081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/29/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Maternal postpartum depression is a prominent risk factor for aberrant child socioemotional development, but there is little understanding about the neural phenotypes that underlie infant sensitivity to maternal depression. We examined whether newborn white matter fractional anisotropy (FA), a measure of white matter maturity, moderates the association between maternal postpartum depressive symptoms and infant negative reactivity at 6 months. Participants were 80 mother–infant dyads participating in a prospective population-based cohort, and included families whose newborns underwent a magnetic resonance/diffusion tensor imaging scan at 2–5 weeks of age and whose mothers reported their own depressive symptoms at 3 and 6 months postpartum and infant negative emotional reactivity at 6 months. The whole-brain FA moderated the association between maternal depressive symptoms and mother-reported infant negative reactivity at 6 months after adjusting for the covariates. Maternal depressive symptoms were positively related to infant negative reactivity among infants with high or average FA in the whole brain and in corpus callosum and cingulum, but not among those with low FA. The link between maternal depressive symptoms and infant negative reactivity was moderated by newborn FA. The variation in white matter microstructure might play a role in child susceptibility to parental distress.
Collapse
Affiliation(s)
- Saara Nolvi
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.,Department of Medical Psychology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland.,Turku Institute for Advanced Studies, University of Turku, Turku, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland.,Department of Psychiatry, University of Oxford, Oxford, UK
| | - Tuomas Lavonius
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Noora M Scheinin
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| | - Satu J Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Maria Lavonius
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.,Department of Future Technologies, University of Turku, Turku, Finland.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Riikka Korja
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland
| | - Eeva-Leena Kataja
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland
| | - Juho Pelto
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Riitta Parkkola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.,Department of Radiology, Turku University Hospital and University of Turku, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.,Department of Child Psychiatry, Turku University Hospital and University of Turku, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland.,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
15
|
Acute cognitive impairment after traumatic brain injury predicts the occurrence of brain atrophy patterns similar to those observed in Alzheimer's disease. GeroScience 2021; 43:2015-2039. [PMID: 33900530 DOI: 10.1007/s11357-021-00355-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022] Open
Abstract
Traumatic brain injuries (TBIs) are often followed by persistent structural brain alterations and by cognitive sequalae, including memory deficits, reduced neural processing speed, impaired social function, and decision-making difficulties. Although mild TBI (mTBI) is a risk factor for Alzheimer's disease (AD), the extent to which these conditions share patterns of macroscale neurodegeneration has not been quantified. Comparing such patterns can not only reveal how the neurodegenerative trajectories of TBI and AD are similar, but may also identify brain atrophy features which can be leveraged to prognosticate AD risk after TBI. The primary aim of this study is to systematically map how TBI affects white matter (WM) and gray matter (GM) properties in AD-analogous patterns. Our findings identify substantial similarities in the regional macroscale neurodegeneration patterns associated with mTBI and AD. In cerebral GM, such similarities are most extensive in brain areas involved in memory and executive function, such as the temporal poles and orbitofrontal cortices, respectively. Our results indicate that the spatial pattern of cerebral WM degradation observed in AD is broadly similar to the pattern of diffuse axonal injury observed in TBI, which frequently affects WM structures like the fornix, corpus callosum, and corona radiata. Using machine learning, we find that the severity of AD-like brain changes observed during the chronic stage of mTBI can be accurately prognosticated based on acute assessments of post-traumatic mild cognitive impairment. These findings suggest that acute post-traumatic cognitive impairment predicts the magnitude of AD-like brain atrophy, which is itself associated with AD risk.
Collapse
|
16
|
Karlsson H, Merisaari H, Karlsson L, Scheinin NM, Parkkola R, Saunavaara J, Lähdesmäki T, Lehtola SJ, Keskinen M, Pelto J, Lewis JD, Tuulari JJ. Association of Cumulative Paternal Early Life Stress With White Matter Maturation in Newborns. JAMA Netw Open 2020; 3:e2024832. [PMID: 33231637 PMCID: PMC7686861 DOI: 10.1001/jamanetworkopen.2020.24832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
IMPORTANCE Early life stress (ELS) has been shown to affect brain development and health outcomes. Recent animal studies have linked paternal early stress exposures with next-generation outcomes. Epigenetic inheritance through the male germline has been suggested to be one of the mechanisms. OBJECTIVES To test whether paternal ELS, as measured using the Trauma and Distress Scale, is associated with neonate brain development. DESIGN, SETTING, AND PARTICIPANTS This cohort study included data from participants from the prospective 2-generation FinnBrain Birth Cohort, which was collected from 2011 to 2015. Pregnant women and the fathers were consecutively recruited at gestational week 12 from maternity clinics in Finland. Magnetic resonance imaging data were analyzed in 2019. Participants in this study were 72 families (infant, father, mother). EXPOSURE Paternal exposure to ELS. MAIN OUTCOMES AND MEASURES Fractional anisotropy (FA) values in the major white-matter tracts of the newborn brain. RESULTS A total of 72 trios (infant, mother, and father) were analyzed. At the time of delivery, the mean (SD) age was 31.0 (4.4) years for fathers and 30.3 (4.5) years for mothers. Forty-one infants (57%) were boys; mean (SD) child age at inclusion was 26.9 (7.2) days from birth and 205 (8) days from estimated conception. Increasing levels of paternal ELS were associated with higher FA values in the newborn brain in the body of the corpus callosum, right superior corona radiata, and retrolenticular parts of the internal capsule. This association persisted after controlling for maternal ELS, maternal socioeconomic status (SES), maternal body mass index, maternal depressive symptoms during pregnancy, child sex, and child age from birth and gestation corrected age when imaged. In additional region-of-interest analyses, the association between FA values and paternal Trauma and Distress Scale sum scores remained statistically significant in the earliest maturing regions of the brain, eg, the genu of the corpus callosum (in the regression models, β = 0.00096; 95% CI, 0.00034-0.00158; P = .003) and the splenium (β = 0.00090; 95% CI, 0.00000-0.00180; P = .049). CONCLUSIONS AND RELEVANCE This cohort study found a statistically significant association between paternal ELS and offspring brain development. This finding may have far-reaching implications in pediatrics, as it suggests the possibility of a novel route of intergenerational inheritance of ELS on next-generation brain development.
Collapse
Affiliation(s)
- Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Harri Merisaari
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
- Department of Child Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Noora M. Scheinin
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Jani Saunavaara
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- Department of Pediatric Neurology, Turku University Hospital and University of Turku, Turku, Finland
| | - Satu J. Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Maria Keskinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Juho Pelto
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - John D. Lewis
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jetro J. Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
- Turku Collegium for Science and Medicine, University of Turku, Turku, Finland
| |
Collapse
|
17
|
Pasupathy D, Denbow ML, Rutherford MA. The Combined Use of Ultrasound and Fetal Magnetic Resonance Imaging for a Comprehensive Fetal Neurological Assessment in Fetal Congenital Cardiac Defects: Scientific Impact Paper No. 60. BJOG 2019; 126:e142-e151. [PMID: 30916430 DOI: 10.1111/1471-0528.15620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heart problems are common in newborn babies, affecting approximately 5-10 in 1000 babies. Some are more serious than others, but most babies born with heart problems do not have other health issues. Of those babies who have a serious heart problem, almost 1 in 4 will have heart surgery in their first year. In the UK, pregnant women are offered a scan at around 20 weeks to try and spot any heart problems. In most cases there is not a clear reason for the problem, but sometimes other issues, such as genetic conditions, are discovered. In recent years the care given to these babies after they are born has improved their chances of surviving. However, it is recognised that babies born with heart problems have a risk of delays in their learning and development. This may be due to their medical condition, or as a result of surgery and complications after birth. In babies with heart problems, there is a need for more research on ultrasound and magnetic resonance imaging (MRI) to understand how the brain develops and why these babies are more likely to have delays in learning and development. This paper discusses the way ultrasound and MRI are used in assessing the baby's brain. Ultrasound is often used to spot any problems, looking at how the baby's brain develops in pregnancy. Advances in ultrasound technologies have made this easier. MRI is well-established and safe in pregnancy, and if problems in the brain have been seen on ultrasound, MRI may be used to look at these problems in more detail. While it is not always clear what unusual MRI findings can mean for the baby in the long term, increased understanding may mean parents can be given more information about possible outcomes for the baby and may help to improve the counselling they are offered before their baby's birth.
Collapse
|
18
|
Zhang Y, Shi J, Wei H, Han V, Zhu WZ, Liu C. Neonate and infant brain development from birth to 2 years assessed using MRI-based quantitative susceptibility mapping. Neuroimage 2018; 185:349-360. [PMID: 30315906 DOI: 10.1016/j.neuroimage.2018.10.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/10/2018] [Accepted: 10/09/2018] [Indexed: 12/23/2022] Open
Abstract
The human brain rapidly develops during the first two years following birth. Quantitative susceptibility mapping (QSM) provides information of iron and myelin variations. It is considered to be a valuable tool for studying brain development in early life. In the present work, QSM is performed on neonates, 1-year and 2-year old infants, as well as a group of adults for the purpose of reference. Age-specific templates representing common brain structures are built for each age group. The neonate and infant QSM templates have shown some unique findings compared to conventional T1w and T2w imaging techniques. The contrast between the gray and white matters on the QSM images did not change through brain development from neonate to adult. A linear correlation was found between brain myelination determined in this study and the microscopic myelin degree determined by a previous autopsy study. Also, the magnetic susceptibility values of the cerebral spinal fluid (CSF) exhibit a gradually decreasing trend from birth to 2 years old and to adulthood. The findings suggest that the macromolecular content, myelin, and iron may play the most important contributing factors for the magnetic susceptibility of neonate and infant brain. QSM can be a powerful means to study early brain development and related pathologies that involve alterations in macromolecular content, iron, or brain myelination.
Collapse
Affiliation(s)
- Yuyao Zhang
- School of Information and Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jingjing Shi
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjiang Wei
- Electrical Engineering and Computer Science, University of California at Berkeley, CA, USA
| | - Victor Han
- Electrical Engineering and Computer Science, University of California at Berkeley, CA, USA
| | - Wen-Zhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chunlei Liu
- Electrical Engineering and Computer Science, University of California at Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California at Berkeley, CA, USA.
| |
Collapse
|
19
|
Dean DC, Planalp EM, Wooten W, Kecskemeti SR, Adluru N, Schmidt CK, Frye C, Birn RM, Burghy CA, Schmidt NL, Styner MA, Short SJ, Kalin NH, Goldsmith HH, Alexander AL, Davidson RJ. Association of Prenatal Maternal Depression and Anxiety Symptoms With Infant White Matter Microstructure. JAMA Pediatr 2018; 172:973-981. [PMID: 30177999 PMCID: PMC6190835 DOI: 10.1001/jamapediatrics.2018.2132] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE Maternal depression and anxiety can have deleterious and lifelong consequences on child development. However, many aspects of the association of early brain development with maternal symptoms remain unclear. Understanding the timing of potential neurobiological alterations holds inherent value for the development and evaluation of future therapies and interventions. OBJECTIVE To examine the association between exposure to prenatal maternal depression and anxiety symptoms and offspring white matter microstructure at 1 month of age. DESIGN, SETTING, AND PARTICIPANTS This cohort study of 101 mother-infant dyads used a composite of depression and anxiety symptoms measured in mothers during the third trimester of pregnancy and measures of white matter microstructure characterized in the mothers' 1-month offspring using diffusion tensor imaging and neurite orientation dispersion and density imaging performed from October 1, 2014, to November 30, 2016. Magnetic resonance imaging was performed at an academic research facility during natural, nonsedated sleep. MAIN OUTCOMES AND MEASURES Brain mapping algorithms and statistical models were used to evaluate the association between maternal depression and anxiety and 1-month infant white matter microstructure as measured by diffusion tensor imaging and neurite orientation dispersion and density imaging findings. RESULTS In the 101 mother-infant dyads (mean [SD] age of mothers, 33.22 [3.99] years; mean age of infants at magnetic resonance imaging, 33.07 days [range, 18-50 days]; 92 white mothers [91.1%]; 53 male infants [52.5%]), lower 1-month white matter microstructure (decreased neurite density and increased mean, radial, and axial diffusivity) was associated in right frontal white matter microstructure with higher prenatal maternal symptoms of depression and anxiety. Significant sex × symptom interactions with measures of white matter microstructure were also observed, suggesting that white matter development may be differentially sensitive to maternal depression and anxiety symptoms in males and females during the prenatal period. CONCLUSIONS AND RELEVANCE These data highlight the importance of the prenatal period to early brain development and suggest that the underlying white matter microstructure is associated with the continuum of prenatal maternal depression and anxiety symptoms.
Collapse
Affiliation(s)
| | - Elizabeth M. Planalp
- Waisman Center, University of Wisconsin, Madison,Department of Psychology, University of Wisconsin, Madison
| | - William Wooten
- Center for Healthy Minds, University of Wisconsin, Madison
| | | | | | - Cory K. Schmidt
- Waisman Center, University of Wisconsin, Madison,Center for Healthy Minds, University of Wisconsin, Madison
| | - Corrina Frye
- Center for Healthy Minds, University of Wisconsin, Madison
| | - Rasmus M. Birn
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison,Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison
| | - Cory A. Burghy
- Center for Healthy Minds, University of Wisconsin, Madison
| | | | - Martin A. Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill,Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill
| | - Sarah J. Short
- Center for Healthy Minds, University of Wisconsin, Madison
| | - Ned H. Kalin
- Waisman Center, University of Wisconsin, Madison,Department of Psychology, University of Wisconsin, Madison,Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison
| | - H. Hill Goldsmith
- Waisman Center, University of Wisconsin, Madison,Department of Psychology, University of Wisconsin, Madison
| | - Andrew L. Alexander
- Waisman Center, University of Wisconsin, Madison,Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison,Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison
| | - Richard J. Davidson
- Waisman Center, University of Wisconsin, Madison,Department of Psychology, University of Wisconsin, Madison,Center for Healthy Minds, University of Wisconsin, Madison,Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison
| |
Collapse
|
20
|
Proper timing for the evaluation of neonatal brain white matter development: a diffusion tensor imaging study. Eur Radiol 2018; 29:1527-1537. [DOI: 10.1007/s00330-018-5665-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/27/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
|
21
|
Stingone JA, Pandey OP, Claudio L, Pandey G. Using machine learning to identify air pollution exposure profiles associated with early cognitive skills among U.S. children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:730-740. [PMID: 28732336 PMCID: PMC5595640 DOI: 10.1016/j.envpol.2017.07.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 05/12/2023]
Abstract
Data-driven machine learning methods present an opportunity to simultaneously assess the impact of multiple air pollutants on health outcomes. The goal of this study was to apply a two-stage, data-driven approach to identify associations between air pollutant exposure profiles and children's cognitive skills. Data from 6900 children enrolled in the Early Childhood Longitudinal Study, Birth Cohort, a national study of children born in 2001 and followed through kindergarten, were linked to estimated concentrations of 104 ambient air toxics in the 2002 National Air Toxics Assessment using ZIP code of residence at age 9 months. In the first-stage, 100 regression trees were learned to identify ambient air pollutant exposure profiles most closely associated with scores on a standardized mathematics test administered to children in kindergarten. In the second-stage, the exposure profiles frequently predicting lower math scores were included within linear regression models and adjusted for confounders in order to estimate the magnitude of their effect on math scores. This approach was applied to the full population, and then to the populations living in urban and highly-populated urban areas. Our first-stage results in the full population suggested children with low trichloroethylene exposure had significantly lower math scores. This association was not observed for children living in urban communities, suggesting that confounding related to urbanicity needs to be considered within the first-stage. When restricting our analysis to populations living in urban and highly-populated urban areas, high isophorone levels were found to predict lower math scores. Within adjusted regression models of children in highly-populated urban areas, the estimated effect of higher isophorone exposure on math scores was -1.19 points (95% CI -1.94, -0.44). Similar results were observed for the overall population of urban children. This data-driven, two-stage approach can be applied to other populations, exposures and outcomes to generate hypotheses within high-dimensional exposure data.
Collapse
Affiliation(s)
- Jeanette A Stingone
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Om P Pandey
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Luz Claudio
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
22
|
Wang R, Wilkinson M, Kane T, Takahashi E. Convergence of Cortical, Thalamocortical, and Callosal Pathways during Human Fetal Development Revealed by Diffusion MRI Tractography. Front Neurosci 2017; 11:576. [PMID: 29163000 PMCID: PMC5671991 DOI: 10.3389/fnins.2017.00576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 10/02/2017] [Indexed: 11/17/2022] Open
Abstract
There has been evidence that during brain development, emerging thalamocortical (TC) and corticothalamic (CT) pathways converge in some brain regions and follow each other's trajectories to their final destinations. Corpus callosal (CC) pathways also emerge at a similar developmental stage, and are known to converge with TC pathways in specific cortical regions in mature brains. Given the functional relationships between TC and CC pathways, anatomical convergence of the two pathways are likely important for their functional integration. However, it is unknown (1) where TC and CT subcortically converge in the human brain, and (2) where TC and CC converge in the cortex of the human brain, due to the limitations of non-invasive methods. The goals of this study were to describe the spatio-temporal relationships in the development of the TC/CT and CC pathways in the human brain, using high-angular resolution diffusion MR imaging (HARDI) tractography. Emerging cortical, TC and CC pathways were identified in postmortem fetal brains ranging from 17 gestational weeks (GW) to 30 GW, as well as in vivo 34-40 GW newborns. Some pathways from the thalami were found to be converged with pathways from the cerebral cortex as early as 17 GW. Such convergence was observed mainly in anterior and middle regions of the brain until 21 GW. At 22 GW and onwards, posterior pathways from the thalami also converged with cortical pathways. Many CC pathways reached the full length up to the cortical surface as early as 17 GW, while pathways linked to thalami (not only TC axons but also including pathways linked to thalamic neuronal migration) reached the cortical surface at and after 20 GW. These results suggest that CC pathways developed earlier than the TC pathways. The two pathways were widespread at early stages, but by 40 GW they condensed and formed groups of pathways that projected to specific regions of the cortex and overlapped in some brain regions. These results suggest that HARDI tractography has the potential to identify developing TC/CT and CC pathways with the timing and location of their convergence in fetal stages persisting in postnatal development.
Collapse
Affiliation(s)
- Rongpin Wang
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Molly Wilkinson
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA, United States
| | - Tara Kane
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA, United States
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
Dean DC, Planalp EM, Wooten W, Adluru N, Kecskemeti SR, Frye C, Schmidt CK, Schmidt NL, Styner MA, Goldsmith HH, Davidson RJ, Alexander AL. Mapping White Matter Microstructure in the One Month Human Brain. Sci Rep 2017; 7:9759. [PMID: 28852074 PMCID: PMC5575288 DOI: 10.1038/s41598-017-09915-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/01/2017] [Indexed: 11/24/2022] Open
Abstract
White matter microstructure, essential for efficient and coordinated transmission of neural communications, undergoes pronounced development during the first years of life, while deviations to this neurodevelopmental trajectory likely result in alterations of brain connectivity relevant to behavior. Hence, systematic evaluation of white matter microstructure in the normative brain is critical for a neuroscientific approach to both typical and atypical early behavioral development. However, few studies have examined the infant brain in detail, particularly in infants under 3 months of age. Here, we utilize quantitative techniques of diffusion tensor imaging and neurite orientation dispersion and density imaging to investigate neonatal white matter microstructure in 104 infants. An optimized multiple b-value diffusion protocol was developed to allow for successful acquisition during non-sedated sleep. Associations between white matter microstructure measures and gestation corrected age, regional asymmetries, infant sex, as well as newborn growth measures were assessed. Results highlight changes of white matter microstructure during the earliest periods of development and demonstrate differential timing of developing regions and regional asymmetries. Our results contribute to a growing body of research investigating the neurobiological changes associated with neurodevelopment and suggest that characteristics of white matter microstructure are already underway in the weeks immediately following birth.
Collapse
Affiliation(s)
- D C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA.
| | - E M Planalp
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - W Wooten
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - N Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - S R Kecskemeti
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - C Frye
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - C K Schmidt
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - N L Schmidt
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - M A Styner
- Department of Psychiatry, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - H H Goldsmith
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - R J Davidson
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Psychiatry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - A L Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
24
|
Pecheva D, Yushkevich P, Batalle D, Hughes E, Aljabar P, Wurie J, Hajnal JV, Edwards AD, Alexander DC, Counsell SJ, Zhang H. A tract-specific approach to assessing white matter in preterm infants. Neuroimage 2017; 157:675-694. [PMID: 28457976 PMCID: PMC5607355 DOI: 10.1016/j.neuroimage.2017.04.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/12/2017] [Accepted: 04/25/2017] [Indexed: 11/23/2022] Open
Abstract
Diffusion-weighted imaging (DWI) is becoming an increasingly important tool for studying brain development. DWI analyses relying on manually-drawn regions of interest and tractography using manually-placed waypoints are considered to provide the most accurate characterisation of the underlying brain structure. However, these methods are labour-intensive and become impractical for studies with large cohorts and numerous white matter (WM) tracts. Tract-specific analysis (TSA) is an alternative WM analysis method applicable to large-scale studies that offers potential benefits. TSA produces a skeleton representation of WM tracts and projects the group's diffusion data onto the skeleton for statistical analysis. In this work we evaluate the performance of TSA in analysing preterm infant data against results obtained from native space tractography and tract-based spatial statistics. We evaluate TSA's registration accuracy of WM tracts and assess the agreement between native space data and template space data projected onto WM skeletons, in 12 tracts across 48 preterm neonates. We show that TSA registration provides better WM tract alignment than a previous protocol optimised for neonatal spatial normalisation, and that TSA projects FA values that match well with values derived from native space tractography. We apply TSA for the first time to a preterm neonatal population to study the effects of age at scan on WM tracts around term equivalent age. We demonstrate the effects of age at scan on DTI metrics in commissural, projection and association fibres. We demonstrate the potential of TSA for WM analysis and its suitability for infant studies involving multiple tracts. Evaluation of tract-specific analysis (TSA) for white matter studies in infants. TSA improves white matter tract alignment over scalar-based registration. TSA closely approximates native space tractography DTI values. The first application of TSA to a neonatal population.
Collapse
Affiliation(s)
- Diliana Pecheva
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, UK; Department of Computer Science and Centre for Medical Image Computing, University College London, UK
| | - Paul Yushkevich
- Penn Image Computing and Science Laboratory (PISCL), Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Dafnis Batalle
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, UK
| | - Emer Hughes
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, UK
| | - Paul Aljabar
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, UK
| | - Julia Wurie
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, UK
| | - A David Edwards
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, UK
| | - Daniel C Alexander
- Department of Computer Science and Centre for Medical Image Computing, University College London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, UK.
| | - Hui Zhang
- Department of Computer Science and Centre for Medical Image Computing, University College London, UK
| |
Collapse
|
25
|
Malavolti AM, Chau V, Brown-Lum M, Poskitt KJ, Brant R, Synnes A, Grunau RE, Miller SP. Association between corpus callosum development on magnetic resonance imaging and diffusion tensor imaging, and neurodevelopmental outcome in neonates born very preterm. Dev Med Child Neurol 2017; 59:433-440. [PMID: 27976377 DOI: 10.1111/dmcn.13364] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2016] [Indexed: 11/28/2022]
Abstract
AIM To characterize corpus callosum development in neonates born very preterm from early in life to term-equivalent age and its relationship with neurodevelopmental outcome at 18 months corrected age. METHOD In a prospective cohort of 193 neonates born preterm, 24 to 32 weeks' gestation, we used magnetic resonance imaging and diffusion tensor imaging acquired early in life (n=193) and at term-equivalent age (n=159) to measure corpus callosum development: mid-sagittal area (including corpus callosum subdivisions) and length, and fractional anisotropy from the genu and splenium. We examined the association of (1) intraventricular haemorrhage (IVH) and white matter injury (WMI) severity, and (2) neurodevelopmental outcome at 18 months corrected age with corpus callosum development. RESULTS Severe WMI and severe IVH were strongly associated with reduced corpus callosum area (both p<0.001) and WMI with lower fractional anisotropy (p=0.002). Mild WMI predicted smaller corpus callosum area only posteriorly; mild IVH predicted smaller area throughout. Adverse motor outcome was associated with smaller corpus callosum size in the posterior subdivision (p=0.003). Abnormal cognitive outcomes were associated with lower corpus callosum fractional anisotropy (p=0.008). INTERPRETATION In newborn infants born very preterm, brain injury is associated with changes in simple metrics of corpus callosum development. In this population, the development of the corpus callosum, as reflected by size and microstructure, is associated with neurodevelopmental outcomes at 18 months corrected age.
Collapse
Affiliation(s)
- Anna M Malavolti
- Department of Pediatrics, University of British Columbia and BC Children's and Women's Hospital, Vancouver, BC, Canada
| | - Vann Chau
- Department of Pediatrics, University of British Columbia and BC Children's and Women's Hospital, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada.,Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, Canada
| | - Meisan Brown-Lum
- Department of Pediatrics, University of British Columbia and BC Children's and Women's Hospital, Vancouver, BC, Canada
| | - Kenneth J Poskitt
- Department of Pediatrics, University of British Columbia and BC Children's and Women's Hospital, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Radiology, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Rollin Brant
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Statistics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Anne Synnes
- Department of Pediatrics, University of British Columbia and BC Children's and Women's Hospital, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Ruth E Grunau
- Department of Pediatrics, University of British Columbia and BC Children's and Women's Hospital, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Steven P Miller
- Department of Pediatrics, University of British Columbia and BC Children's and Women's Hospital, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada.,Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, Canada
| |
Collapse
|
26
|
Giuliano A, Saviozzi I, Brambilla P, Muratori F, Retico A, Calderoni S. The effect of age, sex and clinical features on the volume of Corpus Callosum in pre-schoolers with Autism Spectrum Disorder: a case-control study. Eur J Neurosci 2017; 47:568-578. [PMID: 28112456 DOI: 10.1111/ejn.13527] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/31/2016] [Accepted: 01/14/2017] [Indexed: 11/30/2022]
Abstract
A growing body of literature has identified volume alterations of the corpus callosum (CC) in subjects with autism spectrum disorders (ASD). However, to date very few investigations have been conducted on pre-school-age ASD children. This study aims to compare the volume of CC and its sub-regions between pre-schoolers with ASD and controls (CON) and to examine their relationship to demographic and clinical variables (sex, age, non-verbal IQ -NVIQ-, expressive non-echolalic language, emotional and behavioural problems, and autism severity). The volume of CC of 40 pre-schoolers with ASD (20 males and 20 females; mean age: 49 ± 12 months; mean NVIQ: 73 ± 22) and 40 sex-, age-, and NVIQ-matched CON subjects (20 M and 20 F; mean age: 49 ± 14 months; mean NVIQ: 73 ± 23) were quantified applying the FreeSurfer automated parcellation software on Magnetic Resonance images. No significant volumetric differences in CC total volume and in its sub-regions between ASD and CON were found using total brain volume as a covariate. Analogously, absence of CC volumetric differences was evident when boys and girls with ASD were compared with their matched controls. The CC total volume of younger ASD male subjects was found significantly larger with respect to matched CON, which is consistent with the atypical growth trajectory widely reported in these young children. The CC total volume was negatively correlated with autism severity, whereas no association between CC volume and other clinical variables was detected. If replicated, the indirect relationship between CC volume and autism severity suggests the involvement of CC in core ASD symptoms.
Collapse
Affiliation(s)
- Alessia Giuliano
- Physics Department, University of Pisa, Pisa, Italy.,Pisa Division, National Institute for Nuclear Physics, Largo Pontecorvo 3, 56127, Pisa, Italy
| | | | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Psychiatric Clinic, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy.,Department of Psychiatry and Behavioural Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Filippo Muratori
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Alessandra Retico
- Pisa Division, National Institute for Nuclear Physics, Largo Pontecorvo 3, 56127, Pisa, Italy
| | - Sara Calderoni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| |
Collapse
|
27
|
Young JT, Shi Y, Niethammer M, Grauer M, Coe CL, Lubach GR, Davis B, Budin F, Knickmeyer RC, Alexander AL, Styner MA. The UNC-Wisconsin Rhesus Macaque Neurodevelopment Database: A Structural MRI and DTI Database of Early Postnatal Development. Front Neurosci 2017; 11:29. [PMID: 28210206 PMCID: PMC5288388 DOI: 10.3389/fnins.2017.00029] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/16/2017] [Indexed: 01/01/2023] Open
Abstract
Rhesus macaques are commonly used as a translational animal model in neuroimaging and neurodevelopmental research. In this report, we present longitudinal data from both structural and diffusion MRI images generated on a cohort of 34 typically developing monkeys from 2 weeks to 36 months of age. All images have been manually skull stripped and are being made freely available via an online repository for use by the research community.
Collapse
Affiliation(s)
- Jeffrey T. Young
- Department of Psychiatry, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Yundi Shi
- Department of Psychiatry, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Marc Niethammer
- Department of Computer Science, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | | | - Christopher L. Coe
- Harlow Center for Biological Psychology, University of Wisconsin-MadisonMadison, WI, USA
| | - Gabriele R. Lubach
- Harlow Center for Biological Psychology, University of Wisconsin-MadisonMadison, WI, USA
| | | | | | - Rebecca C. Knickmeyer
- Department of Psychiatry, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Andrew L. Alexander
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-MadisonMadison, WI, USA
| | - Martin A. Styner
- Department of Psychiatry, University of North Carolina at Chapel HillChapel Hill, NC, USA
- Department of Computer Science, University of North Carolina at Chapel HillChapel Hill, NC, USA
| |
Collapse
|
28
|
Wu D, Chang L, Akazawa K, Oishi K, Skranes J, Ernst T, Oishi K. Mapping the critical gestational age at birth that alters brain development in preterm-born infants using multi-modal MRI. Neuroimage 2017; 149:33-43. [PMID: 28111189 DOI: 10.1016/j.neuroimage.2017.01.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/07/2017] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
Preterm birth adversely affects postnatal brain development. In order to investigate the critical gestational age at birth (GAB) that alters the developmental trajectory of gray and white matter structures in the brain, we investigated diffusion tensor and quantitative T2 mapping data in 43 term-born and 43 preterm-born infants. A novel multivariate linear model-the change point model, was applied to detect change points in fractional anisotropy, mean diffusivity, and T2 relaxation time. Change points captured the "critical" GAB value associated with a change in the linear relation between GAB and MRI measures. The analysis was performed in 126 regions across the whole brain using an atlas-based image quantification approach to investigate the spatial pattern of the critical GAB. Our results demonstrate that the critical GABs are region- and modality-specific, generally following a central-to-peripheral and bottom-to-top order of structural development. This study may offer unique insights into the postnatal neurological development associated with differential degrees of preterm birth.
Collapse
Affiliation(s)
- Dan Wu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Linda Chang
- Department of Medicine, School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Kentaro Akazawa
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kumiko Oishi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jon Skranes
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thomas Ernst
- Department of Medicine, School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Kenichi Oishi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
29
|
Zhong J, Chen DQ, Walker M, Waspe A, Looi T, Piorkowska K, Drake JM, Hodaie M. An In vivo Multi-Modal Structural Template for Neonatal Piglets Using High Angular Resolution and Population-Based Whole-Brain Tractography. Front Neuroanat 2016; 10:92. [PMID: 27729850 PMCID: PMC5037218 DOI: 10.3389/fnana.2016.00092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/14/2016] [Indexed: 11/13/2022] Open
Abstract
An increasing number of applications use the postnatal piglet model in neuroimaging studies, however, these are based primarily on T1 weighted image templates. There is a growing need for a multimodal structural brain template for a comprehensive depiction of the piglet brain, particularly given the growing applications of diffusion weighted imaging for characterizing tissue microstructures and white matter organization. In this study, we present the first multimodal piglet structural brain template which includes a T1 weighted image with tissue segmentation probability maps, diffusion weighted metric templates with multiple diffusivity maps, and population-based whole-brain fiber tracts for postnatal piglets. These maps provide information about the integrity of white matter that is not available in T1 images alone. The availability of this diffusion weighted metric template will contribute to the structural imaging analysis of the postnatal piglet brain, especially models that are designed for the study of white matter diseases. Furthermore, the population-based whole-brain fiber tracts permit researchers to visualize the white matter connections in the piglet brain across subjects, guiding the delineation of a specific white matter region for structural analysis where current diffusion data is lacking. Researchers are able to augment the tracts by merging tracts from their own data to the population-based fiber tracts and thus improve the confidence of the population-wise fiber distribution.
Collapse
Affiliation(s)
- Jidan Zhong
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto ON, Canada
| | - David Q Chen
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, TorontoON, Canada; Institute of Medical Science, University of Toronto, TorontoON, Canada
| | - Matthew Walker
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, TorontoON, Canada; Institute of Medical Science, University of Toronto, TorontoON, Canada
| | - Adam Waspe
- Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto ON, Canada
| | - Thomas Looi
- Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto ON, Canada
| | - Karolina Piorkowska
- Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto ON, Canada
| | - James M Drake
- Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, TorontoON, Canada; Division of Neurosurgery, The Hospital for Sick Children, TorontoON, Canada
| | - Mojgan Hodaie
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, TorontoON, Canada; Institute of Medical Science, University of Toronto, TorontoON, Canada; Division of Neurosurgery, Toronto Western Hospital - University of Toronto, TorontoON, Canada
| |
Collapse
|
30
|
Makki MI, Hagmann C. Regional differences in interhemispheric structural fibers in healthy, term infants. J Neurosci Res 2016; 95:876-884. [DOI: 10.1002/jnr.23834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 06/03/2016] [Accepted: 06/21/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Malek I. Makki
- MRI Research; University Children Hospital Zurich; Zurich Switzerland
| | - Cornelia Hagmann
- Department of Neonatology; University Hospital Zurich; Zurich Switzerland
| |
Collapse
|
31
|
Li BX, Liu GS, Ling XY, Chen HF, Luo XQ. [Evaluation of white matter myelination in preterm infants using DTI and MRI]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:476-481. [PMID: 27324532 PMCID: PMC7389077 DOI: 10.7499/j.issn.1008-8830.2016.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/22/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To investigate the features of white matter myelin development in preterm infants using magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). METHODS A total of 31 preterm infants with a gestational age of ≤32 weeks and a birth weight of <1 500 g were enrolled. According to head MRI findings, these infants were divided into preterm group with brain injury (12 infants) and preterm group without brain injury (19 infants). A total of 24 full-term infants were enrolled as control group. Head MRI and DTI were performed at a gestational age or corrected gestational age of 37-40 weeks. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were measured for the same regions of interest in the three groups. RESULTS The preterm group with brain injury showed a significantly lower FA value of the posterior limb of the internal capsule than the preterm group without brain injury and full-term control group (P<0.05). The preterm groups with and without brain injury showed significantly lower FA values of frontal white matter and lenticular nucleus than the full-term control group (P<0.05). The FA value of occipital white matter showed no significant differences among the three groups (P>0.05). Compared with the full-term control group, the preterm groups with and without brain injury showed significantly higher ADC values of the posterior limb of the internal capsule, lenticular nucleus, occipital white matter, and frontal white matter (P<0.05). CONCLUSIONS After brain injury, preterm infants tend to develop disorder or delay of white matter myelination in the posterior limb of the internal capsule. At a corrected full-term gestational age, the preterm infants with and without brain injury have a lower grade of maturity in periventricular white matter and grey matter than full-term infants.
Collapse
Affiliation(s)
- Bing-Xiao Li
- Department of Pediatrics, First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| | | | | | | | | |
Collapse
|
32
|
Kansagra AP, Mabray MC, Ferriero DM, Barkovich AJ, Xu D, Hess CP. Microstructural maturation of white matter tracts in encephalopathic neonates. Clin Imaging 2016; 40:1009-13. [PMID: 27314214 DOI: 10.1016/j.clinimag.2016.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/19/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE This study aims to apply neurite orientation dispersion and density imaging (NODDI) to measure white matter microstructural features during early development. METHODS NODDI parameters were measured in twelve newborns and thirteen 6-month infants, all with perinatal clinical encephalopathy. RESULTS Between 0 and 6 months, there were significant differences in fractional anisotropy (FA) for all tracts; in neurite density for internal capsules, optic radiations, and splenium; and in orientation dispersion for anterior limb of internal capsule and optic radiations. There were no appreciable differences in NODDI parameters related to outcome. CONCLUSION NODDI may allow more detailed characterization of microstructural maturation than FA.
Collapse
Affiliation(s)
- Akash P Kansagra
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., Campus Box 8131, Saint Louis, MO 63110.
| | - Marc C Mabray
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, M-391, San Francisco, CA 94143
| | - Donna M Ferriero
- Departments of Pediatrics and Neurology, University of California, San Francisco, 400 Parnassus Avenue, San Francisco, CA 94143
| | - A James Barkovich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, M-391, San Francisco, CA 94143; Departments of Pediatrics and Neurology, University of California, San Francisco, 400 Parnassus Avenue, San Francisco, CA 94143
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, M-391, San Francisco, CA 94143
| | - Christopher P Hess
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, M-391, San Francisco, CA 94143
| |
Collapse
|
33
|
Cohen AH, Wang R, Wilkinson M, MacDonald P, Lim AR, Takahashi E. Development of human white matter fiber pathways: From newborn to adult ages. Int J Dev Neurosci 2016; 50:26-38. [PMID: 26948153 DOI: 10.1016/j.ijdevneu.2016.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 02/08/2023] Open
Abstract
Major long-range white matter pathways (cingulum, fornix, uncinate fasciculus [UF], inferior fronto-occipital fasciculus [IFOF], inferior longitudinal fasciculus [ILF], thalamocortical [TC], and corpus callosal [CC] pathways) were identified in eighty-three healthy humans ranging from newborn to adult ages. We tracked developmental changes using high-angular resolution diffusion MR tractography. Fractional anisotropy (FA), apparent diffusion coefficient, number, length, and volume were measured in pathways in each subject. Newborns had fewer, and more sparse, pathways than those of the older subjects. FA, number, length, and volume of pathways gradually increased with age and reached a plateau between 3 and 5 years of age. Data were further analyzed by normalizing with mean adult values as well as with each subject's whole brain values. Comparing subjects of 3 years old and under to those over 3 years old, the studied pathways showed differential growth patterns. The CC, bilateral cingulum, bilateral TC, and the left IFOF pathways showed significant growth both in volume and length, while the bilateral fornix, bilateral ILF and bilateral UF showed significant growth only in volume. The TC and CC took similar growth patterns with the whole brain. FA values of the cingulum and IFOF, and the length of ILF showed leftward asymmetry. The fornix, ILF and UF occupied decreased space compared to the whole brain during development with higher FA values, likely corresponding to extensive maturation of the pathways compared to the mean whole brain maturation. We believe that the outcome of this study will provide an important database for future reference.
Collapse
Affiliation(s)
- Andrew H Cohen
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Rongpin Wang
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Radiology, Guizhou Provincial People's Hospital, 83 Zhong Shan Dong Lu, Guiyang, Guizhou Province 550002, China; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA; Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Molly Wilkinson
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Patrick MacDonald
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Ashley R Lim
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Emi Takahashi
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA; Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Hagmann C, Singer J, Latal B, Knirsch W, Makki M. Regional Microstructural and Volumetric Magnetic Resonance Imaging (MRI) Abnormalities in the Corpus Callosum of Neonates With Congenital Heart Defect Undergoing Cardiac Surgery. J Child Neurol 2016; 31:300-8. [PMID: 26129977 DOI: 10.1177/0883073815591214] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/11/2015] [Indexed: 11/17/2022]
Abstract
The purpose of the study is to investigate the structural development of the corpus callosum in term neonates with congenital heart defect before and after surgery using diffusion tensor imaging and 3-dimensional T1-weighted magnetic resonance imaging (MRI). We compared parallel and radial diffusions, apparent diffusion coefficient (ADC), fractional anisotropy, and volume of 5 substructures of the corpus callosum: genu, rostral body, body, isthmus, and splenium. Compared to healthy controls, we found a significantly lower volume of the splenium and total corpus callosum and a higher radial diffusion and lower fractional anisotropy in the splenium of patients presurgery; a lower volume in all substructures in the postsurgery group; higher radial diffusion in the rostral body, body, and splenium; and a higher apparent diffusion coefficient in the splenium of postsurgery patients. Similar fractional anisotropy changes in congenital heart defect patients were reported in preterm infants. Our findings in apparent diffusion coefficient in the splenium of these patients (pre and postsurgery) are comparable to findings in preterm neonates with psychomotor delay. Delayed maturation of the isthmus was also reported in preterm infants.
Collapse
Affiliation(s)
- Cornelia Hagmann
- Department of Neonatology, University Hospital, Zurich, Switzerland
| | - Jitka Singer
- Department of Neonatology, University Hospital, Zurich, Switzerland
| | - Beatrice Latal
- Child Development Center, University Children's Hospital, Zurich, Switzerland
| | - Walter Knirsch
- Pediatric Cardiology, University Children's Hospital, Zurich, Switzerland
| | - Malek Makki
- MRI Research Centre, University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
35
|
Lyall AE, Savadjiev P, Shenton ME, Kubicki M. Insights into the Brain: Neuroimaging of Brain Development and Maturation. JOURNAL OF NEUROIMAGING IN PSYCHIATRY & NEUROLOGY 2016; 1:10-19. [PMID: 28620654 PMCID: PMC5469407 DOI: 10.17756/jnpn.2016-003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The study of how the human brain develops has always been a challenge and an interest to the scientific community. In recent years, new evidence has suggested that many neuropsychiatric disorders may originate from aberrations early in development. This discovery necessitates the application of methodologies that make possible the investigation of human brain development in vivo and across the lifespan. In this commentary, we present evidence that the advent of structural neuroimaging has specifically and significantly contributed critical information about the developmental trajectories of postnatal human brain development that would otherwise not have been possible. We believe that this is particularly relevant to present day research as it has become increasingly clear that growth trajectories within the brain might serve as an endophenotype for a number of factors, ranging from IQ to psychiatric illness. We highlight seminal early works that helped to jumpstart the field of developmental neuroimaging and which inspired incredible new advances in neuroimaging methodologies that are being developed and applied in the field today.
Collapse
Affiliation(s)
- Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Savadjiev
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,VA Boston Healthcare System, Brockton, MA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Akazawa K, Chang L, Yamakawa R, Hayama S, Buchthal S, Alicata D, Andres T, Castillo D, Oishi K, Skranes J, Ernst T, Oishi K. Probabilistic maps of the white matter tracts with known associated functions on the neonatal brain atlas: Application to evaluate longitudinal developmental trajectories in term-born and preterm-born infants. Neuroimage 2015; 128:167-179. [PMID: 26712341 DOI: 10.1016/j.neuroimage.2015.12.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 01/23/2023] Open
Abstract
Diffusion tensor imaging (DTI) has been widely used to investigate the development of the neonatal and infant brain, and deviations related to various diseases or medical conditions like preterm birth. In this study, we created a probabilistic map of fiber pathways with known associated functions, on a published neonatal multimodal atlas. The pathways-of-interest include the superficial white matter (SWM) fibers just beneath the specific cytoarchitectonically defined cortical areas, which were difficult to evaluate with existing DTI analysis methods. The Jülich cytoarchitectonic atlas was applied to define cortical areas related to specific brain functions, and the Dynamic Programming (DP) method was applied to delineate the white matter pathways traversing through the SWM. Probabilistic maps were created for pathways related to motor, somatosensory, auditory, visual, and limbic functions, as well as major white matter tracts, such as the corpus callosum, the inferior fronto-occipital fasciculus, and the middle cerebellar peduncle, by delineating these structures in eleven healthy term-born neonates. In order to characterize maturation-related changes in diffusivity measures of these pathways, the probabilistic maps were then applied to DTIs of 49 healthy infants who were longitudinally scanned at three time-points, approximately five weeks apart. First, we investigated the normal developmental pattern based on 19 term-born infants. Next, we analyzed 30 preterm-born infants to identify developmental patterns related to preterm birth. Last, we investigated the difference in diffusion measures between these groups to evaluate the effects of preterm birth on the development of these functional pathways. Term-born and preterm-born infants both demonstrated a time-dependent decrease in diffusivity, indicating postnatal maturation in these pathways, with laterality seen in the corticospinal tract and the optic radiation. The comparison between term- and preterm-born infants indicated higher diffusivity in the preterm-born infants than in the term-born infants in three of these pathways: the body of the corpus callosum; the left inferior longitudinal fasciculus; and the pathway connecting the left primary/secondary visual cortices and the motion-sensitive area in the occipitotemporal visual cortex (V5/MT+). Probabilistic maps provided an opportunity to investigate developmental changes of each white matter pathway. Whether alterations in white matter pathways can predict functional outcomes will be further investigated in a follow-up study.
Collapse
Affiliation(s)
- Kentaro Akazawa
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Linda Chang
- Department of Medicine, School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Robyn Yamakawa
- Department of Medicine, School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Sara Hayama
- Department of Medicine, School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Steven Buchthal
- Department of Medicine, School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Daniel Alicata
- Department of Medicine, School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Tamara Andres
- Department of Medicine, School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Deborrah Castillo
- Department of Medicine, School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Kumiko Oishi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jon Skranes
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thomas Ernst
- Department of Medicine, School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Kenichi Oishi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
37
|
Jakab A, Pogledic I, Schwartz E, Gruber G, Mitter C, Brugger PC, Langs G, Schöpf V, Kasprian G, Prayer D. Fetal Cerebral Magnetic Resonance Imaging Beyond Morphology. Semin Ultrasound CT MR 2015; 36:465-75. [DOI: 10.1053/j.sult.2015.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Abstract
The human brain rapidly develops during the final weeks of gestation and in the first two years following birth. Diffusion tensor imaging (DTI) is a unique in vivo imaging technique that allows three-dimensional visualization of the white matter anatomy in the brain. It has been considered to be a valuable tool for studying brain development in early life. In this review, we first introduce the DTI technique. We then review DTI findings on white matter development at the fetal stage and in infancy as well as DTI applications for understanding neurocognitive development and brain abnormalities in preterm infants. Finally, we discuss limitations of DTI and potential valuable imaging techniques for studying white matter myelination.
Collapse
Affiliation(s)
- Anqi Qiu
- Department of Biomedical Engineering and Clinical Imaging Research Center, National University of Singapore, 117576 Singapore;
| | | | | |
Collapse
|
39
|
MASSARO ANN, EVANGELOU IORDANIS, FATEMI ALI, VEZINA GILBERT, MCCARTER ROBERT, GLASS PENNY, LIMPEROPOULOS CATHERINE. White matter tract integrity and developmental outcome in newborn infants with hypoxic-ischemic encephalopathy treated with hypothermia. Dev Med Child Neurol 2015; 57:441-8. [PMID: 25492527 PMCID: PMC4543365 DOI: 10.1111/dmcn.12646] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2014] [Indexed: 12/01/2022]
Abstract
AIM To determine whether corpus callosum (CC) and corticospinal tract (CST) diffusion tensor imaging (DTI) measures relate to developmental outcome in encephalopathic newborn infants after therapeutic hypothermia. METHOD Encephalopathic newborn infants enrolled in a longitudinal study underwent DTI after hypothermia. Parametric maps were generated for fractional anisotropy, mean, radial, and axial diffusivity. CC and CST were segmented by DTI-based tractography. Multiple regression models were used to examine the association of DTI measures with Bayley-II Mental (MDI) and Psychomotor Developmental Index (PDI) at 15 months and 21 months of age. RESULTS Fifty-two infants (males n=32, females n=20) underwent DTI at median age of 8 days. Two were excluded because of poor magnetic resonance imaging quality. Outcomes were assessed in 42/50 (84%) children at 15 months and 35/50 (70%) at 21 months. Lower CC and CST fractional anisotropy were associated with lower MDI and PDI respectively, even after controlling for gestational age, birth weight, sex, and socio-economic status. There was also a direct relationship between CC axial diffusivity and MDI, while CST radial diffusivity was inversely related to PDI. INTERPRETATION In encephalopathic newborn infants, impaired microstructural organization of the CC and CST predicts poorer cognitive and motor performance respectively. Tractography provides a reliable method for early assessment of perinatal brain injury.
Collapse
Affiliation(s)
- ANN MASSARO
- Department of Neonatology, Children’s National Medical Center, Washington, DC,Department of Pediatrics, The George Washington University School of Medicine, Washington, DC
| | - IORDANIS EVANGELOU
- Department of Diagnostic Imaging and Radiology, Children’s National Medical Center, Washington, DC,Department of Radiology, The George Washington University School of Medicine, Washington, DC
| | - ALI FATEMI
- Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD
| | - GILBERT VEZINA
- Department of Diagnostic Imaging and Radiology, Children’s National Medical Center, Washington, DC,Department of Pediatrics, The George Washington University School of Medicine, Washington, DC,Department of Radiology, The George Washington University School of Medicine, Washington, DC
| | - ROBERT MCCARTER
- Department of Biostatistics & Informatics, Children’s National Medical Center, Washington, DC,Department of Pediatrics, The George Washington University School of Medicine, Washington, DC,Department of Epidemiology & Biostatistics, The George Washington University School of Medicine, Washington, DC, USA
| | - PENNY GLASS
- Department of Psychiatry & Behavioral Sciences, Children’s National Medical Center, Washington, DC,Department of Pediatrics, The George Washington University School of Medicine, Washington, DC
| | - CATHERINE LIMPEROPOULOS
- Department of Diagnostic Imaging and Radiology, Children’s National Medical Center, Washington, DC,Department of Pediatrics, The George Washington University School of Medicine, Washington, DC
| |
Collapse
|
40
|
Tanaka-Arakawa MM, Matsui M, Tanaka C, Uematsu A, Uda S, Miura K, Sakai T, Noguchi K. Developmental changes in the corpus callosum from infancy to early adulthood: a structural magnetic resonance imaging study. PLoS One 2015; 10:e0118760. [PMID: 25790124 PMCID: PMC4366394 DOI: 10.1371/journal.pone.0118760] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 01/06/2015] [Indexed: 02/05/2023] Open
Abstract
Previous research has reported on the development trajectory of the corpus callosum morphology. However, there have been only a few studies that have included data on infants. The goal of the present study was to examine the morphology of the corpus callosum in healthy participants of both sexes, from infancy to early adulthood. We sought to characterize normal development of the corpus callosum and possible sex differences in development. We performed a morphometric magnetic resonance imaging (MRI) study of 114 healthy individuals, aged 1 month to 25 years old, measuring the size of the corpus callosum. The corpus callosum was segmented into seven subareas of the rostrum, genu, rostral body, anterior midbody, posterior midbody, isthmus and splenium. Locally weighted regression analysis (LOESS) indicated significant non-linear age-related changes regardless of sex, particularly during the first few years of life. After this increase, curve slopes gradually became flat during adolescence and adulthood in both sexes. Age of local maximum for each subarea of the corpus callosum differed across the sexes. Ratios of total corpus callosum and genu, posterior midbody, as well as splenium to the whole brain were significantly higher in females compared with males. The present results demonstrate that the developmental trajectory of the corpus callosum during early life in healthy individuals is non-linear and dynamic. This pattern resembles that found for the cerebral cortex, further suggesting that this period plays a very important role in neural and functional development. In addition, developmental trajectories and changes in growth do show some sex differences.
Collapse
Affiliation(s)
- Megumi M. Tanaka-Arakawa
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mie Matsui
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- * E-mail:
| | - Chiaki Tanaka
- Department of Pediatrics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Akiko Uematsu
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Satoshi Uda
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kayoko Miura
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tomoko Sakai
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Kyo Noguchi
- Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
41
|
Nossin-Manor R, Card D, Raybaud C, Taylor MJ, Sled JG. Cerebral maturation in the early preterm period-A magnetization transfer and diffusion tensor imaging study using voxel-based analysis. Neuroimage 2015; 112:30-42. [PMID: 25731990 DOI: 10.1016/j.neuroimage.2015.02.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/17/2015] [Accepted: 02/22/2015] [Indexed: 12/19/2022] Open
Abstract
The magnetization transfer ratio (MTR) and diffusion tensor imaging (DTI) correlates of early brain development were examined in cohort of 18 very preterm neonates (27-31 gestational weeks) presenting with normal radiological findings scanned within 2weeks after birth (28-32 gestational weeks). A combination of non-linear image registration, tissue segmentation, and voxel-wise regression was used to map the age dependent changes in MTR and DTI-derived parameters in 3D across the brain based on the cross-sectional in vivo preterm data. The regression coefficient maps obtained differed between brain regions and between the different quantitative MRI indices. Significant linear increases as well as decreases in MTR and DTI-derived parameters were observed throughout the preterm brain. In particular, the lamination pattern in the cerebral wall was evident on parametric and regression coefficient maps. The frontal white matter area (subplate and intermediate zone) demonstrated a linear decrease in MTR. While the intermediate zone showed an unexpected decrease in fractional anisotropy (FA) with age, with this decrease (and the increase in mean diffusivity (MD)) driven primarily by an increase in radial diffusivity (RD) values, the subplate showed no change in FA (and an increase in MD). The latter was the result of a concomitant similar increase in axial diffusivity (AD) and RD values. Interpreting the in vivo results in terms of available histological data, we present a biophysical model that describes the relation between various microstructural changes measured by complementary quantitative methods available on clinical scanners and a range of maturational processes in brain tissue.
Collapse
Affiliation(s)
- Revital Nossin-Manor
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| | - Dallas Card
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Charles Raybaud
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Medical Imaging, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Margot J Taylor
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Neurosciences and Mental Health, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Medical Imaging, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - John G Sled
- Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| |
Collapse
|
42
|
Quantitative tract-based white matter heritability in twin neonates. Neuroimage 2015; 111:123-35. [PMID: 25700954 DOI: 10.1016/j.neuroimage.2015.02.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/07/2015] [Accepted: 02/10/2015] [Indexed: 12/20/2022] Open
Abstract
Studies in adults indicate that white matter microstructure, assessed with diffusion tensor imaging (DTI), has high heritability. Little is known about genetic and environmental influences on DTI parameters, measured along fiber tracts particularly, in early childhood. In the present study, we report comprehensive heritability data of white matter microstructure fractional anisotropy (FA), radial diffusion (RD), and axial diffusion (AD) along 47 fiber tracts using the quantitative tractography in a large sample of neonatal twins (n=356). We found significant genetic influences in almost all tracts with similar heritabilities for FA, RD, and AD as well as positive relationships between these parameters and heritability. In a single tract analysis, genetic influences along the length of the tract were highly variable. These findings suggest that at birth, there is marked heterogeneity of genetic influences of white matter microstructure within white matter tracts. This study provides a basis for future studies of developmental changes in genetic and environmental influences during early childhood, a period of rapid development that likely plays a major role in individual differences in white matter structure and function.
Collapse
|
43
|
Regional differences in fiber tractography predict neurodevelopmental outcomes in neonates with infantile Krabbe disease. NEUROIMAGE-CLINICAL 2014; 7:792-8. [PMID: 25844309 PMCID: PMC4375637 DOI: 10.1016/j.nicl.2014.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/19/2014] [Accepted: 09/20/2014] [Indexed: 11/21/2022]
Abstract
Background Krabbe disease is a fatal neurodegenerative disease caused by rapid demyelination of the central and peripheral nervous systems. The only available treatment, unrelated umbilical cord blood transplantation, is effective only if performed before clinical symptoms appear. Phenotypic expressions of disease-causing mutations vary widely, but genotype–phenotype relationships are unclear. Therefore, we evaluated diffusion tensor imaging (DTI) tractography with volumetric analysis as a biomarker of early white matter changes and functional disability in presymptomatic infants. Methods We obtained DTI and structural scans of newborns with early-infantile Krabbe disease (n = 9) diagnosed by family history or newborn screening. We compared white matter fiber tract properties to those of normal controls (n = 336) and assessed the ability of tract-based properties to predict longitudinal development in four functional domains (cognitive, fine motor, gross motor, adaptive behavior) after treatment with unrelated umbilical cord blood transplantation. We also assessed the relationship between the standard evaluation (modified Loes score) and DTI results, and the volumetric differences between the Krabbe subjects and normal controls. Findings Reductions in fractional anisotropy were significant in the corticospinal tract in the Krabbe patients compared to controls, which strongly correlated with motor and cognitive outcomes after transplantation. Significant regional differences were observed in the splenium and uncinate fasciculus in Krabbe patients and these differences correlated only with cognitive outcomes. Regional brain volumes of Krabbe patients were slightly larger than controls. Loes scores did not correlate with DTI results. Interpretation Neonatal microstructural abnormalities correlate with neurodevelopmental treatment outcomes in patients treated for infantile Krabbe disease. DTI with quantitative tractography is an excellent biomarker for evaluating infants with Krabbe disease identified through newborn screening. Reductions in FA and increases in MD and RD in the 6 tracts assessed in Krabbe neonates strongly correlate with motor and cognitive outcomes after cord blood transplantation. Significant regional differences in the splenium and uncinate fasciculus correlated only with cognitive outcomes. Regional brain volumes of Krabbe patients were slightly larger than controls. Loes scores did not correlate with DTI results. DTI tractography can be a key component of Krabbe newborn screening.
Collapse
|
44
|
Assessing white matter microstructure of the newborn with multi-shell diffusion MRI and biophysical compartment models. Neuroimage 2014; 96:288-99. [PMID: 24680870 DOI: 10.1016/j.neuroimage.2014.03.057] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/19/2014] [Accepted: 03/21/2014] [Indexed: 01/28/2023] Open
Abstract
Brain white matter connections have become a focus of major interest with important maturational processes occurring in newborns. To study the complex microstructural developmental changes in-vivo, it is imperative that non-invasive neuroimaging approaches are developed for this age-group. Multi-b-value diffusion weighted imaging data were acquired in 13 newborns, and the biophysical compartment diffusion models CHARMED-light and NODDI, providing new microstructural parameters such as intra-neurite volume fraction (νin) and neurite orientation dispersion index (ODI), were developed for newborn data. Comparative analysis was performed and twenty ROIs in the white matter were investigated. Diffusion tensor imaging and both biophysical compartment models highlighted the compact and oriented structure of the corpus-callosum with the highest FA and νin values and the smallest ODI values. We could clearly differentiate, using the FA, νin and ODI, the posterior and anterior internal capsule representing similar cellular structure but with different maturation (i.e. partially myelinated and absence of myelin, respectively). Late maturing regions (external capsule and periventricular crossroads of pathways) had lower νin values, but displayed significant differences in ODI. The compartmented models CHARMED-light and NODDI bring new indices corroborating the cellular architectures, with the lowest νin, reflecting the late maturation of areas with thin non-myelinated fibers, and with highest ODI indicating the presence of fiber crossings and fanning. The application of biophysical compartment diffusion models adds new insights to the brain white matter development in vivo.
Collapse
|
45
|
Oishi K, Faria AV, Yoshida S, Chang L, Mori S. Reprint of "Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging". Int J Dev Neurosci 2014; 32:28-40. [PMID: 24295553 PMCID: PMC4696018 DOI: 10.1016/j.ijdevneu.2013.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 05/24/2013] [Accepted: 06/13/2013] [Indexed: 01/18/2023] Open
Abstract
The development of the brain is structure-specific, and the growth rate of each structure differs depending on the age of the subject. Magnetic resonance imaging (MRI) is often used to evaluate brain development because of the high spatial resolution and contrast that enable the observation of structure-specific developmental status. Currently, most clinical MRIs are evaluated qualitatively to assist in the clinical decision-making and diagnosis. The clinical MRI report usually does not provide quantitative values that can be used to monitor developmental status. Recently, the importance of image quantification to detect and evaluate mild-to-moderate anatomical abnormalities has been emphasized because these alterations are possibly related to several psychiatric disorders and learning disabilities. In the research arena, structural MRI and diffusion tensor imaging (DTI) have been widely applied to quantify brain development of the pediatric population. To interpret the values from these MR modalities, a "growth percentile chart," which describes the mean and standard deviation of the normal developmental curve for each anatomical structure, is required. Although efforts have been made to create such a growth percentile chart based on MRI and DTI, one of the greatest challenges is to standardize the anatomical boundaries of the measured anatomical structures. To avoid inter- and intra-reader variability about the anatomical boundary definition, and hence, to increase the precision of quantitative measurements, an automated structure parcellation method, customized for the neonatal and pediatric population, has been developed. This method enables quantification of multiple MR modalities using a common analytic framework. In this paper, the attempt to create an MRI- and a DTI-based growth percentile chart, followed by an application to investigate developmental abnormalities related to cerebral palsy, Williams syndrome, and Rett syndrome, have been introduced. Future directions include multimodal image analysis and personalization for clinical application.
Collapse
Affiliation(s)
- Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Andreia V Faria
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shoko Yoshida
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Linda Chang
- Neuroscience and Magnetic Resonance Research Program, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Susumu Mori
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
46
|
Normal centrolineal myelination of the callosal splenium reflects the development of the cortical origin and size of its commissural fibers. Neuroradiology 2014; 56:333-8. [PMID: 24463571 DOI: 10.1007/s00234-014-1323-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Commissural white matter fibers comprising the callosal splenium are diverse. Subsections of the splenium myelinate at different times, in a centrolineal manner. The aims of this study are to depict the normal callosal splenium myelination pattern and to distinguish the transient age-related mid splenium hypointensity from pathology. METHODS We reviewed 131 consecutive brain MRIs in patients between ages 3 and 6 months from a single academic children's hospital. Patients that were preterm, hydrocephalic, and/or had volume loss were excluded. Fifty total MR exams that included T1-weighted MR imaging (T1WI), T2-weighted MR imaging (T2WI), and diffusion tensor imaging (DTI) were reviewed. Regions of callosal splenium myelination manifested by T1 and T2 shortening were evaluated. Tractography was performed with seeds placed over the posterior, mid, and anterior splenium to define the origin, destination, and course of traversing fibers. RESULTS Splenium signal varied significantly from 3 to 6 months, with distinct age-related trends. On T1WI, the splenium was hypointense at 3 months (12/13), centrally hypointense/peripherally hyperintense at 4 months (15/16), and hyperintense at 6 months (10/11). Tractography revealed three distinct white matter tract populations: medial occipital (posterior); precuneus, posterior cingulate, and medial temporal (middle); and postcentral gyri (anterior). CONCLUSION Specific commissural fiber components of the splenium myelinate at different times. The transient developmental mid splenium hypointensity on T1WI corresponds to tracts from the associative cortex, principally the precuneus. Heterogeneous splenium signal alteration in patients ages 3-6 months is a normal developmental phenomenon that should not be confused with pathologic lesions.
Collapse
|
47
|
Deák GO. Development of adaptive tool-use in early childhood: sensorimotor, social, and conceptual factors. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2014; 46:149-81. [PMID: 24851349 DOI: 10.1016/b978-0-12-800285-8.00006-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tool-use is specialized in humans, and juvenile humans show much more prolific and prodigious tool-use than other juvenile primates. Nonhuman primates possess many of the basic motor and behavioral capacities needed for manual tool-use: perceptual-motor specialization, sociocultural practices and interactions, and abstract conceptualization of kinds of functions, both real and imagined. These traits jointly contribute to the human specialization for tool-using. In particular, from 2 to 5 years of age children develop: (i) more refined motor routines for interacting with a variety of objects, (ii) a deeper understanding and awareness of the cultural context of object-use practices, and (iii) a cognitive facility to represent potential dynamic human-object interactions. The last trait, which has received little attention in recent years, is defined as the ability to form abstract (i.e., generalizable to novel contexts) representations of kinds of functions, even with relatively little training or instruction. This trait might depend not only on extensive tool-using experience but also on developing cognitive abilities, including a variety of cognitive flexibility: specifically, imagistic memory for event sequences incorporating causal inferences about mechanical effects. Final speculations point to a possible network of neural systems that might contribute to the cognitive capacity that includes sensorimotor, sensory integration, and prefrontal cortical resources and interconnections.
Collapse
|
48
|
Melbourne A, Kendall GS, Cardoso MJ, Gunny R, Robertson NJ, Marlow N, Ourselin S. Preterm birth affects the developmental synergy between cortical folding and cortical connectivity observed on multimodal MRI. Neuroimage 2013; 89:23-34. [PMID: 24315841 DOI: 10.1016/j.neuroimage.2013.11.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 11/18/2022] Open
Abstract
The survival rates of infants born prematurely have improved as a result of advances in neonatal care, although there remains an increased risk of subsequent disability. Accurate measurement of the shape and appearance of the very preterm brain at term-equivalent age may guide the development of predictive biomarkers of neurological outcome. We demonstrate in 92 preterm infants (born at an average gestational age of 27.0±2.7weeks) scanned at term equivalent age (scanned at 40.4±1.74weeks) that the cortical sulcation ratio varies spatially over the cortical surface at term equivalent age and correlates significantly with gestational age at birth (r=0.49,p<0.0001). In the underlying white matter, fractional anisotropy of local white matter regions correlated significantly with gestational age at birth at term equivalent age (for the genu of the corpus callosum r=0.26,p=0.02 and for the splenium r=0.52,p<0.001) and in addition the fractional anisotropy in these local regions varies according to location. Finally, we demonstrate that connectivity measurements from tractography correlate significantly and specifically with the sulcation ratio of the overlying cortical surface at term equivalent age in a subgroup of 20 infants (r={0.67,0.61,0.86}, p={0.004,0.01,0.00002}) for tract systems emanating from the left and right corticospinal tracts and the corpus callosum respectively). Combined, these results suggest a close relationship between the cortical surface phenotype and underlying white matter structure assessed by diffusion weighted MRI. The spatial surface pattern may allow inference on the connectivity and developmental trajectory of the underlying white matter complementary to diffusion imaging and this result may guide the development of biomarkers of functional outcome.
Collapse
Affiliation(s)
- Andrew Melbourne
- Centre for Medical Image Computing (CMIC), University College London, UK.
| | - Giles S Kendall
- Academic Neonatology, EGA UCL Institute for Women's Health, London, UK
| | - M Jorge Cardoso
- Centre for Medical Image Computing (CMIC), University College London, UK
| | - Roxanna Gunny
- Academic Neonatology, EGA UCL Institute for Women's Health, London, UK
| | | | - Neil Marlow
- Academic Neonatology, EGA UCL Institute for Women's Health, London, UK
| | - Sebastien Ourselin
- Centre for Medical Image Computing (CMIC), University College London, UK
| |
Collapse
|
49
|
Oishi K, Faria AV, Yoshida S, Chang L, Mori S. Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging. Int J Dev Neurosci 2013; 31:512-24. [PMID: 23796902 PMCID: PMC3830705 DOI: 10.1016/j.ijdevneu.2013.06.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 05/24/2013] [Accepted: 06/13/2013] [Indexed: 01/18/2023] Open
Abstract
The development of the brain is structure-specific, and the growth rate of each structure differs depending on the age of the subject. Magnetic resonance imaging (MRI) is often used to evaluate brain development because of the high spatial resolution and contrast that enable the observation of structure-specific developmental status. Currently, most clinical MRIs are evaluated qualitatively to assist in the clinical decision-making and diagnosis. The clinical MRI report usually does not provide quantitative values that can be used to monitor developmental status. Recently, the importance of image quantification to detect and evaluate mild-to-moderate anatomical abnormalities has been emphasized because these alterations are possibly related to several psychiatric disorders and learning disabilities. In the research arena, structural MRI and diffusion tensor imaging (DTI) have been widely applied to quantify brain development of the pediatric population. To interpret the values from these MR modalities, a "growth percentile chart," which describes the mean and standard deviation of the normal developmental curve for each anatomical structure, is required. Although efforts have been made to create such a growth percentile chart based on MRI and DTI, one of the greatest challenges is to standardize the anatomical boundaries of the measured anatomical structures. To avoid inter- and intra-reader variability about the anatomical boundary definition, and hence, to increase the precision of quantitative measurements, an automated structure parcellation method, customized for the neonatal and pediatric population, has been developed. This method enables quantification of multiple MR modalities using a common analytic framework. In this paper, the attempt to create an MRI- and a DTI-based growth percentile chart, followed by an application to investigate developmental abnormalities related to cerebral palsy, Williams syndrome, and Rett syndrome, have been introduced. Future directions include multimodal image analysis and personalization for clinical application.
Collapse
Affiliation(s)
- Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
50
|
Rose J, Vassar R, Cahill-Rowley K, Guzman XS, Stevenson DK, Barnea-Goraly N. Brain microstructural development at near-term age in very-low-birth-weight preterm infants: an atlas-based diffusion imaging study. Neuroimage 2013; 86:244-56. [PMID: 24091089 DOI: 10.1016/j.neuroimage.2013.09.053] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 08/19/2013] [Accepted: 09/22/2013] [Indexed: 10/26/2022] Open
Abstract
At near-term age the brain undergoes rapid growth and development. Abnormalities identified during this period have been recognized as potential predictors of neurodevelopment in children born preterm. This study used diffusion tensor imaging (DTI) to examine white matter (WM) microstructure in very-low-birth-weight (VLBW) preterm infants to better understand regional WM developmental trajectories at near-term age. DTI scans were analyzed in a cross-sectional sample of 45 VLBW preterm infants (BW≤1500g, GA≤32weeks) within a cohort of 102 neonates admitted to the NICU and recruited to participate prior to standard-of-care MRI, from 2010 to 2011, 66/102 also had DTI. For inclusion in this analysis, 45 infants had DTI, no evidence of brain abnormality on MRI, and were scanned at PMA ≤40weeks (34.7-38.6). White matter microstructure was analyzed in 19 subcortical regions defined by DiffeoMap neonatal brain atlas, using threshold values of trace <0.006mm(2)s(-1) and FA >0.15. Regional fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated and temporal-spatial trajectories of development were examined in relation to PMA and brain region location. Posterior regions within the corona radiata (CR), corpus callosum (CC), and internal capsule (IC) demonstrated significantly higher mean FA values compared to anterior regions. Posterior regions of the CR and IC demonstrated significantly lower RD values compared to anterior regions. Centrally located projection fibers demonstrated higher mean FA and lower RD values than peripheral regions including the posterior limb of the internal capsule (PLIC), cerebral peduncle, retrolenticular part of the IC, posterior thalamic radiation, and sagittal stratum. Centrally located association fibers of the external capsule had higher FA and lower RD than the more peripherally-located superior longitudinal fasciculus (SLF). A significant relationship between PMA-at-scan and FA, MD, and RD was demonstrated by a majority of regions, the strongest correlations were observed in the anterior limb of the internal capsule, a region undergoing early stages of myelination at near-term age, in which FA increased (r=.433, p=.003) and MD (r=-.545, p=.000) and RD (r=-.540, p=.000) decreased with PMA-at-scan. No correlation with PMA-at-scan was observed in the CC or SLF, regions that myelinate later in infancy. Regional patterns of higher FA and lower RD were observed at this near-term age, suggestive of more advanced microstructural development in posterior compared to anterior regions within the CR, CC, and IC and in central compared to peripheral WM structures. Evidence of region-specific rates of microstructural development was observed. Temporal-spatial patterns of WM microstructure development at near-term age have important implications for interpretation of near-term DTI and for identification of aberrations in typical developmental trajectories that may signal future impairment.
Collapse
Affiliation(s)
- Jessica Rose
- Department of Orthopaedic Surgery, Stanford University School of Medicine, USA; Motion Analysis Lab, Lucile Packard Children's Hospital, USA.
| | - Rachel Vassar
- Department of Orthopaedic Surgery, Stanford University School of Medicine, USA
| | - Katelyn Cahill-Rowley
- Motion Analysis Lab, Lucile Packard Children's Hospital, USA; Department of BioEngineering, Stanford, CA, USA
| | - Ximena Stecher Guzman
- Radiology Department, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Chile
| | - David K Stevenson
- Division of Neonatology and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Naama Barnea-Goraly
- Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, USA
| |
Collapse
|