1
|
Hosomi R. Health Benefits of Dietary Docosahexaenoic Acid- and Eicosapentaenoic Acid-enriched Glycerophospholipids from Marine Sources. J Oleo Sci 2025; 74:1-11. [PMID: 39756987 DOI: 10.5650/jos.ess24253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Omega-3 long-chain polyunsaturated fatty acids (PUFA) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are widely used as supplements and pharmaceuticals because of their beneficial effects on human health. Triacylglycerols (TAG) and glycerophospholipids (GPL) comprise the primary chemical structures of DHA/EPA in marine sources. Furthermore, DHA/EPA-enriched glycerophospholipids (DHA/EPA-GPL) and lysoglycerophospholipids (DHA/EPA-LysoGPL) consumed through food and supplements are more effective than TAG in promoting health, which may be attributed to a specific underlying mechanism. However, the specific effects of DHA/EPA bound to GPL structure have been still unclear. The aim of this review is to clarify the significance of the binding of DHA/EPA to GPL in promoting the health benefits of DHA/EPA-GPL and DHA/EPA-LysoGPL. Additionally, the potential use of fishery by-products as sources of DHA/EPA-GPL and DHA/EPA-LysoGPL has been discussed.
Collapse
Affiliation(s)
- Ryota Hosomi
- Laboratory of Food and Nutritional Sciences, Faculty of Chemistry, Materials and Bioengineering, Kansai University
| |
Collapse
|
2
|
Sidorkiewicz M. The Cardioprotective Effects of Polyunsaturated Fatty Acids Depends on the Balance Between Their Anti- and Pro-Oxidative Properties. Nutrients 2024; 16:3937. [PMID: 39599723 PMCID: PMC11597422 DOI: 10.3390/nu16223937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are not only structural components of membrane phospholipids and energy storage molecules in cells. PUFAs are important factors that regulate various biological functions, including inflammation, oxidation, and immunity. Both n-3 and n-6 PUFAs from cell membranes can be metabolized into pro-inflammatory and anti-inflammatory metabolites that, in turn, influence cardiovascular health in humans. The role that PUFAs play in organisms depends primarily on their structure, quantity, and the availability of enzymes responsible for their metabolism. n-3 PUFAs, such as eicosapentaenoic (EPA) and docosahexaenoic (DHA), are generally known for anti-inflammatory and atheroprotective properties. On the other hand, n-6 FAs, such as arachidonic acid (AA), are precursors of lipid mediators that display mostly pro-inflammatory properties and may attenuate the efficacy of n-3 by competition for the same enzymes. However, a completely different light on the role of PUFAs was shed due to studies on the influence of PUFAs on new-onset atrial fibrillation. This review analyzes the role of PUFAs and PUFA derivatives in health-related effects, considering both confirmed benefits and newly arising controversies.
Collapse
Affiliation(s)
- Malgorzata Sidorkiewicz
- Department of Medical Biochemistry, Faculty of Health Sciences, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
3
|
Herrmann W, Herrmann M. n-3 fatty acids and the risk of atrial fibrillation, review. Diagnosis (Berl) 2024; 11:345-352. [PMID: 38716687 DOI: 10.1515/dx-2024-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 11/07/2024]
Abstract
Atrial fibrillation (AF) is the most frequent type of cardiac arrhythmia that affects over six million individuals in Europe. The incidence and prevalence of AF rises with age, and often occurs after cardiac surgery. Other risk factors correlated with AF comprise high blood pressure, diabetes mellitus, left atrial enlargement, ischemic heart disease, and congestive heart failure. Considering the high prevalence of AF in aging societies, strategies to prevent serious complications, such as stroke or heart failure, are important because they are correlated with high morbidity and mortality. The supplementation of sea-derived n-3 polyunsaturated fatty acids (PUFA) is widely discussed in this context, but the results of experimental and observational studies are in contrast to randomized placebo-controlled intervention trials (RCTs). Specifically, larger placebo-controlled n-3 PUFA supplementation studies with long follow-up showed a dose-dependent rise in incident AF. Daily n-3 PUFA doses of ≥1 g/d are correlated with a 50 % increase in AF risk, whereas a daily intake of <1 g/d causes AF in only 12 %. Individuals with a high cardiovascular risk (CVD) risk and high plasma-triglycerides seem particularly prone to develop AF upon n-3 PUFA supplementation. Therefore, we should exercise caution with n-3 PUFA supplementation especially in patients with higher age, CVD, hypertriglyceridemia or diabetes. In summary, existing data argue against the additive intake of n-3 PUFA for preventative purposes because of an incremental AF risk and lacking CVD benefits. However, more clinical studies are required to disentangle the discrepancy between n-3 PUFA RCTs and observational studies showing a lower CVD risk in individuals who regularly consume n-3 PUFA-rich fish.
Collapse
Affiliation(s)
| | - Markus Herrmann
- Medical School, Saarland University, 66424 Homburg, Saar, Germany
- Clinical Institute of Medical and Clinical Laboratory Diagnostics, Medical University Graz, Graz, Austria
| |
Collapse
|
4
|
Marcus MD, Link MS. Omega-3 Fatty Acids and Arrhythmias. Circulation 2024; 150:488-503. [PMID: 39102482 DOI: 10.1161/circulationaha.123.065769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The pro- and antiarrhythmic effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been extensively studied in preclinical and human trials. Despite early evidence of an antiarrhythmic role of n-3 PUFA in the prevention of sudden cardiac death and postoperative and persistent atrial fibrillation (AF), subsequent well-designed randomized trials have largely not shown an antiarrhythmic benefit. Two trials that tested moderate and high-dose n-3 PUFA demonstrated a reduction in sudden cardiac death, but these findings have not been widely replicated, and the potential of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) to reduce arrhythmic death in combination, or as monotherapy, remains uncertain. The accumulated clinical evidence does not support supplementation of n-3 PUFA for postoperative AF or secondary prevention of AF. Several large, contemporary, randomized controlled trials of high-dose n-3 PUFA for primary or secondary cardiovascular prevention have demonstrated a small, significant, dose-dependent increased risk of incident AF compared with mineral oil or corn oil comparator. These findings were reproduced with both icosapent ethyl monotherapy and a mixed EPA+DHA formulation. The proarrhythmic mechanism of increased AF in contemporary cohorts exposed to high-dose n-3 PUFA is unknown. EPA and DHA and their metabolites have pleiotropic cardiometabolic and pro- and antiarrhythmic effects, including modification of the lipid raft microenvironment; alteration of cell membrane structure and fluidity; modulation of sodium, potassium, and calcium currents; and regulation of gene transcription, cell proliferation, and inflammation. Further characterization of the complex association between EPA, EPA+DHA, and DHA and AF is needed. Which formulations, dose ranges, and patient subgroups are at highest risk, remain unclear.
Collapse
Affiliation(s)
- Mason D Marcus
- Department of Medicine, Division of Cardiology, UT Southwestern Medical Center, Dallas, TX
| | - Mark S Link
- Department of Medicine, Division of Cardiology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
5
|
Mu G, Cao X, Shao L, Shen H, Guo X, Gao Y, Su C, Fan H, Yu Y, Shen Z. Progress and perspectives of metabolic biomarkers in human aortic dissection. Metabolomics 2024; 20:76. [PMID: 39002042 DOI: 10.1007/s11306-024-02140-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/06/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Aortic dissection (AD) significantly threated human cardiovascular health, extensive clinical-scientific research programs have been executed to uncover the pathogenesis and prevention. Unfortunately, no specific biomarker was identified for the causality or development of human AD. AIM OF REVIEW Metabolomics, a high-throughput technique capable of quantitatively detecting metabolites, holds considerable promise in discovering specific biomarkers and unraveling the underlying pathways involved. Aiming to provide a metabolite prediction in human AD, we collected the metabolomics data from 2003 to 2023, and diligently scrutinized with the online system MetaboAnalyst 6.0. KEY SCIENTIFIC CONCEPTS OF REVIEW Based on the data obtained, we have concluded the metabolic dynamics were highly correlated with human AD. Such metabolites (choline, serine and uridine) were frequently involved in the AD. Besides, the pathways, including amino acids metabolism and lipids metabolism, were also dysregulated in the disease. Due to the current limitation of metabolism analysis, the integrative omics data including genomics, transcriptomics, and proteomics were required for developing the specific biomarker for AD.
Collapse
Affiliation(s)
- Gaohang Mu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xiangyu Cao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Lianbo Shao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Han Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xingyou Guo
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
- Department of Vascular Surgery, Suqian First Hospital, Suqian, 223800, Jiangsu, China
| | - Yamei Gao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Chengkai Su
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Hongyou Fan
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - You Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China.
- Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China.
- Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
6
|
Bercea C, Limbu R, Behnam K, Ng KE, Aziz Q, Tinker A, Tamagnini F, Cottrell GS, McNeish AJ. Omega-3 polyunsaturated fatty acid-induced vasodilation in mouse aorta and mesenteric arteries is not mediated by ATP-sensitive potassium channels. Front Physiol 2022; 13:1033216. [PMID: 36589427 PMCID: PMC9797959 DOI: 10.3389/fphys.2022.1033216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
There is strong evidence that the omega-3 polyunsaturated fatty acids (n-3 PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have cardioprotective effects. n-3 PUFAs cause vasodilation in hypertensive patients, in part controlled by increased membrane conductance to potassium. As KATP channels play a major role in vascular tone regulation and are involved in hypertension, we aimed to verify whether n-3 PUFA-mediated vasodilation involved the opening of KATP channels. We used a murine model in which the KATP channel pore subunit, Kir6.1, is deleted in vascular smooth muscle. The vasomotor response of preconstricted arteries to physiologically relevant concentrations of DHA and EPA was measured using wire myography, using the channel blocker PNU-37883A. The effect of n-3 PUFAs on potassium currents in wild-type native smooth muscle cells was investigated using whole-cell patch clamping. DHA and EPA induced vasodilation in mouse aorta and mesenteric arteries; relaxations in the aorta were sensitive to KATP blockade with PNU-37883A. Endothelium removal didn't affect relaxation to EPA and caused a small but significant inhibition of relaxation to DHA. In the knock-out model, relaxations to DHA and EPA were unaffected by channel knockdown but were still inhibited by PNU-37883A, indicating that the action of PNU-37883A on relaxation may not reflect inhibition of KATP. In native aortic smooth muscle cells DHA failed to activate KATP currents. We conclude that DHA and EPA cause vasodilation in mouse aorta and mesenteric arteries. Relaxations in blocker-treated arteries from knock-out mice demonstrate that KATP channels are not involved in the n-3 PUFA-induced relaxation.
Collapse
Affiliation(s)
- Cristiana Bercea
- McNeish Laboratory, School of Chemistry, Food and Pharmacy, Department of Pharmacology, University of Reading, London, United Kingdom
- Tinker Laboratory, William Harvey Research Institute, Clinical Pharmacology and Precision Medicine, Queen Mary University, London, United Kingdom
| | - Roshan Limbu
- McNeish Laboratory, School of Chemistry, Food and Pharmacy, Department of Pharmacology, University of Reading, London, United Kingdom
| | - Kamila Behnam
- McNeish Laboratory, School of Chemistry, Food and Pharmacy, Department of Pharmacology, University of Reading, London, United Kingdom
| | - Keat-Eng Ng
- Tinker Laboratory, William Harvey Research Institute, Clinical Pharmacology and Precision Medicine, Queen Mary University, London, United Kingdom
| | - Qadeer Aziz
- Tinker Laboratory, William Harvey Research Institute, Clinical Pharmacology and Precision Medicine, Queen Mary University, London, United Kingdom
| | - Andrew Tinker
- Tinker Laboratory, William Harvey Research Institute, Clinical Pharmacology and Precision Medicine, Queen Mary University, London, United Kingdom
| | - Francesco Tamagnini
- McNeish Laboratory, School of Chemistry, Food and Pharmacy, Department of Pharmacology, University of Reading, London, United Kingdom
| | - Graeme S Cottrell
- McNeish Laboratory, School of Chemistry, Food and Pharmacy, Department of Pharmacology, University of Reading, London, United Kingdom
| | - Alister J McNeish
- McNeish Laboratory, School of Chemistry, Food and Pharmacy, Department of Pharmacology, University of Reading, London, United Kingdom
| |
Collapse
|
7
|
Yan CH, Liu HW, Tian XX, Li J, Ding Y, Li Y, Mei Z, Zou MH, Han YL. AMPKα2 controls the anti-atherosclerotic effects of fish oils by modulating the SUMOylation of GPR120. Nat Commun 2022; 13:7721. [PMID: 36513627 PMCID: PMC9747961 DOI: 10.1038/s41467-022-34996-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
Consuming fish oils (FO) is linked to reduced risk of cardiovascular disease in certain populations. However, FO failed to exhibit therapeutic effects in some patients with cardiovascular disease. This study aimed to determine the possible reasons for the inconsistent effects of FO. AMP-activated protein kinase (AMPK) α2 is an important energy metabolic sensor, which was reported to involve in FO mediated regulation of lipid and glucose metabolism. In an in vivo study, FO administration significantly reduced the aortic lesions and inflammation in the Ldlr-/- mouse model of atherosclerosis, but not in Ldlr-/-/Prkaa2-/-and Ldlr-/-/Prkaa2-/-Sm22Cre mice. Mechanistically, inactivation of AMPKα2 increased the SUMOylation of the fatty acid receptor GPR120 to block FO-induced internalization and binding to β-arrestin. In contrast, activation of AMPKα2 can phosphorylate the C-MYC at Serine 67 to inhibit its trans-localization into the nuclei and transcription of SUMO-conjugating E2 enzyme UBC9 and SUMO2/3 in vascular smooth muscle cells (VSMCs), which result in GPR120 SUMOylation. In human arteries, AMPKα2 levels were inversely correlated with UBC9 expression. In a cohort of patients with atherosclerosis, FO concentrations did not correlate with atherosclerotic severity, however, in a subgroup analysis a negative correlation between FO concentrations and atherosclerotic severity was found in patients with higher AMPKα2 levels. These data indicate that AMPKα2 is required for the anti-inflammatory and anti-atherosclerotic effects of FO.
Collapse
Affiliation(s)
- Cheng-hui Yan
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016 China
| | - Hai-Wei Liu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016 China
| | - Xiao-xiang Tian
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016 China
| | - Jiayin Li
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016 China
| | - Ye Ding
- grid.256304.60000 0004 1936 7400Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303 USA
| | - Yi Li
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016 China
| | - Zhu Mei
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016 China
| | - Ming-Hui Zou
- grid.256304.60000 0004 1936 7400Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303 USA
| | - Ya-ling Han
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016 China
| |
Collapse
|
8
|
Kotlyarov S, Kotlyarova A. Clinical significance of polyunsaturated fatty acids in the prevention of cardiovascular diseases. Front Nutr 2022; 9:998291. [PMID: 36276836 PMCID: PMC9582942 DOI: 10.3389/fnut.2022.998291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases are one of the most important problems of modern medicine. They are associated with a large number of health care visits, hospitalizations and mortality. Prevention of atherosclerosis is one of the most effective strategies and should start as early as possible. Correction of lipid metabolism disorders is associated with definite clinical successes, both in primary prevention and in the prevention of complications of many cardiovascular diseases. A growing body of evidence suggests a multifaceted role for polyunsaturated fatty acids. They demonstrate a variety of functions in inflammation, both participating directly in a number of cellular processes and acting as a precursor for subsequent biosynthesis of lipid mediators. Extensive clinical data also support the importance of polyunsaturated fatty acids, but all questions have not been answered to date, indicating the need for further research.
Collapse
Affiliation(s)
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, Ryazan, Russia
| |
Collapse
|
9
|
Borges MC, Haycock PC, Zheng J, Hemani G, Holmes MV, Davey Smith G, Hingorani AD, Lawlor DA. Role of circulating polyunsaturated fatty acids on cardiovascular diseases risk: analysis using Mendelian randomization and fatty acid genetic association data from over 114,000 UK Biobank participants. BMC Med 2022; 20:210. [PMID: 35692035 PMCID: PMC9190170 DOI: 10.1186/s12916-022-02399-w] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/09/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Despite early interest in the health effects of polyunsaturated fatty acids (PUFA), there is still substantial controversy and uncertainty on the evidence linking PUFA to cardiovascular diseases (CVDs). We investigated the effect of plasma concentration of omega-3 PUFA (i.e. docosahexaenoic acid (DHA) and total omega-3 PUFA) and omega-6 PUFA (i.e. linoleic acid and total omega-6 PUFA) on the risk of CVDs using Mendelian randomization. METHODS We conducted the largest genome-wide association study (GWAS) of circulating PUFA to date including a sample of 114,999 individuals and incorporated these data in a two-sample Mendelian randomization framework to investigate the involvement of circulating PUFA on a wide range of CVDs in up to 1,153,768 individuals of European ancestry (i.e. coronary artery disease, ischemic stroke, haemorrhagic stroke, heart failure, atrial fibrillation, peripheral arterial disease, aortic aneurysm, venous thromboembolism and aortic valve stenosis). RESULTS GWAS identified between 46 and 64 SNPs for the four PUFA traits, explaining 4.8-7.9% of circulating PUFA variance and with mean F statistics >100. Higher genetically predicted DHA (and total omega-3 fatty acids) concentration was related to higher risk of some cardiovascular endpoints; however, these findings did not pass our criteria for multiple testing correction and were attenuated when accounting for LDL-cholesterol through multivariable Mendelian randomization or excluding SNPs in the vicinity of the FADS locus. Estimates for the relation between higher genetically predicted linoleic acid (and total omega-6) concentration were inconsistent across different cardiovascular endpoints and Mendelian randomization methods. There was weak evidence of higher genetically predicted linoleic acid being related to lower risk of ischemic stroke and peripheral artery disease when accounting by LDL-cholesterol. CONCLUSIONS We have conducted the largest GWAS of circulating PUFA to date and the most comprehensive Mendelian randomization analyses. Overall, our Mendelian randomization findings do not support a protective role of circulating PUFA concentration on the risk of CVDs. However, horizontal pleiotropy via lipoprotein-related traits could be a key source of bias in our analyses.
Collapse
Affiliation(s)
- Maria Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Philip C Haycock
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jie Zheng
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Michael V Holmes
- MRC Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
- UCL BHF Research Accelerator, London, UK
- Health Data Research UK, Institute of Health Informatics, University College London, London, UK
- UCL NIHR Biomedical Research Centre, London, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
| |
Collapse
|
10
|
Frampton DJA, Choudhury K, Nikesjö J, Delemotte L, Liin SI. Subtype-specific responses of hKv7.4 and hKv7.5 channels to polyunsaturated fatty acids reveal an unconventional modulatory site and mechanism. eLife 2022; 11:77672. [PMID: 35642964 PMCID: PMC9159753 DOI: 10.7554/elife.77672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The KV7.4 and KV7.5 subtypes of voltage-gated potassium channels play a role in important physiological processes such as sound amplification in the cochlea and adjusting vascular smooth muscle tone. Therefore, the mechanisms that regulate KV7.4 and KV7.5 channel function are of interest. Here, we study the effect of polyunsaturated fatty acids (PUFAs) on human KV7.4 and KV7.5 channels expressed in Xenopus oocytes. We report that PUFAs facilitate activation of hKV7.5 by shifting the V50 of the conductance versus voltage (G(V)) curve toward more negative voltages. This response depends on the head group charge, as an uncharged PUFA analogue has no effect and a positively charged PUFA analogue induces positive V50 shifts. In contrast, PUFAs inhibit activation of hKV7.4 by shifting V50 toward more positive voltages. No effect on V50 of hKV7.4 is observed by an uncharged or a positively charged PUFA analogue. Thus, the hKV7.5 channel's response to PUFAs is analogous to the one previously observed in hKV7.1-7.3 channels, whereas the hKV7.4 channel response is opposite, revealing subtype-specific responses to PUFAs. We identify a unique inner PUFA interaction site in the voltage-sensing domain of hKV7.4 underlying the PUFA response, revealing an unconventional mechanism of modulation of hKV7.4 by PUFAs.
Collapse
Affiliation(s)
- Damon J A Frampton
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Koushik Choudhury
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Johan Nikesjö
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Sara I Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
11
|
Kagawa Y. Influence of Nutritional Intakes in Japan and the United States on COVID-19 Infection. Nutrients 2022; 14:633. [PMID: 35276992 PMCID: PMC8839931 DOI: 10.3390/nu14030633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 02/07/2023] Open
Abstract
The U.S. and Japan are both democratic industrialized societies, but the numbers of COVID-19 cases and deaths per million people in the U.S. (including Japanese Americans) are 12.1-times and 17.4-times higher, respectively, than those in Japan. The aim of this study was to investigate the effects of diet on preventing COVID-19 infection. An analysis of dietary intake and the prevalence of obesity in the populations of both countries was performed, and their effects on COVID-19 infection were examined. Approximately 1.5-times more saturated fat and less eicosapentaenoic acid/docosahexaenoic acid are consumed in the U.S. than in Japan. Compared with food intakes in Japan (100%), those in the U.S. were as follows: beef 396%, sugar and sweeteners 235%, fish 44.3%, rice 11.5%, soybeans 0.5%, and tea 54.7%. The last four of these foods contain functional substances that prevent COVID-19. The prevalence of obesity is 7.4- and 10-times greater in the U.S. than in Japan for males and females, respectively. Mendelian randomization established a causal relationship between obesity and COVID-19 infection. Large differences in nutrient intakes and the prevalence of obesity, but not racial differences, may be partly responsible for differences in the incidence and mortality of COVID-19 between the U.S. and Japan.
Collapse
Affiliation(s)
- Yasuo Kagawa
- Department of Medical Chemistry, Kagawa Nutrition University, Saitama 350-0288, Japan
| |
Collapse
|
12
|
Pareek M, Mason RP, Bhatt DL. Icosapent ethyl: safely reducing cardiovascular risk in adults with elevated triglycerides. Expert Opin Drug Saf 2021; 21:31-42. [PMID: 34253137 DOI: 10.1080/14740338.2021.1954158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION In patients at high cardiovascular risk, the rate of events remains elevated despite traditional, evidence-based lipid-lowering therapy. Residual hypertriglyceridemia is an important contributor to this risk. However, prior medications with triglyceride-lowering effects have not reduced adverse clinical outcomes in the statin era. AREAS COVERED The present review summarizes evidence and recommendations related to triglyceride-lowering therapy in the primary and secondary preventive settings. We provide an overview of findings from recent meta-analyses, important observational studies, and a detailed description of landmark trials, including the Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial (REDUCE-IT). We further review recommendations from current guidelines. EXPERT OPINION Icosapent ethyl is a stable, highly purified ethyl ester of eicosapentaenoic acid that safely and effectively reduces cardiovascular events in the contemporary setting. It is prescribed at a dose of 2 grams twice daily and is indicated in patients at high cardiovascular risk who have fasting or non-fasting triglyceride levels ≥150 mg/dl despite maximally tolerated statin treatment, or in individuals with triglyceride levels ≥500 mg/dl. Conversely, omega-3 fatty acid preparations containing a combination of eicosapentaenoic acid and docosahexaenoic acid are not indicated for reduction of cardiovascular risk and should be actively deprescribed.
Collapse
Affiliation(s)
- Manan Pareek
- Heart & Vascular Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Internal Medicine, Yale New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA.,Department of Cardiology, North Zealand Hospital, Hillerød, Denmark
| | - R Preston Mason
- Heart & Vascular Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Elucida Research LLC, Beverly, MA, USA
| | - Deepak L Bhatt
- Heart & Vascular Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Bercea CI, Cottrell GS, Tamagnini F, McNeish AJ. Omega-3 polyunsaturated fatty acids and hypertension: a review of vasodilatory mechanisms of docosahexaenoic acid and eicosapentaenoic acid. Br J Pharmacol 2021; 178:860-877. [PMID: 33283269 DOI: 10.1111/bph.15336] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023] Open
Abstract
Hypertension is often characterised by impaired vasodilation involving dysfunction of multiple vasodilatory mechanisms. ω-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) can reduce blood pressure and vasodilation. In the endothelium, DHA and EPA improve function including increased NO bioavailability. However, animal studies show that DHA- and EPA-mediated vasodilation persists after endothelial removal, indicating a role for vascular smooth muscle cells (VSMCs). The vasodilatory effects of ω-3 PUFAs on VSMCs are mediated via opening of large conductance calcium-activated potassium channels (BKCa ), ATP-sensitive potassium channels (KATP ) and possibly members of the Kv 7 family of voltage-activated potassium channels, resulting in hyperpolarisation and relaxation. ω-3 PUFA actions on BKCa and voltage-gated ion channels involve electrostatic interactions that are dependent on the polyunsaturated acyl tail, cis-geometry of these double bonds and negative charge of the carboxyl headgroup. This suggests structural manipulation of ω-3 PUFA could generate novel, targeted, therapeutic leads.
Collapse
Affiliation(s)
- Cristiana-Ioana Bercea
- Reading School of Pharmacy, School of Chemistry, Food and Pharmacy, The University of Reading, Reading, UK
| | - Graeme S Cottrell
- Reading School of Pharmacy, School of Chemistry, Food and Pharmacy, The University of Reading, Reading, UK
| | - Francesco Tamagnini
- Reading School of Pharmacy, School of Chemistry, Food and Pharmacy, The University of Reading, Reading, UK
| | - Alister J McNeish
- Reading School of Pharmacy, School of Chemistry, Food and Pharmacy, The University of Reading, Reading, UK
| |
Collapse
|
14
|
A genome-wide association study on fish consumption in a Japanese population-the Japan Multi-Institutional Collaborative Cohort study. Eur J Clin Nutr 2020; 75:480-488. [PMID: 32895509 DOI: 10.1038/s41430-020-00702-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 07/08/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVE Although benefits of fish consumption for health are well known, a significant percentage of individuals dislike eating fish. Fish consumption may be influenced by genetic factors in addition to environmental factors. We conducted a genome-wide association study (GWAS) to find genetic variations that affect fish consumption in a Japanese population. METHODS We performed a two-stage GWAS on fish consumption using 13,739 discovery samples from the Japan Multi-Institutional Collaborative Cohort study, and 2845 replication samples from the other population. We used a semi-quantitative food frequency questionnaire to estimate food intake. Association of the imputed variants with fish consumption was analyzed by separate linear regression models per variant, with adjustments for age, sex, energy intake, principal component analysis components 1-10, and alcohol intake (g/day). We also performed conditional analysis. RESULTS We found 27 single nucleotide polymorphisms (SNPs) located in 12q24 and 14q32.12 that were associated with fish consumption. The 19 SNPs were located at 11 genes including six lead SNPs at the BRAP, ACAD10, ALDH2, NAA25, and HECTD4 regions on 12q24.12-13, and CCDC197 region on 14q32.12. In replication samples, all five SNPs located on chromosome 12 were replicated successfully, but the one on chromosome 14 was not. Conditional analyses revealed that the five lead variants in chromosome 12 were in fact the same signal. CONCLUSION We found that new SNPs in the 12q24 locus were related to fish intake in two Japanese populations. The associations between SNPs on chromosome 12 and fish intake were strongly confounded by drinking status.
Collapse
|
15
|
Potential Cardiovascular and Metabolic Beneficial Effects of ω-3 PUFA in Male Obesity Secondary Hypogonadism Syndrome. Nutrients 2020; 12:nu12092519. [PMID: 32825328 PMCID: PMC7551945 DOI: 10.3390/nu12092519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Long-chain ω-3 polyunsaturated fatty acids (PUFAs) are fundamental biocomponents of lipids and cell membranes. They are involved in the maintenance of cellular homeostasis and they are able to exert anti-inflammatory and cardioprotective actions. Thanks to their potential beneficial effects on the cardiovascular system, metabolic axis and body composition, we have examined their action in subjects affected by male obesity secondary hypogonadism (MOSH) syndrome. MOSH syndrome is characterized by the presence of obesity associated with the alteration of sexual and metabolic functions. Therefore, this review article aims to analyze scientific literature regarding the possible benefits of ω-3 PUFA administration in subjects affected by MOSH syndrome. We conclude that there are strong evidences supporting ω-3 PUFA administration and/or supplementation for the treatment and management of MOSH patients.
Collapse
|
16
|
Podzolkov VI, Tarzimanova AI. The Value of Omega-3 Fatty Acids in the Prevention of Heart Rhythm Disorders. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2020. [DOI: 10.20996/1819-6446-2020-05-01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- V. I. Podzolkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. I. Tarzimanova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
17
|
Nelson AJ, Nicholls SJ. Translating evidence from clinical trials of omega-3 fatty acids to clinical practice. Future Cardiol 2020; 16:343-350. [PMID: 32180456 DOI: 10.2217/fca-2019-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The REDUCE-IT (Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial) study recently demonstrated that administration of high doses of omega-3 fatty acids confers cardiovascular benefit in high-risk patients with the modest hypertriglyceridemia. This provided optimism for a therapeutic area that has challenged the field of cardiovascular prevention for 2 decades. However, it raises a number of questions including understanding the mechanism underscoring this benefit, how best to use these therapies and whether similar results will be observed with alternative omega-3 fatty acid preparations. Contemporary clinical trials of omega-3 fatty acids and their attempt to prevent cardiovascular events will be reviewed.
Collapse
Affiliation(s)
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Borges MC, Schmidt AF, Jefferis B, Wannamethee SG, Lawlor DA, Kivimaki M, Kumari M, Gaunt TR, Ben-Shlomo Y, Tillin T, Menon U, Providencia R, Dale C, Gentry-Maharaj A, Hughes A, Chaturvedi N, Casas JP, Hingorani AD. Circulating Fatty Acids and Risk of Coronary Heart Disease and Stroke: Individual Participant Data Meta-Analysis in Up to 16 126 Participants. J Am Heart Assoc 2020; 9:e013131. [PMID: 32114887 PMCID: PMC7335585 DOI: 10.1161/jaha.119.013131] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background We aimed at investigating the association of circulating fatty acids with coronary heart disease (CHD) and stroke risk. Methods and Results We conducted an individual-participant data meta-analysis of 5 UK-based cohorts and 1 matched case-control study. Fatty acids (ie, omega-3 docosahexaenoic acid, omega-6 linoleic acid, monounsaturated and saturated fatty acids) were measured at baseline using an automated high-throughput serum nuclear magnetic resonance metabolomics platform. Data from 3022 incident CHD cases (13 104 controls) and 1606 incident stroke cases (13 369 controls) were included. Logistic regression was used to model the relation between fatty acids and odds of CHD and stroke, adjusting for demographic and lifestyle variables only (ie, minimally adjusted model) or with further adjustment for other fatty acids (ie, fully adjusted model). Although circulating docosahexaenoic acid, but not linoleic acid, was related to lower CHD risk in the fully adjusted model (odds ratio, 0.85; 95% CI, 0.76-0.95 per standard unit of docosahexaenoic acid), there was evidence of high between-study heterogeneity and effect modification by study design. Stroke risk was consistently lower with increasing circulating linoleic acid (odds ratio for fully adjusted model, 0.82; 95% CI, 0.75-0.90). Circulating monounsaturated fatty acids were associated with higher CHD risk across all models and with stroke risk in the fully adjusted model (odds ratio, 1.22; 95% CI, 1.03-1.44). Saturated fatty acids were not related to increased CHD risk in the fully adjusted model (odds ratio, 0.94; 95% CI, 0.82-1.09), or stroke risk. Conclusions We found consistent evidence that linoleic acid was associated with decreased risk of stroke and that monounsaturated fatty acids were associated with increased risk of CHD. The different pattern between CHD and stroke in terms of fatty acids risk profile suggests future studies should be cautious about using composite events. Different study designs are needed to assess which, if any, of the associations observed is causal.
Collapse
Affiliation(s)
- Maria Carolina Borges
- MRC Integrative Epidemiology Unit at the University of Bristol United Kingdom.,Population Health Sciences Bristol Medical School University of Bristol United Kingdom
| | - Amand Floriaan Schmidt
- Institute of Cardiovascular Science University College London London United Kingdom.,Groningen Research Institute of Pharmacy University of Groningen the Netherlands.,Division Heart and Lungs Department of Cardiology University Medical Center Utrecht Utrecht The Netherlands
| | - Barbara Jefferis
- UCL Department of Primary Care & Population Health UCL Medical School London United Kingdom
| | - S Goya Wannamethee
- UCL Department of Primary Care & Population Health UCL Medical School London United Kingdom
| | - Debbie A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol United Kingdom.,Population Health Sciences Bristol Medical School University of Bristol United Kingdom
| | - Mika Kivimaki
- Department of Epidemiology and Public Health University College London London United Kingdom
| | - Meena Kumari
- Department of Epidemiology and Public Health University College London London United Kingdom.,Institute for Social and Economic Research University of Essex United Kingdom
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit at the University of Bristol United Kingdom.,Population Health Sciences Bristol Medical School University of Bristol United Kingdom
| | - Yoav Ben-Shlomo
- Population Health Sciences Bristol Medical School University of Bristol United Kingdom
| | - Therese Tillin
- Cardiometabolic Phenotyping Group Institute of Cardiovascular Science University College London London United Kingdom
| | - Usha Menon
- MRC Clinical Trials Unit at UCL Institute of Clinical Trials & MethodologyUniversity College London London United Kingdom
| | - Rui Providencia
- Farr Institute of Health Informatics University College London London United Kingdom.,Barts Heart Centre St Bartholomew's Hospital Barts Health NHS Trust London United Kingdom
| | - Caroline Dale
- Farr Institute of Health Informatics University College London London United Kingdom
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit at UCL Institute of Clinical Trials & MethodologyUniversity College London London United Kingdom
| | - Alun Hughes
- Institute of Cardiovascular Science University College London London United Kingdom
| | - Nish Chaturvedi
- Institute of Cardiovascular Science University College London London United Kingdom
| | - Juan Pablo Casas
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) VA Boston Healthcare System Boston MA USA
| | - Aroon D Hingorani
- Institute of Cardiovascular Science University College London London United Kingdom.,Farr Institute of Health Informatics University College London London United Kingdom
| | | |
Collapse
|
19
|
Zhang X, Ning X, He X, Sun X, Yu X, Cheng Y, Yu RQ, Wu Y. Fatty acid composition analyses of commercially important fish species from the Pearl River Estuary, China. PLoS One 2020; 15:e0228276. [PMID: 31999793 PMCID: PMC6992182 DOI: 10.1371/journal.pone.0228276] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/12/2020] [Indexed: 11/18/2022] Open
Abstract
Evaluation of fish nutritional content information could provide essential guidance for seafood consumption and human health protection. This study investigated the lipid contents, fatty acid compositions, and nutritional qualities of 22 commercially important marine fish species from the Pearl River Estuary (PRE), South China Sea. All the analyzed species had a low to moderate lipid content (0.51-7.35% fat), with no significant differences in fatty acid profiles among fishes from different lipid categories (p > 0.05). Compared with previous studies from other regions, the examined fish species exhibited higher proportions of saturated fatty acids (SFAs, 39.1 ± 4.00%) and lower contents of polyunsaturated fatty acids (PUFAs, 21.6 ± 5.44%), presumably due to the shifted diet influence from increased diatoms and decreased dinoflagellate over the past decades in the PRE. This study further revealed that there was a significantly negative correlation between the trophic levels and levels of PUFAs in the examined species (Pearson's r = -0.42, p = 0.04), likely associated with their differed dietary composition. Considering the health benefit of PUFAs, a few marine fish in PRE with low levels of PUFAs might have no significant contribution to the cardiovascular disease prevention, although fish with different fatty acid profiles most likely contribute differently towards human health. Additional studies are needed in order to comprehensively analyze the nutritional status of fish species in the PRE.
Collapse
Affiliation(s)
- Xiyang Zhang
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xi Ning
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xiaoxiao He
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xian Sun
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xinjian Yu
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yuanxiong Cheng
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ri-Qing Yu
- Department of Biology, Center for Environment, Biodiversity and Conservation, The University of Texas at Tyler, Tyler, Texas, United States of America
| | - Yuping Wu
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
20
|
Omega-3 fatty acids as adjunctive therapeutics: prospective of nanoparticles in its formulation development. Ther Deliv 2020; 11:851-868. [DOI: 10.4155/tde-2019-0072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3-PUFAs) are dietary components that have been extensively recognized for their therapeutic value and have shown diverse therapeutic effects including anti-inflammatory, antiarrhythmic, antithrombotic, immunomodulatory and antineoplastic activities. Most of the ω-3-PUFAs are obtained through diet or supplements because the body does not synthesize them. The high instability of ω-3-PUFAs to oxidative deterioration, lower bioavailability at the target tissues and reduced bioactivity of ω-3-PUFAs is an impediment for achieving their therapeutic potential. The present review provides an overview of potential therapeutic activities of ω-3-PUFAs and different novel technical approaches based on nanotechnology, which have been emphasized to overcome instability problems as well as enhance the bioactivity of ω-3-PUFAs. Future prospects related to this area of research are also provided.
Collapse
|
21
|
Román G, Jackson R, Reis J, Román A, Toledo J, Toledo E. Extra-virgin olive oil for potential prevention of Alzheimer disease. Rev Neurol (Paris) 2019; 175:705-723. [DOI: 10.1016/j.neurol.2019.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
|
22
|
Leskanich C, Noble R. Manipulation of then-3 polyunsaturated fatty acid composition of avian eggs and meat. WORLD POULTRY SCI J 2019. [DOI: 10.1079/wps19970015] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- C.O. Leskanich
- Department of Biochemical Sciences, The Scottish Agricultural College, Auchincruive, Ayr KA6 5HW, UK
| | - R.C. Noble
- Department of Biochemical Sciences, The Scottish Agricultural College, Auchincruive, Ayr KA6 5HW, UK
| |
Collapse
|
23
|
Mediterranean diet: The role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Rev Neurol (Paris) 2019; 175:724-741. [PMID: 31521398 DOI: 10.1016/j.neurol.2019.08.005] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 12/18/2022]
Abstract
The mechanisms of action of the dietary components of the Mediterranean diet are reviewed in prevention of cardiovascular disease, stroke, age-associated cognitive decline and Alzheimer disease. A companion article provides a comprehensive review of extra-virgin olive oil. The benefits of consumption of long-chain ω-3 fatty acids are described. Fresh fish provides eicosapentaenoic acid while α-linolenic acid is found in canola and soybean oils, purslane and nuts. These ω-3 fatty acids interact metabolically with ω-6 fatty acids mainly linoleic acid from corn oil, sunflower oil and peanut oil. Diets rich in ω-6 fatty acids inhibit the formation of healthier ω-3 fatty acids. The deleterious effects on lipid metabolism of excessive intake of carbohydrates, in particular high-fructose corn syrup and artificial sweeteners, are explained. The critical role of the ω-3 fatty acid docosahexaenoic acid in the developing and aging brain and in Alzheimer disease is addressed. Nutritional epidemiology studies, prospective population-based surveys, and clinical trials confirm the salutary effects of fish consumption on prevention of coronary artery disease, stroke and dementia. Recent recommendations on fish consumption by pregnant women and potential mercury toxicity are reviewed. The polyphenols and flavonoids of plant origin play a critical role in the Mediterranean diet, because of their antioxidant and anti-inflammatory properties of benefit in type-2 diabetes mellitus, cardiovascular disease, stroke and cancer prevention. Polyphenols from fruits and vegetables modulate tau hyperphosphorylation and beta amyloid aggregation in animal models of Alzheimer disease. From the public health viewpoint worldwide the daily consumption of fruits and vegetables has become the main tool for prevention of cardiovascular disease and stroke. We review the important dietary role of cereal grains in prevention of coronary disease and stroke. Polyphenols from grapes, wine and alcoholic beverages are discussed, in particular their effects on coagulation. The mechanisms of action of probiotics and vitamins are also included.
Collapse
|
24
|
Nguyen DV, Malau-Aduli BS, Cavalieri J, Nichols PD, Malau-Aduli AE. Supplementation with plant-derived oils rich in omega-3 polyunsaturated fatty acids for lamb production. Vet Anim Sci 2018; 6:29-40. [PMID: 32734050 PMCID: PMC7386694 DOI: 10.1016/j.vas.2018.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/01/2018] [Accepted: 08/01/2018] [Indexed: 12/01/2022] Open
Abstract
In this report, an overview of the health benefits of omega-3 long-chain (≥C20) polyunsaturated fatty acids (n-3 LC-PUFA) and recent progress in using alpha linolenic acid (ALA) rich sources derived from oilseeds to enhance productive performance, n-3 PUFA profiles and sensory properties of lamb for human consumption is reviewed. Omega-3 LC-PUFA can prevent mental health issues and chronic human disorders including cancer, cardiovascular and inflammatory diseases. The median amount of n-3 LC-PUFA consumption is generally lacking in Western diets. More attention is now being paid to the use of innovative nutritional strategies to improve PUFA content in ruminants, which could subsequently increase the content of health-benefitting n-3 LC-PUFA for human consumption. The richest sources of dietary n-3 LC-PUFA are derived from marine products, while forage and oilseeds such as flaxseed, canola, and their oils are abundant in ALA. Numerous studies have shown that dietary ALA increases n-3 LC-PUFA levels of edible tissues. However, other studies concluded that ALA rich supplementation led to no differences in tissue FA profiles because of extensive biohydrogenation of dietary ALA, limited conversion from ALA to n-3 LC-PUFA and low incorporation of n-3 LC-PUFA into edible tissues. Generally, the inclusion of ALA rich sources in lamb diets potentially increases ALA content in lamb. It is proposed that supplementing ruminants with ALA-rich sources at or below 6% can promote n-3 PUFA profiles in lamb and is unlikely to have negative effects on feed intake, growth, carcass and sensory properties.
Collapse
Affiliation(s)
- Don V. Nguyen
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- National Institute of Animal Science, Hanoi 129909, Viet Nam
| | - Bunmi S. Malau-Aduli
- College of Medicine and Dentistry, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - John Cavalieri
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Peter D. Nichols
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- CSIRO Oceans & Atmosphere, PO Box 1538, Hobart, TAS 7001, Australia
| | - Aduli E.O. Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
25
|
Characterisation of the vasodilation effects of DHA and EPA, n-3 PUFAs (fish oils), in rat aorta and mesenteric resistance arteries. PLoS One 2018; 13:e0192484. [PMID: 29394279 PMCID: PMC5796719 DOI: 10.1371/journal.pone.0192484] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/24/2018] [Indexed: 02/07/2023] Open
Abstract
Background and purpose Increasing evidence suggests that the omega-3 polyunsaturated acids (n-3 PUFA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are beneficial to cardiovascular health, promoting relaxation of vascular smooth muscle cells and vasodilation. Numerous studies have attempted to study these responses, but to date there has not been a systematic characterisation of both DHA and EPA mediated vasodilation in conduit and resistance arteries. Therefore, we aimed to fully characterise the n-3 PUFA-induced vasodilation pathways in rat aorta and mesenteric artery. Methods Wire myography was used to measure the vasomotor responses of freshly dissected rat mesenteric artery and aorta. Arteries were pre-constricted with U46619 and cumulative concentrations of either DHA or EPA (10 nM-30 μM) were added. The mechanisms by which n-3 PUFA relaxed arteries were investigated using inhibitors of vasodilator pathways, which include: nitric oxide synthase (NOS; L-NAME), cycloxygenase (COX; indomethacin), cytochrome P450 epoxygenase (CYP450; clotrimazole); and calcium-activated potassium channels (KCa), SKCa (apamin), IKCa (TRAM-34) and BKCa (paxilline). Results Both DHA- and EPA-induced relaxations were partially inhibited following endothelium removal in rat mesenteric arteries. Similarly, in aorta EPA-induced relaxation was partially suppressed due to endothelium removal. CYP450 also contributed to EPA-induced relaxation in mesenteric artery. Inhibition of IKCa partially attenuated DHA-induced relaxation in aorta and mesenteric artery along with EPA-induced relaxation in mesenteric artery. Furthermore, this inhibition of DHA- and EPA-induced relaxation was increased following the additional blockade of BKCa in these arteries. Conclusions This study provides evidence of heterogeneity in the vasodilation mechanisms of DHA and EPA in different vascular beds. Our data also demonstrates that endothelium removal has little effect on relaxations produced by either PUFA. We demonstrate IKCa and BKCa are involved in DHA-induced relaxation in rat aorta and mesenteric artery; and EPA-induced relaxation in rat mesenteric artery only. CYP450 derived metabolites of EPA may also be involved in BKCa dependent relaxation. To our knowledge this is the first study indicating the involvement of IKCa in n-3 PUFA mediated relaxation.
Collapse
|
26
|
Wu B, Mottola G, Schaller M, Upchurch GR, Conte MS. Resolution of vascular injury: Specialized lipid mediators and their evolving therapeutic implications. Mol Aspects Med 2017; 58:72-82. [PMID: 28765077 DOI: 10.1016/j.mam.2017.07.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022]
Abstract
Acute vascular injury occurs in a number of important clinical contexts, including spontaneous disease-related events (e.g. plaque rupture, thrombosis) and therapeutic interventions such as angioplasty, stenting, or bypass surgery. Endothelial cell (EC) disruption exposes the underlying matrix, leading to a rapid deposition of platelets, coagulation proteins, and leukocytes. A thrombo-inflammatory response ensues characterized by leukocyte recruitment, vascular smooth muscle cell (VSMC) activation, and the elaboration of cytokines, reactive oxygen species and growth factors within the vessel wall. A resolution phase of vascular injury may be described in which leukocyte efflux, clearance of debris, and re-endothelialization occurs. VSMC migration and proliferation leads to the development of a thickened neointima that may lead to lumen compromise. Subsequent remodeling involves matrix protein deposition, and return of EC and VSMC to quiescence. Recent studies suggest that specialized pro-resolving lipid mediators (SPM) modulate key aspects of this response, and may constitute an endogenous homeostatic pathway in the vasculature. SPM exert direct effects on vascular cells that counteract inflammatory signals, reduce leukocyte adhesion, and inhibit VSMC migration and proliferation. These effects appear to be largely G-protein coupled receptor-dependent. Across a range of animal models of vascular injury, including balloon angioplasty, bypass grafting, and experimental aneurysm formation, SPM accelerate repair and reduce lesion formation. With bioactivity in the pM-nM range, a lack of discernible cytotoxicity, and a spectrum of vasculo-protective properties, SPM represent a novel class of vascular therapeutics. This review summarizes current research in this field, including a consideration of critical next steps and challenges in translation.
Collapse
Affiliation(s)
- Bian Wu
- Division of Vascular and Endovascular Surgery, Department of Surgery, Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA, United States
| | - Giorgio Mottola
- Division of Vascular and Endovascular Surgery, Department of Surgery, Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA, United States
| | - Melinda Schaller
- Division of Vascular and Endovascular Surgery, Department of Surgery, Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA, United States
| | - Gilbert R Upchurch
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Michael S Conte
- Division of Vascular and Endovascular Surgery, Department of Surgery, Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA, United States.
| |
Collapse
|
27
|
Takamura M, Kurokawa K, Ootsuji H, Inoue O, Okada H, Nomura A, Kaneko S, Usui S. Long-Term Administration of Eicosapentaenoic Acid Improves Post-Myocardial Infarction Cardiac Remodeling in Mice by Regulating Macrophage Polarization. J Am Heart Assoc 2017; 6:JAHA.116.004560. [PMID: 28223437 PMCID: PMC5523759 DOI: 10.1161/jaha.116.004560] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background Consumption of n‐3 fatty acids reduces the incidence of cardiovascular mortality in populations that consume diets rich in fish oil. Eicosapentaenoic acid (EPA) is an n‐3 fatty acid known to reduce the frequency of nonfatal coronary events; however, the frequency of mortality after myocardial infarction (MI) is not reduced. The aims of this study were to determine whether long‐term administration of EPA regulated cardiac remodeling after MI and to elucidate the underlying therapeutic mechanisms of EPA. Methods and Results C57BL/6J mice were divided into control (phosphate‐buffered saline–treated) and EPA‐treated groups. After 28 days of treatment, the mice were subjected to either sham surgery or MI by left anterior descending coronary artery ligation. Mortality due to MI or heart failure was significantly lower in the EPA‐treated mice than in the phosphate‐buffered saline–treated mice. However, the incidence of cardiac rupture was comparable between the EPA‐treated mice and the phosphate‐buffered saline–treated mice after MI. Echocardiographic tests indicated that EPA treatment attenuated post‐MI cardiac remodeling by preventing issues such as left ventricular systolic dysfunction and left ventricle dilatation 28 days after MI induction. Moreover, during the chronic remodeling phase, ie, 28 days after MI, flow cytometry demonstrated that EPA treatment significantly inhibited polarization toward proinflammatory M1 macrophages, but not anti‐inflammatory M2 macrophages, in the infarcted heart. Furthermore, EPA treatment attenuated fibrosis in the noninfarcted remote areas during the chronic phase. Conclusions Long‐term administration of EPA improved the prognosis of and attenuated chronic cardiac remodeling after MI by modulating the activation of proinflammatory M1 macrophages.
Collapse
Affiliation(s)
- Masayuki Takamura
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Keisuke Kurokawa
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Ootsuji
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Oto Inoue
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hikari Okada
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Ayano Nomura
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Soichiro Usui
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
28
|
Lin C, Andersen JR, Våge V, Rajalahti T, Mjøs SA, Kvalheim OM. Intensive lifestyle intervention provides rapid reduction of serum fatty acid levels in women with severe obesity without lowering omega-3 to unhealthy levels. Clin Obes 2016; 6:259-67. [PMID: 27334055 PMCID: PMC5129509 DOI: 10.1111/cob.12151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/24/2016] [Accepted: 05/06/2016] [Indexed: 11/29/2022]
Abstract
Serum fatty acid (FA) levels were monitored in women with severe obesity during intensive lifestyle intervention. At baseline, total FA levels and most individual FAs were elevated compared to a matching cohort of normal and overweight women (healthy controls). After 3 weeks of intensive lifestyle intervention, total level was only 11-12% higher than in the healthy controls and with almost all FAs being significantly lower than at baseline, but with levels of omega-3 being similar to the healthy controls. This is contrary to observations for patients subjected to bariatric surgery where omega-3 levels dropped to levels significantly lower than in the lifestyle patients and healthy controls. During the next 3 weeks of treatment, the FA levels in lifestyle patients were unchanged, while the weight loss continued at almost the same rate as in the first 3 weeks. Multivariate analysis revealed that weight loss and change of serum FA patterns were unrelated outcomes of the intervention for lifestyle patients. For bariatric patients, these processes were associated probably due to reduced dietary input and increased input from the patients' own fat deposits, causing a higher rate of weight loss and simultaneous reduction of the ratio of serum eicosapentaenoic to arachidonic acid.
Collapse
Affiliation(s)
- C Lin
- Fjordomics, Førde Hospital Trust, Førde, Norway
- Department of Chemistry, University of Bergen, Bergen, Norway
| | - J R Andersen
- Faculty of Health Studies, Sogn og Fjordane University College, Førde, Norway
- Center of Health research, Førde Hospital Trust, Førde, Norway
| | - V Våge
- Center of Health research, Førde Hospital Trust, Førde, Norway
- Department of Surgery, Voss Hospital, Bergen Health Trust, Voss, Norway
| | - T Rajalahti
- Fjordomics, Førde Hospital Trust, Førde, Norway
| | - S A Mjøs
- Department of Chemistry, University of Bergen, Bergen, Norway
| | - O M Kvalheim
- Department of Chemistry, University of Bergen, Bergen, Norway
- Faculty of Health Studies, Sogn og Fjordane University College, Førde, Norway
| |
Collapse
|
29
|
Toda N, Okamura T. Cigarette smoking impairs nitric oxide-mediated cerebral blood flow increase: Implications for Alzheimer's disease. J Pharmacol Sci 2016; 131:223-32. [DOI: 10.1016/j.jphs.2016.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 02/08/2023] Open
|
30
|
Lin C, Rajalahti T, Mjøs SA, Kvalheim OM. Predictive associations between serum fatty acids and lipoproteins in healthy non-obese Norwegians: implications for cardiovascular health. Metabolomics 2016; 12:6. [PMID: 26568746 PMCID: PMC4639572 DOI: 10.1007/s11306-015-0886-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/01/2015] [Indexed: 01/29/2023]
Abstract
A battery of methods for multivariate data analysis has been used to assess the associations between concentrations of fatty acids (FAs) and lipoprotein subclasses and particle size in serum for a normolipidemic population of ethnic Norwegians living in the rural Fjord region. Significant gender differences were found in the lipoprotein and FA patterns. Predictive FA patterns were revealed for lipoprotein features of importance for cardiovascular (CV) health. Thus, the subclasses of atherogenic small and very small low density lipoprotein (LDL) particles and the same subclasses of high density lipoprotein (HDL) particles were associated with a pattern of saturated FAs and mono-unsaturated C16-C18 FAs. Eicosapentaenoic acid (EPA) and the ratio of EPA to arachidonic acid (AA) had strongest associations to features that promotes CV health: (i) large average size of HDL and LDL particles, and, (ii) small average size of very low density lipoprotein (VLDL) particles. Total concentration of HDL in both genders correlated to EPA, but docosahexaenoic acid (DHA) correlated just as strongly for women. For men, docosapentaenoic acid (DPA) showed stronger association to HDL concentration than EPA. For both genders, concentration of large LDL particles showed associations to levels of EPA, but stronger to DHA and DPA. High values of EPA/AA seem to be the strongest single biomarker for good CV health in both men and women.
Collapse
Affiliation(s)
- Chenchen Lin
- Department of Chemistry, University of Bergen, Bergen, Norway
- Fjordomics, Førde Hospital Trust, Førde, Norway
| | | | - Svein Are Mjøs
- Department of Chemistry, University of Bergen, Bergen, Norway
| | - Olav Martin Kvalheim
- Department of Chemistry, University of Bergen, Bergen, Norway
- Faculty of Health Studies, Sogn og Fjordane University College, Førde, Norway
| |
Collapse
|
31
|
Rajalahti T, Lin C, Mjøs SA, Kvalheim OM. Changes in serum fatty acid and lipoprotein subclass concentrations from prepuberty to adulthood and during aging. Metabolomics 2016; 12:51. [PMID: 26900388 PMCID: PMC4744832 DOI: 10.1007/s11306-016-0968-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/10/2015] [Indexed: 01/26/2023]
Abstract
Concentrations in serum were determined for 18 fatty acids (FAs) and 21 lipoprotein main and subclasses by chromatographic analyses and the average size was calculated for very low density (VLDL), low density (LDL) and high density (HDL) particles. 283 ethnic Norwegian children and adults from the rural Fjord region of Western Norway were compared with the objectives to reveal patterns and gender differences during the development from prepuberty to adulthood and during aging in adults. Both genders showed a large increase in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from child to adult. Males, but not females, show a significant increase in most C16-C18 FAs from prepuberty to adulthood. These changes in males correlate to a pattern of increased concentrations of triglycerides, VLDL and LDL particles, especially the atherogenic subclasses of small and very small LDL particles. Furthermore, concentrations of medium, large and very large HDL particles decrease, while concentration of very small HDL particles increase leading to reduced average size of HDL particles. Females only showed significant increase in concentrations of small and very small LDL particles, very small HDL particles and apolipoprotein B. While EPA and DHA continued to increase during aging in women, no validated model for connecting age to FA profile was obtained for men. Women showed significant increase in concentrations of all subclasses of LDL particles during aging, while men exhibited a more complex pattern with increase also in apolipoprotein A1 and HDL particles.
Collapse
Affiliation(s)
| | - Chenchen Lin
- />Fjordomics, Førde Central Hospital, Førde, Norway
- />Department of Chemistry, University of Bergen, Bergen, Norway
| | - Svein Are Mjøs
- />Department of Chemistry, University of Bergen, Bergen, Norway
| | - Olav Martin Kvalheim
- />Department of Chemistry, University of Bergen, Bergen, Norway
- />Faculty of Health Studies, Sogn og Fjordane University College, Førde, Norway
| |
Collapse
|
32
|
Hosomi R, Miyauchi K, Yamamoto D, Arai H, Nishiyama T, Yoshida M, Fukunaga K. Salmon Protamine Decreases Serum and Liver Lipid Contents by Inhibiting Lipid Absorption in anIn VitroGastrointestinal Digestion Model and in Rats. J Food Sci 2015; 80:H2346-53. [DOI: 10.1111/1750-3841.13003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/23/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Ryota Hosomi
- Lab. of Food and Nutritional Sciences, Faculty of Chemistry, Materials, and Bioengineering; Kansai Univ; Suita Osaka 564-8680 Japan
| | - Kazumasa Miyauchi
- Lab. of Food and Nutritional Sciences, Faculty of Chemistry, Materials, and Bioengineering; Kansai Univ; Suita Osaka 564-8680 Japan
| | - Daiki Yamamoto
- Lab. of Food and Nutritional Sciences, Faculty of Chemistry, Materials, and Bioengineering; Kansai Univ; Suita Osaka 564-8680 Japan
| | - Hirofumi Arai
- Dept. of Biotechnology and Environmental Chemistry; Kitami Inst. of Technology; Kitami Hokkaido 090-8507 Japan
| | | | - Munehiro Yoshida
- Lab. of Food and Nutritional Sciences, Faculty of Chemistry, Materials, and Bioengineering; Kansai Univ; Suita Osaka 564-8680 Japan
| | - Kenji Fukunaga
- Lab. of Food and Nutritional Sciences, Faculty of Chemistry, Materials, and Bioengineering; Kansai Univ; Suita Osaka 564-8680 Japan
| |
Collapse
|
33
|
Fulton AS, Hill AM, Williams MT, Howe PRC, Coates AM. Paucity of evidence for a relationship between long-chain omega-3 fatty acid intake and chronic obstructive pulmonary disease: a systematic review. Nutr Rev 2015; 73:612-23. [PMID: 26185126 DOI: 10.1093/nutrit/nuv017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
CONTEXT The anti-inflammatory activity of long-chain n-3 polyunsaturated fatty acids (PUFAs) has been established in several chronic inflammatory diseases but has yet to be demonstrated in inflammatory lung diseases such as chronic obstructive pulmonary disease (COPD). OBJECTIVE The aim of this systematic review was to investigate, using PRISMA guidelines, the relationship between the intake of long-chain n-3 PUFAs and the prevalence, severity, and health outcomes of COPD. DATA SOURCES Eight health databases and the World Health Organization's international clinical trial registry were searched for relevant studies. STUDY SELECTION Experimental or observational studies that were published in English and that assessed long-chain n-3 PUFA intake (by determining habitual consumption and/or tissue levels) in adults with COPD were included. DATA EXTRACTION Publication demographics, participant characteristics, type of intervention or exposure, long-chain n-3 PUFA intake, pulmonary function, COPD mortality, and COPD severity were independently extracted from each article by 2 authors using a prospectively designed data extraction tool. DATA SYNTHESIS All 11 of the studies included in the review were observational. Approximately equal numbers of studies reported significant (n = 6, 5 inverse) relationships or no significant relationships (n = 5) between either consumption of long-chain n-3 PUFAs or levels of long-chain n-3 PUFAS in tissue and a COPD outcome. CONCLUSIONS Current evidence of a relationship between long-chain n-3 PUFA intake and COPD is limited and conflicting, with studies having wide methodological variation. REGISTRATION NUMBER PROSPERO 2013:CRD42013004085.
Collapse
Affiliation(s)
- Ashley S Fulton
- A.S. Fulton and A.M. Coates are with the School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia. M.T. Williams is with the School of Population Health, University of South Australia, Adelaide, South Australia, Australia. P.R.C. Howe is with the Clinical Nutrition Research Centre, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia. A.M. Hill is with the School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia, Australia. A.S. Fulton, A.M. Hill, M.T. Williams, P.R.C. Howe, and A.M. Coates are with the Alliance for Research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for Health Research, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Alison M Hill
- A.S. Fulton and A.M. Coates are with the School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia. M.T. Williams is with the School of Population Health, University of South Australia, Adelaide, South Australia, Australia. P.R.C. Howe is with the Clinical Nutrition Research Centre, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia. A.M. Hill is with the School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia, Australia. A.S. Fulton, A.M. Hill, M.T. Williams, P.R.C. Howe, and A.M. Coates are with the Alliance for Research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for Health Research, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Marie T Williams
- A.S. Fulton and A.M. Coates are with the School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia. M.T. Williams is with the School of Population Health, University of South Australia, Adelaide, South Australia, Australia. P.R.C. Howe is with the Clinical Nutrition Research Centre, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia. A.M. Hill is with the School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia, Australia. A.S. Fulton, A.M. Hill, M.T. Williams, P.R.C. Howe, and A.M. Coates are with the Alliance for Research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for Health Research, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Peter R C Howe
- A.S. Fulton and A.M. Coates are with the School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia. M.T. Williams is with the School of Population Health, University of South Australia, Adelaide, South Australia, Australia. P.R.C. Howe is with the Clinical Nutrition Research Centre, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia. A.M. Hill is with the School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia, Australia. A.S. Fulton, A.M. Hill, M.T. Williams, P.R.C. Howe, and A.M. Coates are with the Alliance for Research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for Health Research, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Alison M Coates
- A.S. Fulton and A.M. Coates are with the School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia. M.T. Williams is with the School of Population Health, University of South Australia, Adelaide, South Australia, Australia. P.R.C. Howe is with the Clinical Nutrition Research Centre, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia. A.M. Hill is with the School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia, Australia. A.S. Fulton, A.M. Hill, M.T. Williams, P.R.C. Howe, and A.M. Coates are with the Alliance for Research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for Health Research, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia.
| |
Collapse
|
34
|
Tham YK, Bernardo BC, Ooi JYY, Weeks KL, McMullen JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 2015; 89:1401-38. [DOI: 10.1007/s00204-015-1477-x] [Citation(s) in RCA: 371] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 12/18/2022]
|
35
|
Thompkinson DK, Bhavana V, Kanika P. Dietary approaches for management of cardio-vascular health- a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2014; 51:2318-30. [PMID: 25328172 PMCID: PMC4190221 DOI: 10.1007/s13197-012-0661-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/04/2012] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
Abstract
Dietary patterns of consumers have changed and the importance of diet as a therapeutic adjunct in the form of nutraceuticals has become the trend of the millennium. Major contributory factor behind this trend is the idea of improving health by modifying the diet that is more attractive to the health conscious consumer as compared to drugs. According to a recent report of WHO, prevalence of cardio vascular disease has increased progressively in the past few years. It has been estimated that one-fifth of deaths in India are due to coronary heart disease that is inflicting at a much younger age in Indians than in the West. Such an insight suggests that cardiac health needs protection. Food products containing functional ingredients that are useful in controlling various different diseases are expected to provide health benefits. Recent research indicates that foods rich in omega-3 fatty acids, antioxidant vitamins and fibres may be beneficial for cardio-vascular health.
Collapse
Affiliation(s)
- D. K. Thompkinson
- Dairy Technology Division, National Dairy Research Institute, Karnal, 132001 Haryana India
| | - V. Bhavana
- Dairy Technology Division, National Dairy Research Institute, Karnal, 132001 Haryana India
| | - P. Kanika
- Dairy Technology Division, National Dairy Research Institute, Karnal, 132001 Haryana India
| |
Collapse
|
36
|
Yates CM, Calder PC, Ed Rainger G. Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacol Ther 2014; 141:272-82. [DOI: 10.1016/j.pharmthera.2013.10.010] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 10/12/2013] [Indexed: 12/11/2022]
|
37
|
Abstract
Polyunsaturated fatty acids (PUFAs) are the major components of brain and retina, and are the essential fatty acids with important physiologically active functions. Thus, PUFAs should be provided to children, and are very important in the brain growth and development for fetuses, newborn infants, and children. Omega-3 fatty acids decrease coronary artery disease and improve blood flow. PUFAs have been known to have anti-inflammatory action and improved the chronic inflammation such as auto-immune diseases or degenerative neurologic diseases. PUFAs are used for metabolic syndrome related with obesity or diabetes. However, there are several considerations related with intake of PUFAs. Obsession with the intake of unsaturated fatty acids could bring about the shortage of essential fatty acids that are crucial for our body, weaken the immune system, and increase the risk of heart disease, arrhythmia, and stroke. In this review, we discuss types, physiologic mechanism of action of PUFAs, intake of PUFAs for children, recommended intake of PUFAs, and considerations for the intake of PUFAs.
Collapse
Affiliation(s)
- Ji-Hyuk Lee
- Department of Pediatrics, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
38
|
Bello KJ, Fang H, Fazeli P, Bolad W, Corretti M, Magder LS, Petri M. Omega-3 in SLE: a double-blind, placebo-controlled randomized clinical trial of endothelial dysfunction and disease activity in systemic lupus erythematosus. Rheumatol Int 2013; 33:2789-96. [PMID: 23817872 DOI: 10.1007/s00296-013-2811-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/17/2013] [Indexed: 01/01/2023]
Abstract
Accelerated atherosclerosis remains a major cause of death in late systemic lupus erythematosus (SLE). Omega-3 has been reported to have benefit for endothelial dysfunction, one of the earliest stages of atherosclerosis, and to reduce disease activity in SLE. We performed a randomized, double-blind placebo-controlled trial to examine the effect of Omega-3 on endothelial function, disease activity, inflammatory markers and lipids in SLE. SLE patients (n = 85, mean age 47, 55% Caucasian, 38% African-American, 94% female) were randomly assigned to 3 g of Omega-3 (Lovaza, GSK) versus placebo for 12 weeks. Endothelial function was measured at baseline and at 12 weeks using flow-mediated dilation, calculated using high-resolution B-mode ultrasound of the brachial artery diameter in response to vasoactive stimuli (hyperemia). Disease activity was measured using the physician global assessment and SELENA-SLEDAI score. Inflammatory markers (sICAM-1, sVCAM-1, IL-6) and fasting lipid profile were done at baseline and 12-week follow-up. There was no difference between the treatment groups with respect to changes in flow-mediated dilation parameters or disease activity. An average increase in LDL cholesterol of 3.11 mg/dL (±21.99) was found with Omega-3 versus a decrease of 1.87 mg/dL (±18.29) with placebo (p = 0.0266). In this trial, Omega-3 did not improve endothelial function, disease activity, nor reduce inflammatory markers in SLE. Longer trials might be required if there are delayed clinical effects. There was evidence that Omega-3 may increase LDL cholesterol, but not the LDL/HDL ratio.
Collapse
Affiliation(s)
- Kayode J Bello
- Division of Rheumatology, Johns Hopkins University School of Medicine, 1830 East Monument Street, Suite 7500, Baltimore, MD, 21205, USA,
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The relation of dietary fat to risk of coronary heart disease (CHD) has been studied extensively using many approaches, including controlled feeding studies with surrogate end-points such as plasma lipids, limited randomized trials and large cohort studies. All lines of evidence indicate that specific dietary fatty acids play important roles in the cause and the prevention of CHD, but total fat as a percent of energy is unimportant. Trans fatty acids from partially hydrogenated vegetable oils have clear adverse effects and should be eliminated. Modest reductions in CHD rates by further decreases in saturated fat are possible if saturated fat is replaced by a combination of poly- and mono-unsaturated fat, and the benefits of polyunsaturated fat appear strongest. However, little or no benefit is likely if saturated fat is replaced by carbohydrate, but this will in part depend on the form of carbohydrate. Because both N-6 and N-3 polyunsaturated fatty acids are essential and reduce risk of heart disease, the ratio of N-6 to N-3 is not useful and can be misleading. In practice, reducing red meat and dairy products in a food supply and increasing intakes of nuts, fish, soy products and nonhydrogenated vegetable oils will improve the mix of fatty acids and have a markedly beneficial effect on rates of CHD.
Collapse
Affiliation(s)
- W C Willett
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Petrenya N, Brustad M, Cooper M, Dobrodeeva L, Bichkaeva F, Lutfalieva G, Odland JO. Serum apolipoproteins in relation to intakes of fish in population of Arkhangelsk County. Nutr Metab (Lond) 2012; 9:51. [PMID: 22681916 PMCID: PMC3495896 DOI: 10.1186/1743-7075-9-51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/17/2012] [Indexed: 01/29/2023] Open
Abstract
Background Diets rich in omega-3 fatty acids and low in saturated fat were found beneficially associated with blood lipids and cardio-vascular health. Lean reindeer meet and local cold water white-fish species high in omega-3 are among the main sources of nutrients in the rural area of the Nenets Autonomous Okrug (NAO) in Russia and are not normally consumed by the urban population from the same region. The aims of the study were firstly, to compare serum lipid profiles of residents of urban (Arkhangelsk city) and rural (NAO) regions of Arkhangelsk County, and secondly, to investigate the effects of fish consumption on the predictor of cardiovascular events apolipoprotein (Apo) B/ApoA-I ratio in these populations. Methods A cross-sectional study conducted in Arkhangelsk County, Russia. Sample size of 249 adults: 132 subjects from Arkhangelsk city, aged 21–70 and 117 subject (87% Ethnic Nenets) from NAO, aged 18–69. Results We observed more favorable lipid levels in NAO compared to Arkhangelsk participants. Age-adjusted geometric means of ApoB/ApoA-I ratio were 1.02 and 0.98 in men and women from Arkhangelsk; 0.84 and 0.91 in men and women from NAO respectively. Age and consumption of animal fat were positively associated with ApoB/ApoA-I ratio in women (pooled samples from Arkhangelsk and NAO). Body mass index and low levels of physical activity were positively associated with ApoB/ApoA-I ratio in men (pooled samples from Arkhangelsk and NAO). Reported oily fish consumption was not significantly correlated with ApoB/ApoA-I ratio. Conclusion The population sample from rural NAO, consisting largely of the indigenous Arctic population Nenets with healthier dietary sources, had a relatively less atherogenic lipid profile compared to the urban Arkhangelsk group. Fish consumption had no effect on apolipoproteins profile.
Collapse
Affiliation(s)
- Natalia Petrenya
- Norwegian Institute of Food, Fisheries and Aquaculture Research, Muninbakken 9-13, Breivika, P,O, box 6122, N-9291, Tromsø, Norway.
| | | | | | | | | | | | | |
Collapse
|
41
|
Itakura H, Yokoyama M, Matsuzaki M, Saito Y, Origasa H, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K, Matsuzawa Y. The change in low-density lipoprotein cholesterol concentration is positively related to plasma docosahexaenoic acid but not eicosapentaenoic acid. J Atheroscler Thromb 2012; 19:673-9. [PMID: 22653220 DOI: 10.5551/jat.11593] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM The Japan EPA Lipid Intervention Study (JELIS) reported a 19% reduction of the risk for coronary artery disease after long-term use of pure eicosapentaenoic acid (EPA) in Japanese patients with hypercholesterolemia. The variation in plasma fatty acid composition influenced the risk of coronary events. The aim of this study was to examine in JELIS participants the possible correlation of changes in plasma fatty acids with those of serum lipids. METHODS The coefficient for the correlation between the absolute change in plasma fatty acid concentrations and the changes in serum lipids was calculated in 13,901 JELIS participants. RESULTS Low-density lipoprotein (LDL) cholesterol exhibited a positive correlation with docosahexaenoic acid (DHA; r=0.117 in control group, r=0.155 in EPA group) and linoleic acid (r=0.139 in control group, r=0.177 in EPA group), but the correlation coefficients with EPA (r=0.097 in control group, r=-0.032 in EPA group) were less than 0.1. We distributed the patients into 9 groups according to tertiles of the change in EPA and DHA. The average absolute decrease of LDL cholesterol and L/H ratio in each group was significantly smaller (p<0.001) in the DHA-high tertile, but not in any EPA tertile. CONCLUSION The changes in DHA, but not in EPA, showed a positive correlation with the changes in LDL-cholesterol.
Collapse
|
42
|
Hosomi R, Yoshida M, Fukunaga K. Seafood consumption and components for health. Glob J Health Sci 2012; 4:72-86. [PMID: 22980234 PMCID: PMC4776937 DOI: 10.5539/gjhs.v4n3p72] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/05/2012] [Accepted: 03/26/2012] [Indexed: 01/09/2023] Open
Abstract
In recent years, in developed countries and around the world, lifestyle-related diseases have become a serious problem. Numerous epidemiological studies and clinical trials have demonstrated that diet is one of the major factors that influences susceptibility to lifestyle-related diseases, especially the middle-senile state. Studies examining dietary habits have revealed the health benefits of seafood consumption. Seafood contains functional components that are not present in terrestrial organisms. These components include n-3-polyunsaturated fatty acids, such as eicosapentaenoic acid and docosahexsaenoic acid, which aid in the prevention of arteriosclerotic and thrombotic disease. In addition, seafood is a superior source of various nutrients, such as protein, amino acids, fiber, vitamins, and minerals. This review focuses on the components derived from seafood and examines the significant role they play in the maintenance and promotion of health.
Collapse
Affiliation(s)
- Ryota Hosomi
- Division of Human Living Sciences, Tottori College, Kurayosi, Japan
| | - Munehiro Yoshida
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials, and Bioengineering, Kansai University, Suita, Japan
| | - Kenji Fukunaga
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials, and Bioengineering, Kansai University, Suita, Japan
| |
Collapse
|
43
|
Kelley DS, Adkins Y, Woodhouse LR, Swislocki A, Mackey BE, Siegel D. Docosahexaenoic Acid Supplementation Improved Lipocentric but Not Glucocentric Markers of Insulin Sensitivity in Hypertriglyceridemic Men. Metab Syndr Relat Disord 2012; 10:32-8. [DOI: 10.1089/met.2011.0081] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Darshan S. Kelley
- Western Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, and Department of Nutrition, University of California, Davis, California
| | - Yuriko Adkins
- Western Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, and Department of Nutrition, University of California, Davis, California
| | - Leslie R. Woodhouse
- Western Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, and Department of Nutrition, University of California, Davis, California
| | - Arthur Swislocki
- Veteran Affairs Northern California Health Care System, Martinez, California
- Department of Medicine, School of Medicine, University of California Davis, Sacramento, California
| | - Bruce E. Mackey
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California
| | - David Siegel
- Department of Medicine, School of Medicine, University of California Davis, Sacramento, California
- Veteran Affairs Northern California Health Care System, Sacramento, California
| |
Collapse
|
44
|
Saturated fatty acids induce c-Src clustering within membrane subdomains, leading to JNK activation. Cell 2011; 147:173-84. [PMID: 21962514 DOI: 10.1016/j.cell.2011.08.034] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 05/26/2011] [Accepted: 08/08/2011] [Indexed: 02/07/2023]
Abstract
Saturated fatty acids (FA) exert adverse health effects and are more likely to cause insulin resistance and type 2 diabetes than unsaturated FA, some of which exert protective and beneficial effects. Saturated FA, but not unsaturated FA, activate Jun N-terminal kinase (JNK), which has been linked to obesity and insulin resistance in mice and humans. However, it is unknown how saturated and unsaturated FA are discriminated. We now demonstrate that saturated FA activate JNK and inhibit insulin signaling through c-Src activation. FA alter the membrane distribution of c-Src, causing it to partition into intracellular membrane subdomains, where it likely becomes activated. Conversely, unsaturated FA with known beneficial effects on glucose metabolism prevent c-Src membrane partitioning and activation, which are dependent on its myristoylation, and block JNK activation. Consumption of a diabetogenic high-fat diet causes the partitioning and activation of c-Src within detergent insoluble membrane subdomains of murine adipocytes.
Collapse
|
45
|
Terra VC, Arida RM, Rabello GM, Cavalheiro EA, Scorza FA. The utility of omega-3 fatty acids in epilepsy: more than just a farmed tilapia! ARQUIVOS DE NEURO-PSIQUIATRIA 2011; 69:118-21. [PMID: 21359434 DOI: 10.1590/s0004-282x2011000100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/10/2010] [Indexed: 11/22/2022]
Abstract
The epilepsies are one of the most common serious brain disorders and 20 to 30% of people developing epilepsy continue to have seizures and are refractory to treatment with the currently available therapies. Approximately one in a 1000 patients with chronic epilepsy will die suddenly, unexpectedly, and without explanation, even with post-mortem examination and this phenomenon is called sudden unexplained death in epilepsy (SUDEP). Understanding the mechanisms underlying SUDEP may lead to the identification of previously unrecognized risk factors that are more amenable to correction. We discuss here the possible implications of omega-3 fatty acids consumption on SUDEP prevention.
Collapse
Affiliation(s)
- Vera C Terra
- Centro de Cirurgia de Epilepsia, Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
46
|
Hosomi R, Fukunaga K, Arai H, Kanda S, Nishiyama T, Yoshida M. Fish protein decreases serum cholesterol in rats by inhibition of cholesterol and bile acid absorption. J Food Sci 2011; 76:H116-21. [PMID: 22417359 DOI: 10.1111/j.1750-3841.2011.02130.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fish protein has been shown to decrease serum cholesterol content by inhibiting absorption of cholesterol and bile acid in laboratory animals, though the mechanism underlying this effect is not yet fully understood. The purpose of this study was to elucidate the mechanism underlying the inhibition of cholesterol and bile acid absorption following fish protein intake. Male Wistar rats were divided into 2 dietary groups of 7 rats each, 1 group receiving a diet consisting of 20% casein and the other receiving a diet consisting of 10% casein and 10% fish protein. Both experimental diets also contained 0.5% cholesterol and 0.1% sodium cholate. After the rats had been on their respective diets for 4 wk, their serum and liver cholesterol contents and fecal cholesterol, bile acid, and nitrogen excretion contents were measured. Fish protein consumption decreased serum and liver cholesterol content and increased fecal cholesterol and bile acid excretion and simultaneously increased fecal nitrogen excretion. In addition, fish protein hydrolyzate prepared by in vitro digestion had lower micellar solubility of cholesterol and higher binding capacity for bile acids compared with casein hydrolyzate. These results suggest that the hypocholesterolemic effect of fish protein is mediated by increased fecal cholesterol and bile acid excretion, which is due to the digestion products of fish protein having reduced micellar solubility of cholesterol and increased bile acid binding capacity.
Collapse
Affiliation(s)
- Ryota Hosomi
- Dept. of Life Science and Biotechnology, Kansai Univ., Suita, Osaka, 564-8680, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Sagara M, Njelekela M, Teramoto T, Taguchi T, Mori M, Armitage L, Birt N, Birt C, Yamori Y. Effects of docosahexaenoic Acid supplementation on blood pressure, heart rate, and serum lipids in Scottish men with hypertension and hypercholesterolemia. Int J Hypertens 2011; 2011:809198. [PMID: 21423683 PMCID: PMC3057036 DOI: 10.4061/2011/809198] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 01/17/2011] [Indexed: 12/15/2022] Open
Abstract
To investigate the effects of daily supplementation with docosahexaenoic acid (DHA) on coronary heart disease risks in 38 middle-aged men with hypertension and/or hypercholesterolemia in Scotland, a five-week double-blind placebo-controlled dietary supplementation with either 2 g of DHA or active placebo (1 g of olive oil) was conducted. Percent composition of DHA in plasma phospholipids increased significantly in DHA group. Systolic and diastolic blood pressure and heart rate decreased significantly in DHA group, but not in placebo group. High-density lipoprotein cholesterol (HDL-C) increased significantly, and total cholesterol (TC)/HDL-C and non-HDL-C/HDL-C ratios decreased significantly in both groups. There was no change in TC and non-HDL-C. We conclude that 2 g/day of DHA supplementation reduced coronary heart disease risk factor level improving blood pressure, heart rate, and lipid profiles in hypertensive, hypercholesterolemic Scottish men who do not eat fish on a regular basis.
Collapse
Affiliation(s)
- Miki Sagara
- Laboratory of Preventive Nutritional Medicine, Research Institute for Production Development, Kyoto 606-0805, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hirai Y, Geleijnse JM, Adachi H, Imaizumi T, Kromhout D. Systolic Blood Pressure Predicts Cardiovascular Mortality in a Farming but Not in a Fishing Community - A 40-Year Follow up of the Japanese Cohorts of the Seven Countries Study -. Circ J 2011; 75:1890-6. [DOI: 10.1253/circj.cj-10-0971] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuji Hirai
- Department of Internal Medicine, Division of Cardiovascular Medicine, Kurume University School of Medicine
- Division of Human Nutrition, Wageningen University
| | | | - Hisashi Adachi
- Department of Internal Medicine, Division of Cardiovascular Medicine, Kurume University School of Medicine
| | - Tsutomu Imaizumi
- Department of Internal Medicine, Division of Cardiovascular Medicine, Kurume University School of Medicine
| | | |
Collapse
|
49
|
Abstract
Much evidence shows that the marine omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid have beneficial effects in various cardiac disorders, and their use is recommended in guidelines for management of patients after myocardial infarction. However, questions have been raised about their usefulness alongside optimum medical therapies with agents proven to reduce risk of cardiac events in high-risk patients. Additionally, there is some evidence for a possible pro-arrhythmic effect in subsets of cardiac patients. Some uncertainly exists about the optimum dose needed to obtain beneficial effects and the relative merit of dietary intake of omega-3 polyunsaturated fatty acids versus supplements. We review evidence for the effects of omega-3 polyunsaturated fatty acids on various cardiac disorders and the risk factors for cardiac disease. We also assess areas of uncertainty needing further research.
Collapse
Affiliation(s)
- Palaniappan Saravanan
- Cardiovascular Research Group, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.
| | | | | | | |
Collapse
|
50
|
Dietary fatty acids and oxidative stress in the heart mitochondria. Mitochondrion 2010; 11:97-103. [PMID: 20691812 DOI: 10.1016/j.mito.2010.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 07/22/2010] [Accepted: 07/23/2010] [Indexed: 11/21/2022]
Abstract
Our study compared the effects of different oils on oxidative stress in rat heart mitochondria, as well as on plasma parameters used as risk factors for cardiovascular disease. The rats were fed for 16 weeks with coconut, olive, or fish oil diet (saturated, monounsaturated, or polyunsaturated fatty acids, respectively). The cardiac mitochondria from rats fed with coconut oil showed the lowest concentration of oxidized proteins and peroxidized lipids. The fish oil diet leads to the highest oxidative stress in cardiac mitochondria, an effect that could be partly prevented by the antioxidant probucol. Total and LDL cholesterols decreased in plasma of rats fed fish oil, compared to olive and coconut oils fed rats. A diet enriched in saturated fatty acids offers strong advantages for the protection against oxidative stress in heart mitochondria.
Collapse
|