1
|
Islam T, Meem NES, Hasan M, Mutsuddi A, Shifat AA, Goutam A, Bari MR, Eva FN, Rozars MFK, Sultana S, Sarker NE, Nabi MH, Hawlader MDH. Knowledge and attitude among Bangladeshi healthcare workers regarding the management and infection prevention and control of Nipah virus. J Virus Erad 2024; 10:100389. [PMID: 39310288 PMCID: PMC11413741 DOI: 10.1016/j.jve.2024.100389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Background The Nipah virus (NiV) is a zoonotic pathogen that belongs to the Paramyxoviridae family. It can cause severe respiratory and neurological diseases in humans, with varying clinical symptoms. Recognized as a critical public health concern by the World Health Organization, it requires concerted efforts in research and development to prevent outbreaks. Methodology An analytical cross-sectional study was conducted on 455 healthcare workers across four major regions in Bangladesh from April 2022 to May 2023. Using multistage convenient sampling and face-to-face interviews with a semi-structured questionnaire, we have examined the level of knowledge, attitudes, and individual perceptions of the preparedness for NiV. Data analysis included univariate and bivariate analyses, followed by binary logistic regression to ascertain the association with demographic factors. Results The study identified a gender disparity favoring female healthcare workers (HCWs). Approximately 46.15 % of participants demonstrated a good knowledge about NiV, with doctors showing significantly higher knowledge odds (OR = 5.197, p < 0.001). Interestingly, graduate and post-graduate education levels did not yield a statistically significant correlation with knowledge. Specific training received was positively associated with knowledge levels (OR = 1.832, p = 0.014), highlighting the gap in routine infection prevention education. Regional differences were notable, with participants from Chittagong having a lower level of knowledge compared to Dhaka (OR = 0.307, p = 0.004). Attitudes towards NiV were predominantly positive, although higher education inversely correlated with positive attitudes, suggesting a potential gap between theoretical knowledge and practical attitudes. Conclusion While the attitude towards NiV is generally positive among Bangladeshi HCWs, there is a need to enhance knowledge levels, especially in primary care settings and certain regions. To effectively prepare for NiV outbreaks, it is crucial to prioritize continuous education and practical training. The study underscores the importance of implementing uniform educational strategies to equip HCWs across all categories and regions with adequate NiV knowledge and preparedness.
Collapse
Affiliation(s)
- Tariful Islam
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
- Public Health Promotion and Development Society (PPDS), Dhaka, 1205, Bangladesh
| | - Nur-E-Safa Meem
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
- Public Health Promotion and Development Society (PPDS), Dhaka, 1205, Bangladesh
| | - Mehedi Hasan
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
- Public Health Promotion and Development Society (PPDS), Dhaka, 1205, Bangladesh
| | - Archi Mutsuddi
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
- Public Health Promotion and Development Society (PPDS), Dhaka, 1205, Bangladesh
| | - Alberi Afifa Shifat
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
- Public Health Promotion and Development Society (PPDS), Dhaka, 1205, Bangladesh
| | - Arpita Goutam
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
- Public Health Promotion and Development Society (PPDS), Dhaka, 1205, Bangladesh
| | - M. Rashidul Bari
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
- Public Health Promotion and Development Society (PPDS), Dhaka, 1205, Bangladesh
| | - Fahima Nasrin Eva
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
- Public Health Promotion and Development Society (PPDS), Dhaka, 1205, Bangladesh
| | - Md Faisal Kabir Rozars
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
- Public Health Promotion and Development Society (PPDS), Dhaka, 1205, Bangladesh
| | - Sayla Sultana
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
- Public Health Promotion and Development Society (PPDS), Dhaka, 1205, Bangladesh
| | - Naifa Enam Sarker
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
- Public Health Promotion and Development Society (PPDS), Dhaka, 1205, Bangladesh
| | | | | |
Collapse
|
2
|
Byrne PO, Blade EG, Fisher BE, Ambrozak DR, Ramamohan AR, Graham BS, Loomis RJ, McLellan JS. Prefusion stabilization of the Hendra and Langya virus F proteins. J Virol 2024; 98:e0137223. [PMID: 38214525 PMCID: PMC10878279 DOI: 10.1128/jvi.01372-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are pathogenic paramyxoviruses that cause mild-to-severe disease in humans. As members of the Henipavirus genus, NiV and HeV use an attachment (G) glycoprotein and a class I fusion (F) glycoprotein to invade host cells. The F protein rearranges from a metastable prefusion form to an extended postfusion form to facilitate host cell entry. Prefusion NiV F elicits higher neutralizing antibody titers than postfusion NiV F, indicating that stabilization of prefusion F may aid vaccine development. A combination of amino acid substitutions (L104C/I114C, L172F, and S191P) is known to stabilize NiV F in its prefusion conformation, although the extent to which substitutions transfer to other henipavirus F proteins is not known. Here, we perform biophysical and structural studies to investigate the mechanism of prefusion stabilization in F proteins from three henipaviruses: NiV, HeV, and Langya virus (LayV). Three known stabilizing substitutions from NiV F transfer to HeV F and exert similar structural and functional effects. One engineered disulfide bond, located near the fusion peptide, is sufficient to stabilize the prefusion conformations of both HeV F and LayV F. Although LayV F shares low overall sequence identity with NiV F and HeV F, the region around the fusion peptide exhibits high sequence conservation across all henipaviruses. Our findings indicate that substitutions targeting this site of conformational change might be applicable to prefusion stabilization of other henipavirus F proteins and support the use of NiV as a prototypical pathogen for henipavirus vaccine antigen design.IMPORTANCEPathogenic henipaviruses such as Nipah virus (NiV) and Hendra virus (HeV) cause respiratory symptoms, with severe cases resulting in encephalitis, seizures, and coma. The work described here shows that the NiV and HeV fusion (F) proteins share common structural features with the F protein from an emerging henipavirus, Langya virus (LayV). Sequence alignment alone was sufficient to predict which known prefusion-stabilizing amino acid substitutions from NiV F would stabilize the prefusion conformations of HeV F and LayV F. This work also reveals an unexpected oligomeric interface shared by prefusion HeV F and NiV F. Together, these advances lay a foundation for future antigen design targeting henipavirus F proteins. In this way, Nipah virus can serve as a prototypical pathogen for the development of protective vaccines and monoclonal antibodies to prepare for potential henipavirus outbreaks.
Collapse
Affiliation(s)
- Patrick O. Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Elizabeth G. Blade
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Brian E. Fisher
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - David R. Ambrozak
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ajit R. Ramamohan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | | | - Rebecca J. Loomis
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
3
|
Mishra G, Prajapat V, Nayak D. Advancements in Nipah virus treatment: Analysis of current progress in vaccines, antivirals, and therapeutics. Immunology 2024; 171:155-169. [PMID: 37712243 DOI: 10.1111/imm.13695] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Nipah virus (NiV) causes severe encephalitis in humans. Three NiV strains NiV-Malaysia (NiVM ), NiV Bangladesh (NiVB ), and NiV India (NiVI reported in 2019) have been circulating in South-Asian nations. Sporadic outbreak observed in South-East Asian countries but human to human transmission raises the concern about its pandemic potential. The presence of the viral genome in reservoir bats has further confirmed that NiV has spread to the African and Australian continents. NiV research activities have gained momentum to achieve specific preparedness goals to meet any future emergency-as a result, several potential vaccine candidates have been developed and tested in a variety of animal models. Some of these candidate vaccines have entered further clinical trials. Research activities related to the discovery of therapeutic monoclonal antibodies (mAbs) have resulted in the identification of a handful of candidates capable of neutralizing the virion. However, progress in discovering potential antiviral drugs has been limited. Thus, considering NiV's pandemic potential, it is crucial to fast-track ongoing projects related to vaccine clinical trials, anti-NiV therapeutics. Here, we discuss the current progress in NiV-vaccine research and therapeutic options, including mAbs and antiviral medications.
Collapse
Affiliation(s)
- Gayatree Mishra
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Vishal Prajapat
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Debasis Nayak
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
4
|
Lerch A, Ten Bosch QA, L'Azou Jackson M, Bettis AA, Bernuzzi M, Murphy GAV, Tran QM, Huber JH, Siraj AS, Bron GM, Elliott M, Hartlage CS, Koh S, Strimbu K, Walters M, Perkins TA, Moore SM. Projecting vaccine demand and impact for emerging zoonotic pathogens. BMC Med 2022; 20:202. [PMID: 35705986 PMCID: PMC9200440 DOI: 10.1186/s12916-022-02405-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite large outbreaks in humans seeming improbable for a number of zoonotic pathogens, several pose a concern due to their epidemiological characteristics and evolutionary potential. To enable effective responses to these pathogens in the event that they undergo future emergence, the Coalition for Epidemic Preparedness Innovations is advancing the development of vaccines for several pathogens prioritized by the World Health Organization. A major challenge in this pursuit is anticipating demand for a vaccine stockpile to support outbreak response. METHODS We developed a modeling framework for outbreak response for emerging zoonoses under three reactive vaccination strategies to assess sustainable vaccine manufacturing needs, vaccine stockpile requirements, and the potential impact of the outbreak response. This framework incorporates geographically variable zoonotic spillover rates, human-to-human transmission, and the implementation of reactive vaccination campaigns in response to disease outbreaks. As proof of concept, we applied the framework to four priority pathogens: Lassa virus, Nipah virus, MERS coronavirus, and Rift Valley virus. RESULTS Annual vaccine regimen requirements for a population-wide strategy ranged from > 670,000 (95% prediction interval 0-3,630,000) regimens for Lassa virus to 1,190,000 (95% PrI 0-8,480,000) regimens for Rift Valley fever virus, while the regimens required for ring vaccination or targeting healthcare workers (HCWs) were several orders of magnitude lower (between 1/25 and 1/700) than those required by a population-wide strategy. For each pathogen and vaccination strategy, reactive vaccination typically prevented fewer than 10% of cases, because of their presently low R0 values. Targeting HCWs had a higher per-regimen impact than population-wide vaccination. CONCLUSIONS Our framework provides a flexible methodology for estimating vaccine stockpile needs and the geographic distribution of demand under a range of outbreak response scenarios. Uncertainties in our model estimates highlight several knowledge gaps that need to be addressed to target vulnerable populations more accurately. These include surveillance gaps that mask the true geographic distribution of each pathogen, details of key routes of spillover from animal reservoirs to humans, and the role of human-to-human transmission outside of healthcare settings. In addition, our estimates are based on the current epidemiology of each pathogen, but pathogen evolution could alter vaccine stockpile requirements.
Collapse
Affiliation(s)
- Anita Lerch
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Quirine A Ten Bosch
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Alison A Bettis
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - Mauro Bernuzzi
- Coalition for Epidemic Preparedness Innovations (CEPI), London, UK
| | | | - Quan M Tran
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - John H Huber
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Amir S Siraj
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Gebbiena M Bron
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Margaret Elliott
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Carson S Hartlage
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Sojung Koh
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Kathyrn Strimbu
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Magdalene Walters
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - T Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.
| | - Sean M Moore
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
5
|
Lane JK, Negash Y, Randhawa N, Kebede N, Wells H, Ayalew G, Anthony SJ, Smith B, Goldstein T, Kassa T, Mazet JAK, Consortium P, Smith WA. Coronavirus and Paramyxovirus Shedding by Bats in a Cave and Buildings in Ethiopia. ECOHEALTH 2022; 19:216-232. [PMID: 35771308 PMCID: PMC9243955 DOI: 10.1007/s10393-022-01590-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Bats are important hosts of zoonotic viruses with pandemic potential, including filoviruses, MERS-Coronavirus (CoV), SARS-CoV -1, and likely SARS-CoV-2. Viral infection and transmission among wildlife are dependent on a combination of factors that include host ecology and immunology, life history traits, roosting habitats, biogeography, and external stressors. Between 2016 and 2018, four species of insectivorous bats from a readily accessed roadside cave and buildings in Ethiopia were sampled and tested for viruses using consensus PCR assays for five viral families/genera. Previously identified and novel coronaviruses and paramyxoviruses were identified in 99 of the 589 sampled bats. Bats sampled from the cave site were more likely to test positive for a CoV than bats sampled from buildings; viral shedding was more common in the wet season; and rectal swabs were the most common sample type to test positive. A previously undescribed alphacoronavirus was detected in two bat species from different taxonomic families, sampling interfaces, geographic locations, and years. These findings expand knowledge of the range and diversity of coronaviruses and paramyxoviruses in insectivorous bats in Ethiopia and reinforce that an improved understanding of viral diversity and species-specific shedding dynamics is important for designing informed zoonotic disease surveillance and spillover risk reduction efforts.
Collapse
Affiliation(s)
- Jennifer K Lane
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, VM3B, Davis, CA, 95616, USA.
| | - Yohannes Negash
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Nistara Randhawa
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, VM3B, Davis, CA, 95616, USA
| | - Nigatu Kebede
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Heather Wells
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, 10027, USA
| | - Girma Ayalew
- Ethiopian Wildlife Conservation Authority, Ministry of Environment, Forestry and Climate Change, Addis Ababa, Ethiopia
| | - Simon J Anthony
- School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Brett Smith
- Genome Center & Biomedical Engineering, School of Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Tracey Goldstein
- Zoological Pathology Program, University of Illinois at Urbana-Champaign, Brookfield, IL, 60513, USA
| | - Tesfu Kassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Jonna A K Mazet
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, VM3B, Davis, CA, 95616, USA
| | | | - Woutrina A Smith
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, VM3B, Davis, CA, 95616, USA.
| |
Collapse
|
6
|
Loomis RJ, DiPiazza AT, Falcone S, Ruckwardt TJ, Morabito KM, Abiona OM, Chang LA, Caringal RT, Presnyak V, Narayanan E, Tsybovsky Y, Nair D, Hutchinson GB, Stewart-Jones GBE, Kueltzo LA, Himansu S, Mascola JR, Carfi A, Graham BS. Chimeric Fusion (F) and Attachment (G) Glycoprotein Antigen Delivery by mRNA as a Candidate Nipah Vaccine. Front Immunol 2021; 12:772864. [PMID: 34956199 PMCID: PMC8692728 DOI: 10.3389/fimmu.2021.772864] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Nipah virus (NiV) represents a significant pandemic threat with zoonotic transmission from bats-to-humans with almost annual regional outbreaks characterized by documented human-to-human transmission and high fatality rates. Currently, no vaccine against NiV has been approved. Structure-based design and protein engineering principles were applied to stabilize the fusion (F) protein in its prefusion trimeric conformation (pre-F) to improve expression and increase immunogenicity. We covalently linked the stabilized pre-F through trimerization domains at the C-terminus to three attachment protein (G) monomers, forming a chimeric design. These studies detailed here focus on mRNA delivery of NiV immunogens in mice, assessment of mRNA immunogen-specific design elements and their effects on humoral and cellular immunogenicity. The pre-F/G chimera elicited a strong neutralizing antibody response and a superior NiV-specific Tfh and other effector T cell response compared to G alone across both the mRNA and protein platforms. These findings enabled final candidate selection of pre-F/G Fd for clinical development.
Collapse
Affiliation(s)
- Rebecca J. Loomis
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States,*Correspondence: Barney S. Graham, ; Rebecca J. Loomis,
| | - Anthony T. DiPiazza
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | - Tracy J. Ruckwardt
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kaitlyn M. Morabito
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Olubukola M. Abiona
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lauren A. Chang
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ria T. Caringal
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | | | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Deepika Nair
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Geoffrey B. Hutchinson
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Guillaume B. E. Stewart-Jones
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lisa A. Kueltzo
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | - John R. Mascola
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | - Barney S. Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States,*Correspondence: Barney S. Graham, ; Rebecca J. Loomis,
| |
Collapse
|
7
|
Raza A, Awrejcewicz J, Rafiq M, Mohsin M. Breakdown of a Nonlinear Stochastic Nipah Virus Epidemic Models through Efficient Numerical Methods. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1588. [PMID: 34945894 PMCID: PMC8700744 DOI: 10.3390/e23121588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022]
Abstract
Background: Nipah virus (NiV) is a zoonotic virus (transmitted from animals to humans), which can also be transmitted through contaminated food or directly between people. According to a World Health Organization (WHO) report, the transmission of Nipah virus infection varies from animals to humans or humans to humans. The case fatality rate is estimated at 40% to 75%. The most infected regions include Cambodia, Ghana, Indonesia, Madagascar, the Philippines, and Thailand. The Nipah virus model is categorized into four parts: susceptible (S), exposed (E), infected (I), and recovered (R). Methods: The structural properties such as dynamical consistency, positivity, and boundedness are the considerable requirements of models in these fields. However, existing numerical methods like Euler-Maruyama and Stochastic Runge-Kutta fail to explain the main features of the biological problems. Results: The proposed stochastic non-standard finite difference (NSFD) employs standard and non-standard approaches in the numerical solution of the model, with positivity and boundedness as the characteristic determinants for efficiency and low-cost approximations. While the results from the existing standard stochastic methods converge conditionally or diverge in the long run, the solution by the stochastic NSFD method is stable and convergent over all time steps. Conclusions: The stochastic NSFD is an efficient, cost-effective method that accommodates all the desired feasible properties.
Collapse
Affiliation(s)
- Ali Raza
- Department of Mathematics, Govt. Maulana Zafar Ali Khan Graduate College Wazirabad, Punjab Higher Education Department (PHED), Lahore 54000, Pakistan;
| | - Jan Awrejcewicz
- Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland;
| | - Muhammad Rafiq
- Department of Mathematics, Faculty of Sciences, University of Central Punjab, Lahore 54600, Pakistan;
| | - Muhammad Mohsin
- Department of Mathematics, Technische Universitat Chemnitz, 62, 09111 Chemnitz, Germany
| |
Collapse
|
8
|
Suit-B Y, Hassan L, Krauss SE, Ooi PT, Ramanoon SZ, Yasmin AR, Epstein JH. Mental Model of Malaysian Pig Farmers in Implementing Disease Prevention and Control Practices. Front Vet Sci 2021; 8:695702. [PMID: 34820433 PMCID: PMC8606826 DOI: 10.3389/fvets.2021.695702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
The 1998 Nipah virus outbreak in Malaysia resulted in major financial losses to the multi-million-dollar swine industry. While productivity and biosecurity of pig farms have improved since, biosecurity in some farms remains substandard with farmers struggling to adapt to current national pig farming policies. Farm viability and animal health depends on farmers' role as decision-makers in managing disease threats and other aspects of farm management. This study aimed to describe the mental model of farmers in making decisions about disease prevention and control measures during the 1998 Nipah virus outbreak, and in 2019, 20 years after the last reported Nipah case. Using a qualitative approach, in-depth, semi-structured interviews with 12 pig farmers (mostly small-scale or medium-scale farms) were conducted in three states in Malaysia. Data were analyzed via inductive content analysis. Thirty-six unique dimensions in the mental model were identified, representing six interrelated themes corresponding to participants' decision making related to disease prevention and control: drivers of action to prevent and control disease; perception of practice options; individual determinants of familiar practices; external social factors; external economic factors; and additional external factors. Key drivers of disease control and prevention responses during the Nipah outbreak included heightened perception of risk, emotions, perceived economic loss, and subjective norms whereas key drivers in 2019 included perception of risk, perceived effectiveness, perceived benefits, and other dimensions such as perception of the future, perceived economic cost, barriers, and loss. An unfavorable future outlook, perceived economic factors, and socio-political and personal factors currently hinders farm improvement and adoption of Pig Farming Areas (PFAs) and Modern Pig Farming (MPF) systems. Private sector service providers and veterinarians are highly influential in advocating for good biosecurity, herd health, and animal health intervention practices. Insights gained can inform the development of strategic policies and interventions.
Collapse
Affiliation(s)
- Yong Suit-B
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Latiffah Hassan
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Steven Eric Krauss
- Institute for Social Science Studies, Universiti Putra Malaysia, Serdang, Malaysia
| | - Peck Toung Ooi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti Zubaidah Ramanoon
- Department of Medicine and Surgery of Farm & Exotic Animal, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abd Rahaman Yasmin
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | | |
Collapse
|
9
|
Abstract
Background Nipah virus (NiV) first emerged in 1998 in Malaysia, causing an outbreak of respiratory illness and encephalitis in pigs. Pig-to-human transmission of NiV associated with severe febrile encephalitis was described, and it was thought to occur through close contact with infected animals. The first outbreak was reported in India in Siliguri, West Bengal in 2001 followed by Nadia, West Bengal and adjoining areas of Bangladesh in 2007, where an intermediate animal host was not identified, suggesting bat-to-human and human-to-human transmissions. Although it is extremely difficult to document the spillover event and ascertain crossing of trans-natural boundaries by bats and bringing new viruses in an unexposed population, efforts for source identification are important to understand the epidemiology of disease. As the disease transcends beyond one species and has shown to infect humans, it therefore requires the 'One Health approach' in which multiple sectors coordinate and work together to achieve better public health outcomes. Objective We summarize the re-emergence and response of the Nipah virus outbreaks (NiVD) in Kerala, India, about 1800 kms away, a decade later in 2018 and 2019. The paper recapitulates involvement of various stakeholders from the Ministry of Health and Family Welfare, Directorate of Health Research, Indian Council of Agricultural Research, State Health Department, State Animal Husbandry, District Administration, and multidisciplinary response mechanism during the NiVD outbreaks of 2018 and 2019. Methods Information was collected from the Press Information Bureau (PIB), media/weekly alerts from the Integrated Disease Surveillance Programme (IDSP), news articles from print and electronic media, newsletters, advisories from the National Centre for Disease Control (NCDC), Disease Outbreak News (DON), World Health Organization (WHO), and published papers from various stakeholders. Findings & Conclusion The evidence of NiV in humans and bats, with samples collected from the outbreak sites, was laboratory confirmed. The multidisciplinary response mechanisms during the 2018 outbreak helped in further understanding the importance of the One Health approach for systemic and streamlined response utilizing existing surveillance systems. This was of utmost help in the subsequent outbreak of the disease that occurred during 2019, wherein there was no documented spread of disease from the index case and no mortality was observed. This success reiterates the need for institutionalizing the involvement and cooperation of various departments and organizations during public health emergencies, especially of Zoonotic diseases, using the One Health approach.
Collapse
|
10
|
Do HQ, Nguyen VG, Chung CU, Jeon YS, Shin S, Jang KC, Pham LBH, Kong A, Kim CU, Park YH, Park BK, Chung HC. Genomic Characterization of a Novel Alphacoronavirus Isolated from Bats, Korea, 2020. Viruses 2021; 13:v13102041. [PMID: 34696471 PMCID: PMC8540747 DOI: 10.3390/v13102041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022] Open
Abstract
Coronavirus, an important zoonotic disease, raises concerns of future pandemics. The bat is considered a source of noticeable viruses resulting in human and livestock infections, especially the coronavirus. Therefore, surveillance and genetic analysis of coronaviruses in bats are essential in order to prevent the risk of future diseases. In this study, the genome of HCQD-2020, a novel alphacoronavirus detected in a bat (Eptesicus serotinus), was assembled and described using next-generation sequencing and bioinformatics analysis. The comparison of the whole-genome sequence and the conserved amino acid sequence of replicated proteins revealed that the new strain was distantly related with other known species in the Alphacoronavirus genus. Phylogenetic construction indicated that this strain formed a separated branch with other species, suggesting a new species of Alphacoronavirus. Additionally, in silico prediction also revealed the risk of cross-species infection of this strain, especially in the order Artiodactyla. In summary, this study provided the genetic characteristics of a possible new species belonging to Alphacoronavirus.
Collapse
Affiliation(s)
- Hai-Quynh Do
- Virology Lab, Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea;
| | - Van-Giap Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam;
| | - Chul-Un Chung
- Department of Life Science, Dongguk University, Gyeongju 38066, Korea;
- Correspondence: (C.-U.C.); (B.-K.P.); (H.-C.C.); Tel.: +82-2-880-1255 (C.-U.C., B.-K.P. & H.-C.C.); Fax: +82-2-885-0263 (C.-U.C., B.-K.P. & H.-C.C.)
| | - Yong-Shin Jeon
- Department of Life Science, Dongguk University, Gyeongju 38066, Korea;
| | - Sook Shin
- Noah Biotech Research Unit, Noah Biotech Co. Ltd, Suwon 16612, Korea; (S.S.); (K.-C.J.); (Y.-H.P.)
| | - Kuem-Chan Jang
- Noah Biotech Research Unit, Noah Biotech Co. Ltd, Suwon 16612, Korea; (S.S.); (K.-C.J.); (Y.-H.P.)
| | - Le Bich Hang Pham
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam;
| | - Aeri Kong
- Department of Medical Science, University of California, Los Angeles, CA 90095, USA;
| | - Cheong-Ung Kim
- Department of Veterinary Medicine Microbology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea;
| | - Yong-Ho Park
- Noah Biotech Research Unit, Noah Biotech Co. Ltd, Suwon 16612, Korea; (S.S.); (K.-C.J.); (Y.-H.P.)
| | - Bong-Kyun Park
- Virology Lab, Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea;
- Correspondence: (C.-U.C.); (B.-K.P.); (H.-C.C.); Tel.: +82-2-880-1255 (C.-U.C., B.-K.P. & H.-C.C.); Fax: +82-2-885-0263 (C.-U.C., B.-K.P. & H.-C.C.)
| | - Hee-Chun Chung
- Virology Lab, Department of Veterinary Medicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea;
- Correspondence: (C.-U.C.); (B.-K.P.); (H.-C.C.); Tel.: +82-2-880-1255 (C.-U.C., B.-K.P. & H.-C.C.); Fax: +82-2-885-0263 (C.-U.C., B.-K.P. & H.-C.C.)
| |
Collapse
|
11
|
Common Themes in Zoonotic Spillover and Disease Emergence: Lessons Learned from Bat- and Rodent-Borne RNA Viruses. Viruses 2021; 13:v13081509. [PMID: 34452374 PMCID: PMC8402684 DOI: 10.3390/v13081509] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
Rodents (order Rodentia), followed by bats (order Chiroptera), comprise the largest percentage of living mammals on earth. Thus, it is not surprising that these two orders account for many of the reservoirs of the zoonotic RNA viruses discovered to date. The spillover of these viruses from wildlife to human do not typically result in pandemics but rather geographically confined outbreaks of human infection and disease. While limited geographically, these viruses cause thousands of cases of human disease each year. In this review, we focus on three questions regarding zoonotic viruses that originate in bats and rodents. First, what biological strategies have evolved that allow RNA viruses to reside in bats and rodents? Second, what are the environmental and ecological causes that drive viral spillover? Third, how does virus spillover occur from bats and rodents to humans?
Collapse
|
12
|
Shapiro JT, Víquez-R L, Leopardi S, Vicente-Santos A, Mendenhall IH, Frick WF, Kading RC, Medellín RA, Racey P, Kingston T. Setting the Terms for Zoonotic Diseases: Effective Communication for Research, Conservation, and Public Policy. Viruses 2021; 13:1356. [PMID: 34372562 PMCID: PMC8310020 DOI: 10.3390/v13071356] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022] Open
Abstract
Many of the world's most pressing issues, such as the emergence of zoonotic diseases, can only be addressed through interdisciplinary research. However, the findings of interdisciplinary research are susceptible to miscommunication among both professional and non-professional audiences due to differences in training, language, experience, and understanding. Such miscommunication contributes to the misunderstanding of key concepts or processes and hinders the development of effective research agendas and public policy. These misunderstandings can also provoke unnecessary fear in the public and have devastating effects for wildlife conservation. For example, inaccurate communication and subsequent misunderstanding of the potential associations between certain bats and zoonoses has led to persecution of diverse bats worldwide and even government calls to cull them. Here, we identify four types of miscommunication driven by the use of terminology regarding bats and the emergence of zoonotic diseases that we have categorized based on their root causes: (1) incorrect or overly broad use of terms; (2) terms that have unstable usage within a discipline, or different usages among disciplines; (3) terms that are used correctly but spark incorrect inferences about biological processes or significance in the audience; (4) incorrect inference drawn from the evidence presented. We illustrate each type of miscommunication with commonly misused or misinterpreted terms, providing a definition, caveats and common misconceptions, and suggest alternatives as appropriate. While we focus on terms specific to bats and disease ecology, we present a more general framework for addressing miscommunication that can be applied to other topics and disciplines to facilitate more effective research, problem-solving, and public policy.
Collapse
Affiliation(s)
- Julie Teresa Shapiro
- Department of Life Sciences, Ben-Gurion University of the Negev, Be’er Sheva 8410501, Israel
| | - Luis Víquez-R
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, 89069 Ulm, Germany;
| | - Stefania Leopardi
- Laboratory of Emerging Viral Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy;
| | - Amanda Vicente-Santos
- Graduate Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, GA 30322, USA;
| | - Ian H. Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Winifred F. Frick
- Bat Conservation International, Austin, TX 78746, USA;
- Department of Ecology and Evolution, University of California, Santa Cruz, CA 95060, USA
| | - Rebekah C. Kading
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Rodrigo A. Medellín
- Institute of Ecology, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico;
| | - Paul Racey
- The Centre for Ecology and Conservation, University of Exeter, Exeter TR10 9FE, UK;
| | - Tigga Kingston
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
13
|
Li Z, Jiang J, Ruan X, Tong Y, Xu S, Han L, Xu J. The zoonotic and natural foci characteristics of SARS-CoV-2. JOURNAL OF BIOSAFETY AND BIOSECURITY 2021; 3:51-55. [PMID: 34189426 PMCID: PMC8221912 DOI: 10.1016/j.jobb.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 11/26/2022] Open
Abstract
The origin of SARS-CoV-2 is still an unresolved mystery. In this study, we systematically reviewed the main research progress of wild animals carrying virus highly homologous to SARS-CoV-2 and analyzed the natural foci characteristics of SARS-CoV-2. The complexity of SARS-CoV-2 origin in wild animals and the possibility of SARS-CoV-2 long-term existence in human populations are also discussed. The joint investigation of corona virus carried by wildlife, as well as the ecology and patho-ecology of bats and other wildlife, are key measures to further clarify the characteristics of natural foci of SARS-CoV-2 and actively defend against future outbreaks of emerging zoonotic diseases.
Collapse
Affiliation(s)
- Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Jiafu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Xiangdong Ruan
- Academy of Forest Inventory and Planning, State Forestry and Grassland Administration, Beijing 100714, PR China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Shuai Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Lichao Han
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| |
Collapse
|
14
|
Update on Potentially Zoonotic Viruses of European Bats. Vaccines (Basel) 2021; 9:vaccines9070690. [PMID: 34201666 PMCID: PMC8310327 DOI: 10.3390/vaccines9070690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/10/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Bats have been increasingly gaining attention as potential reservoir hosts of some of the most virulent viruses known. Numerous review articles summarize bats as potential reservoir hosts of human-pathogenic zoonotic viruses. For European bats, just one review article is available that we published in 2014. The present review provides an update on the earlier article and summarizes the most important viruses found in European bats and their possible implications for Public Health. We identify the research gaps and recommend monitoring of these viruses.
Collapse
|
15
|
Burthe SJ, Schäfer SM, Asaaga FA, Balakrishnan N, Chanda MM, Darshan N, Hoti SL, Kiran SK, Seshadri T, Srinivas PN, Vanak AT, Purse BV. Reviewing the ecological evidence base for management of emerging tropical zoonoses: Kyasanur Forest Disease in India as a case study. PLoS Negl Trop Dis 2021; 15:e0009243. [PMID: 33793560 PMCID: PMC8016103 DOI: 10.1371/journal.pntd.0009243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Zoonoses disproportionately affect tropical communities and are associated with human modification and use of ecosystems. Effective management is hampered by poor ecological understanding of disease transmission and often focuses on human vaccination or treatment. Better ecological understanding of multi-vector and multi-host transmission, social and environmental factors altering human exposure, might enable a broader suite of management options. Options may include "ecological interventions" that target vectors or hosts and require good knowledge of underlying transmission processes, which may be more effective, economical, and long lasting than conventional approaches. New frameworks identify the hierarchical series of barriers that a pathogen needs to overcome before human spillover occurs and demonstrate how ecological interventions may strengthen these barriers and complement human-focused disease control. We extend these frameworks for vector-borne zoonoses, focusing on Kyasanur Forest Disease Virus (KFDV), a tick-borne, neglected zoonosis affecting poor forest communities in India, involving complex communities of tick and host species. We identify the hierarchical barriers to pathogen transmission targeted by existing management. We show that existing interventions mainly focus on human barriers (via personal protection and vaccination) or at barriers relating to Kyasanur Forest Disease (KFD) vectors (tick control on cattle and at the sites of host (monkey) deaths). We review the validity of existing management guidance for KFD through literature review and interviews with disease managers. Efficacy of interventions was difficult to quantify due to poor empirical understanding of KFDV-vector-host ecology, particularly the role of cattle and monkeys in the disease transmission cycle. Cattle are hypothesised to amplify tick populations. Monkeys may act as sentinels of human infection or are hypothesised to act as amplifying hosts for KFDV, but the spatial scale of risk arising from ticks infected via monkeys versus small mammal reservoirs is unclear. We identified 19 urgent research priorities for refinement of current management strategies or development of ecological interventions targeting vectors and host barriers to prevent disease spillover in the future.
Collapse
Affiliation(s)
- Sarah J. Burthe
- UK Centre for Ecology & Hydrology, Edinburgh, United Kingdom
| | | | | | - Natrajan Balakrishnan
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, India
| | | | - Narayanaswamy Darshan
- Department of Health and Family Welfare Services, Government of Karnataka, Shivamogga, India
- ICMR-National Institute for Traditional Medicine, Belgavi, India
| | - Subhash L. Hoti
- ICMR-National Institute for Traditional Medicine, Belgavi, India
| | - Shivani K. Kiran
- Department of Health and Family Welfare Services, Government of Karnataka, Shivamogga, India
| | - Tanya Seshadri
- Vivekananda Gorukana Kalyana Kendra (VGKK), Chamarajanagar, India
| | - Prashanth N. Srinivas
- Ashoka Trust for Ecology and the Environment, Bengaluru, India
- DBT/Wellcome Trust India Alliance Fellow, Hyderabad, India
- Institute of Public Health, Bangalore, India
| | - Abi T. Vanak
- Ashoka Trust for Ecology and the Environment, Bengaluru, India
- DBT/Wellcome Trust India Alliance Fellow, Hyderabad, India
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Bethan V. Purse
- UK Centre for Ecology & Hydrology, Wallingford, United Kingdom
| |
Collapse
|
16
|
Functional Analysis of the Fusion and Attachment Glycoproteins of Mojiang Henipavirus. Viruses 2021; 13:v13030517. [PMID: 33809833 PMCID: PMC8004131 DOI: 10.3390/v13030517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/30/2023] Open
Abstract
Mojiang virus (MojV) is the first henipavirus identified in a rodent and known only by sequence data, whereas all other henipaviruses have been isolated from bats (Hendra virus, Nipah virus, Cedar virus) or discovered by sequence data from material of bat origin (Ghana virus). Ephrin-B2 and -B3 are entry receptors for Hendra and Nipah viruses, but Cedar virus can utilize human ephrin-B1, -B2, -A2 and -A5 and mouse ephrin-A1. However, the entry receptor for MojV remains unknown, and its species tropism is not well characterized. Here, we utilized recombinant full-length and soluble forms of the MojV fusion (F) and attachment (G) glycoproteins in membrane fusion and receptor tropism studies. MojV F and G were functionally competent and mediated cell–cell fusion in primate and rattine cells, albeit with low levels and slow fusion kinetics. Although a relative instability of the pre-fusion conformation of a soluble form of MojV F was observed, MojV F displayed significantly greater fusion activity when heterotypically paired with Ghana virus G. An exhaustive investigation of A- and B-class ephrins indicated that none serve as a primary receptor for MojV. The MojV cell fusion phenotype is therefore likely the result of receptor restriction rather than functional defects in recombinant MojV F and G glycoproteins.
Collapse
|
17
|
In-silico Design of Multi-epitope Vaccine against Nipah Virus using Immunoinformatics Approach. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nipah virus is a pleomorphic virus that causes high mortality with unpredictable outbreaks. The virus also shows high zoonotic potential with long term neurological damage after recovery further adding to the disease burden. An in-silico epitope-based vaccine offers a promising solution to supplement wider efforts to control the viral spread. This is achieved through immunoinformatics approach using a plethora of servers available. We derived cytotoxic T-cell, T-Helper, B-cell and IFN-γ targeting epitopes from surface glycoprotein G. Cytotoxic T-cell specific epitopes, HLA-B*4402, chimeric multiepitope vaccine structures were prepared using homology modelling method. The structures were validated using various methods and docking simulation was performed between epitopes and HLA-B*4402. Similarly, the vaccine construct was docked to Toll like receptor-4 and a molecular dynamics simulation was performed to assess stability of interaction. Both the docking simulations showed stable interactions with their respective receptors. Immune-simulation was carried out to validate the efficacy of vaccine candidate which showed elevated levels of antibodies such as IgM and IgG due to increase in active B cell population. Both in-vitro and in-vivo serological analysis is required for confirmation of vaccine potency. To facilitate this effort, codon optimization was undertaken to remove existing codon bias. The optimized gene sequence was cloned into the PUC19 vector to express in Escherichia coli K12 strain. Additionally, a poly histidine (6xHis) tag was added at the C-terminal end to ease the purification step. The immune-informatics approach hopes to accelerate vaccine development process to reduce the risk of attenuation while increasing the success rates of pre-clinical trials.
Collapse
|
18
|
Hauser N, Gushiken AC, Narayanan S, Kottilil S, Chua JV. Evolution of Nipah Virus Infection: Past, Present, and Future Considerations. Trop Med Infect Dis 2021; 6:tropicalmed6010024. [PMID: 33672796 PMCID: PMC8005932 DOI: 10.3390/tropicalmed6010024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Nipah virus (NiV) is a zoonotic paramyxovirus of the Henipavirus genus first identified in Malaysia in 1998. Henipaviruses have bat reservoir hosts and have been isolated from fruit bats found across Oceania, Asia, and Africa. Bat-to-human transmission is thought to be the primary mode of human NiV infection, although multiple intermediate hosts are described. Human infections with NiV were originally described as a syndrome of fever and rapid neurological decline following contact with swine. More recent outbreaks describe a syndrome with prominent respiratory symptoms and human-to-human transmission. Nearly annual outbreaks have been described since 1998 with case fatality rates reaching greater than 90%. The ubiquitous nature of the reservoir host, increasing deforestation, multiple mode of transmission, high case fatality rate, and lack of effective therapy or vaccines make NiV’s pandemic potential increasingly significant. Here we review the epidemiology and microbiology of NiV as well as the therapeutic agents and vaccines in development.
Collapse
Affiliation(s)
- Naomi Hauser
- Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, CA 95817, USA;
| | - Alexis C. Gushiken
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.C.G.); (S.N.); (S.K.)
| | - Shivakumar Narayanan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.C.G.); (S.N.); (S.K.)
| | - Shyam Kottilil
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.C.G.); (S.N.); (S.K.)
| | - Joel V. Chua
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.C.G.); (S.N.); (S.K.)
- Correspondence: ; Tel.: +1-410-706-5704
| |
Collapse
|
19
|
McKee CD, Islam A, Luby SP, Salje H, Hudson PJ, Plowright RK, Gurley ES. The Ecology of Nipah Virus in Bangladesh: A Nexus of Land-Use Change and Opportunistic Feeding Behavior in Bats. Viruses 2021; 13:169. [PMID: 33498685 PMCID: PMC7910977 DOI: 10.3390/v13020169] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Nipah virus is a bat-borne paramyxovirus that produces yearly outbreaks of fatal encephalitis in Bangladesh. Understanding the ecological conditions that lead to spillover from bats to humans can assist in designing effective interventions. To investigate the current and historical processes that drive Nipah spillover in Bangladesh, we analyzed the relationship among spillover events and climatic conditions, the spatial distribution and size of Pteropus medius roosts, and patterns of land-use change in Bangladesh over the last 300 years. We found that 53% of annual variation in winter spillovers is explained by winter temperature, which may affect bat behavior, physiology, and human risk behaviors. We infer from changes in forest cover that a progressive shift in bat roosting behavior occurred over hundreds of years, producing the current system where a majority of P. medius populations are small (median of 150 bats), occupy roost sites for 10 years or more, live in areas of high human population density, and opportunistically feed on cultivated food resources-conditions that promote viral spillover. Without interventions, continuing anthropogenic pressure on bat populations similar to what has occurred in Bangladesh could result in more regular spillovers of other bat viruses, including Hendra and Ebola viruses.
Collapse
Affiliation(s)
- Clifton D. McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Ausraful Islam
- Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh;
| | - Stephen P. Luby
- Infectious Diseases and Geographic Medicine Division, Stanford University, Stanford, CA 94305, USA;
| | - Henrik Salje
- Department of Genetics, Cambridge University, Cambridge CB2 3EJ, UK;
| | - Peter J. Hudson
- Center for Infectious Disease Dynamics, Pennsylvania State University, State College, PA 16801, USA;
| | - Raina K. Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| | - Emily S. Gurley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| |
Collapse
|
20
|
Piperazine-substituted derivatives of favipiravir for Nipah virus inhibition: What do in silico studies unravel? SN APPLIED SCIENCES 2021; 3:110. [PMID: 33458565 PMCID: PMC7799160 DOI: 10.1007/s42452-020-04051-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/22/2020] [Indexed: 01/31/2023] Open
Abstract
Favipiravir is found to show excellent in-vitro inhibition activity against Nipah virus. To explore the structure-property relationship of Favipiravir, in silico designing of a series of piperazine substituted Favipiravir derivatives are attempted and computational screening has been done to evaluate its bimolecular interactions with Nipah virus. The geometrical features of all the molecules have been addressed from Density Functional Theory calculations. Chemical reactivity descriptor analysis was carried out to understand various reactivity parameters. The drug-likeness properties were estimated by a detailed ADMET study. The binding ability and the mode of binding of these derivatives into the Nipah virus are obtained from molecular docking studies. Our calculations show greater binding ability for the designed inhibitors compared to that of the experimentally reported molecule. Overall, the present work proves to offers new insights and guidelines for synthetic chemists to develop new drugs using piperazine substituted Favipiravir in the treatment of Nipah virus. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42452-020-04051-9.
Collapse
|
21
|
Al-Salihi KA, Khalaf JM. The emerging SARS-CoV, MERS-CoV, and SARS-CoV-2: An insight into the viruses zoonotic aspects. Vet World 2021; 14:190-199. [PMID: 33642804 PMCID: PMC7896889 DOI: 10.14202/vetworld.2021.190-199] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/07/2020] [Indexed: 01/08/2023] Open
Abstract
Zoonotic coronavirus disease (COVID) has emerged in the past two decades and caused a pandemic that has produced a significant universal health alarm. Severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome-CoV (MERS-CoV) emerged in 2002 and 2012, respectively, provoking severe lower respiratory infection and deadly pneumonia. COVID-19 is a severe respiratory disease caused by the new strain of novel CoV (SARS-CoV-2). The zoonotic aspects of the SARS-CoV-2 in comparison to SARS-CoV and MERS-CoV are highlighted in this article. COVID-19 has rapidly become a pandemic and has spread and infected millions of people worldwide. As of November 19, 2020, the date of submitting this review, the total CoV cases, deaths, and recovered patients are 56,828,218, 1,359,320, and 39,548,923, respectively. In conclusion, COVID-19 has particularly altered the opinion of the significance of zoonotic diseases and their animal origins and the intermediate reservoirs, which may be unknown wild animals. Genetically, the SARS-CoV-2 is related to the SARS-like bat CoVs and shares 85% identity with the SARS-CoV that is derived from the SARS-like bat CoVs. However, the virus is related to a lesser extent to the MERS-CoV. The SARS-CoV-2 uses the same receptor-binding domain receptor of the SARS-CoV - the angiotensin-converting enzyme 2; conversely, DPP4 (CD26). It has not been proved that the MERS-CoVs primary receptor is the receptor of the SARS-CoV-2.
Collapse
Affiliation(s)
- Karima A. Al-Salihi
- Department of Internal Medicine and Zoonotic Diseases, College of Veterinary Medicine, Al-Muthanna University, Al-Muthanna Province, Iraq
| | - Jenan Mahmood Khalaf
- Department of Internal and Preventive Medicine, Unit of Zoonotic Diseases, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
22
|
Rajeev R, Prathiviraj R, Kiran GS, Selvin J. Zoonotic evolution and implications of microbiome in viral transmission and infection. Virus Res 2020; 290:198175. [PMID: 33007342 PMCID: PMC7524452 DOI: 10.1016/j.virusres.2020.198175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 01/07/2023]
Abstract
The outbreak and spread of new strains of coronavirus (SARS-CoV-2) remain a global threat with increasing cases in affected countries. The evolutionary tree of SARS-CoV-2 revealed that Porcine Reproductive and Respiratory Syndrome virus 2, which belongs to the Beta arterivirus genus from the Arteriviridae family is possibly the most ancient ancestral origin of SARS-CoV-2 and other Coronaviridae. This review focuses on phylogenomic distribution and evolutionary lineage of zoonotic viral cross-species transmission of the Coronaviridae family and the implications of bat microbiome in zoonotic viral transmission and infection. The review also casts light on the role of the human microbiome in predicting and controlling viral infections. The significance of microbiome-mediated interventions in the treatment of viral infections is also discussed. Finally, the importance of synthetic viruses in the study of viral evolution and transmission is highlighted.
Collapse
Affiliation(s)
- Riya Rajeev
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| | - R Prathiviraj
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India.
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
23
|
Baruah C, Devi P, Sharma DK. Sequence Analysis and Structure Prediction of SARS-CoV-2 Accessory Proteins 9b and ORF14: Evolutionary Analysis Indicates Close Relatedness to Bat Coronavirus. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7234961. [PMID: 33102591 PMCID: PMC7576348 DOI: 10.1155/2020/7234961] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/12/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a single-stranded RNA genome that encodes 14 open reading frames (ORFs), eight of which encode accessory proteins that allow the virus to infect the host and promote virulence. The genome expresses around 29 structural and nonstructural protein products. The accessory proteins of SARS-CoV-2 are not essential for virus replication but do affect viral release, stability, and pathogenesis and finally contribute to virulence. This paper has attempted the structure prediction and functional analysis of two such accessory proteins, 9b and ORF14, in the absence of experimental structures. Sequence analysis, structure prediction, functional characterization, and evolutionary analysis based on the UniProtKB reviewed the amino acid sequences of SARS-CoV-2 9b (P0DTD2) and ORF14 (P0DTD3) proteins. Modeling has been presented with the introduction of hybrid comparative and ab initio modeling. QMEANDisCo 4.0.0 and ProQ3 for global and local (per residue) quality estimates verified the structures as high quality, which may be attributed to structure-based drug design targets. Tunnel analysis revealed the presence of 1-2 highly active tunneling sites, perhaps which will able to provide certain inputs for advanced structure-based drug design or to formulate potential vaccines in the absence of a complete experimental structure. The evolutionary analysis of both proteins of human SARS-CoV-2 indicates close relatedness to the bat coronavirus. The whole-genome phylogeny indicates that only the new bat coronavirus followed by pangolin coronaviruses has a close evolutionary relationship with the novel SARS-CoV-2.
Collapse
Affiliation(s)
- Chittaranjan Baruah
- Bioinformatics Laboratory (DBT-Star College), P.G. Department of Zoology, Darrang College, Tezpur, 784 001 Assam, India
| | | | - Dhirendra K. Sharma
- School of Biological Sciences, University of Science and Technology, Meghalaya, Baridua-793101, India
| |
Collapse
|
24
|
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a newly emerging, highly transmissible, and pathogenic coronavirus in humans that has caused global public health emergencies and economic crises. To date, millions of infections and thousands of deaths have been reported worldwide, and the numbers continue to rise. Currently, there is no specific drug or vaccine against this deadly virus; therefore, there is a pressing need to understand the mechanism(s) through which this virus enters the host cell. Viral entry into the host cell is a multistep process in which SARS-CoV-2 utilizes the receptor-binding domain (RBD) of the spike (S) glycoprotein to recognize angiotensin-converting enzyme 2 (ACE2) receptors on the human cells; this initiates host-cell entry by promoting viral-host cell membrane fusion through large-scale conformational changes in the S protein. Receptor recognition and fusion are critical and essential steps of viral infections and are key determinants of the viral host range and cross-species transmission. In this review, we summarize the current knowledge on the origin and evolution of SARS-CoV-2 and the roles of key viral factors. We discuss the structure of RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 and its significance in drug discovery and explain the receptor recognition mechanisms of coronaviruses. Further, we provide a comparative analysis of the SARS-CoV and SARS-CoV-2 S proteins and their receptor-binding specificity and discuss the differences in their antigenicity based on biophysical and structural characteristics.
Collapse
|
25
|
Loomis RJ, Stewart-Jones GBE, Tsybovsky Y, Caringal RT, Morabito KM, McLellan JS, Chamberlain AL, Nugent ST, Hutchinson GB, Kueltzo LA, Mascola JR, Graham BS. Structure-Based Design of Nipah Virus Vaccines: A Generalizable Approach to Paramyxovirus Immunogen Development. Front Immunol 2020; 11:842. [PMID: 32595632 PMCID: PMC7300195 DOI: 10.3389/fimmu.2020.00842] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
Licensed vaccines or therapeutics are rarely available for pathogens with epidemic or pandemic potential. Developing interventions for specific pathogens and defining generalizable approaches for related pathogens is a global priority and inherent to the UN Sustainable Development Goals. Nipah virus (NiV) poses a significant epidemic threat, and zoonotic transmission from bats-to-humans with high fatality rates occurs almost annually. Human-to-human transmission of NiV has been documented in recent outbreaks leading public health officials and government agencies to declare an urgent need for effective vaccines and therapeutics. Here, we evaluate NiV vaccine antigen design options including the fusion glycoprotein (F) and the major attachment glycoprotein (G). A stabilized prefusion F (pre-F), multimeric G constructs, and chimeric proteins containing both pre-F and G were developed as protein subunit candidate vaccines. The proteins were evaluated for antigenicity and structural integrity using kinetic binding assays, electron microscopy, and other biophysical properties. Immunogenicity of the vaccine antigens was evaluated in mice. The stabilized pre-F trimer and hexameric G immunogens both induced serum neutralizing activity in mice, while the post-F trimer immunogen did not elicit neutralizing activity. The pre-F trimer covalently linked to three G monomers (pre-F/G) induced potent neutralizing antibody activity, elicited responses to the greatest diversity of antigenic sites, and is the lead candidate for clinical development. The specific stabilizing mutations and immunogen designs utilized for NiV were successfully applied to other henipaviruses, supporting the concept of identifying generalizable solutions for prototype pathogens as an approach to pandemic preparedness.
Collapse
Affiliation(s)
- Rebecca J. Loomis
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Guillaume B. E. Stewart-Jones
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Ria T. Caringal
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kaitlyn M. Morabito
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Amy L. Chamberlain
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Sean T. Nugent
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Geoffrey B. Hutchinson
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lisa A. Kueltzo
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John R. Mascola
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Barney S. Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
26
|
James S, Donato D, de Thoisy B, Lavergne A, Lacoste V. Novel herpesviruses in neotropical bats and their relationship with other members of the Herpesviridae family. INFECTION GENETICS AND EVOLUTION 2020; 84:104367. [PMID: 32450245 PMCID: PMC7244429 DOI: 10.1016/j.meegid.2020.104367] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/23/2023]
Abstract
In the past decade, a large number of studies have detected herpesvirus sequences from many bat species around the world. Nevertheless, the discovery of bat herpesviruses is geographically uneven. Of the various bat species tested to date, only a few were from the New World. Seeking to investigate the distribution and diversity of herpesviruses circulating in neotropical bats, we carried out molecular screening of 195 blood DNA samples from 11 species of three bat families (Phyllostomidae, Mormoopidae, and Molossidae). Using polymerase chain reaction amplification, with degenerate consensus primers targeting highly conserved amino acid motifs of the herpesvirus DNA polymerase and Glycoprotein B genes, we characterized novel viral sequences from all tested species. BLAST searches, pairwise nucleotide and amino acid sequence comparisons, as well as phylogenetic analyses confirmed that they all belonged to the Herpesviridae family, of the Beta- and Gammaherpesvirinae subfamilies. Fourteen partial DNA polymerase gene sequences, of which three beta- and 11 gamma-herpesviruses, were detected. A total of 12 partial Glycoprotein B gene sequences, all gamma-herpesviruses, were characterized. Every sequence was specific to a bat species and in some species (Desmodus rotundus, Carollia perspicillata, and Pteronotus rubiginosus) multiple viruses were found. Phylogenetic analyses of beta- and gammaherpesvirus sequences led to the identification of bat-specific clades. Those composed of sequences obtained from different bat species belonging to distinct subfamilies follow the taxonomy of bats. This study confirms the astonishing diversity of bat herpesviruses and broadens our knowledge of their host range. Nevertheless, it also emphasizes the fact that, to better appreciate the evolutionary history of these viruses, much remains to be done at various taxonomic levels. Molecular screening was carried out on 11 bat species from French Guiana and Martinique (French West Indies). Partial DNA polymerase gene sequences of 14 viruses were characterized as well as 12 Glycoprotein B sequences. Genetic characterization of these sequences reveals a high degree of genetic divergence. Phylogenetically, most of the newly discovered sequences fall within bat-specific clades well correlated with the taxonomy of their hosts. This study is the largest conducted to date in terms of species diversity from the New World.
Collapse
Affiliation(s)
- Samantha James
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana; Université de la Guyane, Ecole doctorale 587 "Diversités, Santé et Développement en Amazonie", Cayenne, French Guiana
| | - Damien Donato
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Benoît de Thoisy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana; Université de la Guyane, Ecole doctorale 587 "Diversités, Santé et Développement en Amazonie", Cayenne, French Guiana
| | - Anne Lavergne
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana; Université de la Guyane, Ecole doctorale 587 "Diversités, Santé et Développement en Amazonie", Cayenne, French Guiana
| | - Vincent Lacoste
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana; Université de la Guyane, Ecole doctorale 587 "Diversités, Santé et Développement en Amazonie", Cayenne, French Guiana; Département de Virologie, Institut Pasteur, Paris, France; Unité de Biologie des Infections Virales Emergentes, Centre International de Recherche en Infectiologie, Institut Pasteur, Lyon, France.
| |
Collapse
|
27
|
Seifert SN, Letko MC, Bushmaker T, Laing ED, Saturday G, Meade-White K, van Doremalen N, Broder CC, Munster VJ. Rousettus aegyptiacus Bats Do Not Support Productive Nipah Virus Replication. J Infect Dis 2020; 221:S407-S413. [PMID: 31682727 PMCID: PMC7199784 DOI: 10.1093/infdis/jiz429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nipah virus (NiV) is a bat-borne zoonotic pathogen that can cause severe respiratory distress and encephalitis upon spillover into humans. NiV is capable of infecting a broad range of hosts including humans, pigs, ferrets, dogs, cats, hamsters, and at least 2 genera of bats. Little is known about the biology of NiV in the bat reservoir. In this study, we evaluate the potential for the Egyptian fruit bat (EFB), Rousettus aegyptiacus, to serve as a model organism for studying NiV in bats. Our data suggest that NiV does not efficiently replicate in EFBs in vivo. Furthermore, we show no seroconversion against NiV glycoprotein and a lack of viral replication in primary and immortalized EFB-derived cell lines. Our data show that despite using a conserved target for viral entry, NiV replication is limited in some bat species. We conclude that EFBs are not an appropriate organism to model NiV infection or transmission in bats.
Collapse
Affiliation(s)
- Stephanie N Seifert
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Michael C Letko
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Trenton Bushmaker
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Eric D Laing
- Uniformed Services University, Bethesda, Maryland, USA
| | - Greg Saturday
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | | | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
28
|
Johnson CK, Hitchens PL, Pandit PS, Rushmore J, Evans TS, Young CCW, Doyle MM. Global shifts in mammalian population trends reveal key predictors of virus spillover risk. Proc Biol Sci 2020; 287:20192736. [PMID: 32259475 PMCID: PMC7209068 DOI: 10.1098/rspb.2019.2736] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Emerging infectious diseases in humans are frequently caused by pathogens originating from animal hosts, and zoonotic disease outbreaks present a major challenge to global health. To investigate drivers of virus spillover, we evaluated the number of viruses mammalian species have shared with humans. We discovered that the number of zoonotic viruses detected in mammalian species scales positively with global species abundance, suggesting that virus transmission risk has been highest from animal species that have increased in abundance and even expanded their range by adapting to human-dominated landscapes. Domesticated species, primates and bats were identified as having more zoonotic viruses than other species. Among threatened wildlife species, those with population reductions owing to exploitation and loss of habitat shared more viruses with humans. Exploitation of wildlife through hunting and trade facilitates close contact between wildlife and humans, and our findings provide further evidence that exploitation, as well as anthropogenic activities that have caused losses in wildlife habitat quality, have increased opportunities for animal–human interactions and facilitated zoonotic disease transmission. Our study provides new evidence for assessing spillover risk from mammalian species and highlights convergent processes whereby the causes of wildlife population declines have facilitated the transmission of animal viruses to humans.
Collapse
Affiliation(s)
- Christine K Johnson
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Peta L Hitchens
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC 3030, Australia
| | - Pranav S Pandit
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Julie Rushmore
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Tierra Smiley Evans
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Cristin C W Young
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Megan M Doyle
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
29
|
Woon AP, Boyd V, Todd S, Smith I, Klein R, Woodhouse IB, Riddell S, Crameri G, Bingham J, Wang LF, Purcell AW, Middleton D, Baker ML. Acute experimental infection of bats and ferrets with Hendra virus: Insights into the early host response of the reservoir host and susceptible model species. PLoS Pathog 2020; 16:e1008412. [PMID: 32226041 PMCID: PMC7145190 DOI: 10.1371/journal.ppat.1008412] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/09/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
Bats are the natural reservoir host for a number of zoonotic viruses, including Hendra virus (HeV) which causes severe clinical disease in humans and other susceptible hosts. Our understanding of the ability of bats to avoid clinical disease following infection with viruses such as HeV has come predominantly from in vitro studies focusing on innate immunity. Information on the early host response to infection in vivo is lacking and there is no comparative data on responses in bats compared with animals that succumb to disease. In this study, we examined the sites of HeV replication and the immune response of infected Australian black flying foxes and ferrets at 12, 36 and 60 hours post exposure (hpe). Viral antigen was detected at 60 hpe in bats and was confined to the lungs whereas in ferrets there was evidence of widespread viral RNA and antigen by 60 hpe. The mRNA expression of IFNs revealed antagonism of type I and III IFNs and a significant increase in the chemokine, CXCL10, in bat lung and spleen following infection. In ferrets, there was an increase in the transcription of IFN in the spleen following infection. Liquid chromatography tandem mass spectrometry (LC-MS/MS) on lung tissue from bats and ferrets was performed at 0 and 60 hpe to obtain a global overview of viral and host protein expression. Gene Ontology (GO) enrichment analysis of immune pathways revealed that six pathways, including a number involved in cell mediated immunity were more likely to be upregulated in bat lung compared to ferrets. GO analysis also revealed enrichment of the type I IFN signaling pathway in bats and ferrets. This study contributes important comparative data on differences in the dissemination of HeV and the first to provide comparative data on the activation of immune pathways in bats and ferrets in vivo following infection. Bats are natural reservoirs for a number of viruses, including HeV that cause severe disease in humans and other susceptible hosts. We examined acute HeV infection in pteropid bats, compared to ferrets, a species that develops fulminating disease following exposure to HeV, similar to humans. Analysis of HeV replication and transcription of innate immune genes was performed at 12, 36 and 60 hpe and global proteomics was performed on tissues at 60 hpe to obtain insight into the mechanisms responsible for innocuous (bats) compared to fatal (ferrets) HeV infection. We confirmed that both animal species had become infected on the basis of detection of viral RNA in bat lung (60 hpe) and ferret lung, lymph node, spleen, heart and intestine (36 and/or 60 hpe). Analysis of the transcription of IFNs and CXCL10, combined with global proteomics analysis revealed differences in the activation of the immune response between bats and ferrets, consistent with the difference in the control of viral replication and the development of pathology associated with disease between the two species. This study represents the first in vivo comparison between bats and a susceptible host and contributes important information on the kinetics and control of HeV in these two model species.
Collapse
Affiliation(s)
- Amanda P Woon
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Immunocore Ltd, Abingdon, Oxford, United Kingdom
| | - Victoria Boyd
- CSIRO Health and Biosecurity Business Unit, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Shawn Todd
- CSIRO Health and Biosecurity Business Unit, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Ina Smith
- CSIRO Health and Biosecurity Business Unit, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Reuben Klein
- CSIRO Health and Biosecurity Business Unit, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Isaac B Woodhouse
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Centre of Innate Immunity and Infectious Diseases, Hudson Institute of Medical Search, Clayton, Victoria, Australia
| | - Sarah Riddell
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Gary Crameri
- CSIRO Health and Biosecurity Business Unit, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - John Bingham
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Deborah Middleton
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Michelle L Baker
- CSIRO Health and Biosecurity Business Unit, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| |
Collapse
|
30
|
Amman BR, Schuh AJ, Sealy TK, Spengler JR, Welch SR, Kirejczyk SGM, Albariño CG, Nichol ST, Towner JS. Experimental infection of Egyptian rousette bats (Rousettus aegyptiacus) with Sosuga virus demonstrates potential transmission routes for a bat-borne human pathogenic paramyxovirus. PLoS Negl Trop Dis 2020; 14:e0008092. [PMID: 32119657 PMCID: PMC7067492 DOI: 10.1371/journal.pntd.0008092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/12/2020] [Accepted: 01/27/2020] [Indexed: 11/19/2022] Open
Abstract
In August 2012, a wildlife biologist became severely ill after becoming infected with a novel paramyxovirus, termed Sosuga virus. In the weeks prior to illness, the patient worked with multiple species of bats in South Sudan and Uganda, including Egyptian rousette bats (ERBs: Rousettus aegyptiacus). A follow-up study of Ugandan bats found multiple wild-caught ERBs to test positive for SOSV in liver and spleen. To determine the competency of these bats to act as a natural reservoir host for SOSV capable of infecting humans, captive-bred ERBs were inoculated with a recombinant SOSV, representative of the patient's virus sequence. The bats were inoculated subcutaneously, sampled daily (blood, urine, fecal, oral and rectal swabs) and serially euthanized at predetermined time points. All inoculated bats became infected with SOSV in multiple tissues and blood, urine, oral, rectal and fecal swabs tested positive for SOSV RNA. No evidence of overt morbidity or mortality were observed in infected ERBs, although histopathological examination showed subclinical disease in a subset of tissues. Importantly, SOSV was isolated from oral/rectal swabs, urine and feces, demonstrating shedding of infectious virus concomitant with systemic infection. All bats euthanized at 21 days post-inoculation (DPI) seroconverted to SOSV between 16 and 21 DPI. These results are consistent with ERBs being competent reservoir hosts for SOSV with spillover potential to humans.
Collapse
Affiliation(s)
- Brian R. Amman
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Amy J. Schuh
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Tara K. Sealy
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jessica R. Spengler
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Stephen R. Welch
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Shannon G. M. Kirejczyk
- Emory University, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- University of Georgia, College of Veterinary Medicine, Athens, Georgia, United States of America
| | - César G. Albariño
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Stuart T. Nichol
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jonathan S. Towner
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- University of Georgia, College of Veterinary Medicine, Athens, Georgia, United States of America
| |
Collapse
|
31
|
Rossetto F, Iglesias-Caballero M, Liedtke HC, Gomez-Mestre I, Berciano JM, Pérez-Suárez G, de Paz O, Ibáñez C, Echevarría JE, Casas I, Juste J. Mating strategy is determinant of adenovirus prevalence in European bats. PLoS One 2020; 15:e0226203. [PMID: 31910439 PMCID: PMC6946596 DOI: 10.1371/journal.pone.0226203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/21/2019] [Indexed: 11/18/2022] Open
Abstract
Adenoviruses are double-strained DNA viruses found in a great number of vertebrates, including humans. In order to understand their transmission dynamics, it is crucial, even from a human health perspective, to investigate how host traits influence their prevalence. Bats are important reservoirs for adenoviruses, and here we use the results of recent screenings in Western Europe to evaluate the association between characteristic traits of bat species and their probability of hosting adenoviruses, taking into account their phylogenetic relationships. Across species, we found an important phylogenetic component in the presence of adenoviruses and mating strategy as the most determinant factor conditioning the prevalence of adenoviruses across bat species. Contrary to other more stable mating strategies (e.g. harems), swarming could hinder transmission of adenoviruses since this strategy implies that contacts between individuals are too short. Alternatively, bat species with more promiscuous behavior may develop a stronger immune system. Outstandingly high prevalence of adenoviruses was reported for the Iberian species Pipistrellus pygmaeus, P. kuhlii and Nyctalus lasiopterus and we found that in the latter, males were more likely to be infected by adenoviruses than females, due to the immunosuppressing consequence of testosterone during the mating season. As a general trend across species, we found that the number of adenoviruses positive individuals was different across localities and that the difference in prevalence between populations was correlated with their geographic distances for two of the three studied bat species (P. pygmaeus and P.kuhlii). These results increase our knowledge about the transmission mechanisms of adenoviruses.
Collapse
Affiliation(s)
- Federica Rossetto
- Evolutionary Biology Unit, Estación Biológica Doñana (CSIC), Sevilla, Spain
| | | | | | - Ivan Gomez-Mestre
- Evolutionary Biology Unit, Estación Biológica Doñana (CSIC), Sevilla, Spain
| | | | - Gonzalo Pérez-Suárez
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Oscar de Paz
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Carlos Ibáñez
- Evolutionary Biology Unit, Estación Biológica Doñana (CSIC), Sevilla, Spain
| | - Juan E. Echevarría
- National Center of Microbiology, (ISCIII), Madrid, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | | | - Javier Juste
- Evolutionary Biology Unit, Estación Biológica Doñana (CSIC), Sevilla, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
32
|
Kumar CPG, Sugunan AP, Yadav P, Kurup KK, Aarathee R, Manickam P, Bhatnagar T, Radhakrishnan C, Thomas B, Kumar A, Jayasree J, Philomina B, Kumar KGS, Thulaseedharan NK, Gupta N, Rajendran R, Saritha RL, Mourya DT, Gangakhedkar RR, Murhekar MV. Infections among Contacts of Patients with Nipah Virus, India. Emerg Infect Dis 2019; 25:1007-1010. [PMID: 31002050 PMCID: PMC6478200 DOI: 10.3201/eid2505.181352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We conducted a serosurvey of 155 healthcare workers and 124 household and community members who had close contact with 18 patients who had laboratory-confirmed Nipah virus infections in Kerala, India. We detected 3 subclinical infections; 2 persons had IgM and IgG and 1 only IgM against Nipah virus.
Collapse
|
33
|
Beena V, Saikumar G. Emerging horizon for bat borne viral zoonoses. Virusdisease 2019; 30:321-328. [PMID: 31803797 PMCID: PMC6864002 DOI: 10.1007/s13337-019-00548-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/15/2019] [Indexed: 01/20/2023] Open
Abstract
Bats are the only flying placental mammals that constitute the second largest order of mammals and present all around the world except in Arctic, Antarctica and a few oceanic islands. Sixty percent of emerging infectious diseases originating from animals are zoonotic and more than two-thirds of them originate in wildlife. Bats were evolved as a super-mammal for harboring many of the newly identified deadly diseases without any signs and lesions. Their unique ability to fly, particular diet, roosting behavior, long life span, ability to echolocate and critical susceptibility to pathogens make them suitable host to harbor numerous zoonotic pathogens like virus, bacteria and parasite. Many factors are responsible for the emergence of bat borne zoonoses but the most precipitating factor is human intrusions. Deforestation declined the natural habitat and forced the bats and other wild life to move out of their niche. These stressed bats, having lost foraging and behavioral pattern invade in proximity of human habitation. Either directly or indirectly they transmit the viruses to humans and animals. Development of fast detection modern techniques for viruses from the diseased and environmental samples and the lessons learned in the past helped in preventing the severity during the latest outbreaks.
Collapse
Affiliation(s)
- V Beena
- 1Present Address: CSIR-Indian Institute of Toxicology Research, Lucknow, UP 226001 India.,2ICAR-Indian Veterinary Research Institute, Bareilly, UP 243122 India
| | - G Saikumar
- 2ICAR-Indian Veterinary Research Institute, Bareilly, UP 243122 India
| |
Collapse
|
34
|
Structural and functional analyses reveal promiscuous and species specific use of ephrin receptors by Cedar virus. Proc Natl Acad Sci U S A 2019; 116:20707-20715. [PMID: 31548390 PMCID: PMC6789926 DOI: 10.1073/pnas.1911773116] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cedar virus (CedV) is a bat-borne henipavirus related to Nipah virus (NiV) and Hendra virus (HeV), zoonotic agents of fatal human disease. CedV receptor-binding protein (G) shares only ∼30% sequence identity with those of NiV and HeV, although they can all use ephrin-B2 as an entry receptor. We demonstrate that CedV also enters cells through additional B- and A-class ephrins (ephrin-B1, ephrin-A2, and ephrin-A5) and report the crystal structure of the CedV G ectodomain alone and in complex with ephrin-B1 or ephrin-B2. The CedV G receptor-binding site is structurally distinct from other henipaviruses, underlying its capability to accommodate additional ephrin receptors. We also show that CedV can enter cells through mouse ephrin-A1 but not human ephrin-A1, which differ by 1 residue in the key contact region. This is evidence of species specific ephrin receptor usage by a henipavirus, and implicates additional ephrin receptors in potential zoonotic transmission.
Collapse
|
35
|
Lau SKP, Zhang L, Luk HKH, Xiong L, Peng X, Li KSM, He X, Zhao PSH, Fan RYY, Wong ACP, Ahmed SS, Cai JP, Chan JFW, Sun Y, Jin D, Chen H, Lau TCK, Kok RKH, Li W, Yuen KY, Woo PCY. Receptor Usage of a Novel Bat Lineage C Betacoronavirus Reveals Evolution of Middle East Respiratory Syndrome-Related Coronavirus Spike Proteins for Human Dipeptidyl Peptidase 4 Binding. J Infect Dis 2019; 218:197-207. [PMID: 29346682 PMCID: PMC7107427 DOI: 10.1093/infdis/jiy018] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/15/2018] [Indexed: 01/06/2023] Open
Abstract
Although bats are known to harbor Middle East Respiratory Syndrome coronavirus (MERS-CoV)-related viruses, the role of bats in the evolutionary origin and pathway remains obscure. We identified a novel MERS-CoV-related betacoronavirus, Hp-BatCoV HKU25, from Chinese pipistrelle bats. Although it is closely related to MERS-CoV in most genome regions, its spike protein occupies a phylogenetic position between that of Ty-BatCoV HKU4 and Pi-BatCoV HKU5. Because Ty-BatCoV HKU4 but not Pi-BatCoV HKU5 can use the MERS-CoV receptor human dipeptidyl peptidase 4 (hDPP4) for cell entry, we tested the ability of Hp-BatCoV HKU25 to bind and use hDPP4. The HKU25-receptor binding domain (RBD) can bind to hDPP4 protein and hDPP4-expressing cells, but it does so with lower efficiency than that of MERS-RBD. Pseudovirus assays showed that HKU25-spike can use hDPP4 for entry to hDPP4-expressing cells, although with lower efficiency than that of MERS-spike and HKU4-spike. Our findings support a bat origin of MERS-CoV and suggest that bat CoV spike proteins may have evolved in a stepwise manner for binding to hDPP4.
Collapse
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases The University of Hong Kong, China.,Department of Microbiology The University of Hong Kong, China.,Carol Yu Centre for Infection The University of Hong Kong, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, and Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong Province, China
| | - Hayes K H Luk
- Department of Microbiology The University of Hong Kong, China
| | - Lifeng Xiong
- Department of Microbiology The University of Hong Kong, China
| | - Xingwen Peng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, and Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong Province, China
| | - Kenneth S M Li
- Department of Microbiology The University of Hong Kong, China
| | - Xiangyang He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, and Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong Province, China
| | | | - Rachel Y Y Fan
- Department of Microbiology The University of Hong Kong, China
| | | | | | - Jian-Piao Cai
- Department of Microbiology The University of Hong Kong, China
| | - Jasper F W Chan
- State Key Laboratory of Emerging Infectious Diseases The University of Hong Kong, China.,Department of Microbiology The University of Hong Kong, China.,Carol Yu Centre for Infection The University of Hong Kong, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Yinyan Sun
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, Beijing, China
| | - Dongyan Jin
- School of Biomedical Sciences, The University of Hong Kong, China
| | - Honglin Chen
- State Key Laboratory of Emerging Infectious Diseases The University of Hong Kong, China.,Department of Microbiology The University of Hong Kong, China.,Carol Yu Centre for Infection The University of Hong Kong, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Terrence C K Lau
- Department of Biomedical Sciences, City University of Hong Kong, China
| | - Raven K H Kok
- State Key Laboratory of Emerging Infectious Diseases The University of Hong Kong, China.,Department of Microbiology The University of Hong Kong, China.,Carol Yu Centre for Infection The University of Hong Kong, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Wenhui Li
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, Beijing, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases The University of Hong Kong, China.,Department of Microbiology The University of Hong Kong, China.,Carol Yu Centre for Infection The University of Hong Kong, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases The University of Hong Kong, China.,Department of Microbiology The University of Hong Kong, China.,Carol Yu Centre for Infection The University of Hong Kong, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| |
Collapse
|
36
|
Tan CW, Wittwer K, Lim XF, Uehara A, Mani S, Wang LF, Anderson DE. Serological evidence and experimental infection of cynomolgus macaques with pteropine orthoreovirus reveal monkeys as potential hosts for transmission to humans. Emerg Microbes Infect 2019; 8:787-795. [PMID: 31132935 PMCID: PMC6542153 DOI: 10.1080/22221751.2019.1621668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pteropine orthoreoviruses (PRV) are emerging bat-borne viruses with proven zoonotic transmission. We recently demonstrated human exposure to PRV in Singapore, which together with previous reports from Malaysia and Vietnam suggest that human infection of PRV may occur periodically in the region. This raises the question whether bats are the only sources of human infection. In this study, we screened 517 cynomolgus macaques caught in Singapore for evidence of exposure to PRV3M (also known as Melaka virus), which was first isolated from human patients in Melaka, Malaysia. We found that 67 serum samples were PRV3M positive by ELISA and 34 were also positive by virus neutralization assay. To investigate whether monkeys could act as hosts for PRV transmission, we experimentally infected cynomolgus macaques with PRV3M and housed these animals with uninfected monkeys. Although no clinical signs of infection were observed in infected animals, viral RNA was detected in nasal and rectal swabs and all infected macaques seroconverted. Additionally, one of the uninfected animals seroconverted, implying active shedding and transmission of PRV3M. We provide evidence that PRV exposure in the macaque population in Singapore occurs at a relatively high prevalence and this study suggests that cynomolgus macaques may be an intermediate or reservoir host for PRVs.
Collapse
Affiliation(s)
- Chee Wah Tan
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore
| | - Kevin Wittwer
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore.,b Veterinary Medicine Division , Paul-Ehrlich-Institute , Langen , Germany
| | - Xiao Fang Lim
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore
| | - Anna Uehara
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore
| | - Shailendra Mani
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore
| | - Lin-Fa Wang
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore
| | - Danielle E Anderson
- a Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore
| |
Collapse
|
37
|
Voigt K, Hoffmann M, Drexler JF, Müller MA, Drosten C, Herrler G, Krüger N. Fusogenicity of the Ghana Virus ( Henipavirus: Ghanaian bat henipavirus) Fusion Protein is Controlled by the Cytoplasmic Domain of the Attachment Glycoprotein. Viruses 2019; 11:v11090800. [PMID: 31470664 PMCID: PMC6784138 DOI: 10.3390/v11090800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 01/11/2023] Open
Abstract
The Ghana virus (GhV) is phylogenetically related to the zoonotic henipaviruses Nipah (NiV) and Hendra virus. Although GhV uses the highly conserved receptor ephrin-B2, the fusogenicity is restricted to cell lines of bat origin. Furthermore, the surface expression of the GhV attachment glycoprotein (G) is reduced compared to NiV and most of this protein is retained in the endoplasmic reticulum (ER). Here, we generated truncated as well as chimeric GhV G proteins and investigated the influence of the structural domains (cytoplasmic tail, transmembrane domain, ectodomain) of this protein on the intracellular transport and the fusogenicity following coexpression with the GhV fusion protein (F). We demonstrate that neither the cytoplasmic tail nor the transmembrane domain is responsible for the intracellular retention of GhV G. Furthermore, the cytoplasmic tail of GhV G modulates the fusogenicity of GhV F and therefore controls the species-restricted fusogenicity of the GhV surface glycoproteins.
Collapse
Affiliation(s)
- Kathleen Voigt
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Jan Felix Drexler
- Institute of Virology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Marcel Alexander Müller
- Institute of Virology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Nadine Krüger
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
38
|
Griffin BD, Leung A, Chan M, Warner BM, Ranadheera C, Tierney K, Audet J, Frost KL, Safronetz D, Embury-Hyatt C, Booth SA, Kobasa D. Establishment of an RNA polymerase II-driven reverse genetics system for Nipah virus strains from Malaysia and Bangladesh. Sci Rep 2019; 9:11171. [PMID: 31371748 PMCID: PMC6671980 DOI: 10.1038/s41598-019-47549-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 07/19/2019] [Indexed: 01/22/2023] Open
Abstract
Nipah virus (NiV) has emerged as a highly lethal zoonotic paramyxovirus that is capable of causing a febrile encephalitis and/or respiratory disease in humans for which no vaccines or licensed treatments are currently available. There are two genetically and geographically distinct lineages of NiV: NiV-Malaysia (NiV-M), the strain that caused the initial outbreak in Malaysia, and NiV-Bangladesh (NiV-B), the strain that has been implicated in subsequent outbreaks in India and Bangladesh. NiV-B appears to be both more lethal and have a greater propensity for person-to-person transmission than NiV-M. Here we describe the generation and characterization of stable RNA polymerase II-driven infectious cDNA clones of NiV-M and NiV-B. In vitro, reverse genetics-derived NiV-M and NiV-B were indistinguishable from a wildtype isolate of NiV-M, and both viruses were pathogenic in the Syrian hamster model of NiV infection. We also describe recombinant NiV-M and NiV-B with enhanced green fluorescent protein (EGFP) inserted between the G and L genes that enable rapid and sensitive detection of NiV infection in vitro. This panel of molecular clones will enable studies to investigate the virologic determinants of henipavirus pathogenesis, including the pathogenic differences between NiV-M and NiV-B, and the high-throughput screening of candidate therapeutics.
Collapse
Affiliation(s)
- Bryan D Griffin
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| | - Anders Leung
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Mable Chan
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| | - Bryce M Warner
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| | - Charlene Ranadheera
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Kevin Tierney
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Jonathan Audet
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| | - Kathy L Frost
- Molecular Pathobiology, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, R3E 3R2, Manitoba, Canada
| | - David Safronetz
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| | - Carissa Embury-Hyatt
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3M4, Canada
| | - Stephanie A Booth
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada.,Molecular Pathobiology, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, R3E 3R2, Manitoba, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3R2, Canada. .,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada.
| |
Collapse
|
39
|
Plowright RK, Becker DJ, Crowley DE, Washburne AD, Huang T, Nameer PO, Gurley ES, Han BA. Prioritizing surveillance of Nipah virus in India. PLoS Negl Trop Dis 2019; 13:e0007393. [PMID: 31246966 PMCID: PMC6597033 DOI: 10.1371/journal.pntd.0007393] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 04/16/2019] [Indexed: 11/19/2022] Open
Abstract
The 2018 outbreak of Nipah virus in Kerala, India, highlights the need for global surveillance of henipaviruses in bats, which are the reservoir hosts for this and other viruses. Nipah virus, an emerging paramyxovirus in the genus Henipavirus, causes severe disease and stuttering chains of transmission in humans and is considered a potential pandemic threat. In May 2018, an outbreak of Nipah virus began in Kerala, > 1800 km from the sites of previous outbreaks in eastern India in 2001 and 2007. Twenty-three people were infected and 21 people died (16 deaths and 18 cases were laboratory confirmed). Initial surveillance focused on insectivorous bats (Megaderma spasma), whereas follow-up surveys within Kerala found evidence of Nipah virus in fruit bats (Pteropus medius). P. medius is the confirmed host in Bangladesh and is now a confirmed host in India. However, other bat species may also serve as reservoir hosts of henipaviruses. To inform surveillance of Nipah virus in bats, we reviewed and analyzed the published records of Nipah virus surveillance globally. We applied a trait-based machine learning approach to a subset of species that occur in Asia, Australia, and Oceana. In addition to seven species in Kerala that were previously identified as Nipah virus seropositive, we identified at least four bat species that, on the basis of trait similarity with known Nipah virus-seropositive species, have a relatively high likelihood of exposure to Nipah or Nipah-like viruses in India. These machine-learning approaches provide the first step in the sequence of studies required to assess the risk of Nipah virus spillover in India. Nipah virus surveillance not only within Kerala but also elsewhere in India would benefit from a research pipeline that included surveys of known and predicted reservoirs for serological evidence of past infection with Nipah virus (or cross reacting henipaviruses). Serosurveys should then be followed by longitudinal spatial and temporal studies to detect shedding and isolate virus from species with evidence of infection. Ecological studies will then be required to understand the dynamics governing prevalence and shedding in bats and the contacts that could pose a risk to public health.
Collapse
Affiliation(s)
- Raina K. Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States of America
| | - Daniel J. Becker
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States of America
- Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, United States of America
| | - Daniel E. Crowley
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States of America
| | - Alex D. Washburne
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States of America
| | - Tao Huang
- Cary Institute of Ecosystem Studies, Millbrook, NY, United States of America
| | - P. O. Nameer
- Centre for Wildlife Studies, College of Forestry, Kerala Agricultural University KAU (PO), Thrissur, Kerala, India
| | - Emily S. Gurley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Barbara A. Han
- Cary Institute of Ecosystem Studies, Millbrook, NY, United States of America
| |
Collapse
|
40
|
Singh RK, Dhama K, Chakraborty S, Tiwari R, Natesan S, Khandia R, Munjal A, Vora KS, Latheef SK, Karthik K, Singh Malik Y, Singh R, Chaicumpa W, Mourya DT. Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies - a comprehensive review. Vet Q 2019. [PMID: 31006350 PMCID: PMC6830995 DOI: 10.1080/01652176.2019.1580827] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nipah (Nee-pa) viral disease is a zoonotic infection caused by Nipah virus (NiV), a paramyxovirus belonging to the genus Henipavirus of the family Paramyxoviridae. It is a biosafety level-4 pathogen, which is transmitted by specific types of fruit bats, mainly Pteropus spp. which are natural reservoir host. The disease was reported for the first time from the Kampung Sungai Nipah village of Malaysia in 1998. Human-to-human transmission also occurs. Outbreaks have been reported also from other countries in South and Southeast Asia. Phylogenetic analysis affirmed the circulation of two major clades of NiV as based on currently available complete N and G gene sequences. NiV isolates from Malaysia and Cambodia clustered together in NiV-MY clade, whereas isolates from Bangladesh and India clusterered within NiV-BD clade. NiV isolates from Thailand harboured mixed population of sequences. In humans, the virus is responsible for causing rapidly progressing severe illness which might be characterized by severe respiratory illness and/or deadly encephalitis. In pigs below six months of age, respiratory illness along with nervous symptoms may develop. Different types of enzyme-linked immunosorbent assays along with molecular methods based on polymerase chain reaction have been developed for diagnostic purposes. Due to the expensive nature of the antibody drugs, identification of broad-spectrum antivirals is essential along with focusing on small interfering RNAs (siRNAs). High pathogenicity of NiV in humans, and lack of vaccines or therapeutics to counter this disease have attracted attention of researchers worldwide for developing effective NiV vaccine and treatment regimens.
Collapse
Affiliation(s)
- Raj Kumar Singh
- a ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Kuldeep Dhama
- b Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Sandip Chakraborty
- c Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry , West Tripura , India
| | - Ruchi Tiwari
- d Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences , Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura , India
| | - Senthilkumar Natesan
- e Biomac Life Sciences Pvt Ltd. , Indian Institute of Public Health Gandhinagar , Gujarat , India
| | - Rekha Khandia
- f Department of Biochemistry and Genetics , Barkatullah University , Bhopal , India
| | - Ashok Munjal
- f Department of Biochemistry and Genetics , Barkatullah University , Bhopal , India
| | - Kranti Suresh Vora
- g Wheels India Niswarth (WIN) Foundation, Maternal and Child Health (MCH) , University of Canberra , Gujarat , India
| | - Shyma K Latheef
- b Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Kumaragurubaran Karthik
- h Central University Laboratory , Tamil Nadu Veterinary and Animal Sciences University , Chennai , India
| | - Yashpal Singh Malik
- i Division of Biological Standardization , ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Rajendra Singh
- b Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Wanpen Chaicumpa
- j Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine, Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | - Devendra T Mourya
- k National Institute of Virology , Ministry of Health and Family Welfare, Govt of India , Pune , India
| |
Collapse
|
41
|
Vasilakis N, Tesh RB, Popov VL, Widen SG, Wood TG, Forrester NL, Gonzalez JP, Saluzzo JF, Alkhovsky S, Lam SK, Mackenzie JS, Walker PJ. Exploiting the Legacy of the Arbovirus Hunters. Viruses 2019; 11:E471. [PMID: 31126128 PMCID: PMC6563318 DOI: 10.3390/v11050471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022] Open
Abstract
In recent years, it has become evident that a generational gap has developed in the community of arbovirus research. This apparent gap is due to the dis-investment of training for the next generation of arbovirologists, which threatens to derail the rich history of virus discovery, field epidemiology, and understanding of the richness of diversity that surrounds us. On the other hand, new technologies have resulted in an explosion of virus discovery that is constantly redefining the virosphere and the evolutionary relationships between viruses. This paradox presents new challenges that may have immediate and disastrous consequences for public health when yet to be discovered arboviruses emerge. In this review we endeavor to bridge this gap by providing a historical context for the work being conducted today and provide continuity between the generations. To this end, we will provide a narrative of the thrill of scientific discovery and excitement and the challenges lying ahead.
Collapse
Affiliation(s)
- Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Robert B Tesh
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Vsevolod L Popov
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Steve G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston TX 77555, USA.
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston TX 77555, USA.
| | - Naomi L Forrester
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Jean Paul Gonzalez
- Center of Excellence for Emerging & Zoonotic Animal Disease, Kansas State University, Manhattan, KS 66502, USA.
| | | | - Sergey Alkhovsky
- Ivanovsky Institute of Virology, N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, 18 Gamaleya str., Moscow, Russia.
| | - Sai Kit Lam
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - John S Mackenzie
- Faculty of Medical Sciences, Curtin University, Perth, Western Australia 6102, Australia.
| | - Peter J Walker
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
42
|
Differential Innate Immune Responses Elicited by Nipah Virus and Cedar Virus Correlate with Disparate In Vivo Pathogenesis in Hamsters. Viruses 2019; 11:v11030291. [PMID: 30909389 PMCID: PMC6466075 DOI: 10.3390/v11030291] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022] Open
Abstract
Syrian hamsters (Mesocricetus auratus) are a pathogenesis model for the Nipah virus (NiV), and we sought to determine if they are also susceptible to the Cedar virus (CedPV). Following intranasal inoculation with CedPV, virus replication occurred in the lungs and spleens of infected hamsters, a neutralizing antibody was produced in some hamsters within 8 days post-challenge, and no conspicuous signs of disease occurred. CedPV replicated to a similar magnitude as NiV-Bangladesh in type I IFN-deficient BHK-21 Syrian hamster fibroblasts but replicated 4 logs lower in type I IFN-competent primary Syrian hamster and human pulmonary endothelial cells, a principal target of henipaviruses. The coinfection of these cells with CedPV and NiV failed to rescue CedPV titers and did not diminish NiV titers, suggesting the replication machinery is virus-specific. Type I IFN response transcripts Ifna7, Ddx58, Stat1, Stat2, Ccl5, Cxcl10, Isg20, Irf7, and Iigp1 were all significantly elevated in CedPV-infected hamster endothelial cells, whereas Ifna7 and Iigp1 expression were significantly repressed during NiV infection. These results are consistent with the hypothesis that CedPV's inability to counter the host type I IFN response may, in part, contribute to its lack of pathogenicity. Because NiV causes a fatal disease in Syrian hamsters with similarities to human disease, this model will provide valuable information about the pathogenic mechanisms of henipaviruses.
Collapse
|
43
|
Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats ( Eonycteris spelaea). Viruses 2019; 11:v11030250. [PMID: 30871070 PMCID: PMC6466414 DOI: 10.3390/v11030250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission. Here we investigate the diversity and abundance of viral communities from a colony of Eonycteris spelaea residing in Singapore. Our results detected 47 and 22 different virus families from bat fecal and urine samples, respectively. Among these, we identify a large number of virus families including Adenoviridae, Flaviviridae, Reoviridae, Papillomaviridae, Paramyxoviridae, Parvoviridae, Picornaviridae, and Polyomaviridae. In most cases, viral sequences from Eonycteris spelaea are genetically related to a group of bat viruses from other bat genera (e.g., Eidolon, Miniopterus, Rhinolophus and Rousettus). The results of this study improve our knowledge of the host range, spread and evolution of several important viral pathogens. More significantly, our findings provide a baseline to study the temporal patterns of virus shedding and how they correlate with bat phenological trends.
Collapse
|
44
|
Thanapongtharm W, Paul MC, Wiratsudakul A, Wongphruksasoong V, Kalpravidh W, Wongsathapornchai K, Damrongwatanapokin S, Schar D, Gilbert M. A spatial assessment of Nipah virus transmission in Thailand pig farms using multi-criteria decision analysis. BMC Vet Res 2019; 15:73. [PMID: 30832676 PMCID: PMC6399983 DOI: 10.1186/s12917-019-1815-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 02/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Thailand's Central Plain is identified as a contact zone between pigs and flying foxes, representing a potential zoonotic risk. Nipah virus (NiV) has been reported in flying foxes in Thailand, but it has never been found in pigs or humans. An assessment of the suitability of NiV transmission at the spatial and farm level would be useful for disease surveillance and prevention. Multi-criteria decision analysis (MCDA), a knowledge-driven model, was used to map contact zones between local epizootic risk factors as well as to quantify the suitability of NiV transmission at the pixel and farm level. RESULTS Spatial risk factors of NiV transmission in pigs were identified by experts as being of three types, including i) natural host factors (bat preferred areas and distance to the nearest bat colony), ii) intermediate host factors (pig population density), and iii) environmental factors (distance to the nearest forest, distance to the nearest orchard, distance to the nearest water body, and human population density). The resulting high suitable areas were concentrated around the bat colonies in three provinces in the East of Thailand, including Chacheongsao, Chonburi, and Nakhonnayok. The suitability of NiV transmission in pig farms in the study area was quantified as ranging from very low to medium suitability. CONCLUSIONS We believe that risk-based surveillance in the identified priority areas may increase the chances of finding out NiV and other bat-borne pathogens and thereby optimize the allocation of financial resources for disease surveillance. In the long run, improvements of biosecurity in those priority areas may also contribute to preventing the spread of potential emergence of NiV and other bat-borne pathogens.
Collapse
Affiliation(s)
| | - Mathilde C Paul
- UMR 1225 IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - Anuwat Wiratsudakul
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | | | - Wantanee Kalpravidh
- Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific, Bangkok, Thailand
| | - Kachen Wongsathapornchai
- Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific, Bangkok, Thailand
| | | | - Daniel Schar
- USAID Regional Development Mission Asia, Bangkok, Thailand.,Spatial epidemiology Lab. (SpELL), University of Brussels, Brussels, Belgium
| | - Marius Gilbert
- Spatial epidemiology Lab. (SpELL), University of Brussels, Brussels, Belgium.,Fonds National de la Recherche Scientifique (FNRS), University of Brussels, Brussels, Belgium
| |
Collapse
|
45
|
Wong ACP, Li X, Lau SKP, Woo PCY. Global Epidemiology of Bat Coronaviruses. Viruses 2019; 11:E174. [PMID: 30791586 PMCID: PMC6409556 DOI: 10.3390/v11020174] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 12/22/2022] Open
Abstract
Bats are a unique group of mammals of the order Chiroptera. They are highly diversified and are the group of mammals with the second largest number of species. Such highly diversified cell types and receptors facilitate them to be potential hosts of a large variety of viruses. Bats are the only group of mammals capable of sustained flight, which enables them to disseminate the viruses they harbor and enhance the chance of interspecies transmission. This article aims at reviewing the various aspects of the global epidemiology of bat coronaviruses (CoVs). Before the SARS epidemic, bats were not known to be hosts for CoVs. In the last 15 years, bats have been found to be hosts of >30 CoVs with complete genomes sequenced, and many more if those without genome sequences are included. Among the four CoV genera, only alphaCoVs and betaCoVs have been found in bats. As a whole, both alphaCoVs and betaCoVs have been detected from bats in Asia, Europe, Africa, North and South America and Australasia; but alphaCoVs seem to be more widespread than betaCoVs, and their detection rate is also higher. For betaCoVs, only those from subgenera Sarbecovirus, Merbecovirus, Nobecovirus and Hibecovirus have been detected in bats. Most notably, horseshoe bats are the reservoir of SARS-CoV, and several betaCoVs from subgenus Merbecovirus are closely related to MERS-CoV. In addition to the interactions among various bat species themselves, bat⁻animal and bat⁻human interactions, such as the presence of live bats in wildlife wet markets and restaurants in Southern China, are important for interspecies transmission of CoVs and may lead to devastating global outbreaks.
Collapse
Affiliation(s)
- Antonio C P Wong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Xin Li
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Susanna K P Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.
- Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Patrick C Y Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.
- Research Centre of Infection and Immunology, The University of Hong Kong, Pokfulam, Hong Kong.
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong.
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
46
|
Mazzola LT, Kelly-Cirino C. Diagnostics for Nipah virus: a zoonotic pathogen endemic to Southeast Asia. BMJ Glob Health 2019; 4:e001118. [PMID: 30815286 PMCID: PMC6361328 DOI: 10.1136/bmjgh-2018-001118] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 11/29/2022] Open
Abstract
Nipah virus (NiV) is an emerging pathogen that, unlike other priority pathogens identified by WHO, is endemic to Southeast Asia. It is most commonly transmitted through exposure to saliva or excrement from the Pteropus fruit bat, or direct contact with intermediate animal hosts, such as pigs. NiV infection causes severe febrile encephalitic disease and/or respiratory disease; treatment options are limited to supportive care. A number of in-house diagnostic assays for NiV using serological and nucleic acid amplification techniques have been developed for NiV and are used in laboratory settings, including some early multiplex panels for differentiation of NiV infection from other febrile diseases. However, given the often rural and remote nature of NiV outbreak settings, there remains a need for rapid diagnostic tests that can be implemented at the point of care. Additionally, more reliable assays for surveillance of communities and livestock will be vital to achieving a better understanding of the ecology of the fruit bat host and transmission risk to other intermediate hosts, enabling implementation of a ‘One Health’ approach to outbreak prevention and the management of this zoonotic disease. An improved understanding of NiV viral diversity and infection kinetics or dynamics will be central to the development of new diagnostics, and access to clinical specimens must be improved to enable effective validation and external quality assessments. Target product profiles for NiV diagnostics should be refined to take into account these outstanding needs.
Collapse
Affiliation(s)
- Laura T Mazzola
- Foundation for Innovative New Diagnostics (FIND), Emerging Threats Programme, Geneva, Switzerland
| | - Cassandra Kelly-Cirino
- Foundation for Innovative New Diagnostics (FIND), Emerging Threats Programme, Geneva, Switzerland
| |
Collapse
|
47
|
Atherstone C, Diederich S, Weingartl HM, Fischer K, Balkema-Buschmann A, Grace D, Alonso S, Dhand NK, Ward MP, Mor SM. Evidence of exposure to henipaviruses in domestic pigs in Uganda. Transbound Emerg Dis 2019; 66:921-928. [PMID: 30576076 PMCID: PMC6849855 DOI: 10.1111/tbed.13105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/28/2018] [Accepted: 11/23/2018] [Indexed: 12/28/2022]
Abstract
Hendra virus (HeV) and Nipah virus (NiV), belonging to the genus Henipavirus, are among the most pathogenic of viruses in humans. Old World fruit bats (family Pteropodidae) are the natural reservoir hosts. Molecular and serological studies found evidence of henipavirus infection in fruit bats from several African countries. However, little is known about the potential for spillover into domestic animals in East Africa, particularly pigs, which served as amplifying hosts during the first outbreak of NiV in Malaysia and Singapore. We collected sera from 661 pigs presented for slaughter in Uganda between December 2015 and October 2016. Using HeV G and NiV G indirect ELISAs, 14 pigs (2%) were seroreactive in at least one ELISA. Seroprevalence increased to 5.4% in October 2016, when pigs were 9.5 times more likely to be seroreactive than pigs sampled in December 2015 (p = 0.04). Eight of the 14 ELISA‐positive samples reacted with HeV N antigen in Western blot. None of the sera neutralized HeV or NiV in plaque reduction neutralization tests. Although we did not detect neutralizing antibodies, our results suggest that pigs in Uganda are exposed to henipaviruses or henipa‐like viruses. Pigs in this study were sourced from many farms throughout Uganda, suggesting multiple (albeit rare) introductions of henipaviruses into the pig population. We postulate that given the widespread distribution of Old World fruit bats in Africa, spillover of henipaviruses from fruit bats to pigs in Uganda could result in exposure of pigs at multiple locations. A higher risk of a spillover event at the end of the dry season might be explained by higher densities of bats and contact with pigs at this time of the year, exacerbated by nutritional stress in bat populations and their reproductive cycle. Future studies should prioritize determining the risk of spillover of henipaviruses from pigs to people, so that potential risks can be mitigated.
Collapse
Affiliation(s)
- Christine Atherstone
- Sydney School of Veterinary Science, The University of Sydney, Camperdown, New South Wales, Australia.,International Livestock Research Institute, Kampala, Uganda
| | - Sandra Diederich
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - Hana M Weingartl
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Manitoba, Canada
| | - Kerstin Fischer
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - Anne Balkema-Buschmann
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - Delia Grace
- International Livestock Research Institute, Nairobi, Kenya
| | - Silvia Alonso
- International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Navneet K Dhand
- Sydney School of Veterinary Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Michael P Ward
- Sydney School of Veterinary Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Siobhan M Mor
- Sydney School of Veterinary Science, The University of Sydney, Camperdown, New South Wales, Australia.,Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
48
|
Viruses in bats and potential spillover to animals and humans. Curr Opin Virol 2019; 34:79-89. [PMID: 30665189 PMCID: PMC7102861 DOI: 10.1016/j.coviro.2018.12.007] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022]
Abstract
Bats are a very important source of emerging viruses. Bat coronavirus, filovirus, paramyxovirus and reovirus are known zoonotic viruses. Many of the emergent bat viruses are highly lethal in livestock and humans. Past incidents and viral genetic features predict bat coronaviruses as the highest risk.
In the last two decades, several high impact zoonotic disease outbreaks have been linked to bat-borne viruses. These include SARS coronavirus, Hendra virus and Nipah virus. In addition, it has been suspected that ebolaviruses and MERS coronavirus are also linked to bats. It is being increasingly accepted that bats are potential reservoirs of a large number of known and unknown viruses, many of which could spillover into animal and human populations. However, our knowledge into basic bat biology and immunology is very limited and we have little understanding of major factors contributing to the risk of bat virus spillover events. Here we provide a brief review of the latest findings in bat viruses and their potential risk of cross-species transmission.
Collapse
|
49
|
Tetherin Inhibits Nipah Virus but Not Ebola Virus Replication in Fruit Bat Cells. J Virol 2019; 93:JVI.01821-18. [PMID: 30429347 DOI: 10.1128/jvi.01821-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
Ebola virus (EBOV) and Nipah virus (NiV) infection of humans can cause fatal disease and constitutes a public health threat. In contrast, EBOV and NiV infection of fruit bats, the putative (EBOV) or proven (NiV) natural reservoir, is not associated with disease, and it is currently unknown how these animals control the virus. The human interferon (IFN)-stimulated antiviral effector protein tetherin (CD317, BST-2) blocks release of EBOV- and NiV-like particles from cells and is counteracted by the EBOV glycoprotein (GP). In contrast, it is unknown whether fruit bat tetherin restricts virus infection and is susceptible to GP-driven antagonism. Here, we report the sequence of fruit bat tetherin and show that its expression is IFN stimulated and associated with strong antiviral activity. Moreover, we demonstrate that EBOV-GP antagonizes tetherin orthologues of diverse species but fails to efficiently counteract fruit bat tetherin in virus-like particle (VLP) release assays. However, unexpectedly, tetherin was dispensable for robust IFN-mediated inhibition of EBOV spread in fruit bat cells. Thus, the VLP-based model systems mimicking tetherin-mediated inhibition of EBOV release and its counteraction by GP seem not to adequately reflect all aspects of EBOV release from IFN-stimulated fruit bat cells, potentially due to differences in tetherin expression levels that could not be resolved by the present study. In contrast, tetherin expression was essential for IFN-dependent inhibition of NiV infection, demonstrating that IFN-induced fruit bat tetherin exerts antiviral activity and may critically contribute to control of NiV and potentially other highly virulent viruses in infected animals.IMPORTANCE Ebola virus and Nipah virus (EBOV and NiV) can cause fatal disease in humans. In contrast, infected fruit bats do not develop symptoms but can transmit the virus to humans. Why fruit bats but not humans control infection is largely unknown. Tetherin is an antiviral host cell protein and is counteracted by the EBOV glycoprotein in human cells. Here, employing model systems, we show that tetherin of fruit bats displays higher antiviral activity than human tetherin and is largely resistant against counteraction by the Ebola virus glycoprotein. Moreover, we demonstrate that induction of tetherin expression is critical for interferon-mediated inhibition of NiV but, for at present unknown reasons, not EBOV spread in fruit bat cells. Collectively, our findings identify tetherin as an antiviral effector of innate immune responses in fruit bats, which might allow these animals to control infection with NiV and potentially other viruses that cause severe disease in humans.
Collapse
|
50
|
Sharma V, Kaushik S, Kumar R, Yadav JP, Kaushik S. Emerging trends of Nipah virus: A review. Rev Med Virol 2019; 29:e2010. [PMID: 30251294 PMCID: PMC7169151 DOI: 10.1002/rmv.2010] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 11/24/2022]
Abstract
Since emergence of the Nipah virus (NiV) in 1998 from Malaysia, the NiV virus has reappeared on different occasions causing severe infections in human population associated with high rate of mortality. NiV has been placed along with Hendra virus in genus Henipavirus of family Paramyxoviridae. Fruit bats (Genus Pteropus) are known to be natural host and reservoir of NiV. During the outbreaks from Malaysia and Singapore, the roles of pigs as intermediate host were confirmed. The infection transmitted from bats to pigs and subsequently from pigs to humans. Severe encephalitis was reported in NiV infection often associated with neurological disorders. First NiV outbreak in India occurred in Siliguri district of West Bengal in 2001, where direct transmission of the NiV virus from bats-to-human and human-to-human was reported in contrast to the role of pigs in the Malaysian NiV outbreak. Regular NiV outbreaks have been reported from Bangladesh since 2001 to 2015. The latest outbreak of NiV has been recorded in May, 2018 from Kerala, India which resulted in the death of 17 individuals. Due to lack of vaccines and effective antivirals, Nipah encephalitis poses a great threat to public health. Routine surveillance studies in the infected areas can be useful in detecting early signs of infection and help in containment of these outbreaks.
Collapse
Affiliation(s)
- Vikrant Sharma
- Centre for BiotechnologyMaharshi Dayanand UniversityRohtakIndia
| | | | - Ramesh Kumar
- Department of MicrobiologyAll India Institutes of Medical SciencesNew DelhiIndia
| | | | | |
Collapse
|