1
|
Kuchinsky SC, Duggal NK. Usutu virus, an emerging arbovirus with One Health importance. Adv Virus Res 2024; 120:39-75. [PMID: 39455168 DOI: 10.1016/bs.aivir.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Usutu virus (USUV, Flaviviridae) is an emerging arbovirus that has led to epizootic outbreaks in birds and numerous human neuroinvasive disease cases in Europe. It is maintained in an enzootic cycle with Culex mosquitoes and passerine birds, a transmission cycle that is shared by West Nile virus (WNV) and St. Louis encephalitis virus (SLEV), two flaviviruses that are endemic in the United States. USUV and WNV co-circulate in Africa and Europe, and SLEV and WNV co-circulate in North America. These three viruses are prime examples of One Health issues, in which the interactions between humans, animals, and the environments they reside in can have important health impacts. The three facets of One Health are interwoven throughout this article as we discuss the mechanisms of flavivirus transmission and emergence. We explore the possibility of USUV emergence in the United States by analyzing the shared characteristics among USUV, WNV, and SLEV, including the role that flavivirus co-infections and sequential exposures may play in viral emergence. Finally, we provide insights on the importance of integrated surveillance programs as One Health tools that can be used to mitigate USUV emergence and spread.
Collapse
Affiliation(s)
- Sarah C Kuchinsky
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Nisha K Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.
| |
Collapse
|
2
|
Berman JD, Abadi AM, Bell JE. Existing Challenges and Opportunities for Advancing Drought and Health Research. Curr Environ Health Rep 2024; 11:255-265. [PMID: 38568401 DOI: 10.1007/s40572-024-00440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 05/12/2024]
Abstract
PURPOSE OF REVIEW Drought is one of the most far-reaching natural disasters, yet drought and health research is sparse. This may be attributed to the challenge of quantifying drought exposure, something complicated by multiple drought indices without any designed for health research. The purpose of this general review is to evaluate current drought and health literature and highlight challenges or scientific considerations when performing drought exposure and health assessments. RECENT FINDINGS The literature revealed a small, but growing, number of drought and health studies primarily emphasizing Australian, western European, and US populations. The selection of drought indices and definitions of drought are inconsistent. Rural and agricultural populations have been identified as vulnerable cohorts, particularly for mental health outcomes. Using relevant examples, we discuss the importance of characterizing drought and explore why health outcomes, populations of interest, and compound environmental hazards are crucial considerations for drought and health assessments. As climate and health research is prioritized, we propose guidance for investigators performing drought-focused analyses.
Collapse
Affiliation(s)
- Jesse D Berman
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Mayo Mail Code #807, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
| | - Azar M Abadi
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jesse E Bell
- Department of Environmental, Agricultural, and Occupational Health, Medical Center College of Public Health, University of Nebraska, Omaha, NE, USA
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA
- Daugherty Water for Food Global Institute, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
3
|
Viveros-Santos V, Hernández-Triana LM, Ibáñez-Bernal S, Ortega-Morales AI, Nikolova NI, Pairot P, Fooks AR, Casas-Martínez M. Integrated Approaches for the Identification of Mosquitoes (Diptera: Culicidae) from the Volcanoes of Central America Physiographic Subprovince of the State of Chiapas, Mexico. Vector Borne Zoonotic Dis 2022; 22:120-137. [PMID: 35175140 DOI: 10.1089/vbz.2021.0034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nowadays, there is a lack of information on the mosquito's fauna and DNA barcoding sequence reference library from many areas in Mexico, including the Volcanoes of Central America physiographic subprovince in the state of Chiapas. Consequently, a survey was undertaken to delineate the mosquito (Diptera: Culicidae) fauna in this region across different seasons using different collecting techniques. All species were identified by morphology and DNA barcoding, and their ecological features were also defined. In total, 62 taxa were morphologically examined, 60 of these were successfully identified based on morphological characteristics, but two were unable to be identified at the species level. The genera Aedes, Anopheles, Culex, and Wyeomyia are the most diverse among mosquito genera collected and include several species of medical and veterinary importance. Ecological characteristics of the immature habitats indicated that they were grouped into four categories namely, (1) large water bodies at ground level, (2) small and shady phytotelmata (e.g., tree holes and bamboo internodes), (3) large phytotelmata (e.g., plant leaves and axis bromeliad), and (4) artificial containers. The cytochrome c oxidase subunit I (COI) DNA barcoding sequences successfully separated the majority of these species, although specific species showed >2% intraspecific genetic divergences.
Collapse
Affiliation(s)
- Vicente Viveros-Santos
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, México
| | | | | | - Aldo I Ortega-Morales
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro Unidad Laguna, Torreón, México
| | - Nadya I Nikolova
- Biodiversity Institute of Ontario, Universidad de Guelph, Ontario, Canadá
| | - Pramual Pairot
- Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham, Thailand
| | - Anthony R Fooks
- Virology Department, Animal and Plant Health Agency, Weybridge, United Kingdom
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Mauricio Casas-Martínez
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, México
| |
Collapse
|
4
|
Loss SR, Noden BH, Fuhlendorf SD. Woody plant encroachment and the ecology of vector‐borne diseases. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Scott R. Loss
- Department of Natural Resource Ecology and Management Oklahoma State University Stillwater OK USA
| | - Bruce H. Noden
- Department of Entomology and Plant Pathology Oklahoma State University Stillwater OK USA
| | - Samuel D. Fuhlendorf
- Department of Natural Resource Ecology and Management Oklahoma State University Stillwater OK USA
| |
Collapse
|
5
|
Humphreys JM, Pelzel-McCluskey AM, Cohnstaedt LW, McGregor BL, Hanley KA, Hudson AR, Young KI, Peck D, Rodriguez LL, Peters DPC. Integrating Spatiotemporal Epidemiology, Eco-Phylogenetics, and Distributional Ecology to Assess West Nile Disease Risk in Horses. Viruses 2021; 13:v13091811. [PMID: 34578392 PMCID: PMC8473291 DOI: 10.3390/v13091811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Mosquito-borne West Nile virus (WNV) is the causative agent of West Nile disease in humans, horses, and some bird species. Since the initial introduction of WNV to the United States (US), approximately 30,000 horses have been impacted by West Nile neurologic disease and hundreds of additional horses are infected each year. Research describing the drivers of West Nile disease in horses is greatly needed to better anticipate the spatial and temporal extent of disease risk, improve disease surveillance, and alleviate future economic impacts to the equine industry and private horse owners. To help meet this need, we integrated techniques from spatiotemporal epidemiology, eco-phylogenetics, and distributional ecology to assess West Nile disease risk in horses throughout the contiguous US. Our integrated approach considered horse abundance and virus exposure, vector and host distributions, and a variety of extrinsic climatic, socio-economic, and environmental risk factors. Birds are WNV reservoir hosts, and therefore we quantified avian host community dynamics across the continental US to show intra-annual variability in host phylogenetic structure and demonstrate host phylodiversity as a mechanism for virus amplification in time and virus dilution in space. We identified drought as a potential amplifier of virus transmission and demonstrated the importance of accounting for spatial non-stationarity when quantifying interaction between disease risk and meteorological influences such as temperature and precipitation. Our results delineated the timing and location of several areas at high risk of West Nile disease and can be used to prioritize vaccination programs and optimize virus surveillance and monitoring.
Collapse
Affiliation(s)
- John M. Humphreys
- Pest Management Research Unit, Agricultural Research Service, US Department of Agriculture, Sidney, MT 59270, USA
- Correspondence:
| | - Angela M. Pelzel-McCluskey
- Veterinary Services, Animal and Plant Health Inspection Service (APHIS), US Department of Agriculture, Fort Collins, CO 80526, USA;
| | - Lee W. Cohnstaedt
- Arthropod-Borne Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Manhattan, KS 66502, USA; (L.W.C.); (B.L.M.)
| | - Bethany L. McGregor
- Arthropod-Borne Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Manhattan, KS 66502, USA; (L.W.C.); (B.L.M.)
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (K.A.H.); (K.I.Y.)
| | - Amy R. Hudson
- Big Data Initiative and SCINet Program for Scientific Computing, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20704, USA; (A.R.H.); (D.P.C.P.)
| | - Katherine I. Young
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (K.A.H.); (K.I.Y.)
| | - Dannele Peck
- Northern Plains Climate Hub, US Department of Agriculture, Fort Collins, CO 80526, USA;
| | - Luis L. Rodriguez
- Plum Island Animal Disease Center, US Department of Agriculture, Orient Point, NY 11957, USA;
| | - Debra P. C. Peters
- Big Data Initiative and SCINet Program for Scientific Computing, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20704, USA; (A.R.H.); (D.P.C.P.)
| |
Collapse
|
6
|
Ciota AT, Keyel AC. The Role of Temperature in Transmission of Zoonotic Arboviruses. Viruses 2019; 11:E1013. [PMID: 31683823 PMCID: PMC6893470 DOI: 10.3390/v11111013] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022] Open
Abstract
We reviewed the literature on the role of temperature in transmission of zoonotic arboviruses. Vector competence is affected by both direct and indirect effects of temperature, and generally increases with increasing temperature, but results may vary by vector species, population, and viral strain. Temperature additionally has a significant influence on life history traits of vectors at both immature and adult life stages, and for important behaviors such as blood-feeding and mating. Similar to vector competence, temperature effects on life history traits can vary by species and population. Vector, host, and viral distributions are all affected by temperature, and are generally expected to change with increased temperatures predicted under climate change. Arboviruses are generally expected to shift poleward and to higher elevations under climate change, yet significant variability on fine geographic scales is likely. Temperature effects are generally unimodal, with increases in abundance up to an optimum, and then decreases at high temperatures. Improved vector distribution information could facilitate future distribution modeling. A wide variety of approaches have been used to model viral distributions, although most research has focused on the West Nile virus. Direct temperature effects are frequently observed, as are indirect effects, such as through droughts, where temperature interacts with rainfall. Thermal biology approaches hold much promise for syntheses across viruses, vectors, and hosts, yet future studies must consider the specificity of interactions and the dynamic nature of evolving biological systems.
Collapse
Affiliation(s)
- Alexander T Ciota
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY 12144, USA.
| | - Alexander C Keyel
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
- Department of Atmospheric and Environmental Sciences, University at Albany, Albany, NY 12222, USA.
| |
Collapse
|
7
|
Holmes CJ, Benoit JB. Biological Adaptations Associated with Dehydration in Mosquitoes. INSECTS 2019; 10:insects10110375. [PMID: 31661928 PMCID: PMC6920799 DOI: 10.3390/insects10110375] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/05/2022]
Abstract
Diseases that are transmitted by mosquitoes are a tremendous health and socioeconomic burden with hundreds of millions of people being impacted by mosquito-borne illnesses annually. Many factors have been implicated and extensively studied in disease transmission dynamics, but knowledge regarding how dehydration impacts mosquito physiology, behavior, and resulting mosquito-borne disease transmission remain underdeveloped. The lapse in understanding on how mosquitoes respond to dehydration stress likely obscures our ability to effectively study mosquito physiology, behavior, and vectorial capabilities. The goal of this review is to develop a profile of factors underlying mosquito biology that are altered by dehydration and the implications that are related to disease transmission.
Collapse
Affiliation(s)
- Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
8
|
Abstract
In the western United States, this virus may have been mediated via migrating infected birds from southern South America, where it reemerged most recently in 2002. We summarize and analyze historical and current data regarding the reemergence of St. Louis encephalitis virus (SLEV; genus Flavivirus) in the Americas. Historically, SLEV caused encephalitis outbreaks in the United States; however, it was not considered a public health concern in the rest of the Americas. After the introduction of West Nile virus in 1999, activity of SLEV decreased considerably in the United States. During 2014–2015, SLEV caused a human outbreak in Arizona and caused isolated human cases in California in 2016 and 2017. Phylogenetic analyses indicate that the emerging SLEV in the western United States is related to the epidemic strains isolated during a human encephalitis outbreak in Córdoba, Argentina, in 2005. Ecoepidemiologic studies suggest that the emergence of SLEV in Argentina was caused by the introduction of a more pathogenic strain and increasing populations of the eared dove (amplifying host).
Collapse
MESH Headings
- Communicable Diseases, Emerging/epidemiology
- Communicable Diseases, Emerging/history
- Communicable Diseases, Emerging/transmission
- Communicable Diseases, Emerging/virology
- Disease Outbreaks
- Encephalitis Virus, St. Louis/classification
- Encephalitis Virus, St. Louis/genetics
- Encephalitis Virus, St. Louis/physiology
- Encephalitis, St. Louis/epidemiology
- Encephalitis, St. Louis/history
- Encephalitis, St. Louis/transmission
- Encephalitis, St. Louis/virology
- Geography, Medical
- History, 20th Century
- History, 21st Century
- Humans
- Phylogeny
- South America/epidemiology
- United States/epidemiology
Collapse
|
9
|
Ukawuba I, Shaman J. Association of spring-summer hydrology and meteorology with human West Nile virus infection in West Texas, USA, 2002-2016. Parasit Vectors 2018; 11:224. [PMID: 29618375 PMCID: PMC5885460 DOI: 10.1186/s13071-018-2781-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/06/2018] [Indexed: 11/30/2022] Open
Abstract
Background The emergence of West Nile virus (WNV) in the Western Hemisphere has motivated research into the processes contributing to the incidence and persistence of the disease in the region. Meteorology and hydrology are fundamental determinants of vector-borne disease transmission dynamics of a region. The availability of water influences the population dynamics of vector and host, while temperature impacts vector growth rates, feeding habits, and disease transmission potential. Characterization of the temporal pattern of environmental factors influencing WNV risk is crucial to broaden our understanding of local transmission dynamics and to inform efforts of control and surveillance. Methods We used hydrologic, meteorological and WNV data from west Texas (2002–2016) to analyze the relationship between environmental conditions and annual human WNV infection. A Bayesian model averaging framework was used to evaluate the association of monthly environmental conditions with WNV infection. Results Findings indicate that wet conditions in the spring combined with dry and cool conditions in the summer are associated with increased annual WNV cases. Bayesian multi-model inference reveals monthly means of soil moisture, specific humidity and temperature to be the most important variables among predictors tested. Environmental conditions in March, June, July and August were the leading predictors in the best-fitting models. Conclusions The results significantly link soil moisture and temperature in the spring and summer to WNV transmission risk. Wet spring in association with dry and cool summer was the temporal pattern best-describing WNV, regardless of year. Our findings also highlight that soil moisture may be a stronger predictor of annual WNV transmission than rainfall.
Collapse
Affiliation(s)
- Israel Ukawuba
- Mailman School of Public Health, Columbia University, 722 W 168th, New York, NY, 10032, USA.
| | - Jeffrey Shaman
- Mailman School of Public Health, Columbia University, 722 W 168th, New York, NY, 10032, USA
| |
Collapse
|
10
|
Paull SH, Horton DE, Ashfaq M, Rastogi D, Kramer LD, Diffenbaugh NS, Kilpatrick AM. Drought and immunity determine the intensity of West Nile virus epidemics and climate change impacts. Proc Biol Sci 2018; 284:rspb.2016.2078. [PMID: 28179512 DOI: 10.1098/rspb.2016.2078] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/12/2017] [Indexed: 11/12/2022] Open
Abstract
The effect of global climate change on infectious disease remains hotly debated because multiple extrinsic and intrinsic drivers interact to influence transmission dynamics in nonlinear ways. The dominant drivers of widespread pathogens, like West Nile virus, can be challenging to identify due to regional variability in vector and host ecology, with past studies producing disparate findings. Here, we used analyses at national and state scales to examine a suite of climatic and intrinsic drivers of continental-scale West Nile virus epidemics, including an empirically derived mechanistic relationship between temperature and transmission potential that accounts for spatial variability in vectors. We found that drought was the primary climatic driver of increased West Nile virus epidemics, rather than within-season or winter temperatures, or precipitation independently. Local-scale data from one region suggested drought increased epidemics via changes in mosquito infection prevalence rather than mosquito abundance. In addition, human acquired immunity following regional epidemics limited subsequent transmission in many states. We show that over the next 30 years, increased drought severity from climate change could triple West Nile virus cases, but only in regions with low human immunity. These results illustrate how changes in drought severity can alter the transmission dynamics of vector-borne diseases.
Collapse
Affiliation(s)
- Sara H Paull
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA 95064, USA .,Research Applications Lab, National Center for Atmospheric Research, 3450 Mitchell Ln, Boulder, CO 80301, USA
| | - Daniel E Horton
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL 60208, USA.,Department of Earth System Science and Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Moetasim Ashfaq
- Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Deeksha Rastogi
- Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Laura D Kramer
- Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA.,School of Public Health, Department of Biomedical Sciences, SUNY, Albany, NY 12201, USA
| | - Noah S Diffenbaugh
- Department of Earth System Science and Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA 95064, USA
| |
Collapse
|
11
|
Skaff NK, Armstrong PM, Andreadis TG, Cheruvelil KS. Wetland characteristics linked to broad-scale patterns in Culiseta melanura abundance and eastern equine encephalitis virus infection. Parasit Vectors 2017; 10:501. [PMID: 29047412 PMCID: PMC5648514 DOI: 10.1186/s13071-017-2482-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/13/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Eastern equine encephalitis virus (EEEV) is an expanding mosquito-borne threat to humans and domestic animal populations in the northeastern United States. Outbreaks of EEEV are challenging to predict due to spatial and temporal uncertainty in the abundance and viral infection of Cs. melanura, the principal enzootic vector. EEEV activity may be closely linked to wetlands because they provide essential habitat for mosquito vectors and avian reservoir hosts. However, wetlands are not homogeneous and can vary by vegetation, connectivity, size, and inundation patterns. Wetlands may also have different effects on EEEV transmission depending on the assessed spatial scale. We investigated associations between wetland characteristics and Cs. melanura abundance and infection with EEEV at multiple spatial scales in Connecticut, USA. RESULTS Our findings indicate that wetland vegetative characteristics have strong associations with Cs. melanura abundance. Deciduous and evergreen forested wetlands were associated with higher Cs. melanura abundance, likely because these wetlands provide suitable subterranean habitat for Cs. melanura development. In contrast, Cs. melanura abundance was negatively associated with emergent and scrub/shrub wetlands, and wetland connectivity to streams. These relationships were generally strongest at broad spatial scales. Additionally, the relationships between wetland characteristics and EEEV infection in Cs. melanura were generally weak. However, Cs. melanura abundance was strongly associated with EEEV infection, suggesting that wetland-associated changes in abundance may be indirectly linked to EEEV infection in Cs. melanura. Finally, we found that wet hydrological conditions during the transmission season and during the fall/winter preceding the transmission season were associated with higher Cs. melanura abundance and EEEV infection, indicating that wet conditions are favorable for EEEV transmission. CONCLUSIONS These results expand the broad-scale understanding of the effects of wetlands on EEEV transmission and help to reduce the spatial and temporal uncertainty associated with EEEV outbreaks.
Collapse
Affiliation(s)
- Nicholas K Skaff
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA. .,Ecology, Evolutionary Biology & Behavior Program, Michigan State University, East Lansing, MI, USA.
| | - Philip M Armstrong
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Theodore G Andreadis
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Kendra S Cheruvelil
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA.,Lyman Briggs College, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
12
|
Spatio-Temporal Distribution of Vector-Host Contact (VHC) Ratios and Ecological Niche Modeling of the West Nile Virus Mosquito Vector, Culex quinquefasciatus, in the City of New Orleans, LA, USA. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14080892. [PMID: 28786934 PMCID: PMC5580596 DOI: 10.3390/ijerph14080892] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/21/2017] [Accepted: 08/05/2017] [Indexed: 11/17/2022]
Abstract
The consistent sporadic transmission of West Nile Virus (WNV) in the city of New Orleans justifies the need for distribution risk maps highlighting human risk of mosquito bites. We modeled the influence of biophysical and socioeconomic metrics on the spatio-temporal distributions of presence/vector-host contact (VHC) ratios of WNV vector, Culex quinquefasciatus, within their flight range. Biophysical and socioeconomic data were extracted within 5-km buffer radii around sampling localities of gravid female Culex quinquefasciatus. The spatio-temporal correlations between VHC data and 33 variables, including climate, land use-land cover (LULC), socioeconomic, and land surface terrain were analyzed using stepwise linear regression models (RM). Using MaxEnt, we developed a distribution model using the correlated predicting variables. Only 12 factors showed significant correlations with spatial distribution of VHC ratios (R² = 81.62, p < 0.01). Non-forested wetland (NFWL), tree density (TD) and residential-urban (RU) settings demonstrated the strongest relationship. The VHC ratios showed monthly environmental resilience in terms of number and type of influential factors. The highest prediction power of RU and other urban and built up land (OUBL), was demonstrated during May-August. This association was positively correlated with the onset of the mosquito WNV infection rate during June. These findings were confirmed by the Jackknife analysis in MaxEnt and independently collected field validation points. The spatial and temporal correlations of VHC ratios and their response to the predicting variables are discussed.
Collapse
|
13
|
Ecological niche modeling of mosquito vectors of West Nile virus in St. John's County, Florida, USA. Parasit Vectors 2016; 9:371. [PMID: 27357295 PMCID: PMC4928341 DOI: 10.1186/s13071-016-1646-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/15/2016] [Indexed: 11/18/2022] Open
Abstract
Background The lack of available vaccines and consistent sporadic transmission of WNV justify the need for mosquito vector control and prediction of their geographic distribution. However, the distribution of WNV transmission is dependent on the mosquito vector and the ecological requirements, which vary from one place to another. Methods Presence/density data of two WNV mosquito vectors, Culex nigripalpus and Cx. quinquefasciatus, was extracted within 5 km buffer zones around seropositive records of sentinel chickens in order to delineate their predicting variables and model the habitat suitability of probable infective mosquito using MaxEnt software. Different correlations between density data of the extracted mosquito vectors and 27 climate, land use-land cover, and land surface terrain variables were analyzed using linear regression analysis. Accordingly, the correlated predicting variables were used in building up habitat suitability model for the occurrence records of both mosquito vectors using MaxEnt. Results The density of both WNV mosquito vectors showed variation in their ecological requirements. Eight predicting variables, out of 27, had significant influence on density of Cx. nigripalpus. Precipitation of driest months was shown to be the best predicting variable for the density of this vector (R2 = 41.70). Whereas, two variables were proven to predict the distribution of Cx. quinquefasciatus density. Vegetation showed the maximum predicting gain to the density of this mosquito vector (R2 = 15.74), where nestling birds, in particular exotics, are found. Moreover, Jackknife analysis in MaxEnt demonstrated that urbanization and vegetation data layers significantly contribute in predicting habitat suitability of Cx. nigripalpus and Cx. quinquefasciatus occurrence, respectively, which justifies the contribution of the former in urban and the latter in epizootic transmission cycles of WNV. In addition, habitat suitability risk maps were produced for both vectors in response to their predicting variables. Conclusions For the first time in the study area, a quantitative relationship between 27 predicting variables and two WNV mosquito vectors within their foraging habitats was highlighted at the local scale. Accordingly, the predicting variables were used to produce a practical distribution map of probable infective mosquito vectors. This substantially helps in determining where suitable habitats are found. This will potentially help in designing target surveillance and control programmes, saving money, time and man-power. However, the suitability risk maps should be updated when serological and entomological data updates are available.
Collapse
|
14
|
Connelly CR, Alto BW, O'Meara GF. The spread of Culex coronator (Diptera: Culicidae) throughout Florida. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2016; 41:195-199. [PMID: 27232144 DOI: 10.1111/jvec.12213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- C Roxanne Connelly
- University of Florida, Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory, Vero Beach, FL 32962, U.S.A..
| | - Barry W Alto
- University of Florida, Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory, Vero Beach, FL 32962, U.S.A
| | - George F O'Meara
- University of Florida, Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory, Vero Beach, FL 32962, U.S.A
| |
Collapse
|
15
|
Ahmadnejad F, Otarod V, Fathnia A, Ahmadabadi A, Fallah MH, Zavareh A, Miandehi N, Durand B, Sabatier P. Impact of Climate and Environmental Factors on West Nile Virus Circulation in Iran. J Arthropod Borne Dis 2016; 10:315-27. [PMID: 27308290 PMCID: PMC4906738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 12/17/2014] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Geographic distribution of West Nile virus (WNV) is heterogeneous in Iran by a high circulation in the southern-western areas. The objective of our study was to determine environmental and climatic factors associated with the risk of WNV equine seropositivity in Iran. METHODS Serological data were obtained from a serosurvey conducted in equine population in 260 districts in Iran. The climate and environmental parameters included in the models were distance to the nearest wetland area, type of stable, Normalized Difference Vegetation Index (NDVI), annual mean temperature, humidity and precipitation. RESULTS The important risk factors included annual mean temperature, distance to wetlands, local and seasonal NDVI differences. The effect of local NDVI differences in spring was particularly notable. This was a normalized difference of average NDVI between two areas: a 5 km radius area centered on the stable and the 5-10 km surrounding area. CONCLUSION The model indicated that local NDVI's contrast during spring is a major risk factor of the transmission of West-Nile virus in Iran. This so-called oasis effect consistent with the seasonal production of vegetation in spring, and is associated to the attractiveness of the local NDVI environment for WNV vectors and hosts.
Collapse
Affiliation(s)
- Farzaneh Ahmadnejad
- Viral Vaccines Production Department, Pasteur Institute, Tehran, Iran,TIMC-IMAG Team EPSP, VetAgroSup, Campus Vétérinaire de Lyon, France,Corresponding authors: Dr Farzaneh Ahmadnejad, E-mail:
| | - Vahid Otarod
- Quarantine and Biosafety Directorate General, Iran Veterinary Organization, Tehran, Iran
| | | | | | - Mohammad H. Fallah
- Department of Poultry Viral Diseases, Razi Vaccine and Serum Research Institute, Alborz, Iran
| | - Alireza Zavareh
- Viral Vaccines Production Department, Pasteur Institute, Tehran, Iran
| | - Nargess Miandehi
- Viral Vaccines Production Department, Pasteur Institute, Tehran, Iran
| | - Benoit Durand
- University Paris Est, Anses, Laboratory of Animal Health, Epidemiology Unit, Maisons-Alfort, France
| | | |
Collapse
|
16
|
Wu X, Lu Y, Zhou S, Chen L, Xu B. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. ENVIRONMENT INTERNATIONAL 2016; 86:14-23. [PMID: 26479830 DOI: 10.1016/j.envint.2015.09.007] [Citation(s) in RCA: 361] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 08/28/2015] [Accepted: 09/02/2015] [Indexed: 05/21/2023]
Abstract
Climate change refers to long-term shifts in weather conditions and patterns of extreme weather events. It may lead to changes in health threat to human beings, multiplying existing health problems. This review examines the scientific evidences on the impact of climate change on human infectious diseases. It identifies research progress and gaps on how human society may respond to, adapt to, and prepare for the related changes. Based on a survey of related publications between 1990 and 2015, the terms used for literature selection reflect three aspects--the components of infectious diseases, climate variables, and selected infectious diseases. Humans' vulnerability to the potential health impacts by climate change is evident in literature. As an active agent, human beings may control the related health effects that may be effectively controlled through adopting proactive measures, including better understanding of the climate change patterns and of the compound disease-specific health effects, and effective allocation of technologies and resources to promote healthy lifestyles and public awareness. The following adaptation measures are recommended: 1) to go beyond empirical observations of the association between climate change and infectious diseases and develop more scientific explanations, 2) to improve the prediction of spatial-temporal process of climate change and the associated shifts in infectious diseases at various spatial and temporal scales, and 3) to establish locally effective early warning systems for the health effects of predicated climate change.
Collapse
Affiliation(s)
- Xiaoxu Wu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Yongmei Lu
- Department of Geography, Texas State University, San Marcos, TX 78666-4684, USA.
| | - Sen Zhou
- Center for Earth System Sciences, Tsinghua University Beijing, 100084, China
| | - Lifan Chen
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Bing Xu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China; Center for Earth System Sciences, Tsinghua University Beijing, 100084, China; Department of Geography, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
17
|
Alto BW, Connelly CR, O'Meara GF, Hickman D, Karr N. Reproductive biology and susceptibility of Florida Culex coronator to infection with West Nile virus. Vector Borne Zoonotic Dis 2015; 14:606-14. [PMID: 25072992 DOI: 10.1089/vbz.2013.1501] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abstract Ornithophilic Culex species are considered the primary amplification vectors of West Nile virus (WNV) in bird hosts as well as vectors responsible for epidemic transmission. Culex coronator was first collected from Okaloosa, Santa Rosa, Walton, and Washington Counties in Florida in 2005 and has since spread throughout the state. The vector competence of Cx. coronator for WNV, known to be infected in nature, has not been assessed. Without this knowledge, we are unable to assess this species' potential as an enzootic and epidemic vector of WNV in Florida. In the current study, we investigate the reproductive biology and susceptibility to WNV infection, dissemination, and transmission by Cx. coronator. We show that Cx. coronator is capable of delaying oviposition for several weeks after blood feeding and that the number of eggs laid is greater for avian than mammalian hosts. Cx. coronator were highly susceptible to infection (∼80-100%) and dissemination (∼65-85% by 18 days since exposure) with lower rates of transmission (0-17% at 25°C and 28-67% at 28°C), suggesting that it is a competent vector of WNV under some conditions. The proportion of mosquitoes with disseminated infections related to the time since exposure and was higher at 28°C than at 25°C. The rapid and statewide distribution of Cx. coronator throughout Florida poses as a potential public health risk. This baseline knowledge is essential information for mosquito control and public health agencies to assess current and future disease risk to Southeastern United States.
Collapse
Affiliation(s)
- Barry W Alto
- University of Florida , IFAS, Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Vero Beach, Florida
| | | | | | | | | |
Collapse
|
18
|
Aharonson-Raz K, Steinman A, Kavkovsky A, Bumbarov V, Berlin D, Lichter-Peled A, Berke O, Klement E. Analysis of the Association of Climate, Weather and Herd Immunity with the Spread of Equine Encephalosis Virus in Horses in Israel. Transbound Emerg Dis 2015; 64:593-602. [DOI: 10.1111/tbed.12424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Indexed: 11/28/2022]
Affiliation(s)
- K. Aharonson-Raz
- Koret School of Veterinary Medicine; The Robert H. Smith Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; Rehovot Israel
| | - A. Steinman
- Koret School of Veterinary Medicine; The Robert H. Smith Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; Rehovot Israel
| | - A. Kavkovsky
- Koret School of Veterinary Medicine; The Robert H. Smith Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; Rehovot Israel
| | - V. Bumbarov
- Department of Virology; Kimron Veterinary Institute; Bet Dagan Israel
| | - D. Berlin
- Koret School of Veterinary Medicine; The Robert H. Smith Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; Rehovot Israel
| | - A. Lichter-Peled
- Koret School of Veterinary Medicine; The Robert H. Smith Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; Rehovot Israel
| | - O. Berke
- Department of Population Medicine; Ontario Veterinary College; University of Guelph; Guelph Ontario Canada
| | - E. Klement
- Koret School of Veterinary Medicine; The Robert H. Smith Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; Rehovot Israel
| |
Collapse
|
19
|
Day JF, Tabachnick WJ, Smartt CT. Factors That Influence the Transmission of West Nile Virus in Florida. JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:743-754. [PMID: 26336216 DOI: 10.1093/jme/tjv076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/01/2015] [Indexed: 06/05/2023]
Abstract
West Nile virus (WNV) was first detected in North America in New York City during the late summer of 1999 and was first detected in Florida in 2001. Although WNV has been responsible for widespread and extensive epidemics in human populations and epizootics in domestic animals and wildlife throughout North America, comparable epidemics have never materialized in Florida. Here, we review some of the reasons why WNV has yet to cause an extensive outbreak in Florida. The primary vector of mosquito-borne encephalitis virus in Florida is Culex nigripalpus Theobald. Rainfall, drought, and temperature are the primary factors that regulate annual populations of this species. Cx. nigripalpus is a competent vector of WNV, St. Louis encephalitis virus, and eastern equine encephalitis virus in Florida, and populations of this species can support focal amplification and transmission of these arboviruses. We propose that a combination of environmental factors influencing Cx. nigripalpus oviposition, blood-feeding behavior, and vector competence have limited WNV transmission in Florida to relatively small focal outbreaks and kept the state free of a major epidemic. Florida must remain vigilant to the danger from WNV, because a change in these environmental factors could easily result in a substantial WNV epidemic rivaling those seen elsewhere in the United States.
Collapse
Affiliation(s)
- Jonathan F Day
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida - IFAS,200 9th St. SE, Vero Beach, FL 32962.
| | - Walter J Tabachnick
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida - IFAS,200 9th St. SE, Vero Beach, FL 32962
| | - Chelsea T Smartt
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida - IFAS,200 9th St. SE, Vero Beach, FL 32962
| |
Collapse
|
20
|
Yusa A, Berry P, J Cheng J, Ogden N, Bonsal B, Stewart R, Waldick R. Climate Change, Drought and Human Health in Canada. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:8359-412. [PMID: 26193300 PMCID: PMC4515727 DOI: 10.3390/ijerph120708359] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 11/17/2022]
Abstract
Droughts have been recorded all across Canada and have had significant impacts on individuals and communities. With climate change, projections suggest an increasing risk of drought in Canada, particularly in the south and interior. However, there has been little research on the impacts of drought on human health and the implications of a changing climate. A review of the Canadian, U.S. and international literature relevant to the Canadian context was conducted to better define these impacts and adaptations available to protect health. Drought can impact respiratory health, mental health, illnesses related to exposure to toxins, food/water security, rates of injury and infectious diseases (including food-, water- and vector-borne diseases). A range of direct and indirect adaptation (e.g., agricultural adaptation) options exist to cope with drought. Many have already been employed by public health officials, such as communicable disease monitoring and surveillance and public education and outreach. However, gaps exist in our understanding of the impacts of short-term vs. prolonged drought on the health of Canadians, projections of drought and its characteristics at the regional level and the effectiveness of current adaptations. Further research will be critical to inform adaptation planning to reduce future drought-related risks to health.
Collapse
Affiliation(s)
- Anna Yusa
- Environmental Health Program, Health Canada, 180 Queen St. West, Toronto, ON M5V 3L7, Canada.
| | - Peter Berry
- Climate Change and Health Office, Health Canada, 269 Laurier Ave. West, Ottawa, ON K1A 0K9, Canada.
| | - June J Cheng
- Sherbourne Health Centre, 333 Sherbourne St., Toronto, ON M5A 2S5, Canada.
| | - Nicholas Ogden
- Centre for Food-Borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, 3200 Sicotte, P.O. Box 5000, Saint-Hyacinthe, QC J2S 7C6, Canada.
| | - Barrie Bonsal
- Watershed Hydrology and Ecology Research Division, Environment Canada, 11 Innovation Blvd., Saskatoon, Saskatchewan S7N 3H5, Canada.
| | - Ronald Stewart
- Department of Environment and Geography, University of Manitoba, 70A Dysart Road, Winnipeg, MB R3T 2N2, Canada.
| | - Ruth Waldick
- Environmental Health, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0Z2, Canada.
- Department of Geography and Environmental Studies, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
21
|
Neri FM, Cook AR, Gibson GJ, Gottwald TR, Gilligan CA. Bayesian analysis for inference of an emerging epidemic: citrus canker in urban landscapes. PLoS Comput Biol 2014; 10:e1003587. [PMID: 24762851 PMCID: PMC3998883 DOI: 10.1371/journal.pcbi.1003587] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 01/27/2014] [Indexed: 11/19/2022] Open
Abstract
Outbreaks of infectious diseases require a rapid response from policy makers. The choice of an adequate level of response relies upon available knowledge of the spatial and temporal parameters governing pathogen spread, affecting, amongst others, the predicted severity of the epidemic. Yet, when a new pathogen is introduced into an alien environment, such information is often lacking or of no use, and epidemiological parameters must be estimated from the first observations of the epidemic. This poses a challenge to epidemiologists: how quickly can the parameters of an emerging disease be estimated? How soon can the future progress of the epidemic be reliably predicted? We investigate these issues using a unique, spatially and temporally resolved dataset for the invasion of a plant disease, Asiatic citrus canker in urban Miami. We use epidemiological models, Bayesian Markov-chain Monte Carlo, and advanced spatial statistical methods to analyse rates and extent of spread of the disease. A rich and complex epidemic behaviour is revealed. The spatial scale of spread is approximately constant over time and can be estimated rapidly with great precision (although the evidence for long-range transmission is inconclusive). In contrast, the rate of infection is characterised by strong monthly fluctuations that we associate with extreme weather events. Uninformed predictions from the early stages of the epidemic, assuming complete ignorance of the future environmental drivers, fail because of the unpredictable variability of the infection rate. Conversely, predictions improve dramatically if we assume prior knowledge of either the main environmental trend, or the main environmental events. A contrast emerges between the high detail attained by modelling in the spatiotemporal description of the epidemic and the bottleneck imposed on epidemic prediction by the limits of meteorological predictability. We argue that identifying such bottlenecks will be a fundamental step in future modelling of weather-driven epidemics.
Collapse
Affiliation(s)
- Franco M Neri
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alex R Cook
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Department of Statistics and Applied Probability, National University of Singapore, Singapore; Program in Health Services and Systems Research, Duke-NUS Graduate Medical School Singapore, Singapore; Communicable Disease Centre, Tan Tock Seng Hospital, Singapore
| | - Gavin J Gibson
- Department of Actuarial Mathematics and Statistics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Tim R Gottwald
- U.S. Dept. of Agriculture, Agricultural Research Service, U.S. Horticultural Research Laboratory, Fort Pierce, Florida, United States of America
| | | |
Collapse
|
22
|
Carrieri M, Fariselli P, Maccagnani B, Angelini P, Calzolari M, Bellini R. Weather factors influencing the population dynamics of Culex pipiens (Diptera: Culicidae) in the Po Plain Valley, Italy (1997-2011). ENVIRONMENTAL ENTOMOLOGY 2014; 43:482-490. [PMID: 24763101 DOI: 10.1603/en13173] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The impact of weather variables on Culex pipiens L. (Diptera: Culicidae) population dynamics in the Po Valley, Northern Italy, a densely populated region containing the largest industrial and agricultural areas in Italy, was investigated. Monitoring of mosquitoes was carried out by using CO(2)-baited traps without light, collecting data weekly from 1700 to 0900 hours during the period May-September, from 1997 to 2011. Daily minimum, average, and maximum relative humidity; daily minimum, maximum, and average temperature; rainfall; and hydroclimatic balance (rainfall-potential evapotranspiration) were obtained from three weather stations within the surveillance zone. The average population dynamic trend over the 15-yr period showed a bell-shaped curve with a major peak in June and a secondary peak at the end of August in the rural areas, whereas bimodality was not evidenced in the urban areas. The correlation analyses showed that the mosquito seasonal population and the population in the period of maximum West Nile virus circulation (August-September) was mostly affected by the relative humidity registered from March to July, particularly in May, and, to a lower extent, also by hydroclimatic balance registered in April-July, and by the rainfall occurred in June-July. In addition, the rate of increase of the population during the spring months influenced the development of the mosquito population of the following months.
Collapse
Affiliation(s)
- Marco Carrieri
- Medical and Veterinary Entomology, Agriculture and Environment Center "G. Nicoli," Via Argini Nord 3351, 40014 Crevalcore (BO), Italy
| | | | | | | | | | | |
Collapse
|
23
|
Qualls WA, Müller GC, Revay EE, Allan SA, Arheart KL, Beier JC, Smith ML, Scott JM, Kravchenko VD, Hausmann A, Yefremova ZA, Xue RD. Evaluation of attractive toxic sugar bait (ATSB)-Barrier for control of vector and nuisance mosquitoes and its effect on non-target organisms in sub-tropical environments in Florida. Acta Trop 2014; 131:104-10. [PMID: 24361724 DOI: 10.1016/j.actatropica.2013.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 10/08/2013] [Accepted: 12/04/2013] [Indexed: 11/26/2022]
Abstract
The efficacy of attractive toxic sugar baits (ATSB) with the active ingredient eugenol, an Environmental Protection Agency exempt compound, was evaluated against vector and nuisance mosquitoes in both laboratory and field studies. In the laboratory, eugenol combined in attractive sugar bait (ASB) solution provided high levels of mortality for Aedes aegypti, Culex quinquefasciatus, and Anopheles quadrimaculatus. Field studies demonstrated significant control: >70% reduction for Aedes atlanticus, Aedes. infirmatus, and Culex nigripalpus and >50% reduction for Anopheles crucians, Uranotaenia sapphirina, Culiseta melanura, and Culex erraticus three weeks post ATSB application. Furthermore, non-target feeding of six insect orders, Hymenoptera, Lepidoptera, Coleoptera, Diptera, Hemiptera, and Orthoptera, was evaluated in the field after application of a dyed-ASB to flowering and non-flowering vegetation. ASB feeding (staining) was determined by dissecting the guts and searching for food dye with a dissecting microscope. The potential impact of ATSB on non-targets, applied on green non-flowering vegetation was low for all non-target groups (0.9%). However, application of the ASB to flowering vegetation resulted in significant staining of the non-target insect orders. This highlights the need for application guidelines to reduce non-target effects. No mortality was observed in laboratory studies with predatory non-targets, spiders, praying mantis, or ground beetles, after feeding for three days on mosquitoes engorged on ATSB. Overall, our laboratory and field studies support the use of eugenol as an active ingredient for controlling important vector and nuisance mosquitoes when used as an ATSB toxin. This is the first study demonstrating effective control of anophelines in non-arid environments which suggest that even in highly competitive sugar rich environments this method could be used for control of malaria in Latin American countries.
Collapse
|
24
|
LORD CC, ALTO BW, ANDERSON SL, CONNELLY CR, DAY JF, RICHARDS SL, SMARTT CT, TABACHNICK WJ. Can Horton hear the whos? The importance of scale in mosquito-borne disease. JOURNAL OF MEDICAL ENTOMOLOGY 2014; 51:297-313. [PMID: 24724278 PMCID: PMC5027650 DOI: 10.1603/me11168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The epidemiology of vector-borne pathogens is determined by mechanisms and interactions at different scales of biological organization, from individual-level cellular processes to community interactions between species and with the environment. Most research, however, focuses on one scale or level with little integration between scales or levels within scales. Understanding the interactions between levels and how they influence our perception of vector-borne pathogens is critical. Here two examples of biological scales (pathogen transmission and mosquito mortality) are presented to illustrate some of the issues of scale and to explore how processes on different levels may interact to influence mosquito-borne pathogen transmission cycles. Individual variation in survival, vector competence, and other traits affect population abundance, transmission potential, and community structure. Community structure affects interactions between individuals such as competition and predation, and thus influences the individual-level dynamics and transmission potential. Modeling is a valuable tool to assess interactions between scales and how processes at different levels can affect transmission dynamics. We expand an existing model to illustrate the types of studies needed, showing that individual-level variation in viral dose acquired or needed for infection can influence the number of infectious vectors. It is critical that interactions within and among biological scales and levels of biological organization are understood for greater understanding of pathogen transmission with the ultimate goal of improving control of vector-borne pathogens.
Collapse
Affiliation(s)
- C. C. LORD
- Florida Medical Entomology Laboratory, Department of Entomology and
Nematology, University of Florida – IFAS, 200 9th St. SE, Vero Beach, FL
32962
| | - B. W. ALTO
- Florida Medical Entomology Laboratory, Department of Entomology and
Nematology, University of Florida – IFAS, 200 9th St. SE, Vero Beach, FL
32962
| | - S. L. ANDERSON
- Florida Medical Entomology Laboratory, Department of Entomology and
Nematology, University of Florida – IFAS, 200 9th St. SE, Vero Beach, FL
32962
| | - C. R. CONNELLY
- Florida Medical Entomology Laboratory, Department of Entomology and
Nematology, University of Florida – IFAS, 200 9th St. SE, Vero Beach, FL
32962
| | - J. F. DAY
- Florida Medical Entomology Laboratory, Department of Entomology and
Nematology, University of Florida – IFAS, 200 9th St. SE, Vero Beach, FL
32962
| | - S. L. RICHARDS
- Florida Medical Entomology Laboratory, Department of Entomology and
Nematology, University of Florida – IFAS, 200 9th St. SE, Vero Beach, FL
32962
| | - C. T. SMARTT
- Florida Medical Entomology Laboratory, Department of Entomology and
Nematology, University of Florida – IFAS, 200 9th St. SE, Vero Beach, FL
32962
| | - W. J. TABACHNICK
- Florida Medical Entomology Laboratory, Department of Entomology and
Nematology, University of Florida – IFAS, 200 9th St. SE, Vero Beach, FL
32962
| |
Collapse
|
25
|
LUJAN DA, GREENBERG JA, HUNG AS, DIMENNA MA, HOFKIN BV. Evaluation of seasonal feeding patterns of West Nile virus vectors in Bernalillo county, New Mexico, United States: implications for disease transmission. JOURNAL OF MEDICAL ENTOMOLOGY 2014; 51:264-8. [PMID: 24605477 PMCID: PMC3979523 DOI: 10.1603/me13163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Many mosquito species take bloodmeals predominantly from either birds or mammals. Other mosquito species are less host-specific and feed readily on both. Furthermore, some species tend to alter their feeding patterns over the course of the year; early in the mosquito season such species may feed primarily on a particular host type, and subsequently take an increasingly larger proportion of their bloodmeals from an alternative host type as the season progresses. We have examined the feeding patterns of the three mosquito species found in Bernalillo County, NM: Culex quinquefasciatus (Say), Culex tarsalis (Coquillett), and Aedes vexans (Meigen). Specifically, we seek to determine if any of these species displays a seasonal shift in terms of its host utilization pattern. Our analysis focuses on these three species because they are all considered to be competent vectors for the West Nile virus (WNV). Our current data for Cx. quinquefasciatus suggest that unlike elsewhere in its range, this species increases its proportion of avian bloodmeals as the season progresses. Alternatively, Ae. vexans feeds primarily on mammals, whereas Cx. tarsalis appears to feed on both mammals and birds throughout the mosquito season. A more complete understanding of the feeding habits of these three mosquito species may help to clarify the transmission dynamics of WNV in Bernalillo County.
Collapse
Affiliation(s)
- D. A. LUJAN
- Department of Biology, University of New Mexico, 167 Castetter Hall MSC03 2020, Albuquerque, NM 87131-0001
| | - J. A. GREENBERG
- Department of Biology, University of New Mexico, 167 Castetter Hall MSC03 2020, Albuquerque, NM 87131-0001
| | - A. S. HUNG
- Department of Biology, University of New Mexico, 167 Castetter Hall MSC03 2020, Albuquerque, NM 87131-0001
| | - M. A. DIMENNA
- Urban Biology Division, City of Albuquerque Environmental Health Department, P.O. Box 1293, Albuquerque, NM 87103
| | - B. V. HOFKIN
- Department of Biology, University of New Mexico, 167 Castetter Hall MSC03 2020, Albuquerque, NM 87131-0001
| |
Collapse
|
26
|
Vector contact rates on Eastern bluebird nestlings do not indicate West Nile virus transmission in Henrico County, Virginia, USA. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:6366-79. [PMID: 24287858 PMCID: PMC3881119 DOI: 10.3390/ijerph10126366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/07/2013] [Accepted: 11/11/2013] [Indexed: 11/17/2022]
Abstract
Sensitive indicators of spatial and temporal variation in vector-host contact rates are critical to understanding the transmission and eventual prevention of arboviruses such as West Nile virus (WNV). Monitoring vector contact rates on particularly susceptible and perhaps more exposed avian nestlings may provide an advanced indication of local WNV amplification. To test this hypothesis we monitored WNV infection and vector contact rates among nestlings occupying nest boxes (primarily Eastern bluebirds; Sialia sialis, Turdidae) across Henrico County, Virginia, USA, from May to August 2012. Observed host-seeking rates were temporally variable and associated with absolute vector and host abundances. Despite substantial effort to monitor WNV among nestlings and mosquitoes, we did not detect the presence of WNV in these populations. Generally low vector-nestling host contact rates combined with the negative WNV infection data suggest that monitoring transmission parameters among nestling Eastern bluebirds in Henrico County, Virginia, USA may not be a sensitive indicator of WNV activity.
Collapse
|
27
|
Chaves LF, Higa Y, Lee SH, Jeong JY, Heo ST, Kim M, Minakawa N, Lee KH. Environmental forcing shapes regional house mosquito synchrony in a warming temperate island. ENVIRONMENTAL ENTOMOLOGY 2013; 42:605-613. [PMID: 23905723 DOI: 10.1603/en12199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Seasonal changes in the abundance of exothermic organisms can be expected with climate change if warmer temperatures can induce changes in their phenology. Given the increased time for ectothermic organism development at lower temperatures, we asked whether population dynamics of the house mosquito, Culex pipiens s.l. (L.) (Diptera: Culicidae), in Jeju-do (South Korea), an island with a gradient of warming temperatures from north to south, showed differences in sensitivity to changes in temperature along the warming gradient. In addition, we asked whether synchrony, that is, the degree of concerted fluctuations in mosquito abundance across locations, was affected by the temperature gradient. We found the association of mosquito abundance with temperature to be delayed by 2 wk in the north when compared with the south. The abundance across all our sampling locations had a flat synchrony profile that could reflect impacts of rainfall and average temperature on the average of all our samples. Finally, our results showed that population synchrony across space can emerge even when abundance is differentially impacted by an exogenous factor across an environmental gradient.
Collapse
Affiliation(s)
- Luis Fernando Chaves
- Graduate School of Environmental Sciences and Global Center of Excellence Program on Integrated Field Environmental Science, Hokkaido University, Sapporo-shi, Kita-ku, Sapporo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Stanke C, Kerac M, Prudhomme C, Medlock J, Murray V. Health effects of drought: a systematic review of the evidence. PLOS CURRENTS 2013; 5:ecurrents.dis.7a2cee9e980f91ad7697b570bcc4b004. [PMID: 23787891 PMCID: PMC3682759 DOI: 10.1371/currents.dis.7a2cee9e980f91ad7697b570bcc4b004] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Introduction. Climate change projections indicate that droughts will become more intense in the 21 century in some areas of the world. The El Niño Southern Oscillation is associated with drought in some countries, and forecasts can provide advance warning of the increased risk of adverse climate conditions. The most recent available data from EMDAT estimates that over 50 million people globally were affected by drought in 2011. Documentation of the health effects of drought is difficult, given the complexity in assigning a beginning/end and because effects tend to accumulate over time. Most health impacts are indirect because of its link to other mediating circumstances like loss of livelihoods. Methods. The following databases were searched: MEDLINE; CINAHL; Embase; PsychINFO, Cochrane Collection. Key references from extracted papers were hand-searched, and advice from experts was sought for further sources of literature. Inclusion criteria for papers summarised in tables include: explicit link made between drought as exposure and human health outcomes; all study designs/methods; all countries/contexts; any year of publication. Exclusion criteria include: drought meaning shortage unrelated to climate; papers not published in English; studies on dry/arid climates unless drought was noted as an abnormal climatological event. No formal quality evaluation was used on papers meeting inclusion criteria. Results. 87 papers meeting the inclusion criteria are summarised in tables. Additionally, 59 papers not strictly meeting the inclusion criteria are used as supporting text in relevant parts of the results section. Main categories of findings include: nutrition-related effects (including general malnutrition and mortality, micronutrient malnutrition, and anti-nutrient consumption); water-related disease (including E coli, cholera and algal bloom); airborne and dust-related disease (including silo gas exposure and coccidioidomycosis); vector borne disease (including malaria, dengue and West Nile Virus); mental health effects (including distress and other emotional consequences); and other health effects (including wildfire, effects of migration, and damage to infrastructure). Conclusions. The probability of drought-related health impacts varies widely and largely depends upon drought severity, baseline population vulnerability, existing health and sanitation infrastructure, and available resources with which to mitigate impacts as they occur. The socio-economic environment in which drought occurs influences the resilience of the affected population. Forecasting can be used to provide advance warning of the increased risk of adverse climate conditions and can support the disaster risk reduction process. Despite the complexities involved in documentation, research should continue and results should be shared widely in an effort to strengthen drought preparedness and response activities.
Collapse
Affiliation(s)
- Carla Stanke
- Extreme Events and Health Protection Section, Health Protection Agency, London, UK
| | | | | | | | | |
Collapse
|
29
|
Caillouët KA, Riggan AE, Bulluck LP, Carlson JC, Sabo RT. Nesting bird "host funnel" increases mosquito-bird contact rate. JOURNAL OF MEDICAL ENTOMOLOGY 2013; 50:462-6. [PMID: 23540137 PMCID: PMC4711902 DOI: 10.1603/me12183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Increases in vector-host contact rates can enhance arbovirus transmission intensity. We investigated weekly fluctuations in contact rates between mosquitoes and nesting birds using the recently described Nest Mosquito Trap (NMT). The number of mosquitoes per nestling increased from < 1 mosquito per trap night to 36.2 in the final 2 wk of the nesting season. Our evidence suggests the coincidence of the end of the avian nesting season and increasing mosquito abundances may have caused a "host funnel," concentrating host-seeking mosquitoes to the few remaining nestlings. The relative abundance of mosquitoes collected by the NMT suggests that significantly more Aedes albopictus (Skuse) and Culex pipiens (L.) /restuans (Theobald) sought nesting bird bloodmeals than were predicted by their relative abundances in CO2-baited Centers for Disease Control and Prevention light and gravid traps. Culex salinarius (Coquillett) and Culex erraticus Dyar and Knab were collected in NMTs in proportion to their relative abundances in the generic traps. Temporal host funnels and nesting bird host specificity may enhance arbovirus amplification and explain observed West Nile virus and St. Louis encephalitis virus amplification periods.
Collapse
Affiliation(s)
- Kevin A Caillouët
- Department of Biology, Virginia Commonwealth University, 1000 W. Cary St., Richmond, VA 23284-2012, USA.
| | | | | | | | | |
Collapse
|
30
|
Calzolari M, Albieri A. Could drought conditions trigger Schmallenberg virus and other arboviruses circulation? Int J Health Geogr 2013; 12:7. [PMID: 23409725 PMCID: PMC3614475 DOI: 10.1186/1476-072x-12-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/21/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In 2011, a new orthobunyavirus, named the Schmallenberg virus (SBV), was discovered in Europe. Like the related Shamonda virus, SBV is an arbovirus (arthropod-borne virus). After its discovery, the virus was detected in a wide area in north-western Europe, an unexpected finding in a territory where climatic conditions would not seem ideal for arbovirus transmission. This sudden expansion suggests the effect of 2011 drought as a key factor that may have triggered SBV circulation. The possible influence of drought, recorded in north-western Europe in early 2011, on virus circulation was evaluated. METHODS AND RESULTS The locations of SBV detections in Europe until April 2012 were obtained, and area of virus circulation was evaluated by kernel density estimation. Precipitation data in SBV circulation area, summarized by the 3 month precipitation indexes of May, were compared with precipitation data outside that area, confirming driest conditions in that area. CONCLUSIONS The onset of drought conditions recorded in the SBV detection area in early 2011 may have promoted the circulation of this virus. A correlation between circulation of some arboviruses and drought has been reported elsewhere. This was mainly explained by an effect of water deficit on the environment, which altered the relationships between vectors and reservoirs, but this correlation might be also the result of unknown effects of drought on the vectors. The effect of drought conditions on arbovirus circulation is most likely underestimated and should be considered, since it could promote expansion of arboviruses into new areas in a global warming scenario.
Collapse
|
31
|
Crowder DW, Dykstra EA, Brauner JM, Duffy A, Reed C, Martin E, Peterson W, Carrière Y, Dutilleul P, Owen JP. West nile virus prevalence across landscapes is mediated by local effects of agriculture on vector and host communities. PLoS One 2013; 8:e55006. [PMID: 23383032 PMCID: PMC3559328 DOI: 10.1371/journal.pone.0055006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/18/2012] [Indexed: 11/18/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) threaten the health of humans, livestock, and wildlife. West Nile virus (WNV), the world’s most widespread arbovirus, invaded the United States in 1999 and rapidly spread across the county. Although the ecology of vectors and hosts are key determinants of WNV prevalence across landscapes, the factors shaping local vector and host populations remain unclear. Here, we used spatially-explicit models to evaluate how three land-use types (orchards, vegetable/forage crops, natural) and two climatic variables (temperature, precipitation) influence the prevalence of WNV infections and vector/host distributions at landscape and local spatial scales. Across landscapes, we show that orchard habitats were associated with greater prevalence of WNV infections in reservoirs (birds) and incidental hosts (horses), while increased precipitation was associated with fewer infections. At local scales, orchard habitats increased the prevalence of WNV infections in vectors (mosquitoes) and the abundance of mosquitoes and two key reservoir species, the American robin and the house sparrow. Thus, orchard habitats benefitted WNV vectors and reservoir hosts locally, creating focal points for the transmission of WNV at landscape scales in the presence of suitable climatic conditions.
Collapse
Affiliation(s)
- David W Crowder
- Department of Entomology, Washington State University, Pullman, WA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Johnson BJ, Sukhdeo MVK. Drought-induced amplification of local and regional West Nile virus infection rates in New Jersey. JOURNAL OF MEDICAL ENTOMOLOGY 2013; 50:195-204. [PMID: 23427670 DOI: 10.1603/me12035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
ABSTRACT This study looked at the influence of interannual variations in temperature and precipitation on seasonal mosquito abundances, the prevalence of West Nile virus (family Flaviviridae, genus Flavivirus, WNV) in the northeastern United States, and the capacity for local mosquito communities to maintain and transmit WNV, defined as vector community competence. Vector and virus surveillance took place within Middlesex County in New Jersey over two transmission seasons (2010 and 2011). Drought conditions during the 2010 season were associated with significant increases in the number of blood-fed Culex spp. mosquitoes collected per week, and significant increases in vector community competence, or the ability of local vector communities to transmit WNV, when compared with the wetter and milder 2011 season. These increases were associated with significantly higher weekly WNV infection rates in Culex spp. (i.e., Culex pipiens L. and Culex restuans L.) during the 2010 drought season. On a larger scale, the positive influence of drought on the amplification of WNV was also confirmed at the state level where early seasonal (June-July) increases in temperature and decreases in precipitation were strongly correlated with increases in yearly WNV infection rates over a 9-yr period (2003-2011). These data suggest that there may be clear temperature and precipitation thresholds beyond which epidemic levels of WNV transmission occur.
Collapse
Affiliation(s)
- B J Johnson
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
33
|
Diagnostic Testing Strategies for Health Care Delivery During the Great Bangkok Flood and Other Weather Disasters. POINT OF CARE 2012. [DOI: 10.1097/poc.0b013e318265f255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Johnson BJ, Munafo K, Shappell L, Tsipoura N, Robson M, Ehrenfeld J, Sukhdeo MVK. The roles of mosquito and bird communities on the prevalence of West Nile virus in urban wetland and residential habitats. Urban Ecosyst 2012; 15:513-531. [PMID: 25484570 DOI: 10.1007/s11252-012-0248-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study investigated the impacts of urban wetlands and their adjacent residential environments on the transmission dynamics of West Nile virus (WNV) within the state of New Jersey (USA). A working hypothesis was that urban wetlands decrease the local prevalence of WNV through the dilution effect from increased bird diversity, and through relative reductions in the numbers of competent avian host and mosquito species commonly associated with WNV. Surveys of mosquito and bird communities were undertaken at six urban wetlands and their adjacent residential environments over two seasons (2009, 2010). The community compositions of both avian and mosquito species differed significantly across habitats, and over relatively short geographical distances. Residential areas contained significantly higher proportions of WNV-competent mosquito species (31.25±5.3 %; e.g. Culex pipiens and Culex restuans), and WNV-competent avian host species (62.8±2.3 %, e.g. House Sparrow and American Robin) when compared to adjacent urban wetlands (13.5±2.1 %; 35.4±2.1 % respectively). Correspondingly, WNV infection rates within local Culex spp. populations indicate that WNV was more prevalent within residential areas (28.53/1000) compared to wetlands (16.77/1000). Large urban wetlands (>100 ha) produced significantly lower weekly WNV infection rates in local Culex spp. (6.67±2.84/1000) compared to small (<15 ha) wet-lands (22.57±6.23/1000). Avian species richness was also influenced by patch size. Large urban wetlands contained significantly more species than small wetland patches. These results confirm that the community compositions of mosquito and avian hosts are important drivers in WNV infections, and that the ecological conditions that favor transmission are more strongly associated with urban residential environments than with adjacent urban wetlands.
Collapse
Affiliation(s)
- Brian J Johnson
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA; DEENR, 152 ENR, 14 College Farm Road, New Brunswick, NJ, USA
| | - Kristin Munafo
- New Jersey Audubon Society, 9 Hardscrabble Road, Bernardsville, NJ 07924, USA
| | - Laura Shappell
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - Nellie Tsipoura
- New Jersey Audubon Society, 9 Hardscrabble Road, Bernardsville, NJ 07924, USA
| | - Mark Robson
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - Joan Ehrenfeld
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - Michael V K Sukhdeo
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
35
|
Caillouët KA, Riggan AE, Rider M, Bulluck LP. Nest Mosquito Trap quantifies contact rates between nesting birds and mosquitoes. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2012; 37:210-215. [PMID: 22548555 PMCID: PMC4711901 DOI: 10.1111/j.1948-7134.2012.00218.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Accurate estimates of host-vector contact rates are required for precise determination of arbovirus transmission intensity. We designed and tested a novel mosquito collection device, the Nest Mosquito Trap (NMT), to collect mosquitoes as they attempt to feed on unrestrained nesting birds in artificial nest boxes. In the laboratory, the NMT collected nearly one-third of the mosquitoes introduced to the nest boxes. We then used these laboratory data to estimate our capture efficiency of field-collected bird-seeking mosquitoes collected over 66 trap nights. We estimated that 7.5 mosquitoes per trap night attempted to feed on nesting birds in artificial nest boxes. Presence of the NMT did not have a negative effect on avian nest success when compared to occupied nest boxes that were not sampled with the trap. Future studies using the NMT may elucidate the role of nestlings in arbovirus transmission and further refine estimates of nesting bird and vector contact rates.
Collapse
Affiliation(s)
- Kevin A Caillouët
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298-0032, USA.
| | | | | | | |
Collapse
|
36
|
Chaves LF, Kitron UD. Weather variability impacts on oviposition dynamics of the southern house mosquito at intermediate time scales. BULLETIN OF ENTOMOLOGICAL RESEARCH 2011; 101:633-641. [PMID: 21208506 DOI: 10.1017/s0007485310000519] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Oviposition is a major event in the life history of mosquitoes, shaping both individual fitness and vectorial capacity. Several exogenous factors have been shown as important for the dynamic forcing of oviposition at finely (hourly) and coarsely (monthly or season to season) grained temporal scales. However, field studies addressing the interplay of weather factors on oviposition dynamics at the intermediate (days to weeks) time scale are missing. Here, we present the results from a field study that showed the oviposition dynamics of the southern house mosquito, Culex quinquefasciatus Say (Diptera: Culicidae), to be: (i) primarily dictated by relative humidity; and (ii) disrupted by rainfall events that resulted in a modified sensitivity to relative humidity. Rainfall changed the concentration of ammonia, a major limiting resource of microbes used as food by mosquito larvae. Following major rainfall events, the importance of relative humidity in forcing the oviposition dynamics also changed. Finally, our results indicate that qualitative changes in oviposition habitats modify the importance of weather variables as predictors of mosquito oviposition dynamics.
Collapse
Affiliation(s)
- L F Chaves
- Department of Environmental Studies, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|
37
|
Chaves LF, Hamer GL, Walker ED, Brown WM, Ruiz MO, Kitron UD. Climatic variability and landscape heterogeneity impact urban mosquito diversity and vector abundance and infection. Ecosphere 2011. [DOI: 10.1890/es11-00088.1] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
38
|
Chaves LF, Koenraadt CJM. Climate change and highland malaria: fresh air for a hot debate. QUARTERLY REVIEW OF BIOLOGY 2010; 85:27-55. [PMID: 20337259 DOI: 10.1086/650284] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In recent decades, malaria has become established in zones at the margin of its previous distribution, especially in the highlands of East Africa. Studies in this region have sparked a heated debate over the importance of climate change in the territorial expansion of malaria, where positions range from its neglect to the reification of correlations as causes. Here, we review studies supporting and rebutting the role of climatic change as a driving force for highland invasion by malaria. We assessed the conclusions from both sides of the argument and found that evidence for the role of climate in these dynamics is robust. However, we also argue that over-emphasizing the importance of climate is misleading for setting a research agenda, even one which attempts to understand climate change impacts on emerging malaria patterns. We review alternative drivers for the emergence of this disease and highlight the problems still calling for research if the multidimensional nature of malaria is to be adequately tackled. We also contextualize highland malaria as an ongoing evolutionary process. Finally, we present Schmalhausen's law, which explains the lack of resilience in stressed systems, as a biological principle that unifies the importance of climatic and other environmental factors in driving malaria patterns across different spatio-temporal scales.
Collapse
|
39
|
Ruiz MO, Chaves LF, Hamer GL, Sun T, Brown WM, Walker ED, Haramis L, Goldberg TL, Kitron UD. Local impact of temperature and precipitation on West Nile virus infection in Culex species mosquitoes in northeast Illinois, USA. Parasit Vectors 2010; 3:19. [PMID: 20302617 PMCID: PMC2856545 DOI: 10.1186/1756-3305-3-19] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 03/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Models of the effects of environmental factors on West Nile virus disease risk have yielded conflicting outcomes. The role of precipitation has been especially difficult to discern from existing studies, due in part to habitat and behavior characteristics of specific vector species and because of differences in the temporal and spatial scales of the published studies. We used spatial and statistical modeling techniques to analyze and forecast fine scale spatial (2000 m grid) and temporal (weekly) patterns of West Nile virus mosquito infection relative to changing weather conditions in the urban landscape of the greater Chicago, Illinois, region for the years from 2004 to 2008. RESULTS Increased air temperature was the strongest temporal predictor of increased infection in Culex pipiens and Culex restuans mosquitoes, with cumulative high temperature differences being a key factor distinguishing years with higher mosquito infection and higher human illness rates from those with lower rates. Drier conditions in the spring followed by wetter conditions just prior to an increase in infection were factors in some but not all years. Overall, 80% of the weekly variation in mosquito infection was explained by prior weather conditions. Spatially, lower precipitation was the most important variable predicting stronger mosquito infection; precipitation and temperature alone could explain the pattern of spatial variability better than could other environmental variables (79% explained in the best model). Variables related to impervious surfaces and elevation differences were of modest importance in the spatial model. CONCLUSION Finely grained temporal and spatial patterns of precipitation and air temperature have a consistent and significant impact on the timing and location of increased mosquito infection in the northeastern Illinois study area. The use of local weather data at multiple monitoring locations and the integration of mosquito infection data from numerous sources across several years are important to the strength of the models presented. The other spatial environmental factors that tended to be important, including impervious surfaces and elevation measures, would mediate the effect of rainfall on soils and in urban catch basins. Changes in weather patterns with global climate change make it especially important to improve our ability to predict how inter-related local weather and environmental factors affect vectors and vector-borne disease risk.Local impact of temperature and precipitation on West Nile virus infection in Culex species mosquitoes in northeast Illinois, USA.
Collapse
Affiliation(s)
- Marilyn O Ruiz
- Department of Pathobiology, University of Illinois, Urbana, Illinois, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wang G, Minnis RB, Belant JL, Wax CL. Dry weather induces outbreaks of human West Nile virus infections. BMC Infect Dis 2010; 10:38. [PMID: 20181272 PMCID: PMC2841181 DOI: 10.1186/1471-2334-10-38] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Accepted: 02/24/2010] [Indexed: 11/12/2022] Open
Abstract
Background Since its first occurrence in the New York City area during 1999, West Nile virus (WNV) has spread rapidly across North America and has become a major public health concern in North America. By 2002, WNV was reported in 40 states and the District of Columbia with 4,156 human and 14,539 equine cases of infection. Mississippi had the highest human incidence rate of WNV during the 2002 epidemic in the United States. Epidemics of WNV can impose enormous impacts on local economies. Therefore, it is advantageous to predict human WNV risks for cost-effective controls of the disease and optimal allocations of limited resources. Understanding relationships between precipitation and WNV transmission is crucial for predicting the risk of the human WNV disease outbreaks under predicted global climate change scenarios. Methods We analyzed data on the human WNV incidences in the 82 counties of Mississippi in 2002, using standard morbidity ratio (SMR) and Bayesian hierarchical models, to determine relationships between precipitation and human WNV risks. We also entertained spatial autocorrelations of human WNV risks with conditional autocorrelative (CAR) models, implemented in WinBUGS 1.4.3. Results We observed an inverse relationship between county-level human WNV incidence risk and total annual rainfall during the previous year. Parameters representing spatial heterogeneity in the risk of human exposure to WNV improved model fit. Annual precipitation of the previous year was a predictor of spatial variation of WNV risk. Conclusions Our results have broad implications for risk assessment of WNV and forecasting WNV outbreaks. Assessing risk of vector-born infectious diseases will require understanding of complex ecological relationships. Based on the climatologically characteristic drought occurrence in the past and on climate model predictions for climate change and potentially greater drought occurrence in the future, we suggest that the frequency and relative risk of WNV outbreaks could increase.
Collapse
Affiliation(s)
- Guiming Wang
- Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Mississippi State, Mississippi 39762, USA.
| | | | | | | |
Collapse
|
41
|
Shaman J, Day JF, Komar N. Hydrologic conditions describe West Nile virus risk in Colorado. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:494-508. [PMID: 20616987 PMCID: PMC2872291 DOI: 10.3390/ijerph7020494] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 02/09/2010] [Indexed: 11/30/2022]
Abstract
We examine the relationship between hydrologic variability and the incidence of human disease associated with West Nile virus (WNV; family Flaviviridae, genus Flavivirus) infection (hereafter termed “human WN cases”) in Colorado from 2002 to 2007. We find that local hydrologic conditions, as simulated by the Mosaic hydrology model, are associated with differences in human WN cases. In Colorado’s eastern plains, wetter spring conditions and drier summer conditions predict human WN cases. In Colorado’s western mountains, drier spring and summer conditions weakly predict human WN cases. These findings support two working hypotheses: (1) wet spring conditions increase the abundance of Culex tarsalis vectors in the plains, and (2) dry summer conditions, and respondent irrigational practices during such droughts, favor Cx. pipiens and Cx. tarsalis abundance throughout Colorado. Both of these processes potentially increase the local vector-to-host ratio, favoring WNV amplification among competent avian hosts and bridging to humans.
Collapse
Affiliation(s)
- Jeffrey Shaman
- College of Oceanic and Atmospheric Sciences, Oregon State University, 104 COAS Administration Building, Corvallis, OR 97330, USA
- Author to whom correspondence should be addressed; E-Mail:
; Tel.: +1-541-737-4915; Fax: +1-541-737-2064
| | - Jonathan F. Day
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, 200 9 Street SE, Vero Beach, FL 32962, USA; E-Mail:
| | - Nicholas Komar
- Arbovirus Diseases Branch, Centers for Disease Control and Prevention, 3150 Rampart Road, Fort Collins, CO 80521, USA; E-Mail:
| |
Collapse
|
42
|
Kost GJ, Hale KN, Brock TK, Louie RF, Gentile NL, Kitano TK, Tran NK. Point-of-care testing for disasters: needs assessment, strategic planning, and future design. Clin Lab Med 2010; 29:583-605. [PMID: 19840690 PMCID: PMC7115727 DOI: 10.1016/j.cll.2009.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gerald J Kost
- Department of Pathology and Laboratory Medicine, UC Davis-LLNL Point-of-Care Technologies Center [NIBIB, NIH], Point-of-Care Testing Center for Teaching and Research (POCT*CTR), School of Medicine, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Day JF, Shaman J. Severe winter freezes enhance St. Louis encephalitis virus amplification and epidemic transmission in peninsular Florida. JOURNAL OF MEDICAL ENTOMOLOGY 2009; 46:1498-1506. [PMID: 19960704 DOI: 10.1603/033.046.0638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mosquito-borne arboviral epidemics tend to strike without warning. The driving force for these epidemics is a combination of biotic (vector, amplification host, and virus) and abiotic (meteorological conditions, especially rainfall and temperature) factors. Abiotic factors that facilitate the synchronization and interaction of vector and amplification host populations favor epidemic amplification and transmission. In Florida, epidemics of St. Louis encephalitis (SLE) virus (family Flaviviridae, genus Flavivirus, SLEV) have been preceded by major freezes one or two winters before the onset of human cases. Here, we analyze the relationship between severe winter freezes and epidemic SLEV transmission in peninsular Florida and show that there is a significant relationship between the transmission of SLEV and these severe freezes. We propose that by killing cold-sensitive understory vegetation in the mid-peninsular region of Florida, freezes enhance the reproductive success of ground-feeding avian amplification hosts, especially mourning doves and common grackles. In conjunction with other appropriate environmental signals, increased avian reproductive success may enhance SLEV and West Nile (WN) virus amplification and result in SLE and WN epidemics during years when all of the biological cycles are properly synchronized. The knowledge that winter freezes in Florida may enhance the amplification and epidemic transmission of SLE and WN viruses facilitates arboviral tracking and prediction of human risk of SLE and WN infection during the transmission season.
Collapse
Affiliation(s)
- Jonathan F Day
- University of Florida, Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory, 200 9th St. SE, Vero Beach, FL 32962, USA.
| | | |
Collapse
|
44
|
Landesman WJ, Allan BF, Langerhans RB, Knight TM, Chase JM. Inter-annual associations between precipitation and human incidence of West Nile virus in the United States. Vector Borne Zoonotic Dis 2008; 7:337-43. [PMID: 17867908 DOI: 10.1089/vbz.2006.0590] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Higher-than-average precipitation levels may cause mosquito outbreaks if mosquitoes are limited by larval habitat availability. Alternatively, recent ecological research suggests that drought events can lead to mosquito outbreaks the following year due to changes in food web structure. By either mechanism, these mosquito outbreaks may contribute to human cases of West Nile Virus (WNV) in the recent United States outbreak. Using countylevel precipitation and human WNV incidence data (2002-2004), we tested the impacts of above and below-average rainfall on the prevalence of WNV in human populations both within and between years. We found evidence that human WNV incidence is most strongly associated with annual precipitation from the preceding year. Human outbreaks of WNV are preceded by above-average rainfall in the eastern United States and below-average rainfall in the western United States in the prior year. While no direct mechanism may be determined from this study, we hypothesize that differences in the ecology of mosquito vectors may be responsible for the opposite relationships between precipitation and WNV outbreaks between the eastern and western United States.
Collapse
Affiliation(s)
- William J Landesman
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA.
| | | | | | | | | |
Collapse
|
45
|
Vitek CJ, Richards SL, Mores CN, Day JF, Lord CC. Arbovirus transmission by Culex nigripalpus in Florida, 2005. JOURNAL OF MEDICAL ENTOMOLOGY 2008; 45:483-93. [PMID: 18533444 PMCID: PMC2770802 DOI: 10.1603/0022-2585(2008)45[483:atbcni]2.0.co;2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Understanding the transmission patterns of West Nile and St. Louis encephalitis viruses (family Flaviviridae, genus Flavivirus, WNV and SLEV) could result in an increased ability to predict transmission risk to humans. To examine transmission patterns between vector and host, we trapped mosquitoes in three Florida counties from June to November 2005 by using chicken-baited lard can mosquito traps. These traps were used to monitor for presence of WNV and SLEV in mosquitoes and subsequent transmission of these viruses to chickens. In total, 166,615 female mosquitoes were sorted into 4,009 pools based on species and bloodfed status, and they were tested for presence of WNV and SLEV. Sera from 209 chickens were tested for WNV and SLEV antibodies. We detected eight WNV-positive Culex nigripalpus Theobald mosquito pools; SLEV was not detected in any pools. Six positive pools were collected in August and September from Duval County, one pool in September from Manatee County, and one pool in November from Indian River County. Of the eight chickens potentially exposed to WNV, antibodies were detected in only one chicken, indicating a low rate of transmission relative to the observed mosquito infection rates. Low virus transmission rates relative to infection rates would suggest that using sentinel chicken seroconversion data as a means of arbovirus surveillance may underestimate the prevalence of WNV in the mosquito population. However, using mosquito infection rates may overestimate the risk of arboviral transmission. A variety of factors might account for the observed low level of transmission including a lack of viral dissemination in mosquito vectors.
Collapse
Affiliation(s)
- Christopher J Vitek
- Florida Medical Entomology Laboratory, University of Florida, Institute of Food and Agricultural Science, 200 9th Street SE, Vero Beach, FL 32962, USA.
| | | | | | | | | |
Collapse
|
46
|
LaBeaud AD, Gorman AM, Koonce J, Kippes C, McLeod J, Lynch J, Gallagher T, King CH, Mandalakas AM. Rapid GIS-based profiling of West Nile virus transmission: defining environmental factors associated with an urban-suburban outbreak in Northeast Ohio, USA. GEOSPATIAL HEALTH 2008; 2:215-25. [PMID: 18686270 PMCID: PMC3140769 DOI: 10.4081/gh.2008.245] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Human West Nile virus (WNV) infection was first detected in Cuyahoga county, Ohio, USA, in 2002. During that year's extensive epidemic/epizootic among non-immune human and bird populations, the county experienced 155 cases of severe human West Nile neurological disease (WNND, incidence = 11.1 cases/100,000), with 11 fatalities. Structured serosurveys indicated that 1.9%, or approximately 26,000 of county residents (population = 1,372,303) were infected that year. In early 2003, in order to better focus monitoring and control efforts, we used a geographical information system (GIS) approach and spatial statistical analysis to identify the association of environmental factors and human population structure with the observed local risk for WNV transmission. Within the varied range of urban/suburban/ rural habitats across the 1186 km2 county, exploratory analysis indicated significant clustering of WNND risk in inner-ring suburbs. Subsequent discriminant factor analysis based on inputs of census and land-use/land cover data was found to effectively classify sub-areas of the county having low, medium and high WNV risk. On a 1036 ha quadrat scale of resolution, higher risk of human infection was significantly associated with higher-income areas, increased fractionation of habitat and older housing, while it was negatively associated with areas of agricultural land, wetland or forest. The areal classification of WNV transmission risk has been validated over time through detection of increased local Culex spp. mosquito density (2002-2006), and increased frequency of WNV positive mosquito pools within the medium- and high-risk quadrats. This timely working identification of the transmission scale effectively focused control interventions against newly invasive WNV in a complex North American habitat.
Collapse
Affiliation(s)
- A Desiree LaBeaud
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
West Nile virus (WNV) is a flavivirus that is maintained in a bird-mosquito transmission cycle. Humans, horses and other non-avian vertebrates are usually incidental hosts, but evidence is accumulating that this might not always be the case. Historically, WNV has been associated with asymptomatic infections and sporadic disease outbreaks in humans and horses in Africa, Europe, Asia and Australia. However, since 1994, the virus has caused frequent outbreaks of severe neuroinvasive disease in humans and horses in Europe and the Mediterranean Basin. In 1999, WNV underwent a dramatic expansion of its geographic range, and was reported for the first time in the Western Hemisphere during an outbreak of human and equine encephalitis in New York City. The outbreak was accompanied by extensive and unprecedented avian mortality. Since then, WNV has dispersed across the Western Hemisphere and is now found throughout the USA, Canada, Mexico and the Caribbean, and parts of Central and South America. WNV has been responsible for >27,000 human cases, >25,000 equine cases and hundreds of thousands of avian deaths in the USA but, surprisingly, there have been only sparse reports of WNV disease in vertebrates in the Caribbean and Latin America. This review summarizes our current understanding of WNV with particular emphasis on its transmission dynamics and changing epidemiology.
Collapse
|
48
|
|
49
|
Fitzgibbon WE, Langlais M, Morgan JJ. A mathematical model for indirectly transmitted diseases. Math Biosci 2007; 206:233-48. [PMID: 16216284 DOI: 10.1016/j.mbs.2005.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2005] [Accepted: 07/11/2005] [Indexed: 11/27/2022]
Abstract
We consider a mathematical model for the indirect transmission via a contaminated environment of a microparasite between two spatially distributed host populations having non-coincident spatial domains. The parasite is benign in a first population and lethal in the second one. Global existence results are given for the resulting reaction-diffusion system coupled with an ordinary differential equation. Then, invasion and persistence of the parasite are studied. A simplified model for the transmission of a hantavirus from bank vole to human populations is then analysed.
Collapse
Affiliation(s)
- W E Fitzgibbon
- Department of Mathematics, University of Houston, Houston, TX 77204-3476, USA.
| | | | | |
Collapse
|
50
|
Shaman J, Day JF. Reproductive phase locking of mosquito populations in response to rainfall frequency. PLoS One 2007; 2:e331. [PMID: 17396162 PMCID: PMC1824708 DOI: 10.1371/journal.pone.0000331] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 03/06/2007] [Indexed: 11/19/2022] Open
Abstract
The frequency of moderate to heavy rainfall events is projected to change in response to global warming. Here we show that these hydrologic changes may have a profound effect on mosquito population dynamics and rates of mosquito-borne disease transmission. We develop a simple model, which treats the mosquito reproductive cycle as a phase oscillator that responds to rainfall frequency forcing. This model reproduces observed mosquito population dynamics and indicates that mosquito-borne disease transmission can be sensitive to rainfall frequency. These findings indicate that changes to the hydrologic cycle, in particular the frequency of moderate to heavy rainfall events, could have a profound effect on the transmission rates of some mosquito-borne diseases.
Collapse
Affiliation(s)
- Jeffrey Shaman
- College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, United States of America.
| | | |
Collapse
|