1
|
Spedicato M, Ronchi GF, Profeta F, Traini S, Capista S, Leone A, Iorio M, Portanti O, Palucci C, Pulsoni S, Testa L, Serroni A, Rossi E, Armillotta G, Laguardia C, D'Alterio N, Savini G, Di Ventura M, Lorusso A, Mercante MT. Efficacy of an inactivated EHDV-8 vaccine in preventing viraemia and clinical signs in experimentally infected cattle. Virus Res 2024; 347:199416. [PMID: 38897236 PMCID: PMC11261067 DOI: 10.1016/j.virusres.2024.199416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
Epizootic haemorrhagic disease (EHD), caused by the EHD virus (EHDV), is a vector-borne viral disease transmitted through Culicoides biting midges. EHDV comprises seven serotypes (1, 2, and 4-8), with EHDV-8 having recently emerged and spread in Europe over the last two years. Such event has raised concerns about the significant threat posed by EHDV-8 to livestock industry. In this study, an inactivated vaccine against EHDV-8 (vEHDV8-IZSAM) was developed. Safety and efficacy of the vaccine were evaluated in calves through clinical, serological, and virological monitoring following experimental challenge. The vaccine was proven safe, with only transient fever and localized reactions observed in a few animals, consistent with adjuvanted vaccine side effects. vEHDV8-IZSAM elicited a robust humoral response, as evidenced by the presence of neutralizing antibodies. After challenge with a virulent isolate, viraemia and clinical signs were evidenced in control animals but in none of the vaccinated animals. This study highlights the potential of vEHDV8-IZSAM as a safe and highly effective vaccine against EHDV-8 in cattle. It offers protection from clinical disease and effectively prevents viraemia. With the recent spread of EHDV-8 in European livestock, the use of an inactivated vaccine could be key in protecting animals from clinical disease and thus to mitigate the economic impact of the disease. Further investigations are warranted to assess the duration of the induced immunity and the applicability of this vaccine in real-world settings. Accordingly, joint efforts between public veterinary institutions and pharmaceutical companies are recommended to scale up vaccine production.
Collapse
Affiliation(s)
- Massimo Spedicato
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy.
| | | | - Francesca Profeta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Sara Traini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Sara Capista
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Alessandra Leone
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Mariangela Iorio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Ottavio Portanti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Cristiano Palucci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Simone Pulsoni
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Lilia Testa
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Anna Serroni
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Emanuela Rossi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Gisella Armillotta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Caterina Laguardia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Nicola D'Alterio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Mauro Di Ventura
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| | - Maria Teresa Mercante
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise-(IZSAM), Teramo Italy
| |
Collapse
|
2
|
Golender N, Hoffmann B. The Molecular Epidemiology of Epizootic Hemorrhagic Disease Viruses Identified in Israel between 2015 and 2023. EPIDEMIOLOGIA 2024; 5:90-105. [PMID: 38390919 PMCID: PMC10885110 DOI: 10.3390/epidemiologia5010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Epizootic hemorrhagic disease (EHD) is an infectious, non-contagious viral disease seriously affecting cattle and some wild ruminants and has a worldwide distribution. All viruses can be subdivided into "Eastern" and "Western" topotypes according to geographic distribution via the phylogenetic analysis of internal genes. In Israel, during the last decade, three outbreaks were registered: caused by EHDV-6 in 2015, by EHDV-1 in 2016, and by EHDV-7 in 2020. Additionally, RNA of EHDV-8 was found in imported calves from Portugal in 2023. During the same period in other countries of the region, non-Israeli-like EHDV-6 and EHDV-8 were identified. Full genome sequencing, BLAST, and phylogenetic analyses of the locally and globally known EHDV genomes allowed us to presume the probable route and origin of these viruses detected in Israel. Thus, EHDV-6 has probably been circulating in the region for a long period when EHDV-1 and -8 appeared here for the last years, while their route of introduction into the new areas was probably natural; all of them belonged to the "Western" topotype. In contrast, EHDV-7 probably had the "Eastern", anthropogenic origin. Data from the study can facilitate the evaluation of the appearance or reappearance of EHDVs in the Mediterranean area and enhance the planning of prevention measures.
Collapse
Affiliation(s)
- Natalia Golender
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 5025001, Israel
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
3
|
Newbrook K. Epizootic Hemorrhagic Disease Virus Titration. Methods Mol Biol 2024; 2838:101-121. [PMID: 39126626 DOI: 10.1007/978-1-0716-4035-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
The titration of viruses onto susceptible cell lines is an important virological technique used to quantify infectious viral titers. It forms an integral component of epizootic hemorrhagic disease virus (EHDV) research, including estimating infectivity, calculating multiplicity of infection, and confirming virus propagation in cell culture. However, the ability to quantify infectious EHDV is also critical for disease control, particularly in the event of an outbreak. Routine EHD diagnostics do not accurately quantify infectious virus, which would allow accurate prediction of the onward transmission risk, but instead are typically more qualitative in nature (e.g., virus isolation) or only quantify viral genome copies (e.g., real-time PCR) which often remain detectable long after infectious virus is cleared from the host.Infectious EHDV titers are typically quantified through the detection of visible cytopathic effect (CPE) in the monolayer of susceptible mammalian cell cultures. However, not all susceptible cell lines demonstrate visible CPE upon EHDV infection, including cell lines such as KC cells, which are derived from the EHDV biological insect vector, Culicoides sonorensis. This chapter presents a comprehensive method for the titration of EHDV-positive samples onto relevant, susceptible mammalian (Vero) and insect (KC) cell lines and describes alternative methods that can be used to visualize EHDV infection, by CPE or immunofluorescent labeling of viral proteins, to enable the calculation of infectious EHDV titers.
Collapse
|
4
|
Ruder MG, Howerth EW. Recognition of Field Signs, Necropsy Procedures, and Evaluation of Macroscopic Lesions of Cervids Infected with Epizootic Hemorrhagic Disease Virus. Methods Mol Biol 2024; 2838:17-64. [PMID: 39126622 DOI: 10.1007/978-1-0716-4035-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Epizootic hemorrhagic disease virus (EHDV) is an arthropod-borne RNA virus in the genus Orbivirus, family Sedoreoviridae. Globally, seven known EHDV serotypes circulate among ruminant hosts and Culicoides species vectors. A variety of domestic and wild ruminant species are susceptible to EHDV infection, but infection outcome is highly variable between species, as well as between individuals of the same species. Thus, this disease system inherently operates at the wildlife-livestock interface. Domestic cattle are important hosts for EHDV, and while inapparent infection is the most common outcome, reports of clinical disease have increased in some parts of the world. However, fatal infection of cattle is rare. Among wildlife, white-tailed deer (Odocoileus virginianus) are highly susceptible to severe and often fatal disease. Considering the paucity of data and poorly characterized pathology of EHD in cattle, white-tailed deer represent a case study for describing the field signs and necropsy lesions associated with EHD. Here we describe the field signs that commonly define EHD outbreaks in North America, a basic approach to a gross necropsy examination of white-tailed deer, description of the gross lesions that may be present, and diagnostic sample collection. Field investigations of large-scale EHD outbreaks are common in North America. The necropsy examination is an essential tool in the study of disease and when coupled with other disciplines (e.g., virology, immunology, epidemiology) has been fundamentally important to understanding EHD in North America.
Collapse
Affiliation(s)
- Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - Elizabeth W Howerth
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
5
|
Lv MN, Zhu JB, Liao SQ, Yang ZX, Lin XH, Qi NS, Chen QL, Wu CY, Li J, Cai HM, Zhang JF, Hu JJ, Xiao WW, Zhang X, Sun MF. Seroprevalence of Epizootic Hemorrhagic Disease Virus in Guangdong Cattle Farms during 2013-2017, China. Viruses 2023; 15:1263. [PMID: 37376563 DOI: 10.3390/v15061263] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Epizootic hemorrhagic disease (EHD) is an infectious viral disease caused by epizootic hemorrhagic disease virus (EHDV) and EHDV frequently circulates in wild and domestic ruminants. Sporadic outbreaks of EHD have caused thousands of deaths and stillbirths on cattle farms. However, not much is known about the circulating status of EHDV in Guangdong, southern China. To estimate the seroprevalence of EHDV in Guangdong province, 2886 cattle serum samples were collected from 2013 to 2017 and tested for antibodies against EHDV using a competitive ELISA. The overall seroprevalence of EHDV reached 57.87% and was highest in autumn (75.34%). A subset of positive samples were serotyped by a serum neutralization test, showing that EHDV serotypes 1 and 5-8 were circulating in Guangdong. In addition, EHDV prevalence always peaked in autumn, while eastern Guangdong had the highest EHDV seropositivity over the five-year period, displaying apparent temporal-spatial distribution of EHDV prevalence. A binary logistic model analysis indicated a significant association between cattle with BTV infections and seroprevalence of EHDV (OR = 1.70, p < 0.001). The co-infection of different serotypes of EHDV and BTV raises a high risk of potential genomic reassortment and is likely to pose a significant threat to cattle, thus urging more surveillance to monitor their circulating dynamics in China.
Collapse
Affiliation(s)
- Min-Na Lv
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jian-Bo Zhu
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Shen-Quan Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhen-Xing Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Xu-Hui Lin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Nan-Shan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qin-Ling Chen
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Cai-Yan Wu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Juan Li
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hai-Ming Cai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jian-Fei Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jun-Jing Hu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wen-Wan Xiao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xu Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Ming-Fei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
6
|
Jiménez-Cabello L, Utrilla-Trigo S, Lorenzo G, Ortego J, Calvo-Pinilla E. Epizootic Hemorrhagic Disease Virus: Current Knowledge and Emerging Perspectives. Microorganisms 2023; 11:1339. [PMID: 37317313 DOI: 10.3390/microorganisms11051339] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
Epizootic Hemorrhagic Disease (EHD) of ruminants is a viral pathology that has significant welfare, social, and economic implications. The causative agent, epizootic hemorrhagic disease virus (EHDV), belongs to the Orbivirus genus and leads to significant regional disease outbreaks among livestock and wildlife in North America, Asia, Africa, and Oceania, causing significant morbidity and mortality. During the past decade, this viral disease has become a real threat for countries of the Mediterranean basin, with the recent occurrence of several important outbreaks in livestock. Moreover, the European Union registered the first cases of EHDV ever detected within its territory. Competent vectors involved in viral transmission, Culicoides midges, are expanding its distribution, conceivably due to global climate change. Therefore, livestock and wild ruminants around the globe are at risk for this serious disease. This review provides an overview of current knowledge about EHDV, including changes of distribution and virulence, an examination of different animal models of disease, and a discussion about potential treatments to control the disease.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| |
Collapse
|
7
|
Ibrahim S, Al-Sharif M, Younis F, Ateya A, Abdo M, Fericean L. Analysis of Potential Genes and Economic Parameters Associated with Growth and Heat Tolerance in Sheep ( Ovis aries). Animals (Basel) 2023; 13:ani13030353. [PMID: 36766241 PMCID: PMC9913162 DOI: 10.3390/ani13030353] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
This study explored the potential genes and economic factors that might be associated with growth and heat tolerance in two sheep breeds. Data on growth performance from the third month to six months of age were obtained based on records. In comparison to Aboudeleik lambs, Barki lambs developed considerably greater starting body weight, final body weight, final body weight gain, daily weight gain, and percentage increase in BW/month. Single nucleotide polymorphisms (SNPs) were found between lambs of the two breeds using PCR-DNA sequencing of CAST, LEP, MYLK4, MEF2B, STAT5A, TRPV1, HSP90AB1, HSPB6, HSF1, ST1P1, and ATP1A1 genes. Lambs from each breed were divided into groups based on detected SNPs in genes related to growth. The least squares means of the differentiated groups revealed a significant correlation of detected SNPs with growth and heat tolerance attributes (p ≤ 0.05). Barki lambs elicited greater total variable costs, total costs, total return, and net return values. The Barki sheep provided the best economic efficiency value when comparing the percentage difference between net profit and economic efficiency. Together with economic considerations, SNPs found may be used as proxies for marker-assisted selection of the best breed of sheep for traits related to growth and heat tolerance.
Collapse
Affiliation(s)
- Samer Ibrahim
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mona Al-Sharif
- Department of Biology, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Fawzy Younis
- Animal and Poultry Physiology Department, Animal and Poultry Division, Desert Research Center, Cairo 11753, Egypt
| | - Ahmed Ateya
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: ; Tel.: +2-01003-541921; Fax: +2-050-2372592
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat, Sadat City 32897, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania
| |
Collapse
|
8
|
Armillotta G, Di Febo T, Ulisse S, Laguardia C, Iorio M, Krasteva I, Tittarelli M, Mercante MT, Luciani M. Production and Characterization of Monoclonal Antibodies Against the VP7 Protein of Epizootic Hemorrhagic Disease Virus. Monoclon Antib Immunodiagn Immunother 2022; 41:181-187. [PMID: 36027041 DOI: 10.1089/mab.2021.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Monoclonal antibodies (MAbs) against epizootic hemorrhagic disease virus (EHDV) were produced by immunizing BALB/c mice with rec-VP7-EHDV2; 66 clones producing MAbs able to recognize the VP7-EHDV with a strong reaction were obtained and tested in indirect enzyme-linked immunosorbent assay (i-ELISA) against the whole epizootic hemorrhagic disease (EHD) virus serotype 2; potential cross-reactions with related orbiviruses, as Bluetongue virus (BTV) and African horse sickness virus (AHSV), were investigated as well by i-ELISA, Western blot, and immunofluorescence. Fifty-three MAbs were specific for EHDV (VP7 recombinant protein and whole virus) and 13 reacted also with the VP7 of BTV. None of the MAbs reacted with AHSV. MAbs specific for EHDV were further characterized in a competitive ELISA (c-ELISA): 20 among them were found useful to develop a c-ELISA for the detection of antibodies against EHDV in bovine sera. The availability of this extensive set of MAbs provides the opportunity to develop a c-ELISA for the serological diagnosis of EHDV and to tune new methods for the isolation and identification of the virus in biological samples and cell cultures. The experimentation protocol was approved by the Italian Ministry of Health (number 639/2018-PR, Resp. to Prot. BDF16.13#295833199#).
Collapse
Affiliation(s)
- Gisella Armillotta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Tiziana Di Febo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Simonetta Ulisse
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Caterina Laguardia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Mariangela Iorio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Ivanka Krasteva
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Manuela Tittarelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Maria Teresa Mercante
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Mirella Luciani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| |
Collapse
|
9
|
Duan Y, Yang Z, Zhu P, Xiao L, Li Z, Li Z, Li L, Zhu J. A serologic investigation of epizootic hemorrhagic disease virus in China between 2014 and 2019. Virol Sin 2022; 37:513-520. [PMID: 35718300 PMCID: PMC9437609 DOI: 10.1016/j.virs.2022.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
Epizootic hemorrhagic disease virus (EHDV) is a member of the genus Orbivirus, family Sedoreoviridae. It was firstly recognized in 1955 to cause a highly fatal disease of wild white-tailed deer in America. So far, EHDV was detected and isolated in many wild or domestic ruminants, and widely distributed all over the world. Although the domestic cattle and sheep infected by EHDV were usually asymptomatic or subclinical, several outbreaks of epizootic hemorrhagic disease (EHD) in deer and cattle had been reported. Many EHDV strains were isolated and sequenced in last two decades in China, which promoted a general serologic investigation of EHDV in China. In this study, 18,122 sera were collected from asymptomatic or subclinical domestic ruminants (cattle, cow, yaks, sheep, goats, and deer) in 116 regions belonging to 15 provinces in China. All the sera were tested by EHDV C-ELISA, and the results were obtained by big data analysis. EHDV infections were detected in the 14 of 15 provinces, and only Tibet (average altitude ≥ 4000 m) which was the highest province in China was free of EHDV. The numbers of seropositive collections in both bovine and goat/sheep were in an inverse proportion to the latitude. However, the seropositive rates in bovine were ranged from 0% to 100%, while the seropositive rates in goat/sheep were no more than 50%. The results suggested that bovine was obviously more susceptive for EHDV infection than goat and sheep, therefore might be a major reservoir of EHDV in China. The prevalence of EHDV was consistent with the distribution of Culicoides which were known as the sole insect vectors of EHDV. In particular, the seropositive rates of EHDV were very high in the southern provinces, which required the enhanced surveillance in the future. This is a big data analysis. This is the first English report for EHDV prevalence in multiple provinces in China. The samples included in this study cover 15 provinces and 6 years.
Collapse
Affiliation(s)
- Yingliang Duan
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China
| | - Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China
| | - Pei Zhu
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China
| | - Lei Xiao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China
| | - Zhanhong Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China
| | - Zhuoran Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China
| | - Le Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China
| | - Jianbo Zhu
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China.
| |
Collapse
|
10
|
Rodrigues TCS, Viadanna PHO, Subramaniam K, Hawkins IK, Jeon AB, Loeb JC, Krauer JMC, Lednicky JA, Wisely SM, Waltzek TB. Characterization of a Novel Reassortant Epizootic Hemorrhagic Disease Virus Serotype 6 Strain Isolated from Diseased White-Tailed Deer ( Odocoileus virginianus) on a Florida Farm. Viruses 2022; 14:1012. [PMID: 35632753 PMCID: PMC9146129 DOI: 10.3390/v14051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
We report an outbreak of a novel reassortant epizootic hemorrhagic disease virus serotype 6 (EHDV-6) in white-tailed deer (WTD) on a Florida farm in 2019. At necropsy, most animals exhibited hemorrhagic lesions in the lung and heart, and congestion in the lung, liver, and spleen. Histopathology revealed multi-organ hemorrhage and congestion, and renal tubular necrosis. Tissues were screened by RT-qPCR and all animals tested positive for EHDV. Tissues were processed for virus isolation and next-generation sequencing was performed on cDNA libraries generated from the RNA extracts of cultures displaying cytopathic effects. Six isolates yielded nearly identical complete genome sequences of a novel U.S. EHDV-6 strain. Genetic and phylogenetic analyses revealed the novel strain to be most closely related to a reassortant EHDV-6 strain isolated from cattle in Trinidad and both strains received segment 4 from an Australian EHDV-2 strain. The novel U.S. EHDV-6 strain is unique in that it acquired segment 8 from an Australian EHDV-8 strain. An RNAscope® in situ hybridization assay was developed against the novel U.S. EHDV-6 strain and labeling was detected within lesions of the heart, kidney, liver, and lung. These data support the novel U.S. reassortant EHDV-6 strain as the cause of disease in the farmed WTD.
Collapse
Affiliation(s)
- Thaís C. S. Rodrigues
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (T.C.S.R.); (P.H.O.V.); (K.S.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; (J.C.L.); (J.A.L.); (S.M.W.)
| | - Pedro H. O. Viadanna
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (T.C.S.R.); (P.H.O.V.); (K.S.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; (J.C.L.); (J.A.L.); (S.M.W.)
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (T.C.S.R.); (P.H.O.V.); (K.S.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; (J.C.L.); (J.A.L.); (S.M.W.)
| | - Ian K. Hawkins
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (I.K.H.); (A.B.J.)
| | - Albert B. Jeon
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (I.K.H.); (A.B.J.)
| | - Julia C. Loeb
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; (J.C.L.); (J.A.L.); (S.M.W.)
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA
| | - Juan M. C. Krauer
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - John A. Lednicky
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; (J.C.L.); (J.A.L.); (S.M.W.)
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA
| | - Samantha M. Wisely
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; (J.C.L.); (J.A.L.); (S.M.W.)
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - Thomas B. Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (T.C.S.R.); (P.H.O.V.); (K.S.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; (J.C.L.); (J.A.L.); (S.M.W.)
| |
Collapse
|
11
|
Full Genome Sequencing of Three Sedoreoviridae Viruses Isolated from Culicoides spp. (Diptera, Ceratopogonidae) in China. Viruses 2022; 14:v14050971. [PMID: 35632713 PMCID: PMC9145729 DOI: 10.3390/v14050971] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/23/2022] Open
Abstract
Sedoreoviridae is a family of viruses belonging to the order Reovirales and comprises six genera, two of which, Orbivirus and Seadornavirus, contain arboviruses that cause disease in humans and livestock. Areas such as Yunnan Province in southwestern China, have high arboviral activity due in part to warm and wet summers, which support high populations of biting flies such as mosquitoes and Culicoides. Three viral isolates previously obtained from Culicoides collected at cattle farms in Shizong County of Yunnan Province, China, between 2019 and 2020 were completely sequenced and identified as Banna virus (BAV) genotype A of Seadornavirus and serotypes 1 and 7 of epizootic hemorrhagic disease virus (EHDV) of Orbivirus. These results suggest that Culicoidestainanus and C. orientalis are potential vectors of BAV and EHDV, respectively, and represent the first association of a BAV with C. tainanus and of an arbovirus with C. orientalis. Analysis using VP9 generally agreed with the current groupings within this genus based on VP12, although the classification for some strains should be corrected. Furthermore, the placement of Kadipiro virus (KDV) and Liao ning virus (LNV) in Seadornavirus may need confirmation as phylogenetic analysis placed these viruses as sister to other species in the genus.
Collapse
|
12
|
Development of a Competitive Enzyme-Linked Immunosorbent Assay Based on Purified Recombinant Viral Protein 7 for Serological Diagnosis of Epizootic Haemorrhagic Disease in Camels. J Trop Med 2022; 2022:5210771. [PMID: 35356489 PMCID: PMC8959998 DOI: 10.1155/2022/5210771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022] Open
Abstract
Epizootic haemorrhagic disease virus (EHDV) is a member of the Orbivirus genus in the Reoviridae family, and it is the etiological agent of an arthropod-transmitted disease that affects domestic and wild ruminants. Due to its significant economic impact, many attempts have been done in order to develop diagnostic immunoassays mainly based on the use of the viral protein 7 (VP7), that is, the immunodominant serogroup-specific antigen. In this work, a recombinant VP7 (recVP7) of EHDV serotype 2 was produced in a baculovirus system, and after purification using ion metal affinity chromatography, we obtained a high yield of recombinant protein characterized by a high degree of purity. We used the purified recVP7 as reagent to develop a competitive enzyme-linked immunoassay (c-ELISA), and we tested the presence of EHDV antibodies in 185 dromedary camel serum samples. The c-ELISA showed good performance parameters in recognising positive sera of naturally EHDV-infected dromedary camels; in particular, our developed test reached 85.7% of sensitivity, 98.1% of specificity, 93% of accuracy, and a high agreement value with results obtained by the commercial ELISA kit (Cohen's kappa value of 0.85) that we adopted as the reference method. This c-ELISA could be a useful screening test to monitor the virus spread in camels that are sentinel animals for endemic areas of disease.
Collapse
|
13
|
Perspectives on the Changing Landscape of Epizootic Hemorrhagic Disease Virus Control. Viruses 2021; 13:v13112268. [PMID: 34835074 PMCID: PMC8618044 DOI: 10.3390/v13112268] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022] Open
Abstract
Epizootic hemorrhagic disease (EHD) is an insect-transmitted viral disease of wild and domestic ruminants. It was first described following a 1955 epizootic in North American white-tailed deer (Odocoileus virginianus), a species which is highly susceptible to the causative agent of EHD, epizootic hemorrhagic disease virus (EHDV). EHDV has been detected globally across tropical and temperate regions, largely corresponding to the presence of Culicoides spp. biting midges which transmit the virus between ruminant hosts. It regularly causes high morbidity and mortality in wild and captive deer populations in endemic areas during epizootics. Although cattle historically have been less susceptible to EHDV, reports of clinical disease in cattle have increased in the past two decades. There is a pressing need to identify new methods to prevent and mitigate outbreaks and reduce the considerable impacts of EHDV on livestock and wildlife. This review discusses recent research advancements towards the control of EHDV, including the development of new investigative tools and progress in basic and applied research focused on virus detection, disease mitigation, and vector control. The potential impacts and implications of these advancements on EHD management are also discussed.
Collapse
|
14
|
Li ZR, Yang ZX, Li ZH, Gao X, Hu ZY, Yang H, Liao DF. Development and evaluation of recombinase polymerase amplification combined with lateral flow dipstick assays for co-detection of epizootic haemorrhagic disease virus and the Palyam serogroup virus. BMC Vet Res 2021; 17:286. [PMID: 34433470 PMCID: PMC8390197 DOI: 10.1186/s12917-021-02977-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/22/2021] [Indexed: 11/29/2022] Open
Abstract
Background Epizootic haemorrhagic disease virus (EHDV) and the Palyam serogroup viruses (PALV) have led to significant economic losses associated with livestock production globally. A rapid, sensitive and specific method for the detection of EHDV and PALV is critical for virus detection, monitoring, and successful control and elimination of related diseases. Results In the present study, a recombinase polymerase amplification combined with lateral flow dipstick (RPA-LFD) assay for the co-detection of genome segment 1 (Seg-1) of EHDV and PALV was developed and evaluated. The analytical sensitivities of the established RPA-LFD assay in the detection of EHDV and PALV were 7.1 copies/µL and 6.8 copies/µL, respectively. No cross-reaction with other members of the genus Orbivirus, including African horse sickness virus, bluetongue virus, Guangxi orbivirus, Tibet orbivirus and Yunnan orbivirus was observed. The established RPA-LFD assay accurately detected 39 EHDV strains belonging to 5 serotypes and 29 PALV strains belonging to 3 serotypes. The trace back results of quantitative real-time polymerase chain reaction (qRT-PCR) and the established RPA-LFD assay on sentinel cattle were consistent. The coincidence rates of qRT-PCR and the established RPA-LFD assay in 56 blood samples from which EHDV or PALV had been isolated and 96 blood samples collected from cattle farms were more than 94.8 %. The results demonstrated that the established RPR-LFD assay is specific, sensitive and reliable, and could be applied in early clinical diagnosis of EHDV and PALV. Conclusions This study highlights the development and application of the RPA-LFD assay in the co-detection of EHDV and PALV for the first time. The assay could be used as a potential optional rapid, reliable, sensitive and low-cost method for field diagnosis of EHDV and PALV. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02977-9.
Collapse
Affiliation(s)
- Zhuo-Ran Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Yunnan, 650224, Kunming, China
| | - Zhen-Xing Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Yunnan, 650224, Kunming, China
| | - Zhan-Hong Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Yunnan, 650224, Kunming, China
| | - Xiang Gao
- Animal Disease Control and Prevention Center of Jinghong, Yunnan, 666100, Jinghong, China
| | - Zhong-Yan Hu
- Animal Disease Control and Prevention Center of Jinghong, Yunnan, 666100, Jinghong, China
| | - Heng Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Yunnan, 650224, Kunming, China.
| | - De-Fang Liao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Yunnan, 650224, Kunming, China.
| |
Collapse
|
15
|
Yamamoto K, Hiromatsu R, Kaida M, Kato T, Yanase T, Shirafuji H. Isolation of epizootic hemorrhagic disease virus serotype 7 from cattle showing fever in Japan in 2016 and improvement of a reverse transcription-polymerase chain reaction assay to detect epizootic hemorrhagic disease virus. J Vet Med Sci 2021; 83:1378-1388. [PMID: 34248104 PMCID: PMC8498830 DOI: 10.1292/jvms.20-0523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epizootic hemorrhagic disease (EHD) is an arthropod-borne disease of wild and domestic ruminants caused by the EHD virus (EHDV). To date, seven EHDV serotypes have been identified. In Japan, strain Ibaraki of EHDV serotype 2 has caused outbreaks of Ibaraki disease in cattle. In addition, EHDV serotype 7 (EHDV-7) has caused large-scale EHD epizootics. In mid-September 2016, eight cattle at a breeding farm in Fukuoka Prefecture, Japan developed fever. Since EHDV-7 was detected in sentinel cattle in western Japan in 2016, we suspected that the cause of this fever might be an EHDV-7 infection. In this study, we tested cattle for EHDV-7 and some other viruses. Consequently, EHDV was isolated from washed blood cells collected from three of the eight cattle, and genetic analysis of genome segment 2 revealed that this isolate was EHDV-7. Moreover, all affected cattle tested positive for anti-EHDV-7 neutralizing antibodies. Our results suggest that the fever was caused by EHDV-7 infection. In addition, we modified a conventional reverse transcription polymerase chain reaction assay for the specific detection of EHDV. This modified assay could detect various strains of EHDV isolated in Japan, Australia, and North America. Furthermore, the assay permitted the detection of EHDV-7 in blood cells collected from seven of the eight cattle. We believe that this modified assay will be a useful tool for the diagnosis of EHD.
Collapse
Affiliation(s)
- Kunitaka Yamamoto
- Fukuoka Chuo Livestock Hygiene Service Center, 4-14-5 Hakozaki-Futo, Higashi-ku, Fukuoka 812-0051, Japan
| | - Riki Hiromatsu
- Fukuoka Chuo Livestock Hygiene Service Center, 4-14-5 Hakozaki-Futo, Higashi-ku, Fukuoka 812-0051, Japan
| | - Mina Kaida
- Fukuoka Chuo Livestock Hygiene Service Center, 4-14-5 Hakozaki-Futo, Higashi-ku, Fukuoka 812-0051, Japan
| | - Tomoko Kato
- Kyushu Research Station, National Institute of Animal Health, National Food and Agriculture Research Organization (NARO), 2702 Chuzan, Kagoshima 891-0105, Japan
| | - Tohru Yanase
- Kyushu Research Station, National Institute of Animal Health, National Food and Agriculture Research Organization (NARO), 2702 Chuzan, Kagoshima 891-0105, Japan
| | - Hiroaki Shirafuji
- Kyushu Research Station, National Institute of Animal Health, National Food and Agriculture Research Organization (NARO), 2702 Chuzan, Kagoshima 891-0105, Japan
| |
Collapse
|
16
|
Mahmoud A, Danzetta ML, di Sabatino D, Spedicato M, Alkhatal Z, Dayhum A, Tolari F, Forzan M, Mazzei M, Savini G. First seroprevalence investigation of epizootic haemorrhagic disease virus in Libya. Open Vet J 2021; 11:301-308. [PMID: 34307088 PMCID: PMC8288730 DOI: 10.5455/ovj.2021.v11.i2.15] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/21/2021] [Indexed: 11/03/2022] Open
Abstract
Background Epizootic haemorrhagic disease (EHD) is a vector-borne viral disease of domestic and wild ruminants. Epizootic haemorrhagic disease virus (EHDV) is transmitted by Culicoides spp. EHDV is a member of the Orbivirus genus within the Reoviridae family. It shares many morphological and structural characteristics with other members of the genus, such as the bluetongue virus, African horse sickness virus, and equine encephalosis virus. Aims The purpose of our study was to investigate the epidemiological situation of EHDV in Libya in order to gain some knowledge about the presence of this virus in the country. Methods In this study, we investigated the seroprevalence of EHDV in Libya, testing 855 blood samples collected during 2015. The samples were collected from domestic ruminants (cattle, sheep, and goats) originating from 11 provinces of Libya. Sera were tested by competitive enzyme-linked immunosorbent assays and positive samples confirmed by serum neutralization test. Results The overall seroprevalence of EHDV was estimated to be 4% (95% confidence intervals = 2.8%-5.4%). Small ruminant seroprevalence was significantly (p = 0.016) higher than that found in cattle. Neutralizing antibodies against EHDV-6 were detected in a sheep from the western region of Libya. Conclusion This study suggests that EHDV has circulated or is circulating in Libya, and sheep could play an important role in the epidemiology of EHDV, and the virus may still be circulating in North Africa.
Collapse
Affiliation(s)
- Abdusalam Mahmoud
- Department of Preventive Medicine, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Maria Luisa Danzetta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", (IZSAM), Teramo, Italy
| | - Daria di Sabatino
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", (IZSAM), Teramo, Italy
| | - Massimo Spedicato
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", (IZSAM), Teramo, Italy
| | | | - Abdunaser Dayhum
- Department of Preventive Medicine, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | | | - Mario Forzan
- Department of Veterinary Science, University of Pisa, Pisa, Italy
| | - Maurizio Mazzei
- Department of Veterinary Science, University of Pisa, Pisa, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", (IZSAM), Teramo, Italy
| |
Collapse
|
17
|
Yang H, Li Z, Wang J, Li Z, Yang Z, Liao D, Zhu J, Li H. Novel Serotype of Epizootic Hemorrhagic Disease Virus, China. Emerg Infect Dis 2021; 26:3081-3083. [PMID: 33219797 PMCID: PMC7706924 DOI: 10.3201/eid2612.191301] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In 2018, a strain of epizootic hemorrhagic disease virus (EHDV), named YNDH/V079/2018, was isolated from a sentinel calf in Mangshi County, Yunnan Province, China. Nucleotide sequencing and neutralization tests indicated that the virus belongs to a novel serotype of EHDV that had not been reported previously.
Collapse
|
18
|
Tomaszewski E, Jennings M, Munk B, Botta R, Lewison R. Landscape Seroprevalence of Three Hemorrhagic Disease-Causing Viruses in a Wild Cervid. ECOHEALTH 2021; 18:182-193. [PMID: 34515899 DOI: 10.1007/s10393-021-01546-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 05/02/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Disease plays a major role in shaping wildlife populations worldwide, and changes in landscape conditions can significantly influence risk of pathogen exposure, a threat to vulnerable wild species. Three viruses that cause hemorrhagic disease affect cervid populations in the USA (Odocoileus hemionus adenovirus, bluetongue virus, and epizootic hemorrhagic disease virus), but little is known of their distribution and prevalence in wild populations. We explored the distribution and co-occurrence of seroprevalence of these three pathogens in southern mule deer (Odocoileus hemionus fuliginatus), a subspecies of conservation concern and a harvested species native to southern California, to evaluate the distribution of exposure to these pathogens relative to landscape attributes. We found that habitat type, level of development, and proximity to livestock may affect hemorrhagic disease seroprevalence in southern mule deer. Continued monitoring of hemorrhagic disease-causing viruses in areas where deer are in proximity to cattle and human development is needed to better understand the implications of future outbreaks in wild populations and to identify opportunities to mitigate disease impacts in southern mule deer and other cervid species.
Collapse
Affiliation(s)
- Emma Tomaszewski
- San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA.
- California Department of Fish and Wildlife, 1416 9th St., 12th Floor, Sacramento, CA, 95814, USA.
| | - Megan Jennings
- San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| | - Brandon Munk
- California Department of Fish and Wildlife, 1416 9th St., 12th Floor, Sacramento, CA, 95814, USA
| | - Randy Botta
- California Department of Fish and Wildlife, 1416 9th St., 12th Floor, Sacramento, CA, 95814, USA
| | - Rebecca Lewison
- San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| |
Collapse
|
19
|
A Duplex Fluorescent Microsphere Immunoassay for Detection of Bluetongue and Epizootic Hemorrhagic Disease Virus Antibodies in Cattle Sera. Viruses 2021; 13:v13040682. [PMID: 33921013 PMCID: PMC8071417 DOI: 10.3390/v13040682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 01/19/2023] Open
Abstract
Bluetongue virus (BTV) causes internationally reportable hemorrhagic disease in cattle, sheep, and white-tailed deer. The closely related, and often co-circulating, epizootic hemorrhagic disease virus causes a clinically similar devastating disease in white-tailed deer, with increasing levels of disease in cattle in the past 10 years. Transmitted by Culicoides biting midges, together, they constitute constant disease threats to the livelihood of livestock owners. In cattle, serious economic impacts result from decreased animal production, but most significantly from trade regulations. For effective disease surveillance and accurate trade regulation implementation, rapid, sensitive assays that can detect exposure of cattle to BTV and/or EHDV are needed. We describe the development and validation of a duplex fluorescent microsphere immunoassay (FMIA) to simultaneously detect and differentiate antibodies to BTV and EHDV in a single bovine serum sample. Performance of the duplex FMIA for detection and differentiation of BTV and EHDV serogroup antibodies was comparable, with higher sensitivity than commercially available single-plex competitive enzyme-linked immunosorbent assays (cELISA) for detection of each virus antibody separately. The FMIA adds to the currently available diagnostic tools for hemorrhagic orbiviral diseases in cattle as a sensitive, specific assay, with the benefits of serogroup differentiation in a single serum sample, and multiplexing flexibility in a high-throughput platform.
Collapse
|
20
|
Bréard E, Viarouge C, Donnet F, Sailleau C, Rossi S, Pourquier P, Vitour D, Comtet L, Zientara S. Evaluation of a commercial ELISA for detection of epizootic haemorrhagic disease antibodies in domestic and wild ruminant sera. Transbound Emerg Dis 2020; 67:2475-2481. [PMID: 32310339 DOI: 10.1111/tbed.13586] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/04/2020] [Accepted: 03/31/2020] [Indexed: 11/28/2022]
Abstract
Bluetongue (BT) and epizootic haemorrhagic disease (EHD) are vector-borne viral diseases affecting domestic and wild ruminants. Both are notifiable under OIE rules. BT and EHD viruses (BTV and EHDV) are closely related Orbiviruses with structural, antigenic and molecular similarities. Both viruses can produce analogous clinical signs in susceptible animals. Serological tests are commonly used for BT and EHD diagnosis and surveillance. Competitive ELISA (c-ELISA) is the most widely used serological test for the specific detection of BTV or EHDV viral protein 7 (VP7) antibodies (Abs). The specificity and sensitivity of the BTV c-ELISA kits available on the market are recognized for the detection of BTV Abs. Concerning EHD, a single commercial EHDV c-ELISA kit (ELISA A kit) commonly used for diagnosis in Europe and Africa was available between 2011 and 2018 but is now no longer on the market. In this study, we evaluated a new commercial c-ELISA to detect ruminant EHDV VP7 Abs in 2,199 serum samples from cattle, sheep, goats, wild deer and zoo animals. The results showed that this ELISA kit is specific and can detect the presence of IgG anti-EHDV VP7 with a very good diagnostic specificity and a satisfactory sensitivity in domestic ruminants, zoo animals and wild deer. Therefore, the evaluated c-ELISA can detect the introduction of EHDV into an area where BTV-seropositive domestic animals are present. The performance of this kit is similar to that of the c-ELISA A kit and can thus be used for diagnosis.
Collapse
Affiliation(s)
- Emmanuel Bréard
- Laboratoire de Santé Animale d'Alfort, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Université Paris Est, Maisons-Alfort, France
| | - Cyril Viarouge
- Laboratoire de Santé Animale d'Alfort, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Université Paris Est, Maisons-Alfort, France
| | | | - Corinne Sailleau
- Laboratoire de Santé Animale d'Alfort, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Université Paris Est, Maisons-Alfort, France
| | - Sophie Rossi
- Wildlife Diseases Unit, Research Department, ONCFS, Le Perray-en-Yvelines, France
| | | | - Damien Vitour
- Laboratoire de Santé Animale d'Alfort, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Université Paris Est, Maisons-Alfort, France
| | | | - Stéphan Zientara
- Laboratoire de Santé Animale d'Alfort, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Université Paris Est, Maisons-Alfort, France
| |
Collapse
|
21
|
Guo Y, Pretorius JM, Xu Q, Wu D, Bu Z, Theron J, Sun E. Development and optimization of a DNA-based reverse genetics systems for epizootic hemorrhagic disease virus. Arch Virol 2020; 165:1079-1087. [PMID: 32144546 DOI: 10.1007/s00705-020-04583-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/08/2020] [Indexed: 01/04/2023]
Abstract
Epizootic hemorrhagic disease virus (EHDV) is a member of the genus Orbivirus, family Reoviridae, and has a genome consisting of 10 linear double-stranded (ds) RNA segments. The current reverse genetics system (RGS) for engineering the EHDV genome relies on the use of in vitro-synthesized capped viral RNA transcripts. To obtain more-efficient and simpler RGSs for EHDV, we developed an entirely DNA (plasmid or PCR amplicon)-based RGS for viral rescue. This RGS enabled the rescue of infectious EHDV from BSR-T7 cells following co-transfection with seven helper viral protein expression plasmids and 10 cDNA rescue plasmids or PCR amplicons representing the EHDV genome. Furthermore, we optimized the DNA-based systems and confirmed that some of the helper expression plasmids were not essential for the recovery of infectious EHDV. Thus, DNA-based RGSs may offer a more efficient method of recombinant virus recovery and accelerate the study of the biological characteristics of EHDV and the development of novel vaccines.
Collapse
Affiliation(s)
- Yunze Guo
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.,Department of Veterinary Pathology, Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhaowuda Road 306, 010018, Hohhot, Inner Mongolia, China
| | - Jakobus M Pretorius
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Qingyuan Xu
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Donglai Wu
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zhigao Bu
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jacques Theron
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Encheng Sun
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
22
|
Ozan E, Albayrak H, Gumusova S, Bolukbas CS, Kurt M, Pekmezci GZ, Beyhan YE, Kadi H, Kaya S, Aydin I, Yazici Z. A Study on the Identification of Five Arboviruses from Hematophagous Mosquitoes and Midges Captured in Some Parts of Northern Turkey. J Arthropod Borne Dis 2019; 13:224-233. [PMID: 31803784 PMCID: PMC6885145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/11/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Whether zoonotic or not, arboviral infections are continuing to be a major threat to human health as well as the livestock industry all around the world. This project presented the results of the identification study on five arboviruses, including West Nile virus (WNV), Bovine ephemeral fever virus, Akabane virus, Bluetongue virus, and Epizootic hemorrhagic disease virus, in mosquitos and midges from eight provinces of the Black Sea Region. METHODS During 2011 and 2012, 3193 mosquitoes were captured around natural streams, rivers, lakes, and ponds using dry-baited miniature light-traps. Identification studies were concluded by employing molecular methods. RESULTS According to the morphological identification, blood-sucking mosquitoes and biting-midges belonged to Aedes (44.69%), Anopheles (28.34%), Culex (22.14%) and Culicoides (4.83%) species. Overall, 146 pools were made up of captured mosquitos and midges. None of the five viruses were directly identified by mosquitoes. CONCLUSION Mosquitoes and midges have got a crucial role in the transmission of arboviruses. The risk of occurrence for the investigated arboviruses will continue depending upon many factors including the presence of these viruses in Turkey and its neighboring countries, uncontrolled livestock movements, global warming and climate changes.
Collapse
Affiliation(s)
- Emre Ozan
- Veterinary Control Institut, Ministry of Food Agriculture and Livestock, Samsun, Turkey
| | - Harun Albayrak
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Semra Gumusova
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Cenk S. Bolukbas
- Department of Parasitology, Faculty of Veterinary Medicine Ondokuz Mayıs University, Samsun, Turkey
| | - Mithat Kurt
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Gokmen Z. Pekmezci
- Department of Aquatic Animal Diseases, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Yunus E. Beyhan
- Department of Parasitology, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey
| | - Hamza Kadi
- Veterinary Control Institut, Ministry of Food Agriculture and Livestock, Samsun, Turkey
| | - Selma Kaya
- Veterinary Control Institut, Ministry of Food Agriculture and Livestock, Samsun, Turkey
| | - Ismail Aydin
- Veterinary Control Institut, Ministry of Food Agriculture and Livestock, Samsun, Turkey
| | - Zafer Yazici
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey,Corresponding author: Dr Zafer Yazici, E-mail:
| |
Collapse
|
23
|
Presence of bluetongue and epizootic hemorrhagic disease viruses in Egypt in 2016 and 2017. INFECTION GENETICS AND EVOLUTION 2019; 73:221-226. [PMID: 31051272 DOI: 10.1016/j.meegid.2019.04.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 11/24/2022]
Abstract
BTV and EHDV are closely-related orbiviruses that are transmitted between domestic and wild ruminants via the bites of hematophagous midges. Previous studies have reported seropositivity against BTV antibodies in sheep and goats in two Egyptian governorates (Beni Suef and Menoufia). However, no recent data are available on the BTV serotype(s) circulating in Egypt and the likely presence of EHDV has never been explored. This study investigated the presence of BTV and EHDV among cattle which had been found BTV-seropositive by ELISA method. These cattle living in proximity to sheep and goats previously found BTV-seropositive. These cattle displayed no clinical signs of BT but reproductive problems had been reported in herds. A total of 227 cattle blood samples were therefore collected in 2016 and 2017. Ninety-four of the 227 animals tested by a BTV ELISA were positive for BTV antibodies (41.4%). Of these 94 ELISA-positive cattle, only 83 EDTA-blood samples were available and therefore tested for BTV and EHDV genome detection by RT-PCR and sequencing. Of the cattle sampled in 2016, results revealed that two were RT-PCR-positive for BTV and seven for EHDV. Sequencing showed the presence of EHDV-1 and BTV-3 genome sequences. EHDV-1 S2 shared 99.5% homology with an EHDV-1 S2 from a strain isolated in 2016 in Israel. BTV-3 S2 and S8 sequences shared >99.8% nucleotide similarity with the BTV-3 Zarzis S2 and S8 sequences (Tunisian BTV, also detected in 2016). Of the 66 blood samples tested following their collection in 2017, they were all EHDV-negative by RT-qPCR while five were BTV- positive by RT-qPCR. However, attempts to identify the BTV serotype of these five samples were unsuccessful. Only part of BTV S8 was sequenced and it showed 79% nucleotide similarity with S8 of atypical BTV serotypes (particularly with BTV-26 and another BTV serotype strain isolated from a sheep pox vaccine). Overall, these findings demonstrate that both BTV and EHDV were circulating in Egypt in 2016 and 2017.
Collapse
|
24
|
Affiliation(s)
- Mokshata Gupta
- Division of Animal Nutrition, ICAR- Indian Veterinary Research Institute, Izatnagar, India
| | - Tanmay Mondal
- Division of Physiology & Climatology, ICAR- Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
25
|
Kamomae Y, Kamomae M, Ohta Y, Nabe M, Kagawa Y, Ogura Y, Kato T, Tanaka S, Yanase T, Shirafuji H. Epizootic Hemorrhagic Disease Virus Serotype 6 Infection in Cattle, Japan, 2015. Emerg Infect Dis 2019; 24:902-905. [PMID: 29664367 PMCID: PMC5938786 DOI: 10.3201/eid2405.171859] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During October–December 2015, an epizootic hemorrhagic disease outbreak occurred in cattle in Japan. Forty-six animals displayed fever, anorexia, cessation of rumination, salivation, and dysphagia. Virologic, serologic, and pathologic investigations revealed the causative agent was epizootic hemorrhagic disease virus serotype 6. Further virus characterization is needed to determine virus pathogenicity.
Collapse
|
26
|
Merino J, Cruz NIDL, Galvan G, León AD, Burnes J. First molecular and serological detection of Epizootic Hemorrhagic Disease virus in white tailed deer ( Odocoileus virginianus ) from Tamaulipas, Mexico. ARQ BRAS MED VET ZOO 2019. [DOI: 10.1590/1678-4162-9987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Epizootic hemorrhagic disease viruses (EHDV) are dsRNA arboviruses transmitted by biting midges of the genus Culicoides that cause disease in domestic and wild ruminants. Epizootic hemorrhagic disease (EHD) is considered the most important infectious disease of white tailed deer (WTD) in North America, some studies in Northeast Mexico reported EHDV-seropositive WTD and EHDV-infected Culicoides vectors. The increasing population of WTD that share habitat with livestock in Northeast México highlights the importance of EHD for the livestock industry in the transboundary region with the U.S. One hundred and twenty two samples from WTD in Tamaulipas state, Mexico were tested by ELISA and RT-PCR for EHDV antibodies and nucleic acid, respectively. Twelve animals were seropositive to ELISA and eleven animals were positive by RT-PCR. This is the first report of EHDV nucleic acid detection in WTD from Mexico. It is hypothesized that applying the transboundary disease approach to interdisciplinary research will help fill knowledge gaps, which could help develop countermeasures to mitigate the threat of EHDV infection in wildlife and livestock along the U.S.-Mexico border.
Collapse
Affiliation(s)
| | | | - G. Galvan
- Universidad Autónoma de Tamaulipas, Mexico
| | | | - J. Burnes
- Universidad Autónoma de Tamaulipas, Mexico
| |
Collapse
|
27
|
Brown-Joseph T, Rajko-Nenow P, Hicks H, Sahadeo N, Harrup LE, Carrington CV, Batten C, Oura CAL. Identification and characterization of epizootic hemorrhagic disease virus serotype 6 in cattle co-infected with bluetongue virus in Trinidad, West Indies. Vet Microbiol 2018; 229:1-6. [PMID: 30642583 PMCID: PMC6340808 DOI: 10.1016/j.vetmic.2018.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022]
Abstract
Epizootic haemorrhagic disease virus serotype 6 (EHDV-6) is circulating in Trinidad. EHDV is infecting cattle at a slower rate than BTV. EHDV appears to have a faster viral evolution rate than BTV. The EHDV-6 Trinidad strain (VP-2) falls within the eastern topotype clade that is likely to have originated from Australia.
Epizootic hemorrhagic disease virus (EHDV) is an economically important virus that can cause severe clinical disease in deer and to a lesser extent cattle. This study set out to determine and characterize which EHDV serotypes were circulating in Trinidad. Serum and whole blood samples were collected monthly for six months from a cohort of cattle imported to Trinidad from the USA. Results revealed that all the cattle seroconverted to EHDV within six months of their arrival, with EHDV RNA being detected in the samples just prior to antibodies, as expected. Serotyping assays revealed that a single serotype (EHDV-6) was circulating in the cattle. Sequencing of the surface viral protein (VP2) of EHDV-6, followed by phylogenetic analysis, revealed that the Trinidad EHDV-6 strain was closely related to EHDV-6 viruses found in Guadeloupe (2010), Martinique (2010) and USA (2006), with 96–97.2% nucleotide identity. The Trinidad EHDV-6 VP-2 shared 97.2% identity with the Australian EHDV-6 prototype strain, classifying it within the eastern topotype clade. Bayesian coalescent analysis support Australia as the most probable source for the EHDV-6 VP2 sequences in the Americas and Caribbean region and suggests that the they diverged from the Australian prototype strain around 1966 (95% HPD 1941–1979).
Collapse
Affiliation(s)
- Tamiko Brown-Joseph
- Department of Pre-Clinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad, West Indies.
| | - Paulina Rajko-Nenow
- Non-vesicular reference laboratory, The Pirbright Institute, Woking, Surrey, GU24 0NF, UK
| | - Hayley Hicks
- Non-vesicular reference laboratory, The Pirbright Institute, Woking, Surrey, GU24 0NF, UK
| | - Nikita Sahadeo
- Department of Pre-Clinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad, West Indies
| | - Lara E Harrup
- Entomology Group, The Pirbright Institute, Woking, Surrey, GU24 0NF, UK
| | - Christine V Carrington
- Department of Pre-Clinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad, West Indies
| | - Carrie Batten
- Non-vesicular reference laboratory, The Pirbright Institute, Woking, Surrey, GU24 0NF, UK
| | - Christopher A L Oura
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of theWest Indies, St. Augustine, Trinidad, West Indies
| |
Collapse
|
28
|
Golender N, Khinich Y, Gorohov A, Abramovitz I, Bumbarov V. Epizootic hemorrhagic disease virus serotype 6 outbreak in Israeli cattle in 2015. J Vet Diagn Invest 2017; 29:885-888. [PMID: 28803510 DOI: 10.1177/1040638717726826] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In September 2015, a large outbreak caused by epizootic hemorrhagic disease virus (EHDV) was identified in Israeli dairy and beef farms. The main clinical signs were reduced milk production, weakness, drooling, lameness and recumbency, fever, slight erythema of nasal and oral mucosae, weight loss, and abortion. Dyspnea, cachexia, and death were observed less frequently. The clinical diagnosis was confirmed by ELISAs and EHDV-specific real-time reverse transcription PCR (RT-rtPCR), followed by conventional RT-PCR of the VP2 gene and sequence analysis. According to the sequence and phylogenetic analysis of theVP2 gene, the 2015 Israeli EHD outbreak was caused by EHDV-6, which was found not only in clinically ill cattle, but also in aborted fetuses.
Collapse
Affiliation(s)
- Natalia Golender
- Division of Virology, Kimron Veterinary Institute, Bet Dagan, Israel (Golender, Khinich, Gorohov, Bumbarov).,Hachaklait, Mutual Society for Veterinary Services, Caesarea, Israel (Abramovitz)
| | - Yevgeny Khinich
- Division of Virology, Kimron Veterinary Institute, Bet Dagan, Israel (Golender, Khinich, Gorohov, Bumbarov).,Hachaklait, Mutual Society for Veterinary Services, Caesarea, Israel (Abramovitz)
| | - Anna Gorohov
- Division of Virology, Kimron Veterinary Institute, Bet Dagan, Israel (Golender, Khinich, Gorohov, Bumbarov).,Hachaklait, Mutual Society for Veterinary Services, Caesarea, Israel (Abramovitz)
| | - Itzik Abramovitz
- Division of Virology, Kimron Veterinary Institute, Bet Dagan, Israel (Golender, Khinich, Gorohov, Bumbarov).,Hachaklait, Mutual Society for Veterinary Services, Caesarea, Israel (Abramovitz)
| | - Velizar Bumbarov
- Division of Virology, Kimron Veterinary Institute, Bet Dagan, Israel (Golender, Khinich, Gorohov, Bumbarov).,Hachaklait, Mutual Society for Veterinary Services, Caesarea, Israel (Abramovitz)
| |
Collapse
|
29
|
Forzan M, Pizzurro F, Zaccaria G, Mazzei M, Spedicato M, Carmine I, Salini R, Tolari F, Cerri D, Savini G, Lorusso A. Competitive enzyme-linked immunosorbent assay using baculovirus-expressed VP7 for detection of epizootic haemorrhagic disease virus (EHDV) antibodies. J Virol Methods 2017; 248:212-216. [PMID: 28757386 DOI: 10.1016/j.jviromet.2017.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/11/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022]
Abstract
Epizootic haemorrhagic disease (EHD) is a vector-borne infectious viral disease of domestic and wild ruminants. EHD could spread from infected northern African countries in free territories like the EU; therefore, the availability of diagnostic assays would represent key components for adequate surveillance and control programs. In this study, the gene encoding the VP7 protein of EHD virus (EHDV) was expressed into a baculovirus-infected insect cell system. With this unpurified protein we developed a home-made competitive ELISA (cELISA) and a total number of 275 serum samples, originating from domestic and wild ruminants, were tested. 74/275 were previously shown to be positive for EHDV antibodies by a commercially available ELISA kit. A "very good" agreement was demonstrated when compared to a commercial ELISA kit (Cohen's kappa value=0.832). Samples which caused disagreement between the two assays originated from wildlife which highlights the need for further validation by using serum samples from wild animals.
Collapse
Affiliation(s)
- Mario Forzan
- Dipartimento di Scienze Veterinarie, Università di Pisa-Italy
| | - Federica Pizzurro
- Dipartimento di Scienze Veterinarie, Università di Pisa-Italy; OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy
| | - Guendalina Zaccaria
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy
| | - Maurizio Mazzei
- Dipartimento di Scienze Veterinarie, Università di Pisa-Italy
| | - Massimo Spedicato
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy
| | - Irene Carmine
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy
| | - Romolo Salini
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy
| | | | - Domenico Cerri
- Dipartimento di Scienze Veterinarie, Università di Pisa-Italy
| | - Giovanni Savini
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy
| | - Alessio Lorusso
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo-Italy.
| |
Collapse
|
30
|
Singh KM, Singh S, Ganguly I, Ganguly A, Nachiappan RK, Chopra A, Narula H. Evaluation of Indian sheep breeds of arid zone under heat stress condition. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Krzysiak MK, Iwaniak W, Kęsik-Maliszewska J, Olech W, Larska M. Serological Study of Exposure to Selected Arthropod-Borne Pathogens in European Bison (Bison bonasus) in Poland. Transbound Emerg Dis 2016; 64:1411-1423. [DOI: 10.1111/tbed.12524] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 01/16/2023]
Affiliation(s)
- M. K. Krzysiak
- European Bison Breeding Centre; Białowieża National Park; Białowieża Poland
| | - W. Iwaniak
- Department of Microbiology; National Veterinary Research Institute; Puławy Poland
| | | | - W. Olech
- Department of Genetics and Animal Breeding; Warsaw University of Life Sciences; Warsaw Poland
| | - M. Larska
- Department of Virology; National Veterinary Research Institute; Puławy Poland
| |
Collapse
|
32
|
Forzan M, Maan S, Mazzei M, Belaganahalli MN, Bonuccelli L, Calamari M, Carrozza ML, Cappello V, Di Luca M, Bandecchi P, Mertens PPC, Tolari F. Generation of virus like particles for epizootic hemorrhagic disease virus. Res Vet Sci 2016; 107:116-122. [PMID: 27473984 DOI: 10.1016/j.rvsc.2016.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 05/17/2016] [Accepted: 05/30/2016] [Indexed: 12/25/2022]
Abstract
Epizootic hemorrhagic disease virus (EHDV) is a distinct species within the genus Orbivirus, within the family Reoviridae. The epizootic hemorrhagic disease virus genome comprises ten segments of linear, double stranded (ds) RNA, which are packaged within each virus particle. The EHDV virion has a three layered capsid-structure, generated by four major viral proteins: VP2 and VP5 (outer capsid layer); VP7 (intermediate, core-surface layer) and VP3 (innermost, sub-core layer). Although EHDV infects cattle sporadically, several outbreaks have recently occurred in this species in five Mediterranean countries, indicating a potential threat to the European cattle industry. EHDV is transmitted by biting midges of the genus Culicoides, which can travel long distances through wind-born movements (particularly over water), increasing the potential for viral spread in new areas/countries. Expression systems to generate self-assembled virus like particles (VLPs) by simultaneous expression of the major capsid-proteins, have been established for several viruses (including bluetongue virus). This study has developed expression systems for production of EHDV VLPs, for use as non-infectious antigens in both vaccinology and serology studies, avoiding the risk of genetic reassortment between vaccine and field strains and facilitating large scale antigen production. Genes encoding the four major-capsid proteins of a field strain of EHDV-6, were isolated and cloned into transfer vectors, to generate two recombinant baculoviruses. The expression of these viral genes was assessed in insect cells by monitoring the presence of specific viral mRNAs and by western blotting. Electron microscopy studies confirmed the formation and purification of assembled VLPs.
Collapse
Affiliation(s)
- Mario Forzan
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
| | | | - Maurizio Mazzei
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
| | | | | | | | | | - Valentina Cappello
- Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation, NEST, Pisa, Italy
| | | | | | | | | |
Collapse
|
33
|
Ruder MG, Lysyk TJ, Stallknecht DE, Foil LD, Johnson DJ, Chase CC, Dargatz DA, Gibbs EPJ. Transmission and Epidemiology of Bluetongue and Epizootic Hemorrhagic Disease in North America: Current Perspectives, Research Gaps, and Future Directions. Vector Borne Zoonotic Dis 2016; 15:348-63. [PMID: 26086556 DOI: 10.1089/vbz.2014.1703] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) are arthropod-transmitted viruses in the genus Orbivirus of the family Reoviridae. These viruses infect a variety of domestic and wild ruminant hosts, although the susceptibility to clinical disease associated with BTV or EHDV infection varies greatly among host species, as well as between individuals of the same species. Since their initial detection in North America during the 1950s, these viruses have circulated in endemic and epidemic patterns, with occasional incursions to more northern latitudes. In recent years, changes in the pattern of BTV and EHDV infection and disease have forced the scientific community to revisit some fundamental areas related to the epidemiology of these diseases, specifically in relation to virus-vector-host interactions and environmental factors that have potentially enabled the observed changes. The aim of this review is to identify research and surveillance gaps that obscure our understanding of BT and EHD in North America.
Collapse
Affiliation(s)
- Mark G Ruder
- 1 Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service , United States Department of Agriculture, Manhattan, Kansas
| | - Timothy J Lysyk
- 2 Research Centre , Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - David E Stallknecht
- 3 Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia , Athens, Georgia
| | - Lane D Foil
- 4 Bob Jones Wildlife Research Institute, Louisiana State University Agcenter , Idlewild, Louisiana
| | - Donna J Johnson
- 5 National Veterinary Services Laboratories, Science, Technologies and Analysis Services (STAS), Veterinary Services, Animal and Plant Health Inspection Service , United States Department of Agriculture, Ames, Iowa
| | - Christopher C Chase
- 6 Department of Veterinary and Biomedical Sciences, South Dakota State University , Brookings, South Dakota
| | - David A Dargatz
- 7 Center for Epidemiology and Animal Health , STAS, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado
| | - E Paul J Gibbs
- 8 Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida , Gainesville, Florida
| |
Collapse
|
34
|
Maan NS, Maan S, Potgieter AC, Wright IM, Belaganahalli M, Mertens PPC. Development of Real-Time RT-PCR Assays for Detection and Typing of Epizootic Haemorrhagic Disease Virus. Transbound Emerg Dis 2016; 64:1120-1132. [PMID: 26888716 PMCID: PMC5516135 DOI: 10.1111/tbed.12477] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 12/23/2022]
Abstract
Epizootic haemorrhagic disease virus (EHDV) is an emerging arboviral pathogen of wild and domestic ruminants worldwide. It is closely related to bluetongue virus (BTV) and is transmitted by adult females of competent Culicoides vector species. The EHDV genome consists of ten linear double‐stranded (ds)RNA segments, encoding five non‐structural and seven structural proteins. Genome‐segment reassortment contributes to a high level of genetic variation in individual virus strains, particularly in the areas where multiple and distinct virus lineages co‐circulate. In spite of the relatively close relationship between BTV and EHDV herd‐immunity to BTV does not appear to protect against the introduction and infection of animals by EHDV. Although EHDV can cause up to 80% morbidity in affected animals, vaccination with the homologous EHDV serotype is protective. Outer‐capsid protein VP2, encoded by Seg‐2, is the most variable of the EHDV proteins and determines both the specificity of reactions with neutralizing antibodies and consequently the identity of the eight EHDV serotypes. In contrast, VP6 (the viral helicase), encoded by Seg‐9, is highly conserved, representing a virus species/serogroup‐specific antigen. We report the development and evaluation of quantitative (q)RT‐PCR assays targeting EHDV Seg‐9 that can detect all EHDV strains (regardless of geographic origin/topotype/serotype), as well as type‐specific assays targeting Seg‐2 of the eight EHDV serotypes. The assays were evaluated using orbivirus isolates from the ‘Orbivirus reference collection’ (ORC) at The Pirbright Institute and were shown to be EHDV pan‐reactive or type‐specific. They can be used for rapid, sensitive and reliable detection and identification (typing) of EHDV RNA from infected blood, tissue samples, homogenized Culicoides, or tissue culture supernatant. None of the assays detected RNA from closely related but heterologous orbiviruses, or from uninfected host animals or cell cultures. The techniques presented could be used for both surveillance and vaccine matching (serotype identification) as part of control strategies for incursions in wild and domestic animal species.
Collapse
Affiliation(s)
- N S Maan
- The Pirbright Institute, Woking, Surrey, UK
| | - S Maan
- The Pirbright Institute, Woking, Surrey, UK
| | - A C Potgieter
- Deltamune Pty Ltd, Lyttelton, Centurion, South Africa.,Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - I M Wright
- Deltamune Pty Ltd, Lyttelton, Centurion, South Africa.,Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | | | | |
Collapse
|
35
|
Innocuity of a commercial live attenuated vaccine for epizootic hemorrhagic disease virus serotype 2 in late-term pregnant cows. Vaccine 2016; 34:1430-5. [PMID: 26876438 DOI: 10.1016/j.vaccine.2016.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 11/21/2022]
Abstract
Epizootic hemorrhagic disease (EHD) is an arthropod-borne infectious viral disease sustained by the epizootic hemorrhagic disease virus (EHDV). The only commercially available and currently used vaccines are manufactured for EHDV-2 in Japan, either live or inactivated vaccines. In this study we tested the innocuity for fetuses of the live attenuated EHDV-2 vaccine in five late-term pregnant cows. Whole blood and serum samples were collected from dams and screened for the presence of EHDV-2 RNA, infectious virus and antibodies. After calving, whole blood and serum samples collected from calves, before and after colostrum intake, were also tested for antibodies and for virus detection. In dams, neither fever nor clinical signs were observed. All of them seroconverted and a strong humoral response was detected throughout the sampling period. All blood samples tested negative for EHDV-2 except for one sample collected from a dam 11 days post-vaccination which tested positive at virus isolation at the third cell passage following two rounds of blind passages. Although they had free access to colostrum, calves tested serologically negative for EHDV-2 during the entire course of the experiment. Overall, the tested live attenuated vaccine can be safely administered to late-term pregnant cows as it was not demonstrated to cross the placental barrier. The safety of the live-attenuated vaccine is further confirmed by the emergence of Ibaraki virus in 2013 in Japan which is apparently not related to the spread of the vaccine strain currently used in Japan.
Collapse
|
36
|
Alshaikhahmed K, Roy P. Generation of virus-like particles for emerging epizootic haemorrhagic disease virus: Towards the development of safe vaccine candidates. Vaccine 2016; 34:1103-8. [PMID: 26805595 DOI: 10.1016/j.vaccine.2015.12.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/17/2015] [Accepted: 12/19/2015] [Indexed: 11/25/2022]
Abstract
Epizootic haemorrhagic disease virus (EHDV) is an insect-transmitted pathogen which causes high mortality in deer populations and may also cause high morbidity in cattle. EHDV belongs to the Orbivirus genus and is closely related to the prototype Bluetongue virus (BTV). To date seven distinct serotypes have been recognized. However, a live-attenuated vaccine is commercially available against only one serotype namely EHDV-2, which has been responsible for multiple outbreaks in North America, Canada, Asia and Australia. Here we expressed four major capsid proteins (VP2, VP3, VP5 and VP7) of EHDV-1 using baculovirus multiple gene expression systems and demonstrated that three-layered VLPs were assembled mimicking the authentic EHDV particles but lacking the viral genomic RNA segments and the transcriptase complex (TC). Antibodies generated with VLPs not only neutralized EHDV-1 infection in cell culture but also showed cross neutralizing reactivity against two other serotypes, EHDV-2 and EHDV-6. For proof of concept, we demonstrated that EHDV-2 VLPs could be generated rapidly by expressing the EHDV-2 variable outer capsid proteins (VP2, VP5) together with EHDV-1 VP3 and VP7, the two inner capsid proteins, which are highly conserved among the 7 serotypes. Data presented in this study validate the VLPs as a potential vaccine and demonstrate that a vaccine could be developed rapidly in the event of an outbreak of a new serotype.
Collapse
Affiliation(s)
- Kinda Alshaikhahmed
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Polly Roy
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom.
| |
Collapse
|
37
|
Ruder MG, Stallknecht DE, Allison AB, Mead DG, Carter DL, Howerth EW. Host and Potential Vector Susceptibility to an Emerging Orbivirus in the United States. Vet Pathol 2015; 53:574-84. [DOI: 10.1177/0300985815610387] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epizootic hemorrhagic disease viruses (EHDVs) are orbiviruses transmitted by Culicoides biting midges to domestic and wild ruminants. EHDV-1 and EHDV-2 are endemic in the United States, where epizootic hemorrhagic disease is the most significant viral disease of white-tailed deer (WTD; Odocoileus virginianus) and reports of epizootic hemorrhagic disease in cattle are increasing. In 2006, a reassortant EHDV-6 was isolated from dead WTD in Indiana and has been detected each subsequent year over a wide geographic region. Since EHDV-6 is not a historically endemic serotype in the United States, it is important to understand infection outcome in potential hosts. Specifically, we aimed to evaluate the pathogenicity of the virus in 2 primary US ruminant hosts (WTD and cattle) and the susceptibility of a confirmed US vector ( Culicoides sonorensis). Five WTD and 4 cattle were inoculated with >106 TCID50 EHDV-6 by intradermal and subcutaneous injection. All 5 WTD exhibited moderate to severe disease, and 3 died. Viremia was first detected 3 to 5 days postinfection (dpi) with surviving animals seroconverting by 10 dpi. Two of 4 inoculated cattle had detectable viremia, 5 to 10 dpi and 7 to 24 dpi, respectively. No clinical, hematologic, or pathologic abnormalities were observed. Antibodies were detected by 10 dpi in 3 of 4 cows. C. sonorensis were fed on WTD blood spiked with EHDV-6 and held for 4 to 14 days postfeeding at 25°C. From 4 to 14 days postfeeding, 19 of 171 midges were virus isolation positive and 6 of 171 had ≥102.7 TCID50 EHDV-6. Although outcomes varied, these studies demonstrate the susceptibility of ruminant and vector hosts in the United States for this recently emerged EHDV serotype.
Collapse
Affiliation(s)
- M. G. Ruder
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - D. E. Stallknecht
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - A. B. Allison
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - D. G. Mead
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - D. L. Carter
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - E. W. Howerth
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
38
|
Ruder MG, Stallknecht DE, Howerth EW, Carter DL, Pfannenstiel RS, Allison AB, Mead DG. Effect of Temperature on Replication of Epizootic Hemorrhagic Disease Viruses in Culicoides sonorensis (Diptera: Ceratopogonidae). JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:1050-1059. [PMID: 26336204 DOI: 10.1093/jme/tjv062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 05/12/2015] [Indexed: 06/05/2023]
Abstract
Replication of arboviruses, including orbiviruses, within the vector has been shown to be temperature dependent. Cooler ambient temperatures slow virus replication in arthropod vectors, whereas viruses replicate faster and to higher titers at warmer ambient temperatures. Previous research with epizootic hemorrhagic disease virus (EHDV) serotype 1 demonstrated that higher temperatures were associated with shorter extrinsic incubation periods in Culicoides sonorensis Wirth & Jones, a confirmed vector of EHDV in North America. To further our understanding of the effect of temperature on replication of EHDV within the vector, C. sonorensis were experimentally infected with one of three EHDV strains representing three serotypes (1, 2, and 7). Midges were fed defibrinated white-tailed deer (Odocoileus virginianus) blood spiked with EHDV (≥10(6.5) TCID(50)/ml) through a parafilm membrane using an artificial feeding device and were then held at 20, 25, or 30°C. In addition to this in vitro method, a white-tailed deer experimentally infected with EHDV-7 was used to provide an infectious bloodmeal to determine if the results were comparable with those from the in vitro feeding method. Whole midges were processed for virus isolation and titration at regular intervals following feeding; midges with ≥10(2.7) TCID(50) were considered potentially competent to transmit virus. The virus recovery rates were high throughout the study and all three viruses replicated within C. sonorensis to high titer (≥ 10(2.7) TCID(50)/midge). Across all virus strains, the time to detection of potentially competent midges decreased with increasing temperature: 12-16 d postfeeding (dpf) at 20°C, 4-6 dpf at 25°C, and 2-4 dpf at 30°C. Significant differences in replication of the three viruses in C. sonorensis were observed, with EHDV-2 replicating to a high titer in a smaller proportion of midges and with lower peak titers. The findings are consistent with previous studies of related orbiviruses, showing that increasing temperature can shorten the apparent extrinsic incubation period for multiple EHDV strains (endemic and exotic) in C. sonorensis.
Collapse
Affiliation(s)
- Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA 30602. Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602. Present address: United States Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit, Manhattan, KS 66502. Corresponding author, e-mail:
| | - David E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Elizabeth W Howerth
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Deborah L Carter
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Robert S Pfannenstiel
- United States Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit, Manhattan, KS 66502
| | - Andrew B Allison
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA 30602. Present address: Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Daniel G Mead
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| |
Collapse
|
39
|
Garrett EF, Po E, Bichi ER, Hexum SK, Melcher R, Hubner AM. Clinical disease associated with epizootic hemorrhagic disease virus in cattle in Illinois. J Am Vet Med Assoc 2015; 247:190-5. [DOI: 10.2460/javma.247.2.190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Viarouge C, Breard E, Zientara S, Vitour D, Sailleau C. Duplex Real-Time RT-PCR Assays for the Detection and Typing of Epizootic Haemorrhagic Disease Virus. PLoS One 2015; 10:e0132540. [PMID: 26161784 PMCID: PMC4498883 DOI: 10.1371/journal.pone.0132540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/17/2015] [Indexed: 12/30/2022] Open
Abstract
Epizootic haemorrhagic disease virus (EHDV) may cause severe clinical episodes in some species of deer and sometimes in cattle. Laboratory diagnosis provides a basis for the design and timely implementation of disease control measures. There are seven distinct EHDV serotypes, VP2 coding segment 2 being the target for serotype specificity. This paper reports the development and validation of eight duplex real-time RT-PCR assays to simultaneously amplify the EHDV target (S9 for the pan-EHDV real-time RT-PCR assay and S2 for the serotyping assays) and endogenous control gene Beta-actin. Analytical and diagnostic sensitivity and specificity, inter- and intra-assay variation and efficiency were evaluated for each assay. All were shown to be highly specific and sensitive.
Collapse
Affiliation(s)
- Cyril Viarouge
- ANSES/INRA/ENVA-UPEC, UMR 1161 Virologie, 23 avenue du général de Gaulle-94700 Maisons Alfort-France
| | - Emmanuel Breard
- ANSES/INRA/ENVA-UPEC, UMR 1161 Virologie, 23 avenue du général de Gaulle-94700 Maisons Alfort-France
| | - Stephan Zientara
- ANSES/INRA/ENVA-UPEC, UMR 1161 Virologie, 23 avenue du général de Gaulle-94700 Maisons Alfort-France
| | - Damien Vitour
- ANSES/INRA/ENVA-UPEC, UMR 1161 Virologie, 23 avenue du général de Gaulle-94700 Maisons Alfort-France
| | - Corinne Sailleau
- ANSES/INRA/ENVA-UPEC, UMR 1161 Virologie, 23 avenue du général de Gaulle-94700 Maisons Alfort-France
- * E-mail:
| |
Collapse
|
41
|
Hirashima Y, Kato T, Yamakawa M, Shirafuji H, Okano R, Yanase T. Reemergence of Ibaraki disease in southern Japan in 2013. J Vet Med Sci 2015; 77:1253-9. [PMID: 26018356 PMCID: PMC4638292 DOI: 10.1292/jvms.15-0039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In Japan in 2013, two cattle in the northwestern part of Kagoshima Prefecture developed
fever and swallowing difficulty and were suspected of having Ibaraki disease. The
epizootic hemorrhagic virus (EHDV) genome was detected from diseased and asymptomatic
cattle by reverse transcription-polymerase chain reaction (RT-PCR). High neutralization
antibody titers to Ibaraki virus (IBAV) ranging from 1:128 to 1:1,024 were observed in the
RT-PCR-positive cattle, and the virus was isolated in one of the IBAV-positive farms. A
pairwise alignment and phylogenetic analysis based on the major outer coat protein VP2
encoded in segment 2 revealed a close relationship between the isolated viruses and
previous IBAV isolates. The phylogeny of VP2 also suggested that an IBAV variant isolated
in 1997 was distinct from IBAV and sorted into a heterogeneous serotype, EHDV serotype 7.
The findings revealed the reemergence of Ibaraki disease in Japan after a 26-year absence.
Interestingly, the co-circulation of EHDV serotype 1 with IBAV was observed in the
affected region, suggesting the potential reassortment between two heterogeneous serotypes
in the field. Sentinel surveillance in Kagoshima Prefecture indicated that the incursion
of IBAV occurred in October 2013 and that its spread was limited within the small area.
Inadequate environmental temperatures for vector transmission in late autumn might have
limited the virus spread to a wider region. The reemergence of Ibaraki disease showed us
the importance of continuous vaccination to prevent economic losses.
Collapse
Affiliation(s)
- Yoshimasa Hirashima
- Kagoshima Central Livestock Hygiene Service Center, 1678 Yuda, Kagoshima 899-2201, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Matsuo E, Saeki K, Roy P, Kawano J. Development of reverse genetics for Ibaraki virus to produce viable VP6-tagged IBAV. FEBS Open Bio 2015; 5:445-53. [PMID: 26101741 PMCID: PMC4472822 DOI: 10.1016/j.fob.2015.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/13/2015] [Accepted: 05/22/2015] [Indexed: 01/18/2023] Open
Abstract
A reverse genetics system for Ibaraki virus (IBAV) was developed. The RG system was used to produce viable VP6-tagged IBAV. A region of VP6 (aa 34–82) is not required for IBAV replication in tissue culture. The insertion of tags into the nonessential VP6 region did not disrupt replication. IBAV VP6 quickly assembled into puncta in the cytosol of infected cells.
Ibaraki virus (IBAV) is a member of the epizootic hemorrhagic disease virus (EHDV) serogroup, which belongs to the Orbivirus genus of the Reoviridae family. Although EHDV, including IBAV, represents an ongoing threat to livestock in the world, molecular mechanisms of EHDV replication and pathogenesis have been unclear. The reverse genetics (RG) system is one of the strong tools to understand molecular mechanisms of virus replication. Here, we developed a RG system for IBAV to identify the nonessential region of a minor structural protein, VP6, by generating VP6-truncated IBAV. Moreover, several tags were inserted into the truncated region to produce VP6-tagged IBAV. We demonstrated that all VP6-tagged IBAV could replicate in BHK cells in the absence of any helper VP6 protein. Further, tagged-VP6 proteins were first assembled into puncta in cells infected with VP6-tagged IBAV. Our data suggests that, in order to initiate primary replication, IBAV VP6 is likely to accumulate in some parts of infected cells to assemble efficiently into the primary replication complex (subcore).
Collapse
Affiliation(s)
- Eiko Matsuo
- Microbiology & Immunology, Division of Animal Science, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai, Nada-ku, Kobe-city 657-8501, Japan
| | - Keiichi Saeki
- Microbiology & Immunology, Division of Animal Science, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai, Nada-ku, Kobe-city 657-8501, Japan
| | - Polly Roy
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Junichi Kawano
- Microbiology & Immunology, Division of Animal Science, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai, Nada-ku, Kobe-city 657-8501, Japan
| |
Collapse
|
43
|
Yang T, Zhang J, Xu Q, Sun E, Li J, Lv S, Feng Y, Zhang Q, Wang H, Wang H, Wu D. Development of a reverse genetics system for epizootic hemorrhagic disease virus and evaluation of novel strains containing duplicative gene rearrangements. J Gen Virol 2015; 96:2714-2720. [PMID: 25998915 DOI: 10.1099/vir.0.000192] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Epizootic haemorrhagic disease is a non-contagious infectious viral disease of wild and domestic ruminants caused by epizootic hemorrhagic disease virus (EHDV). EHDV belongs to the genus Orbivirus within the family Reoviridae and is transmitted by insects of the genus Culicoides. The impact of epizootic haemorrhagic disease is underscored by its designation as a notifiable disease by the Office International des Epizooties. The EHDV genome consists of 10 linear dsRNA segments (Seg1-Seg10). Until now, no reverse genetics system (RGS) has been developed to generate replication-competent EHDV entirely from cloned cDNA, hampering detailed functional analyses of EHDV biology. Here, we report the generation of viable EHDV entirely from cloned cDNAs. A replication-competent EHDV-2 (Ibaraki BK13 strain) virus incorporating a marker mutation was rescued by transfection of BHK-21 cells with expression plasmids and in vitro synthesized RNA transcripts. Using this RGS, two additional modified EHDV-2 viruses were also generated: one that contained a duplex concatemeric Seg9 gene and another that contained a duplex concatemeric Seg10 gene. The modified EHDV-2 with a duplex Seg9 gene was genetically stable during serial passage in BHK-21 cells. In contrast, the modified EHDV-2 with a duplex Seg10 gene was unstable during serial passage, but displayed enhanced replication kinetics in vitro when compared with the WT virus. This RGS provides a new platform for the investigation of EHDV replication, pathogenesis and novel EHDV vaccines.
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Jikai Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Qingyuan Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Encheng Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Junping Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Shuang Lv
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Yufei Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Qin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Haixiu Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Hua Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Donglai Wu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| |
Collapse
|
44
|
APPARENT INCREASE OF REPORTED HEMORRHAGIC DISEASE IN THE MIDWESTERN AND NORTHEASTERN USA. J Wildl Dis 2015; 51:348-61. [DOI: 10.7589/2013-12-330] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Characterization of epizootic hemorrhagic disease virus from a bovine with clinical disease with high nucleotide sequence identity to white-tailed deer isolates. Arch Virol 2014; 159:2737-40. [PMID: 24852073 DOI: 10.1007/s00705-014-2120-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/11/2014] [Indexed: 10/25/2022]
Abstract
Epizootic hemorrhagic disease virus (EHDV) was isolated from a pregnant cow in Indiana, USA, exhibiting excessive salivation, pyrexia and abortion. VP2, VP5, and VP7 sequences of the isolated bovine EHDV showed 97.7, 97.4, and 97.9 % identity to a serotype 2 reference virus. Bovine EHDV was closely related (>99.9 %) to white tailed deer (WTD) EHDV collected from Iowa in 2013 and showed less than 2.1 % divergence from EHDV collected from WTD across the USA in 2013. The high degree of sequence identity between bovine and WTD EHDV isolates demonstrates that similar viruses concurrently circulate in both species and suggests possible further incursions into bovines.
Collapse
|
46
|
Epizootic hemorrhagic disease virus induces and benefits from cell stress, autophagy, and apoptosis. J Virol 2013; 87:13397-408. [PMID: 24089565 DOI: 10.1128/jvi.02116-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mode and timing of virally induced cell death hold the potential of regulating viral yield, viral transmission, and the severity of virally induced disease. Orbiviruses such as the epizootic hemorrhagic disease virus (EHDV) are nonenveloped and cytolytic. To date, the death of cells infected with EHDV, the signal transduction pathways involved in this process, and the consequence of their inhibition have yet to be characterized. Here, we report that the Ibaraki strain of EHDV2 (EHDV2-IBA) induces apoptosis, autophagy, a decrease in cellular protein synthesis, the activation of c-Jun N-terminal kinase (JNK), and the phosphorylation of the JNK substrate c-Jun. The production of infectious virions decreased upon inhibition of apoptosis with the pan-caspase inhibitor Q-VD-OPH (quinolyl-valyl-O-methylaspartyl-[-2,6-difluorophenoxy]-methyl ketone), upon inhibition of autophagy with 3-methyladenine or via the knockout of the autophagy regulator Atg5, or upon treatment of infected cells with the JNK inhibitor SP600125 or the cyclin-dependent kinase (CDK) inhibitor roscovitine, which also inhibited c-Jun phosphorylation. Moreover, Q-VD-OPH, SP600125, and roscovitine partially reduced EHDV2-IBA-induced cell death, and roscovitine diminished the induction of autophagy by EHDV2-IBA. Taken together, our results imply that EHDV induces and benefits from the activation of signaling pathways involved in cell stress and death.
Collapse
|
47
|
Breard E, Belbis G, Viarouge C, Riou M, Desprat A, Moreau J, Laloy E, Martin G, Sarradin P, Vitour D, Batten C, Doceul V, Sailleau C, Zientara S. Epizootic hemorrhagic disease virus serotype 6 experimentation on adult cattle. Res Vet Sci 2013; 95:794-8. [PMID: 23899717 DOI: 10.1016/j.rvsc.2013.06.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/20/2013] [Accepted: 06/30/2013] [Indexed: 10/26/2022]
Abstract
Epizootic hemorrhagic disease virus (EHDV), an arthropod-borne orbivirus (family Reoviridae), is an emerging pathogen of wild and domestic ruminants closely related to bluetongue virus (BTV). EHDV serotype 6 (EHDV6) has recently caused outbreaks close to Europe in Turkey and Morocco and a recent experimental study performed on calves inoculated with these two EHDV6 strains showed that the young animals have remained clinically unaffected. The aim of this study was to investigate the pathogenicity of an EHDV6 strain from La Reunion Island in adult Holstein (18-month-old heifers). This EHDV6 strain has induced clinical signs in cattle in the field. Samples taken throughout the study were tested with commercially available ELISA and real-time RT-PCR kits. Very mild clinical manifestations were observed in cattle during the experiment although high levels of viral RNA and virus were found in their blood. EHDV was isolated from the blood of infected animals at 8 dpi. Antibodies against EHDV were first detected by 7 dpi and persisted up to the end of the study. Virus was detected in various tissue samples until 35 dpi, but was not infectious. In view of the recent circulation of different arboviruses in Europe, this study demonstrates what the EHD induces a strong viraemia in adult Holstein cattle and shows that a spread of EHD on European livestock cattle is possible.
Collapse
Affiliation(s)
- Emmanuel Breard
- ANSES, UMR 1161 Virologie ANSES-INRA-ENVA, 23 avenue du Général de Gaulle, 94704 Maisons-Alfort, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Van Campen H, Davis C, Flinchum JD, Bishop JV, Schiebel A, Duncan C, Spraker T. Epizootic hemorrhagic disease in yaks (Bos grunniens). J Vet Diagn Invest 2013; 25:443-6. [DOI: 10.1177/1040638713485369] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
An epizootic of hemorrhagic disease associated with Epizootic hemorrhagic disease virus serotype 2 (EHDV-2) infections in yaks from 5 herds occurred in Colorado between August 21 and October 3, 2012. Affected yaks presented with fever, lethargy, anorexia, dyspnea, and swollen conjunctivae. Ulcerated dental pads, mucoid sanguineous nasal discharge, petechial hemorrhages in multiple organs, pulmonary edema, and serosanguinous fluid in the thorax, abdomen, and pericardial sac were observed at necropsy. Blood and tissue samples from 8 yaks with similar clinical signs and necropsy findings were positive for EHDV-2 by reverse transcription polymerase chain reaction and 5 yaks were seropositive for EHDV. Tests for malignant catarrhal fever ( Ovine herpesvirus 2), Bovine viral diarrhea virus, Bovine herpesvirus 1, Foot-and-mouth disease virus, and Vesicular stomatitis virus were negative. The findings indicate that yaks are susceptible to infection with EHDV-2 and exhibit the clinical signs, and gross and histologic lesions of hemorrhagic disease observed in other ruminant species.
Collapse
Affiliation(s)
- Hana Van Campen
- Colorado State University, Veterinary Diagnostic Laboratories, Fort Collins, CO
- private practitioner, Longmont, CO, (Flinchum)
| | - Charlie Davis
- Colorado State University, Veterinary Diagnostic Laboratories, Fort Collins, CO
- private practitioner, Longmont, CO, (Flinchum)
| | - John D. Flinchum
- Colorado State University, Veterinary Diagnostic Laboratories, Fort Collins, CO
- private practitioner, Longmont, CO, (Flinchum)
| | - Jeanette V. Bishop
- Colorado State University, Veterinary Diagnostic Laboratories, Fort Collins, CO
- private practitioner, Longmont, CO, (Flinchum)
| | - Anita Schiebel
- Colorado State University, Veterinary Diagnostic Laboratories, Fort Collins, CO
- private practitioner, Longmont, CO, (Flinchum)
| | - Colleen Duncan
- Colorado State University, Veterinary Diagnostic Laboratories, Fort Collins, CO
- private practitioner, Longmont, CO, (Flinchum)
| | - Terry Spraker
- Colorado State University, Veterinary Diagnostic Laboratories, Fort Collins, CO
- private practitioner, Longmont, CO, (Flinchum)
| |
Collapse
|
49
|
Toye PG, Batten CA, Kiara H, Henstock MR, Edwards L, Thumbi S, Poole EJ, Handel IG, Bronsvoort BMD, Hanotte O, Coetzer JAW, Woolhouse MEJ, Oura CAL. Bluetongue and epizootic haemorrhagic disease virus in local breeds of cattle in Kenya. Res Vet Sci 2012; 94:769-73. [PMID: 23261160 PMCID: PMC3632752 DOI: 10.1016/j.rvsc.2012.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 11/02/2012] [Accepted: 11/17/2012] [Indexed: 11/16/2022]
Abstract
The presence of bluetongue virus (BTV) and Epizootic Haemorrhagic Disease virus (EHDV) in indigenous calves in western Kenya was investigated. Serum was analysed for BTV and EHDV antibodies. The population seroprevalences for BTV and EHDV for calves at 51 weeks of age were estimated to be 0.942 (95% CI 0.902–0.970) and 0.637 (95% CI 0.562–0.710), respectively, indicating high levels of circulating BTV and EHDV. The odds ratio of being positive for BTV if EHDV positive was estimated to be 2.57 (95% CI 1.37–4.76). When 99 calves were tested for BTV and EHDV RNA by real-time RT-PCR, 88.9% and 63.6% were positive, respectively. Comparison of the serology and real-time RT-PCR results revealed an unexpectedly large number of calves that were negative by serology but positive by real-time RT-PCR for EHDV. Eight samples positive for BTV RNA were serotyped using 24 serotype-specific real-time RT-PCR assays. Nine BTV serotypes were detected, indicating that the cattle were infected with a heterogeneous population of BTVs. The results show that BTV and EHDV are highly prevalent, with cattle being infected from an early age.
Collapse
Affiliation(s)
- P G Toye
- The International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Roug A, Swift P, Torres S, Jones K, Johnson CK. Serosurveillance for livestock pathogens in free-ranging mule deer (Odocoileus hemionus). PLoS One 2012; 7:e50600. [PMID: 23209790 PMCID: PMC3507783 DOI: 10.1371/journal.pone.0050600] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/26/2012] [Indexed: 12/01/2022] Open
Abstract
Routine disease surveillance has been conducted for decades in mule deer (Odocoileus hemionus) in California for pathogens shared between wildlife and domestic ruminants that may have implications for the animal production industry and wildlife health. Deer sampled from 1990 to 2007 (n = 2,619) were tested for exposure to six pathogens: bluetongue virus (BTV), epizootic hemorrhagic disease virus (EHDV), bovine viral diarrhea virus (BVDV), Leptospira spp., Anaplasma spp. and Brucella spp. We evaluated the relationship between exposure to these pathogens and demographic risk factors to identify broad patterns in seroprevalence across a large temporal and spatial scale. The overall seroprevalence for the entire study period was 13.4% for BTV, 16.8% for EHDV, 17.1% for BVDV, 6.5% for Leptospira spp., 0.2% for Brucella spp., and 17% for Anaplasma spp. Antibodies against BTV and EHDV were most prevalent in the deer populations of southern California. Antibodies against Leptospira spp. and Anaplasma spp. were most prevalent in coastal and central northern California whereas antibodies against BVDV were most prevalent in central-eastern and northeastern California. The overall seroprevalence for Anaplasma spp. was slightly lower than detected in previous studies. North and central eastern California contains large tracts of federal land grazed by livestock; therefore, possible contact between deer and livestock could explain the high BVDV seroprevalence found in these areas. Findings from this study will help to establish baseline values for future comparisons of pathogen exposure in deer, inform on long-term trends in deer population health and provide relevant information on the distribution of diseases that are shared between wildlife and livestock.
Collapse
Affiliation(s)
- Annette Roug
- Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Pamela Swift
- California Department of Fish and Game, Rancho Cordova, California, United States of America
| | - Steven Torres
- California Department of Fish and Game, Rancho Cordova, California, United States of America
| | - Karen Jones
- California Department of Fish and Game, Rancho Cordova, California, United States of America
| | - Christine K. Johnson
- Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|