1
|
Zhou J, Sun P, Wang Y, Shi Y, Chen C, Xiao W, Qiu R, Cheng T, Fang L, Xiao S. Design and biological evaluation of candidate drugs against zoonotic porcine deltacoronavirus (PDCoV). Antiviral Res 2024; 231:106019. [PMID: 39395622 DOI: 10.1016/j.antiviral.2024.106019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus with zoonotic potential. PDCoV spillovers were recently detected in Haitian children with acute undifferentiated febrile illness, underscoring the urgent need to develop anti-PDCoV therapeutics. Coronavirus 3C-like protease (CoV 3CLpro) is essential for viral replication, and therefore provides an attractive target for drugs directed against CoV. Here, we initially evaluated the anti-PDCoV effect of Nirmatrelvir (PF-07321332), an FDA-approved anti-SARS-CoV-2 drug targeting viral 3CLpro. Regrettably, a very limited anti-PDCoV effect was achieved. By analyzing the binding modes of Nirmatrelvir with PDCoV 3CLpro and SARS-CoV-2 3CLpro, we demonstrated that the S2 pocket of 3CLpro is the primary factor underlying the differential inhibitory potency of Nirmatrelvir against different CoV 3CLpros. Based on the specific characteristics of the S2 pocket of PDCoV 3CLpro, four derivatives of Nirmatrelvir (compounds T1-T4) with substituted P2 moieties were synthesized. Compound T1, with an isobutyl at the P2 site, displayed improved anti-PDCoV activity invitro (cell infection model) and invivo (embryonated chicken egg infection model), and therefore is a potential candidate drug to combat PDCoV. Together, our results identify the substrate-binding mode and substrate specificity of PDCoV 3CLpro, providing insight into the optimization of Nirmatrelvir as an antiviral therapeutic agent against PDCoV.
Collapse
Affiliation(s)
- Junwei Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Peng Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yuanqing Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yuting Shi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Chaoqun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Wenwen Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Runhui Qiu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Ting Cheng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
2
|
Jiang H, Jia M, Xiong J, Zhao C, Wang T, Kong L, Peng Q. The network interactions between the porcine deltacoronavirus nucleocapsid protein and host cellular proteins. Vet Microbiol 2024; 298:110225. [PMID: 39154555 DOI: 10.1016/j.vetmic.2024.110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine coronavirus that can cause diarrhea in pigs of all ages with varying severity. Host-virus protein interactions are critical for intracellular viral replication. Elucidating the interactions between cellular and viral proteins can help us to design antiviral strategies. PDCoV N protein is the most abundant and vital regulator in virus replication. In this study, 604 host proteins were identified to interact with PDCoV N protein by Co-IP combined with LC-MS, of which 243 proteins were specifically bound to N protein. PPI analysis revealed that the N-interacting host proteins are categorized into three groups: ribonucleoprotein complex biogenesis modulation, cellular nitrogen compound metabolism, and nucleic acid binding. GO and KEGG analyses showed that the host proteins are primarily involved in mRNA splicing, stress granule assembly, spliceosomal snRNP assembly. Additionally, four host proteins-TRIM25, HNRNPUL1, RPS27A, and SLC3A2-were selected to validate the interactome data through Co-IP and Confocal assays. This study can help in designing anti-PDCoV strategies and understanding the replication mechanism of PDCoV.
Collapse
Affiliation(s)
- Hui Jiang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China; Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Mengle Jia
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiaqi Xiong
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Changrun Zhao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Ting Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qi Peng
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China; College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
3
|
Wang W, Fan B, Zhang X, Yang S, Zhou J, Guo R, Zhao Y, Zhou J, Li J, Li B. Development and evaluation of a monoclonal antibody-based competitive ELISA for detecting porcine deltacoronavirus antibodies. ANIMAL DISEASES 2024; 4:30. [DOI: 10.1186/s44149-024-00137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/26/2024] [Indexed: 01/05/2025] Open
Abstract
AbstractPorcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that can cause acute diarrhea and vomiting in newborn piglets and poses a potential risk for cross-species transmission. It is necessary to develop an effective serological diagnostic tool for the surveillance of PDCoV infection and vaccine immunity effects. In this study, we developed a monoclonal antibody-based competitive ELISA (cELISA) that selected the purified recombinant PDCoV nucleocapsid (N) protein as the coating antigen to detect PDCoV antibodies. To evaluate the diagnostic performance of the cELISA, 122 swine serum samples (39 positive and 83 negative) were tested and the results were compared with an indirect immunofluorescence assay (IFA) as the reference method. By receiver operating characteristic (ROC) curve analysis, the optimum cutoff value of percent inhibition (PI) was determined to be 26.8%, which showed excellent diagnostic performance, with an area under the curve (AUC) of 0.9919, a diagnostic sensitivity of 97.44% and a diagnostic specificity of 96.34%. Furthermore, there was good agreement between the cELISA and virus neutralization test (VNT) for the detection of PDCoV antibodies, with a coincidence rate of 92.7%, and the κ analysis showed almost perfect agreement (κ = 0.851). Overall, the established cELISA showed good diagnostic performance, including sensitivity, specificity and repeatability, and can be used for diagnostic assistance, evaluating the response to vaccination and assessing swine herd immunity.
Collapse
|
4
|
Ren J, Zu C, Li Y, Li M, Gu J, Chen F, Li X. Establishment and application of a TaqMan-based multiplex real-time PCR for simultaneous detection of three porcine diarrhea viruses. Front Microbiol 2024; 15:1380849. [PMID: 38690365 PMCID: PMC11058560 DOI: 10.3389/fmicb.2024.1380849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Porcine viral diarrhea is a common clinical disease, which results in high mortality and economic losses in the pig industry. Porcine epidemic diarrhea virus (PEDV), porcine rotavirus (PoRV), and porcine deltacoronavirus (PDCoV) are important diarrhea viruses in pig herds. The similarities of their clinical symptoms and pathological changes make it difficult to distinguish these three viruses clinically. Therefore, there is a need for a highly sensitive and specific method to simultaneously detect and differentiate these viruses. Methods A multiplex real-time PCR assay using TaqMan probes was developed to simultaneously detect PEDV, PoRV, and PDCoV. To assess the efficacy of the established assay, 30 clinical samples with diarrhea symptoms were used to compare the results obtained from the multiplex real-time PCR assay with those obtained from commercial singleplex real-time PCR kit. Importantly, a total of 4,800 diarrhea samples were tested and analyzed to validate the utility of the assay. Results This multiplex real-time PCR assay showed high sensitivity, specificity, and excellent repeatability with a detection limit of 1 × 102 copies/μL. Comparing the results of the commercial singleplex real-time PCR kit and the multiplex real-time PCR method for detecting PEDV, PoRV, and PDCoV, there was complete agreement between the two approaches. Clinical data revealed single infection rates of 6.56% for PEDV, 21.69% for PoRV, and 6.65% for PDCoV. The co-infection rates were 11.83% for PEDV + PoRV, 0.29% for PEDV + PDCoV, 5.71% for PoRV + PDCoV, and 1.29% for PEDV + PDCoV + PoRV, respectively. Discussion The multiplex real-time PCR method established in this study is a valuable diagnostic tool for simultaneously differentiating PEDV, PoRV, and PDCoV. This method is expected to significantly contribute to prevent and control the spread of infectious diseases, as well as aid in conducting epidemiological investigations.
Collapse
Affiliation(s)
- Jing Ren
- Shandong Engineering Research Center of Swine Health Data and Intelligent Monitoring, Dezhou University, Dezhou, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Congcong Zu
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, China
| | - Yang Li
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, China
| | - Meng Li
- Shandong Engineering Research Center of Swine Health Data and Intelligent Monitoring, Dezhou University, Dezhou, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Jinyuan Gu
- Shandong Engineering Research Center of Swine Health Data and Intelligent Monitoring, Dezhou University, Dezhou, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Fengling Chen
- Shandong Engineering Research Center of Swine Health Data and Intelligent Monitoring, Dezhou University, Dezhou, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Xiaowen Li
- Shandong Engineering Research Center of Swine Health Data and Intelligent Monitoring, Dezhou University, Dezhou, China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, China
| |
Collapse
|
5
|
Wang Y, Song J, Deng X, Wang J, Zhang M, Liu Y, Tang P, Liu H, Zhou Y, Tong G, Li G, Yu L. Nanoparticle vaccines based on the receptor binding domain of porcine deltacoronavirus elicit robust protective immune responses in mice. Front Immunol 2024; 15:1328266. [PMID: 38550592 PMCID: PMC10972852 DOI: 10.3389/fimmu.2024.1328266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/28/2024] [Indexed: 04/02/2024] Open
Abstract
Background Porcine deltacoronavirus (PDCoV), a novel swine enteropathogenic coronavirus, challenges the global swine industry. Currently, there are no approaches preventing swine from PDCoV infection. Methods A new PDCoV strain named JS2211 was isolated. Next, the dimer receptor binding domain of PDCoV spike protein (RBD-dimer) was expressed using the prokaryotic expression system, and a novel nanoparticle containing RBD-dimer and ferritin (SC-Fe) was constructed using the SpyTag/SpyCatcher system. Finally, the immunoprotection of RBD-Fe nanoparticles was evaluated in mice. Results The novel PDCoV strain was located in the clade of the late Chinese isolate strains and close to the United States strains. The RBD-Fe nanoparticles were successfully established. Immune responses of the homologous prime-boost regime showed that RBD-Fe nanoparticles efficiently elicited specific humoral and cellular immune responses in mice. Notably, high level PDCoV RBD-specific IgG and neutralizing antibody (NA) could be detected, and the histopathological results showed that PDCoV infection was dramatically reduced in mice immunized with RBD-Fe nanoparticles. Conclusion This study effectively developed a candidate nanoparticle with receptor binding domain of PDCoV spike protein that offers protection against PDCoV infection in mice.
Collapse
Affiliation(s)
- Yuanhong Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Junhan Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiaoying Deng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Junna Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Miao Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yun Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Pan Tang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Kikuti M, Picasso-Risso C, Corzo CA. Porcine Deltacoronavirus Occurrence in the United States Breeding Herds since Its Emergence in 2014. Viruses 2024; 16:445. [PMID: 38543810 PMCID: PMC10975363 DOI: 10.3390/v16030445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 05/23/2024] Open
Abstract
PDCoV, an enveloped RNA virus, causes atrophic enteritis in neonatal piglets, leading to diarrhea, malabsorption, dehydration, and death. The study aims to fill the gap in the current epidemiological information about PDCoV in the U.S. pig population after its emergence in 2014. Data from the Morrison Swine Health Monitoring Project (MSHMP) between January 2015 and December 2023 were analyzed, representing approximately 60% of the U.S. breeding herd. Participating herds report weekly PDCoV health status. In total, 244 PDCoV outbreaks occurred in 186 sites from 22 production systems across 16 states. Case counts peaked during winter, and incidence ranged from 0.44% in 2017 to 4.28% in 2023. For sites that experienced more than one PDCoV outbreak during the study period, the interval between outbreaks was a median of 2.11 years. The South and Midwest regions reported the majority of cases. In 2017, a shift in the spatial distribution of cases from the Midwest to the South was observed. The findings underscore the importance of continued monitoring and strengthened control measures to mitigate the impact of PDCoV in U.S. breeding herds.
Collapse
Affiliation(s)
- Mariana Kikuti
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN 55108, USA; (M.K.)
| | - Catalina Picasso-Risso
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN 55108, USA; (M.K.)
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Cesar A. Corzo
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN 55108, USA; (M.K.)
| |
Collapse
|
7
|
Guo Z, Lu Q, Jin Q, Li P, Xing G, Zhang G. Phylogenetically evolutionary analysis provides insights into the genetic diversity and adaptive evolution of porcine deltacoronavirus. BMC Vet Res 2024; 20:22. [PMID: 38200538 PMCID: PMC10782762 DOI: 10.1186/s12917-023-03863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Porcine deltacoronavirus (PDCoV) is one of the emerging swine enteric coronaviruses (SECoVs), which has been widely prevalent in the North America and Asia. In addition to causing severe diarrhea in piglets, PDCoV also shows the potential to infect diverse host species, including calves, chickens, turkey poults, and humans. However, the clinical pathogenicity and genetic evolution of PDCoV is still not fully understood. RESULTS Here, we recorded an outbreak of a novel recombinant PDCoV strain (CHN-HeN06-2022) in a large nursery fattening pig farm. Genomic analysis showed that the CHN-HeN06-2022 strain shared 98.3-98.7% sequence identities with the Chinese and American reference strains. To clarify the evolutionary relationships, phylogenetic analysis was performed using the PDCoV genome sequences available in the GenBank database. Based on genetic distance and geographical distribution, the phylogenetic tree clearly showed that all the PDCoV sequences could be divided into lineage 1 and lineage 2, which were further classified into sublineage 1.1 (Chinese strains), 1.2 (the North American strains), 2.1 (the Southeast Asian strains), and 2.2 (Chinese strains). Corresponding to the evolutionary tree, we found that, compared to lineage 1, lineage 2 strains usually contain a continuous 6-nt deletion in Nsp2 and a 9-nt deletion in Nsp3, respectively. Furthermore, recombination analysis suggested that the CHN-HeN06-2022 occurred segments exchange crossed Nsp2 and Nsp3 region between sublineage 1.1 and sublineage 2.1. Combined with previously reported recombinant strains, the highest recombination frequency occurred in Nsp2, Nsp3, and S gene. Additionally, we identified a total of 14 amino acid sites under positive selection in spike protein, most of which are located in the regions related with the viral attachment, receptor binding, and membrane fusion. CONCLUSIONS Taken together, our studies provide novel insights into the genetic diversity and adaptive evolution of PDCoV. It would be helpful to the development of vaccine and potential antiviral agent.
Collapse
Affiliation(s)
- Zhenhua Guo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Qingxia Lu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Qianyue Jin
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Peng Li
- Vet Diagnostic & Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Guangxu Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- School of Advanced Agricultural Sciences, Peking University, Beijing, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
8
|
Lu Y, Yu R, Tong L, Zhang L, Zhang Z, Pan L, Wang Y, Guo H, Hu Y, Liu X. Transcriptome Analysis of LLC-PK Cells Single or Coinfected with Porcine Epidemic Diarrhea Virus and Porcine Deltacoronavirus. Viruses 2023; 16:74. [PMID: 38257774 PMCID: PMC10818665 DOI: 10.3390/v16010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) are the two most prevalent swine enteric coronaviruses worldwide. They commonly cause natural coinfections, which worsen as the disease progresses and cause increased mortality in piglets. To better understand the transcriptomic changes after PEDV and PDCoV coinfection, we compared LLC porcine kidney (LLC-PK) cells infected with PEDV and/or PDCoV and evaluated the differential expression of genes by transcriptomic analysis and real-time qPCR. The antiviral efficacy of interferon-stimulated gene 20 (ISG20) against PDCoV and PEDV infections was also assessed. Differentially expressed genes (DEGs) were detected in PEDV-, PDCoV-, and PEDV + PDCoV-infected cells at 6, 12, and 24 h post-infection (hpi), and at 24 hpi, the number of DEGs was the highest. Furthermore, changes in the expression of interferons, which are mainly related to apoptosis and activation of the host innate immune pathway, were found in the PEDV and PDCoV infection and coinfection groups. Additionally, 43 ISGs, including GBP2, IRF1, ISG20, and IFIT2, were upregulated during PEDV or PDCoV infection. Furthermore, we found that ISG20 significantly inhibited PEDV and PDCoV infection in LLC-PK cells. The transcriptomic profiles of cells coinfected with PEDV and PDCoV were reported, providing reference data for understanding the host response to PEDV and PDCoV coinfection.
Collapse
Affiliation(s)
- Yanzhen Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.)
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Ruiming Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.)
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Lixin Tong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.)
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Zhongwang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Yonglu Wang
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| | - Yonghao Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.)
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, OIE/National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China (L.P.)
| |
Collapse
|
9
|
Jiang H, Wang T, Kong L, Li B, Peng Q. Reverse Genetics Systems for Emerging and Re-Emerging Swine Coronaviruses and Applications. Viruses 2023; 15:2003. [PMID: 37896780 PMCID: PMC10611186 DOI: 10.3390/v15102003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Emerging and re-emerging swine coronaviruses (CoVs), including porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome-CoV (SADS-CoV), cause severe diarrhea in neonatal piglets, and CoV infection is associated with significant economic losses for the swine industry worldwide. Reverse genetics systems realize the manipulation of RNA virus genome and facilitate the development of new vaccines. Thus far, five reverse genetics approaches have been successfully applied to engineer the swine CoV genome: targeted RNA recombination, in vitro ligation, bacterial artificial chromosome-based ligation, vaccinia virus -based recombination, and yeast-based method. This review summarizes the advantages and limitations of these approaches; it also discusses the latest research progress in terms of their use for virus-related pathogenesis elucidation, vaccine candidate development, antiviral drug screening, and virus replication mechanism determination.
Collapse
Affiliation(s)
- Hui Jiang
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (H.J.); (T.W.)
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Ting Wang
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (H.J.); (T.W.)
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingbao Kong
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (H.J.); (T.W.)
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Qi Peng
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (H.J.); (T.W.)
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| |
Collapse
|
10
|
Hou W, Fan M, Zhu Z, Li X. Establishment and Application of a Triplex Real-Time RT-PCR Assay for Differentiation of PEDV, PoRV, and PDCoV. Viruses 2023; 15:1238. [PMID: 37376539 DOI: 10.3390/v15061238] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Porcine viral diarrhea is very common in clinical practice and has caused huge losses to the pig industry. Porcine epidemic diarrhea virus (PEDV), porcine rotavirus (PoRV), and porcine deltacoronavirus (PDCoV) are important pathogens of porcine viral diarrhea. Co-infection situations among these three viruses in clinics are common, which increases the difficulty of differential diagnosis. Currently, polymerase chain reaction (PCR) is commonly used to detect pathogens. TaqMan real-time PCR is more sensitive than conventional PCR and has better specificity and accuracy. In this study, a triplex real-time RT-PCR assay based on TaqMan probes was developed for differential detection of PEDV, PoRV, and PDCoV. The triplex real-time RT-PCR assay developed in this study could not detect unrelated pathogens and showed satisfactory specificity, sensitivity, repeatability, and reproducibility with a limit of detection (LOD) of 6.0 × 101 copies/μL. Sixteen clinical samples were used to compare the results of the commercial RT-PCR kit and the triplex RT-PCR for PEDV, PoRV, and PDCoV detection, and the results were completely consistent. A total of 112 piglet diarrhea samples collected from Jiangsu province were next used to study the local prevalence of PEDV, PoRV, and PDCoV. The positive rates of PEDV, PoRV, and PDCoV detected by the triplex real-time RT-PCR were 51.79% (58/112), 59.82% (67/112), and 2.68% (3/112), respectively. The co-infections of PEDV and PoRV were frequent (26/112, 23.21%), followed by the co-infections of PDCoV and PoRV (2/112, 1.79%). This study established a useful tool for simultaneous differentiation of PEDV, PoRV, and PDCoV in practice and provided valuable information on the prevalence of these diarrhea viral pathogens in Jiangsu province.
Collapse
Affiliation(s)
- Wenwen Hou
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Maodi Fan
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhenbang Zhu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiangdong Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar 843399, China
| |
Collapse
|
11
|
He W, Peng Q, Li J, Huang J, Cai X, Li S, Zhang B, Xiao L, Gao J, Wang C, Qian J, Gu L, Wang R, Tang X, Li K, Song X, Zhou J, Zhu M, Li B. Attenuation of a Highly Pathogenic Porcine Deltacoronavirus Strain CZ2020 by a Serial Passage In Vitro. Transbound Emerg Dis 2023; 2023:2830485. [PMID: 40303668 PMCID: PMC12017174 DOI: 10.1155/2023/2830485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2025]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine coronavirus that causes severe diarrhea to pigs of all ages, especially the suckling piglets under one-week-old. We previously isolated a highly pathogenic PDCoV strain, CZ2020, from a diarrheal piglet and have passaged it for over 100 passages. The adaptability of the CZ2020 increased gradually in vitro as the passage increased. Amino acid mutations were observed in pp1a, pp1ab, spike, envelop, and membrane proteins, and the spike protein accounts for 66.7% of all amino acid mutations. Then, the high passage strains, CZ2020-F80 and CZ2020-F100, were selected for evaluation of the pathogenicity in three-day-old piglets to examine whether these amino acid changes affected their virulence. At 2 days postchallenge (DPC), 2/5 piglets started to show typical diarrhea, and at 4 DPC, severe diarrhea was observed in the CZ2020-challenged piglets. Viral RNA could be detected at 1 DPC in rectal swabs and reached its highest at 4 DPC in the CZ2020-challenged group. CZ2020-F80- and CZ2020-F100-challenged groups have one piglet exhibiting mild diarrhea at 4 and 6 DPC, respectively. Compared with the CZ2020-challenged group, the piglets in CZ2020-F80- and F100-challenged groups had lower viral loads in rectal swabs, intestines, and other organs. No obvious histopathological lesions were observed in the intestines of CZ2020-F80- and F100-challenged piglets. Virulent PDCoV infection could also induce strong interferons and proinflammatory cytokines in vitro and in vivo. These data indicate that the strains, CZ2020-F80 and CZ2020-F100, were significantly attenuated via serial passaging in vitro and have the potential for developing attenuated vaccine candidates.
Collapse
Affiliation(s)
- Wenlong He
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Qi Peng
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330045, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jin Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Xuhang Cai
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Siyuan Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Baotai Zhang
- College of Veterinary Medicine, Guizhou University, Guiyang 550025, China
| | - Li Xiao
- College of Veterinary Medicine, Guizhou University, Guiyang 550025, China
| | - Jie Gao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Chuanhong Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Jiali Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Laqiang Gu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Rui Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Xuechao Tang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Kemang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Xu Song
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Mingjun Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Bin Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Detection of Porcine Deltacoronavirus RNA in the Upper and Lower Respiratory Tract and Biliary Fluid and the Effect of Infection on Serum Cholesterol Levels and Blood T Cell Population Frequencies in Gnotobiotic Piglets. Vet Sci 2023; 10:vetsci10020117. [PMID: 36851421 PMCID: PMC9962660 DOI: 10.3390/vetsci10020117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) was first identified approximately a decade ago, but much is still obscure in terms of its pathogenesis. We aimed to further characterize PDCoV infection by investigating the presence of virus in respiratory and biliary tissues or fluids; T cell population frequencies in blood; and altered serum cholesterol levels. Twelve, 6-day-old, gnotobiotic piglets were inoculated oronasally with PDCoV OH-FD22 (2.6 × 107 FFU/pig). Six control piglets were not inoculated. Rectal swab (RS), nasal swab (NS), nasal wash (NW), bronchoalveolar lavage (BAL), and biliary fluid (BF) samples were collected at 2, 4, and 7 days post-inoculation (DPI) and tested for PDCoV RNA by RT-qPCR. Blood T cell populations and serum cholesterol levels were determined by flow cytometry and a colorimetric assay, respectively. Moderate to high, and low to moderate titers of PDCoV RNA were detected in RS and in NS, NW, BAL, and BF samples, respectively, of inoculated piglets. There were trends toward decreased CD4+CD8-, CD4-CD8+, and CD4+CD8+ blood T cell frequencies in inoculated piglets. Furthermore, serum cholesterol levels were increased in inoculated piglets. Overall, we found that PDCoV infection does not exclusively involve the intestine, since the respiratory and biliary systems and cholesterol metabolism also can be affected.
Collapse
|
13
|
Wang W, Fan B, Zhang X, Guo R, Zhao Y, Zhou J, Zhou J, Peng Q, Zhu M, Li J, Li B. Development of a colloidal gold immunochromatographic assay strip using monoclonal antibody for rapid detection of porcine deltacoronavirus. Front Microbiol 2023; 13:1074513. [PMID: 36687576 PMCID: PMC9849564 DOI: 10.3389/fmicb.2022.1074513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) cause diarrhea and dehydration in newborn piglets and has the potential for cross-species transmission. Rapid and early diagnosis is important for preventing and controlling infectious disease. In this study, two monoclonal antibodies (mAbs) were generated, which could specifically recognize recombinant PDCoV nucleocapsid (rPDCoV-N) protein. A colloidal gold immunochromatographic assay (GICA) strip using these mAbs was developed to detect PDCoV antigens within 15 min. Results showed that the detection limit of the GICA strip developed in this study was 103 TCID50/ml for the suspension of virus-infected cell culture and 0.125 μg/ml for rPDCoV-N protein, respectively. Besides, the GICA strip showed high specificity with no cross-reactivity with other porcine pathogenic viruses. Three hundred and twenty-five fecal samples were detected for PDCoV using the GICA strip and reverse transcription-quantitative real-time PCR (RT-qPCR). The coincidence rate of the GICA strip and RT-qPCR was 96.9%. The GICA strip had a diagnostic sensitivity of 88.9% and diagnostic specificity of 98.5%. The specific and efficient detection by the strip provides a convenient, rapid, easy to use and valuable diagnostic tool for PDCoV under laboratory and field conditions.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture and Rural Affairs, Nanjing, China,Shaoxing Academy of Biomedicine of Zhejiang Sci-Tech University, Shaoxing, China,Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China,Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture and Rural Affairs, Nanjing, China,Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture and Rural Affairs, Nanjing, China,Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture and Rural Affairs, Nanjing, China,Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongxiang Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture and Rural Affairs, Nanjing, China,Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture and Rural Affairs, Nanjing, China,Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture and Rural Affairs, Nanjing, China,Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Qi Peng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture and Rural Affairs, Nanjing, China,Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Mingjun Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture and Rural Affairs, Nanjing, China,Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture and Rural Affairs, Nanjing, China,Shaoxing Academy of Biomedicine of Zhejiang Sci-Tech University, Shaoxing, China,Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China,Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, China,*Correspondence: Jizong Li,
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture and Rural Affairs, Nanjing, China,Shaoxing Academy of Biomedicine of Zhejiang Sci-Tech University, Shaoxing, China,Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China,Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou, China,Bin Li,
| |
Collapse
|
14
|
Bahoussi AN, Wang PH, Shah PT, Bu H, Wu C, Xing L. Evolutionary plasticity of zoonotic porcine Deltacoronavirus (PDCoV): genetic characteristics and geographic distribution. BMC Vet Res 2022; 18:444. [PMID: 36550483 PMCID: PMC9772601 DOI: 10.1186/s12917-022-03554-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The emergence and rapid spread of the acute respiratory syndrome coronavirus-2 have confirmed that animal coronaviruses represent a potential zoonotic source. Porcine deltacoronavirus is a worldwide evolving enteropathogen of swine, detected first in Hong Kong, China, before its global identification. Following the recent detection of PDCoV in humans, we attempted in this report to re-examine the status of PDCoV phylogenetic classification and evolutionary characteristics. A dataset of 166 complete PDCoV genomes was analyzed using the Maximum Likelihood method in IQ-TREE with the best-fitting model GTR + F + I + G4, revealing two major genogroups (GI and GII), with further seven and two sub-genogroups, (GI a-g) and (GII a-b), respectively. PDCoV strains collected in China exhibited the broadest genetic diversity, distributed in all subgenotypes. Thirty-one potential natural recombination events were identified, 19 of which occurred between China strains, and seven involved at least one China strain as a parental sequence. Importantly, we identified a human Haiti PDCoV strain as recombinant, alarming a possible future spillover that could become a critical threat to human health. The similarity and recombination analysis showed that PDCoV spike ORF is highly variable compared to ORFs encoding other structural proteins. Prediction of linear B cell epitopes of the spike glycoprotein and the 3D structural mapping of amino acid variations of two representative strains of GI and GII showed that the receptor-binding domain (RBD) of spike glycoprotein underwent a significant antigenic drift, suggesting its contribution in the genetic diversity and the wider spread of PDCoV.
Collapse
Affiliation(s)
- Amina Nawal Bahoussi
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Pir Tariq Shah
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Hongli Bu
- Department of Laboratory Medicine, The Fourth People's Hospital of Taiyuan, 231 Xikuang St, Taiyuan, 030053, Shanxi province, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China.
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China.
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan, 030006, China.
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China.
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China.
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan, 030006, China.
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
15
|
Zhou H, Shi K, Long F, Zhao K, Feng S, Yin Y, Xiong C, Qu S, Lu W, Li Z. A Quadruplex qRT-PCR for Differential Detection of Four Porcine Enteric Coronaviruses. Vet Sci 2022; 9:634. [PMID: 36423083 PMCID: PMC9695440 DOI: 10.3390/vetsci9110634] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 10/28/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV) are four identified porcine enteric coronaviruses. Pigs infected with these viruses show similar manifestations of diarrhea, vomiting, and dehydration. Here, a quadruplex real-time quantitative PCR (qRT-PCR) assay was established for the differential detection of PEDV, TGEV, PDCoV, and SADS-CoV from swine fecal samples. The assay showed extreme specificity, high sensitivity, and excellent reproducibility, with the limit of detection (LOD) of 121 copies/μL (final reaction concentration of 12.1 copies/μL) for each virus. The 3236 clinical fecal samples from Guangxi province in China collected between October 2020 and October 2022 were evaluated by the quadruplex qRT-PCR, and the positive rates of PEDV, TGEV, PDCoV, and SADS-CoV were 18.26% (591/3236), 0.46% (15/3236), 13.16% (426/3236), and 0.15% (5/3236), respectively. The samples were also evaluated by the multiplex qRT-PCR reported previously by other scientists, and the compliance rate between the two methods was more than 99%. This illustrated that the developed quadruplex qRT-PCR assay can provide an accurate method for the differential detection of four porcine enteric coronaviruses.
Collapse
Affiliation(s)
- Hongjin Zhou
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Kaichuang Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Kang Zhao
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Chenyong Xiong
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Sujie Qu
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Wenjun Lu
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Zongqiang Li
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
16
|
Edgar RC. Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nat Commun 2022; 13:6968. [PMID: 36379955 PMCID: PMC9664440 DOI: 10.1038/s41467-022-34630-w] [Citation(s) in RCA: 287] [Impact Index Per Article: 95.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sequence alignments are widely used to infer evolutionary relationships, enabling inferences of structure, function, and phylogeny. Standard practice is to construct one alignment by some preferred method and use it in further analysis; however, undetected alignment bias can be problematic. I describe Muscle5, a novel algorithm which constructs an ensemble of high-accuracy alignment with diverse biases by perturbing a hidden Markov model and permuting its guide tree. Confidence in an inference is assessed as the fraction of the ensemble which supports it. Applied to phylogenetic tree estimation, I show that ensembles can confidently resolve topologies with low bootstrap according to standard methods, and conversely that some topologies with high bootstraps are incorrect. Applied to the phylogeny of RNA viruses, ensemble analysis shows that recently adopted taxonomic phyla are probably polyphyletic. Ensemble analysis can improve confidence assessment in any inference from an alignment.
Collapse
|
17
|
Yen L, Magtoto R, Mora-Díaz JC, Carrillo-Ávila JA, Zhang J, Cheng TY, Magtoto P, Nelli RK, Baum DH, Zimmerman JJ, Giménez-Lirola LG. The N-terminal Subunit of the Porcine Deltacoronavirus Spike Recombinant Protein (S1) Does Not Serologically Cross-react with Other Porcine Coronaviruses. Pathogens 2022; 11:pathogens11080910. [PMID: 36015031 PMCID: PMC9414728 DOI: 10.3390/pathogens11080910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV), belonging to family Coronaviridae and genus Deltacoronavirus, is a major enteric pathogen in swine. Accurate PDCoV diagnosis relying on laboratory testing and antibody detection is an important approach. This study evaluated the potential of the receptor-binding subunit of the PDCoV spike protein (S1), generated using a mammalian expression system, for specific antibody detection via indirect enzyme-linked immunosorbent assay (ELISA). Serum samples were collected at day post-inoculation (DPI) −7 to 42, from pigs (n = 83) experimentally inoculated with different porcine coronaviruses (PorCoV). The diagnostic sensitivity of the PDCoV S1-based ELISA was evaluated using serum samples (n = 72) from PDCoV-inoculated animals. The diagnostic specificity and potential cross-reactivity of the assay was evaluated on PorCoV-negative samples (n = 345) and samples collected from pigs experimentally inoculated with other PorCoVs (n = 472). The overall diagnostic performance, time of detection, and detection rate over time varied across different S/P cut-offs, estimated by Receiver Operating Characteristic (ROC) curve analysis. The higher detection rate in the PDCoV group was observed after DPI 21. An S/P cut-off of 0.25 provided 100% specificity with no serological cross-reactivity against other PorCoV. These results support the use of S1 protein-based ELISA for accurate detection of PDCoV infections, transference of maternal antibodies, or active surveillance.
Collapse
Affiliation(s)
- Lu Yen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Ronaldo Magtoto
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Juan Carlos Mora-Díaz
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | | | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Ting-Yu Cheng
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Precy Magtoto
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
- College of Veterinary Medicine, Pampanga State Agricultural University, Pampanga 2011, Philippines
| | - Rahul K. Nelli
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - David H. Baum
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Jeffrey J. Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Luis G. Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
- Correspondence:
| |
Collapse
|
18
|
Virome Analysis for Identification of a Novel Porcine Sapelovirus Isolated in Western China. Microbiol Spectr 2022; 10:e0180122. [PMID: 35938790 PMCID: PMC9430179 DOI: 10.1128/spectrum.01801-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diarrhea is one of the most important problems associated with the production of piglets, which have a wide range of possible pathogens. This study identified a strain of porcine sapelovirus (PSV) by using next-generation sequencing (NGS) technologies as the pathogen among fecal samples in a pig herd. Phylogenetic analysis showed that the PSV isolates shared a unique polyprotein and clustered with Chinese isolates identified before 2013. The PSV strain was then isolated and named GS01. The in vitro and in vivo biological characteristics of this virus were then described. Our pathogenicity investigation showed that GS01 could cause an inflammatory reaction and induce serious diarrhea in neonatal piglets. To our knowledge, this is the first isolation and characterization of PSV in western China. Our results demonstrate that the PSV GS01 strain is destructive to neonatal piglets and might show an expanded role for sapeloviruses. IMPORTANCE Porcine sapelovirus (PSV) infection leads to severe polioencephalomyelitis with high morbidity and mortality, resulting in significant economic losses. In previous studies, PSV infections were always subclinical or only involved a series of mild symptoms, including spinal cord damage, inappetence, diarrhea, and breathless. However, in our study, we isolated a novel PSV by virome analysis. We also determined the biological characteristics of this virus in vitro and in vivo. Our study showed that this novel PSV could cause an inflammatory response and induce serious diarrhea in neonatal piglets. To our knowledge, this is the first isolation and characterization of PSV in western China. These findings highlight the importance of prevention for the potential threats of PSV.
Collapse
|
19
|
Development and Clinical Applications of a 5-Plex Real-Time RT-PCR for Swine Enteric Coronaviruses. Viruses 2022; 14:v14071536. [PMID: 35891517 PMCID: PMC9324624 DOI: 10.3390/v14071536] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 01/21/2023] Open
Abstract
A PEDV/PDCoV/TGEV/SADS-CoV/XIPC 5-plex real-time RT-PCR was developed and validated for the simultaneous detection and differentiation of four swine enteric coronaviruses (PEDV, PDCoV, TGEV and SADS-CoV) in one PCR reaction (XIPC serves as an exogenous internal positive control). The 5-plex PCR had excellent analytical specificity, analytical sensitivity, and repeatability based on the testing of various viral and bacterial pathogens, serial dilutions of virus isolates, and in vitro transcribed RNAs. The 5-plex PCR had comparable diagnostic performance to a commercial PEDV/TGEV/PDCoV reference PCR, based on the testing of 219 clinical samples. Subsequently, 1807 clinical samples collected from various U.S. states during 2019–2021 were tested by the 5-plex PCR to investigate the presence of SADS-CoV in U.S. swine and the frequency of detecting swine enteric CoVs. All 1807 samples tested negative for SADS-CoV. Among the samples positive for swine enteric CoVs, there was a low frequency of detecting TGEV, an intermediate frequency of detecting PDCoV, and a high frequency of detecting PEDV. Although there is no evidence of SADS-CoV presence in the U.S. at present, the availability of the 5-plex PCR will enable us to conduct ongoing surveillance to detect and differentiate these viruses in swine samples and other host species samples as some of these coronaviruses can cause cross-species infection.
Collapse
|
20
|
Peng Q, Zhang X, Li J, He W, Fan B, Ni Y, Liu M, Li B. Comprehensive analysis of codon usage pattern of porcine deltacoronavirus and its host adaptability. Transbound Emerg Dis 2022; 69:e2443-e2455. [PMID: 35526257 DOI: 10.1111/tbed.14588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Qi Peng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture Nanjing 210014 China
- Jiangsu Key Laboratory for Food Quality and Safety‐State Key Laboratory Cultivation Base Ministry of Science and Technology Nanjing 210014 China
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses Yangzhou University Yangzhou 225009 China
| | - Xue Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture Nanjing 210014 China
- Jiangsu Key Laboratory for Food Quality and Safety‐State Key Laboratory Cultivation Base Ministry of Science and Technology Nanjing 210014 China
- Key Laboratory of Animal Disease Diagnosis and Immunology, College of Veterinary Medicine Nanjing Agricultural University Nanjing 210095 China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture Nanjing 210014 China
- Jiangsu Key Laboratory for Food Quality and Safety‐State Key Laboratory Cultivation Base Ministry of Science and Technology Nanjing 210014 China
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses Yangzhou University Yangzhou 225009 China
| | - Wenlong He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture Nanjing 210014 China
- College of Veterinary Medicine Hebei Agricultural University Baoding 071001 China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture Nanjing 210014 China
- Jiangsu Key Laboratory for Food Quality and Safety‐State Key Laboratory Cultivation Base Ministry of Science and Technology Nanjing 210014 China
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses Yangzhou University Yangzhou 225009 China
| | - Yanxiu Ni
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture Nanjing 210014 China
- Jiangsu Key Laboratory for Food Quality and Safety‐State Key Laboratory Cultivation Base Ministry of Science and Technology Nanjing 210014 China
| | - Maojun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture Nanjing 210014 China
- Jiangsu Key Laboratory for Food Quality and Safety‐State Key Laboratory Cultivation Base Ministry of Science and Technology Nanjing 210014 China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture Nanjing 210014 China
- Jiangsu Key Laboratory for Food Quality and Safety‐State Key Laboratory Cultivation Base Ministry of Science and Technology Nanjing 210014 China
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses Yangzhou University Yangzhou 225009 China
- Key Laboratory of Animal Disease Diagnosis and Immunology, College of Veterinary Medicine Nanjing Agricultural University Nanjing 210095 China
- College of Veterinary Medicine Hebei Agricultural University Baoding 071001 China
| |
Collapse
|
21
|
Yan Q, Liu X, Sun Y, Zeng W, Li Y, Zhao F, Wu K, Fan S, Zhao M, Chen J, Yi L. Swine Enteric Coronavirus: Diverse Pathogen–Host Interactions. Int J Mol Sci 2022; 23:ijms23073953. [PMID: 35409315 PMCID: PMC8999375 DOI: 10.3390/ijms23073953] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
Swine enteric coronavirus (SeCoV) causes acute gastroenteritis and high mortality in newborn piglets. Since the last century, porcine transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) have swept farms all over the world and caused substantial economic losses. In recent years, porcine delta coronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV) have been emerging SeCoVs. Some of them even spread across species, which made the epidemic situation of SeCoV more complex and changeable. Recent studies have begun to reveal the complex SeCoV–host interaction mechanism in detail. This review summarizes the current advances in autophagy, apoptosis, and innate immunity induced by SeCoV infection. These complex interactions may be directly involved in viral replication or the alteration of some signal pathways.
Collapse
Affiliation(s)
- Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yawei Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Weijun Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C. & L.Y.)
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C. & L.Y.)
| |
Collapse
|
22
|
Duan C. An Updated Review of Porcine Deltacoronavirus in Terms of Prevalence, Pathogenicity, Pathogenesis and Antiviral Strategy. Front Vet Sci 2022; 8:811187. [PMID: 35097055 PMCID: PMC8792470 DOI: 10.3389/fvets.2021.811187] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023] Open
Abstract
The recent experience with SARS-COV-2 has raised our alarm about the cross-species transmissibility of coronaviruses and the emergence of new coronaviruses. Knowledge of this family of viruses needs to be constantly updated. Porcine deltacoronavirus (PDCoV), a newly emerging member of the genus Deltacoronavirus in the family Coronaviridae, is a swine enteropathogen that causes diarrhea in pigs and may lead to death in severe cases. Since PDCoV diarrhea first broke out in the United States in early 2014, PDCoV has been detected in many countries, such as South Korea, Japan and China. More importantly, PDCoV can also infect species other than pigs, and infections have even been reported in children, highlighting its potential for cross-species transmission. A thorough and systematic knowledge of the epidemiology and pathogenesis of PDCoV will not only help us control PDCoV infection, but also enable us to discover the common cellular pathways and key factors of coronaviruses. In this review, we summarize the current knowledge on the prevalence, pathogenicity and infection dynamics, pathogenesis and immune evasion strategies of PDCoV. The existing anti-PDCoV strategies and corresponding mechanisms of PDCoV infection are also introduced, aiming to provide suggestions for the prevention and treatment of PDCoV and zoonotic diseases.
Collapse
|
23
|
Kong F, Wang Q, Kenney SP, Jung K, Vlasova AN, Saif LJ. Porcine Deltacoronaviruses: Origin, Evolution, Cross-Species Transmission and Zoonotic Potential. Pathogens 2022; 11:79. [PMID: 35056027 PMCID: PMC8778258 DOI: 10.3390/pathogens11010079] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/27/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus of swine that causes acute diarrhoea, vomiting, dehydration and mortality in seronegative neonatal piglets. PDCoV was first reported in Hong Kong in 2012 and its etiological features were first characterized in the United States in 2014. Currently, PDCoV is a concern due to its broad host range, including humans. Chickens, turkey poults, and gnotobiotic calves can be experimentally infected by PDCoV. Therefore, as discussed in this review, a comprehensive understanding of the origin, evolution, cross-species transmission and zoonotic potential of epidemic PDCoV strains is urgently needed.
Collapse
Affiliation(s)
- Fanzhi Kong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Scott P. Kenney
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kwonil Jung
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
24
|
Stott CJ, Sawattrakool K, Saeng-Chuto K, Tantituvanont A, Nilubol D. The phylodynamics of emerging porcine deltacoronavirus (PDCoV) in Southeast Asia. Transbound Emerg Dis 2021; 69:2816-2827. [PMID: 34928072 DOI: 10.1111/tbed.14434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/17/2021] [Accepted: 12/05/2021] [Indexed: 11/29/2022]
Abstract
Porcine deltacoronavirus (PDCoV), a recently emerging pathogen, causes diarrhea in pigs. A previous phylogenetic analysis based on spike genes suggested that PDCoV was divided into 3 different groups, including China, US, and Southeast Asia (SEA). SEA PDCoV, however, is genetically separated from China and US but shares a common ancestor. Its origin and evolution have yet been identified. Herein, phylodynamic analyses based on the full-length genome were performed to investigate the origin and evolution of SEA PDCoV. In the study, 18 full-length genome sequences of SEA PDCoV identified in 2013-2016 together with PDCoV from other regions were used in analyses. The results demonstrated that PDCoV was classified into 2 genogroups including G1 and G2. G1 is further evolved into G1a (China), G1b (US). G2 (SEA) group is further evolved into 3 clades, including SEA-1 (Thailand), SEA-2 (Vietnam), and SEA-2r (Vietnam recombinant) clades. The time to the most recent common ancestor (MRCA) of global PDCoV was estimated to be approximately 1989-1990 and possibly have been circulated in SEA more than a decade. SEA PDCoV is genetically diverse compared to China and US PDCoV. The substitution rate of SEA PDCoV was lower than those of China and US, but the recombination rate of SEA was higher. Recombination analyses revealed 4 potential recombinant events in SEA PDCoV, suggesting that they were derived from the same ancestor of China PDCoV. The SEA-2r subgroup was potentially recombinant between SEA-2 and US strains. In conclusion, major mechanisms driving the complex evolution and genetic diversity of SEA PDCoV were multiple introductions of exotic PDCoV strains followed by recombination. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Christopher James Stott
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 84000, Thailand
| | - Kanokon Sawattrakool
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kepalee Saeng-Chuto
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Angkana Tantituvanont
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Dachrit Nilubol
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
25
|
Development of a Novel Double Antibody Sandwich ELISA for Quantitative Detection of Porcine Deltacoronavirus Antigen. Viruses 2021; 13:v13122403. [PMID: 34960672 PMCID: PMC8703818 DOI: 10.3390/v13122403] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/13/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) can cause diarrhea and dehydration in newborn piglets. Here, we developed a double antibody sandwich quantitative enzyme-linked immunosorbent assay (DAS-ELISA) for detection of PDCoV by using a specific monoclonal antibody against the PDCoV N protein and an anti-PDCoV rabbit polyclonal antibody. Using DAS-ELISA, the detection limit of recombinant PDCoV N protein and virus titer were approximately 0.5 ng/mL and 103.0 TCID50/mL, respectively. A total of 59 intestinal and 205 fecal samples were screened for the presence of PDCoV by using DAS-ELISA and reverse transcriptase real-time PCR (RT-qPCR). The coincidence rate of the DAS-ELISA and RT-qPCR was 89.8%. DAS-ELISA had a sensitivity of 80.8% and specificity of 95.6%. More importantly, the DAS-ELISA could detect the antigen of PDCoV inactivated virus, and the viral antigen concentrations remained unchanged in the inactivated virus. These results suggest that DAS-ELISA could be used for antigen detection of clinical samples and inactivated vaccines. It is a novel method for detecting PDCoV infections and evaluating the PDCoV vaccine.
Collapse
|
26
|
Abstract
Circular RNAs (circRNAs) are a newly discovered class of noncoding RNAs (ncRNAs) present in various tissues and cells. However, the functions of most circRNAs have not been verified experimentally. Here, using deltacoronavirus as a model, differentially expressed circRNAs in cells with or without deltacoronavirus infection were analyzed by RNA sequencing to characterize the cellular responses to RNA virus infection. More than 57,000 circRNA candidates were detected, and seven significantly dysregulated circRNAs were quantitated by real-time reverse transcription-PCR. We discovered a previously unidentified circRNA derived from the TNFAIP3 gene, named circTNFAIP3, which is distributed and expressed widely in various tissues. RNA viruses, including deltacoronaviruses, rather than DNA viruses tend to activate the expression of endogenous circTNFAIP3. Overexpression of circTNFAIP3 promoted deltacoronavirus replication by reducing the apoptosis, while silencing of circTNFAIP3 inhibited deltacoronavirus replication by enhancing the apoptosis. In summary, our work provides useful circRNA-related information to facilitate investigation of the underlying mechanism of deltacoronavirus infection and identifies a novel circTNFAIP3 that promotes deltacoronavirus replication via regulating apoptosis.
Collapse
|
27
|
Kong F, Saif LJ, Wang Q. Roles of bile acids in enteric virus replication. ANIMAL DISEASES 2021; 1:2. [PMID: 34778876 PMCID: PMC8062211 DOI: 10.1186/s44149-021-00003-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 02/08/2023] Open
Abstract
Bile acids (BAs) are evolutionally conserved molecules synthesized in the liver from cholesterol to facilitating the absorption of fat-soluble nutrients. In the intestines, where enteric viruses replicate, BAs also act as signaling molecules that modulate various biological functions via activation of specific receptors and cell signaling pathways. To date, BAs present either pro-viral or anti-viral effects for the replication of enteric viruses in vivo and in vitro. In this review, we summarized current information on biosynthesis, transportation and metabolism of BAs and the role of BAs in replication of enteric caliciviruses, rotaviruses, and coronaviruses. We also discussed the application of BAs for cell culture adaptation of fastidious enteric caliciviruses and control of virus infection, which may provide novel insights into the development of antivirals and/or disinfectants for enteric viruses.
Collapse
Affiliation(s)
- Fanzhi Kong
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH USA.,College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, China
| | - Linda J Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH USA.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH USA
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH USA.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH USA
| |
Collapse
|
28
|
Zhou Z, Qiu Y, Ge X. The taxonomy, host range and pathogenicity of coronaviruses and other viruses in the Nidovirales order. ANIMAL DISEASES 2021; 1:5. [PMID: 34778878 PMCID: PMC8062217 DOI: 10.1186/s44149-021-00005-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
The frequent emergence of coronavirus (CoV) epidemics has seriously threatened public health and stock farming. The major hosts for CoVs are birds and mammals. Although most CoVs inhabit their specific natural hosts, some may occasionally cross the host barrier to infect livestock and even people, causing a variety of diseases. Since the beginning of the new century, increasing attention has been given to research on CoVs due to the emergence of highly pathogenic and genetically diverse CoVs that have caused several epidemics, including the recent COVID-19 pandemic. CoVs belong to the Coronaviridae family of the Nidovirales order. Recently, advanced techniques for viral detection and viral genome analyses have enabled characterization of many new nidoviruses than ever and have greatly expanded the Nidovirales order with new classification and nomenclature. Here, we first provide an overview of the latest research progress in the classification of the Nidovirales order and then introduce the host range, genetic variation, genomic pattern and pathogenic features of epidemic CoVs and other epidemic viruses. This information will promote understanding of the phylogenetic relationship and infectious transmission of various pathogenic nidoviruses, including epidemic CoVs, which will benefit virological research and viral disease control.
Collapse
Affiliation(s)
- Zhijian Zhou
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan China
| | - Ye Qiu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan China
| | - Xingyi Ge
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, 27 Tianma Rd., Changsha, Hunan China
| |
Collapse
|
29
|
Fang P, Zhang H, Sun H, Wang G, Xia S, Ren J, Zhang J, Tian L, Fang L, Xiao S. Construction, Characterization and Application of Recombinant Porcine Deltacoronavirus Expressing Nanoluciferase. Viruses 2021; 13:v13101991. [PMID: 34696421 PMCID: PMC8541611 DOI: 10.3390/v13101991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 02/07/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes diarrhoea in suckling piglets and has the potential for cross-species transmission. No effective PDCoV vaccines or antiviral drugs are currently available. Here, we successfully generated an infectious clone of PDCoV strain CHN-HN-2014 using a combination of bacterial artificial chromosome (BAC)-based reverse genetics system with a one-step homologous recombination. The recued virus (rCHN-HN-2014) possesses similar growth characteristics to the parental virus in vitro. Based on the established infectious clone and CRISPR/Cas9 technology, a PDCoV reporter virus expressing nanoluciferase (Nluc) was constructed by replacing the NS6 gene. Using two drugs, lycorine and resveratrol, we found that the Nluc reporter virus exhibited high sensibility and easy quantification to rapid antiviral screening. We further used the Nluc reporter virus to test the susceptibility of different cell lines to PDCoV and found that cell lines derived from various host species, including human, swine, cattle and monkey enables PDCoV replication, broadening our understanding of the PDCoV cell tropism range. Taken together, our reporter viruses are available to high throughput screening for antiviral drugs and uncover the infectivity of PDCoV in various cells, which will accelerate our understanding of PDCoV.
Collapse
Affiliation(s)
- Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huichang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - He Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Gang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Sijin Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jie Ren
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiansong Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liyuan Tian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (H.Z.); (H.S.); (G.W.); (S.X.); (J.R.); (J.Z.); (L.T.); (L.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan Street, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-8728-6884; Fax: +86-27-8728-2608
| |
Collapse
|
30
|
Plasmids Expressing shRNAs Specific to the Nucleocapsid Gene Inhibit the Replication of Porcine Deltacoronavirus In Vivo. Animals (Basel) 2021; 11:ani11051216. [PMID: 33922444 PMCID: PMC8145914 DOI: 10.3390/ani11051216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Porcine deltacoronavirus (PDCoV) is an emerging enteropathogen distributed globally, which causes substantial economic losses in the swine industry. The characterization of the receptor promiscuity may pose a risk of cross-species transmission. However, the options for pharmaceutical interventions are limited. In this study, the vectors expressing shRNAs targeting the nucleocapsid gene were generated to assess the inhibition effect of PDCoV reproduction. Our preliminary results demonstrate that a dual shRNA expression system is an effective strategy in combating PDCoV infection without cytotoxicity, which would facilitate the ongoing development of RNAi-based therapeutic drugs against viral diseases. Abstract Porcine deltacoronavirus (PDCoV) is a novel enteric coronavirus and is becoming one of the major causative agents of diarrhea in pig herds in recent years. To date, there are no commercial vaccines or antiviral pharmaceutical agents available to control PDCoV infection. Therefore, developing a reliable strategy against PDCoV is urgently needed. In this study, to observe the antiviral activity of RNA interference (RNAi), four short hairpin RNAs (shRNAs) specific to the nucleocapsid (N) gene of PDCoV were designed and tested in vitro. Of these, a double-shRNA-expression vector, designated as pSil-double-shRNA-N1, was the most effectively expressed, and the inhibition of PDCoV replication was then further evaluated in neonatal piglets. Our preliminary results reveal that plasmid-based double-shRNA-expression targeting the N gene of PDCoV can significantly protect LLC-PK1 cells and piglets from pathological lesions induced by PDCoV. Our study could benefit the investigation of the specific functions of viral genes related to PDCoV infection and offer a possible methodology of RNAi-based therapeutics for PDCoV infection.
Collapse
|
31
|
Jevšnik Virant M, Černe D, Petrovec M, Paller T, Toplak I. Genetic Characterisation and Comparison of Three Human Coronaviruses (HKU1, OC43, 229E) from Patients and Bovine Coronavirus (BCoV) from Cattle with Respiratory Disease in Slovenia. Viruses 2021; 13:v13040676. [PMID: 33920821 PMCID: PMC8071153 DOI: 10.3390/v13040676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Coronaviruses (CoV) are widely distributed pathogens of human and animals and can cause mild or severe respiratory and gastrointestinal disease. Antigenic and genetic similarity of some CoVs within the Betacoronavirus genus is evident. Therefore, for the first time in Slovenia, we investigated the genetic diversity of partial 390-nucleotides of RNA-dependent-RNA polymerase gene (RdRp) for 66 human (HCoV) and 24 bovine CoV (BCoV) positive samples, collected between 2010 and 2016 from human patients and cattle with respiratory disease. The characterized CoV strains belong to four different clusters, in three separate human clusters HCoV-HKU1 (n = 34), HCoV-OC43 (n = 31) and HCoV 229E (n = 1) and bovine grouping only as BCoVs (n = 24). BCoVs from cattle and HCoV-OC43 were genetically the most closely related and share 96.4-97.1% nucleotide and 96.9-98.5% amino acid identity.
Collapse
Affiliation(s)
- Monika Jevšnik Virant
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; (M.J.V.); (M.P.)
| | - Danijela Černe
- Virology Unit, Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1115 Ljubljana, Slovenia;
| | - Miroslav Petrovec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; (M.J.V.); (M.P.)
| | - Tomislav Paller
- National Veterinary Institute, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1115 Ljubljana, Slovenia;
| | - Ivan Toplak
- Virology Unit, Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1115 Ljubljana, Slovenia;
- Correspondence:
| |
Collapse
|
32
|
Turlewicz-Podbielska H, Pomorska-Mól M. Porcine Coronaviruses: Overview of the State of the Art. Virol Sin 2021; 36:833-851. [PMID: 33723809 PMCID: PMC7959302 DOI: 10.1007/s12250-021-00364-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Like RNA viruses in general, coronaviruses (CoV) exhibit high mutation rates which, in combination with their strong tendency to recombine, enable them to overcome the host species barrier and adapt to new hosts. It is currently known that six CoV are able to infect pigs. Four of them belong to the genus Alphacoronavirus [transmissible gastroenteritis coronavirus (TEGV), porcine respiratory coronavirus (PRCV), porcine epidemic diarrhea virus (PEDV), swine acute diarrhea syndrome coronavirus (SADS-CoV)], one of them to the genus Betacoronavirus [porcine hemagglutinating encephalomyelitis virus (PHEV)] and the last one to the genus Deltacoronavirus (PDCoV). PHEV was one of the first identified swine CoV and is still widespread, causing subclinical infections in pigs in several countries. PRCV, a spike deletion mutant of TGEV associated with respiratory tract infection, appeared in the 1980s. PRCV is considered non-pathogenic since its infection course is mild or subclinical. Since its appearance, pig populations have become immune to both PRCV and TGEV, leading to a significant reduction in the clinical and economic importance of TGEV. TGEV, PEDV and PDCoV are enteropathogenic CoV and cause clinically indistinguishable acute gastroenteritis in all age groups of pigs. PDCoV and SADS-CoV have emerged in 2014 (US) and in 2017 (China), respectively. Rapid diagnosis is crucial for controlling CoV infections and preventing them from spreading. Since vaccines are available only for some porcine CoV, prevention should focus mainly on a high level of biosecurity. In view of the diversity of CoV and the potential risk factors associated with zoonotic emergence, updating the knowledge concerning this area is essential.
Collapse
Affiliation(s)
- Hanna Turlewicz-Podbielska
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, ul. Wołyńska 35, 60-637, Poznan, Poland
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, ul. Wołyńska 35, 60-637, Poznan, Poland.
| |
Collapse
|
33
|
Khamassi Khbou M, Daaloul Jedidi M, Bouaicha Zaafouri F, Benzarti M. Coronaviruses in farm animals: Epidemiology and public health implications. Vet Med Sci 2021; 7:322-347. [PMID: 32976707 PMCID: PMC7537542 DOI: 10.1002/vms3.359] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/12/2022] Open
Abstract
Coronaviruses (CoVs) are documented in a wide range of animal species, including terrestrial and aquatic, domestic and wild. The geographic distribution of animal CoVs is worldwide and prevalences were reported in several countries across the five continents. The viruses are known to cause mainly gastrointestinal and respiratory diseases with different severity levels. In certain cases, CoV infections are responsible of huge economic losses associated or not to highly public health impact. Despite being enveloped, CoVs are relatively resistant pathogens in the environment. Coronaviruses are characterized by a high mutation and recombination rate, which makes host jumping and cross-species transmission easy. In fact, increasing contact between different animal species fosters cross-species transmission, while agriculture intensification, animal trade and herd management are key drivers at the human-animal interface. If contacts with wild animals are still limited, humans have much more contact with farm animals, during breeding, transport, slaughter and food process, making CoVs a persistent threat to both humans and animals. A global network should be established for the surveillance and monitoring of animal CoVs.
Collapse
Affiliation(s)
- Médiha Khamassi Khbou
- Laboratory of Infectious Animal Diseases, Zoonoses, and Sanitary RegulationUniv. Manouba. Ecole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| | - Monia Daaloul Jedidi
- Laboratory of Microbiology and ImmunologyUniv. ManoubaEcole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| | - Faten Bouaicha Zaafouri
- Department of Livestock Semiology and MedicineUniv. ManoubaEcole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| | - M’hammed Benzarti
- Laboratory of Infectious Animal Diseases, Zoonoses, and Sanitary RegulationUniv. Manouba. Ecole Nationale de Médecine Vétérinaire de Sidi ThabetSidi ThabetTunisia
| |
Collapse
|
34
|
Vlasova AN, Kenney SP, Jung K, Wang Q, Saif LJ. Deltacoronavirus Evolution and Transmission: Current Scenario and Evolutionary Perspectives. Front Vet Sci 2021; 7:626785. [PMID: 33681316 PMCID: PMC7928354 DOI: 10.3389/fvets.2020.626785] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/31/2020] [Indexed: 11/19/2022] Open
Abstract
Deltacoronavirus (DCoV)–the only coronavirus that can infect multiple species of mammals and birds–was initially identified in several avian and mammalian species, including pigs, in China in 2009–2011. Porcine DCoV has since spread worldwide and is associated with multiple outbreaks of diarrheal disease of variable severity in farmed pigs. In contrast, avian DCoV is being reported in wild birds in different countries without any evidence of disease. The DCoV transboundary nature and the recent discovery of its remarkably broad reactivity with its cellular receptor–aminopeptidase N (APN)–from different species emphasize its epidemiological relevance and necessitate additional research. Further, the ability of porcine DCoV to infect and cause disease in chicks and turkey poults and gnotobiotic calves is suggestive of its increased potential for interspecies transmission or of its avian origin. Whether, porcine DCoVs were initially acquired by one or several mammalian species from birds and whether avian and porcine DCoVs continue co-evolving with frequent spillover events remain to be major unanswered questions. In this review, we will discuss the current information on the prevalence, genetic diversity, and pathogenic potential of porcine and avian DCoVs. We will also analyze the existing evidence of the ongoing interspecies transmission of DCoVs that may provide novel insights into their complex evolution.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| | - Scott P Kenney
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| | - Kwonil Jung
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| | - Qiuhong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
35
|
Saeng-Chuto K, Madapong A, Kaeoket K, Piñeyro PE, Tantituvanont A, Nilubol D. Coinfection of porcine deltacoronavirus and porcine epidemic diarrhea virus increases disease severity, cell trophism and earlier upregulation of IFN-α and IL12. Sci Rep 2021; 11:3040. [PMID: 33542409 PMCID: PMC7862360 DOI: 10.1038/s41598-021-82738-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) cause an enteric disease characterized by diarrhea clinically indistinguishable. Both viruses are simultaneously detected in clinical cases, but a study involving the co-infection has not been reported. The study was therefore conducted to investigate the disease severity following a co-infection with PEDV and PDCoV. In the study, 4-day-old pigs were orally inoculated with PEDV and PDCoV, either alone or in combination. Following challenge, fecal score was monitored on a daily basis. Fecal swabs were collected and assayed for the presence of viruses. Three pigs per group were necropsied at 3 and 5 days post inoculation (dpi). Microscopic lesions and villous height to crypt depth (VH:CD) ratio, together with the presence of PEDV and PDCoV antigens, were evaluated in small intestinal tissues. Expressions of interferon alpha (IFN-α) and interleukin 12 (IL12) were investigated in small intestinal mucosa. The findings indicated that coinoculation increased the disease severity, demonstrated by significantly prolonged fecal score and virus shedding and decreasing VH:CD ratio in the jejunum compared with pigs inoculated with either PEDV or PDCoV alone. Notably, in single-inoculated groups, PEDV and PDCoV antigens were detected only in villous enterocytes wile in the coinoculated group, PDCoV antigen was detected in both villous enterocytes and crypts. IFN-α and IL12 were significantly up-regulated in coinoculated groups in comparison with single-inoculated groups. In conclusion, co-infection with PEDV and PDCoV exacerbate clinical signs and have a synergetic on the regulatory effect inflammatory cytokines compared to a single infection with either virus.
Collapse
Affiliation(s)
- Kepalee Saeng-Chuto
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Henry Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Adthakorn Madapong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Henry Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Kampon Kaeoket
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Pablo Enrique Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Angkana Tantituvanont
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Dachrit Nilubol
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Henry Dunant Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
36
|
Niu X, Hou YJ, Jung K, Kong F, Saif LJ, Wang Q. Chimeric Porcine Deltacoronaviruses with Sparrow Coronavirus Spike Protein or the Receptor-Binding Domain Infect Pigs but Lose Virulence and Intestinal Tropism. Viruses 2021; 13:122. [PMID: 33477379 PMCID: PMC7829776 DOI: 10.3390/v13010122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) strain OH-FD22 infects poultry and shares high nucleotide identity with sparrow-origin deltacoronaviruses (SpDCoV) ISU73347 and HKU17 strains. We hypothesized that the spike (S) protein or receptor-binding domain (RBD) from these SpDCoVs would alter the host and tissue tropism of PDCoV. First, an infectious cDNA clone of PDCoV OH-FD22 strain (icPDCoV) was generated and used to construct chimeric icPDCoVs harboring the S protein of HKU17 (icPDCoV-SHKU17) or the RBD of ISU73347 (icPDCoV-RBDISU). To evaluate their pathogenesis, neonatal gnotobiotic pigs were inoculated orally/oronasally with the recombinant viruses or PDCoV OH-FD22. All pigs inoculated with icPDCoV or OH-FD22 developed severe diarrhea and shed viral RNA at moderate-high levels (7.62-10.56 log10 copies/mL) in feces, and low-moderate levels in nasal swabs (4.92-8.48 log10 copies/mL). No pigs in the icPDCoV-SHKU17 and icPDCoV-RBDISU groups showed clinical signs. Interestingly, low-moderate levels (5.07-7.06 log10 copies/mL) of nasal but not fecal viral RNA shedding were detected transiently at 1-4 days post-inoculation in 40% (2/5) of icPDCoV-SHKU17- and 50% (1/2) of icPDCoV-RBDISU-inoculated pigs. These results confirm that PDCoV infected both the upper respiratory and intestinal tracts of pigs. The chimeric viruses displayed an attenuated phenotype with the loss of tropism for the pig intestine. The SpDCoV S protein and RBD reduced viral replication in pigs, suggesting limited potential for cross-species spillover upon initial passage.
Collapse
Affiliation(s)
- Xiaoyu Niu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Yixuan J. Hou
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kwonil Jung
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Fanzhi Kong
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
37
|
Zhang Y, Xia L, Yuan Y, Li Q, Han L, Yang G, Hu H. Rhodanine derivative LJ001 inhibits TGEV and PDCoV replication in vitro. Virus Res 2020; 289:198167. [PMID: 32956749 PMCID: PMC7501054 DOI: 10.1016/j.virusres.2020.198167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022]
Abstract
LJ001 have the antiviral activity against TGEV or PDCoV infection in vitro. LJ001 inhibits TGEV or PDCoV infection at the replication stages of viral life cycle. LJ001 may serve as a new candidate for treatment of swine enteric coronavirus infection.
Transmissible gastroenteritis virus (TGEV) and porcine deltacoronavirus (PDCoV) are members of the family coronaviridae and mainly cause acute diarrhea/vomiting, dehydration and mortality in piglets, which lead to huge economic losses to the swine industry. Rhodanine derivative LJ001 has been verified to be effective against some enveloped virus infections in vitro. In this study, we evaluated the antiviral activity of LJ001 towards TGEV and PDCoV replication on swine testicular(ST) cells. Our results showed the 50 % cellular cytotoxicity (CC50) value of LJ001 was 146.4 μM on ST cell. The virus titers of TGEV and PDCoV were obviously decreased in the presence of LJ001 with the concentrations of 3.125 and 12.5 μM, and LJ001 potently inhibited TGEV and PDCoV infection at the replication stages of viral life cycle. Further study indicated that LJ001 inhibited TGEV and PDCoV replication by inhibition of viral RNA and protein synthesis, and reducing virus yields at 12 and 24 h post-inoculation. These data indicated that LJ001 had antiviral activities on TGEV and PDCoV replications in vitro, which may serve as a new candidate for treatment of coronaviruses infections.
Collapse
Affiliation(s)
- Yunfei Zhang
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450002, PR China
| | - Lu Xia
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450002, PR China
| | - Yixin Yuan
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450002, PR China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan 450002, PR China
| | - Qianqian Li
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450002, PR China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan 450002, PR China
| | - Li Han
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450002, PR China
| | - Guoyu Yang
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450002, PR China.
| | - Hui Hu
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450002, PR China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, Henan 450002, PR China.
| |
Collapse
|
38
|
Xu K, Zhou Y, Mu Y, Liu Z, Hou S, Xiong Y, Fang L, Ge C, Wei Y, Zhang X, Xu C, Che J, Fan Z, Xiang G, Guo J, Shang H, Li H, Xiao S, Li J, Li K. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance. eLife 2020; 9:57132. [PMID: 32876563 PMCID: PMC7467724 DOI: 10.7554/elife.57132] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/04/2020] [Indexed: 12/27/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and transmissible gastroenteritis virus (TGEV) are two highly infectious and lethal viruses causing major economic losses to pig production. Here, we report generation of double-gene-knockout (DKO) pigs harboring edited knockout alleles for known receptor proteins CD163 and pAPN and show that DKO pigs are completely resistant to genotype 2 PRRSV and TGEV. We found no differences in meat-production or reproductive-performance traits between wild-type and DKO pigs, but detected increased iron in DKO muscle. Additional infection challenge experiments showed that DKO pigs exhibited decreased susceptibility to porcine deltacoronavirus (PDCoV), thus offering unprecedented in vivo evidence of pAPN as one of PDCoV receptors. Beyond showing that multiple gene edits can be combined in a livestock animal to achieve simultaneous resistance to two major viruses, our study introduces a valuable model for investigating infection mechanisms of porcine pathogenic viruses that exploit pAPN or CD163 for entry.
Collapse
Affiliation(s)
- Kui Xu
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yulian Mu
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiguo Liu
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaohua Hou
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yujian Xiong
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changli Ge
- Shandong Landsee Genetics Co., Ltd., Rizhao, China
| | - Yinghui Wei
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuling Zhang
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changjiang Xu
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingjing Che
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ziyao Fan
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangming Xiang
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiankang Guo
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haitao Shang
- Shenzhen Kingsino Technology Co., Ltd., Shenzhen, China
| | - Hua Li
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Julang Li
- Department of Animal BioSciences, University of Guelph, Ontario, Canada
| | - Kui Li
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
39
|
Porcine Deltacoronavirus nsp5 Cleaves DCP1A To Decrease Its Antiviral Activity. J Virol 2020; 94:JVI.02162-19. [PMID: 32461317 DOI: 10.1128/jvi.02162-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus. The nonstructural protein nsp5, also called 3C-like protease, is responsible for processing viral polyprotein precursors in coronavirus (CoV) replication. Previous studies have shown that PDCoV nsp5 cleaves the NF-κB essential modulator and the signal transducer and activator of transcription 2 to disrupt interferon (IFN) production and signaling, respectively. Whether PDCoV nsp5 also cleaves IFN-stimulated genes (ISGs), IFN-induced antiviral effector molecules, remains unclear. In this study, we screened 14 classical ISGs and found that PDCoV nsp5 cleaved the porcine mRNA-decapping enzyme 1a (pDCP1A) through its protease activity. Similar cleavage of endogenous pDCP1A was also observed in PDCoV-infected cells. PDCoV nsp5 cleaved pDCP1A at glutamine 343 (Q343), and the cleaved pDCP1A fragments, pDCP1A1-343 and pDCP1A344-580, were unable to inhibit PDCoV infection. Mutant pDCP1A-Q343A, which resists nsp5-mediated cleavage, exhibited a stronger ability to inhibit PDCoV infection than wild-type pDCP1A. Interestingly, the Q343 cleavage site is highly conserved in DCP1A homologs from other mammalian species. Further analyses demonstrated that nsp5 encoded by seven tested CoVs that can infect human or pig also cleaved pDCP1A and human DCP1A, suggesting that DCP1A may be the common target for cleavage by nsp5 of mammalian CoVs.IMPORTANCE Interferon (IFN)-stimulated gene (ISG) induction through IFN signaling is important to create an antiviral state and usually directly inhibits virus infection. The present study first demonstrated that PDCoV nsp5 can cleave mRNA-decapping enzyme 1a (DCP1A) to attenuate its antiviral activity. Furthermore, cleaving DCP1A is a common characteristic of nsp5 proteins from different coronaviruses (CoVs), which represents a common immune evasion mechanism of CoVs. Previous evidence showed that CoV nsp5 cleaves the NF-κB essential modulator and signal transducer and activator of transcription 2. Taken together, CoV nsp5 is a potent IFN antagonist because it can simultaneously target different aspects of the host IFN system, including IFN production and signaling and effector molecules.
Collapse
|
40
|
Fang P, Fang L, Xia S, Ren J, Zhang J, Bai D, Zhou Y, Peng G, Zhao S, Xiao S. Porcine Deltacoronavirus Accessory Protein NS7a Antagonizes IFN-β Production by Competing With TRAF3 and IRF3 for Binding to IKKε. Front Cell Infect Microbiol 2020; 10:257. [PMID: 32656094 PMCID: PMC7326017 DOI: 10.3389/fcimb.2020.00257] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
As an emerging swine enteropathogenic coronavirus, porcine deltacoronavirus (PDCoV) not only causes serious diarrhea in suckling piglets but also possesses the potential for cross-species transmission, which has sparked growing interest when studying this emerging virus. We previously identified a novel accessory protein NS7a encoded by PDCoV; however, the function of NS7a was not resolved. In this study, we demonstrated that PDCoV NS7a is an interferon antagonist. Overexpression of NS7a notably inhibited Sendai virus (SeV)-induced interferon-β (IFN-β) production and the activation of IRF3 rather than NF-κB. NS7a also inhibited IFN-β promoter activity induced by RIG-I, MDA5, MAVS, TBK1, and IKKε, which are key components of the RIG-I-like receptor (RLR) signaling pathway but not IRF3, the transcription factor downstream of TBK1/IKKε. Surprisingly, NS7a specifically interacts with IKKε but not with the closely related TBK1. Furthermore, NS7a interacts simultaneously with the kinase domain (KD) and the scaffold dimerization domain (SDD) of IKKε, competing with TRAF3, and IRF3 for binding to IKKε, leading to the reduction of RLR-mediated IFN-β production. The interactions of TRAF3-IKKε and IKKε-IRF3 are also attenuated in PDCoV-infected cells. Taken together, our results demonstrate that PDCoV NS7a inhibits IFN-β production by disrupting the association of IKKε with both TRAF3 and IRF3, revealing a new mechanism utilized by a PDCoV accessory protein to evade the host antiviral innate immune response.
Collapse
Affiliation(s)
- Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Sijin Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jie Ren
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiansong Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Dongcheng Bai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
41
|
Huang H, Yin Y, Wang W, Cao L, Sun W, Shi K, Lu H, Jin N. Emergence of Thailand-like strains of porcine deltacoronavirus in Guangxi Province, China. Vet Med Sci 2020; 6:854-859. [PMID: 32419393 PMCID: PMC7738719 DOI: 10.1002/vms3.283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/04/2020] [Accepted: 04/25/2020] [Indexed: 01/03/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) has been detected sporadically in China since its first description in 2012. In our study, 62 faecal and intestinal samples from pigs with diarrhoea were collected in Guangxi Province, China, during 2017 and 2018. Twelve samples (19.4%, 12/62) were positive for PDCoV. Five complete genomes of PDCoV were then determined, and sequence alignment revealed that the five strains had discontinuous deletions at 400–401 aa in non‐structural protein 2 (NSP2) and 758–760 aa in non‐structural protein 3 (NSP3) compared with the respective proteins in the HKU15‐44 strain. Notably, the CHN‐GX81‐2018 strain contained two insertions in the S gene and 3′‐UTR. Multiple sequence alignment and phylogenetic analysis showed that four strains shared 98.2%–98.4% nucleotide identity with CHN‐AH‐2004 and were classified into a new cluster of China lineage strains, whereas the CHN‐GX81‐2018 strain shared 98.7% nucleotide identity with Vietnam/Binh21/2015 and belonged to the Vietnam/Laos/Thailand lineage. Recombination analyses revealed that four strains were the result of recombination between CHN‐HB‐2014 and Vietnam/Binh21/2015 strains. This study demonstrated the co‐existence of multiple lineages of PDCoV in China, and our findings will aid the reorganization and evolution of the virus.
Collapse
Affiliation(s)
- Haixin Huang
- Institute of Virology, Wenzhou University, Wenzhou, China.,Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Wei Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China.,College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Liang Cao
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Wenchao Sun
- Institute of Virology, Wenzhou University, Wenzhou, China.,Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Kaichuang Shi
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Huijun Lu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Ningyi Jin
- Institute of Virology, Wenzhou University, Wenzhou, China.,Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| |
Collapse
|
42
|
Luo H, Zheng J, Chen Y, Wang T, Zhang Z, Shan Y, Xu J, Yue M, Fang W, Li X. Utility Evaluation of Porcine Enteroids as PDCoV Infection Model in vitro. Front Microbiol 2020; 11:821. [PMID: 32390999 PMCID: PMC7191032 DOI: 10.3389/fmicb.2020.00821] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a novel emerging enteric coronavirus found in pigs. Intestinal enteroids, which partially recreate the structure and function of intestinal villi-crypts, have many physiological similarities to the intestinal tissues in vivo. Enteroids exhibit advantages in studying the interactions between intestines and enteric pathogens. To create a novel infection model for PDCoV, we developed an in vitro system to generate porcine intestinal enteroids from crypts of duodenum, jejunum, and ileum of pigs. Enterocytes, enteroendocrine cells, Paneth cells, stem cells, proliferating cells, and goblet cells were found in the differentiated enteroids. Replication of PDCoV was detected in the cultured enteroids by immunofluorescence and quantitative RT-PCR. Double immunofluorescence labeling demonstrated that PDCoV was present in Sox9-positive intestinal cells and Villin1-positive enterocytes. There were multiple cellular responses shown as changes of transcription of genes related to mucosal immunity, antiviral genes, and marker genes of stem cells and other cells in the enteroids infected with PDCoV. We conclude that the 2-D enteroids derived from porcine jejunum can be used as an in vitro multicellular model for the investigation of pathogenesis and host immune responses to porcine enteric pathogens, such as PDCoV.
Collapse
Affiliation(s)
- Hao Luo
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jingyou Zheng
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yunlu Chen
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Tingjun Wang
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhenning Zhang
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ying Shan
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jidong Xu
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Min Yue
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Weihuan Fang
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoliang Li
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Malik YS, Singh RK, Yadav MP, Langel SN, Malik YS, Saif LJ. Porcine Coronaviruses. EMERGING AND TRANSBOUNDARY ANIMAL VIRUSES 2020. [PMCID: PMC7123000 DOI: 10.1007/978-981-15-0402-0_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhoea virus (PEDV), and porcine deltacoronavirus (PDCoV) are enteropathogenic coronaviruses (CoVs) of swine. TGEV appearance in 1946 preceded identification of PEDV (1971) and PDCoV (2009) that are considered as emerging CoVs. A spike deletion mutant of TGEV associated with respiratory tract infection in piglets appeared in 1984 in pigs in Belgium and was designated porcine respiratory coronavirus (PRCV). PRCV is considered non-pathogenic because the infection is very mild or subclinical. Since PRCV emergence and rapid spread, most pigs have become immune to both PRCV and TGEV, which has significantly reduced the clinical and economic importance of TGEV. In contrast, PDCoV and PEDV are currently expanding their geographic distribution, and there are reports on the circulation of TGEV-PEDV recombinants that cause a disease clinically indistinguishable from that associated with the parent viruses. TGEV, PEDV and PDCoV cause acute gastroenteritis in pigs (most severe in neonatal piglets) and matches in their clinical signs and pathogenesis. Necrosis of the infected intestinal epithelial cells causes villous atrophy and malabsorptive diarrhoea. Profuse diarrhoea frequently combined with vomiting results in dehydration, which can lead to the death of piglets. Strong immune responses following natural infection protect against subsequent homologous challenge; however, these viruses display no cross-protection. Adoption of advance biosecurity measures and effective vaccines control and prevent the occurrence of diseases due to these porcine-associated CoVs. Recombination and reversion to virulence are the risks associated with generally highly effective attenuated vaccines necessitating further research on alternative vaccines to ensure their safe application in the field.
Collapse
Affiliation(s)
- Yashpal Singh Malik
- grid.417990.20000 0000 9070 5290Biological Standardization, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh India
| | - Raj Kumar Singh
- grid.417990.20000 0000 9070 5290ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh India
| | - Mahendra Pal Yadav
- grid.444573.5ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India, Sardar Vallabhbhai Patel University of Agriculture & Technology, Meerut, Uttar Pradesh India
| | | | | | | |
Collapse
|
44
|
Identification of a Novel Linear B-Cell Epitope on the Nucleocapsid Protein of Porcine Deltacoronavirus. Int J Mol Sci 2020; 21:ijms21020648. [PMID: 31963776 PMCID: PMC7013544 DOI: 10.3390/ijms21020648] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 01/11/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV), first identified in 2012, is a swine enteropathogen now found in many countries. The nucleocapsid (N) protein, a core component of PDCoV, is essential for virus replication and is a significant candidate in the development of diagnostics for PDCoV. In this study, monoclonal antibodies (mAbs) were generated and tested for reactivity with three truncations of the full protein (N1, N2, N3) that contained partial overlaps; of the five monoclonals chosen tested, each reacted with only the N3 truncation. The antibody designated 4E88 had highest binding affinity with the N protein and was chosen for in-depth examination. The 4E88 epitope was located to amino acids 308-AKPKQQKKPKK-318 by testing the 4E88 monoclonal for reactivity with a series of N3 truncations, then the minimal epitope, 309-KPKQQKKPK-317 (designated EP-4E88), was pinpointed by testing the 4E88 monoclonal for reactivity with a series of synthetic peptides of this region. Homology analysis showed that the EP-4E88 sequence is highly conserved among PDCoV strains, and also shares high similarity with sparrow coronavirus (HKU17), Asian leopard cat coronavirus (ALCCoV), quail coronavirus (UAE-HKU30), and sparrow deltacoronavirus (SpDCoV). Of note, the PDCoV EP-4E88 sequence shared very low similarity (<22.2%) with other porcine coronaviruses (PEDV, TGEV, PRCV, SADS-CoV, PHEV), demonstrating that it is an epitope that can be used for distinguishing PDCoV and other porcine coronavirus. 3D structural analysis revealed that amino acids of EP-4E88 were in close proximity and may be exposed on the surface of the N protein.
Collapse
|
45
|
Sun W, Wang L, Huang H, Wang W, Cao L, Zhang J, Zheng M, Lu H. Genetic characterization and phylogenetic analysis of porcine deltacoronavirus (PDCoV) in Shandong Province, China. Virus Res 2020; 278:197869. [PMID: 31962065 PMCID: PMC7114949 DOI: 10.1016/j.virusres.2020.197869] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 10/30/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is the etiological agent of acute diarrhoea and vomiting in pigs, threatening the swine industry worldwide. Although several PDCoV studies have been conducted in China, more sequence information is needed to understand the molecular characterization of PDCoV. In this study, the partial ORF1a, spike protein (S) and nucleocapsid protein (N) were sequenced from Shandong Province between 2017 and 2018. The sequencing results for the S protein from 10 PDCoV strains showed 96.7 %-99.7 % nucleotide sequence identity with the China lineage strains, while sharing a lower level of nucleotide sequence identity, ranging from 95.7 to 96.8%, with the Vietnam/Laos/Thailand lineage strains. N protein sequencing analysis showed that these strains showed nucleotide homologies of 97.3%-99.3% with the reference strains. Phylogenetic analyses based on S protein sequences showed that these PDCoV strains were classified into the China lineage. The discontinuous 2 + 3 aa deletions at 400-401 and 758-760 were found in the Nsp2 and Nsp3 coding region in five strains, respectively, with similar deletions having been identified in Vietnam, Thailand, and Laos. Three novel patterns of deletion were observed for the first time in the Nsp2 and Nsp3 regions. Importantly, those findings suggest that PDCoV may have undergone a high degree of variation since PDCoV was first detected in China.
Collapse
Affiliation(s)
- Wenchao Sun
- Institute of Virology, Wenzhou University, Wenzhou, 325035, China
| | - Li Wang
- Shandong New Hope Liuhe Group Company, Qingdao, 266100, China
| | - Haixin Huang
- Institute of Virology, Wenzhou University, Wenzhou, 325035, China
| | - Wei Wang
- Institute of Military Veterinary Medicine, The Academy of Military Medical Sciences, Changchun, 130122, China
| | - Liang Cao
- Institute of Military Veterinary Medicine, The Academy of Military Medical Sciences, Changchun, 130122, China
| | - Jinyong Zhang
- Institute of Military Veterinary Medicine, The Academy of Military Medical Sciences, Changchun, 130122, China
| | - Min Zheng
- Guangxi Centre for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Huijun Lu
- Institute of Virology, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
46
|
Chen R, Fu J, Hu J, Li C, Zhao Y, Qu H, Wen X, Cao S, Wen Y, Wu R, Zhao Q, Yan Q, Huang Y, Ma X, Han X, Huang X. Identification of the immunodominant neutralizing regions in the spike glycoprotein of porcine deltacoronavirus. Virus Res 2020; 276:197834. [PMID: 31816342 PMCID: PMC7114822 DOI: 10.1016/j.virusres.2019.197834] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 02/08/2023]
Abstract
Porcine deltacoronavirus (PDCoV), is an emerging enteropathogenic coronavirus in pigs, that poses a novel threat to swine husbandry worldwide. Crucial to halting PDCoV transmission and infection is the development of effective therapies and vaccines. The spike (S) protein of coronavirus is the major target of host neutralizing antibodies, however the immunodominant neutralizing region in the S protein of PDCoV has not been defined. Here, three truncations of the PDCoV S protein were generated, the N-terminal domain of the S1 subunit (NTD, amino acids (aa) 50-286), the C-terminal domain of the S1 subunit (CTD, aa 278-616), and S2 subunit (aa 601-1087). The proteins were expressed using an E. coli expression system. Polyclonal antisera against the three recombinant proteins were produced in rabbits and mice. All three antisera were able to inhibit PDCoV infection in vitro, as determined by virus neutralization assay, fluorescent focus neutralization assay, and plaque-reduction neutralization. The CTD-specific antisera had the most potent PDCoV-neutralizing effect, indicating that the CTD region may contain the major neutralizing epitope(s) in the PDCoV S protein. Based on these findings, CTD may be a promising target for development of an effective vaccine against PDCoV infection in pigs.
Collapse
Affiliation(s)
- Rui Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jiayu Fu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jingfei Hu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Cheng Li
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yujia Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Huan Qu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xintian Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China; National Animal Experiment Teaching Demonstration Center, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qigui Yan
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China.
| | - Yong Huang
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China.
| | - Xiaoping Ma
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China.
| | - Xinfeng Han
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China.
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China; National Animal Experiment Teaching Demonstration Center, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
47
|
Saeng‐chuto K, Jermsutjarit P, Stott CJ, Vui DT, Tantituvanont A, Nilubol D. Retrospective study, full-length genome characterization and evaluation of viral infectivity and pathogenicity of chimeric porcine deltacoronavirus detected in Vietnam. Transbound Emerg Dis 2020; 67:183-198. [PMID: 31469947 PMCID: PMC7168546 DOI: 10.1111/tbed.13339] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 07/22/2019] [Accepted: 08/04/2019] [Indexed: 12/16/2022]
Abstract
Increased evidence of porcine deltacoronavirus (PDCoV) causing diarrhoea in pigs has been reported in several countries worldwide. The virus has currently evolved into three separated groups including US, China and Southeast Asia (SEA) groups. In Vietnam, PDCoV was first reported in 2015. Based on phylogenetic analyses of spike, membrane and nucleocapsid genes, it is suggested that Vietnam PDCoV is chimeric virus. In the present study, we retrospectively investigated the presence of PDCoV in Vietnam and the full-length genomes of six PDCoV isolates identified in 2014-2016 were further characterized. The results demonstrated that Vietnam PDCoV was first detected as early as 2014. All six Vietnam PDCoV are in the SEA group and further divided into two separated subgroups including SEA-1 and SEA-2. Vietnam PDCoV in SEA-2 was closely related to Thai and Lao PDCoV. Recombination analysis demonstrated that three isolates in SEA-1 were a chimeric virus of which P12_14_VN_0814, the first Vietnam isolate, and US PDCoV isolates were major and minor parents, respectively. The recombination was further evaluated by phylogenetic construction based on 3 recombinant fragments. The first and third fragments, closely related to P12_14_VN_0814, were associated with ORF1a/1b and N genes, respectively. The second fragment, associated with S, E, and M genes, was closely related to US PDCoV isolates. High antigenic and hydrophobic variations were detected in S1 protein. Three-day-old pigs challenged with the chimeric virus displayed clinical diseases and villus atrophy. In conclusion, Vietnam PDCoV is genetically diverse influenced by an external introduction from neighbouring countries. The chimeric Vietnam PDCoV can induce a disease similar to Thai PDCoV.
Collapse
Affiliation(s)
- Kepalee Saeng‐chuto
- Department of Veterinary MicrobiologyFaculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
| | - Patumporn Jermsutjarit
- Department of Veterinary MicrobiologyFaculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
| | - Christopher J. Stott
- Department of Veterinary MicrobiologyFaculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
| | - Dam Thi Vui
- Virology SectionDepartment of Animal HealthNational Center for Veterinary DiagnosisHanoiVietnam
| | - Angkana Tantituvanont
- Department of Pharmaceutics and Industrial PharmacyFaculty of Pharmaceutical SciencesChulalongkorn UniversityBangkokThailand
| | - Dachrit Nilubol
- Department of Veterinary MicrobiologyFaculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
| |
Collapse
|
48
|
Zhang M, Li W, Zhou P, Liu D, Luo R, Jongkaewwattana A, He Q. Genetic manipulation of porcine deltacoronavirus reveals insights into NS6 and NS7 functions: a novel strategy for vaccine design. Emerg Microbes Infect 2019; 9:20-31. [PMID: 31859605 PMCID: PMC6968670 DOI: 10.1080/22221751.2019.1701391] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine coronavirus that causes severe diarrhea, resulting in high mortality in neonatal piglets. Despite widespread outbreaks in many countries, no effective PDCoV vaccines are currently available. Here, we generated, for the first time, a full-length infectious cDNA clone of PDCoV. We further manipulated the infectious clone by replacing the NS6 gene with a green fluorescent protein (GFP) to generate rPDCoV-ΔNS6-GFP; likewise, rPDCoV-ΔNS7 was constructed by removing the ATG start codons of the NS7 gene. Growth kinetics studies suggest that rPDCoV-ΔNS7 could replicate similarly to that of the wild-type PDCoV, whereas rPDCoV-ΔNS6-GFP exhibited a substantial reduction of viral titer in vitro and in vivo. Piglets inoculated with rPDCoV-ΔNS7 or wild-type PDCoV showed similar diarrheic scores and pathological injury. In contrast, rPDCoV-ΔNS6-GFP-infected piglets did not show any clinical signs, indicating that the NS6 protein is an important virulence factor of PDCoV and that the NS6-deficient mutant virus might be a promising live-attenuated vaccine candidate. Taken together, the reverse genetics platform described here not only provides more insights into the role of PDCoV accessory proteins in viral replication and pathogenesis, but also allows the development of novel vaccines against PDCoV infection.
Collapse
Affiliation(s)
- Mengjia Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Wan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Dejian Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Anan Jongkaewwattana
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| |
Collapse
|
49
|
Transcriptome analysis of PK-15 cells in innate immune response to porcine deltacoronavirus infection. PLoS One 2019; 14:e0223177. [PMID: 31574122 PMCID: PMC6773216 DOI: 10.1371/journal.pone.0223177] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/16/2019] [Indexed: 11/19/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a newly emerged swine enteropathogenic coronavirus affecting pigs of all ages and causing diarrhea problems. Research findings indicate that PDCoV has evolved strategies to escape innate immune response in host cells, but mechanism of PDCoV in innate immune modulation is not well understood. In this study, we report our findings on identifying the alterations of host cell innate immune response affected by PDCoV infection and exploring the gene expression profiles of PK-15 cells at 0, 24, and 36 h PDCoV post infection by RNA sequencing. A total of 3,762 and 560 differentially expressed genes (DEGs) were screened by comparison of uninfected PK-15 cells and infected PK-15 cells at 24 h post infection (hpi) (INF_24h versus NC), and also comparison of infected PK-15 cells between 24 and 36 hpi (INF_36h versus INF_24h), which included 156 and 23 porcine innate immune-related genes in the DEGs of INF_24h versus NC and INF_36h versus INF_24h, respectively. Gene Ontology function classification and Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment analysis were performed based on the DEGs that exhibited the same expression tendencies with most of the innate immune-associated genes among these PK-15 cell samples described above. The enrichment results indicated that extensive gene functions and signaling pathways including innate immune-associated functions and pathways were affected by PDCoV infection. Particularly, 4 of 5 innate immune signaling pathways, which were primarily affected by PDCoV, played important roles in I-IFN’s antiviral function in innate immune response. Additionally, 16 of the host cell endogenous miRNAs were predicted as potential contributors to the modulation of innate immune response affected by PDCoV. Our research findings indicated that the innate immune-associated genes and signaling pathways in PK-15 cells could be modified by the infection of PDCoV, which provides a fundamental foundation for further studies to better understand the mechanism of PDCoV infections, so as to effectively control and prevent PDCoV-induced swine diarrheal disease outbreaks.
Collapse
|
50
|
He W, Wang N, Tan J, Wang R, Yang Y, Li G, Guan H, Zheng Y, Shi X, Ye R, Su S, Zhou J. Comprehensive codon usage analysis of porcine deltacoronavirus. Mol Phylogenet Evol 2019; 141:106618. [PMID: 31536759 PMCID: PMC7111727 DOI: 10.1016/j.ympev.2019.106618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is a newly identified coronavirus of pigs that was first reported in Hong Kong in 2012. Since then, many PDCoV isolates have been identified worldwide. In this study, we analyzed the codon usage pattern of the S gene using complete coding sequences and complete PDCoV genomes to gain a deeper understanding of their genetic relationships and evolutionary history. We found that during evolution three groups evolved with a relatively low codon usage bias (effective number of codons (ENC) of 52). The factors driving bias were complex. However, the primary element influencing the codon bias of PDCoVs was natural selection. Our results revealed that different natural environments may have a significant impact on the genetic characteristics of the strains. In the future, more epidemiological surveys are required to examine the factors that resulted in the emergence and outbreak of this virus.
Collapse
Affiliation(s)
- Wei He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ningning Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jimin Tan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruyi Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yichen Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Gairu Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifei Guan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuna Zheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinze Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Ye
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuo Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Veterinary Medical Research Center, Zhejiang University, Hangzhou 310058, China; Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou 310058, China; Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|