1
|
Gupta N, Haughton S, Kemper S, Koehler M, Antoon R, Edwards CG, Bardin A. The antimicrobial effectiveness of chlorhexidine and chlorhexidine-silver sulfadiazine-impregnated central venous catheters against the emerging fungal pathogen Candida auris. Am J Infect Control 2024; 52:1283-1288. [PMID: 38944155 DOI: 10.1016/j.ajic.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Candida auris is an emerging multidrug-resistant fungus associated with catheter-related bloodstream infections. In vitro efficacy of chlorhexidine (CHX) and CHX-silver sulfadiazine-impregnated (CHX-S) antimicrobial central venous catheters (CVCs) against C auris was investigated. METHODS Minimum inhibitory and bactericidal CHX concentrations were determined against 19 C auris isolates. To assess extraluminal efficacy, segments from CVCs impregnated externally (CHX-S1) and both externally and internally (CHX-S2) were plasma-conditioned for 1- and 6-day, and to assess intraluminal efficacy, CHX-S2 CVCs were preconditioned with saline-lock for 6days, followed by 24-hour C auris inoculation and microbial adherence determination on impregnated and nonimpregnated CVCs. RESULTS CHX inhibited all C auris isolates with minimum inhibitory and bactericidal concentrations range of 8 to 128 μg/mL. C auris adherence was reduced on CHX-S1 and CHX-S2 extraluminally by 100% on day 1, 86.96% to 100% on day 7, and intraluminally on CHX-S2 by 56.86% to 90.52% on day 7. DISCUSSION CHX and CHX-S CVC performance against C auris observed in this study is consistent with antimicrobial benefits observed in prior preclinical and randomized controlled clinical studies. CONCLUSIONS CHX showed strong inhibitory and cidal effects on C auris. CHX-S CVCs proved highly efficacious against this pathogen under in vitro conditions. Additional studies, however, are required to confirm clinical benefit.
Collapse
Affiliation(s)
- Nisha Gupta
- Research and Development, Vascular Division, Teleflex Incorporated, Wyomissing, PA, USA.
| | - Shanna Haughton
- Research and Development, Vascular Division, Teleflex Incorporated, Wyomissing, PA, USA
| | - Sydney Kemper
- Research and Development, Vascular Division, Teleflex Incorporated, Wyomissing, PA, USA
| | - Monica Koehler
- Research and Development, Vascular Division, Teleflex Incorporated, Wyomissing, PA, USA
| | - Roula Antoon
- Clinical and Medical Affairs, Vascular Division, Teleflex Incorporated, Morrisville, NC, USA
| | - Colin G Edwards
- Global Scientific Communications, Teleflex Incorporated, Wayne, PA, USA
| | - Amy Bardin
- Clinical and Medical Affairs, Vascular and Interventional Divisions, Teleflex Incorporated, Morrisville, NC, USA
| |
Collapse
|
2
|
Kaur M, Thakur P, Verma N, Choksket S, Harshvardhan, Korpole S, Bandarupalli D, Grover V. Invasive Fungal Infections in Immunocompromised Conditions: Emphasis on COVID-19. Curr Microbiol 2024; 81:400. [PMID: 39384659 DOI: 10.1007/s00284-024-03916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024]
Abstract
The COVID-19 pandemic caused death of 6 million lives globally, primarily from respiratory failure, but also a significant number from invasive fungal co-infections in these patients, owing to the immune dysfunction in hospitalized patients. Such complications occurred more often in critically ill, hospitalized patients particularly those admitted in intensive care units and were reported as the major reason associated with a high mortality rate worldwide. Fungal pathogens most commonly associated with COVID-19 patients comprise members of the Mucorales (such as Rhizopus, Mucor, and Lichtheimia), as well as genera Aspergillus and Candida. In India, the prevalence rate of mucormycosis is relatively high than aspergillosis and candidiasis, and the predisposing risk factors associated with such infections included uncontrolled diabetes, underlying lung disease, leukopenia, neutropenia, malignancies and prolonged steroid therapy. However, co-infection with other fungi, including Alternaria and Scedosporium was also sporadically reported. These devastating invasive fungal infections are associated with differential mortality (high-low) and morbidity rates even after active management. The diagnosis of such infections is often challenging due to lack of sensitivity in contemporary diagnostic methods and poses an enormous challenge to healthcare experts. Thus, the role of early and accurate diagnosis, and management of such fungal infections, is vital in preventing life-threatening situations. Hence, this review focusses primarily on the epidemiology, predisposing risk factors, host environment, diagnosis and treatment of the most common medically important invasive fungal infections in immunocompromised conditions associated with COVID-19.
Collapse
Affiliation(s)
- Mahaldeep Kaur
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Payal Thakur
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Nandini Verma
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Stanzin Choksket
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Harshvardhan
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suresh Korpole
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Devadatha Bandarupalli
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Vishakha Grover
- Dr. HS Judge Institute of Dental Sciences and Hospital, Panjab University, Sector 25, Chandigarh, India.
| |
Collapse
|
3
|
Bays DJ, Jenkins EN, Lyman M, Chiller T, Strong N, Ostrosky-Zeichner L, Hoenigl M, Pappas PG, Thompson III GR. Epidemiology of Invasive Candidiasis. Clin Epidemiol 2024; 16:549-566. [PMID: 39219747 PMCID: PMC11366240 DOI: 10.2147/clep.s459600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/15/2024] [Indexed: 09/04/2024] Open
Abstract
Invasive candidiasis (IC) is an increasingly prevalent, costly, and potentially fatal infection brought on by the opportunistic yeast, Candida. Previously, IC has predominantly been caused by C. albicans which is often drug susceptible. There has been a global trend towards decreasing rates of infection secondary to C. albicans and a rise in non-albicans species with a corresponding increase in drug resistance creating treatment challenges. With advances in management of malignancies, there has also been an increase in the population at risk from IC along with a corresponding increase in incidence of breakthrough IC infections. Additionally, the emergence of C. auris creates many challenges in management and prevention due to drug resistance and the organism's ability to transmit rapidly in the healthcare setting. While the development of novel antifungals is encouraging for future management, understanding the changing epidemiology of IC is a vital step in future management and prevention.
Collapse
Affiliation(s)
- Derek J Bays
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Emily N Jenkins
- ASRT, Inc, Atlanta, GA, USA
- Mycotic Disease Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Meghan Lyman
- Mycotic Disease Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tom Chiller
- Mycotic Disease Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nora Strong
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Luis Ostrosky-Zeichner
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Clinical and Translational Fungal Working Group, University of California San Diego, La Jolla, CA, USA
| | - Peter G Pappas
- Division of Infectious Diseases, Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George R Thompson III
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California Davis, Sacramento, CA, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, CA, USA
| |
Collapse
|
4
|
Holt AM, Nett JE. Innate immune response to Candida auris. Curr Opin Microbiol 2024; 80:102510. [PMID: 38964276 PMCID: PMC11323126 DOI: 10.1016/j.mib.2024.102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
Candida auris, a newly emergent fungal species, has been spreading in health care systems and causing life-threatening infections. Intact innate immunity is essential for protection against many invasive fungal infections, including candidiasis. Here, we highlight recent studies exploring immune interactions with C. auris, including investigations using animal models and ex vivo immune cells. We summarize innate immune studies comparing C. auris and the common fungal pathogen Candida albicans. We also discuss how structures of the C. auris cell wall influence immune recognition, the role of soluble host factors in immune recognition, and areas of future study.
Collapse
Affiliation(s)
- Ashley M Holt
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Jeniel E Nett
- Department of Medicine, University of Wisconsin, Madison, WI, USA; Department of Medical Microbiology & Immunology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
5
|
Asogan M, Kim HY, Kidd S, Alastruey-Izquierdo A, Govender NP, Dao A, Shin JH, Heim J, Ford NP, Gigante V, Sati H, Morrissey CO, Alffenaar JW, Beardsley J. Candida parapsilosis: A systematic review to inform the World Health Organization fungal priority pathogens list. Med Mycol 2024; 62:myad131. [PMID: 38935912 PMCID: PMC11210616 DOI: 10.1093/mmy/myad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/27/2023] [Accepted: 12/07/2023] [Indexed: 06/29/2024] Open
Abstract
Candida parapsilosis is globally distributed and recognised for causing an increasing proportion of invasive Candida infections. It is associated with high crude mortality in all age groups. It has been particularly associated with nosocomial outbreaks, particularly in association with the use of invasive medical devices such as central venous catheters. Candida parapsilosis is one of the pathogens considered in the WHO priority pathogens list, and this review was conducted to inform the ranking of the pathogen in the list. In this systematic review, we searched PubMed and Web of Science to find studies between 2011 and 2021 reporting on the following criteria for C. parapsilosis infections: mortality, morbidity (hospitalisation and disability), drug resistance, preventability, yearly incidence, and distribution/emergence. We identified 336 potentially relevant papers, of which 51 were included in the analyses. The included studies confirmed high mortality rates, ranging from 17.5% to 46.8%. Data on disability and sequelae were sparse. Many reports highlighted concerns with azole resistance, with resistance rates of >10% described in some regions. Annual incidence rates were relatively poorly described, although there was clear evidence that the proportion of candidaemia cases caused by C. parapsilosis increased over time. While this review summarises current data on C.parapsilosis, there remains an urgent need for ongoing research and surveillance to fully understand and manage this increasingly important pathogen.
Collapse
Affiliation(s)
- Mrudhula Asogan
- Prince of Wales Hospital, South-Eastern Sydney LHD, Sydney, Australia
- Sydney Institute of Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
| | - Hannah Yejin Kim
- Sydney Institute of Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Department of Pharmacy, Westmead Hospital, Westmead, New South Wales, Australia
| | - Sarah Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, South Australia, Australia
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Nelesh P Govender
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Aiken Dao
- Sydney Institute of Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
- Westmead Institute for Medical Research and Children’s Hospital at Westmead, Western Sydney LHD, New South Wales, Australia
- Westmead Hospital, Western Sydney LHD, Sydney, Australia
| | - Jong-Hee Shin
- Department of Laboratory Medicine, Chonnam National University School of Medicine, Gwangju, South Korea
| | - Jutta Heim
- Helmholtz Association, Helmholtz Centre for Infection Research, Germany
| | - Nathan Paul Ford
- Department of HIV, Viral Hepatitis and STIs, World Health Organization, Geneva, Switzerland
- Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Valeria Gigante
- AMR Division, World Health Organization, Geneva, Switzerland
| | - Hatim Sati
- AMR Division, World Health Organization, Geneva, Switzerland
| | - C Orla Morrissey
- Department of Infectious Diseases, Alfred Health, Melbourne, Victoria, Australia
- Monash University, Department of Infectious Diseases, Melbourne, Victoria, Australia
| | - Jan-Willem Alffenaar
- Sydney Institute of Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Western Sydney LHD, Sydney, Australia
| | - Justin Beardsley
- Sydney Institute of Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Western Sydney LHD, Sydney, Australia
| |
Collapse
|
6
|
Kim HY, Nguyen TA, Kidd S, Chambers J, Alastruey-Izquierdo A, Shin JH, Dao A, Forastiero A, Wahyuningsih R, Chakrabarti A, Beyer P, Gigante V, Beardsley J, Sati H, Morrissey CO, Alffenaar JW. Candida auris-a systematic review to inform the world health organization fungal priority pathogens list. Med Mycol 2024; 62:myae042. [PMID: 38935900 PMCID: PMC11210622 DOI: 10.1093/mmy/myae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 06/29/2024] Open
Abstract
The World Health Organization (WHO) in 2022 developed a fungal priority pathogen list. Candida auris was ultimately ranked as a critical priority pathogen. PubMed and Web of Science were used to find studies published from 1 January 2011 to 18 February 2021, reporting on predefined criteria including: mortality, morbidity (i.e., hospitalization and disability), drug resistance, preventability, yearly incidence, and distribution/emergence. Thirty-seven studies were included in the final analysis. The overall and 30-day mortality rates associated with C. auris candidaemia ranged from 29% to 62% and 23% to 67%, respectively. The median length of hospital stay was 46-68 days, ranging up to 140 days. Late-onset complications of C. auris candidaemia included metastatic septic complications. Resistance rates to fluconazole were as high as 87%-100%. Susceptibility to isavuconazole, itraconazole, and posaconazole varied with MIC90 values of 0.06-1.0 mg/l. Resistance rates to voriconazole ranged widely from 28% to 98%. Resistance rates ranged between 8% and 35% for amphotericin B and 0%-8% for echinocandins. Over the last ten years, outbreaks due to C. auris have been reported in in all WHO regions. Given the outbreak potential of C. auris, the emergence and spread of MDR strains, and the challenges associated with its identification, and eradication of its environmental sources in healthcare settings, prevention and control measures based on the identified risk factors should be evaluated for their effectiveness and feasibility. Global surveillance studies could better inform the incidence rates and distribution patterns to evaluate the global burden of C. auris infections.
Collapse
Affiliation(s)
- Hannah Yejin Kim
- Sydney Infectious Disease Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, NSW Health, Westmead, New South Wales, Australia
| | - Thi Anh Nguyen
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Sarah Kidd
- National Mycology Reference Centre, Microbiology and Infectious Diseases, SA Pathology, Adelaide, South Australia, Australia
| | - Joshua Chambers
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Jong-Hee Shin
- Chonnam National University Medical School, Gwangju, Korea
| | - Aiken Dao
- Sydney Infectious Disease Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, Australia
| | - Agustina Forastiero
- Antimicrobial Resistance Special Program, Communicable Diseases and Environmental Determinants of Health, Pan American Health Organization/World Health Organization (PAHO/WHO), Washington, DC, United States of America
| | - Retno Wahyuningsih
- Department of Parasitology, Division of Mycology, Faculty of Medicine of the Universitas Indonesia and Universitas Kristen Indonesia, Jakarta, Indonesia
| | | | | | | | - Justin Beardsley
- Sydney Infectious Disease Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Hospital, NSW Health, Westmead, New South Wales, Australia
- Westmead Institute for Medical Research, Sydney, Australia
| | | | - C Orla Morrissey
- Department of Infectious Diseases, Alfred Health, Melbourne, Victoria, Australia
- Monash University, Department of Infectious Diseases, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Melbourne, Victoria, Australia
| | - Jan-Willem Alffenaar
- Sydney Infectious Disease Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, NSW Health, Westmead, New South Wales, Australia
| |
Collapse
|
7
|
Osaigbovo II, Ekeng BE, Davies AA, Ebeigbe E, Bongomin F, Kanyua A, Revathi G, Oladele RO. Candida auris: A Systematic Review of a Globally Emerging Fungal Pathogen in Africa. Open Forum Infect Dis 2024; 11:ofad681. [PMID: 38887473 PMCID: PMC11181182 DOI: 10.1093/ofid/ofad681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/22/2023] [Indexed: 06/20/2024] Open
Abstract
Candida auris is a World Health Organization critical priority fungal pathogen. We conducted a systematic review to describe its epidemiology in Africa. PubMed and Google scholar databases were searched between January 2009 and September 2023 for clinical studies on C. auris cases and/or isolates from Africa. Reviews were excluded. We included 19 studies, involving at least 2529 cases from 6 African countries with the most, 2372 (93.8%), reported from South Africa. Whole-genome sequencing of 127 isolates identified 100 (78.7%) as clade III. Among 527 isolates, 481 (91.3%) were resistant to fluconazole, 108 (20.5%) to amphotericin B, and 9 (1.7%) to micafungin. Ninety of 211 (42.7%) patients with clinical outcomes died. C. auris is associated with high mortality and antifungal resistance, yet this critical pathogen remains underreported in Africa. Collaborative surveillance, fungal diagnostics, antifungals, and sustainable infection control practices are urgently needed for containment.
Collapse
Affiliation(s)
- Iriagbonse I Osaigbovo
- Department of Medical Microbiology, School of Medicine, College of Medical Sciences, University of Benin, Benin City, Nigeria
- Department of Medical Microbiology, University of Benin Teaching Hospital, Benin City, Nigeria
| | - Bassey E Ekeng
- Department of Medical Microbiology and Parasitology, University of Calabar Teaching Hospital, Calabar, Nigeria
| | - Adeyinka A Davies
- Department of Medical Microbiology and Parasitology, Olabisi Onabanjo University Teaching Hospital, Sagamu, Nigeria
| | - Ejime Ebeigbe
- Department of Medical Microbiology, University of Benin Teaching Hospital, Benin City, Nigeria
| | - Felix Bongomin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Alice Kanyua
- Department of Pathology and Laboratory Medicine, Aga Khan University, Nairobi, Kenya
| | - Gunturu Revathi
- Department of Pathology and Laboratory Medicine, Aga Khan University, Nairobi, Kenya
| | - Rita O Oladele
- Department of Medical Microbiology and Parasitology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| |
Collapse
|
8
|
Wake RM, Allebone-Salt PE, John LLH, Caswall BA, Govender NP, Ben-Ami R, Murray LW, Logan C, Harrison TS, Bicanic TA. Optimizing the Treatment of Invasive Candidiasis-A Case for Combination Therapy. Open Forum Infect Dis 2024; 11:ofae072. [PMID: 38887482 PMCID: PMC11181177 DOI: 10.1093/ofid/ofae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/20/2024] [Indexed: 06/20/2024] Open
Abstract
Invasive candidiasis is a rising global health threat with increasing incidence, persistently high mortality, and diminishing treatment options. Antifungal resistance has rapidly emerged and spread, with multidrug-resistant species deemed an urgent and serious threat. While acknowledging the key role of antifungal stewardship and infection control in curbing spread, we examine the role of antifungal monotherapy in driving resistance and the potential for combination therapy to prevent stress adaptation and emergence of drug resistance. In addition to its role in mitigating resistance, combination treatment may improve drug penetration, expedite fungal clearance, and allow lower, less toxic doses of individual drugs to be used. A growing body of laboratory-based evidence suggests that antifungal combinations can yield synergistic activity against Candida spp., including against frequently multidrug-resistant Candida auris. It is imperative to test these combinations in clinical trials, incorporating resistance end points as a marker of success.
Collapse
Affiliation(s)
- Rachel M Wake
- Institute for Infection and Immunity, St George's University of London, London, UK
- Clinical Academic Group, St George's Hospital NHS Trust, London, UK
| | - Phoebe E Allebone-Salt
- Institute for Infection and Immunity, St George's University of London, London, UK
- Clinical Academic Group, St George's Hospital NHS Trust, London, UK
| | - Larissa L H John
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Ben A Caswall
- Institute for Infection and Immunity, St George's University of London, London, UK
| | - Nelesh P Govender
- Institute for Infection and Immunity, St George's University of London, London, UK
- National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, University of Witwatersrand, Johannesburg, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Ronen Ben-Ami
- Infectious Diseases Unit, Tel-Aviv Sourasky Medical Center, and the Sackler, Tel-Aviv, Israel
| | - Lyle W Murray
- Division of Infectious Diseases, Department of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Clare Logan
- Institute for Infection and Immunity, St George's University of London, London, UK
- Clinical Academic Group, St George's Hospital NHS Trust, London, UK
| | - Thomas S Harrison
- Institute for Infection and Immunity, St George's University of London, London, UK
- Clinical Academic Group, St George's Hospital NHS Trust, London, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Tihana A Bicanic
- Institute for Infection and Immunity, St George's University of London, London, UK
- Clinical Academic Group, St George's Hospital NHS Trust, London, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
9
|
De Gaetano S, Midiri A, Mancuso G, Avola MG, Biondo C. Candida auris Outbreaks: Current Status and Future Perspectives. Microorganisms 2024; 12:927. [PMID: 38792757 PMCID: PMC11123812 DOI: 10.3390/microorganisms12050927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Candida auris has been identified by the World Health Organization (WHO) as a critical priority pathogen on its latest list of fungi. C. auris infections are reported in the bloodstream and less commonly in the cerebrospinal fluid and abdomen, with mortality rates that range between 30% and 72%. However, no large-scale epidemiology studies have been reported until now. The diagnosis of C. auris infections can be challenging, particularly when employing conventional techniques. This can impede the early detection of outbreaks and the implementation of appropriate control measures. The yeast can easily spread between patients and in healthcare settings through contaminated environments or equipment, where it can survive for extended periods. Therefore, it would be desirable to screen patients for C. auris colonisation. This would allow facilities to identify patients with the disease and take appropriate prevention and control measures. It is frequently unsusceptible to drugs, with varying patterns of resistance observed among clades and geographical regions. This review provides updates on C. auris, including epidemiology, clinical characteristics, genomic analysis, evolution, colonisation, infection, identification, resistance profiles, therapeutic options, prevention, and control.
Collapse
Affiliation(s)
| | | | | | | | - Carmelo Biondo
- Mycology Laboratory, Department of Human Pathology, University of Messina, 98125 Messina, Italy; (S.D.G.); (A.M.); (G.M.); (M.G.A.)
| |
Collapse
|
10
|
Lass-Flörl C, Kanj SS, Govender NP, Thompson GR, Ostrosky-Zeichner L, Govrins MA. Invasive candidiasis. Nat Rev Dis Primers 2024; 10:20. [PMID: 38514673 DOI: 10.1038/s41572-024-00503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
Invasive candidiasis is an important fungal disease caused by Candida albicans and, increasingly, non-albicans Candida pathogens. Invasive Candida infections originate most frequently from endogenous human reservoirs and are triggered by impaired host defences. Signs and symptoms of invasive candidiasis are non-specific; candidaemia is the most diagnosed manifestation, with disseminated candidiasis affecting single or multiple organs. Diagnosis poses many challenges, and conventional culture techniques are frequently supplemented by non-culture-based assays. The attributable mortality from candidaemia and disseminated infections is ~30%. Fluconazole resistance is a concern for Nakaseomyces glabratus, Candida parapsilosis, and Candida auris and less so in Candida tropicalis infection; acquired echinocandin resistance remains uncommon. The epidemiology of invasive candidiasis varies in different geographical areas and within various patient populations. Risk factors include intensive care unit stay, central venous catheter use, broad-spectrum antibiotics use, abdominal surgery and immune suppression. Early antifungal treatment and central venous catheter removal form the cornerstones to decrease mortality. The landscape of novel therapeutics is growing; however, the application of new drugs requires careful selection of eligible patients as the spectrum of activity is limited to a few fungal species. Unanswered questions and knowledge gaps define future research priorities and a personalized approach to diagnosis and treatment of invasive candidiasis is of paramount importance.
Collapse
Affiliation(s)
- Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, ECMM Excellence Centres of Medical Mycology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Souha S Kanj
- Infectious Diseases Division, and Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nelesh P Govender
- Faculty of Health Sciences, University of the Witwatersrand and National Institute for Communicable Diseases, Johannesburg, South Africa
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - George R Thompson
- UC Davis Health Medical Center, Division of Infectious Diseases, Sacramento, CA, USA
| | | | - Miriam Alisa Govrins
- Institute of Hygiene and Medical Microbiology, ECMM Excellence Centres of Medical Mycology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Santana DJ, Zhao G, O’Meara TR. The many faces of Candida auris: Phenotypic and strain variation in an emerging pathogen. PLoS Pathog 2024; 20:e1012011. [PMID: 38427609 PMCID: PMC10906884 DOI: 10.1371/journal.ppat.1012011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024] Open
Abstract
Candida auris is an emerging fungal pathogen with unusual evolutionary history-there are multiple distinct phylogeographic clades showing a near simultaneous transition from a currently unknown reservoir to nosocomial pathogen. Each of these clades has experienced different selective pressures over time, likely resulting in selection for genotypes with differential fitness or phenotypic consequences when introduced to new environments. We also observe diversification within clades, providing additional opportunities for phenotypic differences. These differences can have large impacts on pathogenic potential, drug resistance profile, evolutionary trajectory, and transmissibility. In recent years, there have been significant advances in our understanding of strain-specific behavior in other microbes, including bacterial and fungal pathogens, and we have an opportunity to take this strain variation into account when describing aspects of C. auris biology. Here, we critically review the literature to gain insight into differences at both the strain and clade levels in C. auris, focusing on phenotypes associated with clinical disease or transmission. Our goal is to integrate clinical and epidemiological perspectives with molecular perspectives in a way that would be valuable for both audiences. Identifying differences between strains and understanding which phenotypes are strain specific will be crucial for understanding this emerging pathogen, and an important caveat when describing the analysis of a singular isolate.
Collapse
Affiliation(s)
- Darian J. Santana
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
| | - Guolei Zhao
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Teresa R. O’Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
12
|
Rapti V, Iliopoulou K, Poulakou G. The Gordian Knot of C. auris: If You Cannot Cut It, Prevent It. Pathogens 2023; 12:1444. [PMID: 38133327 PMCID: PMC10747958 DOI: 10.3390/pathogens12121444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Since its first description in 2009, Candida auris has, so far, resulted in large hospital outbreaks worldwide and is considered an emerging global public health threat. Exceptionally for yeast, it is gifted with a profoundly worrying invasive potential and high inter-patient transmissibility. At the same time, it is capable of colonizing and persisting in both patients and hospital settings for prolonged periods of time, thus creating a vicious cycle of acquisition, spreading, and infection. It exhibits various virulence qualities and thermotolerance, osmotolerance, filamentation, biofilm formation and hydrolytic enzyme production, which are mainly implicated in its pathogenesis. Owing to its unfavorable profile of resistance to diverse antifungal agents and the lack of effective treatment options, the implementation of robust infection prevention and control (IPC) practices is crucial for controlling and minimizing intra-hospital transmission of C. auris. Rapid and accurate microbiological identification, adherence to hand hygiene, use of adequate personal protective equipment (PPE), proper handling of catheters and implantable devices, contact isolation, periodical environmental decontamination, targeted screening, implementation of antimicrobial stewardship (AMS) programs and communication between healthcare facilities about residents' C. auris colonization status are recognized as coherent strategies for preventing its spread. Current knowledge on C. auris epidemiology, clinical characteristics, and its mechanisms of pathogenicity are summarized in the present review and a comprehensive overview of IPC practices ensuring yeast prevention is also provided.
Collapse
Affiliation(s)
- Vasiliki Rapti
- Third Department of Internal Medicine, School of Medicine, National & Kapodistrian University of Athens, Sotiria General Hospital, 115 27 Athens, Greece;
| | | | - Garyfallia Poulakou
- Third Department of Internal Medicine, School of Medicine, National & Kapodistrian University of Athens, Sotiria General Hospital, 115 27 Athens, Greece;
| |
Collapse
|
13
|
Alshahrani FS, Elgujja AA, Alsubaie S, Ezreqat SA, Albarraq AM, Barry M, Binkhamis K, Alabdan L. Description of Candida auris Occurrence in a Tertiary Health Institution in Riyadh, Saudi Arabia. Healthcare (Basel) 2023; 11:3150. [PMID: 38132040 PMCID: PMC10743032 DOI: 10.3390/healthcare11243150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Candida auris is an emerging multidrug-resistant fungal pathogen that represents a current serious threat to healthcare settings. OBJECTIVE The objective was to determine the prevalence of C. auris in a Riyadh hospital since its initial detection in late 2019. METHODS Using an adapted risk assessment tool, we reviewed the charts and medical files of all suspected and confirmed cases of C. auris infections reported at King Khalid University Hospital, Riyadh, between November 2019 and December 2022. Anonymized data were retrieved in a pre-established datasheet and analyzed to determine the epidemiological characteristics of C. auris infections in our facility. We analyzed prevalence by age, gender, risk factors, and according to sampling source. RESULTS Of the 53 confirmed C. auris-positive cases during the study period, 33 (62%) were males. Their ages ranged between 15 and 98, with most positive cases occurring in those aged 50 and above. Only one of the confirmed cases was hospital-acquired. All patients had at least one risk factor, and urine samples yielded the greatest number of positive cases, while admission to healthcare facilities constituted the highest risk in our study. CONCLUSION Establishing a local prevalence pattern could serve as a baseline/benchmark to compare with regional and international benchmarks.
Collapse
Affiliation(s)
- Fatimah S. Alshahrani
- College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia; (F.S.A.); (M.B.)
- Division of Infectious Diseases, Department of Internal Medicine, King Saud University Medical City, King Saud University, Riyadh 11451, Saudi Arabia
- IPAC Department, King Saud University Medical City, Riyadh 11362, Saudi Arabia;
| | - Abba Amsami Elgujja
- IPAC Department, King Saud University Medical City, Riyadh 11362, Saudi Arabia;
| | - Sara Alsubaie
- Pediatric Infectious Diseases Fellowship Program, College of Medicine, Internal Medicine (Pediatric Infectious Diseases) King Saud University Medical City, King Saud University and Consultant, Riyadh 11461, Saudi Arabia;
| | - Salah Ahmed Ezreqat
- IPAC Department, King Saud University Medical City, Riyadh 11362, Saudi Arabia;
| | - Ahmed M. Albarraq
- Department of Pathology, College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia; (A.M.A.); (K.B.)
| | - Mazin Barry
- College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia; (F.S.A.); (M.B.)
- Division of Infectious Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Khalifa Binkhamis
- Department of Pathology, College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia; (A.M.A.); (K.B.)
| | - Lulwa Alabdan
- College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia; (F.S.A.); (M.B.)
- Division of Infectious Diseases, Department of Internal Medicine, King Saud University Medical City, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Babler K, Sharkey M, Arenas S, Amirali A, Beaver C, Comerford S, Goodman K, Grills G, Holung M, Kobetz E, Laine J, Lamar W, Mason C, Pronty D, Reding B, Schürer S, Schaefer Solle N, Stevenson M, Vidović D, Solo-Gabriele H, Shukla B. Detection of the clinically persistent, pathogenic yeast spp. Candida auris from hospital and municipal wastewater in Miami-Dade County, Florida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165459. [PMID: 37442462 PMCID: PMC10543605 DOI: 10.1016/j.scitotenv.2023.165459] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/14/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
The use of wastewater-based surveillance (WBS) for detecting pathogens within communities has been growing since the beginning of the COVID-19 pandemic with early efforts investigating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA in wastewater. Recent efforts have shed light on the utilization of WBS for alternative targets, such as fungal pathogens, like Candida auris, in efforts to expand the technology to assess non-viral targets. The objective of this study was to extend workflows developed for SARS-CoV-2 quantification to evaluate whether C. auris can be recovered from wastewater, inclusive of effluent from a wastewater treatment plant (WWTP) and from a hospital with known numbers of patients colonized with C. auris. Measurements of C. auris in wastewater focused on culture-based methods and quantitative PCR (qPCR). Results showed that C. auris can be cultured from wastewater and that levels detected by qPCR were higher in the hospital wastewater compared to the wastewater from the WWTP, suggesting either dilution or degradation of this pathogenic yeast at downstream collection points. The results from this study illustrate that WBS can extend beyond SARS-CoV-2 monitoring to evaluate additional non-viral pathogenic targets and demonstrates that C. auris isolated from wastewater is competent to replicate in vitro using fungal-specific culture media.
Collapse
Affiliation(s)
- Kristina Babler
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Mark Sharkey
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sebastian Arenas
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ayaaz Amirali
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Cynthia Beaver
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Samuel Comerford
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kenneth Goodman
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Institute for Data Science & Computing, University of Miami, Coral Gables, FL, USA
| | - George Grills
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michelle Holung
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Erin Kobetz
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jennifer Laine
- Environmental Health and Safety, University of Miami, Miami, FL 33136, USA
| | - Walter Lamar
- Division of Occupational Health, Safety & Compliance, University of Miami Health System, Miami, FL 33136, USA
| | - Christopher Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York City, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Darryl Pronty
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Brian Reding
- Environmental Health and Safety, University of Miami, Miami, FL 33136, USA
| | - Stephan Schürer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Institute for Data Science & Computing, University of Miami, Coral Gables, FL, USA
| | - Natasha Schaefer Solle
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Stevenson
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Dusica Vidović
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Helena Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Bhavarth Shukla
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
15
|
Sartelli M, Barie PS, Coccolini F, Abbas M, Abbo LM, Abdukhalilova GK, Abraham Y, Abubakar S, Abu-Zidan FM, Adebisi YA, Adamou H, Afandiyeva G, Agastra E, Alfouzan WA, Al-Hasan MN, Ali S, Ali SM, Allaw F, Allwell-Brown G, Amir A, Amponsah OKO, Al Omari A, Ansaloni L, Ansari S, Arauz AB, Augustin G, Awazi B, Azfar M, Bah MSB, Bala M, Banagala ASK, Baral S, Bassetti M, Bavestrello L, Beilman G, Bekele K, Benboubker M, Beović B, Bergamasco MD, Bertagnolio S, Biffl WL, Blot S, Boermeester MA, Bonomo RA, Brink A, Brusaferro S, Butemba J, Caínzos MA, Camacho-Ortiz A, Canton R, Cascio A, Cassini A, Cástro-Sanchez E, Catarci M, Catena R, Chamani-Tabriz L, Chandy SJ, Charani E, Cheadle WG, Chebet D, Chikowe I, Chiara F, Cheng VCC, Chioti A, Cocuz ME, Coimbra R, Cortese F, Cui Y, Czepiel J, Dasic M, de Francisco Serpa N, de Jonge SW, Delibegovic S, Dellinger EP, Demetrashvili Z, De Palma A, De Silva D, De Simone B, De Waele J, Dhingra S, Diaz JJ, Dima C, Dirani N, Dodoo CC, Dorj G, Duane TM, Eckmann C, Egyir B, Elmangory MM, Enani MA, Ergonul O, Escalera-Antezana JP, Escandon K, Ettu AWOO, Fadare JO, Fantoni M, Farahbakhsh M, Faro MP, Ferreres A, Flocco G, Foianini E, Fry DE, Garcia AF, Gerardi C, Ghannam W, Giamarellou H, Glushkova N, Gkiokas G, Goff DA, Gomi H, Gottfredsson M, Griffiths EA, Guerra Gronerth RI, Guirao X, Gupta YK, Halle-Ekane G, Hansen S, Haque M, Hardcastle TC, Hayman DTS, Hecker A, Hell M, Ho VP, Hodonou AM, Isik A, Islam S, Itani KMF, Jaidane N, Jammer I, Jenkins DR, Kamara IF, Kanj SS, Jumbam D, Keikha M, Khanna AK, Khanna S, Kapoor G, Kapoor G, Kariuki S, Khamis F, Khokha V, Kiggundu R, Kiguba R, Kim HB, Kim PK, Kirkpatrick AW, Kluger Y, Ko WC, Kok KYY, Kotecha V, Kouma I, Kovacevic B, Krasniqi J, Krutova M, Kryvoruchko I, Kullar R, Labi KA, Labricciosa FM, Lakoh S, Lakatos B, Lansang MAD, Laxminarayan R, Lee YR, Leone M, Leppaniemi A, Hara GL, Litvin A, Lohsiriwat V, Machain GM, Mahomoodally F, Maier RV, Majumder MAA, Malama S, Manasa J, Manchanda V, Manzano-Nunez R, Martínez-Martínez L, Martin-Loeches I, Marwah S, Maseda E, Mathewos M, Maves RC, McNamara D, Memish Z, Mertz D, Mishra SK, Montravers P, Moro ML, Mossialos E, Motta F, Mudenda S, Mugabi P, Mugisha MJM, Mylonakis E, Napolitano LM, Nathwani D, Nkamba L, Nsutebu EF, O’Connor DB, Ogunsola S, Jensen PØ, Ordoñez JM, Ordoñez CA, Ottolino P, Ouedraogo AS, Paiva JA, Palmieri M, Pan A, Pant N, Panyko A, Paolillo C, Patel J, Pea F, Petrone P, Petrosillo N, Pintar T, Plaudis H, Podda M, Ponce-de-Leon A, Powell SL, Puello-Guerrero A, Pulcini C, Rasa K, Regimbeau JM, Rello J, Retamozo-Palacios MR, Reynolds-Campbell G, Ribeiro J, Rickard J, Rocha-Pereira N, Rosenthal VD, Rossolini GM, Rwegerera GM, Rwigamba M, Sabbatucci M, Saladžinskas Ž, Salama RE, Sali T, Salile SS, Sall I, Kafil HS, Sakakushev BE, Sawyer RG, Scatizzi M, Seni J, Septimus EJ, Sganga G, Shabanzadeh DM, Shelat VG, Shibabaw A, Somville F, Souf S, Stefani S, Tacconelli E, Tan BK, Tattevin P, Rodriguez-Taveras C, Telles JP, Téllez-Almenares O, Tessier J, Thang NT, Timmermann C, Timsit JF, Tochie JN, Tolonen M, Trueba G, Tsioutis C, Tumietto F, Tuon FF, Ulrych J, Uranues S, van Dongen M, van Goor H, Velmahos GC, Vereczkei A, Viaggi B, Viale P, Vila J, Voss A, Vraneš J, Watkins RR, Wanjiru-Korir N, Waworuntu O, Wechsler-Fördös A, Yadgarova K, Yahaya M, Yahya AI, Xiao Y, Zakaria AD, Zakrison TL, Zamora Mesia V, Siquini W, Darzi A, Pagani L, Catena F. Ten golden rules for optimal antibiotic use in hospital settings: the WARNING call to action. World J Emerg Surg 2023; 18:50. [PMID: 37845673 PMCID: PMC10580644 DOI: 10.1186/s13017-023-00518-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/23/2023] [Indexed: 10/18/2023] Open
Abstract
Antibiotics are recognized widely for their benefits when used appropriately. However, they are often used inappropriately despite the importance of responsible use within good clinical practice. Effective antibiotic treatment is an essential component of universal healthcare, and it is a global responsibility to ensure appropriate use. Currently, pharmaceutical companies have little incentive to develop new antibiotics due to scientific, regulatory, and financial barriers, further emphasizing the importance of appropriate antibiotic use. To address this issue, the Global Alliance for Infections in Surgery established an international multidisciplinary task force of 295 experts from 115 countries with different backgrounds. The task force developed a position statement called WARNING (Worldwide Antimicrobial Resistance National/International Network Group) aimed at raising awareness of antimicrobial resistance and improving antibiotic prescribing practices worldwide. The statement outlined is 10 axioms, or "golden rules," for the appropriate use of antibiotics that all healthcare workers should consistently adhere in clinical practice.
Collapse
|
16
|
Kekana D, Naicker SD, Shuping L, Velaphi S, Nakwa FL, Wadula J, Govender NP. Candida auris Clinical Isolates Associated with Outbreak in Neonatal Unit of Tertiary Academic Hospital, South Africa. Emerg Infect Dis 2023; 29:2044-2053. [PMID: 37735719 PMCID: PMC10521600 DOI: 10.3201/eid2910.230181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
Candida auris was first detected at a university-affiliated hospital in Johannesburg, South Africa, in 2009. We used whole-genome sequencing to describe the molecular epidemiology of C. auris in the same hospital during 2016-2020; the neonatal unit had a persistent outbreak beginning in June 2019. Of 287 cases with culture-confirmed C. auris infection identified through laboratory surveillance, 207 (72%) had viable isolates and 188 (66%) were processed for whole-genome sequencing. Clade III (118/188, 63%) and IV (70/188, 37%) isolates co-circulated in the hospital. All 181/188 isolates that had a fluconazole MIC >32 µg/mL had ERG11 mutations; clade III isolates had VF125AL substitutions, and clade IV isolates had K177R/N335S/E343D substitutions. Dominated by clade III, the neonatal unit outbreak accounted for 32% (91/287) of all cases during the study period. The outbreak may have originated through transmission from infected or colonized patients, colonized healthcare workers, or contaminated equipment/environment.
Collapse
|
17
|
Françoise U, Desnos-Ollivier M, Le Govic Y, Sitbon K, Valentino R, Peugny S, Chouaki T, Mazars E, Paugam A, Nicolas M, Desbois-Nogard N, Lortholary O. Candida haemulonii complex, an emerging threat from tropical regions? PLoS Negl Trop Dis 2023; 17:e0011453. [PMID: 37523406 PMCID: PMC10437918 DOI: 10.1371/journal.pntd.0011453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/18/2023] [Accepted: 06/09/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Candida haemulonii complex-related species are pathogenic yeasts closely related to Candida auris with intrinsic antifungal resistance, but few epidemiological data are available. METHODOLOGY/PRINCIPAL FINDINGS We analyzed clinical and demographic characteristics of patients with fungemia due to C. haemulonii complex and related species (C. pseudohaemulonii, C. vulturna) reported in France during 2002-2021, and compared them to data of C. parapsilosis fungemia, as they all can be commensal of the skin. We also conducted a study on adult inpatients and outpatients colonized by C. haemulonii complex, managed at the University Hospital of Martinique during 2014-2020. Finally, we performed a literature review of fungemia due to C. haemulonii complex and related species reported in Medline (1962-2022). In total, we identified 28 fungemia due to C. haemulonii complex in France. These episodes were frequently associated with bacterial infection (38%) and high mortality rate (44%), and differed from C. parapsilosis fungemia by their tropical origin, mainly from Caribbean and Latin America. All isolates showed decreased in vitro susceptibility to amphotericin B and fluconazole. In Martinique, we found that skin colonization was frequent in the community population, while colonization was strongly associated with the presence of foreign devices in ICU patients. The literature review identified 274 fungemia episodes, of which 56 were individually described. As in our national series, published cases originated mainly from tropical regions and exhibited high crude mortality. CONCLUSIONS/SIGNIFICANCE Multidrug-resistant C. haemulonii complex-related species are responsible for fungemia and colonization in community and hospital settings, especially in tropical regions, warranting closer epidemiological surveillance to prevent a potential C. auris-like threat.
Collapse
Affiliation(s)
- Ugo Françoise
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Martinique, Fort-de-France, Martinique, France
| | - Marie Desnos-Ollivier
- Centre National de Référence des Mycoses invasives et Antifongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Yohann Le Govic
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Martinique, Fort-de-France, Martinique, France
| | - Karine Sitbon
- Centre National de Référence des Mycoses invasives et Antifongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Ruddy Valentino
- Service de réanimation, Centre Hospitalier Universitaire de Martinique, Fort-de-France, Martinique, France
| | - Sandrine Peugny
- Unité de Maladies Infectieuses et Tropicales, Centre Hospitalier de Cayenne, Cayenne, Guyane Française, France
| | - Taieb Chouaki
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Edith Mazars
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier de Valenciennes, Valenciennes, France
| | - André Paugam
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Muriel Nicolas
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Guadeloupe, Pointe-à-Pitre, Guadeloupe, France
| | - Nicole Desbois-Nogard
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Martinique, Fort-de-France, Martinique, France
| | - Olivier Lortholary
- Centre National de Référence des Mycoses invasives et Antifongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, Paris, France
- Institut Imagine, Paris, France
- Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | |
Collapse
|
18
|
Naicker SD, Shuping L, Zulu TG, Mpembe RS, Mhlanga M, Tsotetsi EM, Maphanga TG, Govender NP. Epidemiology and susceptibility of Nakaseomyces (formerly Candida) glabrata bloodstream isolates from hospitalised adults in South Africa. Med Mycol 2023; 61:myad057. [PMID: 37336590 DOI: 10.1093/mmy/myad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023] Open
Abstract
During 2016-2017, Nakaseomyces glabrata (formerly Candida glabrata) caused 14% of cases of candidaemia in South Africa. We aimed to describe the clinical characteristics of adults with N. glabrata candidaemia at 20 sentinel hospitals (accounting for 20% (172/917) of cases) and the antifungal susceptibility of the corresponding isolates. A higher proportion of patients with N. glabrata candidaemia were older (median age: 55 years [interquartile range (IQR): 41-65 years] vs. 49 years [IQR: 35-63 years]; p = 0.04), female (87/164, 53% vs. 283/671, 42%; p = 0.01), admitted to a public-sector hospital (152/172, 88% vs. 470/745, 63%; p < 0.001), treated with fluconazole only (most with suboptimal doses) (51/95, 54% vs. 139/361, 39%; p < 0.001), and had surgery (47/172, 27% vs. 123/745, 17%; p = 0.001) and a shorter hospital stay (median 7 days [IQR: 2-20 days] vs. 13 days [IQR: 4-27 days]; p < 0.001) compared to patients with other causes of candidaemia. Eight N. glabrata isolates (6%, 8/131) had minimum inhibitory concentrations in the intermediate or resistant range for ≥ 1 echinocandin and a R1377K amino acid substitution encoded by the hotspot 2 region of the FKS2 gene. Only 11 isolates (8%, 11/131) were resistant to fluconazole. Patients with confirmed N. glabrata candidaemia are recommended to be treated with an echinocandin (or polyene), thus further guideline training is required.
Collapse
Affiliation(s)
- Serisha D Naicker
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Liliwe Shuping
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Thokozile G Zulu
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Ruth S Mpembe
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Mabatho Mhlanga
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Ernest M Tsotetsi
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Tsidiso G Maphanga
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Nelesh P Govender
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infection and Immunity, St George's University of London, London and Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
19
|
Cook A, Ferreras-Antolin L, Adhisivam B, Ballot D, Berkley JA, Bernaschi P, Carvalheiro CG, Chaikittisuk N, Chen Y, Chibabhai V, Chitkara S, Chiurchiu S, Chorafa E, Dien TM, Dramowski A, de Matos SF, Feng J, Jarovsky D, Kaur R, Khamjakkaew W, Laoyookhong P, Machanja E, Mussi-Pinhata MM, Namiiro F, Natraj G, Naziat H, Ngoc HTB, Ondongo-Ezhet C, Preedisripipat K, Rahman H, Riddell A, Roilides E, Russell N, Sastry AS, Tasimwa HB, Tongzhen J, Wadula J, Wang Y, Whitelaw A, Wu D, Yadav V, Yang G, Stohr W, Bielicki JA, Ellis S, Warris A, Heath PT, Sharland M. Neonatal invasive candidiasis in low- and middle-income countries: Data from the NeoOBS study. Med Mycol 2023; 61:myad010. [PMID: 36881725 PMCID: PMC10026246 DOI: 10.1093/mmy/myad010] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/11/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Neonatal invasive candidiasis (NIC) has significant morbidity and mortality. Reports have shown a different profile of those neonates affected with NIC and of fluconazole-resistant Candida spp. isolates in low- and middle-income countries (LMICs) compared to high-income countries (HICs). We describe the epidemiology, Candida spp. distribution, treatment, and outcomes of neonates with NIC from LMICs enrolled in a global, prospective, longitudinal, observational cohort study (NeoOBS) of hospitalized infants <60 days postnatal age with sepsis (August 2018-February 2021). A total of 127 neonates from 14 hospitals in 8 countries with Candida spp. isolated from blood culture were included. Median gestational age of affected neonates was 30 weeks (IQR: 28-34), and median birth weight was 1270 gr (interquartile range [IQR]: 990-1692). Only a minority had high-risk criteria, such as being born <28 weeks, 19% (24/127), or birth weight <1000 gr, 27% (34/127). The most common Candida species were C. albicans (n = 45, 35%), C. parapsilosis (n = 38, 30%), and Candida auris (n = 18, 14%). The majority of C. albicans isolates were fluconazole susceptible, whereas 59% of C. parapsilosis isolates were fluconazole-resistant. Amphotericin B was the most common antifungal used [74% (78/105)], followed by fluconazole [22% (23/105)]. Death by day 28 post-enrollment was 22% (28/127). To our knowledge, this is the largest multi-country cohort of NIC in LMICs. Most of the neonates would not have been considered at high risk for NIC in HICs. A substantial proportion of isolates was resistant to first choice fluconazole. Understanding the burden of NIC in LMIC is essential to guide future research and treatment guidelines.
Collapse
Affiliation(s)
- Aislinn Cook
- Centre for Neonatal and Paediatric Infection, St. George's University of London, London, UK
| | - Laura Ferreras-Antolin
- Centre for Neonatal and Paediatric Infection, St. George's University of London, London, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Bethou Adhisivam
- Department of Neonatology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Pondicherry, India
| | - Daynia Ballot
- School of Clinical Medicine, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
- Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - James A Berkley
- Clinical Research Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, Kenya
| | - Paola Bernaschi
- Microbiology Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Cristina G Carvalheiro
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Yunsheng Chen
- Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen, China
| | - Vindana Chibabhai
- Department of Clinical Microbiology & Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
- NHLS Microbiology Laboratory, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Shweta Chitkara
- Lady Hardinge Medical College & Associated SSK & KSC Hospitals, New Delhi, India
| | - Sara Chiurchiu
- Academic Hospital Paediatric Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Elisavet Chorafa
- Infectious Diseases Unit, 3rd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University and Hippokration General Hospital, Thessaloniki, Greece
| | - Tran Minh Dien
- Vice Director Vietnam National Children's Hospital, Hanoi, Vietnam
- Department of Surgery, Vietnam National Children's Hospital, Hanoi, Vietnam
| | - Angela Dramowski
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Jinxing Feng
- Department of Neonatology, Shenzhen Children's Hospital, Shenzhen, China
| | | | - Ravinder Kaur
- Lady Hardinge Medical College & Associated SSK & KSC Hospitals, New Delhi, India
| | | | | | - Edwin Machanja
- Department of Microbiology, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Marisa M Mussi-Pinhata
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Flavia Namiiro
- Mulago Specialised Women and Neonatal Hospital, Kampala, Uganda
| | - Gita Natraj
- Seth G. S. Medical College & KEM Hospital, Mumbai, India
| | - Hakka Naziat
- Child Health Research Foundation, Dhaka, Bangladesh
| | - Hoang Thi Bich Ngoc
- Department of Microbiology, Vietnam National Children's Hospital, Hanoi, Vietnam
| | - Claude Ondongo-Ezhet
- School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Amy Riddell
- Centre for Neonatal and Paediatric Infection, St. George's University of London, London, UK
| | - Emmanuel Roilides
- Infectious Diseases Unit, 3rd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University and Hippokration General Hospital, Thessaloniki, Greece
| | - Neal Russell
- Centre for Neonatal and Paediatric Infection, St. George's University of London, London, UK
| | - Apurba S Sastry
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Pondicherry, India
| | | | - Ji Tongzhen
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University,Beijing, China
- Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jeannette Wadula
- National Health Laboratory Services, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yajuan Wang
- Department of Neonatology, Children's Hospital, Capital Institute of Pediatrics, 2# Yabao Road, Chaoyang District, Beijing, China
- Department of Neonatology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Andrew Whitelaw
- Division of Medical Microbiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Dan Wu
- Department of Neonatology, Children's Hospital, Capital Institute of Pediatrics, 2# Yabao Road, Chaoyang District, Beijing, China
| | - Varsha Yadav
- Seth G. S. Medical College & KEM Hospital, Mumbai, India
| | - Gao Yang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University,Beijing, China
- National Health Laboratory Services, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Wolfgang Stohr
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Julia Anna Bielicki
- Centre for Neonatal and Paediatric Infection, St. George's University of London, London, UK
| | - Sally Ellis
- Global Antibiotic Research & Development Partnership (GARDP), Geneva, Switzerland
| | - Adilia Warris
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Paul T Heath
- Centre for Neonatal and Paediatric Infection, St. George's University of London, London, UK
| | - Michael Sharland
- Centre for Neonatal and Paediatric Infection, St. George's University of London, London, UK
| |
Collapse
|
20
|
Ramdin TD, Chibabhai V, Saggers RT, Bandini RM, Ballot DE. Epidemiology, risk factors and outcomes associated with candidaemia in very low birth weight infants at a tertiary South African Hospital over a 7-year period (2013–2019). CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2023. [DOI: 10.1016/j.cegh.2023.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
21
|
Lamoth F. Novel Therapeutic Approaches to Invasive Candidiasis: Considerations for the Clinician. Infect Drug Resist 2023; 16:1087-1097. [PMID: 36855391 PMCID: PMC9968438 DOI: 10.2147/idr.s375625] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Invasive candidiasis (IC), due to the yeast pathogen Candida, is still a major cause of in-hospital morbidity and mortality. The limited number of antifungal drug classes and the emergence of multi-resistant Candida species, such as Candida auris and some Candida glabrata isolates, is concerning. However, recent advances in antifungal drug development provide promising perspectives for the therapeutic approach of IC. Notably, three novel antifungal agents, currently in Phase II/III clinical trials, are expected to have an important place for the treatment of IC in the future. Rezafungin is a novel echinocandin with prolonged half-life. Ibrexafungerp and fosmanogepix are two first-in-class antifungal drugs with broad spectrum activity against Candida spp., including C. auris and echinocandin-resistant species. These novel antifungal agents also represent interesting alternative options because of their acceptable oral bioavailability (ibrexafungerp and fosmanogepix) or their large interdose interval (once weekly intravenous administration for rezafungin) for prolonged and/or outpatient treatment of complicated IC. This review discusses the potential place of these novel antifungal drugs for the treatment of IC considering their pharmacologic properties and their preclinical and clinical data.
Collapse
Affiliation(s)
- Frederic Lamoth
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Microbiology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Correspondence: Frederic Lamoth, Service of Infectious Diseases and Institute of Microbiology, CHUV | Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 48, Lausanne, 1011, Switzerland, Tel +41 21 314 10 10, Email
| |
Collapse
|
22
|
Dangarembizi R, Wasserman S, Hoving JC. Emerging and re-emerging fungal threats in Africa. Parasite Immunol 2023; 45:e12953. [PMID: 36175380 PMCID: PMC9892204 DOI: 10.1111/pim.12953] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 02/04/2023]
Abstract
The emergence of deadly fungal infections in Africa is primarily driven by a disproportionately high burden of human immunodeficiency virus (HIV) infections, lack of access to quality health care, and the unavailability of effective antifungal drugs. Immunocompromised people in Africa are therefore at high risk of infection from opportunistic fungal pathogens such as Cryptococcus neoformans and Pneumocystis jirovecii, which are associated with high morbidity, mortality, and related socioeconomic impacts. Other emerging fungal threats include Emergomyces spp., Histoplasma spp., Blastomyces spp., and healthcare-associated multi-drug resistant Candida auris. Socioeconomic development and the Covid-19 pandemic may influence shifts in epidemiology of invasive fungal diseases on the continent. This review discusses the epidemiology, clinical manifestations, and current management strategies available for these emerging fungal diseases in Africa. We also discuss gaps in knowledge, policy, and research to inform future efforts at managing these fungal threats.
Collapse
Affiliation(s)
- Rachael Dangarembizi
- Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa,CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Contact information of corresponding author Dr Rachael Dangarembizi, Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa, Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa, CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,
| | - Sean Wasserman
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Jennifer Claire Hoving
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa,CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
23
|
Ahmad S, Asadzadeh M. Strategies to Prevent Transmission of Candida auris in Healthcare Settings. CURRENT FUNGAL INFECTION REPORTS 2023; 17:36-48. [PMID: 36718372 PMCID: PMC9878498 DOI: 10.1007/s12281-023-00451-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 01/27/2023]
Abstract
Purpose of Review Candida auris, a recently recognized yeast pathogen, has become a major public health threat due to the problems associated with its accurate identification, intrinsic and acquired resistance to antifungal drugs, and its potential to easily contaminate the environment causing clonal outbreaks in healthcare facilities. These outbreaks are associated with high mortality rates particularly among older patients with multiple comorbidities under intensive care settings. The purpose of this review is to highlight strategies that are being adapted to prevent transmission of C. auris in healthcare settings. Recent Findings Colonized patients shed C. auris into their environment which contaminates surrounding equipment. It resists elimination even by robust decontamination procedures and is easily transmitted to new patients during close contact resulting in outbreaks. Efforts are being made to rapidly identify C. auris-infected/C. auris-colonized patients, to determine its susceptibility to antifungals, and to perform effective cleaning and decontamination of the environment and isolation of colonized patients to prevent further transmission. Summary Rapid and accurate identification of hospitalized patients infected/colonized with C. auris, rapid detection of its susceptibility patterns, and appropriate use of infection control measures can help to contain the spread of this highly pathogenic yeast in healthcare settings and prevent/control outbreaks.
Collapse
Affiliation(s)
- Suhail Ahmad
- Faculty of Medicine, Department of Microbiology, Kuwait University, PO Box: 24923, 13110 Safat, Kuwait
| | - Mohammad Asadzadeh
- Faculty of Medicine, Department of Microbiology, Kuwait University, PO Box: 24923, 13110 Safat, Kuwait
| |
Collapse
|
24
|
Bongomin F, Ekeng BE, Kibone W, Nsenga L, Olum R, Itam-Eyo A, Kuate MPN, Pebolo FP, Davies AA, Manga M, Ocansey B, Kwizera R, Baluku JB. Invasive Fungal Diseases in Africa: A Critical Literature Review. J Fungi (Basel) 2022; 8:jof8121236. [PMID: 36547569 PMCID: PMC9853333 DOI: 10.3390/jof8121236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Invasive fungal diseases (IFDs) are of huge concern in resource-limited settings, particularly in Africa, due to the unavailability of diagnostic armamentarium for IFDs, thus making definitive diagnosis challenging. IFDs have non-specific systemic manifestations overlapping with more frequent illnesses, such as tuberculosis, HIV, and HIV-related opportunistic infections and malignancies. Consequently, IFDs are often undiagnosed or misdiagnosed. We critically reviewed the available literature on IFDs in Africa to provide a better understanding of their epidemiology, disease burden to guide future research and interventions. Cryptococcosis is the most encountered IFD in Africa, accounting for most of the HIV-related deaths in sub-Saharan Africa. Invasive aspergillosis, though somewhat underdiagnosed and/or misdiagnosed as tuberculosis, is increasingly being reported with a similar predilection towards people living with HIV. More cases of histoplasmosis are also being reported with recent epidemiological studies, particularly from Western Africa, showing high prevalence rates amongst presumptive tuberculosis patients and patients living with HIV. The burden of pneumocystis pneumonia has reduced significantly probably due to increased uptake of anti-retroviral therapy among people living with HIV both in Africa, and globally. Mucormycosis, talaromycosis, emergomycosis, blastomycosis, and coccidiomycosis have also been reported but with very few studies from the literature. The emergence of resistance to most of the available antifungal drugs in Africa is yet of huge concern as reported in other regions. IFDs in Africa is much more common than it appears and contributes significantly to morbidity and mortality. Huge investment is needed to drive awareness and fungi related research especially in diagnostics and antifungal therapy.
Collapse
Affiliation(s)
- Felix Bongomin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu P.O. Box 166, Uganda
- Correspondence:
| | - Bassey E. Ekeng
- Department of Medical Microbiology and Parasitology, University of Calabar Teaching Hospital, Calabar P.O. Box 540281, Nigeria
| | - Winnie Kibone
- Department of Medicine, School of Medicine, Makerere University, Kampala P.O. Box 7072, Uganda
| | - Lauryn Nsenga
- Department of Medicine, School of Medicine, Kabale University, Kabale P.O. Box 317, Uganda
| | - Ronald Olum
- Department of Medicine, St. Francis’s Hospital Nsambya, Kampala P.O. Box 7176, Uganda
| | - Asa Itam-Eyo
- Department of Internal Medicine, University of Calabar Teaching Hospital, Calabar P.O. Box 540281, Nigeria
| | | | - Francis Pebalo Pebolo
- Department of Reproductive Health, Faculty of Medicine, Gulu University, Gulu P.O. Box 166, Uganda
| | - Adeyinka A. Davies
- Department of Medical Microbiology and Parasitology, Olabisi Onabanjo University Teaching Hospital, Sagamu P.O. Box 121102, Nigeria
| | - Musa Manga
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 4114 McGavran-Greenberg, 135 Dauer Drive, Chapel Hill, NC 27599, USA
| | - Bright Ocansey
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Richard Kwizera
- Translational Research Laboratory, Department of Research, Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala P.O. Box 22418, Uganda
| | - Joseph Baruch Baluku
- Division of Pulmonology, Kiruddu National Referral Hospital, Kampala P.O. Box 7178, Uganda
- Makerere Lung Institute, College of Health Sciences, Makerere University, Kampala P.O. Box 22418, Uganda
| |
Collapse
|
25
|
Synergistic Interaction of Caspofungin Combined with Posaconazole against FKS Wild-Type and Mutant Candida auris Planktonic Cells and Biofilms. Antibiotics (Basel) 2022; 11:antibiotics11111601. [PMID: 36421245 PMCID: PMC9686983 DOI: 10.3390/antibiotics11111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Candida auris is a potential multidrug-resistant pathogen able to cause biofilm-associated outbreaks, where frequently indwelling devices are the source of infections. The number of effective therapies is limited; thus, new, even-combination-based strategies are needed. Therefore, the in vitro efficacy of caspofungin with posaconazole against FKS wild-type and mutant Candida auris isolates was determined. The interactions were assessed utilizing the fractional inhibitory concentration indices (FICIs), the Bliss model, and a LIVE/DEAD assay. Planktonic minimum inhibitory concentrations (pMICs) for the caspofungin-posaconazole combination showed a 4- to 256-fold and a 2- to 512-fold decrease compared to caspofungin and posaconazole alone, respectively. Sessile minimum inhibitory concentrations (sMICs) for caspofungin and posaconazole in combination showed an 8- to 128-fold and a 4- to 512-fold decrease, respectively. The combination showed synergy, especially against biofilms (FICIs were 0.033-0.375 and 0.091-0.5, and Bliss cumulative synergy volumes were 6.96 and 32.39 for echinocandin-susceptible and -resistant isolates, respectively). The caspofungin-exposed (4 mg/L) C. auris biofilms exhibited increased cell death in the presence of posaconazole (0.03 mg/L) compared to untreated, caspofungin-exposed and posaconazole-treated biofilms. Despite the favorable effect of caspofungin with posaconazole, in vivo studies are needed to confirm the therapeutic potential of this combination in C. auris-associated infections.
Collapse
|
26
|
Thatchanamoorthy N, Rukumani Devi V, Chandramathi S, Tay ST. Candida auris: A Mini Review on Epidemiology in Healthcare Facilities in Asia. J Fungi (Basel) 2022; 8:1126. [PMID: 36354893 PMCID: PMC9696804 DOI: 10.3390/jof8111126] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 07/28/2023] Open
Abstract
Candida auris, a newly emerging healthcare-associated yeast pathogen from the Metschnikowiaceae family, was first described in the ear canal of an elderly Japanese patient in 2009. The yeast is one of the causative agents of candidemia, which has been linked with nosocomial outbreaks and high mortality rates in healthcare facilities worldwide. Since its first isolation, the occurrence of C. auris in six continents has becomes a grave concern for the healthcare professionals and scientific community. Recent reports showed the identification of five geographically distinct clades and high rates of antifungal resistance associated with C. auris. Till date, there are no effective treatment options, and standardized measures for prevention and control of C. auris infection in healthcare facilities. This leads to frequent therapeutic failures and complicates the eradication of C. auris infection in healthcare facilities. Thus, this review focuses on the recent understanding of the epidemiology, risk factors, diagnosis, transmission and prevention and control strategies of C. auris infection in healthcare facilities in Asia.
Collapse
Affiliation(s)
- Nishanthinie Thatchanamoorthy
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur 50603, Wilayah Persekutuan, Malaysia
| | - Velayuthan Rukumani Devi
- Department of Medical Microbiology, University Malaya Medical Centre, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur 59100, Wilayah Persekutuan, Malaysia
| | - Samudi Chandramathi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur 50603, Wilayah Persekutuan, Malaysia
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur 50603, Wilayah Persekutuan, Malaysia
| |
Collapse
|
27
|
Gow NAR, Johnson C, Berman J, Coste AT, Cuomo CA, Perlin DS, Bicanic T, Harrison TS, Wiederhold N, Bromley M, Chiller T, Edgar K. The importance of antimicrobial resistance in medical mycology. Nat Commun 2022; 13:5352. [PMID: 36097014 PMCID: PMC9466305 DOI: 10.1038/s41467-022-32249-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/22/2022] [Indexed: 01/08/2023] Open
Abstract
Prior to the SARS-CoV-2 pandemic, antibiotic resistance was listed as the major global health care priority. Some analyses, including the O'Neill report, have predicted that deaths due to drug-resistant bacterial infections may eclipse the total number of cancer deaths by 2050. Although fungal infections remain in the shadow of public awareness, total attributable annual deaths are similar to, or exceeds, global mortalities due to malaria, tuberculosis or HIV. The impact of fungal infections has been exacerbated by the steady rise of antifungal drug resistant strains and species which reflects the widespread use of antifungals for prophylaxis and therapy, and in the case of azole resistance in Aspergillus, has been linked to the widespread agricultural use of antifungals. This review, based on a workshop hosted by the Medical Research Council and the University of Exeter, illuminates the problem of antifungal resistance and suggests how this growing threat might be mitigated.
Collapse
Affiliation(s)
- Neil A R Gow
- MRC Centre for Medical Mycology, School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK.
| | - Carolyn Johnson
- Medical Research Council, Polaris House, Swindon, SN2 1FL, UK.
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 418 Britannia Building, Ramat Aviv, 69978, Israel
| | - Alix T Coste
- Microbiology Institute, University Hospital Lausanne, rue du Bugnon 48, 1011, Lausanne, Switzerland
| | - Christina A Cuomo
- (CAC) Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian health, Nutley, NJ, 07110, USA
| | - Tihana Bicanic
- Institute of Infection and Immunity, St George's University of London, London, SW17 0RE, UK
- Clinical Academic Group in Infection, St George's University Hospitals NHS Foundation Trust, London, SW17 0QT, UK
| | - Thomas S Harrison
- MRC Centre for Medical Mycology, School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK
- Institute of Infection and Immunity, St George's University of London, London, SW17 0RE, UK
- Clinical Academic Group in Infection, St George's University Hospitals NHS Foundation Trust, London, SW17 0QT, UK
| | - Nathan Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Mike Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, CTF Building, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Tom Chiller
- Center for Disease Control and Prevention Mycotic Disease Branch 1600 Clifton Rd, MSC-09, Atlanta, 30333, GA, USA
| | - Keegan Edgar
- Center for Disease Control and Prevention Mycotic Disease Branch 1600 Clifton Rd, MSC-09, Atlanta, 30333, GA, USA
| |
Collapse
|
28
|
Mashau RC, Meiring ST, Dramowski A, Magobo RE, Quan VC, Perovic O, von Gottberg A, Cohen C, Velaphi S, van Schalkwyk E, Govender NP. Culture-confirmed neonatal bloodstream infections and meningitis in South Africa, 2014-19: a cross-sectional study. Lancet Glob Health 2022; 10:e1170-e1178. [PMID: 35839815 PMCID: PMC9296659 DOI: 10.1016/s2214-109x(22)00246-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND Few population-level estimates of invasive neonatal infections have been reported from sub-Saharan Africa. We estimated the national incidence risk, aetiology, and pathogen antimicrobial susceptibility for culture-confirmed neonatal bloodstream infections and meningitis in South Africa. METHODS We conducted a cross-sectional study of neonates (<28 days of life) admitted to neonatal or paediatric wards of 256 public sector health facilities in South Africa during 2014-19. Diagnostic pathology records from Jan 1, 2014, to Dec 31, 2019, were extracted from a national pathology data warehouse. A case was defined as a neonate with at least one positive blood or cerebrospinal fluid culture during a 14-day period. Incidence risk was calculated using annual numbers of registered livebirths. Among the causative pathogens identified, we calculated the proportion of cases attributed to each of them, as well as the rates of antibiotic susceptibility of Gram-positive and Gram-negative bacteria. FINDINGS Among 43 438 records of positive cultures, there were 37 631 incident cases of neonatal infection with at least one pathogen isolated. The overall incidence risk of culture-confirmed infections was 6·0 per 1000 livebirths (95% CI 6·0-6·1). The incidence risk of late-onset sepsis (days 3-27 of life) was 4·9 per 1000 livebirths (4·9-5·0) and that of early-onset sepsis (days 0-2 of life) was 1·1 per 1000 livebirths (1·1-1·1); risk ratio 4·4 (95% CI 4·3-4·5). The cause of infection differed by syndrome, timing of infection onset, facility, and province, although Klebsiella pneumoniae (26%), Acinetobacter baumannii (13%), and Staphylococcus aureus (12%) were the dominant pathogens overall. Gram-negative bacteria had declining susceptibility to most antibiotics over the study period. INTERPRETATION We found a high incidence risk of late-onset sepsis with provincial variations, predominance of K pneumoniae, and declining antibiotic susceptibility among Gram-negative bacteria. This national surveillance in an upper-middle-income country provides a baseline burden of neonatal infections against which the impact of future clinical and public health interventions can be measured. FUNDING Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Rudzani C Mashau
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.
| | - Susan T Meiring
- Division of Public Health Surveillance and Response, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Angela Dramowski
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - Rindidzani E Magobo
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Vanessa C Quan
- Division of Public Health Surveillance and Response, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Olga Perovic
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa; School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa; School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl Cohen
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sithembiso Velaphi
- Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa
| | - Erika van Schalkwyk
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Nelesh P Govender
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa; School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Institute of Infection and Immunity, St George's University of London, London, UK; MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
29
|
Candida auris Pan-Drug-Resistant to Four Classes of Antifungal Agents. Antimicrob Agents Chemother 2022; 66:e0005322. [PMID: 35770999 PMCID: PMC9295560 DOI: 10.1128/aac.00053-22] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Candida auris is an urgent antimicrobial resistance threat due to its global emergence, high mortality, and persistent transmissions. Nearly half of C. auris clinical and surveillance cases in the United States are from the New York and New Jersey Metropolitan area. We performed genome, and drug-resistance analysis of C. auris isolates from a patient who underwent multi-visceral transplantation. Whole-genome comparisons of 19 isolates, collected over 72 days, revealed closed similarity (Average Nucleotide Identity > 0.9996; Aligned Percentage > 0.9764) and a distinct subcluster of NY C. auris South Asia Clade I. All isolates had azole-linked resistance in ERG11(K143R) and CDR1(V704L). Echinocandin resistance first appeared with FKS1(S639Y) mutation and then a unique FKS1(F635C) mutation. Flucytosine-resistant isolates had mutations in FCY1, FUR1, and ADE17. Two pan-drug-resistant C. auris isolates had uracil phosphoribosyltransferase deletion (FUR1[1Δ33]) and the elimination of FUR1 expression, confirmed by a qPCR test developed in this study. Besides ERG11 mutations, four amphotericin B-resistant isolates showed no distinct nonsynonymous variants suggesting unknown genetic elements driving the resistance. Pan-drug-resistant C. auris isolates were not susceptible to two-drug antifungal combinations tested by checkerboard, Etest, and time-kill methods. The fungal population pattern, discerned from SNP phylogenetic analysis, was consistent with in-hospital or inpatient evolution of C. auris isolates circulating locally and not indicative of a recent introduction from elsewhere. The emergence of pan-drug-resistance to four major classes of antifungals in C. auris is alarming. Patients at high risk for drug-resistant C. auris might require novel therapeutic strategies and targeted pre-and/or posttransplant surveillance.
Collapse
|
30
|
Briano F, Magnasco L, Sepulcri C, Dettori S, Dentone C, Mikulska M, Ball L, Vena A, Robba C, Patroniti N, Brunetti I, Gratarola A, D'Angelo R, Di Pilato V, Coppo E, Marchese A, Pelosi P, Giacobbe DR, Bassetti M. Candida auris Candidemia in Critically Ill, Colonized Patients: Cumulative Incidence and Risk Factors. Infect Dis Ther 2022; 11:1149-1160. [PMID: 35404010 PMCID: PMC8995918 DOI: 10.1007/s40121-022-00625-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Candida auris (C. auris) is an emerging nosocomial pathogen, and a sharp rise in cases of colonization and infection has been registered in intensive care units (ICUs) during the ongoing coronavirus disease 2019 (COVID-19) pandemic. The unfavorable resistance profile of C. auris and the potential high mortality of C. auris infections represent an important challenge for physicians. METHODS We conducted a single-center retrospective study including all patients admitted to ICUs with isolation of C. auris in any non-sterile body site between February 20, 2020, and May 31, 2021. The primary aim of the study was to assess the cumulative incidence of C. auris candidemia in colonized patients. The secondary aim was to identify predictors of C. auris candidemia in the study population. RESULTS During the study period, 157 patients admitted to ICUs in our hospital became colonized with C. auris; 59% of them were affected by COVID-19. Overall, 27 patients (17%) developed C. auris candidemia. The cumulative risk of developing C. auris candidemia was > 25% at 60 days after first detection of C. auris colonization. Seven patients with C. auris candidemia (26%) also developed a late recurrent episode. All C. auris blood isolates during the first occurring episode were resistant to fluconazole and susceptible to echinocandins, while 15 (56%) were resistant to amphotericin B. During late recurrent episodes, emergent resistance to caspofungin and amphotericin B occurred in one case each. In the final multivariable model, only multisite colonization retained an independent association with the development of C. auris candidemia. CONCLUSION Candida auris candidemia may occur in up to one fourth of colonized critically ill patients, and multisite colonization is an independent risk factor for the development of candidemia. Implementing adequate infection control measures remains crucial to prevent colonization with C. auris and indirectly the subsequent development of infection.
Collapse
Affiliation(s)
- Federica Briano
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Laura Magnasco
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Chiara Sepulcri
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Silvia Dettori
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Chiara Dentone
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Malgorzata Mikulska
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Anesthesia and Intensive Care, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Anesthesia and Intensive Care, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Nicolò Patroniti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Anesthesia and Intensive Care, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Iole Brunetti
- Anesthesia and Intensive Care, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Angelo Gratarola
- Department of Emergency and Urgency, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Raffaele D'Angelo
- Department of Emergency and Urgency, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Erika Coppo
- Microbiology Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Anna Marchese
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Microbiology Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Anesthesia and Intensive Care, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, L.go R. Benzi 10, 16132, Genoa, Italy.
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, L.go R. Benzi 10, 16132, Genoa, Italy
| |
Collapse
|
31
|
Hussain M, Whitelaw A, Parker A. A five-year retrospective descriptive study on the clinical characteristics and outcomes of candidaemia at a tertiary hospital in South Africa. IJID REGIONS 2022; 3:79-83. [PMID: 35755458 PMCID: PMC9216682 DOI: 10.1016/j.ijregi.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/15/2022]
Abstract
The most common non-albicans species causing candidaemia was Candida glabrata The case fatality rate in patients with candidaemia was high Mortality was higher in diabetics and where Infectious Diseases consultation was not done.
Objectives Methods Results Conclusions
Collapse
Affiliation(s)
- Maleeha Hussain
- Division of General Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
- Corresponding Author: Dr Maleeha Hussain, 597 Stephen Dlamini Road, Berea, 4001, Durban, South Africa
| | - Andrew Whitelaw
- Division of Microbiology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University and National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Arifa Parker
- Division of General Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
32
|
Desoubeaux G, Coste AT, Imbert C, Hennequin C. Overview about Candida auris: What's up 12 years after its first description? J Mycol Med 2022; 32:101248. [DOI: 10.1016/j.mycmed.2022.101248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 12/18/2022]
|
33
|
Hinrichs C, Wiese-Posselt M, Graf B, Geffers C, Weikert B, Enghard P, Aldejohann A, Schrauder A, Knaust A, Eckardt KU, Gastmeier P, Kurzai O. Successful control of Candida auris transmission in a German COVID-19 intensive care unit. Mycoses 2022; 65:643-649. [PMID: 35419847 PMCID: PMC9115290 DOI: 10.1111/myc.13443] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Candida auris is a frequently multi-drug resistant yeast species that poses a global health threat due to its high potential for hospital outbreaks. While C. auris has become endemic in parts of Asia and Africa, transmissions have so far rarely been reported in Western Europe except for Great Britain and Spain. We describe the first documented patient-to-patient transmission of C. auris in Germany in a COVID-19 intensive care unit (ICU) and infection control measures implemented to prevent further spread of the pathogen. METHODS Identification of C. auris was performed by MALDI-TOF and confirmed by internal transcribed spacer (ITS) sequencing. Antifungal susceptibility testing was carried out. We conducted repeated cross-sectional examinations for the presence of C. auris in the patients of the affected ICU and investigated possible routes of transmission. RESULTS The index patient had been transferred to Germany from a hospital in Northern Africa and was found to be colonised with C. auris. The contact patient developed C. auris sepsis. Infection prevention and control (IPC) measures included strict isolation of the two C. auris patients and regular screening of non-affected patients. No further case occurred during the subsequent weeks. Reusable blades used in video laryngoscope-guided intubation were considered as the most likely vehicle of transmission. CONCLUSIONS In view of its high risk of transmission, vigilance regarding C. auris colonisation in patients referred from endemic countries is crucial. Strict and immediate IPC measures may have the potential to prevent C. auris outbreaks.
Collapse
Affiliation(s)
- Carl Hinrichs
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Miriam Wiese-Posselt
- Institute of Hygiene and Environmental Medicine, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Barbara Graf
- Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
| | - Christine Geffers
- Institute of Hygiene and Environmental Medicine, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Beate Weikert
- Institute of Hygiene and Environmental Medicine, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexander Aldejohann
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany.,National Reference Center for Invasive Fungal Infections NRZMyk, Leibniz Institute for Natural product research and Infection Biology - Hans-Knoell-Institute, Jena, Germany
| | | | | | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Petra Gastmeier
- Institute of Hygiene and Environmental Medicine, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany.,National Reference Center for Invasive Fungal Infections NRZMyk, Leibniz Institute for Natural product research and Infection Biology - Hans-Knoell-Institute, Jena, Germany
| |
Collapse
|
34
|
Al-Obaid I, Asadzadeh M, Ahmad S, Alobaid K, Alfouzan W, Bafna R, Emara M, Joseph L. Fatal Breakthrough Candidemia in an Immunocompromised Patient in Kuwait Due to Candida auris Exhibiting Reduced Susceptibility to Echinocandins and Carrying a Novel Mutation in Hotspot-1 of FKS1. J Fungi (Basel) 2022; 8:jof8030267. [PMID: 35330269 PMCID: PMC8953900 DOI: 10.3390/jof8030267] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
Candida auris is an emerging yeast pathogen that has recently caused major outbreaks in healthcare facilities worldwide. Clinical C. auris isolates are usually resistant to fluconazole and readily develop resistance to echinocandins and amphotericin B (AMB) during treatment. We describe here an interesting case of C. auris infection in an immunocompromised patient who had previously received AMB and caspofungin treatment. Subsequently, C. auris was isolated from tracheal (tracheostomy) secretions and twice from urine and all three isolates were susceptible to AMB and micafungin. The patient received a combination therapy with AMB and caspofungin. Although the C. auris was cleared from the urine, the patient subsequently developed breakthrough candidemia and the bloodstream isolate exhibited a reduced susceptibility to micafungin and also showed the presence of a novel (S639T) mutation in hotspot-1 of FKS1. Interestingly, C. auris from the tracheal (tracheostomy) secretions recovered one and four days later exhibited a reduced susceptibility to micafungin and S639Y and S639T mutations in hotspot-1 of FKS1, respectively. Although the treatment was changed to voriconazole, the patient expired. Our case highlights a novel FKS1 mutation and the problems clinicians are facing to treat invasive C. auris infections due to inherent or developing resistance to multiple antifungal drugs and limited antifungal armamentarium.
Collapse
Affiliation(s)
- Inaam Al-Obaid
- Department of Microbiology, Al-Sabah Hospital, Shuwaikh 70031, Kuwait; (I.A.-O.); (R.B.); (M.E.)
| | - Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; (M.A.); (W.A.); (L.J.)
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; (M.A.); (W.A.); (L.J.)
- Correspondence: ; Tel.: +00965-2463-6503
| | - Khaled Alobaid
- Department of Microbiology, Mubarak Al-Kabeer Hospital, Jabriya 46300, Kuwait;
| | - Wadha Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; (M.A.); (W.A.); (L.J.)
| | - Ritu Bafna
- Department of Microbiology, Al-Sabah Hospital, Shuwaikh 70031, Kuwait; (I.A.-O.); (R.B.); (M.E.)
| | - Maha Emara
- Department of Microbiology, Al-Sabah Hospital, Shuwaikh 70031, Kuwait; (I.A.-O.); (R.B.); (M.E.)
| | - Leena Joseph
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; (M.A.); (W.A.); (L.J.)
| |
Collapse
|
35
|
In Vitro Antifungal Activity of Manogepix and Other Antifungal Agents against South African Candida auris Isolates from Bloodstream Infections. Microbiol Spectr 2022; 10:e0171721. [PMID: 35196811 PMCID: PMC8865435 DOI: 10.1128/spectrum.01717-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined the susceptibility of South African Candida auris bloodstream surveillance isolates to manogepix, a novel antifungal, and several registered antifungal agents. C. auris isolates were submitted to a reference laboratory between 2016 and 2017. Species identification was confirmed by phenotypic methods. We determined MICs for amphotericin B, anidulafungin, caspofungin, micafungin, itraconazole, posaconazole, voriconazole, fluconazole, and flucytosine using Sensititre YeastOne and manogepix using a modified Clinical and Laboratory Standards Institute broth microdilution method. Clade distribution was determined for a subset of isolates using whole-genome sequencing. Of 394 tested isolates, 357 were resistant to at least 1 antifungal class. The manogepix MIC range was 0.002 to 0.06 μg/mL for 335 isolates with fluconazole monoresistance. Nineteen isolates were resistant to both fluconazole and amphotericin B yet still had low manogepix MICs (range, 0.004 to 0.03 μg/mL). Two isolates from the same patient were panresistant but had manogepix MICs of 0.004 μg/mL and 0.008 μg/mL. Comparing MIC50 values, manogepix was >3-fold more potent than azoles, 4-fold more potent than echinocandins, and 9-fold more potent than amphotericin B. Of 84 sequenced isolates, the manogepix MIC range for 70 clade III isolates was 0.002 to 0.031 μg/mL, for 13 clade I isolates was 0.008 to 0.031 μg/mL, and for one clade IV isolate, 0.016 μg/mL. Manogepix exhibited potent activity against all isolates, including those resistant to more than one antifungal agent and in three different clades. These data support manogepix as a promising candidate for treatment of C. auris infections. IMPORTANCE Since C. auris was first detected in South Africa in 2012, health care-associated transmission events and large outbreaks have led to this pathogen accounting for more than 1 in 10 cases of candidemia. A large proportion of South African C. auris isolates are highly resistant to fluconazole but variably resistant to amphotericin B and echinocandins. There is also an emergence of pandrug-resistant C. auris isolates, limiting treatment options. Therefore, the development of new antifungal agents such as fosmanogepix or the use of new combinations of antifungal agents is imperative to the continued effective treatment of C. auris infections. Manogepix, the active moiety of fosmanogepix, has shown excellent activity against C. auris isolates. With the emergence of C. auris isolates that are pandrug-resistant in South Africa, our in vitro susceptibility data support manogepix as a promising new drug candidate for treatment of C. auris and difficult-to-treat C. auris infections.
Collapse
|
36
|
Chibabhai V. Incidence of candidemia and prevalence of azole-resistant candidemia at a tertiary South African hospital – A retrospective laboratory analysis 2016–2020. S Afr J Infect Dis 2022; 37:326. [PMID: 35284564 PMCID: PMC8905471 DOI: 10.4102/sajid.v37i1.326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022] Open
Abstract
Background Candidemia is associated with high morbidity and mortality. The epidemiology of candidemia has changed globally over the past 20 years. South African surveillance demonstrated a shift in epidemiology from Candida albicans to non-albicans species including Candida parapsilosis and Candida auris. Hospital-level candidemia incidence from South Africa has not been reported previously. Methods We performed a retrospective laboratory-based analysis of blood cultures with confirmed causative agents of candidemia. Ward type, department, gender and admission to critical care units were captured. Data were analysed in Microsoft Excel, Statistical Package for the Social Sciences (SPSS) and Epitools. Results The incidence of candidemia during the study period was 2.87 per 1000 admissions. The total proportion of non-albicans species causing candidemia was 425/618 (69.7%). Overall, 65.4% of candidemia cases occurred in non-critical care units. There was a significant increase in the proportion of C. auris isolates between 2016 and 2020 (p < 0.001). Isolation of C. auris was associated with admission to critical care units (p < 0.001, odds ration [OR] 3.856, 95% confidence interval [CI]: 2.360–6.300). The proportion of azole-resistant candidemia cases increased from 21/53 (39.6%) in 2016 to 41/59 (69.5%) in 2020 (p = 0.002). Conclusion The incidence of candidemia remained stable over the five-year study period. However, the proportion of C. auris isolates increased significantly during the study period as did the overall proportion of azole-resistant candidemia. Antifungal stewardship and continued hospital-level surveillance are imperative.
Collapse
Affiliation(s)
- Vindana Chibabhai
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Clinical Microbiology Laboratory, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
37
|
Asadzadeh M, Mokaddas E, Ahmad S, Abdullah AA, de Groot T, Meis JF, Shetty SA. Molecular characterisation of Candida auris isolates from immunocompromised patients in a tertiary-care hospital in Kuwait reveals a novel mutation in FKS1 conferring reduced susceptibility to echinocandins. Mycoses 2021; 65:331-343. [PMID: 34953089 DOI: 10.1111/myc.13419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Candida auris is an emerging, potentially multidrug-resistant pathogen that exhibits clade-specific resistance to fluconazole and also develops resistance to echinocandins and amphotericin B easily. This study analysed 49 C auris isolates for alterations in hotspot-1 and hotspot-2 of FKS1 for the detection of mutations conferring reduced susceptibility to echinocandins. METHODS C auris isolates (n = 49) obtained from 18 immunocompromised patients during June 2016-December 2018 were analysed. Antifungal susceptibility testing was performed by Etest and broth microdilution-based MICRONAUT-AM assay. Mutations in hotspot-1 and hotspot-2 regions of FKS1 were detected by PCR sequencing and fingerprinting of the isolates was done by short tandem repeat typing. RESULTS The patients had multiple comorbidities/risk factors for Candida spp. infection including cancer/leukaemia/lymphoma/myeloma (n = 16), arterial/central line (n = 17), urinary catheter (n = 17), mechanical ventilation (n = 14) and major surgery (n = 9) and received antifungal drugs as prophylaxis and/or empiric treatment. Seven patients developed C auris candidemia/breakthrough candidemia, nine patients had candiduria with/without candidemia and four patients developed surgical site/respiratory infection. Resistance to fluconazole and amphotericin B was detected in 44 and four isolates, respectively. Twelve C auris isolates from eight patients showed reduced susceptibility to echinocandins. Seven isolates contained hostspot-1 mutations and three isolates from a candidemia patient contained R1354H mutation in hotspot-2 of FKS1. Ten patients died, five were cured, two were lost to follow-up and treatment details for one patient were not available. CONCLUSIONS Our findings describe development of a novel mutation in FKS1 conferring reduced susceptibility to echinocandins in one patient during treatment and unfavourable clinical outcome for many C auris-infected patients.
Collapse
Affiliation(s)
- Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Eiman Mokaddas
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait.,Microbiology Department, Ibn Sina Hospital, Shuwaikh, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | | | - Theun de Groot
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.,Center of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.,Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Shama A Shetty
- Microbiology Department, Ibn Sina Hospital, Shuwaikh, Kuwait
| |
Collapse
|
38
|
Naicker SD, Maphanga TG, Chow NA, Allam M, Kwenda S, Ismail A, Govender NP. Clade distribution of Candida auris in South Africa using whole genome sequencing of clinical and environmental isolates. Emerg Microbes Infect 2021; 10:1300-1308. [PMID: 34176429 PMCID: PMC8253216 DOI: 10.1080/22221751.2021.1944323] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/01/2021] [Accepted: 06/13/2021] [Indexed: 11/07/2022]
Abstract
In South Africa, Candida auris was the third most common cause of candidemia in 2016-2017. We performed single nucleotide polymorphism (SNP) genome-wide analysis of 115 C. auris isolates collected between 2009 and 2018 from national laboratory-based surveillance, an environmental survey at four hospitals and a colonization study during a neonatal unit outbreak. The first known South African C. auris strain from 2009 clustered in clade IV. Overall, 98 strains clustered within clade III (85%), 14 within clade I (12%) and three within clade IV (3%). All environmental and colonizing strains clustered in clade III. We also identified known clade-specific resistance mutations in the ERG11 and FKS1 genes. Identification of clade I strains between 2016 and 2018 suggests introductions from South Asia followed by local transmission. SNP analysis characterized most C. auris strains into clade III, the clade first reported from South Africa, but the presence of clades I and IV strains also suggest early introductions from other regions.
Collapse
Affiliation(s)
- Serisha D. Naicker
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tsidiso G. Maphanga
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Nancy A. Chow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mushal Allam
- National Institute for Communicable Diseases (Core Sequencing Facility), a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Stanford Kwenda
- National Institute for Communicable Diseases (Core Sequencing Facility), a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Arshad Ismail
- National Institute for Communicable Diseases (Core Sequencing Facility), a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Nelesh P. Govender
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
39
|
Mirhendi H, Charsizadeh A, Aboutalebian S, Mohammadpour M, Nikmanesh B, de Groot T, Meis JF, Badali H. South Asian (Clade I) Candida auris meningitis in a paediatric patient in Iran with a review of the literature. Mycoses 2021; 65:134-139. [PMID: 34780087 DOI: 10.1111/myc.13396] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/29/2022]
Abstract
Candida meningitis is a rare life-threatening yeast infection mostly involving immunocompromised or paediatric patients undergoing neurosurgical procedures or shunt placement. Due to difficulties in diagnosis because of diverse clinical manifestations, the number of patients affected is most likely underestimated. Therefore, the correct diagnosis may be delayed for months, and accurate species identification is highly recommended for administering appropriate antifungal therapy. We report the first case of fluconazole-resistant Candida auris meningitis in a paediatric patient in Iran. This strain was probably imported, as it genotypically belonged to Clade I from South Asia. Furthermore, we include a literature review of C auris meningitis cases, as the number of cases with C auris meningitis has increased with reports from the United Kingdom, India and Iran. This problem might increase further in the era of COVID-19 due to attrition of experienced healthcare personnel and a high workload of hospital healthcare workers. To understand the precise prevalence of this emerging multidrug resistance pathogen, epidemiological surveillance studies are urgently warranted.
Collapse
Affiliation(s)
- Hossein Mirhendi
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Core Facility Research Laboratory, Mycology Reference Laboratory, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezou Charsizadeh
- Immunology, Asthma, and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Aboutalebian
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Mohammadpour
- Pediatric Intensive Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Nikmanesh
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Theun de Groot
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands.,ECMM Excellence Center for Medical Mycology, Centre of Expertise in Mycology Radboudumc/Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands.,ECMM Excellence Center for Medical Mycology, Centre of Expertise in Mycology Radboudumc/Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands.,Bioprocess Engineering and Biotechnology Graduate Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Hamid Badali
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
40
|
Flores-Maldonado O, González GM, Andrade A, Montoya A, Treviño-Rangel R, Silva-Sánchez A, Becerril-García MA. Dissemination of Candida auris to deep organs in neonatal murine invasive candidiasis. Microb Pathog 2021; 161:105285. [PMID: 34774701 DOI: 10.1016/j.micpath.2021.105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Candida auris is an emerging multidrug resistant fungal pathogen, which represents a major challenge for newborns systemic infections worldwide. Management of C. auris infections is complicated due to its intrinsic antifungal resistance and the limited information available on its pathogenesis, particularly during neonatal period. In this study, we developed a murine model of C. auris neonatal invasive infection. C. auris dissemination was evaluated by fungal burden and histopathological analysis of lung, brain, liver, kidney, and spleen at different time intervals. We found fungal cells in all the analyzed tissues, neonatal liver and brain were the most susceptible tissues to fungal invasion. This model will help to better understand pathogenesis mechanisms and facilitate strategies for control and prevention of C. auris infections in newborns.
Collapse
Affiliation(s)
- Orlando Flores-Maldonado
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Gloria M González
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Angel Andrade
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Alexandra Montoya
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Rogelio Treviño-Rangel
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Aarón Silva-Sánchez
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Miguel A Becerril-García
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico.
| |
Collapse
|
41
|
Kilpatrick R, Scarrow E, Hornik C, Greenberg RG. Neonatal invasive candidiasis: updates on clinical management and prevention. THE LANCET CHILD & ADOLESCENT HEALTH 2021; 6:60-70. [PMID: 34672994 DOI: 10.1016/s2352-4642(21)00272-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/30/2021] [Accepted: 08/13/2021] [Indexed: 01/15/2023]
Abstract
Neonatal invasive candidiasis is an important cause of morbidity and mortality in preterm infants. The incidence of invasive candidiasis in this population has been declining in high-income settings, largely due to preventive measures, although there are still considerable variations in incidence between health-care centres. Surveillance data and large, multicentre studies in lower-income settings are not available, although preventive measures in these settings have been shown to decrease the incidence of neonatal invasive candidiasis. Understanding risk factors and pathogenesis are key to the prevention of invasive candidiasis. The difficulty of a definitive diagnosis of invasive candidiasis and the high risk for death or substantial neurodevelopmental impairment, even with appropriate treatment, further increase the need for effective preventive measures. In this Review, we examine the pathogenesis, clinical presentation, and diagnosis of invasive candidiasis. We highlight commonly used and emerging preventive and prophylactic measures, including standardised central line care, antibiotic stewardship, antifungal prophylaxis, and probiotics. Finally, we provide updates on empirical treatment, clinical management in confirmed cases of invasive candidiasis, and antifungal pharmacotherapy.
Collapse
Affiliation(s)
- Ryan Kilpatrick
- Department of Pediatrics, Duke Clinical Research Institute, Durham, NC, USA
| | - Evelyn Scarrow
- Department of Pediatrics, Duke Clinical Research Institute, Durham, NC, USA
| | - Chi Hornik
- Department of Pediatrics, Duke Clinical Research Institute, Durham, NC, USA
| | - Rachel G Greenberg
- Department of Pediatrics, Duke Clinical Research Institute, Durham, NC, USA.
| |
Collapse
|
42
|
Johnson CJ, Eix EF, Lam BC, Wartman KM, Meudt JJ, Shanmuganayagam D, Nett JE. Augmenting the Activity of Chlorhexidine for Decolonization of Candida auris from Porcine skin. J Fungi (Basel) 2021; 7:jof7100804. [PMID: 34682225 PMCID: PMC8537331 DOI: 10.3390/jof7100804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 01/15/2023] Open
Abstract
Candida auris readily colonizes skin and efficiently spreads among patients in healthcare settings worldwide. Given the capacity of this drug-resistant fungal pathogen to cause invasive disease with high mortality, hospitals frequently employ chlorhexidine bathing to reduce skin colonization. Using an ex vivo skin model, we show only a mild reduction in C. auris following chlorhexidine application. This finding helps explain why chlorhexidine bathing may have failures clinically, despite potent in vitro activity. We further show that isopropanol augments the activity of chlorhexidine against C. auris on skin. Additionally, we find both tea tree (Melaleuca alternifolia) oil and lemongrass (Cymbopogon flexuosus) oil to further enhance the activity of chlorhexidine/isopropanol for decolonization. We link this antifungal activity to individual oil components and show how some of these components act synergistically with chlorhexidine/isopropanol. Together, the studies provide strategies to improve C. auris skin decolonization through the incorporation of commonly used topical compounds.
Collapse
Affiliation(s)
- Chad J. Johnson
- Department of Medicine, University of Wisconsin, Madison, WI 53706, USA; (C.J.J.); (E.F.E.); (B.C.L.); (K.M.W.)
| | - Emily F. Eix
- Department of Medicine, University of Wisconsin, Madison, WI 53706, USA; (C.J.J.); (E.F.E.); (B.C.L.); (K.M.W.)
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA
| | - Brandon C. Lam
- Department of Medicine, University of Wisconsin, Madison, WI 53706, USA; (C.J.J.); (E.F.E.); (B.C.L.); (K.M.W.)
| | - Kayla M. Wartman
- Department of Medicine, University of Wisconsin, Madison, WI 53706, USA; (C.J.J.); (E.F.E.); (B.C.L.); (K.M.W.)
| | - Jennifer J. Meudt
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA; (J.J.M.); (D.S.)
| | - Dhanansayan Shanmuganayagam
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA; (J.J.M.); (D.S.)
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
- Center for Biomedical Swine Research and Innovation, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Jeniel E. Nett
- Department of Medicine, University of Wisconsin, Madison, WI 53706, USA; (C.J.J.); (E.F.E.); (B.C.L.); (K.M.W.)
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA
- Correspondence: ; Tel.: +1-608-263-1545
| |
Collapse
|
43
|
Possamai Rossatto FC, Tharmalingam N, Escobar IE, d’Azevedo PA, Zimmer KR, Mylonakis E. Antifungal Activity of the Phenolic Compounds Ellagic Acid (EA) and Caffeic Acid Phenethyl Ester (CAPE) against Drug-Resistant Candida auris. J Fungi (Basel) 2021; 7:jof7090763. [PMID: 34575801 PMCID: PMC8466507 DOI: 10.3390/jof7090763] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/17/2022] Open
Abstract
Candida auris is an emerging healthcare-associated fungal pathogen that has become a serious global health threat. Current treatment options are limited due to drug resistance. New therapeutic strategies are required to target this organism and its pathogenicity. Plant polyphenols are structurally diverse compounds that present a vast range of biological properties. In the present study, plant-derived molecules ellagic acid (EA) and caffeic acid phenethyl ester (CAPE) were investigated for their antifungal and antivirulence activities against Candida auris. We also tested against C. albicans. The minimum inhibitory concentration (MIC) for EA ranged from 0.125 to 0.25 µg/mL and for CAPE ranged from 1 to 64 µg/mL against drug-resistant C. auris strains. Killing kinetics determined that after 4 h treatment with CAPE, there was a complete reduction of viable C. auris cells compared to fluconazole. Both compounds might act by modifying the fungal cell wall. CAPE significantly reduced the biomass and the metabolic activity of C. auris biofilm and impaired C. auris adhesion to cultured human epithelial cells. Furthermore, both compounds prolonged the survival rate of Galleria mellonella infected by C. auris (p = 0.0088 for EA at 32 mg/kg and p = 0.0028 for CAPE at 4 mg/kg). In addition, EA at 4 μg/mL prolonged the survival of C. albicans-infected Caenorhabditis elegans (p < 0.0001). CAPE was not able to prolong the survival of C. albicans-infected C. elegans. These findings highlight the antifungal and antivirulence effects of EA and CAPE against C. auris, and warrant further investigation as novel antifungal agents against drug-resistant infections.
Collapse
Affiliation(s)
- Fernanda Cristina Possamai Rossatto
- Laboratory of Biofilms and Alternative Models, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, RS, Brazil; (F.C.P.R.); (P.A.d.); (K.R.Z.)
| | - Nagendran Tharmalingam
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, 593 Eddy Street, P.O. Box 328/330, Providence, RI 02903, USA; (N.T.); (I.E.E.)
| | - Iliana E. Escobar
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, 593 Eddy Street, P.O. Box 328/330, Providence, RI 02903, USA; (N.T.); (I.E.E.)
| | - Pedro Alves d’Azevedo
- Laboratory of Biofilms and Alternative Models, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, RS, Brazil; (F.C.P.R.); (P.A.d.); (K.R.Z.)
| | - Karine Rigon Zimmer
- Laboratory of Biofilms and Alternative Models, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, RS, Brazil; (F.C.P.R.); (P.A.d.); (K.R.Z.)
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, 593 Eddy Street, P.O. Box 328/330, Providence, RI 02903, USA; (N.T.); (I.E.E.)
- Correspondence: ; Tel.: +1-401-444-7845; Fax: +1-401-444-8179
| |
Collapse
|
44
|
Epidemiology of Candidemia in Kuwait: A Nationwide, Population-Based Study. J Fungi (Basel) 2021; 7:jof7080673. [PMID: 34436212 PMCID: PMC8399751 DOI: 10.3390/jof7080673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
The Candida species cause a majority of invasive fungal infections. In this article, we describe the nationwide epidemiology of candidemia in Kuwait in 2018. Yeast bloodstream isolates submitted from all major hospitals and identified by phenotypic MALDI-TOF MS and/or by molecular methods were studied. Susceptibility testing was performed by Etest. Out of 313 bloodstream yeasts, 239 Candida spp. isolates (excluding duplicate isolates) were obtained during 234 candidemic episodes among 223 patients. Mixed-species candidemia and re-infection occurred in 5 and 11 patients, respectively. C. albicans (n = 74), C. parapsilosis (n = 54), C. tropicalis (n = 35), C. auris (n = 33), C. glabrata (n = 32), other Candida spp. (n = 11), and other yeasts (n = 9) caused fungemia. Nearly 50% of patients were in intensive care units. Candida spp. isolates (except C. glabrata) were susceptible to caspofungin and 27% of C. auris were amphotericin B-resistant. Resistance to fluconazole was 100% in C. auris, 17% in C. parapsilosis, 12% in C. glabrata, and 1% in C. albicans. Mortality was 47% for other Candida/yeast infections. Nationwide candidemia incidence in 2018 was 5.29 cases/100,000 inhabitants. Changes in species spectrum, increasing fluconazole resistance in C. parapsilosis, and the emergence of C. auris as a major pathogen in Kuwait are noteworthy findings. The data could be of help in informing decisions regarding planning, in the allocation of resources, and in antimicrobial stewardship.
Collapse
|
45
|
Maphanga TG, Naicker SD, Kwenda S, Muñoz JF, van Schalkwyk E, Wadula J, Nana T, Ismail A, Coetzee J, Govind C, Mtshali PS, Mpembe RS, Govender NP. In Vitro Antifungal Resistance of Candida auris Isolates from Bloodstream Infections, South Africa. Antimicrob Agents Chemother 2021; 65:e0051721. [PMID: 34228535 PMCID: PMC8370198 DOI: 10.1128/aac.00517-21] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/24/2021] [Indexed: 11/20/2022] Open
Abstract
Candida auris is a multidrug-resistant fungal pathogen that is endemic in South African hospitals. We tested bloodstream C. auris isolates that were submitted to a reference laboratory for national laboratory-based surveillance for candidemia in 2016 and 2017. We confirmed the species identification by phenotypic/molecular methods. We tested susceptibility to amphotericin B, anidulafungin, caspofungin, micafungin, itraconazole, posaconazole, voriconazole, fluconazole, and flucytosine using broth microdilution and Etest methods. We interpreted MICs using tentative breakpoints. We sequenced the genomes of a subset of isolates and compared them to the C. auris B8441 reference strain. Of 400 C. auris isolates, 361 (90%) were resistant to at least one antifungal agent, 339 (94%) to fluconazole alone (MICs of ≥32 µg/ml), 19 (6%) to fluconazole and amphotericin B (MICs of ≥2 µg/ml), and 1 (0.3%) to amphotericin B alone. Two (0.5%) isolates from a single patient were pan-resistant (resistant to fluconazole, amphotericin B, and echinocandins). Of 92 isolates selected for whole-genome sequencing, 77 clustered in clade III, including the pan-resistant isolates, 13 in clade I, and 2 in clade IV. Eighty-four of the isolates (91%) were resistant to at least one antifungal agent; both resistant and susceptible isolates had mutations. The common substitutions identified across the different clades were VF125AL, Y132F, K177R, N335S, and E343D in ERG11; N647T in MRR1; A651P, A657V, and S195G in TAC1b; S639P in FKS1HP1; and S58T in ERG3. Most South African C. auris isolates were resistant to azoles, although resistance to polyenes and echinocandins was less common. We observed mutations in resistance genes even in phenotypically susceptible isolates.
Collapse
Affiliation(s)
- Tsidiso G. Maphanga
- National Institute for Communicable Diseases, Centre for Healthcare-Associated Infections, Antimicrobial Resistance, and Mycoses, National Health Laboratory Service, Johannesburg, South Africa
| | - Serisha D. Naicker
- National Institute for Communicable Diseases, Centre for Healthcare-Associated Infections, Antimicrobial Resistance, and Mycoses, National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stanford Kwenda
- National Institute for Communicable Diseases, Sequencing Core Facility, National Health Laboratory Service, Johannesburg, South Africa
| | - Jose F. Muñoz
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Erika van Schalkwyk
- National Institute for Communicable Diseases, Centre for Healthcare-Associated Infections, Antimicrobial Resistance, and Mycoses, National Health Laboratory Service, Johannesburg, South Africa
| | - Jeannette Wadula
- National Health Laboratory Service, Chris Hani Baragwaneth Academic Hospital, Soweto, South Africa
| | - Trusha Nana
- National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Arshad Ismail
- National Institute for Communicable Diseases, Sequencing Core Facility, National Health Laboratory Service, Johannesburg, South Africa
| | | | | | - Phillip S. Mtshali
- National Institute for Communicable Diseases, Sequencing Core Facility, National Health Laboratory Service, Johannesburg, South Africa
| | - Ruth S. Mpembe
- National Institute for Communicable Diseases, Centre for Healthcare-Associated Infections, Antimicrobial Resistance, and Mycoses, National Health Laboratory Service, Johannesburg, South Africa
| | - Nelesh P. Govender
- National Institute for Communicable Diseases, Centre for Healthcare-Associated Infections, Antimicrobial Resistance, and Mycoses, National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
46
|
Shuping L, Mpembe R, Mhlanga M, Naicker SD, Maphanga TG, Tsotetsi E, Wadula J, Velaphi S, Nakwa F, Chibabhai V, Mahabeer P, Moncho M, Prentice E, Bamford C, Reddy K, Maluleka C, Mawela D, Modise M, Govender NP. Epidemiology of Culture-confirmed Candidemia Among Hospitalized Children in South Africa, 2012-2017. Pediatr Infect Dis J 2021; 40:730-737. [PMID: 33872278 DOI: 10.1097/inf.0000000000003151] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND We aimed to describe the epidemiology of candidemia among children in South Africa. METHODS We conducted laboratory-based surveillance among neonates (≤28 days), infants (29 days to <1 year), children (1-11 years) and adolescents (12-17 years) with Candida species cultured from blood during 2012-2017. Identification and antifungal susceptibility of viable isolates were performed at a reference laboratory. We used multivariable logistic regression to determine the association between Candida parapsilosis candidemia and 30-day mortality among neonates. RESULTS Of 2996 cases, neonates accounted for 49% (n = 1478), infants for 27% (n = 806), children for 20% (n = 589) and adolescents for 4% (n = 123). The incidence risk at tertiary public sector hospitals was 5.3 cases per 1000 pediatric admissions (range 0.39-119.1). Among 2943 cases with single-species infections, C. parapsilosis (42%) and Candida albicans (36%) were most common. Candida auris was among the 5 common species with an overall prevalence of 3% (n = 47). Fluconazole resistance was more common among C. parapsilosis (55% [724/1324]) versus other species (19% [334/1737]) (P < 0.001). Of those with known treatment (n = 1666), 35% received amphotericin B deoxycholate alone, 32% fluconazole alone and 30% amphotericin B deoxycholate with fluconazole. The overall 30-day in-hospital mortality was 38% (n = 586) and was highest among neonates (43% [323/752]) and adolescents (43% [28/65]). Compared with infection with other species, C. parapsilosis infection was associated with a reduced mortality among neonates (adjusted odds ratio 0.41, 95% confidence interval: 0.22-0.75, P = 0.004). CONCLUSIONS Candidemia in this setting mainly affected neonates and infants and was characterized by fluconazole-resistant C. parapsilosis with no increased risk of death.
Collapse
Affiliation(s)
- Liliwe Shuping
- From the Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Ruth Mpembe
- From the Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Mabatho Mhlanga
- From the Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Serisha D Naicker
- From the Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Tsidiso G Maphanga
- From the Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Ernest Tsotetsi
- From the Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Jeannette Wadula
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
- Department of Microbiology, National Health Laboratory Service, Chris Hani Baragwanath Hospital, Johannesburg, South Africa
| | - Sithembiso Velaphi
- Department of Paediatrics and Child Health, Chris Hani Baragwanath Hospital, Johannesburg, South Africa
| | - Firdose Nakwa
- Department of Paediatrics and Child Health, Chris Hani Baragwanath Hospital, Johannesburg, South Africa
| | - Vindana Chibabhai
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
- Department of Microbiology, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Prasha Mahabeer
- Department of Microbiology, National Health Laboratory Service, King Edward VIII Hospital, KZN Academic Complex, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Masego Moncho
- Department of Medical Microbiology, Faculty of Health Sciences, Universitas Hospital, National Health Laboratory Service, University of Free State, Bloemfontein, South Africa
| | - Elizabeth Prentice
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Groote Schuur Microbiology Laboratory, National Health Laboratory Service, Cape Town, South Africa
| | - Colleen Bamford
- Division of Medical Microbiology and Immunology, Department of Pathology, Faculty of Health Sciences, Stellenbosch University/National Health Laboratory Services, Tygerberg, Cape Town, South Africa
| | - Kessendri Reddy
- Division of Medical Microbiology and Immunology, Department of Pathology, Faculty of Health Sciences, Stellenbosch University/National Health Laboratory Services, Tygerberg, Cape Town, South Africa
| | - Caroline Maluleka
- Department of Microbiology, National health Laboratory Service, Dr George Mukhari Hospital, Johannesburg, South Africa
- Department of Paediatrics and Child Health, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Dini Mawela
- Department of Microbiology, National health Laboratory Service, Dr George Mukhari Hospital, Johannesburg, South Africa
- Department of Paediatrics and Child Health, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Motshabi Modise
- Division of Public Health Surveillance and Response, National Institute for Communicable Diseases, a Division of National Health Laboratory Service, Johannesburg, South Africa
| | - Nelesh P Govender
- From the Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
47
|
Govender NP, Todd J, Nel J, Mer M, Karstaedt A, Cohen C. HIV Infection as Risk Factor for Death among Hospitalized Persons with Candidemia, South Africa, 2012-2017. Emerg Infect Dis 2021; 27. [PMID: 34014153 PMCID: PMC8153852 DOI: 10.3201/eid2706.210128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
HIV-seropositive persons demonstrated increased adjusted risk for 30-day mortality and should be evaluated for intensive care. We determined the effect of HIV infection on deaths among persons >18 months of age with culture-confirmed candidemia at 29 sentinel hospitals in South Africa during 2012–2017. Of 1,040 case-patients with documented HIV status and in-hospital survival data, 426 (41%) were HIV-seropositive. The in-hospital case-fatality rate was 54% (228/426) for HIV-seropositive participants and 37% (230/614) for HIV-seronegative participants (crude odds ratio [OR] 1.92, 95% CI 1.50–2.47; p<0.001). After adjusting for relevant confounders (n = 907), mortality rates were 1.89 (95% CI 1.38–2.60) times higher among HIV-seropositive participants than HIV-seronegative participants (p<0.001). Compared with HIV-seronegative persons, the stratum-specific adjusted mortality OR was higher among HIV-seropositive persons not managed in intensive care units (OR 2.27, 95% CI 1.47–3.52; p<0.001) than among persons who were (OR 1.56, 95% CI 1.00–2.43; p = 0.05). Outcomes among HIV-seropositive persons with candidemia might be improved with intensive care.
Collapse
|
48
|
Keighley C, Garnham K, Harch SAJ, Robertson M, Chaw K, Teng JC, Chen SCA. Candida auris: Diagnostic Challenges and Emerging Opportunities for the Clinical Microbiology Laboratory. CURRENT FUNGAL INFECTION REPORTS 2021; 15:116-126. [PMID: 34178208 PMCID: PMC8220427 DOI: 10.1007/s12281-021-00420-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/24/2022]
Abstract
Purpose of Review This review summarises the epidemiology of Candida auris infection and describes contemporary and emerging diagnostic methods for detection and identification of C. auris. Recent Findings A fifth C. auris clade has been described. Diagnostic accuracy has improved with development of selective/differential media for C. auris. Advances in spectral databases of matrix-associated laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) systems have reduced misidentification. Direct detection of C. auris in clinical specimens using real time PCR is increasingly used, as is whole genome sequencing (WGS) to track nosocomial spread and to study phylogenetic relationships and drug resistance. Summary C. auris is an important transmissible, nosocomial pathogen. The microbiological laboratory diagnostic capacity has extended beyond culture-based methods to include PCR and WGS. Microbiological techniques on the horizon include the use of MALDI-TOF MS for early echinocandin antifungal susceptibility testing (AST) and expansion of the versatile and information-rich WGS methods for outbreak investigation.
Collapse
Affiliation(s)
- C Keighley
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Wollongong, NSW Australia.,Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, New South Wales Health Pathology, Westmead, Sydney, Australia.,Southern.IML Pathology, Sonic Healthcare, Sydney, NSW Australia.,The University of Sydney, Camperdown, NSW 2605 Australia
| | - K Garnham
- Royal North Shore Hospital, New South Wales Health Pathology, Sydney, NSW Australia
| | - S A J Harch
- Department of Microbiology and Infectious Diseases, SA Pathology, Adelaide, South Australia Australia.,Central Adelaide Local Health Network, Adelaide, South Australia Australia
| | - M Robertson
- Gosford Hospital, New South Wales Health Pathology, Gosford, NSW Australia
| | - K Chaw
- Pathology Queensland, Herston, QLD Australia
| | - J C Teng
- Melbourne Pathology, Sonic Healthcare, Melbourne, VIC Australia
| | - S C-A Chen
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Wollongong, NSW Australia.,Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, New South Wales Health Pathology, Westmead, Sydney, Australia
| |
Collapse
|
49
|
Muñoz JF, Welsh RM, Shea T, Batra D, Gade L, Howard D, Rowe LA, Meis JF, Litvintseva AP, Cuomo CA. Clade-specific chromosomal rearrangements and loss of subtelomeric adhesins in Candida auris. Genetics 2021; 218:iyab029. [PMID: 33769478 PMCID: PMC8128392 DOI: 10.1093/genetics/iyab029] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Candida auris is an emerging fungal pathogen of rising concern due to global spread, the ability to cause healthcare-associated outbreaks, and antifungal resistance. Genomic analyses revealed that early contemporaneously detected cases of C. auris were geographically stratified into four major clades. While Clades I, III, and IV are responsible for ongoing outbreaks of invasive and multidrug-resistant infections, Clade II, also termed the East Asian clade, consists primarily of cases of ear infection, is often susceptible to all antifungal drugs, and has not been associated with outbreaks. Here, we generate chromosome-level assemblies of twelve isolates representing the phylogenetic breadth of these four clades and the only isolate described to date from Clade V. This Clade V genome is highly syntenic with those of Clades I, III, and IV, although the sequence is highly divergent from the other clades. Clade II genomes appear highly rearranged, with translocations occurring near GC-poor regions, and large subtelomeric deletions in most chromosomes, resulting in a substantially different karyotype. Rearrangements and deletion lengths vary across Clade II isolates, including two from a single patient, supporting ongoing genome instability. Deleted subtelomeric regions are enriched in Hyr/Iff-like cell-surface proteins, novel candidate cell wall proteins, and an ALS-like adhesin. Cell wall proteins from these families and other drug-related genes show clade-specific signatures of selection in Clades I, III, and IV. Subtelomeric dynamics and the conservation of cell surface proteins in the clades responsible for global outbreaks causing invasive infections suggest an explanation for the different phenotypes observed between clades.
Collapse
Affiliation(s)
- José F Muñoz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rory M Welsh
- Mycotic Diseases Branch, U.S. Department of Health and Human Services, Atlanta, GA, USA
| | - Terrance Shea
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dhwani Batra
- Division of Scientific Resources, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA
| | - Lalitha Gade
- Mycotic Diseases Branch, U.S. Department of Health and Human Services, Atlanta, GA, USA
| | - Dakota Howard
- Division of Scientific Resources, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA
| | - Lori A Rowe
- Division of Scientific Resources, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | | | | |
Collapse
|
50
|
Ahmad S, Alfouzan W. Candida auris: Epidemiology, Diagnosis, Pathogenesis, Antifungal Susceptibility, and Infection Control Measures to Combat the Spread of Infections in Healthcare Facilities. Microorganisms 2021; 9:microorganisms9040807. [PMID: 33920482 PMCID: PMC8069182 DOI: 10.3390/microorganisms9040807] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Candida auris, a recently recognized, often multidrug-resistant yeast, has become a significant fungal pathogen due to its ability to cause invasive infections and outbreaks in healthcare facilities which have been difficult to control and treat. The extraordinary abilities of C. auris to easily contaminate the environment around colonized patients and persist for long periods have recently resulted in major outbreaks in many countries. C. auris resists elimination by robust cleaning and other decontamination procedures, likely due to the formation of 'dry' biofilms. Susceptible hospitalized patients, particularly those with multiple comorbidities in intensive care settings, acquire C. auris rather easily from close contact with C. auris-infected patients, their environment, or the equipment used on colonized patients, often with fatal consequences. This review highlights the lessons learned from recent studies on the epidemiology, diagnosis, pathogenesis, susceptibility, and molecular basis of resistance to antifungal drugs and infection control measures to combat the spread of C. auris infections in healthcare facilities. Particular emphasis is given to interventions aiming to prevent new infections in healthcare facilities, including the screening of susceptible patients for colonization; the cleaning and decontamination of the environment, equipment, and colonized patients; and successful approaches to identify and treat infected patients, particularly during outbreaks.
Collapse
|