1
|
Gil B, Sullivan M, Scaife C, Glennon JC, Herron C. Cannabidiolic Acid Rescues Deficits in Hippocampal Long-Term Potentiation in Models of Alzheimer's Disease: An Electrophysiological and Proteomic Analysis. Int J Mol Sci 2025; 26:4944. [PMID: 40430085 PMCID: PMC12112199 DOI: 10.3390/ijms26104944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/09/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
In this study, we have examined the neuroprotective effects of cannabidiolic acid (CBDA) in models of Alzheimer's disease (AD). We used in vitro electrophysiological recording in hippocampal slices and performed proteomic analysis of cortical tissue from APPswe/PS1dE9 (APP/PS1) mice. In wild-type (WT) slices from C57BL6 mice, acute treatment with CBDA (10 μM) did not alter levels of hippocampal long-term potentiation (LTP); however, it did reverse the attenuation of LTP produced by acute beta amyloid peptide (Aβ42). We also examined the effects of CBDA or vehicle in APP/PS1 mice and WT littermates over a 5-week period at 8 months. LTP levels recorded in slices from WT mice treated with CBDA at 1, 10, or 30 mg/kg (IP) or vehicle were similar. LTP was attenuated in slices from vehicle-treated APP/PS1 compared to vehicle-treated WT mice, while treatment of APP/PS1 mice with all doses of CBDA reversed the deficits in LTP. There was also a deficit in paired-pulse facilitation (PPF) in vehicle-treated APP/PS1 compared to WT, indicating altered synaptic function and transmitter release; this was reversed in slices from CBDA-treated APP/PS1 mice. Levels of cortical soluble Aβ42 were similar across CBDA- and vehicle-treated groups; however, the level of aggregated Aβ42 was decreased in the CBDA-treated group. Proteomic analysis of cortical tissue from APP/PS1 cortex compared to WT revealed alterations in protein expression, with pathway enrichment analyses suggesting implicated canonical pathways, including mitochondrial dysfunction, protein sorting, and synaptogenesis; all were significantly improved by CBDA treatment. These changes likely facilitate the improvement in synaptic transmission and LTP we observed following CBDA treatment in APP/PS1 mice. This research suggests that CBDA should be considered a novel therapy for AD.
Collapse
Affiliation(s)
- Beatriz Gil
- School of Biomolecular and Biomedical Sciences, University College Dublin, Conway Institute, Dublin 4, Ireland;
| | - Mairéad Sullivan
- School of Medicine and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Conway Institute, Dublin 4, Ireland; (M.S.); (J.C.G.)
| | | | - Jeffrey C. Glennon
- School of Medicine and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Conway Institute, Dublin 4, Ireland; (M.S.); (J.C.G.)
| | - Caroline Herron
- School of Biomolecular and Biomedical Sciences, University College Dublin, Conway Institute, Dublin 4, Ireland;
| |
Collapse
|
2
|
Zeng A, Quan Y, Tao H, Dai Y, Song L, Zhao J. The Role of Tetrahydrocurcumin in Tumor and Neurodegenerative Diseases Through Anti-Inflammatory Effects. Int J Mol Sci 2025; 26:3561. [PMID: 40332041 PMCID: PMC12027286 DOI: 10.3390/ijms26083561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Tetrahydrocurcumin (THC), a curcumin derivative, shows potential in oncology and neurology. It regulates NF-κB, reduces inflammation, promotes cancer cell apoptosis, inhibits tumor angiogenesis, and enhances antioxidants, aiding in treating inflammation-related cancers. In neurology, THC's anti-inflammatory and antioxidant properties protect neurons, reduce neuroinflammation, and support autophagy for cellular debris clearance, with its blood-brain barrier penetration offering a neuroprotective edge. Research on THC's therapeutic application must focus on improving delivery and bioavailability and confirming its clinical safety and efficacy.
Collapse
Affiliation(s)
- Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China; (A.Z.); (Y.Q.); (Y.D.)
- Sichuan Institute for Translational Chinese Medicine, Chengdu 610041, China
| | - Yunyun Quan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China; (A.Z.); (Y.Q.); (Y.D.)
| | - Hongxia Tao
- West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Ying Dai
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China; (A.Z.); (Y.Q.); (Y.D.)
- Sichuan Institute for Translational Chinese Medicine, Chengdu 610041, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junning Zhao
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China; (A.Z.); (Y.Q.); (Y.D.)
- Sichuan Institute for Translational Chinese Medicine, Chengdu 610041, China
| |
Collapse
|
3
|
Arnanz MA, Ruiz de Martín Esteban S, Martínez Relimpio AM, Rimmerman N, Tweezer Zaks N, Grande MT, Romero J. Effects of Chronic, Low-Dose Cannabinoids, Cannabidiol, Delta-9-Tetrahydrocannabinol and a Combination of Both, on Amyloid Pathology in the 5xFAD Mouse Model of Alzheimer's Disease. Cannabis Cannabinoid Res 2024; 9:1312-1325. [PMID: 37862567 DOI: 10.1089/can.2023.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
Background: There is an urgent need for novel therapies to treat Alzheimer's disease. Among others, the use of cannabinoids such as delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) has been proposed as a putative approach based on their anti-inflammatory effects. Methods: The present work was designed to explore the effects of chronic (28 days) treatment with low doses of cannabinoids: CBD (0.273 mg/kg), THC (0.205 mg/kg) or a combination of both (CBD:THC; 0.273 mg/kg:0.205 mg/kg) in the 5xFAD mouse model of AD. Results: Our data revealed that THC-treated 5xFAD mice (but not other treatment groups) exhibited anxiogenic and depressant-like behavior. A significant improvement in spatial memory was observed only in the CBD:THC-treated group. Interestingly, all cannabinoid-treated groups showed significantly increased cortical levels of the insoluble form of beta amyloid 1-42. These effects were not accompanied by changes in molecular parameters of inflammation at the mRNA or protein level. Conclusions: These data reveal differential effects of chronic, low-dose cannabinoids and point to a role of these cannabinoids in the processing of amyloid peptides in the brains of 5xFAD mice.
Collapse
Affiliation(s)
- María Andrea Arnanz
- School of Pharmacy, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | | | | - Neta Rimmerman
- M.H MediCane Ltd., Kfar Saba, Israel
- MediCane R&D Ltd., Kfar Saba, Israel
| | - Nurit Tweezer Zaks
- M.H MediCane Ltd., Kfar Saba, Israel
- MediCane R&D Ltd., Kfar Saba, Israel
| | - María Teresa Grande
- School of Pharmacy, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Julián Romero
- School of Pharmacy, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| |
Collapse
|
4
|
Tyrakis P, Agridi C, Kourti M. A Comprehensive Exploration of the Multifaceted Neuroprotective Role of Cannabinoids in Alzheimer's Disease across a Decade of Research. Int J Mol Sci 2024; 25:8630. [PMID: 39201317 PMCID: PMC11354546 DOI: 10.3390/ijms25168630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, manifests through dysregulation of brain function and subsequent loss of bodily control, attributed to β-amyloid plaque deposition and TAU protein hyperphosphorylation and aggregation, leading to neuronal death. Concurrently, similar cannabinoids to the ones derived from Cannabis sativa are present in the endocannabinoid system, acting through receptors CB1R and CB2R and other related receptors such as Trpv-1 and GPR-55, and are being extensively investigated for AD therapy. Given the limited efficacy and adverse effects of current available treatments, alternative approaches are crucial. Therefore, this review aims to identify effective natural and synthetic cannabinoids and elucidate their beneficial actions for AD treatment. PubMed and Scopus databases were queried (2014-2024) using keywords such as "Alzheimer's disease" and "cannabinoids". The majority of natural (Δ9-THC, CBD, AEA, etc.) and synthetic (JWH-133, WIN55,212-2, CP55-940, etc.) cannabinoids included showed promise in improving memory, cognition, and behavioral symptoms, potentially via pathways involving antioxidant effects of selective CB1R agonists (such as the BDNF/TrkB/Akt pathway) and immunomodulatory effects of selective CB2R agonists (TLR4/NF-κB p65 pathway). Combining anticholinesterase properties with a cannabinoid moiety may enhance therapeutic responses, addressing cholinergic deficits of AD brains. Thus, the positive outcomes of the vast majority of studies discussed support further advancing cannabinoids in clinical trials for AD treatment.
Collapse
Affiliation(s)
| | | | - Malamati Kourti
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus; (P.T.); (C.A.)
| |
Collapse
|
5
|
Ma Y, Liu S, Zhou Q, Li Z, Zhang Z, Yu B. Approved drugs and natural products at clinical stages for treating Alzheimer's disease. Chin J Nat Med 2024; 22:699-710. [PMID: 39197961 DOI: 10.1016/s1875-5364(24)60606-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Indexed: 09/01/2024]
Abstract
Alzheimer's disease (AD) remains the foremost cause of dementia and represents a significant unmet healthcare need globally. The complex pathogenesis of AD, characterized by various pathological and physiological events, has historically challenged the development of anti-AD drugs. However, recent breakthroughs in AD drug development, including the approvals of aducanumab, lecanemab, and sodium oligomannate (GV-971), have ended a nearly two-decade hiatus in the introduction of new AD drugs. These developments have addressed long-standing challenges in AD drug development, marking a substantial shift in the therapeutic landscape of AD. Moreover, natural products (NPs) have shown promise in AD drug research, with several currently under clinical investigation. Their distinct properties and mechanisms of action offer new avenues to complement and enhance existing AD treatment approaches. This review article aims to provide an overview of the recent advancements and prospects in AD therapeutics, focusing on both NPs and approved drugs.
Collapse
Affiliation(s)
- Yajing Ma
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Sufang Liu
- Department of Biomedical Sciences, College of Dentistry, Texas A & M University, Dallas 75246, USA
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Zhonghua Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Zhijian Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China.
| | - Bin Yu
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Sharon N, Yarmolinsky L, Khalfin B, Fleisher-Berkovich S, Ben-Shabat S. Cannabinoids' Role in Modulating Central and Peripheral Immunity in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:6402. [PMID: 38928109 PMCID: PMC11204381 DOI: 10.3390/ijms25126402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabinoids (the endocannabinoids, the synthetic cannabinoids, and the phytocannabinoids) are well known for their various pharmacological properties, including neuroprotective and anti-inflammatory features, which are fundamentally important for the treatment of neurodegenerative diseases. The aging of the global population is causing an increase in these diseases that require the development of effective drugs to be even more urgent. Taking into account the unavailability of effective drugs for neurodegenerative diseases, it seems appropriate to consider the role of cannabinoids in the treatment of these diseases. To our knowledge, few reviews are devoted to cannabinoids' impact on modulating central and peripheral immunity in neurodegenerative diseases. The objective of this review is to provide the best possible information about the cannabinoid receptors and immuno-modulation features, peripheral immune modulation by cannabinoids, cannabinoid-based therapies for the treatment of neurological disorders, and the future development prospects of making cannabinoids versatile tools in the pursuit of effective drugs.
Collapse
Affiliation(s)
| | | | | | | | - Shimon Ben-Shabat
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (N.S.); (L.Y.); (B.K.); (S.F.-B.)
| |
Collapse
|
7
|
Rathod SS, Agrawal YO. Phytocannabinoids as Potential Multitargeting Neuroprotectants in Alzheimer's Disease. Curr Drug Res Rev 2024; 16:94-110. [PMID: 37132109 DOI: 10.2174/2589977515666230502104021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 05/04/2023]
Abstract
The Endocannabinoid System (ECS) is a well-studied system that influences a variety of physiological activities. It is evident that the ECS plays a significant role in metabolic activities and also has some neuroprotective properties. In this review, we emphasize several plant-derived cannabinoids such as β-caryophyllene (BCP), Cannabichromene (CBC), Cannabigerol (CBG), Cannabidiol (CBD), and Cannabinol (CBN), which are known to have distinctive modulation abilities of ECS. In Alzheimer's disease (AD), the activation of ECS may provide neuroprotection by modulating certain neuronal circuitry pathways through complex molecular cascades. The present article also discusses the implications of cannabinoid receptors (CB1 and CB2) as well as cannabinoid enzymes (FAAH and MAGL) modulators in AD. Specifically, CBR1 or CB2R modulations result in reduced inflammatory cytokines such as IL-2 and IL-6, as well as a reduction in microglial activation, which contribute to an inflammatory response in neurons. Furthermore, naturally occurring cannabinoid metabolic enzymes (FAAH and MAGL) inhibit the NLRP3 inflammasome complex, which may offer significant neuroprotection. In this review, we explored the multi-targeted neuroprotective properties of phytocannabinoids and their possible modulations, which could offer significant benefits in limiting AD.
Collapse
Affiliation(s)
- Sumit S Rathod
- Department of Pharmacy, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist. Dhule, 425405, Maharashtra, India
- Shri Vile Parle Kelavani Mandal's, Institute of Pharmacy, Dhule, Dist. Dhule, 424001, Maharashtra, India
| | - Yogeeta O Agrawal
- Department of Pharmacy, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist. Dhule, 425405, Maharashtra, India
| |
Collapse
|
8
|
Sedghi S, Abouhamzeh K, Dokhani F, Delavari S, Soltani A, Soleimanpour S, Nemati-Anaraki L, Aletaha A. Research impact in randomized controlled trials of diabetes: an altmetric approach. J Diabetes Metab Disord 2023; 22:1571-1598. [PMID: 37975081 PMCID: PMC10638356 DOI: 10.1007/s40200-023-01287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/19/2023] [Indexed: 11/19/2023]
Abstract
Purpose This study aimed to assess the impact of research in randomized controlled trials (RCTs) of diabetes and explore the various subject areas related to diabetes that receive attention on social media platforms. Altmetric measures were utilized to collect and extract relevant data, providing valuable insights into the social reach and influence of clinical research beyond traditional citation-based metrics. Methods The research focused on RCTs of diabetes involving at least one Iranian author, indexed in Scopus. Altmetric.com was employed to extract altmetric data, and the collected articles were categorized into 14 subject areas for individual analysis using STATA. Results The analysis revealed that a majority of the diabetes studies examined nutrition, complications, treatment, genetics, basic mechanisms, and comorbidities of the disease. Conversely, subject areas such as diagnosis, education, gestational diabetes, psychology, physical activity, prevention, dentistry, and economics had fewer studies associated with them. Among social media platforms, Twitter, Facebook, Google+, and Reddit emerged as the most frequently mentioned platforms. Furthermore, Mendeley readership was identified as the preferred platform for engagement across several subject areas. Conclusions The substantial number of social media mentions indicates a significant level of public interest and concern regarding diabetes. Social media platforms serve as effective tools for disseminating research findings from clinical trials. Altmetric data proves valuable to researchers and funding agencies seeking to comprehend the impact of their work, enabling them to allocate resources more effectively.
Collapse
Affiliation(s)
- Shahram Sedghi
- Department of Medical Library and Information Science, School of Health Management and Information Sciences, Iran University of Medical Sciences, PO Box 14665-354, Tehran, Iran
- Economics Research Center, Iran University of Medical Sciences, PO Box 14665-354, Tehran, Iran
| | - Kosar Abouhamzeh
- Evidence Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of medical Sciences, Tehran, Iran
| | - Firoozeh Dokhani
- Evidence Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of medical Sciences, Tehran, Iran
- Content mate company, Southampton, England UK
| | - Somayeh Delavari
- Center for Educational Research in Medical Sciences (CERMS), Department of Medical Education, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Akbar Soltani
- Evidence Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of medical Sciences, Tehran, Iran
| | - Samira Soleimanpour
- Department of Medical Library and Information Science, School of Health Management and Information Sciences, Iran University of Medical Sciences, PO Box 14665-354, Tehran, Iran
| | - Leila Nemati-Anaraki
- Department of Medical Library and Information Science, School of Health Management and Information Sciences, Iran University of Medical Sciences, PO Box 14665-354, Tehran, Iran
| | - Azadeh Aletaha
- Department of Medical Library and Information Science, School of Health Management and Information Sciences, Iran University of Medical Sciences, PO Box 14665-354, Tehran, Iran
- Evidence Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Phukan BC, Roy R, Gahatraj I, Bhattacharya P, Borah A. Therapeutic considerations of bioactive compounds in Alzheimer's disease and Parkinson's disease: Dissecting the molecular pathways. Phytother Res 2023; 37:5657-5699. [PMID: 37823581 DOI: 10.1002/ptr.8012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 10/13/2023]
Abstract
Leading neurodegenerative diseases Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by the impairment of memory and motor functions, respectively. Despite several breakthroughs, there exists a lack of disease-modifying treatment strategies for these diseases, as the available drugs provide symptomatic relief and bring along side effects. Bioactive compounds are reported to bear neuroprotective properties with minimal toxicity, however, a detailed elucidation of their modes of neuroprotection is lacking. The review elucidates the neuroprotective mechanism(s) of some of the major phyto-compounds in pre-clinical and clinical studies of AD and PD to understand their potential in combating these diseases. Curcumin, eugenol, resveratrol, baicalein, sesamol and so on have proved efficient in countering the pathological hallmarks of AD and PD. Curcumin, resveratrol, caffeine and so on have reached the clinical phases of these diseases, while aromadendrin, delphinidin, cyanidin and xanthohumol are yet to be extensively explored in pre-clinical phases. The review highlights the need for extensive investigation of these compounds in the clinical stages of these diseases so as to utilize their disease-modifying abilities in the real field of treatment. Moreover, poor pharmacokinetic properties of natural compounds are constraints to their therapeutic yields and this review suggests a plausible contribution of nanotechnology in overcoming these limitations.
Collapse
Affiliation(s)
| | - Rubina Roy
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Indira Gahatraj
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar, Gujarat, India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| |
Collapse
|
10
|
Fonseca C, Ettcheto M, Bicker J, Fernandes MJ, Falcão A, Camins A, Fortuna A. Under the umbrella of depression and Alzheimer's disease physiopathology: Can cannabinoids be a dual-pleiotropic therapy? Ageing Res Rev 2023; 90:101998. [PMID: 37414155 DOI: 10.1016/j.arr.2023.101998] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/17/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Depression and Alzheimer´s disease (AD) are two disorders highly prevalent worldwide. Depression affects more than 300 million people worldwide while AD affects 60-80% of the 55 million cases of dementia. Both diseases are affected by aging with high prevalence in elderly and share not only the main brain affected areas but also several physiopathological mechanisms. Depression disease is already ascribed as a risk factor to the development of AD. Despite the wide diversity of pharmacological treatments currently available in clinical practice for depression management, they remain associated to a slow recovery process and to treatment-resistant depression. On the other hand, AD treatment is essentially based in symptomatology relieve. Thus, the need for new multi-target treatments arises. Herein, we discuss the current state-of-art regarding the contribution of the endocannabinoid system (ECS) in synaptic transmission processes, synapses plasticity and neurogenesis and consequently the use of exogenous cannabinoids in the treatment of depression and on delaying the progression of AD. Besides the well-known imbalance of neurotransmitter levels, including serotonin, noradrenaline, dopamine and glutamate, recent scientific evidence highlights aberrant spine density, neuroinflammation, dysregulation of neurotrophic factor levels and formation of amyloid beta (Aβ) peptides, as the main physiopathological mechanisms compromised in depression and AD. The contribution of the ECS in these mechanisms is herein specified as well as the pleiotropic effects of phytocannabinoids. At the end, it became evident that Cannabinol, Cannabidiol, Cannabigerol, Cannabidivarin and Cannabichromene may act in novel therapeutic targets, presenting high potential in the pharmacotherapy of both diseases.
Collapse
Affiliation(s)
- Carla Fonseca
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal; Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Maria José Fernandes
- Departamento de Neurologia/Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo-UNIFESP, Rua Pedro de Toledo, 669, CEP, São Paulo 04039-032, Brazil
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
11
|
Peng Q, Wilhelmsen KC, Ehlers CL. Pleiotropic loci for cannabis use disorder severity in multi-ancestry high-risk populations. Mol Cell Neurosci 2023; 125:103852. [PMID: 37061172 PMCID: PMC10247496 DOI: 10.1016/j.mcn.2023.103852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023] Open
Abstract
Cannabis use disorder (CUD) is common and has in part a genetic basis. The risk factors underlying its development likely involve multiple genes that are polygenetic and interact with each other and the environment to ultimately lead to the disorder. Co-morbidity and genetic correlations have been identified between CUD and other disorders and traits in select populations primarily of European descent. If two or more traits, such as CUD and another disorder, are affected by the same genetic locus, they are said to be pleiotropic. The present study aimed to identify specific pleiotropic loci for the severity level of CUD in three high-risk population cohorts: American Indians (AI), Mexican Americans (MA), and European Americans (EA). Using a previously developed computational method based on a machine learning technique, we leveraged the entire GWAS catalog and identified 114, 119, and 165 potentially pleiotropic variants for CUD severity in AI, MA, and EA respectively. Ten pleiotropic loci were shared between the cohorts although the exact variants from each cohort differed. While majority of the pleiotropic genes were distinct in each cohort, they converged on numerous enriched biological pathways. The gene ontology terms associated with the pleiotropic genes were predominately related to synaptic functions and neurodevelopment. Notable pathways included Wnt/β-catenin signaling, lipoprotein assembly, response to UV radiation, and components of the complement system. The pleiotropic genes were the most significantly differentially expressed in frontal cortex and coronary artery, up-regulated in adipose tissue, and down-regulated in testis, prostate, and ovary. They were significantly up-regulated in most brain tissues but were down-regulated in the cerebellum and hypothalamus. Our study is the first to attempt a large-scale pleiotropy detection scan for CUD severity. Our findings suggest that the different population cohorts may have distinct genetic factors for CUD, however they share pleiotropic genes from underlying pathways related to Alzheimer's disease, neuroplasticity, immune response, and reproductive endocrine systems.
Collapse
Affiliation(s)
- Qian Peng
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Kirk C Wilhelmsen
- Department of Neurology, West Virginia University, Morgantown, WV 26506, USA
| | - Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
12
|
Gräfe EL, Reid HMO, Shkolnikov I, Conway K, Kit A, Acosta C, Christie BR. Women are Taking the Hit: Examining the Unique Consequences of Cannabis Use Across the Female Lifespan. Front Neuroendocrinol 2023; 70:101076. [PMID: 37217080 DOI: 10.1016/j.yfrne.2023.101076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Cannabis use has risen dramatically in recent years due to global decriminalization and a resurgence in the interest of potential therapeutic benefits. While emerging research is shaping our understanding of the benefits and harms of cannabis, there remains a paucity of data specifically focused on how cannabis affects the female population. The female experience of cannabis use is unique, both in the societal context and because of the biological ramifications. This is increasingly important given the rise in cannabis potency, as well as the implications this has for the prevalence of Cannabis Use Disorder (CUD). Therefore, this scoping review aims to discuss the prevalence of cannabis use and CUD in women throughout their lifespan and provide a balanced prospective on the positive and negative consequences of cannabis use. In doing so, this review will highlight the necessity for continued research that goes beyond sex differences.
Collapse
Affiliation(s)
- E L Gräfe
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - H M O Reid
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - I Shkolnikov
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - K Conway
- Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada
| | - A Kit
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - C Acosta
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - B R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada.
| |
Collapse
|
13
|
Halbout B, Hutson C, Hua L, Inshishian V, Mahler SV, Ostlund SB. Long-term effects of THC exposure on reward learning and motivated behavior in adolescent and adult male rats. Psychopharmacology (Berl) 2023; 240:1151-1167. [PMID: 36933028 PMCID: PMC10102061 DOI: 10.1007/s00213-023-06352-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023]
Abstract
RATIONALE The endocannabinoid system makes critical contributions to reward processing, motivation, and behavioral control. Repeated exposure to THC or other cannabinoid drugs can cause persistent adaptions in the endocannabinoid system and associated neural circuitry. It remains unclear how such treatments affect the way rewards are processed and pursued. OBJECTIVE AND METHODS We examined if repeated THC exposure (5 mg/kg/day for 14 days) during adolescence or adulthood led to long-term changes in rats' capacity to flexibly encode and use action-outcome associations for goal-directed decision making. Effects on hedonic feeding and progressive ratio responding were also assessed. RESULTS THC exposure had no effect on rats' ability to flexibly select actions following reward devaluation. However, instrumental contingency degradation learning, which involves avoiding an action that is unnecessary for reward delivery, was augmented in rats with a history of adult but not adolescent THC exposure. THC-exposed rats also displayed more vigorous instrumental behavior in this study, suggesting a motivational enhancement. A separate experiment found that while THC exposure had no effect on hedonic feeding behavior, it increased rats' willingness to work for food on a progressive ratio schedule, an effect that was more pronounced when THC was administered to adults. Adolescent and adult THC exposure had opposing effects on the CB1 receptor dependence of progressive ratio performance, decreasing and increasing sensitivity to rimonabant-induced behavioral suppression, respectively. CONCLUSIONS Our findings reveal that exposure to a translationally relevant THC exposure regimen induces long-lasting, age-dependent alterations in cognitive and motivational processes that regulate the pursuit of rewards.
Collapse
Affiliation(s)
- Briac Halbout
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Collin Hutson
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Leann Hua
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Victoria Inshishian
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Sean B Ostlund
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
14
|
Gugliandolo A, Blando S, Salamone S, Caprioglio D, Pollastro F, Mazzon E, Chiricosta L. Δ8-THC Protects against Amyloid Beta Toxicity Modulating ER Stress In Vitro: A Transcriptomic Analysis. Int J Mol Sci 2023; 24:ijms24076598. [PMID: 37047608 PMCID: PMC10095455 DOI: 10.3390/ijms24076598] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Alzheimer’s disease (AD) represents the most common form of dementia, characterized by amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs). It is characterized by neuroinflammation, the accumulation of misfolded protein, ER stress and neuronal apoptosis. It is of main importance to find new therapeutic strategies because AD prevalence is increasing worldwide. Cannabinoids are arising as promising neuroprotective phytocompounds. In this study, we evaluated the neuroprotective potential of Δ8-THC pretreatment in an in vitro model of AD through transcriptomic analysis. We found that Δ8-THC pretreatment restored the loss of cell viability in retinoic acid-differentiated neuroblastoma SH-SY5Y cells treated with Aβ1-42. Moreover, the transcriptomic analysis provided evidence that the enriched biological processes of gene ontology were related to ER functions and proteostasis. In particular, Aβ1-42 upregulated genes involved in ER stress and unfolded protein response, leading to apoptosis as demonstrated by the increase in Bax and the decrease in Bcl-2 both at gene and protein expression levels. Moreover, genes involved in protein folding and degradation were also deregulated. On the contrary, Δ8-THC pretreatment reduced ER stress and, as a consequence, neuronal apoptosis. Then, the results demonstrated that Δ8-THC might represent a new neuroprotective agent in AD.
Collapse
Affiliation(s)
- Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Santino Blando
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- PlantaChem Srls, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Diego Caprioglio
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- PlantaChem Srls, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- PlantaChem Srls, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
15
|
Wang Z, Gao C, Zhang L, Sui R. Hesperidin methylchalcone (HMC) hinders amyloid-β induced Alzheimer's disease by attenuating cholinesterase activity, macromolecular damages, oxidative stress and apoptosis via regulating NF-κB and Nrf2/HO-1 pathways. Int J Biol Macromol 2023; 233:123169. [PMID: 36623626 DOI: 10.1016/j.ijbiomac.2023.123169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Phytocompounds therapy has recently emerged as an effective strategy to treat Alzheimer's disease. Herein, the protective effect of hesperidin methylchalcone (HMC) was evaluated through Alzheimer's disease models of Neuro-2a cells and Wistar rats. The in vitro results showed that HMC possesses significant ability to inhibit the acetylcholinesterase enzyme and exhibiting anti-aggregation and disaggregation properties. Furthermore, HMC could protect the Neuro-2a cells against Aβ-induced neurotoxicity. Simultaneously, HMC treatment significantly improved the cognitive deficits caused by Aβ-peptide on spatial memory in Wistar rats. HMC significantly enhanced the cholinergic effects by inhibiting AChE, BuChE, β-secretase activity, caspase-3 activity, and attenuating macromolecular damages and apoptosis. Notably, HMC reduced the Aβ-induced oxidative stress by activating the antioxidative defence enzymes. In addition, the HMC treatment suppressed the expression of immunocytokines such as p-NF-κB p65, p-IκBα, induced by Aβ; whereas upregulating Nrf2, HO-1 in brain homogenate. These results suggest that HMC could attenuate Aβ-induced neuroinflammation in brain via suppressing NF-κB signalling pathway and activating the Nrf2/HO-1 pathway, thereby improving memory and cognitive impairments in Wistar rats. Overall, the present study reports that HMC can act as a potent candidate with multi-faceted neuroprotective potential against Aβ-induced memory dysfunction in Wistar rats for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Zhuo Wang
- School of Nursing, Jinzhou Medical University, Jinzhou 121099, China
| | - Chao Gao
- School of Nursing, Jinzhou Medical University, Jinzhou 121099, China
| | - Lei Zhang
- School of Nursing, Jinzhou Medical University, Jinzhou 121099, China
| | - Rubo Sui
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China.
| |
Collapse
|
16
|
Kashif M, Waseem M, Vijendra PD, Pandurangan AK. Protective Effects of Cannabis in Neuroinflammation-Mediated Alzheimer's Disease. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2023:48-75. [DOI: 10.4018/978-1-6684-5652-1.ch002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
In recent years, Alzheimer's disease (AD) has been recognized as an age-related neurological disorder wherein neurons degenerate and exhibit abnormal structure and function. Aging is the primary factor in the progression of AD from mild to severe cognitive impairment. No effective targeted therapies are presently available, and treatment is limited to symptomatic management. The neuropathologic hallmarks of the disease include the accumulation of amyloid-beta (Aβ) plaques in brain tissues and the aggregation of hyperphosphorylated-tau proteins (tangles) within neurons. Associated hyperactivation of neuroinflammation results in release of inflammatory molecules from neurons, microglia, and astrocytes, which have been linked with neuronal loss and the worsening neurodegeneration. The anti-inflammatory and neuroprotective properties of cannabis-based medicines may offer benefits in delaying the progression of neurodegenerative diseases including AD. This chapter explores the role of cannabinoids in countering neuroinflammation-mediated AD pathology.
Collapse
Affiliation(s)
- Mohd Kashif
- B.S. Abdur Rahman Crescent Institute of Science and Technology, India
| | | | | | | |
Collapse
|
17
|
Blanton H, Reddy PH, Benamar K. Chronic pain in Alzheimer's disease: Endocannabinoid system. Exp Neurol 2023; 360:114287. [PMID: 36455638 PMCID: PMC9789196 DOI: 10.1016/j.expneurol.2022.114287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Chronic pain, one of the most common reasons adults seek medical care, has been linked to restrictions in mobility and daily activities, dependence on opioids, anxiety, depression, sleep deprivation, and reduced quality of life. Alzheimer's disease (AD), a devastating neurodegenerative disorder (characterized by a progressive impairment of cognitive functions) in the elderly, is often co-morbid with chronic pain. AD is one of the most common neurodegenerative disorders in the aged population. The reported prevalence of chronic pain is 45.8% of the 50 million people with AD. As the population ages, the number of older people who experience AD and chronic pain will also increase. The current treatment options for chronic pain are limited, often ineffective, and have associated side effects. This review summarizes the role of the endocannabinoid system in pain, its potential role in chronic pain in AD, and addresses gaps and future directions.
Collapse
Affiliation(s)
- Henry Blanton
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA; Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Khalid Benamar
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA.
| |
Collapse
|
18
|
Abd-Nikfarjam B, Dolati-Somarin A, Baradaran Rahimi V, Askari VR. Cannabinoids in neuroinflammatory disorders: Focusing on multiple sclerosis, Parkinsons, and Alzheimers diseases. Biofactors 2023. [PMID: 36637897 DOI: 10.1002/biof.1936] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023]
Abstract
The medicinal properties of cannabis and cannabinoid-derivative are entirely investigated and known. In addition, the identification of psychotropic plant cannabinoids has led to more studies regarding the cannabinoid system and its therapeutic features in the treatment and management of clinical symptoms of neuroinflammatory disorders, such as multiple sclerosis (MS), Parkinsons disease (PD), and Alzheimers disease (AD). In fact, cannabinoid agonists are able to control and regulate inflammatory responses. In contrast to the cannabinoid receptor type 1 (CB1) and its unwanted adverse effects, the cannabinoid receptor type 2 (CB2) and its ligands hold promise for new and effective therapeutic approaches. So far, some successes have been achieved in this field. This review will discuss an outline of the endocannabinoid system's involvement in neuroinflammatory disorders. Moreover, the pharmacological efficacy of different natural and synthetic preparations of phytocannabinoids acting on cannabinoid receptors, particularly in MS, PD, and AD, will be updated. Also, the reasons for targeting CB2 for neurodegeneration will be explained.
Collapse
Affiliation(s)
- Bahareh Abd-Nikfarjam
- Department of Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Li S, Huang Y, Yu L, Ji X, Wu J. Impact of the Cannabinoid System in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:715-726. [PMID: 35105293 PMCID: PMC10207907 DOI: 10.2174/1570159x20666220201091006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
Cannabinoids are compounds isolated from cannabis and are also widely present in both nervous and immune systems of animals. In recent years, with in-depth research on cannabinoids, their clinical medicinal value has been evaluated, and many exciting achievements have been continuously accumulating, especially in the field of neurodegenerative disease. Alzheimer's disease is the most common type of neurodegenerative disease that causes dementia and has become a global health problem that seriously impacts human health today. In this review, we discuss the therapeutic potential of cannabinoids for the treatment of Alzheimer's disease. How cannabinoids act on different endocannabinoid receptor subtypes to regulate Alzheimer's disease and the roles of the endocannabinoid system in Alzheimer's disease are outlined, and the underlying mechanisms are discussed. Finally, we summarize the most relevant opportunities of cannabinoid pharmacology related to Alzheimer's disease and discuss the potential usefulness of cannabinoids in the clinical treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Shuangtao Li
- Shantou University Medical College, Brain Function and Disease Laboratory, Shantou, #22 Road Xinling, Guangdong 515041, China
| | - Yuanbing Huang
- Department of Neurology, Yunfu People’s Hospital, Yunfu, Guangdong 527300, China
| | - Lijun Yu
- Shantou University Medical College, Brain Function and Disease Laboratory, Shantou, #22 Road Xinling, Guangdong 515041, China
| | - Xiaoyu Ji
- Department of Neurology, Yunfu People’s Hospital, Yunfu, Guangdong 527300, China
| | - Jie Wu
- Shantou University Medical College, Brain Function and Disease Laboratory, Shantou, #22 Road Xinling, Guangdong 515041, China
| |
Collapse
|
20
|
Laws JS, Smid SD. Evaluating Cannabis sativa L.'s neuroprotection potential: From bench to bedside. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154485. [PMID: 36209703 DOI: 10.1016/j.phymed.2022.154485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Neurodegenerative diseases and dementia pose a global health challenge in an aging population, exemplified by the increasing incidence and prevalence of its most common form, Alzheimer's disease. Although several approved treatments exist for Alzheimer's disease, they only afford transient symptomatic improvements and are not considered disease-modifying. The psychoactive properties of Cannabis sativa L. have been recognized for thousands of years and now with burgeoning access to medicinal formulations globally, research has turned to re-evaluate cannabis and its myriad phytochemicals as a potential treatment and adjunctive agent for neurodegenerative diseases. PURPOSE This review evaluated the neuroprotective potential of C. sativa's active constituents for potential therapeutic use in dementia and Alzheimer's disease, based on published studies demonstrating efficacy in experimental preclinical settings associated with neurodegeneration. STUDY DESIGN Relevant information on the neuroprotective potential of the C. sativa's phytoconstituents in preclinical studies (in vitro, in vivo) were included. The collated information on C. sativa's component bioactivity was organized for therapeutic applications against neurodegenerative diseases. METHODS The therapeutic use of C. sativa related to Alzheimer's disease relative to known phytocannabinoids and other phytochemical constituents were derived from online databases, including PubMed, Elsevier, The Plant List (TPL, www.theplantlist.org), Science Direct, as well as relevant information on the known pharmacological actions of the listed phytochemicals. RESULTS Numerous C. sativa -prevalent phytochemicals were evidenced in the body of literature as having efficacy in the treatment of neurodegenerative conditions exemplified by Alzheimer's disease. Several phytocannabinoids, terpenes and select flavonoids demonstrated neuroprotection through a myriad of cellular and molecular pathways, including cannabinoid receptor-mediated, antioxidant and direct anti-aggregatory actions against the pathological toxic hallmark protein in Alzheimer's disease, amyloid β. CONCLUSIONS These findings provide strong evidence for a role of cannabis constituents, individually or in combination, as potential neuroprotectants timely to the emergent use of medicinal cannabis as a novel treatment for neurodegenerative diseases. Future randomized and controlled clinical studies are required to substantiate the bioactivities of phytocannabinoids and terpenes and their likely synergies.
Collapse
Affiliation(s)
- John Staton Laws
- Discipline of Pharmacology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia
| | - Scott D Smid
- Discipline of Pharmacology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
21
|
Tudorancea IM, Ciorpac M, Stanciu GD, Caratașu C, Săcărescu A, Ignat B, Burlui A, Rezuș E, Creangă I, Alexa-Stratulat T, Tudorancea I, Tamba BI. The Therapeutic Potential of the Endocannabinoid System in Age-Related Diseases. Biomedicines 2022; 10:2492. [PMID: 36289755 PMCID: PMC9599275 DOI: 10.3390/biomedicines10102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
The endocannabinoid system (ECS) dynamically regulates many aspects of mammalian physiology. ECS has gained substantial interest since growing evidence suggests that it also plays a major role in several pathophysiological conditions due to its ability to modulate various underlying mechanisms. Furthermore, cannabinoids, as components of the cannabinoid system (CS), have proven beneficial effects such as anti-inflammatory, immunomodulatory, neuromodulatory, antioxidative, and cardioprotective effects. In this comprehensive review, we aimed to describe the complex interaction between CS and most common age-related diseases such as neuro-degenerative, oncological, skeletal, and cardiovascular disorders, together with the potential of various cannabinoids to ameliorate the progression of these disorders. Since chronic inflammation is postulated as the pillar of all the above-mentioned medical conditions, we also discuss in this paper the potential of CS to ameliorate aging-associated immune system dysregulation.
Collapse
Affiliation(s)
- Ivona Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Mitică Ciorpac
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Gabriela Dumitrița Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Cătălin Caratașu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Alina Săcărescu
- Department of Medical Specialties II, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității, 700115 Iași, Romania
- Department of Neurology, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa, 700661 Iași, Romania
| | - Bogdan Ignat
- Department of Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Alexandra Burlui
- Department of Rheumatology and Rehabilitation, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Rehabilitation Hospital, 700661 Iași, Romania
| | - Elena Rezuș
- Department of Rheumatology and Rehabilitation, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Rehabilitation Hospital, 700661 Iași, Romania
| | - Ioana Creangă
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
- Oncology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Teodora Alexa-Stratulat
- Oncology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Oncology Department, Regional Institute of Oncology, 700483 Iași, Romania
| | - Ionuț Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Cardiology Clinic “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| |
Collapse
|
22
|
Coles M, Steiner-Lim GZ, Karl T. Therapeutic properties of multi-cannabinoid treatment strategies for Alzheimer’s disease. Front Neurosci 2022; 16:962922. [PMID: 36117622 PMCID: PMC9479694 DOI: 10.3389/fnins.2022.962922] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Alzheimer’s disease (AD) is a debilitating neurodegenerative disease characterized by declining cognition and behavioral impairment, and hallmarked by extracellular amyloid-β plaques, intracellular neurofibrillary tangles (NFT), oxidative stress, neuroinflammation, and neurodegeneration. There is currently no cure for AD and approved treatments do not halt or slow disease progression, highlighting the need for novel therapeutic strategies. Importantly, the endocannabinoid system (ECS) is affected in AD. Phytocannabinoids, including cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), interact with the ECS, have anti-inflammatory, antioxidant, and neuroprotective properties, can ameliorate amyloid-β and NFT-related pathologies, and promote neurogenesis. Thus, in recent years, purified CBD and THC have been evaluated for their therapeutic potential. CBD reversed and prevented the development of cognitive deficits in AD rodent models, and low-dose THC improved cognition in aging mice. Importantly, CBD, THC, and other phytochemicals present in Cannabis sativa interact with each other in a synergistic fashion (the “entourage effect”) and have greater therapeutic potential when administered together, rather than individually. Thus, treatment of AD using a multi-cannabinoid strategy (such as whole plant cannabis extracts or particular CBD:THC combinations) may be more efficacious compared to cannabinoid isolate treatment strategies. Here, we review the current evidence for the validity of using multi-cannabinoid formulations for AD therapy. We discuss that such treatment strategies appear valid for AD therapy but further investigations, particularly clinical studies, are required to determine optimal dose and ratio of cannabinoids for superior effectiveness and limiting potential side effects. Furthermore, it is pertinent that future in vivo and clinical investigations consider sex effects.
Collapse
Affiliation(s)
- Madilyn Coles
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Genevieve Z. Steiner-Lim
- NICM Health Research Institute and Translational Health Research Institute (THRI), Western Sydney University, Penrith, NSW, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
- *Correspondence: Tim Karl,
| |
Collapse
|
23
|
An Ultra-Low Dose of ∆9-Tetrahydrocannabinol Alleviates Alzheimer's Disease-Related Cognitive Impairments and Modulates TrkB Receptor Expression in a 5XFAD Mouse Model. Int J Mol Sci 2022; 23:ijms23169449. [PMID: 36012711 PMCID: PMC9408848 DOI: 10.3390/ijms23169449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 01/19/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, but there is still no available treatment. Δ9-tetrahydrocannabinol (THC) is emerging as a promising therapeutic agent. Using THC in conventional high doses may have deleterious effects. Therefore, we propose to use an ultra-low dose of THC (ULD-THC). We previously published that a single injection of ULD-THC ameliorated cognitive functioning in several models of brain injuries as well as in naturally aging mice. Here, 5xFAD AD model mice received a single treatment of ULD-THC (0.002 mg/kg) after disease onset and were examined in two separate experiments for cognitive functions, neurotropic, and inflammatory factors in the hippocampus. We show that a single injection of ULD-THC alleviated cognitive impairments in 6- and 12-month-old 5xFAD mice. On the biochemical level, our results indicate an imbalance between the truncated TrkB receptor isoform and the full receptor, with AD mice showing a greater tendency to express the truncated receptor, and ULD-THC improved this imbalance. We also investigated the expression of three AD-related inflammatory markers and found an ameliorating effect of ULD-THC. The current research demonstrates for the first time the beneficial effects of a single ultra-low dose of THC in a mouse model of AD after disease onset.
Collapse
|
24
|
Licitra R, Marchese M, Naef V, Ogi A, Martinelli M, Kiferle C, Fronte B, Santorelli FM. A Review on the Bioactivity of Cannabinoids on Zebrafish Models: Emphasis on Neurodevelopment. Biomedicines 2022; 10:biomedicines10081820. [PMID: 36009367 PMCID: PMC9404760 DOI: 10.3390/biomedicines10081820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
For centuries, the cannabis plant has been used as a source of food, fiber, and medicine. Recently, scientific interest in cannabis has increased considerably, as its bioactive compounds have shown promising potential in the treatment of numerous musculoskeletal and neurological diseases in humans. However, the mechanisms that underlie its possible effects on neurodevelopment and nervous-system functioning remain poorly understood and need to be further investigated. Although the bulk of research on cannabis and cannabinoids is based on in vitro or rodent models, the zebrafish has now emerged as a powerful in vivo model for drug-screening studies and translational research. We here review the available literature on the use of cannabis/cannabinoids in zebrafish, and particularly in zebrafish models of neurological disorders. A critical analysis suggests that zebrafish could serve as an experimental tool for testing the bioactivity of cannabinoids, and they could thus provide important insights into the safety and efficacy of different cannabis-extract-based products. The review showed that zebrafish exhibit similar behaviors to rodents following cannabinoid exposure. The authors stress the importance of analyzing the full spectrum of naturally occurring cannabinoids, rather than just the main ones, THC and CBD, and they offer some pointers on performing behavioral analysis in zebrafish.
Collapse
Affiliation(s)
- Rosario Licitra
- Molecular Medicine and Neurobiology—ZebraLab, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (R.L.); (V.N.); (A.O.)
| | - Maria Marchese
- Molecular Medicine and Neurobiology—ZebraLab, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (R.L.); (V.N.); (A.O.)
- Correspondence: (M.M.); (F.M.S.)
| | - Valentina Naef
- Molecular Medicine and Neurobiology—ZebraLab, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (R.L.); (V.N.); (A.O.)
| | - Asahi Ogi
- Molecular Medicine and Neurobiology—ZebraLab, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (R.L.); (V.N.); (A.O.)
| | - Marco Martinelli
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56124 Pisa, Italy; (M.M.); (C.K.)
| | - Claudia Kiferle
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56124 Pisa, Italy; (M.M.); (C.K.)
| | - Baldassare Fronte
- Department of Veterinary Science, University of Pisa, 56124 Pisa, Italy;
| | - Filippo Maria Santorelli
- Molecular Medicine and Neurobiology—ZebraLab, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (R.L.); (V.N.); (A.O.)
- Correspondence: (M.M.); (F.M.S.)
| |
Collapse
|
25
|
Ruver-Martins AC, Bicca MA, de Araujo FS, de Noronha Sales Maia BHL, Pamplona FA, da Silva EG, Nascimento FP. Cannabinoid extract in microdoses ameliorates mnemonic and nonmnemonic Alzheimer's disease symptoms: a case report. J Med Case Rep 2022; 16:277. [PMID: 35820856 PMCID: PMC9277875 DOI: 10.1186/s13256-022-03457-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/16/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cannabinoid-based therapy has been shown to be promising and is emerging as crucial for the treatment of cognitive deficits, mental illnesses, and many diseases considered incurable. There is a need to find an appropriate therapy for Alzheimer's disease, and cannabinoid-based therapy appears to be a feasible possibility. CASE PRESENTATION This report addresses the beneficial effect of cannabinoids in microdoses on improving memory and brain functions of a patient with mild-stage Alzheimer's disease. The patient is a 75-year-old white man presenting with main symptoms of memory deficit, spatial and temporal disorientation, and limited daily activity. The experimental therapeutic intervention was carried out for 22 months with microdoses of a cannabis extract containing cannabinoids. Clinical evaluations using Mini-Mental State Examination and Alzheimer's Disease Assessment Scale-Cognitive Subscale were performed. CONCLUSIONS Here we provide original evidence that cannabinoid microdosing could be effective as an Alzheimer's disease treatment while preventing major side effects. This is an important step toward dissociating cannabinoids' health-improving effects from potential narcotic-related limitations.
Collapse
Affiliation(s)
- Ana Carolina Ruver-Martins
- Laboratório de Cannabis Medicinal e Ciência Psicodélica, Department of Medicine, Universidade Federal da Integração Latino-Americana, UNILA, Avenida Tarquínio Joslin dos Santos, 1000, Jardim Universitário I, Foz do Iguaçu, PR, Brazil
| | - Maíra Assunção Bicca
- Department of Neurosurgery and Neurosciences, Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Fabrício Alano Pamplona
- Laboratório de Cannabis Medicinal e Ciência Psicodélica, Department of Medicine, Universidade Federal da Integração Latino-Americana, UNILA, Avenida Tarquínio Joslin dos Santos, 1000, Jardim Universitário I, Foz do Iguaçu, PR, Brazil
| | - Elton Gomes da Silva
- Laboratório de Cannabis Medicinal e Ciência Psicodélica, Department of Medicine, Universidade Federal da Integração Latino-Americana, UNILA, Avenida Tarquínio Joslin dos Santos, 1000, Jardim Universitário I, Foz do Iguaçu, PR, Brazil
| | - Francisney Pinto Nascimento
- Laboratório de Cannabis Medicinal e Ciência Psicodélica, Department of Medicine, Universidade Federal da Integração Latino-Americana, UNILA, Avenida Tarquínio Joslin dos Santos, 1000, Jardim Universitário I, Foz do Iguaçu, PR, Brazil.
| |
Collapse
|
26
|
Saiyasit N, Butlig EAR, Chaney SD, Traylor MK, Hawley NA, Randall RB, Bobinger HV, Frizell CA, Trimm F, Crook ED, Lin M, Hill BD, Keller JL, Nelson AR. Neurovascular Dysfunction in Diverse Communities With Health Disparities-Contributions to Dementia and Alzheimer's Disease. Front Neurosci 2022; 16:915405. [PMID: 35844216 PMCID: PMC9279126 DOI: 10.3389/fnins.2022.915405] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease and related dementias (ADRD) are an expanding worldwide crisis. In the absence of scientific breakthroughs, the global prevalence of ADRD will continue to increase as more people are living longer. Racial or ethnic minority groups have an increased risk and incidence of ADRD and have often been neglected by the scientific research community. There is mounting evidence that vascular insults in the brain can initiate a series of biological events leading to neurodegeneration, cognitive impairment, and ADRD. We are a group of researchers interested in developing and expanding ADRD research, with an emphasis on vascular contributions to dementia, to serve our local diverse community. Toward this goal, the primary objective of this review was to investigate and better understand health disparities in Alabama and the contributions of the social determinants of health to those disparities, particularly in the context of vascular dysfunction in ADRD. Here, we explain the neurovascular dysfunction associated with Alzheimer's disease (AD) as well as the intrinsic and extrinsic risk factors contributing to dysfunction of the neurovascular unit (NVU). Next, we ascertain ethnoregional health disparities of individuals living in Alabama, as well as relevant vascular risk factors linked to AD. We also discuss current pharmaceutical and non-pharmaceutical treatment options for neurovascular dysfunction, mild cognitive impairment (MCI) and AD, including relevant studies and ongoing clinical trials. Overall, individuals in Alabama are adversely affected by social and structural determinants of health leading to health disparities, driven by rurality, ethnic minority status, and lower socioeconomic status (SES). In general, these communities have limited access to healthcare and healthy food and other amenities resulting in decreased opportunities for early diagnosis of and pharmaceutical treatments for ADRD. Although this review is focused on the current state of health disparities of ADRD patients in Alabama, future studies must include diversity of race, ethnicity, and region to best be able to treat all individuals affected by ADRD.
Collapse
Affiliation(s)
- Napatsorn Saiyasit
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Evan-Angelo R. Butlig
- Department of Neurology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Samantha D. Chaney
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Miranda K. Traylor
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, United States
| | - Nanako A. Hawley
- Department of Psychology, University of South Alabama, Mobile, AL, United States
| | - Ryleigh B. Randall
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Hanna V. Bobinger
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Carl A. Frizell
- Department of Physician Assistant Studies, University of South Alabama, Mobile, AL, United States
| | - Franklin Trimm
- College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Errol D. Crook
- Department of Internal Medicine, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Mike Lin
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Benjamin D. Hill
- Department of Psychology, University of South Alabama, Mobile, AL, United States
| | - Joshua L. Keller
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, United States
| | - Amy R. Nelson
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
27
|
Gallego Villarejo L, Bachmann L, Marks D, Brachthäuser M, Geidies A, Müller T. Role of Intracellular Amyloid β as Pathway Modulator, Biomarker, and Therapy Target. Int J Mol Sci 2022; 23:ijms23094656. [PMID: 35563046 PMCID: PMC9103247 DOI: 10.3390/ijms23094656] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
The β- and γ-secretase-driven cleavage of the amyloid precursor protein (APP) gives rise to the amyloid β peptide, which is believed to be the main driver of neurodegeneration in Alzheimer’s disease (AD). As it is prominently detectable in extracellular plaques in post-mortem AD brain samples, research in recent decades focused on the pathological role of extracellular amyloid β aggregation, widely neglecting the potential meaning of very early generation of amyloid β inside the cell. In the last few years, the importance of intracellular amyloid β (iAβ) as a strong player in neurodegeneration has been indicated by a rising number of studies. In this review, iAβ is highlighted as a crucial APP cleavage fragment, able to manipulate intracellular pathways and foster neurodegeneration. We demonstrate its relevance as a pathological marker and shed light on initial studies aiming to modulate iAβ through pharmacological treatment, which has been shown to have beneficial effects on cognitive properties in animal models. Finally, we display the relevance of viral infections on iAβ generation and point out future directions urgently needed to manifest the potential relevance of iAβ in Alzheimer’s disease.
Collapse
Affiliation(s)
- Lucia Gallego Villarejo
- Department of Molecular Biochemistry, Cell Signalling, Ruhr University Bochum, 44801 Bochum, Germany; (L.G.V.); (L.B.); (D.M.); (M.B.); (A.G.)
| | - Lisa Bachmann
- Department of Molecular Biochemistry, Cell Signalling, Ruhr University Bochum, 44801 Bochum, Germany; (L.G.V.); (L.B.); (D.M.); (M.B.); (A.G.)
| | - David Marks
- Department of Molecular Biochemistry, Cell Signalling, Ruhr University Bochum, 44801 Bochum, Germany; (L.G.V.); (L.B.); (D.M.); (M.B.); (A.G.)
| | - Maite Brachthäuser
- Department of Molecular Biochemistry, Cell Signalling, Ruhr University Bochum, 44801 Bochum, Germany; (L.G.V.); (L.B.); (D.M.); (M.B.); (A.G.)
| | - Alexander Geidies
- Department of Molecular Biochemistry, Cell Signalling, Ruhr University Bochum, 44801 Bochum, Germany; (L.G.V.); (L.B.); (D.M.); (M.B.); (A.G.)
| | - Thorsten Müller
- Department of Molecular Biochemistry, Cell Signalling, Ruhr University Bochum, 44801 Bochum, Germany; (L.G.V.); (L.B.); (D.M.); (M.B.); (A.G.)
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, 80336 Munich, Germany
- Correspondence:
| |
Collapse
|
28
|
The Memory Benefit to Aged APP/PS1 Mice from Long-Term Intranasal Treatment of Low-Dose THC. Int J Mol Sci 2022; 23:ijms23084253. [PMID: 35457070 PMCID: PMC9029288 DOI: 10.3390/ijms23084253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 12/19/2022] Open
Abstract
THC has been used as a promising treatment approach for neurological disorders, but the highly psychoactive effects have largely warned off many scientists from pursuing it further. We conducted an intranasal treatment using low-dose THC on 12-month-old APP/PS1 mice daily for 3 months to overcome any potential psychoactive response induced by the systemic delivery. Our results demonstrate that the THC nasal treatment at 0.002 and 0.02 mg/kg significantly slowed the memory decline compared to that in the vehicle-treated transgenic mouse control group. An enzyme-linked immunosorbent assay showed that the Aβ1–40 and 1–42 peptides decreased in the THC-treated groups. The Western blot data indicate that long-term low-dose THC intranasal administration promoted p-tau level reduction and mitochondrial function marker redistribution. The blood biochemical parameter data demonstrate some insignificant changes in cytokine, immunoglobulin, and immune cell profiles during intranasal THC treatment. Intranasal delivery is a non-invasive and convenient method that rapidly targets therapeutics to the brain, minimizing systemic exposure to avoid unwanted adverse effects. Our study provides new insights into the role of low-dose THC intranasal treatment as a pharmacological strategy to counteract alterations in Alzheimer’s disease-related cognitive performance.
Collapse
|
29
|
Low-Dose Delta-9-Tetrahydrocannabinol as Beneficial Treatment for Aged APP/PS1 Mice. Int J Mol Sci 2022; 23:ijms23052757. [PMID: 35269905 PMCID: PMC8910894 DOI: 10.3390/ijms23052757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Studies on the effective and safe therapeutic dosage of delta-9-tetrahydrocannabinol (THC) for the treatment of Alzheimer’s disease (AD) have been sparse due to the concern about THC’s psychotropic activity. The present study focused on demonstrating the beneficial effect of low-dose THC treatment in preclinical AD models. The effect of THC on amyloid-β (Aβ) production was examined in N2a/AβPPswe cells. An in vivo study was conducted in aged APP/PS1 transgenic mice that received an intraperitoneal injection of THC at 0.02 and 0.2 mg/kg every other day for three months. The in vitro study showed that THC inhibited Aβ aggregation within a safe dose range. Results of the radial arm water maze (RAWM) test demonstrated that treatment with 0.02 and 0.2 mg/kg of THC for three months significantly improved the spatial learning performance of aged APP/PS1 mice in a dose-dependent manner. Results of protein analyses revealed that low-dose THC treatment significantly decreased the expression of Aβ oligomers, phospho-tau and total tau, and increased the expression of Aβ monomers and phospho-GSK-3β (Ser9) in the THC-treated brain tissues. In conclusion, treatment with THC at 0.2 and 0.02 mg/kg improved the spatial learning of aged APP/PS1 mice, suggesting low-dose THC is a safe and effective treatment for AD.
Collapse
|
30
|
The Multifaceted Role of Neuroprotective Plants in Alzheimer’s Disease Treatment. Geriatrics (Basel) 2022; 7:geriatrics7020024. [PMID: 35314596 PMCID: PMC8938774 DOI: 10.3390/geriatrics7020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is an age-related, progressive neurodegenerative disorder characterized by impaired cognition, memory loss, and altered personality. Many of the available pharmaceutical treatments do not alter the onset of disease progression. Recently, alternatives to developed drug candidates have been explored including medicinal plants and herbal treatments for the treatment of AD. This article examines the role of herbal plant extracts and the neuroprotective effects as alternative modes of intervention for AD progression. These extracts contain key metabolites that culminate alterations in AD progression. The traditional plant extracts explored in this article induce a variety of beneficial properties, including antioxidants, anti-inflammatory, and enhanced cognition, while also inducing activity on AD drug targets such as Aβ degradation. While these neuroprotective aspects for AD are relatively recent, there is great potential in the drug discovery aspect of these plant extracts for future use in AD treatment.
Collapse
|
31
|
Leelawat S, Leelawat K, Wannakup T, Saingam W, Khamthong N, Madaka F, Maha A, Pathompak P, Sueree L, Songsak T. Anticancer activity of Δ 9-tetrahydrocannabinol and cannabinol in vitro and in human lung cancer xenograft. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.350180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
32
|
Major Phytocannabinoids and Their Related Compounds: Should We Only Search for Drugs That Act on Cannabinoid Receptors? Pharmaceutics 2021; 13:pharmaceutics13111823. [PMID: 34834237 PMCID: PMC8625816 DOI: 10.3390/pharmaceutics13111823] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
The most important discoveries in pharmacology, such as certain classes of analgesics or chemotherapeutics, started from natural extracts which have been found to have effects in traditional medicine. Cannabis, traditionally used in Asia for the treatment of pain, nausea, spasms, sleep, depression, and low appetite, is still a good candidate for the development of new compounds. If initially all attention was directed to the endocannabinoid system, recent studies suggest that many of the clinically proven effects are based on an intrinsic chain of mechanisms that do not necessarily involve only cannabinoid receptors. Recent research has shown that major phytocannabinoids and their derivatives also interact with non-cannabinoid receptors such as vanilloid receptor 1, transient receptor ankyrin 1 potential, peroxisome proliferator-activated receptor-gamma or glitazone receptor, G55 protein-coupled receptor, and nuclear receptor, producing pharmacological effects in diseases such as Alzheimer's, epilepsy, depression, neuropathic pain, cancer, and diabetes. Nonetheless, further studies are needed to elucidate the precise mechanisms of these compounds. Structure modulation of phytocannabinoids, in order to improve pharmacological effects, should not be limited to the exploration of cannabinoid receptors, and it should target other courses of action discovered through recent research.
Collapse
|
33
|
Potential and Limits of Cannabinoids in Alzheimer's Disease Therapy. BIOLOGY 2021; 10:biology10060542. [PMID: 34204237 PMCID: PMC8234911 DOI: 10.3390/biology10060542] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary This review was aimed at exploring the potentiality of drugging the endocannabinoid system as a therapeutic option for Alzheimer’s disease (AD). Recent discoveries have demonstrated how the modulation of cannabinoid receptor 1 (CB1) and receptor 2 (CB2) can exert neuroprotective effects without the recreational and pharmacological properties of Cannabis sativa. Thus, this review explores the potential of cannabinoids in AD, also highlighting their limitations in perspective to point out the need for further research on cannabinoids in AD therapy. Abstract Alzheimer’s disease (AD) is a detrimental brain disorder characterized by a gradual cognitive decline and neuronal deterioration. To date, the treatments available are effective only in the early stage of the disease. The AD etiology has not been completely revealed, and investigating new pathological mechanisms is essential for developing effective and safe drugs. The recreational and pharmacological properties of marijuana are known for centuries, but only recently the scientific community started to investigate the potential use of cannabinoids in AD therapy—sometimes with contradictory outcomes. Since the endocannabinoid system (ECS) is highly expressed in the hippocampus and cortex, cannabis use/abuse has often been associated with memory and learning dysfunction in vulnerable individuals. However, the latest findings in AD rodent models have shown promising effects of cannabinoids in reducing amyloid plaque deposition and stimulating hippocampal neurogenesis. Beneficial effects on several dementia-related symptoms have also been reported in clinical trials after cannabinoid treatments. Accordingly, future studies should address identifying the correct therapeutic dosage and timing of treatment from the perspective of using cannabinoids in AD therapy. The present paper aims to summarize the potential and limitations of cannabinoids as therapeutics for AD, focusing on recent pre-clinical and clinical evidence.
Collapse
|
34
|
Wang S, Du Z, Ding M, Rodriguez-Paton A, Song T. KG-DTI: a knowledge graph based deep learning method for drug-target interaction predictions and Alzheimer’s disease drug repositions. APPL INTELL 2021. [DOI: 10.1007/s10489-021-02454-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Monteiro KLC, dos Santos Alcântara MG, de Aquino TM, da Silva-Júnior EF. Cannabinoid pharmacology and its therapeutic uses in Alzheimer's disease. Neural Regen Res 2021; 16:990-991. [PMID: 33229747 PMCID: PMC8178768 DOI: 10.4103/1673-5374.294336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/10/2020] [Accepted: 07/10/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Kadja Luana Chagas Monteiro
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | | | | | | |
Collapse
|
36
|
Kanchi PK, Dasmahapatra AK. Destabilization of the Alzheimer's amyloid-β protofibrils by THC: A molecular dynamics simulation study. J Mol Graph Model 2021; 105:107889. [PMID: 33725642 DOI: 10.1016/j.jmgm.2021.107889] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 10/22/2022]
Abstract
Alzheimer's disease is a leading cause of dementia in the elderly population for which there is no cure at present. Deposits of neurotoxic plaques are found in the brains of patients which are composed of fibrils of the amyloid-β peptide. Molecules which can disrupt these fibrils have gained attention as potential therapeutic agents. Δ-tetrahydrocannabidiol (THC) is a cannabinoid, which can bind to the receptors in the brain, and has shown promise in reducing the fibril content in many experimental studies. In our present study, by employing all atom molecular dynamics simulations, we have investigated the mechanism of the interaction of the THC molecules with the amyloid-β protofibrils. Our results show that the THC molecules disrupt the protofibril structure by binding strongly to them. The driving force for the binding was the hydrophobic interactions with the hydrophobic residues in the fibrils. As a result of these interactions, the tight packing of the hydrophobic core of the protofibrils was made loose, and salt bridges, which were important for stability were disrupted. Hydrogen bonds between the chains of the protofibrils which are important for stability were disrupted, as a result of which the β-sheet content was reduced. The destabilization of the protofibrils by the THC molecules leads to the conclusion that THC molecules may be considered for the therapy in treating Alzheimer's disease.
Collapse
Affiliation(s)
- Pavan Krishna Kanchi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
37
|
Kichloo A, Albosta M, Aljadah M, El-Amir Z, Goldar G, Khan MZ, Dahiya DS, Vallabhaneni S, Wani F, Singh J. Marijuana: A systems-based primer of adverse effects associated with use and an overview of its therapeutic utility. SAGE Open Med 2021; 9:20503121211000909. [PMID: 33786179 PMCID: PMC7958160 DOI: 10.1177/20503121211000909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/12/2021] [Indexed: 12/18/2022] Open
Abstract
Marijuana use is on the rise in the United States. By the end of 2019, 33 states have legalized marijuana use and marijuana byproduct use for medical purposes. However, marijuana use does not come without side effects. This manuscript reviews the increasing usage of marijuana and the different forms (natural and synthetic) that patients may use when presenting to clinicians. It also addresses the biochemical and behavioral changes observed with marijuana use, including the location and changes associated with cannabinoid receptors (abbreviated CB1 and CB2). These two topics lead into an extensive review of the side effects of marijuana use. This manuscript discusses gastrointestinal side-effects, such as Cannabinoid Hyperemesis Syndrome, pancreatitis, and hepatotoxicity. It also briefly reviews cardiovascular, neurologic, and pulmonary side effects. This article provides an overview of therapeutic effects of marijuana including the antiemetic effect, its medical utility as an appetite stimulant, and usefulness in cancer patients post-chemotherapy. A thorough social history pertaining to marijuana use is an important consideration for clinicians in patients presenting with a variety of symptoms, including those effecting the gastrointestinal, cardiovascular, pulmonary, or neurologic systems.
Collapse
Affiliation(s)
- Asim Kichloo
- Department of Internal Medicine,
Central Michigan University College of Medicine, Saginaw, MI, USA
| | - Michael Albosta
- Department of Internal Medicine,
Central Michigan University College of Medicine, Saginaw, MI, USA
| | - Michael Aljadah
- Department of Internal Medicine,
Medical College of Wisconsin, Milwaukee, WI, USA
| | - Zain El-Amir
- Department of Internal Medicine,
Central Michigan University College of Medicine, Saginaw, MI, USA
| | - Ghazaleh Goldar
- Department of Internal Medicine,
Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Muhammed Zatmar Khan
- Department of Internal Medicine,
Central Michigan University College of Medicine, Saginaw, MI, USA
| | - Dushyant Singh Dahiya
- Department of Internal Medicine,
Central Michigan University College of Medicine, Saginaw, MI, USA
| | | | - Farah Wani
- Department of Family Medicine,
Samaritan Medical Center, Watertown, NY, USA
| | - Jagmeet Singh
- Department of Nephrology, Guthrie
Robert Packer Hospital, Sayre, PA, USA
| |
Collapse
|
38
|
Sánchez Montero JM, Agis-Torres A, Solano D, Söllhuber M, Fernandez M, Villaro W, Gómez-Cañas M, García-Arencibia M, Fernández-Ruiz J, Egea J, Martín MI, Girón R. Analogues of cannabinoids as multitarget drugs in the treatment of Alzheimer's disease. Eur J Pharmacol 2021; 895:173875. [PMID: 33460612 DOI: 10.1016/j.ejphar.2021.173875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/19/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
Given that neuronal degeneration in Alzheimer's disease (AD) is caused by the combination of multiple neurotoxic insults, current directions in the research of novel therapies to treat this disease attempts to design multitarget strategies that could be more effective than the simply use of acetylcholinesterase inhibitors; currently, the most used therapy for AD. One option, explored recently, is the synthesis of new analogues of cannabinoids that could competitively inhibit the acetylcholinesterase (AChE) enzyme and showing the classic neuroprotective profile of cannabinoid compounds. In this work, molecular docking has been used to design some cannabinoid analogues with such multitarget properties, based on the similarities of donepezil and Δ9-tetrahydrocannabinol. The analogues synthesized, compounds 1 and 2, demonstrated to have two interesting characteristics in different in vitro assays: competitive inhibition of AChE and competitive antagonism at the CB1/CB2 receptors. They are highly lipophilic, highlighting that they could easily reach the CNS, and apparently presented a low toxicity. These results open the door to the synthesis of new compounds for a more effective treatment of AD.
Collapse
Affiliation(s)
- José María Sánchez Montero
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia. Grupo de Biotransformaciones. Universidad Complutense, 28040, Madrid, Spain.
| | - Angel Agis-Torres
- Departamento de Fisiología. Facultad de Farmacia. Universidad Complutense, 28040, Madrid, Spain
| | - David Solano
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia. Grupo de Biotransformaciones. Universidad Complutense, 28040, Madrid, Spain
| | - Monica Söllhuber
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia. Grupo de Biotransformaciones. Universidad Complutense, 28040, Madrid, Spain
| | - María Fernandez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia. Grupo de Biotransformaciones. Universidad Complutense, 28040, Madrid, Spain
| | - Wilma Villaro
- Departamento de Fisiología. Facultad de Farmacia. Universidad Complutense, 28040, Madrid, Spain
| | - María Gómez-Cañas
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain; Campus de Excelencia Internacional (CEI-Moncloa), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Moisés García-Arencibia
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain; Campus de Excelencia Internacional (CEI-Moncloa), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Egea
- Unidad de Investigación, Hospital Universitario Santa Cristina. Instituto de Investigación Sanitaria Del Hospital Universitario La Princesa. Madrid, Spain
| | - María Isabel Martín
- Departamento de Ciencias Básicas de La Salud, Área de Farmacología y Nutrición, Unidad Asociada de I+D+i Al CSIC, Facultad de Ciencias de La Salud, Universidad Rey Juan Carlos, Avda. Atenas S/N, 28922 Alcorcón, Madrid, Spain
| | - Rocío Girón
- Departamento de Ciencias Básicas de La Salud, Área de Farmacología y Nutrición, Unidad Asociada de I+D+i Al CSIC, Facultad de Ciencias de La Salud, Universidad Rey Juan Carlos, Avda. Atenas S/N, 28922 Alcorcón, Madrid, Spain
| |
Collapse
|
39
|
Marsh DT, Smid SD. Cannabis Phytochemicals: A Review of Phytocannabinoid Chemistry and Bioactivity as Neuroprotective Agents. Aust J Chem 2021. [DOI: 10.1071/ch20183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
With the advent of medical cannabis usage globally, there has been a renewed interest in exploring the chemical diversity of this unique plant. Cannabis produces hundreds of unique phytocannabinoids, which not only have diverse chemical structures but also a range of cellular and molecular actions, interesting pharmacological properties, and biological actions. In addition, it produces other flavonoids, stilbenoids, and terpenes that have been variably described as conferring additional or so-called entourage effects to whole-plant extracts when used in therapeutic settings. This review explores this phytochemical diversity in relation to specific bioactivity ascribed to phytocannabinoids as neuroprotective agents. It outlines emergent evidence for the potential for selected phytocannabinoids and other cannabis phytochemicals to mitigate factors such as inflammation and oxidative stress as drivers of neurotoxicity, in addition to focusing on specific interactions with pathological misfolding proteins, such as amyloid β, associated with major forms of neurodegenerative diseases such as Alzheimer’s disease.
Collapse
|
40
|
Cooray R, Gupta V, Suphioglu C. Current Aspects of the Endocannabinoid System and Targeted THC and CBD Phytocannabinoids as Potential Therapeutics for Parkinson's and Alzheimer's Diseases: a Review. Mol Neurobiol 2020; 57:4878-4890. [PMID: 32813239 PMCID: PMC7515854 DOI: 10.1007/s12035-020-02054-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 07/31/2020] [Indexed: 12/11/2022]
Abstract
Neurodegeneration leading to Parkinson's disease (PD) and Alzheimer's disease (AD) has become a major health burden globally. Current treatments mainly target controlling symptoms and there are no therapeutics available in clinical practice to preventing the neurodegeneration or inducing neuronal repairing. Thus, the demand of novel research for the two disorders is imperative. This literature review aims to provide a collection of published work on PD and AD and current uses of endocannabinoid system (ECS) as a potential drug target for neurodegeneration. PD is frequently treated with L-DOPA and deep brain stimulation. Recent gene modification and remodelling techniques, such as CRISPR through human embryonic stem cells and induced pluripotent stem cells, have shown promising strategy for personalised medicine. AD characterised by extracellular deposits of amyloid β-senile plaques and neurofibrillary tangles of tau protein commonly uses choline acetyltransferase enhancers as therapeutics. The ECS is currently being studied as PD and AD drug targets where overexpression of ECS receptors exerted neuroprotection against PD and reduced neuroinflammation in AD. The delta-9-tetrahydrocannabinoid (Δ9-THC) and cannabidiol (CBD) cannabinoids of plant Cannabis sativa have shown neuroprotection upon PD and AD animal models yet triggered toxic effects on patients when administered directly. Therefore, understanding the precise molecular cascade following cannabinoid treatment is suggested, focusing especially on gene expression to identify drug targets for preventing and repairing neurodegeneration.
Collapse
Affiliation(s)
- R Cooray
- Faculty of Science, Engineering and Built Environment, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia.
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia.
- Section of Genetics, Institute for Research & Development in Health & Social Care, Colombo, Sri Lanka.
| | - V Gupta
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - C Suphioglu
- Faculty of Science, Engineering and Built Environment, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| |
Collapse
|
41
|
Attenuation of Oxidative Stress by Cannabinoids and Cannabis Extracts in Differentiated Neuronal Cells. Pharmaceuticals (Basel) 2020; 13:ph13110328. [PMID: 33105840 PMCID: PMC7690570 DOI: 10.3390/ph13110328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/29/2020] [Accepted: 10/10/2020] [Indexed: 12/16/2022] Open
Abstract
In this proof-of-concept study, the antioxidant activity of phytocannabinoids, namely cannabidiol (CBD) and Δ9- tetrahydrocannabinol (THC), were investigated using an in vitro system of differentiated human neuronal SY-SH5Y cells. The oxidative stress was induced by hydrogen peroxide, as reactive oxygen species (ROS). Alzheimer's disease (AD)-like pathological conditions were mimicked in vitro by treating the differentiated neuronal cells with amyloid-β1-42 (Aβ1-42) in the presence of Cu(II). We showed that THC had a high potency to combat oxidative stress in both in vitro models, while CBD did not show a remarkable antioxidant activity. The cannabis extracts also exhibited a significant antioxidant activity, which depended on the ratio of the THC and CBD. However, our results did not suggest any antagonist effect of the CBD on the antioxidant activity of THC. The effect of cannabis extracts on the cell viability of differentiated human neuronal SY-SH5Y cells was also investigated, which emphasized the differences between the bioactivity of cannabis extracts due to their composition. Our preliminary results demonstrated that cannabis extracts and phytocannabinoids have a promising potential as antioxidants, which can be further investigated to develop novel pharmaceuticals targeting oxidative stress therapy.
Collapse
|
42
|
Zhang J, Yan J, Huang S, Pan G, Chang L, Li J, Zhang C, Tang H, Chen A, Peng D, Biswas A, Zhang C, Zhao L, Li D. Genetic Diversity and Population Structure of Cannabis Based on the Genome-Wide Development of Simple Sequence Repeat Markers. Front Genet 2020; 11:958. [PMID: 33061939 PMCID: PMC7518120 DOI: 10.3389/fgene.2020.00958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
Cannabis has been used as a source of nutrition, medicine, and fiber. However, lack of genomic simple sequence repeat (SSR) markers had limited the genetic research on Cannabis species. In the present study, 92,409 motifs were identified, and 63,707 complementary SSR primer pairs were developed. The most abundant SSR motifs had six repeat units (36.60%). The most abundant type of motif was dinucleotides (70.90%), followed by trinucleotides, tetranucleotides, and pentanucleotides. We randomly selected 80 pairs of genomic SSR markers, of which 69 (86.25%) were amplified successfully; 59 (73.75%) of these were polymorphic. Genetic diversity and population structure were estimated using the 59 (72 loci) validated polymorphic SSRs and three phenotypic markers. Three hundred ten alleles were identified, and the major allele frequency ranged from 0.26 to 0.85 (average: 0.56), Nei’s genetic diversity ranged from 0.28 to 0.82 (average: 0.56), and the expected heterozygosity ranged from 0.28 to 0.81 (average: 0.56). The polymorphism information content ranged from 0.25 to 0.79 (average: 0.50), the observed number of alleles ranged from 2 to 8 (average: 4.13), and the effective number of alleles ranged from 0.28 to 0.81 (average: 0.5). The Cannabis population did not show mutation-drift equilibrium following analysis via the infinite allele model. A cluster analysis was performed using the unweighted pair group method using arithmetic means based on genetic distances. Population structure analysis was used to divide the germplasms into two subgroups. These results provide guidance for the molecular breeding and further investigation of Cannabis.
Collapse
Affiliation(s)
- Jiangjiang Zhang
- Research Team of Genetic Modification of Annual Bast Fiber Crops, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jiangtao Yan
- Research Team of Genetic Modification of Annual Bast Fiber Crops, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Siqi Huang
- Research Team of Genetic Modification of Annual Bast Fiber Crops, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Key Laboratory of Biological and Processing for Bast Fiber Crops, Ministry of Agriculture, Changsha, China
| | - Gen Pan
- Research Team of Genetic Modification of Annual Bast Fiber Crops, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Key Laboratory of Biological and Processing for Bast Fiber Crops, Ministry of Agriculture, Changsha, China
| | - Li Chang
- Research Team of Genetic Modification of Annual Bast Fiber Crops, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Key Laboratory of Biological and Processing for Bast Fiber Crops, Ministry of Agriculture, Changsha, China
| | - Jianjun Li
- Research Team of Genetic Modification of Annual Bast Fiber Crops, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Key Laboratory of Biological and Processing for Bast Fiber Crops, Ministry of Agriculture, Changsha, China
| | - Chao Zhang
- Research Team of Genetic Modification of Annual Bast Fiber Crops, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Huijuan Tang
- Research Team of Genetic Modification of Annual Bast Fiber Crops, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Key Laboratory of Biological and Processing for Bast Fiber Crops, Ministry of Agriculture, Changsha, China
| | - Anguo Chen
- Research Team of Genetic Modification of Annual Bast Fiber Crops, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Key Laboratory of Biological and Processing for Bast Fiber Crops, Ministry of Agriculture, Changsha, China
| | - Dingxiang Peng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ashok Biswas
- Research Team of Genetic Modification of Annual Bast Fiber Crops, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Cuiping Zhang
- Research Team of Genetic Modification of Annual Bast Fiber Crops, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Key Laboratory of Biological and Processing for Bast Fiber Crops, Ministry of Agriculture, Changsha, China
| | - Lining Zhao
- Research Team of Genetic Modification of Annual Bast Fiber Crops, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Key Laboratory of Biological and Processing for Bast Fiber Crops, Ministry of Agriculture, Changsha, China
| | - Defang Li
- Research Team of Genetic Modification of Annual Bast Fiber Crops, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Key Laboratory of Biological and Processing for Bast Fiber Crops, Ministry of Agriculture, Changsha, China
| |
Collapse
|
43
|
Pandelides Z, Thornton C, Lovitt KG, Faruque AS, Whitehead AP, Willett KL, Ashpole NM. Developmental exposure to Δ 9-tetrahydrocannabinol (THC) causes biphasic effects on longevity, inflammation, and reproduction in aged zebrafish (Danio rerio). GeroScience 2020; 42:923-936. [PMID: 32227279 PMCID: PMC7286997 DOI: 10.1007/s11357-020-00175-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Increased availability of cannabis and cannabinoid-containing products necessitates the need for an understanding of how these substances influence aging. In this study, zebrafish (Danio rerio) were exposed to different concentrations of THC (0.08, 0.4, 2 μM) during embryonic-larval development and the effects on aging were measured 30 months later and in the offspring of the exposed fish (F1 generation). Exposure to 0.08 μM THC resulted in increased male survival at 30 months of age. As the concentration of THC increased, this protective effect was lost. Treatment with the lowest concentration of THC also significantly increased egg production, while higher concentrations resulted in impaired fecundity. Treatment with the lowest dose of THC significantly reduced wet weight, the incidence of kyphosis, and the expression of several senescence and inflammatory markers (p16ink4ab, tnfα, il-1β, il-6, pparα and pparγ) in the liver, but not at higher doses indicating a biphasic or hormetic effect. Exposure to THC did not affect the age-related reductions in locomotor behavior. Within the F1 generation, many of these changes were not observed. However, the reduction in fecundity due to THC exposure was worse in the F1 generation because offspring whose parents received high dose of THC were completely unable to reproduce. Together, our results demonstrate that a developmental exposure to THC can cause significant effects on longevity and healthspan of zebrafish in a biphasic manner.
Collapse
Affiliation(s)
- Zacharias Pandelides
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Oxford, MS, 38677, USA
| | - Cammi Thornton
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Oxford, MS, 38677, USA
| | - Kayla G Lovitt
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Oxford, MS, 38677, USA
| | - Anika S Faruque
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Oxford, MS, 38677, USA
| | - Alyssa P Whitehead
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Oxford, MS, 38677, USA
| | - Kristine L Willett
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Oxford, MS, 38677, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi School of Pharmacy, University, Oxford, MS, 38677, USA
| | - Nicole M Ashpole
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Oxford, MS, 38677, USA.
- Research Institute of Pharmaceutical Sciences, University of Mississippi School of Pharmacy, University, Oxford, MS, 38677, USA.
| |
Collapse
|
44
|
Weinstein G, Sznitman SR. The implications of late-life cannabis use on brain health: A mapping review and implications for future research. Ageing Res Rev 2020; 59:101041. [PMID: 32109605 DOI: 10.1016/j.arr.2020.101041] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/12/2020] [Accepted: 02/23/2020] [Indexed: 12/11/2022]
Abstract
While medical and recreational cannabis use is becoming more frequent among older adults, the neurocognitive consequences of cannabis use in this age group are unclear. The aim of this literature review was to synthesize and evaluate the current knowledge on the association of cannabis use during older-adulthood with cognitive function and brain aging. We reviewed the literature from old animal models and human studies, focusing on the link between use of cannabis in middle- and old-age and cognition. The report highlights the gap in knowledge on cannabis use in late-life and cognitive health, and discusses the limited findings in the context of substantial changes in attitudes and policies. Furthermore, we outline possible theoretical mechanisms and propose recommendations for future research. The limited evidence on this important topic suggests that use in older ages may not be linked with poorer cognitive performance, thus detrimental effects of early-life cannabis use may not translate to use in older ages. Rather, use in old ages may be associated with improved brain health, in accordance with the known neuroprotective properties of several cannabinoids. Yet, firm conclusions cannot be drawn from the current evidence-base due to lack of research with strong methodological designs.
Collapse
|
45
|
Timler A, Bulsara C, Bulsara M, Vickery A, Smith J, Codde J. Use of cannabinoid-based medicine among older residential care recipients diagnosed with dementia: study protocol for a double-blind randomised crossover trial. Trials 2020; 21:188. [PMID: 32059690 PMCID: PMC7023743 DOI: 10.1186/s13063-020-4085-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 01/18/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Dementia is a neurological condition that affects the cognitive and functional ability of the brain and is the leading cause of disability among those aged 65 years and above. More effective ways to manage dementia symptoms are needed because current treatment options (antidepressants and antipsychotics) can be ineffective and are associated with substantial side effects, including increased rate of mortality. Cannabinoid-based medicine (CBM) has shown an ability to inhibit some symptoms associated with dementia, and the adverse effects are often minimal; yet, little research has explored the use of CBM among this population. AIM To monitor the safety of a purified dose of CBM oil (3:2 delta-9-tetrahydrocannabinol:cannabidiol) on behaviour symptoms, quality of life and discomfort caused by pain. METHODS/DESIGN We will carry out an 18-week, randomised, double-blind crossover trial that consists of a 2-week eligibility period, two 6-week treatment cycles, and two 2-week washout periods (between both cycles and after the second treatment cycle). We aim to recruit 50 participants with dementia who are living in residential aged-care facilities. The participants will be randomised into two groups and will receive a dose of either CBM oil or placebo for the first treatment cycle and the opposite medication for the second. Data will be collected using the Neuropsychiatric Inventory Questionnaire, the Cohen-Mansfield Agitation Inventory, the Quality of Life in Alzheimer's Disease questionnaire, and the Abbey Pain Scale on seven occasions. These will be completed by the participants, aged-care staff, and nominated next of kin or family members. The participants' heart rate and blood pressure will be monitored weekly, and their body composition and weight will be monitored fortnightly by a research nurse, to assess individual dose response and frailty. In addition, pre- and post-surveys will be administered to aged-care staff and family members to understand their perceptions of CBM and to inform proposed focus groups consisting of the aged-care staff and next of kin. DISCUSSION The study design has been informed by medical professionals and key stakeholders, including those working in the residential aged-care industry to ensure patient safety, collection of non-invasive measures, and methodological rigor and study feasibility. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry, ACTRN12619000474156. Registered on 21 March 2019.
Collapse
Affiliation(s)
- Amanda Timler
- Institute for Health Research, University of Notre Dame Australia, Perth, WA, Australia.
| | - Caroline Bulsara
- Institute for Health Research, University of Notre Dame Australia, Perth, WA, Australia
| | - Max Bulsara
- Institute for Health Research, University of Notre Dame Australia, Perth, WA, Australia
| | | | - Jill Smith
- Institute for Health Research, University of Notre Dame Australia, Perth, WA, Australia
| | - Jim Codde
- Institute for Health Research, University of Notre Dame Australia, Perth, WA, Australia
| |
Collapse
|
46
|
Abstract
Given the aging Baby Boomer generation, changes in cannabis legislation, and the growing acknowledgment of cannabis for its therapeutic potential, it is predicted that cannabis use in the older population will escalate. It is, therefore, important to determine the interaction between the effects of cannabis and aging. The aim of this report is to describe the link between cannabis use and the aging brain. Our review of the literature found few and inconsistent empirical studies that directly address the impact of cannabis use on the aging brain. However, research focused on long-term cannabis use points toward cumulative effects on multimodal systems in the brain that are similarly affected during aging. Specifically, the effects of cannabis and aging converge on overlapping networks in the endocannabinoid, opioid, and dopamine systems that may affect functional decline particularly in the hippocampus and prefrontal cortex, which are critical areas for memory and executive functioning. To conclude, despite the limited current knowledge on the potential interactive effects between cannabis and aging, evidence from the literature suggests that cannabis and aging effects are concurrently present across several neurotransmitter systems. There is a great need for future research to directly test the interactions between cannabis and aging.
Collapse
Affiliation(s)
- Hye Bin Yoo
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - Jennifer DiMuzio
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| | - Francesca M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA
| |
Collapse
|
47
|
Vaseghi S, Babapour V, Nasehi M, Zarrindast MR. Synergistic but not additive effect between ACPA and lithium in the dorsal hippocampal region on spatial learning and memory in rats: Isobolographic analyses. Chem Biol Interact 2019; 315:108895. [PMID: 31715133 DOI: 10.1016/j.cbi.2019.108895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022]
Abstract
Lithium and cannabinoids can disrupt learning and memory performance. The goal of the present study is to investigate the additive or synergistic effect of lithium and cannabinoid combination doses on spatial learning and memory in rats by isobolographic analyses. Although several studies have suggested synergistic effects of cannabinoids or lithium in response to other compounds, in most of them isobolographic analyses were not used; Thus, there is a need for more detailed studies using isobolographic analyses. In this study, spatial memory was evaluated in the Morris Water Maze (MWM) apparatus by eight trials in the training day and one trial in the test day. Lithium was injected intraperitoneal and ACPA (cannabinoid type 1 receptor agonist) was injected into the dorsal hippocampal region (intra-CA1). For the isobolographic analyses, the ED50 of lithium (2.5 mg/kg) and ACPA (0.5 μg/rat) was measured by linear regression analysis, considering the doses were tested in our previous research. The results showed that, combinations of low, medium and high doses of lithium (0.312 mg/kg, 0.625 mg/kg and 1.25 mg/kg, respectively) and ACPA (0.0625 μg/rat, 0.125 μg/rat and 0.25 μg/rat, respectively) had synergistic but not additive effect on spatial learning and spatial memory. In conclusion, we suggest that combination doses of lithium and ACPA have synergistic but not additive effect on spatial learning and memory in the rat's dorsal hippocampal region.
Collapse
Affiliation(s)
- Salar Vaseghi
- Department of Physiology, Faculty of Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahab Babapour
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Schubert D, Kepchia D, Liang Z, Dargusch R, Goldberg J, Maher P. Efficacy of Cannabinoids in a Pre-Clinical Drug-Screening Platform for Alzheimer's Disease. Mol Neurobiol 2019; 56:7719-7730. [PMID: 31104297 PMCID: PMC6815693 DOI: 10.1007/s12035-019-1637-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/06/2019] [Indexed: 12/24/2022]
Abstract
Finding a therapy for Alzheimer's disease (AD) is perhaps the greatest challenge for modern medicine. The chemical scaffolds of many drugs in the clinic today are based upon natural products from plants, yet Cannabis has not been extensively examined as a source of potential AD drug candidates. Here, we determine if a number of non-psychoactive cannabinoids are neuroprotective in a novel pre-clinical AD and neurodegeneration drug-screening platform that is based upon toxicities associated with the aging brain. This drug discovery paradigm has yielded several compounds in or approaching clinical trials for AD. Eleven cannabinoids were assayed for neuroprotection in assays that recapitulate proteotoxicity, loss of trophic support, oxidative stress, energy loss, and inflammation. These compounds were also assayed for their ability to remove intraneuronal amyloid and subjected to a structure-activity relationship analysis. Pairwise combinations were assayed for their ability to synergize to produce neuroprotective effects that were greater than additive. Nine of the 11 cannabinoids have the ability to protect cells in four distinct phenotypic neurodegeneration screening assays, including those using neurons that lack CB1 and CB2 receptors. They are able to remove intraneuronal Aβ, reduce oxidative damage, and protect from the loss of energy or trophic support. Structure-activity relationship (SAR) data show that functional antioxidant groups such as aromatic hydroxyls are necessary but not sufficient for neuroprotection. Therefore, there is a need to focus upon CB1 agonists that have these functionalities if neuroprotection is the goal. Pairwise combinations of THC and CBN lead to a synergistic neuroprotective interaction. Together, these results significantly extend the published data by showing that non-psychoactive cannabinoids are potential lead drug candidates for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- David Schubert
- Cellular Neurobiological Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037-1002, USA
| | - Devin Kepchia
- Cellular Neurobiological Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037-1002, USA
| | - Zhibin Liang
- Cellular Neurobiological Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037-1002, USA
| | - Richard Dargusch
- Cellular Neurobiological Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037-1002, USA
| | | | - Pamela Maher
- Cellular Neurobiological Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037-1002, USA.
| |
Collapse
|
49
|
Páez JA, Campillo NE. Innovative Therapeutic Potential of Cannabinoid Receptors as Targets in Alzheimer’s Disease and Less Well-Known Diseases. Curr Med Chem 2019; 26:3300-3340. [DOI: 10.2174/0929867325666180226095132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/08/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
Abstract
:
The discovery of cannabinoid receptors at the beginning of the 1990s, CB1 cloned
in 1990 and CB2 cloned in 1993, and the availability of selective and potent cannabimimetics
could only be justified by the existence of endogenous ligands that are capable of binding to
them. Thus, the characterisation and cloning of the first cannabinoid receptor (CB1) led to the
isolation and characterisation of the first endocannabinoid, arachidonoylethanolamide (AEA),
two years later and the subsequent identification of a family of lipid transmitters known as the
fatty acid ester 2-arachidonoylglycerol (2-AG).
:
The endogenous cannabinoid system is a complex signalling system that comprises transmembrane
endocannabinoid receptors, their endogenous ligands (the endocannabinoids), the
specific uptake mechanisms and the enzymatic systems related to their biosynthesis and degradation.
:
The endocannabinoid system has been implicated in a wide diversity of biological processes,
in both the central and peripheral nervous systems, including memory, learning, neuronal development,
stress and emotions, food intake, energy regulation, peripheral metabolism, and
the regulation of hormonal balance through the endocrine system.
:
In this context, this article will review the current knowledge of the therapeutic potential of
cannabinoid receptor as a target in Alzheimer’s disease and other less well-known diseases
that include, among others, multiple sclerosis, bone metabolism, and Fragile X syndrome.
:
The therapeutic applications will be addressed through the study of cannabinoid agonists acting
as single drugs and multi-target drugs highlighting the CB2 receptor agonist.
Collapse
Affiliation(s)
- Juan A. Páez
- Instituto de Quimica Medica (IQM-CSIC). C/ Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Nuria E. Campillo
- Centro de Investigaciones Biologicas (CIB-CSIC). C/ Ramiro de Maeztu, 9, 28040, Madrid, Spain
| |
Collapse
|
50
|
Baron EP. Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science. Headache 2019; 58:1139-1186. [PMID: 30152161 DOI: 10.1111/head.13345] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Comprehensive literature reviews of historical perspectives and evidence supporting cannabis/cannabinoids in the treatment of pain, including migraine and headache, with associated neurobiological mechanisms of pain modulation have been well described. Most of the existing literature reports on the cannabinoids Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), or cannabis in general. There are many cannabis strains that vary widely in the composition of cannabinoids, terpenes, flavonoids, and other compounds. These components work synergistically to produce wide variations in benefits, side effects, and strain characteristics. Knowledge of the individual medicinal properties of the cannabinoids, terpenes, and flavonoids is necessary to cross-breed strains to obtain optimal standardized synergistic compositions. This will enable targeting individual symptoms and/or diseases, including migraine, headache, and pain. OBJECTIVE Review the medical literature for the use of cannabis/cannabinoids in the treatment of migraine, headache, facial pain, and other chronic pain syndromes, and for supporting evidence of a potential role in combatting the opioid epidemic. Review the medical literature involving major and minor cannabinoids, primary and secondary terpenes, and flavonoids that underlie the synergistic entourage effects of cannabis. Summarize the individual medicinal benefits of these substances, including analgesic and anti-inflammatory properties. CONCLUSION There is accumulating evidence for various therapeutic benefits of cannabis/cannabinoids, especially in the treatment of pain, which may also apply to the treatment of migraine and headache. There is also supporting evidence that cannabis may assist in opioid detoxification and weaning, thus making it a potential weapon in battling the opioid epidemic. Cannabis science is a rapidly evolving medical sector and industry with increasingly regulated production standards. Further research is anticipated to optimize breeding of strain-specific synergistic ratios of cannabinoids, terpenes, and other phytochemicals for predictable user effects, characteristics, and improved symptom and disease-targeted therapies.
Collapse
Affiliation(s)
- Eric P Baron
- Department of Neurology, Center for Neurological Restoration - Headache and Chronic Pain Medicine, Cleveland Clinic Neurological Institute, Cleveland, OH, 44195, USA
| |
Collapse
|