1
|
Yin L, Yuan X, Yu J, Ren X, Zhang H, Ye Y, Wang Z, Chen X. β-asarone relieves Parkinson's disease through reducing intracellular Ca 2+ in PINK1 mutant Drosophila melanogaster. Eur J Pharmacol 2025; 987:177155. [PMID: 39622404 DOI: 10.1016/j.ejphar.2024.177155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/20/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024]
Abstract
β-asarone, an effective volatile oil component of Acorus chinensis, has been found to hold beneficial effects on Parkinson's disease (PD), but its mechanism remains incompletely understood. Drosophila melanogaster with PTEN induced kinase 1 (PINK1) mutations, a prototype PD model, was used in this study. We found that calcium chelation profoundly alleviated a spectrum of PD symptoms. Whereas, calcium supplementation made the case worse, suggesting accumulated calcium contributes to progression of PD. β-asarone administration decreased Ca2+ level in PD flies, accompanied by alleviated behavioral and neural defects. Further study demonstrated that β-asarone downregulated L-type Ca2+ channels (Dmca1D), which was increased in PD flies. Besides, β-asarone decreased expression of 1,4,5 - trisphosphate receptor (Itpr), which is responsible for calcium release from endoplasmic reticulum (ER). Knockdown of either Dmca1D or Itpr specifically in dopaminergic neurons alleviated behavioral and neural defects in PD flies. While overexpression of Itpr aggravated PD symptoms. The results indicated that increased intracellular calcium influx and release triggers dysregulation of calcium homeostasis in PD flies. And β-asarone prevents PD by restoring Ca2+ homeostasis. Overall, the study demonstrated that β-asarone can serve as a new prospective medication against PD or other diseases associated with dysregulation of Ca2+ homeostasis.
Collapse
Affiliation(s)
- Lanxiang Yin
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xintong Yuan
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jiahui Yu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xuemin Ren
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Hongqin Zhang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yunyan Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, Anhui, China
| | - Zixuan Wang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xiangtao Chen
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
2
|
Jo S, Oh JH, Lee EJ, Choi M, Lee J, Lee S, Kim TW, Sung CO, Chung SJ. Mitochondrial DNA Copy Number as a Potential Biomarker for the Severity of Motor Symptoms and Prognosis in Parkinson's Disease. Mov Disord 2025. [PMID: 39760477 DOI: 10.1002/mds.30098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/24/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Mitochondrial function influences Parkinson's disease (PD) through the accumulation of pathogenic alpha-synuclein, oxidative stress, impaired autophagy, and neuroinflammation. The mitochondrial DNA copy number (mtDNA-CN), representing the number of mitochondrial DNA copies within a cell, serves as an easily assessable proxy for mitochondrial function. OBJECTIVE This study aimed to assess the diagnostic and prognostic capabilities of mtDNA-CN in PD. METHODS We assessed mtDNA-CN in blood samples using whole genome sequencing from 405 patients with PD and 200 healthy controls (HC). We examined the relationship between mtDNA-CN levels and motor symptom severity in PD, as well as their association with dementia development in patients with early-PD (within 3 years of diagnosis). RESULTS mtDNA-CN levels were significantly lower in patients with PD compared with HC (P = 1.1 × 10-5). A negative correlation was discovered between mtDNA-CN level and motor severity in PD (correlation coefficient = -0.20; P = 0.008). Among 210 patients with early-PD, Cox regression analysis demonstrated an association between lower mtDNA-CN levels and a higher risk of developing dementia (hazard ratio [HR] = 0.41, 95% confidence interval: 0.20-0.86, P = 0.02), even after adjusting for age and blood cell count (HR = 0.41, 95% confidence interval: 0.18-0.92, P = 0.03). However, mtDNA-CN levels did not significantly correlate with motor progression in PD. CONCLUSION Our findings suggest that blood mtDNA-CN may function as a diagnostic biomarker for PD and a prognostic marker for dementia in patients with PD. © 2025 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sungyang Jo
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji-Hye Oh
- Bioinformatics Core Laboratory, Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Moongwan Choi
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jihyun Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sangjin Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Tae Won Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang Ohk Sung
- Bioinformatics Core Laboratory, Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Jana RD, Nguyen HD, Yan G, Chen TY, Do LH. Reversing Signs of Parkinsonism in a Cell Model Using Mitochondria-Targeted Organoiridium Catalysis. J Med Chem 2025. [PMID: 39749732 DOI: 10.1021/acs.jmedchem.4c02741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
We report the application of organoiridium complexes as catalytic agents for the detoxification of biogenic reactive aldehyde species (RASP), which are implicated in the pathogenesis of neurodegenerative disorders. We show that Ir complexes functionalized with phosphonium cations localize selectively in the mitochondria and have better cellular retention compared to that of their parent Ir species. In a cell model for Parkinsonism, the mitochondria-targeted iridium catalysts exhibited superior cell protecting abilities and longer-lasting effects (up to 6 d) than conventional RASP scavengers, which failed to be effective beyond 24 h. Our biological assays indicate that treatment with the Ir compounds led to reduction in reactive oxygen species and aldehyde levels while partially preserving the native mitochondrial membrane potential and NAD+/NADH ratio in 1-methyl-4-phenylpyridinium-inhibited cells. Our work is the first to demonstrate catalytic nonenzymatic detoxification of RASP in living systems.
Collapse
Affiliation(s)
- Rahul D Jana
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, Texas 77204, United States
| | - Hieu D Nguyen
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, Texas 77204, United States
| | - Guangjie Yan
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, Texas 77204, United States
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, Texas 77204, United States
| | - Loi H Do
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, Texas 77204, United States
| |
Collapse
|
4
|
Wei YX, Wang YH, Yu XT, Hu LL, Luo XQ, Sun SC. Loss of LRRK2 activity induces cytoskeleton defects and oxidative stress during porcine oocyte maturation. Cell Commun Signal 2025; 23:2. [PMID: 39748263 PMCID: PMC11697660 DOI: 10.1186/s12964-024-01997-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a ROCO family member which its mutation is closely related with Parkinson's disease, and LRRK2 is widely involved into the regulation of autophagy, vesicle transport and neuronal proliferation. However, the roles of LRRK2 during mammalian oocyte maturation are still largely unclear. In present study, we disturbed the activity of LRRK2 and showed its essential roles in porcine oocytes. We showed that LRRK2 stably expressed during oocyte maturation, and the loss of LRRK2 activity disturbed cumulus expansion and oocyte polar body extrusion, indicating its involvement into oocyte maturation. Further analysis indicated that LRRK2 was related with cytoskeleton dynamics since its inhibition caused spindle organization defect and chromosome misalignment, and both cytoplasmic and cortex actin decreased. Moreover, LRRK2 co-localized with mitochondria and its activity was essential for mitochondria distribution. Loss of LRRK2 activity altered the TMRE level, which ultimately induced ROS-related oxidative stress. Taken together, our data suggested the important roles of LRRK2 on mammalian oocyte maturation through its effects on cytoskeleton dynamics and mitochondria functions.
Collapse
Affiliation(s)
- Yu-Xia Wei
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Ya-Han Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Ting Yu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin-Lin Hu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiao-Qiong Luo
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Shao-Chen Sun
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Pham KY, Khanal S, Bohara G, Rimal N, Song SH, Nguyen TTK, Hong IS, Cho J, Kang JS, Lee S, Choi DY, Yook S. HDAC6 inhibitor-loaded brain-targeted nanocarrier-mediated neuroprotection in methamphetamine-driven Parkinson's disease. Redox Biol 2024; 79:103457. [PMID: 39700694 DOI: 10.1016/j.redox.2024.103457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
The dynamic equilibrium between acetylation and deacetylation is vital for cellular homeostasis. Parkinson's disease (PD), a neurodegenerative disorder marked by α-synuclein (α-syn) accumulation and dopaminergic neuron loss in the substantia nigra, is associated with a disruption of this balance. Therefore, correcting this imbalance with histone deacetylase (HDAC) inhibitors represents a promising treatment strategy for PD. CAY10603 (CAY) is a potent and selective HDAC6 inhibitor. However, because of its poor water solubility and short biological half-life, it faces clinical limitations. Herein, we engineered lactoferrin-decorated CAY-loaded poly(lactic-co-glycolic acid) nanoparticles (denoted as PLGA@CAY@Lf NPs) to effectively counter methamphetamine (Meth)-induced PD. PLGA@CAY@Lf NPs showed enhanced blood-brain barrier crossing and significant brain accumulation. Notably, CAY released from PLGA@CAY@Lf NPs restored the disrupted acetylation balance in PD, resulting in neuroprotection by reversing mitochondrial dysfunction, suppressing reactive oxygen species, and inhibiting α-syn accumulation. Additionally, PLGA@CAY@Lf NPs treatment normalized dopamine and tyrosine hydroxylase levels, reduced neuroinflammation, and improved behavioral impairments. These findings underscore the potential of PLGA@CAY@Lf NPs in treating Meth-induced PD and suggest that an innovative HDAC6-inhibitor-based strategy can be used to treat PD.
Collapse
Affiliation(s)
- Khang-Yen Pham
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Shristi Khanal
- College of Pharmacy, Yeungnam University, Gyeongbuk, 38541, Republic of Korea
| | - Ganesh Bohara
- College of Pharmacy, Yeungnam University, Gyeongbuk, 38541, Republic of Korea
| | - Nikesh Rimal
- College of Pharmacy, Yeungnam University, Gyeongbuk, 38541, Republic of Korea
| | - Sang-Hoon Song
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Thoa Thi Kim Nguyen
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - In-Sun Hong
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21565, Republic of Korea
| | - Jinkyung Cho
- College of Sport Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, Gyeongbuk, 38541, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
6
|
Wu HH, Zhu Q, Liang N, Xiang Y, Xu TY, Huang ZC, Cai JY, Weng LL, Ge HS. CISD2 regulates oxidative stress and mitophagy to maintain the balance of the follicular microenvironment in PCOS. Redox Rep 2024; 29:2377870. [PMID: 39010730 PMCID: PMC467114 DOI: 10.1080/13510002.2024.2377870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVES To observe the CISD2 expression among PCOS patients and to explore its profound impact on the follicular microenvironment. Moreover, we want to elucidate the intricate mechanistic contribution of CISD2 to the onset and progression of PCOS. METHODS Oxidase NOX2, mitophagy-related proteins, and CISD2 were detected by WB. The changes in mitochondrial structure and quantity were observed by transmission electron microscopy. Mitochondrial and lysosome colocalization was used to detect the changes of mitophagy. MDA kit, GSH and GSSG Assay kit and ROS probe were used to detect oxidative stress damage. RESULTS We found that CISD2, mitophagy and oxidase in the GCs of PCOS patients were significantly increased. Testosterone stimulation leads to the increase of oxidase, mitophagy, and CISD2 in KGN cells. CISD2 inhibition promoted the increase of mitophagy, and the activation of mitochondria-lysosome binding, while alleviating the oxidative stress. CONCLUSIONS Inhibition of CISD2 can improve the occurrence of oxidative stress by increasing the level of mitophagy, thus affecting the occurrence and development of PCOS diseases.
Collapse
Affiliation(s)
- Hong-Hui Wu
- Graduate School, Dalian Medical University, Liaoning, People’s Republic of China
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
| | - Qi Zhu
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Na Liang
- Graduate School, Dalian Medical University, Liaoning, People’s Republic of China
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
| | - Yu Xiang
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Tian-Yue Xu
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Zi-Chao Huang
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jie-Yu Cai
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Ling-Lin Weng
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Hong-Shan Ge
- Graduate School, Dalian Medical University, Liaoning, People’s Republic of China
- Reproduction Medicine Centre, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, People’s Republic of China
- Graduate School, Nanjing Medical University, Nanjing, People’s Republic of China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
7
|
Almalki WH, Almujri SS. Aging, ROS, and cellular senescence: a trilogy in the progression of liver fibrosis. Biogerontology 2024; 26:10. [PMID: 39546058 DOI: 10.1007/s10522-024-10153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Ageing is an inevitable and multifaceted biological process that impacts a wide range of cellular and molecular mechanisms, leading to the development of various diseases, such as liver fibrosis. Liver fibrosis progresses to cirrhosis, which is an advanced form due to high amounts of extracellular matrix and restoration of normal liver structure with failure to repair damaged tissue and cells, marking the end of liver function and total liver failure, ultimately death. The most important factors are reactive oxygen species (ROS) and cellular senescence. Oxidative stress is defined as an impairment by ROS, which are by-products of the mitochondrial electron transport chain and other key molecular pathways that induce cell damage and can activate cellular senescence pathways. Cellular senescence is characterized by pro-inflammatory cytokines, growth factors, and proteases secreted by senescent cells, collectively known as the senescence-associated secretory phenotype (SASP). The presence of senescent cells, which disrupt tissue architecture and function and increase senescent cell production in liver tissues, contributes to fibrogenesis. Hepatic stellate cells (HSCs) are activated in response to chronic liver injury, oxidative stress, and senescence signals that drive excessive production and deposition of extracellular matrix. This review article aims to provide a comprehensive overview of the pathogenic role of ROS and cellular senescence in the aging liver and their contribution to fibrosis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Abha, Aseer, Saudi Arabia.
| |
Collapse
|
8
|
Jiang X, Wang Y, Lin Z, Li C, Wang Q, Zhang J, Liu X, Li Z, Cui C. Polygonatum sibiricum polysaccharides: A promising strategy in the treatment of neurodegenerative disease. Neurochem Int 2024; 181:105902. [PMID: 39542041 DOI: 10.1016/j.neuint.2024.105902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Neurodegenerative diseases (NDDs), as a neurological disorder characterised by neuronal degeneration and death, are a serious threat to human health and have long attracted attention due to their complex pathogenesis and the ineffectiveness of therapeutic drugs. Existing studies have shown that Polygonatum Sibiricum polysaccharides (PSP) have immunoregulatory, antioxidant, anti-inflammatory and other pharmacological effects, and their neuroprotective effects have been demonstrated in several scientific studies. This paper reviews the main pharmacological effects and mechanisms of PSP in the protection and treatment of NDDs, to provide a reference for the clinical application and basic research of PSP in NDDs.
Collapse
Affiliation(s)
- Xue Jiang
- Shandong Medicine Technician College, 271000, Taian, China; Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, 271000, Taian, China
| | - Yumei Wang
- Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, 271000, Taian, China
| | - Zhaochen Lin
- Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, 271000, Taian, China
| | - Chao Li
- Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, 271000, Taian, China
| | - Qian Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Junyan Zhang
- College of Life Sciences, Northwest A & F University, 710000, Xi'an, China
| | - Xiuhua Liu
- Shandong Taishan Sealwort Biotechnology Limited Liability Company, 271000, Taian, China
| | - Ziye Li
- Xiangya School of Public Health, Central South University, 410078, Changsha, China
| | - Chao Cui
- Qilu Hospital of Shandong University Dezhou Hospital, 253000, Dezhou, China; Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, 271000, Taian, China.
| |
Collapse
|
9
|
Siquan L, Weilin C, Xiuwen C, Meiyan Z, Weihong G, Xiaoli F. Evaluating the safety and efficiency of nanomaterials: A focus on mitochondrial health. Biomed Pharmacother 2024; 180:117484. [PMID: 39316969 DOI: 10.1016/j.biopha.2024.117484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024] Open
Abstract
Nanomaterials (NMs) have extensive application potential in drug delivery, tissue engineering, and various other domains, attributable to their exceptional physical and chemical properties. Nevertheless, an increasing body of literature underscores the diverse safety risks are associated with NMs upon interaction with the human body, including oxidative stress and programmed cell death. Mitochondria, serving as cellular energy factories, play a pivotal role in energy metabolism and the regulation of cell fate. Organs with substantial energy demands, including the heart and brain, are highly sensitive to mitochondrial integrity, with mitochondrial impairment potentially resulting in significant dysfunction and pathologies such as as heart failure and neurodegenerative disease. This review elucidates the pathways by which NMs translocate into mitochondria, their intracellular dynamics, and their impact on mitochondrial morphology, respiratory chain activity, and metabolic processes. We further investigate associated molecular mechanisms, including mitochondrial dynamic imbalance, calcium overload, and oxidative stress, and elucidate the pivotal roles of mitochondria in different forms of programmed cell death such as apoptosis and autophagy. Finally, we offer recommendations regarding the safety and efficacy of NMs for medical applications. By systematically analyzing the interactions and molecular mechanisms between NMs and mitochondria, this paper aims to enhance the toxicological evaluation framework of NMs and provide a foundational reference and theoretical basis for their clinical utilization.
Collapse
Affiliation(s)
- Liu Siquan
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Cheng Weilin
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Chen Xiuwen
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Zou Meiyan
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Guo Weihong
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Feng Xiaoli
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
10
|
Kim SG, Hwang JS, George NP, Jang YE, Kwon M, Lee SS, Lee G. Integrative Metabolome and Proteome Analysis of Cerebrospinal Fluid in Parkinson's Disease. Int J Mol Sci 2024; 25:11406. [PMID: 39518959 PMCID: PMC11547079 DOI: 10.3390/ijms252111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Recent studies have highlighted the significant role of cerebrospinal fluid (CSF) in reflecting pathophysiological PD brain conditions by analyzing the components of CSF. Based on the published literature, we created a single network with altered metabolites in the CSF of patients with PD. We analyzed biological functions related to the transmembrane of mitochondria, respiration of mitochondria, neurodegeneration, and PD using a bioinformatics tool. As the proteome reflects phenotypes, we collected proteome data based on published papers, and the biological function of the single network showed similarities with that of the metabolomic network. Then, we analyzed the single network of integrated metabolome and proteome. In silico predictions based on the single network with integrated metabolomics and proteomics showed that neurodegeneration and PD were predicted to be activated. In contrast, mitochondrial transmembrane activity and respiration were predicted to be suppressed in the CSF of patients with PD. This review underscores the importance of integrated omics analyses in deciphering PD's complex biochemical networks underlying neurodegeneration.
Collapse
Affiliation(s)
- Seok Gi Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Ji Su Hwang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Nimisha Pradeep George
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yong Eun Jang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Minjun Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Sang Seop Lee
- Department of Pharmacology, Inje University College of Medicine, Busan 50834, Republic of Korea
| | - Gwang Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
11
|
Yin KF, Chen T, Gu XJ, Jiang Z, Su WM, Duan QQ, Wen XJ, Cao B, Li JR, Chi LY, Chen YP. Identification of Potential Causal Genes for Neurodegenerative Diseases by Mitochondria-Related Genome-Wide Mendelian Randomization. Mol Neurobiol 2024:10.1007/s12035-024-04528-3. [PMID: 39347895 DOI: 10.1007/s12035-024-04528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Current research lacks comprehensive investigations into the potential causal link between mitochondrial-related genes and the risk of neurodegenerative diseases (NDDs). We aimed to identify potential causative genes for five NDDs through an examination of mitochondrial-related gene expression levels. Through the integration of summary statistics from expression quantitative trait loci (eQTL) datasets (human blood and brain tissue), mitochondrial DNA copy number (mtDNA-CN), and genome-wide association studies (GWAS) datasets of five NDDs from European ancestry, we conducted a Mendelian randomization (MR) analysis to explore the potential causal relationship between mitochondrial-related genes and Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Lewy body dementia (LBD). Sensitivity analysis and Bayesian colocalization were employed to validate this causal relationship. Through MR analysis, we have identified potential causal relationships between 12 mitochondria-related genes and AD, PD, ALS, and FTD overlapping with motor neuron disease (FTD_MND) in human blood or brain tissue. Bayesian colocalization analysis further confirms 9 causal genes, including NDUFS2, EARS2, and MRPL41 for AD; NDUFAF2, MALSU1, and METTL8 for PD; MYO19 and MRM1 for ALS; and FASTKD1 for FTD_MND. Importantly, in both human blood and brain tissue, NDUFS2 exhibits a significant pathogenic effect on AD, while NDUFAF2 demonstrates a robust protective effect on PD. Additionally, the mtDNA-CN plays a protected role in LBD (OR = 0.62, p = 0.031). This study presents evidence establishing a causal relationship between mitochondrial dysfunction and NDDs. Furthermore, the identified candidate genes may serve as potential targets for drug development aimed at preventing NDDs.
Collapse
Affiliation(s)
- Kang-Fu Yin
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ting Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiao-Jing Gu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zheng Jiang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei-Ming Su
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qing-Qing Duan
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiang-Jin Wen
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bei Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ju-Rong Li
- Department of Geriatrics, Dazhou Central Hospital, Dazhou, 635000, Sichuan, China
| | - Li-Yi Chi
- Department of Neurology, First Affiliated Hospital of Air Force Military Medical University, Xi'an, 710072, Shaanxi, China
| | - Yong-Ping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
12
|
Wei J, Zhang M, Wang X, Yang K, Xiao Q, Zhu X, Pan X. Role of cardiolipin in regulating and treating atherosclerotic cardiovascular diseases. Eur J Pharmacol 2024; 979:176853. [PMID: 39067567 DOI: 10.1016/j.ejphar.2024.176853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Cardiovascular diseases, mainly caused by atherosclerosis, are the leading causes of morbidity and mortality worldwide. Despite the discrepancies in clinical manifestations between different abnormalities, atherosclerosis shares similar pathophysiological processes, such as mitochondrial dysfunction. Cardiolipin (CL) is a conserved mitochondria-specific lipid that contributes to the cristae structure of the inner mitochondrial membrane (IMM). Alterations in the CL, including oxidative modification, reduced quantity, and abnormal localization, contribute to the onset and progression of atherosclerosis. In this review, we summarize the knowledge that CL is involved in the pathogenesis of atherosclerosis. On the one hand, CL and its oxidative modification promote the progression of atherosclerosis via several mechanisms, including oxidative stress, apoptosis, and inflammation in response to stress. On the other hand, CL externalizes to the outer mitochondrial membrane (OMM) and acts as the pivotal "eat-me" signal in mitophagy, removing dysfunctional mitochondria and safeguarding against the progression of atherosclerosis. Given the imbalance between proatherogenic and antiatherogenic effects, we provide our understanding of the roles of the CL and its oxidative modification in atherosclerotic cardiovascular diseases, in addition to potential therapeutic strategies aimed at restoring the CL. Briefly, CL is far more than a structural IMM lipid; broader significances of the evolutionarily conserved lipid need to be explored.
Collapse
Affiliation(s)
- Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xia Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaiying Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
13
|
Shima S, Mizutani Y, Yoshimoto J, Maeda Y, Ohdake R, Nagao R, Maeda T, Higashi A, Ueda A, Ito M, Mutoh T, Watanabe H. Uric acid and alterations of purine recycling disorders in Parkinson's disease: a cross-sectional study. NPJ Parkinsons Dis 2024; 10:170. [PMID: 39251680 PMCID: PMC11385569 DOI: 10.1038/s41531-024-00785-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/20/2024] [Indexed: 09/11/2024] Open
Abstract
The relationship between reduced serum uric acid (UA) levels and Parkinson's disease (PD), particularly purine metabolic pathways, is not fully understood. Our study compared serum and cerebrospinal fluid (CSF) levels of inosine, hypoxanthine, xanthine, and UA in PD patients and healthy controls. We analyzed 132 samples (serum, 45 PD, and 29 age- and sex-matched healthy controls; CSF, 39 PD, and 19 age- and sex-matched healthy controls) using liquid chromatography-tandem mass spectrometry. Results showed significantly lower serum and CSF UA levels in PD patients than in controls (p < 0.0001; effect size r = 0.5007 in serum, p = 0.0046; r = 0.3720 in CSF). Decreased serum hypoxanthine levels were observed (p = 0.0002; r = 0.4338) in PD patients compared to controls with decreased CSF inosine and hypoxanthine levels (p < 0.0001, r = 0.5396: p = 0.0276, r = 0.2893). A general linear model analysis indicated that the reduced UA levels were mainly due to external factors such as sex and weight in serum and age and weight in CSF unrelated to the purine metabolic pathway. Our findings highlight that decreased UA levels in PD are influenced by factors beyond purine metabolism, including external factors such as sex, weight, and age, emphasizing the need for further research into the underlying mechanisms and potential therapeutic approaches.
Collapse
Affiliation(s)
- Sayuri Shima
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yasuaki Mizutani
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Junichiro Yoshimoto
- Department of Biomedical Data Science, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yasuhiro Maeda
- Open Facility Center, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Reiko Ohdake
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Ryunosuke Nagao
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Toshiki Maeda
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Atsuhiro Higashi
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Akihiro Ueda
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Mizuki Ito
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Tatsuro Mutoh
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
- Fujita Health University Central Japan International Airport Clinic, 1-1 Centrair, Tokoname, Aichi, 479-0881, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
14
|
Idowu OK, Dosumu OO, Boboye AS, Oremosu AA, Mohammed AA. Lauric acid with or without levodopa ameliorates Parkinsonism in genetically modified model of Drosophila melanogaster via the oxidative-inflammatory-apoptotic pathway. Brain Behav 2024; 14:e70001. [PMID: 39245995 PMCID: PMC11381577 DOI: 10.1002/brb3.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD), the most prevalent type of Parkinsonism, is a progressive neurological condition characterized by a range of motor and non-motor symptoms. The complicated etiology of PD is thought to involve a summation of aging, genetic predisposition, and environmental variables. However, the α-synuclein protein plays a significant role in the disease's pathophysiology. MATERIALS AND METHODS The UAS-α-Syn and Ddc-Gal4 strains were crossed to produce offspring referred to as PD flies. The entire population of flies was divided into five groups, each having about 100 flies and five replicates. The control group (w1118) and the PD group not receiving treatment were exposed to lauric acid (LA)/levodopa (LD)-free diet, while the PD groups that received treatments were fed with either a 250 mg/kg LA diet, a 250 mg/kg LD diet, or a combination of the two for 21 days. Longevity, geotaxis, and olfactory assays were performed in addition to other biochemical tests. RESULTS As a result of the overexpression of α-synuclein, the locomotive capacity, lifespan, and antioxidant status were all significantly (p < .05) reduced, and the apoptotic and neuroinflammatory activities were increased. Nevertheless, the majority of the treated flies improved significantly (p < .05). CONCLUSION LA, whether combined with LD or not, elicited a significant response in α-synuclein/dopa decarboxylase genetically modified Drosophila melanogaster Parkinsonism models.
Collapse
Affiliation(s)
- Olumayowa K Idowu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
- Department of Anatomy, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Olufunke O Dosumu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Ayodeji S Boboye
- Department of Anatomy, College of Health Sciences, Federal University of Technology, Akure, Nigeria
| | - Ademola A Oremosu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Abdullahi A Mohammed
- Department of Human Anatomy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Butare, Rwanda
| |
Collapse
|
15
|
Hong WL, Huang H, Zeng X, Duan CY. Targeting mitochondrial quality control: new therapeutic strategies for major diseases. Mil Med Res 2024; 11:59. [PMID: 39164792 PMCID: PMC11337860 DOI: 10.1186/s40779-024-00556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 07/13/2024] [Indexed: 08/22/2024] Open
Abstract
Mitochondria play a crucial role in maintaining the normal physiological state of cells. Hence, ensuring mitochondrial quality control is imperative for the prevention and treatment of numerous diseases. Previous reviews on this topic have however been inconsistencies and lack of systematic organization. Therefore, this review aims to provide a comprehensive and systematic overview of mitochondrial quality control and explore the possibility of targeting the same for the treatment of major diseases. This review systematically summarizes three fundamental characteristics of mitochondrial quality control, including mitochondrial morphology and dynamics, function and metabolism, and protein expression and regulation. It also extensively examines how imbalances in mitochondrial quality are linked to major diseases, such as ischemia-hypoxia, inflammatory disorders, viral infections, metabolic dysregulations, degenerative conditions, and tumors. Additionally, the review explores innovative approaches to target mitochondrial quality control, including using small molecule drugs that regulate critical steps in maintaining mitochondrial quality, nanomolecular materials designed for precise targeting of mitochondria, and novel cellular therapies, such as vesicle therapy and mitochondrial transplantation. This review offers a novel perspective on comprehending the shared mechanisms underlying the occurrence and progression of major diseases and provides theoretical support and practical guidance for the clinical implementation of innovative therapeutic strategies that target mitochondrial quality control for treating major diseases.
Collapse
Affiliation(s)
- Wei-Long Hong
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - He Huang
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xue Zeng
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Chen-Yang Duan
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
16
|
Lopriore P, Palermo G, Meli A, Bellini G, Benevento E, Montano V, Siciliano G, Mancuso M, Ceravolo R. Mitochondrial Parkinsonism: A Practical Guide to Genes and Clinical Diagnosis. Mov Disord Clin Pract 2024; 11:948-965. [PMID: 38943319 PMCID: PMC11329577 DOI: 10.1002/mdc3.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/19/2024] [Accepted: 06/01/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Primary mitochondrial diseases (PMDs) are the most common inborn errors of energy metabolism, with a combined prevalence of 1 in 4300. They can result from mutations in either nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). These disorders are multisystemic and mainly affect high energy-demanding tissues, such as muscle and the central nervous system (CNS). Among many clinical features of CNS involvement, parkinsonism is one of the most common movement disorders in PMDs. METHODS This review provides a pragmatic educational overview of the most recent advances in the field of mitochondrial parkinsonism, from pathophysiology and genetic etiologies to phenotype and diagnosis. RESULTS mtDNA maintenance and mitochondrial dynamics alterations represent the principal mechanisms underlying mitochondrial parkinsonism. It can be present in isolation, alongside other movement disorders or, more commonly, as part of a multisystemic phenotype. Mutations in several nuclear-encoded genes (ie, POLG, TWNK, SPG7, and OPA1) and, more rarely, mtDNA mutations, are responsible for mitochondrial parkinsonism. Progressive external opthalmoplegia and optic atrophy may guide genetic etiology identification. CONCLUSION A comprehensive deep-phenotyping approach is needed to reach a diagnosis of mitochondrial parkinsonism, which lacks distinctive clinical features and exemplifies the intricate genotype-phenotype interplay of PMDs.
Collapse
Affiliation(s)
- Piervito Lopriore
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Giovanni Palermo
- Unit of Neurology, Department of Clinical and Experimental Medicine, Center for Neurodegenerative Diseases–Parkinson's Disease and Movement DisordersUniversity of PisaPisaItaly
| | - Adriana Meli
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Gabriele Bellini
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Unit of Neurology, Department of Clinical and Experimental Medicine, Center for Neurodegenerative Diseases–Parkinson's Disease and Movement DisordersUniversity of PisaPisaItaly
| | - Elena Benevento
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Unit of Neurology, Department of Clinical and Experimental Medicine, Center for Neurodegenerative Diseases–Parkinson's Disease and Movement DisordersUniversity of PisaPisaItaly
| | - Vincenzo Montano
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Gabriele Siciliano
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Michelangelo Mancuso
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Roberto Ceravolo
- Unit of Neurology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Unit of Neurology, Department of Clinical and Experimental Medicine, Center for Neurodegenerative Diseases–Parkinson's Disease and Movement DisordersUniversity of PisaPisaItaly
| |
Collapse
|
17
|
Zhou Y, Wang C, Nie Y, Wu L, Xu A. 2,4,6-trinitrotoluene causes mitochondrial toxicity in Caenorhabditis elegans by affecting electron transport. ENVIRONMENTAL RESEARCH 2024; 252:118820. [PMID: 38555093 DOI: 10.1016/j.envres.2024.118820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
As a typical energetic compound widely used in military activities, 2,4,6-trinitrotoluene (TNT) has attracted great attention in recent years due to its heavy pollution and wide distribution in and around the training facilities, firing ranges, and demolition sites. However, the subcellular targets and the underlying toxic mechanism of TNT remain largely unknown. In this study, we explored the toxic effects of TNT biological reduction on the mitochondrial function and homeostasis in Caenorhabditis elegans (C. elegans). With short-term exposure of L4 larvae, 10-1000 ng/mL TNT reduced mitochondrial membrane potential and adenosine triphosphate (ATP) content, which was associated with decreased expression of specific mitochondrial complex involving gas-1 and mev-1 genes. Using fluorescence-labeled transgenic nematodes, we found that fluorescence expression of sod-3 (muls84) and gst-4 (dvls19) was increased, suggesting that TNT disrupted the mitochondrial antioxidant defense system. Furthermore, 10 ng/mL TNT exposure increased the expression of the autophagy-related gene pink-1 and activated mitochondrial unfolded protein response (mt UPR), which was indicated by the increased expression of mitochondrial stress activated transcription factor atfs-1, ubiquitin-like protein ubl-5, and homeobox protein dve-1. Our findings demonstrated that TNT biological reduction caused mitochondrial dysfunction and the development of mt UPR protective stress responses, and provided a basis for determining the potential risks of energetic compounds to living organisms.
Collapse
Affiliation(s)
- Yanping Zhou
- Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China
| | - Chunyan Wang
- Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China
| | - Yaguang Nie
- Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China.
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - An Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Science, Anhui, Hefei, 230031, PR China.
| |
Collapse
|
18
|
Magrinelli F, Tesson C, Angelova PR, Salazar-Villacorta A, Rodriguez JA, Scardamaglia A, Chung BHY, Jaconelli M, Vona B, Esteras N, Kwong AKY, Courtin T, Maroofian R, Alavi S, Nirujogi R, Severino M, Lewis PA, Efthymiou S, O’Callaghan B, Buchert R, Sofan L, Lis P, Pinon C, Breedveld GJ, Chui MMC, Murphy D, Pitz V, Makarious MB, Cassar M, Hassan BA, Iftikhar S, Rocca C, Bauer P, Tinazzi M, Svetel M, Samanci B, Hanağası HA, Bilgiç B, Obeso JA, Kurtis MM, Cogan G, Başak AN, Kiziltan G, Gül T, Yalçın G, Elibol B, Barišić N, Ng EWS, Fan SS, Hershkovitz T, Weiss K, Raza Alvi J, Sultan T, Azmi Alkhawaja I, Froukh T, E Alrukban HA, Fauth C, Schatz UA, Zöggeler T, Zech M, Stals K, Varghese V, Gandhi S, Blauwendraat C, Hardy JA, Lesage S, Bonifati V, Haack TB, Bertoli-Avella AM, Steinfeld R, Alessi DR, Steller H, Brice A, Abramov AY, Bhatia KP, Houlden H. PSMF1 variants cause a phenotypic spectrum from early-onset Parkinson's disease to perinatal lethality by disrupting mitochondrial pathways. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.19.24308302. [PMID: 39148840 PMCID: PMC11326324 DOI: 10.1101/2024.06.19.24308302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Dissecting biological pathways highlighted by Mendelian gene discovery has provided critical insights into the pathogenesis of Parkinson's disease (PD) and neurodegeneration. This approach ultimately catalyzes the identification of potential biomarkers and therapeutic targets. Here, we identify PSMF1 as a new gene implicated in PD and childhood neurodegeneration. We find that biallelic PSMF1 missense and loss-of-function variants co-segregate with phenotypes from early-onset PD and parkinsonism to perinatal lethality with neurological manifestations across 15 unrelated pedigrees with 22 affected subjects, showing clear genotype-phenotype correlation. PSMF1 encodes the proteasome regulator PSMF1/PI31, a highly conserved, ubiquitously expressed partner of the 20S proteasome and neurodegeneration-associated F-box-O 7 and valosin-containing proteins. We demonstrate that PSMF1 variants impair mitochondrial membrane potential, dynamics and mitophagy in patient-derived fibroblasts. Additionally, we develop models of psmf1 knockdown Drosophila and Psmf1 conditional knockout mouse exhibiting age-dependent motor impairment, with diffuse gliosis in mice. These findings unequivocally link defective PSMF1 to early-onset PD and neurodegeneration and suggest mitochondrial dysfunction as a mechanistic contributor.
Collapse
Affiliation(s)
- Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Christelle Tesson
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Plamena R. Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Ainara Salazar-Villacorta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jose A. Rodriguez
- Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Annarita Scardamaglia
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Brian Hon-Yin Chung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Hong Kong Genome Institute, Hong Kong SAR, China
| | - Matthew Jaconelli
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and Inner Ear Lab, University Medical Center Göttingen, Göttingen, Germany
| | - Noemi Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Neurochemistry Research Institute, Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Anna Ka-Yee Kwong
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Thomas Courtin
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Shahryar Alavi
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Raja Nirujogi
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | | | - Patrick A. Lewis
- Royal Veterinary College, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Benjamin O’Callaghan
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Linda Sofan
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Pawel Lis
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Chloé Pinon
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Guido J. Breedveld
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martin Man-Chun Chui
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Vanessa Pitz
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Mary B. Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Marlene Cassar
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Bassem A. Hassan
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Sana Iftikhar
- Department of Real-World evidence studies, CENTOGENE GmbH, Rostock, Germany
| | - Clarissa Rocca
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Peter Bauer
- Department of Medical Genetics, CENTOGENE GmbH, Rostock, Germany
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marina Svetel
- Movement Disorders Department, Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Bedia Samanci
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Haşmet A. Hanağası
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Basar Bilgiç
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - José A. Obeso
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
- HM CINAC, Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- University CEU-San Pablo, Madrid, Spain
| | - Monica M. Kurtis
- Neurology Department, Hospital Ruber Internacional, Madrid, Spain
| | - Guillaume Cogan
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Ayşe Nazlı Başak
- Koç University, School of Medicine, Research Center for Translational Medicine KUTTAM-Neurodegeneration Research Laboratory NDAL, Istanbul, Turkey
| | - Güneş Kiziltan
- Department of Neurology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Tuğçe Gül
- Koç University, School of Medicine, Research Center for Translational Medicine KUTTAM-Neurodegeneration Research Laboratory NDAL, Istanbul, Turkey
| | - Gül Yalçın
- Department of Neurology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Bülent Elibol
- Department of Neurology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Nina Barišić
- Department of Pediatrics, University of Zagreb Medical School and University Hospital Center Zagreb, Zagreb, Croatia
| | - Earny Wei-Sen Ng
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sze-Shing Fan
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Tova Hershkovitz
- The Genetics Institute, Galilee Medical Center, Nahariya, Israel
| | - Karin Weiss
- Genetics Institute, Rambam Health Care Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Javeria Raza Alvi
- Department of Paediatric Neurology, The Children’s Hospital and the University of Child Health Sciences, Lahore, Punjab, Pakistan
| | - Tipu Sultan
- Department of Paediatric Neurology, The Children’s Hospital and the University of Child Health Sciences, Lahore, Punjab, Pakistan
| | - Issam Azmi Alkhawaja
- Pediatric Neurology Unit, Pediatric Department, Albashir Hospital, Amman, Jordan
| | - Tawfiq Froukh
- Department of Biotechnology and Genetics Engineering, Philadelphia University, Jordan
| | | | - Christine Fauth
- Institute of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Ulrich A. Schatz
- Institute of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
- Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Thomas Zöggeler
- Department of Pediatrics I, Medical University Innsbruck, Innsbruck, Austria
| | - Michael Zech
- Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum Munich, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Karen Stals
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Vinod Varghese
- All Wales Medical Genomics Service, Cardiff, United Kingdom
| | - Sonia Gandhi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Cornelis Blauwendraat
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - John A. Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Suzanne Lesage
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Institute of Neurogenomics, Helmholtz Zentrum Munich, Munich, Germany
| | | | - Robert Steinfeld
- Department of Pediatrics and Pediatric Neurology, University of Göttingen, Göttingen, Germany
- Department of Pediatric Neurology, Charité University Medicine, Berlin, Germany
| | - Dario R. Alessi
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Hermann Steller
- Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Alexis Brice
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Andrey Y. Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kailash P. Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
19
|
Chiu CC, Chen YL, Weng YH, Liu SY, Li HL, Yeh TH, Wang HL. Downregulation of Protease Cathepsin D and Upregulation of Pathologic α-Synuclein Mediate Paucity of DNAJC6-Induced Degeneration of Dopaminergic Neurons. Int J Mol Sci 2024; 25:6711. [PMID: 38928416 PMCID: PMC11204255 DOI: 10.3390/ijms25126711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
A homozygous mutation of the DNAJC6 gene causes autosomal recessive familial type 19 of Parkinson's disease (PARK19). To test the hypothesis that PARK19 DNAJC6 mutations induce the neurodegeneration of dopaminergic cells by reducing the protein expression of functional DNAJC6 and causing DNAJC6 paucity, an in vitro PARK19 model was constructed by using shRNA-mediated gene silencing of endogenous DANJC6 in differentiated human SH-SY5Y dopaminergic neurons. shRNA targeting DNAJC6 induced the neurodegeneration of dopaminergic cells. DNAJC6 paucity reduced the level of cytosolic clathrin heavy chain and the number of lysosomes in dopaminergic neurons. A DNAJC6 paucity-induced reduction in the lysosomal number downregulated the protein level of lysosomal protease cathepsin D and impaired macroautophagy, resulting in the upregulation of pathologic α-synuclein or phospho-α-synucleinSer129 in the endoplasmic reticulum (ER) and mitochondria. The expression of α-synuclein shRNA or cathepsin D blocked the DNAJC6 deficiency-evoked degeneration of dopaminergic cells. An increase in ER α-synuclein or phospho-α-synucleinSer129 caused by DNAJC6 paucity activated ER stress, the unfolded protein response and ER stress-triggered apoptotic signaling. The lack of DNAJC6-induced upregulation of mitochondrial α-synuclein depolarized the mitochondrial membrane potential and elevated the mitochondrial level of superoxide. The DNAJC6 paucity-evoked ER stress-related apoptotic cascade, mitochondrial malfunction and oxidative stress induced the degeneration of dopaminergic neurons via activating mitochondrial pro-apoptotic signaling. In contrast with the neuroprotective function of WT DNAJC6, the PARK19 DNAJC6 mutants (Q789X or R927G) failed to attenuate the tunicamycin- or rotenone-induced upregulation of pathologic α-synuclein and stimulation of apoptotic signaling. Our data suggest that PARK19 mutation-induced DNAJC6 paucity causes the degeneration of dopaminergic neurons via downregulating protease cathepsin D and upregulating neurotoxic α-synuclein. Our results also indicate that PARK19 mutation (Q789X or R927G) impairs the DNAJC6-mediated neuroprotective function.
Collapse
Affiliation(s)
- Ching-Chi Chiu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
- Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ying-Ling Chen
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan;
| | - Yi-Hsin Weng
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shu-Yu Liu
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, No. 259, Wen-Hwa 1st Road, Kweishan, Taoyuan 33302, Taiwan;
| | - Hon-Lun Li
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Hung-Li Wang
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
- Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, No. 259, Wen-Hwa 1st Road, Kweishan, Taoyuan 33302, Taiwan;
| |
Collapse
|
20
|
Langerscheidt F, Wied T, Al Kabbani MA, van Eimeren T, Wunderlich G, Zempel H. Genetic forms of tauopathies: inherited causes and implications of Alzheimer's disease-like TAU pathology in primary and secondary tauopathies. J Neurol 2024; 271:2992-3018. [PMID: 38554150 PMCID: PMC11136742 DOI: 10.1007/s00415-024-12314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Tauopathies are a heterogeneous group of neurologic diseases characterized by pathological axodendritic distribution, ectopic expression, and/or phosphorylation and aggregation of the microtubule-associated protein TAU, encoded by the gene MAPT. Neuronal dysfunction, dementia, and neurodegeneration are common features of these often detrimental diseases. A neurodegenerative disease is considered a primary tauopathy when MAPT mutations/haplotypes are its primary cause and/or TAU is the main pathological feature. In case TAU pathology is observed but superimposed by another pathological hallmark, the condition is classified as a secondary tauopathy. In some tauopathies (e.g. MAPT-associated frontotemporal dementia (FTD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Alzheimer's disease (AD)) TAU is recognized as a significant pathogenic driver of the disease. In many secondary tauopathies, including Parkinson's disease (PD) and Huntington's disease (HD), TAU is suggested to contribute to the development of dementia, but in others (e.g. Niemann-Pick disease (NPC)) TAU may only be a bystander. The genetic and pathological mechanisms underlying TAU pathology are often not fully understood. In this review, the genetic predispositions and variants associated with both primary and secondary tauopathies are examined in detail, assessing evidence for the role of TAU in these conditions. We highlight less common genetic forms of tauopathies to increase awareness for these disorders and the involvement of TAU in their pathology. This approach not only contributes to a deeper understanding of these conditions but may also lay the groundwork for potential TAU-based therapeutic interventions for various tauopathies.
Collapse
Affiliation(s)
- Felix Langerscheidt
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Tamara Wied
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Von-Liebig-Str. 20, 53359, Rheinbach, Germany
| | - Mohamed Aghyad Al Kabbani
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Gilbert Wunderlich
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
21
|
Deliz JR, Tanner CM, Gonzalez-Latapi P. Epidemiology of Parkinson's Disease: An Update. Curr Neurol Neurosci Rep 2024; 24:163-179. [PMID: 38642225 DOI: 10.1007/s11910-024-01339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE OF REVIEW In recent decades, epidemiological understanding of Parkinson disease (PD) has evolved significantly. Major discoveries in genetics and large epidemiological investigations have provided a better understanding of the genetic, behavioral, and environmental factors that play a role in the pathogenesis and progression of PD. In this review, we provide an epidemiological update of PD with a particular focus on advances in the last five years of published literature. RECENT FINDINGS We include an overview of PD pathophysiology, followed by a detailed discussion of the known distribution of disease and varied determinants of disease. We describe investigations of risk factors for PD, and provide a critical summary of current knowledge, knowledge gaps, and both clinical and research implications. We emphasize the need to characterize the epidemiology of the disease in diverse populations. Despite increasing understanding of PD epidemiology, recent paradigm shifts in the conceptualization of PD as a biological entity will also impact epidemiological research moving forward and guide further work in this field.
Collapse
Affiliation(s)
- Juan R Deliz
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Caroline M Tanner
- Weill Institute for Neurosciences, Department of Neurology, University of California -San Francisco, San Francisco, CA, USA
| | - Paulina Gonzalez-Latapi
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
22
|
Naoi M, Maruyama W, Shamoto-Nagai M, Riederer P. Toxic interactions between dopamine, α-synuclein, monoamine oxidase, and genes in mitochondria of Parkinson's disease. J Neural Transm (Vienna) 2024; 131:639-661. [PMID: 38196001 DOI: 10.1007/s00702-023-02730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024]
Abstract
Parkinson's disease is characterized by its distinct pathological features; loss of dopamine neurons in the substantia nigra pars compacta and accumulation of Lewy bodies and Lewy neurites containing modified α-synuclein. Beneficial effects of L-DOPA and dopamine replacement therapy indicate dopamine deficit as one of the main pathogenic factors. Dopamine and its oxidation products are proposed to induce selective vulnerability in dopamine neurons. However, Parkinson's disease is now considered as a generalized disease with dysfunction of several neurotransmitter systems caused by multiple genetic and environmental factors. The pathogenic factors include oxidative stress, mitochondrial dysfunction, α-synuclein accumulation, programmed cell death, impaired proteolytic systems, neuroinflammation, and decline of neurotrophic factors. This paper presents interactions among dopamine, α-synuclein, monoamine oxidase, its inhibitors, and related genes in mitochondria. α-Synuclein inhibits dopamine synthesis and function. Vice versa, dopamine oxidation by monoamine oxidase produces toxic aldehydes, reactive oxygen species, and quinones, which modify α-synuclein, and promote its fibril production and accumulation in mitochondria. Excessive dopamine in experimental models modifies proteins in the mitochondrial electron transport chain and inhibits the function. α-Synuclein and familiar Parkinson's disease-related gene products modify the expression and activity of monoamine oxidase. Type A monoamine oxidase is associated with neuroprotection by an unspecific dose of inhibitors of type B monoamine oxidase, rasagiline and selegiline. Rasagiline and selegiline prevent α-synuclein fibrillization, modulate this toxic collaboration, and exert neuroprotection in experimental studies. Complex interactions between these pathogenic factors play a decisive role in neurodegeneration in PD and should be further defined to develop new therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan.
| | - Wakako Maruyama
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Masayo Shamoto-Nagai
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Peter Riederer
- Clinical Neurochemistry, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
- Department of Psychiatry, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
23
|
Hertz N, Chin R, Rakhit R, Ditsworth D, Wang C, Bartholomeus J, Liu S, Mody A, Laihsu A, Eastes A, Tai C, Kim R, Li J, Khasnavis S, Rafalski V, Heerendeen D, Garda V, Phung J, de Roulet D, Ordureau A, Harper JW, Johnstone S, Stöhr J. Pharmacological PINK1 activation ameliorates Pathology in Parkinson's Disease models. RESEARCH SQUARE 2024:rs.3.rs-4356493. [PMID: 38765977 PMCID: PMC11100876 DOI: 10.21203/rs.3.rs-4356493/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
PINK1 loss-of-function mutations and exposure to mitochondrial toxins are causative for Parkinson's disease (PD) and Parkinsonism, respectively. We demonstrate that pathological α-synuclein deposition, the hallmark pathology of idiopathic PD, induces mitochondrial dysfunction, and impairs mitophagy as evidenced by the accumulation of the PINK1 substrate pS65-Ubiquitin (pUb). We discovered MTK458, a brain penetrant small molecule that binds to PINK1 and stabilizes its active complex, resulting in increased rates of mitophagy. Treatment with MTK458 mediates clearance of accumulated pUb and α-synuclein pathology in α-synuclein pathology models in vitro and in vivo. Our findings from preclinical PD models suggest that pharmacological activation of PINK1 warrants further clinical evaluation as a therapeutic strategy for disease modification in PD.
Collapse
|
24
|
Qin P, Sun Y, Li L. Mitochondrial dysfunction in chronic neuroinflammatory diseases (Review). Int J Mol Med 2024; 53:47. [PMID: 38577947 PMCID: PMC10999227 DOI: 10.3892/ijmm.2024.5371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
Chronic neuroinflammation serves a key role in the onset and progression of neurodegenerative disorders. Mitochondria serve as central regulators of neuroinflammation. In addition to providing energy to cells, mitochondria also participate in the immunoinflammatory response of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, multiple sclerosis and epilepsy, by regulating processes such as cell death and inflammasome activation. Under inflammatory conditions, mitochondrial oxidative stress, epigenetics, mitochondrial dynamics and calcium homeostasis imbalance may serve as underlying regulatory mechanisms for these diseases. Therefore, investigating mechanisms related to mitochondrial dysfunction may result in therapeutic strategies against chronic neuroinflammation and neurodegeneration. The present review summarizes the mechanisms of mitochondria in chronic neuroinflammatory diseases and the current treatment approaches that target mitochondrial dysfunction in these diseases.
Collapse
Affiliation(s)
- Pei Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Ye Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Liya Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| |
Collapse
|
25
|
Yang W, Wei Y, Sun J, Yao C, Ai F, Ding H. Safranal exerts a neuroprotective effect on Parkinson's disease with suppression of NLRP3 inflammation activation. Mol Biol Rep 2024; 51:593. [PMID: 38683404 PMCID: PMC11059006 DOI: 10.1007/s11033-024-09537-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a common central nervous system neurodegenerative disease. Neuroinflammation is one of the significant neuropathological hallmarks. As a traditional Chinese medicine, Safranal exerts anti-inflammatory effects in various diseases, however, whether it plays a similar effect on PD is still unclear. The study was to investigate the effects and mechanism of Safranal on PD. METHODS The PD mouse model was established by 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine MPTP firstly. Next, the degree of muscle stiffness, neuromuscular function, motor retardation and motor coordination ability were examined by observing and testing mouse movement behavior. Immunofluorescence staining was used to observe the expression of tyrosine hydroxylase (TH). The dopamine (DA) content of the striatum was detected by High-performance liquid chromatography (HPLC). The expression of TH and NLRP3 inflammasome-related markers NLRP3, IL-1β, and Capase-1 were detected by Real-time Polymerase Chain Reaction (qRT-PCR) and western blotting (WB) respectively. RESULTS Through behavioral testing, Parkinson's mouse showed a higher muscle stiffness and neuromuscular tension, a more motor retardation and activity disorders, together with a worse motor coordination compared with sham group. Simultaneously, DA content and TH expression in the striatum were decreased. However, after using Safranal treatment, the above pathological symptoms of Parkinson's mouse all improved compared with Safranal untreated group, the DA content and TH expression were also increased to varying degrees. Surprisingly, it observed a suppression of NLRP3 inflammation in the striatum of Parkinson's mouse. CONCLUSIONS Safranal played a neuroprotective effect on the Parkinson's disease and its mechanism was related to the inhibition of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Wenping Yang
- Division of Neurology, Department of Geriatrics, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, NO. 300 Guangzhou Road, Nanjing, China
| | - Yongyue Wei
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jin Sun
- Department of Nuclear Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Caixia Yao
- Departement of Endocrine, Nanjing Gao Chun People's Hospital, Nanjing, China
| | - Fen Ai
- Department of Emergency, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, NO. 26 Shengli Street, Wuhan, Jiang'an District, China.
| | - Haixia Ding
- Division of Neurology, Department of Geriatrics, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, NO. 300 Guangzhou Road, Nanjing, China.
| |
Collapse
|
26
|
Holuka C, Menta G, Caro JC, Vögele C, D'Ambrosio C, Turner JD. Developmental epigenomic effects of maternal financial problems. Dev Psychopathol 2024:1-14. [PMID: 38654405 DOI: 10.1017/s095457942400083x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Early-life adversity as neglect or low socioeconomic status is associated with negative physical/mental health outcomes and plays an important role in health trajectories through life. The early-life environment has been shown to be encoded as changes in epigenetic markers that are retained for many years.We investigated the effect of maternal major financial problems (MFP) and material deprivation (MD) on their children's epigenome in the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Epigenetic aging, measured with epigenetic clocks, was weakly accelerated with increased MFP. In subsequent EWAS, MFP, and MD showed strong, independent programing effects on children's genomes. MFP in the period from birth to age seven was associated with genome-wide epigenetic modifications on children's genome visible at age 7 and partially remaining at age 15.These results support the hypothesis that physiological processes at least partially explain associations between early-life adversity and health problems later in life. Both maternal stressors (MFP/MD) had similar effects on biological pathways, providing preliminary evidence for the mechanisms underlying the effects of low socioeconomic status in early life and disease outcomes later in life. Understanding these associations is essential to explain disease susceptibility, overall life trajectories and the transition from health to disease.
Collapse
Affiliation(s)
- Cyrielle Holuka
- Department of Infection and Immunity, Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, University of Luxembourg, Belval, Luxembourg
| | - Giorgia Menta
- Luxembourg Institute of Socio-Economic Research (LISER), Esch-sur-Alzette, Luxembourg
| | - Juan Carlos Caro
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Industrial Engineering, Universidad de Concepcion, Talcahuano, Chile
| | - Claus Vögele
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Conchita D'Ambrosio
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jonathan D Turner
- Department of Infection and Immunity, Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
27
|
Schneider KL, Hao X, Keuenhof KS, Berglund LL, Fischbach A, Ahmadpour D, Chawla S, Gómez P, Höög JL, Widlund PO, Nyström T. Elimination of virus-like particles reduces protein aggregation and extends replicative lifespan in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2024; 121:e2313538121. [PMID: 38527193 PMCID: PMC10998562 DOI: 10.1073/pnas.2313538121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/04/2024] [Indexed: 03/27/2024] Open
Abstract
A major consequence of aging and stress, in yeast to humans, is an increased accumulation of protein aggregates at distinct sites within the cells. Using genetic screens, immunoelectron microscopy, and three-dimensional modeling in our efforts to elucidate the importance of aggregate annexation, we found that most aggregates in yeast accumulate near the surface of mitochondria. Further, we show that virus-like particles (VLPs), which are part of the retrotransposition cycle of Ty elements, are markedly enriched in these sites of protein aggregation. RNA interference-mediated silencing of Ty expression perturbed aggregate sequestration to mitochondria, reduced overall protein aggregation, mitigated toxicity of a Huntington's disease model, and expanded the replicative lifespan of yeast in a partially Hsp104-dependent manner. The results are in line with recent data demonstrating that VLPs might act as aging factors in mammals, including humans, and extend these findings by linking VLPs to a toxic accumulation of protein aggregates and raising the possibility that they might negatively influence neurological disease progression.
Collapse
Affiliation(s)
- K. L. Schneider
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health—AgeCap, University of Gothenburg, Gothenburg40530, Sweden
| | - X. Hao
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health—AgeCap, University of Gothenburg, Gothenburg40530, Sweden
| | - K. S. Keuenhof
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg41390, Sweden
| | - L. L. Berglund
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg41390, Sweden
| | - A. Fischbach
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health—AgeCap, University of Gothenburg, Gothenburg40530, Sweden
| | - D. Ahmadpour
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health—AgeCap, University of Gothenburg, Gothenburg40530, Sweden
| | - S. Chawla
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health—AgeCap, University of Gothenburg, Gothenburg40530, Sweden
| | - P. Gómez
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health—AgeCap, University of Gothenburg, Gothenburg40530, Sweden
| | - J. L. Höög
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg41390, Sweden
| | - P. O. Widlund
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health—AgeCap, University of Gothenburg, Gothenburg40530, Sweden
| | - T. Nyström
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health—AgeCap, University of Gothenburg, Gothenburg40530, Sweden
| |
Collapse
|
28
|
Zhu F, Wang B, Qin D, Su X, Yu L, Wu J, Law BY, Guo M, Yu C, Zhou X, Wu A. Carpesii fructus extract exhibits neuroprotective effects in cellular and Caenorhabditis elegans models of Parkinson's disease. CNS Neurosci Ther 2024; 30:e14515. [PMID: 37905594 PMCID: PMC11017466 DOI: 10.1111/cns.14515] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVE Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra. Despite extensive research, no definitive cure or effective disease-modifying treatment for PD exists to date. Therefore, the identification of novel therapeutic agents with neuroprotective properties is of utmost importance. Here, we aimed to investigate the potential neuroprotective effects of Carpesii fructus extract (CFE) in both cellular and Caenorhabditis elegans (C. elegans) models of PD. METHODS The neuroprotective effect of CFE in H2O2- or 6-OHDA-induced PC-12 cells and α-synuclein-overexpressing PC-12 cells were investigated by determining the cell viability, mitochondrial damage, reactive oxygen species (ROS) production, apoptosis, and α-synuclein expression. In NL5901, BZ555, and N2 worms, the expression of α-synuclein, motive ability, the viability of dopaminergic neurons, lifespan, and aging-related phenotypes were investigated. The signaling pathway was detected by Western blotting and validated by employing small inhibitors and RNAi bacteria. RESULTS In cellular models of PD, CFE significantly attenuated H2O2- or 6-OHDA-induced toxicity, as evidenced by increased cell viability and reduced apoptosis rate. In addition, CFE treatment suppressed ROS generation and restored mitochondrial membrane potential, highlighting its potential as a mitochondrial protective agent. Furthermore, CFE reduced the expression of α-synuclein in wide type (WT)-, A53T-, A30P-, or E46K-α-synuclein-overexpressing PC-12 cells. Our further findings reveal that CFE administration reduced α-synuclein expression and improved its induced locomotor deficits in NL5901 worms, protected dopaminergic neurons against 6-OHDA-induced degeneration in BZ555 worms, extended lifespan, delayed aging-related phenotypes, and enhanced the ability of stress resistance in N2 worms. Mechanistic studies suggest that the neuroprotective effects of CFE may involve the modulation of the MAPK signaling pathway, including ERK, JNK, and p38, whereas the interference of these pathways attenuated the neuroprotective effect of CFE in vitro and in vivo. CONCLUSION Overall, our study highlights the potential therapeutic value of CFE as a neuroprotective agent in the context of PD. Furthermore, elucidation of the active compounds of CFE will provide valuable insights for the development of novel therapeutic strategies for PD.
Collapse
Affiliation(s)
- Feng‐Dan Zhu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| | - Bin‐Ding Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| | - Da‐Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| | - Xiao‐Hui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijingChina
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| | - Jian‐Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| | - Betty Yuen‐Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and TechnologyTaipaChina
| | - Min‐Song Guo
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| | - Chong‐Lin Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| | - Xiao‐Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| | - An‐Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| |
Collapse
|
29
|
Liang H, Ma Z, Zhong W, Liu J, Sugimoto K, Chen H. Regulation of mitophagy and mitochondrial function: Natural compounds as potential therapeutic strategies for Parkinson's disease. Phytother Res 2024; 38:1838-1862. [PMID: 38356178 DOI: 10.1002/ptr.8156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Mitochondrial damage is associated with the development of Parkinson's disease (PD), indicating that mitochondrial-targeted treatments could hold promise as disease-modifying approaches for PD. Notably, natural compounds have demonstrated the ability to modulate mitochondrial-related processes. In this review article, we discussed the possible neuroprotective mechanisms of natural compounds against PD in modulating mitophagy and mitochondrial function. A comprehensive literature search on natural compounds related to the treatment of PD by regulating mitophagy and mitochondrial function was conducted from PubMed, Web of Science and Chinese National Knowledge Infrastructure databases from their inception until April 2023. We summarize recent advancements in mitophagy's molecular mechanisms, including upstream and downstream processes, and its relationship with PD-related genes or proteins. Importantly, we highlight how natural compounds can therapeutically regulate various mitochondrial processes through multiple targets and pathways to alleviate oxidative stress, neuroinflammation, Lewy's body aggregation and apoptosis, which are key contributors to PD pathogenesis. Unlike the single-target strategy of modern medicine, natural compounds provide neuroprotection against PD by modulating various mitochondrial-related processes, including ameliorating mitophagy by targeting the PINK1/parkin pathway, the NIX/BNIP3 pathway, and autophagosome formation (i.e., LC3 and p62). Given the prevalence of mitochondrial damage in various neurodegenerative diseases, exploring the exact mechanism of natural compounds on mitophagy and mitochondrial dysfunction could shed light on the development of highly effective disease-modifying or adjuvant therapies targeting PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Hao Liang
- Department of Acupuncture, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Zhenwang Ma
- Department of Acupuncture, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Wei Zhong
- Department of Rheumatology and Immunology, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, China
| | - Jia Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Kazuo Sugimoto
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Hong Chen
- Department of Acupuncture, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
- Department of TCM Geriatric, Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Mosharov EV, Rosenberg AM, Monzel AS, Osto CA, Stiles L, Rosoklija GB, Dwork AJ, Bindra S, Zhang Y, Fujita M, Mariani MB, Bakalian M, Sulzer D, De Jager PL, Menon V, Shirihai OS, Mann JJ, Underwood M, Boldrini M, Thiebaut de Schotten M, Picard M. A Human Brain Map of Mitochondrial Respiratory Capacity and Diversity. RESEARCH SQUARE 2024:rs.3.rs-4047706. [PMID: 38562777 PMCID: PMC10984021 DOI: 10.21203/rs.3.rs-4047706/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Eugene V. Mosharov
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Ayelet M Rosenberg
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna S Monzel
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Corey A. Osto
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Linsey Stiles
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Gorazd B. Rosoklija
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrew J. Dwork
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Snehal Bindra
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ya Zhang
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Masashi Fujita
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Madeline B Mariani
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mihran Bakalian
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - David Sulzer
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Departments of Neurology and Pharmacology, Columbia University Irving Medical Center, New York, NY, USA; Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - J. John Mann
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mark Underwood
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Maura Boldrini
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Division of Molecular Imaging and Neuropathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behavior Laboratory, Paris, France; Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, France
| | - Martin Picard
- Department of Psychiatry, Divisions of Molecular Therapeutics and Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
31
|
Trevisan L, Gaudio A, Monfrini E, Avanzino L, Di Fonzo A, Mandich P. Genetics in Parkinson's disease, state-of-the-art and future perspectives. Br Med Bull 2024; 149:60-71. [PMID: 38282031 PMCID: PMC10938543 DOI: 10.1093/bmb/ldad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disorder and is clinically characterized by the presence of motor (bradykinesia, rigidity, rest tremor and postural instability) and non-motor symptoms (cognitive impairment, autonomic dysfunction, sleep disorders, depression and hyposmia). The aetiology of PD is unknown except for a small but significant contribution of monogenic forms. SOURCES OF DATA No new data were generated or analyzed in support of this review. AREAS OF AGREEMENT Up to 15% of PD patients carry pathogenic variants in PD-associated genes. Some of these genes are associated with mendelian inheritance, while others act as risk factors. Genetic background influences age of onset, disease course, prognosis and therapeutic response. AREAS OF CONTROVERSY Genetic testing is not routinely offered in the clinical setting, but it may have relevant implications, especially in terms of prognosis, response to therapies and inclusion in clinical trials. Widely adopted clinical guidelines on genetic testing are still lacking and open to debate. Some new genetic associations are still awaiting confirmation, and selecting the appropriate genes to be included in diagnostic panels represents a difficult task. Finally, it is still under study whether (and to which degree) specific genetic forms may influence the outcome of PD therapies. GROWING POINTS Polygenic Risk Scores (PRS) may represent a useful tool to genetically stratify the population in terms of disease risk, prognosis and therapeutic outcomes. AREAS TIMELY FOR DEVELOPING RESEARCH The application of PRS and integrated multi-omics in PD promises to improve the personalized care of patients.
Collapse
Affiliation(s)
- L Trevisan
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Largo P. Daneo 3, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino – SS Centro Tumori Ereditari, Largo R. Benzi 10, Genova, 16132, Italy
| | - A Gaudio
- IRCCS Ospedale Policlinico San Martino- UOC Genetica Medica, Largo R. Benzi 10, Genova, 16132, Italy
| | - E Monfrini
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, Milan, 20122, Italy
- Neurology Unit, Foundation IRCCS Ca’Granda Ospedale Maggiore Policlinico, Via Festa del Perdono 7, Milan, 20122, Italy
| | - L Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Viale Benedetto XV/3, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 3, Genova, 16132, Italy
| | - A Di Fonzo
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, Milan, 20122, Italy
- Neurology Unit, Foundation IRCCS Ca’Granda Ospedale Maggiore Policlinico, Via Festa del Perdono 7, Milan, 20122, Italy
| | - P Mandich
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Largo P. Daneo 3, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino- UOC Genetica Medica, Largo R. Benzi 10, Genova, 16132, Italy
| |
Collapse
|
32
|
Eser P, Kocabicak E, Bekar A, Temel Y. The interplay between neuroinflammatory pathways and Parkinson's disease. Exp Neurol 2024; 372:114644. [PMID: 38061555 DOI: 10.1016/j.expneurol.2023.114644] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Parkinson's disease, a progressive neurodegenerative disorder predominantly affecting elderly, is marked by the gradual degeneration of the nigrostriatal dopaminergic pathway, culminating in neuronal loss within the substantia nigra pars compacta (SNpc) and dopamine depletion. At the molecular level, neuronal loss in the SNpc has been attributed to factors including neuroinflammation, impaired protein homeostasis, as well as mitochondrial dysfunction and the resulting oxidative stress. This review focuses on the interplay between neuroinflammatory pathways and Parkinson's disease, drawing insights from current literature.
Collapse
Affiliation(s)
- Pinar Eser
- Bursa Uludag University School of Medicine, Department of Neurosurgery, Bursa, Turkey.
| | - Ersoy Kocabicak
- Ondokuz Mayis University, Health Practise and Research Hospital, Neuromodulation Center, Samsun, Turkey
| | - Ahmet Bekar
- Bursa Uludag University School of Medicine, Department of Neurosurgery, Bursa, Turkey
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
33
|
Xiao Z, Wang X, Pan X, Xie J, Xu H. Mitochondrial iron dyshomeostasis and its potential as a therapeutic target for Parkinson's disease. Exp Neurol 2024; 372:114614. [PMID: 38007207 DOI: 10.1016/j.expneurol.2023.114614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/30/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Abnormal iron accumulation has been implicated in the etiology of Parkinson's disease (PD). Understanding how iron damages dopaminergic neurons in the substantia nigra (SN) of PD is particularly important for developing targeted neurotherapeutic strategies for the disease. However, it is still not fully understood how excess iron contributes to the neurodegeneration of dopaminergic neurons in PD. There has been increased attention on mitochondrial iron dyshomeostasis, iron-induced mitochondrial dysfunction and ferroptosis in PD. Therefore, this review begins with a brief introduction to describe cellular iron metabolism and the dysregulation of iron metabolism in PD. Then we provide an update on how iron is delivered to mitochondria and induces the damage of dopaminergic neurons in PD. In addition, we also summarize new research progress on iron-dependent ferroptosis in PD and mitochondria-localized proteins involved in ferroptosis. This will provide new insight into potential therapeutic strategies targeting mitochondrial iron dysfunction.
Collapse
Affiliation(s)
- Zhixin Xiao
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Xiaoya Wang
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Xuening Pan
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Junxia Xie
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| | - Huamin Xu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| |
Collapse
|
34
|
Cadenas-Garrido P, Schonvandt-Alarcos A, Herrera-Quintana L, Vázquez-Lorente H, Santamaría-Quiles A, Ruiz de Francisco J, Moya-Escudero M, Martín-Oliva D, Martín-Guerrero SM, Rodríguez-Santana C, Aragón-Vela J, Plaza-Diaz J. Using Redox Proteomics to Gain New Insights into Neurodegenerative Disease and Protein Modification. Antioxidants (Basel) 2024; 13:127. [PMID: 38275652 PMCID: PMC10812581 DOI: 10.3390/antiox13010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Antioxidant defenses in biological systems ensure redox homeostasis, regulating baseline levels of reactive oxygen and nitrogen species (ROS and RNS). Oxidative stress (OS), characterized by a lack of antioxidant defenses or an elevation in ROS and RNS, may cause a modification of biomolecules, ROS being primarily absorbed by proteins. As a result of both genome and environment interactions, proteomics provides complete information about a cell's proteome, which changes continuously. Besides measuring protein expression levels, proteomics can also be used to identify protein modifications, localizations, the effects of added agents, and the interactions between proteins. Several oxidative processes are frequently used to modify proteins post-translationally, including carbonylation, oxidation of amino acid side chains, glycation, or lipid peroxidation, which produces highly reactive alkenals. Reactive alkenals, such as 4-hydroxy-2-nonenal, are added to cysteine (Cys), lysine (Lys), or histidine (His) residues by a Michael addition, and tyrosine (Tyr) residues are nitrated and Cys residues are nitrosylated by a Michael addition. Oxidative and nitrosative stress have been implicated in many neurodegenerative diseases as a result of oxidative damage to the brain, which may be especially vulnerable due to the large consumption of dioxygen. Therefore, the current methods applied for the detection, identification, and quantification in redox proteomics are of great interest. This review describes the main protein modifications classified as chemical reactions. Finally, we discuss the importance of redox proteomics to health and describe the analytical methods used in redox proteomics.
Collapse
Affiliation(s)
- Paula Cadenas-Garrido
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Ailén Schonvandt-Alarcos
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Alicia Santamaría-Quiles
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Jon Ruiz de Francisco
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Marina Moya-Escudero
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - David Martín-Oliva
- Department of Cell Biology, Faculty of Science, University of Granada, 18071 Granada, Spain;
| | - Sandra M. Martín-Guerrero
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9RT, UK
| | - César Rodríguez-Santana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Jerónimo Aragón-Vela
- Department of Health Sciences, Area of Physiology, Building B3, Campus s/n “Las Lagunillas”, University of Jaén, 23071 Jaén, Spain
| | - Julio Plaza-Diaz
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
| |
Collapse
|
35
|
Vallbona-Garcia A, Lindsey PJ, Kamps R, Stassen APM, Nguyen N, van Tienen FHJ, Hamers IHJ, Hardij R, van Gisbergen MW, Benedikter BJ, de Coo IFM, Webers CAB, Gorgels TGMF, Smeets HJM. Mitochondrial DNA D-loop variants correlate with a primary open-angle glaucoma subgroup. FRONTIERS IN OPHTHALMOLOGY 2024; 3:1309836. [PMID: 38983060 PMCID: PMC11182222 DOI: 10.3389/fopht.2023.1309836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/29/2023] [Indexed: 07/11/2024]
Abstract
Introduction Primary open-angle glaucoma (POAG) is a characteristic optic neuropathy, caused by degeneration of the optic nerve-forming neurons, the retinal ganglion cells (RGCs). High intraocular pressure (IOP) and aging have been identified as major risk factors; yet the POAG pathophysiology is not fully understood. Since RGCs have high energy requirements, mitochondrial dysfunction may put the survivability of RGCs at risk. We explored in buffy coat DNA whether mtDNA variants and their distribution throughout the mtDNA could be risk factors for POAG. Methods The mtDNA was sequenced from age- and sex-matched study groups, being high tension glaucoma (HTG, n=71), normal tension glaucoma patients (NTG, n=33), ocular hypertensive subjects (OH, n=7), and cataract controls (without glaucoma; n=30), all without remarkable comorbidities. Results No association was found between the number of mtDNA variants in genes encoding proteins, tRNAs, rRNAs, and in non-coding regions in the different study groups. Next, variants that controls shared with the other groups were discarded. A significantly higher number of exclusive variants was observed in the D-loop region for the HTG group (~1.23 variants/subject), in contrast to controls (~0.35 variants/subject). In the D-loop, specifically in the 7S DNA sub-region within the Hypervariable region 1 (HV1), we found that 42% of the HTG and 27% of the NTG subjects presented variants, while this was only 14% for the controls and OH subjects. As we have previously reported a reduction in mtDNA copy number in HTG, we analysed if specific D-loop variants could explain this. While the majority of glaucoma patients with the exclusive D-loop variants m.72T>C, m.16163 A>G, m.16186C>T, m.16298T>C, and m.16390G>A presented a mtDNA copy number below controls median, no significant association between these variants and low copy number was found and their possible negative role in mtDNA replication remains uncertain. Approximately 38% of the HTG patients with reduced copy number did not carry any exclusive D-loop or other mtDNA variants, which indicates that variants in nuclear-encoded mitochondrial genes, environmental factors, or aging might be involved in those cases. Conclusion In conclusion, we found that variants in the D-loop region may be a risk factor in a subgroup of POAG, possibly by affecting mtDNA replication.
Collapse
Affiliation(s)
- Antoni Vallbona-Garcia
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Patrick J Lindsey
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Rick Kamps
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Alphons P M Stassen
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Nhan Nguyen
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Florence H J van Tienen
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Ilse H J Hamers
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Rianne Hardij
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Marike W van Gisbergen
- Department of Dermatology, Maastricht University Medical Center, Maastricht, Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | - Birke J Benedikter
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Irenaeus F M de Coo
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Hubert J M Smeets
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
36
|
Higuchi Y, Ando M, Kojima F, Yuan J, Hashiguchi A, Yoshimura A, Hiramatsu Y, Nozuma S, Fukumura S, Yahikozawa H, Abe E, Toyoshima I, Sugawara M, Okamoto Y, Matsuura E, Takashima H. Dystonia and Parkinsonism in COA7-related disorders: expanding the phenotypic spectrum. J Neurol 2024; 271:419-430. [PMID: 37750949 PMCID: PMC10769979 DOI: 10.1007/s00415-023-11998-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND AND OBJECTIVE Biallelic mutations in the COA7 gene have been associated with spinocerebellar ataxia with axonal neuropathy type 3 (SCAN3), and a notable clinical diversity has been observed. We aim to identify the genetic and phenotypic spectrum of COA7-related disorders. METHODS We conducted comprehensive genetic analyses on the COA7 gene within a large group of Japanese patients clinically diagnosed with inherited peripheral neuropathy or cerebellar ataxia. RESULTS In addition to our original report, which involved four patients until 2018, we identified biallelic variants of the COA7 gene in another three unrelated patients, and the variants were c.17A > G (p.D6G), c.115C > T (p.R39W), and c.449G > A (p.C150Y; novel). Patient 1 presented with an infantile-onset generalized dystonia without cerebellar ataxia. Despite experiencing an initial transient positive response to levodopa and deep brain stimulation, he became bedridden by the age of 19. Patient 2 presented with cerebellar ataxia, neuropathy, as well as parkinsonism, and showed a slight improvement upon levodopa administration. Dopamine transporter SPECT showed decreased uptake in the bilateral putamen in both patients. Patient 3 exhibited severe muscle weakness, respiratory failure, and feeding difficulties. A haplotype analysis of the mutation hotspot in Japan, c.17A > G (p.D6G), uncovered a common haplotype block. CONCLUSION COA7-related disorders typically encompass a spectrum of conditions characterized by a variety of major (cerebellar ataxia and axonal polyneuropathy) and minor (leukoencephalopathy, dystonia, and parkinsonism) symptoms, but may also display a dystonia-predominant phenotype. We propose that COA7 should be considered as a new causative gene for infancy-onset generalized dystonia, and COA7 gene screening is recommended for patients with unexplained dysfunctions of the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Fumikazu Kojima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Junhui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Yu Hiramatsu
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Satoshi Nozuma
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Shinobu Fukumura
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | - Erika Abe
- Department of Neurology, National Hospital Organization Akita National Hospital, Yurihonjo, Japan
| | - Itaru Toyoshima
- Department of Neurology, National Hospital Organization Akita National Hospital, Yurihonjo, Japan
| | - Masashiro Sugawara
- Department of Neurology, Akita University Graduate School of Medicine, Akita, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan.
| |
Collapse
|
37
|
Mercado G, Kaeufer C, Richter F, Peelaerts W. Infections in the Etiology of Parkinson's Disease and Synucleinopathies: A Renewed Perspective, Mechanistic Insights, and Therapeutic Implications. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1301-1329. [PMID: 39331109 PMCID: PMC11492057 DOI: 10.3233/jpd-240195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Increasing evidence suggests a potential role for infectious pathogens in the etiology of synucleinopathies, a group of age-related neurodegenerative disorders including Parkinson's disease (PD), multiple system atrophy and dementia with Lewy bodies. In this review, we discuss the link between infections and synucleinopathies from a historical perspective, present emerging evidence that supports this link, and address current research challenges with a focus on neuroinflammation. Infectious pathogens can elicit a neuroinflammatory response and modulate genetic risk in PD and related synucleinopathies. The mechanisms of how infections might be linked with synucleinopathies as well as the overlap between the immune cellular pathways affected by virulent pathogens and disease-related genetic risk factors are discussed. Here, an important role for α-synuclein in the immune response against infections is emerging. Critical methodological and knowledge gaps are addressed, and we provide new future perspectives on how to address these gaps. Understanding how infections and neuroinflammation influence synucleinopathies will be essential for the development of early diagnostic tools and novel therapies.
Collapse
Affiliation(s)
- Gabriela Mercado
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Kaeufer
- Center for Systems Neuroscience, Hannover, Germany
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wouter Peelaerts
- Laboratory for Virology and Gene Therapy, Department of Pharmacy and Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Vincent B, Shukla M. The Common Denominators of Parkinson's Disease Pathogenesis and Methamphetamine Abuse. Curr Neuropharmacol 2024; 22:2113-2156. [PMID: 37691228 PMCID: PMC11337683 DOI: 10.2174/1570159x21666230907151226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023] Open
Abstract
The pervasiveness and mortality associated with methamphetamine abuse have doubled during the past decade, suggesting a possible worldwide substance use crisis. Epitomizing the pathophysiology and toxicology of methamphetamine abuse proclaims severe signs and symptoms of neurotoxic and neurobehavioral manifestations in both humans and animals. Most importantly, chronic use of this drug enhances the probability of developing neurodegenerative diseases manifolds. Parkinson's disease is one such neurological disorder, which significantly and evidently not only shares a number of toxic pathogenic mechanisms induced by methamphetamine exposure but is also interlinked both structurally and genetically. Methamphetamine-induced neurodegeneration involves altered dopamine homeostasis that promotes the aggregation of α-synuclein protofibrils in the dopaminergic neurons and drives these neurons to make them more vulnerable to degeneration, as recognized in Parkinson's disease. Moreover, the pathologic mechanisms such as mitochondrial dysfunction, oxidative stress, neuroinflammation and decreased neurogenesis detected in methamphetamine abusers dramatically resemble to what is observed in Parkinson's disease cases. Therefore, the present review comprehensively cumulates a holistic illustration of various genetic and molecular mechanisms putting across the notion of how methamphetamine administration and intoxication might lead to Parkinson's disease-like pathology and Parkinsonism.
Collapse
Affiliation(s)
- Bruno Vincent
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| | - Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 10210, Bangkok, Thailand
| |
Collapse
|
39
|
Zhang Y, Sun M, Zhao H, Wang Z, Shi Y, Dong J, Wang K, Wang X, Li X, Qi H, Zhao X. Neuroprotective Effects and Therapeutic Potential of Dichloroacetate: Targeting Metabolic Disorders in Nervous System Diseases. Int J Nanomedicine 2023; 18:7559-7581. [PMID: 38106446 PMCID: PMC10725694 DOI: 10.2147/ijn.s439728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
Dichloroacetate (DCA) is an investigational drug used to treat lactic acidosis and malignant tumours. It works by inhibiting pyruvate dehydrogenase kinase and increasing the rate of glucose oxidation. Some studies have documented the neuroprotective benefits of DCA. By reviewing these studies, this paper shows that DCA has multiple pharmacological activities, including regulating metabolism, ameliorating oxidative stress, attenuating neuroinflammation, inhibiting apoptosis, decreasing autophagy, protecting the blood‒brain barrier, improving the function of endothelial progenitor cells, improving mitochondrial dynamics, and decreasing amyloid β-protein. In addition, DCA inhibits the enzyme that metabolizes it, which leads to peripheral neurotoxicity due to drug accumulation that may be solved by individualized drug delivery and nanovesicle delivery. In summary, in this review, we analyse the mechanisms of neuroprotection by DCA in different diseases and discuss the causes of and solutions to its adverse effects.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Meiyan Sun
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Hongxiang Zhao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Zhengyan Wang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Yanan Shi
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Jianxin Dong
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Kaifang Wang
- Department of Anesthesia, Tangdu Hospital, Fourth Military Medical University, Xian, Shanxi Province, People’s Republic of China
| | - Xi Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xingyue Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Haiyan Qi
- Department of Anesthesiology, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| | - Xiaoyong Zhao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, People’s Republic of China
| |
Collapse
|
40
|
Zhao Z, Li Z, Du F, Wang Y, Wu Y, Lim KL, Li L, Yang N, Yu C, Zhang C. Linking Heat Shock Protein 70 and Parkin in Parkinson's Disease. Mol Neurobiol 2023; 60:7044-7059. [PMID: 37526897 DOI: 10.1007/s12035-023-03481-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that affects millions of elderly people worldwide and is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The precise mechanisms underlying the pathogenesis of PD are still not fully understood, but it is well accepted that the misfolding, aggregation, and abnormal degradation of proteins are the key causative factors of PD. Heat shock protein 70 (Hsp70) is a molecular chaperone that participates in the degradation of misfolded and aggregated proteins in living cells and organisms. Parkin, an E3 ubiquitin ligase, participates in the degradation of proteins via the proteasome pathway. Recent studies have indicated that both Hsp70 and Parkin play pivotal roles in PD pathogenesis. In this review, we focus on discussing how dysregulation of Hsp70 and Parkin leads to PD pathogenesis, the interaction between Hsp70 and Parkin in the context of PD and their therapeutic applications in PD.
Collapse
Affiliation(s)
- Zhongting Zhao
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Zheng Li
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117054, Singapore
| | - Fangning Du
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Yixin Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Yue Wu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Lin Li
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, People's Republic of China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
| |
Collapse
|
41
|
Kawahata I, Fukunaga K. Pathogenic Impact of Fatty Acid-Binding Proteins in Parkinson's Disease-Potential Biomarkers and Therapeutic Targets. Int J Mol Sci 2023; 24:17037. [PMID: 38069360 PMCID: PMC10707307 DOI: 10.3390/ijms242317037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Parkinson's disease is a neurodegenerative condition characterized by motor dysfunction resulting from the degeneration of dopamine-producing neurons in the midbrain. This dopamine deficiency gives rise to a spectrum of movement-related symptoms, including tremors, rigidity, and bradykinesia. While the precise etiology of Parkinson's disease remains elusive, genetic mutations, protein aggregation, inflammatory processes, and oxidative stress are believed to contribute to its development. In this context, fatty acid-binding proteins (FABPs) in the central nervous system, FABP3, FABP5, and FABP7, impact α-synuclein aggregation, neurotoxicity, and neuroinflammation. These FABPs accumulate in mitochondria during neurodegeneration, disrupting their membrane potential and homeostasis. In particular, FABP3, abundant in nigrostriatal dopaminergic neurons, is responsible for α-synuclein propagation into neurons and intracellular accumulation, affecting the loss of mesencephalic tyrosine hydroxylase protein, a rate-limiting enzyme of dopamine biosynthesis. This review summarizes the characteristics of FABP family proteins and delves into the pathogenic significance of FABPs in the pathogenesis of Parkinson's disease. Furthermore, it examines potential novel therapeutic targets and early diagnostic biomarkers for Parkinson's disease and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
- BRI Pharma Inc., Sendai 982-0804, Japan
| |
Collapse
|
42
|
Li HY, Liu DS, Zhang YB, Rong H, Zhang XJ. The interaction between alpha-synuclein and mitochondrial dysfunction in Parkinson's disease. Biophys Chem 2023; 303:107122. [PMID: 37839353 DOI: 10.1016/j.bpc.2023.107122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/18/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Parkinson's disease (PD) is an aging-associated neurodegenerative disorder with the hallmark of abnormal aggregates of alpha-synuclein (α-syn) in Lewy bodies (LBs) and Lewy neurites (LNs). Currently, pathogenic α-syn and mitochondrial dysfunction have been considered as prominent roles that give impetus to the PD onset. This review describes the α-syn pathology and mitochondrial alterations in PD, and focuses on how α-syn interacts with multiple aspects of mitochondrial homeostasis in the pathogenesis of PD.
Collapse
Affiliation(s)
- Hong-Yan Li
- Department of Basic Medical College, Heilongjiang University of Chinese Medicine, Haerbin 150000, PR China
| | - De-Shui Liu
- Department of Pathology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Ying-Bo Zhang
- Department of Pathology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Hua Rong
- Department of Pathology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Xiao-Jie Zhang
- Department of Basic Medical College, Heilongjiang University of Chinese Medicine, Haerbin 150000, PR China; Heilongjiang Nursing College, Haerbin 150000, PR China.
| |
Collapse
|
43
|
Fang TSZ, Sun Y, Pearce AC, Eleuteri S, Kemp M, Luckhurst CA, Williams R, Mills R, Almond S, Burzynski L, Márkus NM, Lelliott CJ, Karp NA, Adams DJ, Jackson SP, Zhao JF, Ganley IG, Thompson PW, Balmus G, Simon DK. Knockout or inhibition of USP30 protects dopaminergic neurons in a Parkinson's disease mouse model. Nat Commun 2023; 14:7295. [PMID: 37957154 PMCID: PMC10643470 DOI: 10.1038/s41467-023-42876-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Mutations in SNCA, the gene encoding α-synuclein (αSyn), cause familial Parkinson's disease (PD) and aberrant αSyn is a key pathological hallmark of idiopathic PD. This α-synucleinopathy leads to mitochondrial dysfunction, which may drive dopaminergic neurodegeneration. PARKIN and PINK1, mutated in autosomal recessive PD, regulate the preferential autophagic clearance of dysfunctional mitochondria ("mitophagy") by inducing ubiquitylation of mitochondrial proteins, a process counteracted by deubiquitylation via USP30. Here we show that loss of USP30 in Usp30 knockout mice protects against behavioral deficits and leads to increased mitophagy, decreased phospho-S129 αSyn, and attenuation of SN dopaminergic neuronal loss induced by αSyn. These observations were recapitulated with a potent, selective, brain-penetrant USP30 inhibitor, MTX115325, with good drug-like properties. These data strongly support further study of USP30 inhibition as a potential disease-modifying therapy for PD.
Collapse
Affiliation(s)
- Tracy-Shi Zhang Fang
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Yu Sun
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH, UK
| | - Andrew C Pearce
- Mission Therapeutics Ltd. Glenn Berge Building, Babraham Research Campus, Cambridge, CB22 3FH, UK
| | - Simona Eleuteri
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Mark Kemp
- Mission Therapeutics Ltd. Glenn Berge Building, Babraham Research Campus, Cambridge, CB22 3FH, UK
| | - Christopher A Luckhurst
- Mission Therapeutics Ltd. Glenn Berge Building, Babraham Research Campus, Cambridge, CB22 3FH, UK
| | - Rachel Williams
- Mission Therapeutics Ltd. Glenn Berge Building, Babraham Research Campus, Cambridge, CB22 3FH, UK
| | - Ross Mills
- Mission Therapeutics Ltd. Glenn Berge Building, Babraham Research Campus, Cambridge, CB22 3FH, UK
| | - Sarah Almond
- Mission Therapeutics Ltd. Glenn Berge Building, Babraham Research Campus, Cambridge, CB22 3FH, UK
| | - Laura Burzynski
- Mission Therapeutics Ltd. Glenn Berge Building, Babraham Research Campus, Cambridge, CB22 3FH, UK
| | - Nóra M Márkus
- Mission Therapeutics Ltd. Glenn Berge Building, Babraham Research Campus, Cambridge, CB22 3FH, UK
| | | | | | | | - Stephen P Jackson
- Mission Therapeutics Ltd. Glenn Berge Building, Babraham Research Campus, Cambridge, CB22 3FH, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0RE, UK
| | - Jin-Feng Zhao
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Ian G Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Paul W Thompson
- Mission Therapeutics Ltd. Glenn Berge Building, Babraham Research Campus, Cambridge, CB22 3FH, UK.
| | - Gabriel Balmus
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH, UK.
- Department of Molecular Neuroscience, Transylvanian Institute of Neuroscience, 400191, Cluj-Napoca, Romania.
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Buneeva OA, Kapitsa IG, Zgoda VG, Medvedev AE. Neuroprotective effects of isatin and afobazole in rats with rotenone-induced Parkinsonism are accompanied by increased brain levels of Triton X-100 soluble alpha-synuclein. BIOMEDITSINSKAIA KHIMIIA 2023; 69:290-299. [PMID: 37937431 DOI: 10.18097/pbmc20236905290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Effects of the endogenous neuroprotector isatin and the pharmacological drug afobazole (exhibiting neuroprotective properties) on behavioral reactions and quantitative changes in the brain proteomic profile have been investigated in rats with experimental rotenone Parkinsonism. A single dose of isatin (100 mg/kg subcutaneously on the last day of a 7-day course of rotenone administration) improved the motor activity of rats with rotenone-induced Parkinsonism in the open field test (horizontal movements) and the rotating rod test. Afobazole (10 mg/kg intraperitoneally, daily during the 7-day course of rotenone administration) reduced the manifestations of rigidity and postural instability. Proteomic analysis, performed using brain samples obtained the day after the last administration of rotenone and neuroprotectors, revealed similar quantitative changes in the brain of rats with rotenone Parkinsonism. An increase in the relative content of 65 proteins and a decrease in the relative content of 21 proteins were detected. The most pronounced changes - an almost ninety-fold increase in the alpha-synuclein content - were found in the brains of rats treated with isatin. In animals of the experimental groups treated with "Rotenone + Isatin", as well as "Rotenone + Afobazole", the increase in the relative content of this protein in the brain was almost 60 and 50 times higher than the control values. Taking into consideration the known data on the physiological role of alpha-synuclein, an increase in the content of this protein in the brain upon administration of neuroprotectors to animals with rotenone Parkinsonism may represent a compensatory reaction, at least in the early stages of this disease and the beginning of its treatment.
Collapse
Affiliation(s)
- O A Buneeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - I G Kapitsa
- Institute of Biomedical Chemistry, Moscow, Russia; Zakusov Institute of Pharmacology, Moscow, Russia
| | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A E Medvedev
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
45
|
Chen Y, Yuan W, Xu Q, Reddy MB. Neuroprotection of phytic acid in Parkinson’s and Alzheimer’s disease. J Funct Foods 2023; 110:105856. [DOI: 10.1016/j.jff.2023.105856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
46
|
Zeng N, Wang Q, Zhang C, Zhou Y, Yan J. A review of studies on the implication of NLRP3 inflammasome for Parkinson's disease and related candidate treatment targets. Neurochem Int 2023; 170:105610. [PMID: 37704080 DOI: 10.1016/j.neuint.2023.105610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease for which the prevalence is second only to Alzheimer's disease (AD). This disease primarily affects people of middle and old age, significantly impacting their health and quality of life. The main pathological features include the degenerative nigrostriatal dopaminergic (DA) neuron loss and Lewy body (LB) formation. Currently, available PD medications primarily aim to alleviate clinical symptoms, however, there is no universally recognized therapy worldwide that effectively prevents, clinically treats, stops, or reverses the disease. Consequently, the evaluation and exploration of potential therapeutic targets for PD are of utmost importance. Nevertheless, the pathophysiology of PD remains unknown, and neuroinflammation mediated by inflammatory cytokines that prompts neuron death is fundamental for the progression of PD. The nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is a key complex of proteins linking the neuroinflammatory cascade in PD. Moreover, mounting evidence suggests that traditional Chinese medicine (TCM) alleviates PD by suppressing the NLRP3 inflammasome. This article aims to comprehensively review the available studies on the composition and activating mechanism of the NLRP3 inflammasome, along with its significance in PD pathogenesis and potential treatment targets. We also review natural products or synthetic compounds which reduce neuroinflammation via modulating NLRP3 inflammasome activity, aiming to identify new targets for future PD diagnosis and treatment through the exploration of NLRP3 inhibitors. Additionally, this review offers valuable references for developing new PD treatment methods.
Collapse
Affiliation(s)
- Nannan Zeng
- Department of Physiology, Guilin Medical University, Guilin, 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541004, China
| | - Qi Wang
- Department of Physiology, Guilin Medical University, Guilin, 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541004, China
| | - Chong Zhang
- Department of Neurology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541100, China
| | - Yali Zhou
- Department of Microbiology, Guilin Medical University, Guilin, 541004, China.
| | - Jianguo Yan
- Department of Physiology, Guilin Medical University, Guilin, 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541004, China.
| |
Collapse
|
47
|
Zhou ZD, Yi LX, Wang DQ, Lim TM, Tan EK. Role of dopamine in the pathophysiology of Parkinson's disease. Transl Neurodegener 2023; 12:44. [PMID: 37718439 PMCID: PMC10506345 DOI: 10.1186/s40035-023-00378-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023] Open
Abstract
A pathological feature of Parkinson's disease (PD) is the progressive loss of dopaminergic neurons and decreased dopamine (DA) content in the substantia nigra pars compacta in PD brains. DA is the neurotransmitter of dopaminergic neurons. Accumulating evidence suggests that DA interacts with environmental and genetic factors to contribute to PD pathophysiology. Disturbances of DA synthesis, storage, transportation and metabolism have been shown to promote neurodegeneration of dopaminergic neurons in various PD models. DA is unstable and can undergo oxidation and metabolism to produce multiple reactive and toxic by-products, including reactive oxygen species, DA quinones, and 3,4-dihydroxyphenylacetaldehyde. Here we summarize and highlight recent discoveries on DA-linked pathophysiologic pathways, and discuss the potential protective and therapeutic strategies to mitigate the complications associated with DA.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| | - Ling Xiao Yi
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Dennis Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Tit Meng Lim
- Department of Biological Science, National University of Singapore, Singapore, 119077, Singapore
| | - Eng King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
48
|
Mizutani Y, Nawashiro K, Ohdake R, Tatebe H, Shima S, Ueda A, Yoshimoto J, Ito M, Tokuda T, Mutoh T, Watanabe H. Enzymatic properties and clinical associations of serum alpha-galactosidase A in Parkinson's disease. Ann Clin Transl Neurol 2023; 10:1662-1672. [PMID: 37496179 PMCID: PMC10502655 DOI: 10.1002/acn3.51856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/29/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
OBJECTIVE Recent studies have revealed an association between Parkinson's disease (PD) and Fabry disease, a lysosomal storage disorder; however, the underlying mechanisms remain to be elucidated. This study aimed to investigate the enzymatic properties of serum alpha-galactosidase A (GLA) and compared them with the clinical parameters of PD. METHODS The study participants consisted of 66 sporadic PD patients and 52 controls. We measured serum GLA activity and calculated the apparent Michaelis constant (Km ) and maximal velocity (Vmax ) by Lineweaver-Burk plot analysis. Serum GLA protein concentration was measured by enzyme-linked immunosorbent assay. We examined the potential correlations between serum GLA activity and GLA protein concentration and clinical features and the plasma neurofilament light chain (NfL) level. RESULTS Compared to controls, PD patients showed significantly lower serum GLA activity (P < 0.0001) and apparent Vmax (P = 0.0131), but no change in the apparent Km value. Serum GLA protein concentration was lower in the PD group (P = 0.0168) and was positively associated with GLA activity. Serum GLA activity and GLA protein concentration in the PD group showed a negative correlation with age. Additionally, serum GLA activity was negatively correlated with the motor severity score and the level of plasma NfL, and was positively correlated with the score of frontal assessment battery. INTERPRETATION This study highlights that the lower serum GLA activity in PD is the result of a quantitative decrement of GLA protein in the serum and that it may serve as a biomarker of disease severity.
Collapse
Affiliation(s)
- Yasuaki Mizutani
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
| | | | - Reiko Ohdake
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
| | - Harutsugu Tatebe
- Department of Functional Brain ImagingInstitute for Quantum Medical Science, National Institutes for Quantum Science and TechnologyChibaJapan
| | - Sayuri Shima
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
| | - Akihiro Ueda
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
| | - Junichiro Yoshimoto
- Department of Biomedical Data ScienceFujita Health University School of MedicineToyoakeAichiJapan
| | - Mizuki Ito
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
| | - Takahiko Tokuda
- Department of Functional Brain ImagingInstitute for Quantum Medical Science, National Institutes for Quantum Science and TechnologyChibaJapan
| | - Tatsuro Mutoh
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
- Fujita Health University Central Japan International Airport ClinicTokonameAichiJapan
| | - Hirohisa Watanabe
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
| |
Collapse
|
49
|
Murai T, Matsuda S. Integrated Multimodal Omics and Dietary Approaches for the Management of Neurodegeneration. EPIGENOMES 2023; 7:20. [PMID: 37754272 PMCID: PMC10529483 DOI: 10.3390/epigenomes7030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, are caused by a combination of multiple events that damage neuronal function. A well-characterized biomarker of neurodegeneration is the accumulation of proteinaceous aggregates in the brain. However, the gradually worsening symptoms of neurodegenerative diseases are unlikely to be solely due to the result of a mutation in a single gene, but rather a multi-step process involving epigenetic changes. Recently, it has been suggested that a fraction of epigenetic alternations may be correlated to neurodegeneration in the brain. Unlike DNA mutations, epigenetic alterations are reversible, and therefore raise the possibilities for therapeutic intervention, including dietary modifications. Additionally, reactive oxygen species may contribute to the pathogenesis of Alzheimer's disease and Parkinson's disease through epigenetic alternation. Given that the antioxidant properties of plant-derived phytochemicals are likely to exhibit pleiotropic effects against ROS-mediated epigenetic alternation, dietary intervention may be promising for the management of neurodegeneration in these diseases. In this review, the state-of-the-art applications using single-cell multimodal omics approaches, including epigenetics, and dietary approaches for the identification of novel biomarkers and therapeutic approaches for the treatment of neurodegenerative diseases are discussed.
Collapse
Affiliation(s)
- Toshiyuki Murai
- Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Japan;
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
50
|
Spanos F, Deleidi M. Glycolipids in Parkinson's disease: beyond neuronal function. FEBS Open Bio 2023; 13:1558-1579. [PMID: 37219461 PMCID: PMC10476577 DOI: 10.1002/2211-5463.13651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023] Open
Abstract
Glycolipid balance is key to normal body function, and its alteration can lead to a variety of diseases involving multiple organs and tissues. Glycolipid disturbances are also involved in Parkinson's disease (PD) pathogenesis and aging. Increasing evidence suggests that glycolipids affect cellular functions beyond the brain, including the peripheral immune system, intestinal barrier, and immunity. Hence, the interplay between aging, genetic predisposition, and environmental exposures could initiate systemic and local glycolipid changes that lead to inflammatory reactions and neuronal dysfunction. In this review, we discuss recent advances in the link between glycolipid metabolism and immune function and how these metabolic changes can exacerbate immunological contributions to neurodegenerative diseases, with a focus on PD. Further understanding of the cellular and molecular mechanisms that control glycolipid pathways and their impact on both peripheral tissues and the brain will help unravel how glycolipids shape immune and nervous system communication and the development of novel drugs to prevent PD and promote healthy aging.
Collapse
Affiliation(s)
- Fokion Spanos
- Institut Imagine, INSERM UMR1163Paris Cité UniversityFrance
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| | - Michela Deleidi
- Institut Imagine, INSERM UMR1163Paris Cité UniversityFrance
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain ResearchUniversity of TübingenGermany
| |
Collapse
|