1
|
Liu J, Shao N, Qiu H, Zhao J, Chen C, Wan J, He Z, Zhao X, Xu L. Intestinal microbiota: A bridge between intermittent fasting and tumors. Biomed Pharmacother 2023; 167:115484. [PMID: 37708691 DOI: 10.1016/j.biopha.2023.115484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
Intestinal microbiota and their metabolites are essential for maintaining intestinal health, regulating inflammatory responses, and enhancing the body's immune function. An increasing number of studies have shown that the intestinal microbiota is tightly tied to tumorigenesis and intervention effects. Intermittent fasting (IF) is a method of cyclic dietary restriction that can improve energy metabolism, prolong lifespan, and reduce the progression of various diseases, including tumors. IF can affect the energy metabolism of tumor cells, inhibit tumor cell growth, improve the function of immune cells, and promote an anti-tumor immune response. Interestingly, recent research has further revealed that the intestinal microbiota can be impacted by IF, in particular by changes in microbial composition and metabolism. These findings suggest the complexity of the IF as a promising tumor intervention strategy, which merits further study to better understand and encourage the development of clinical tumor intervention strategies. In this review, we aimed to outline the characteristics of the intestinal microbiota and its mechanisms in different tumors. Of note, we summarized the impact of IF on intestinal microbiota and discussed its potential association with tumor suppressive effects. Finally, we proposed some key scientific issues that need to be addressed and envision relevant research prospects, which might provide a theoretical basis and be helpful for the application of IF and intestinal microbiota as new strategies for clinical interventions in the future.
Collapse
Affiliation(s)
- Jing Liu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Nan Shao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Hui Qiu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jiajia Wan
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhixu He
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Guizhou University Medical College, Guiyang 550025, Guizhou Province, China.
| | - Lin Xu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
2
|
Feng J, Yang K, Liu X, Song M, Zhan P, Zhang M, Chen J, Liu J. Machine learning: a powerful tool for identifying key microbial agents associated with specific cancer types. PeerJ 2023; 11:e16304. [PMID: 37901464 PMCID: PMC10601900 DOI: 10.7717/peerj.16304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Machine learning (ML) includes a broad class of computer programs that improve with experience and shows unique strengths in performing tasks such as clustering, classification and regression. Over the past decade, microbial communities have been implicated in influencing the onset, progression, metastasis, and therapeutic response of multiple cancers. Host-microbe interaction may be a physiological pathway contributing to cancer development. With the accumulation of a large number of high-throughput data, ML has been successfully applied to the study of human cancer microbiomics in an attempt to reveal the complex mechanism behind cancer. In this review, we begin with a brief overview of the data sources included in cancer microbiomics studies. Then, the characteristics of the ML algorithm are briefly introduced. Secondly, the application progress of ML in cancer microbiomics is also reviewed. Finally, we highlight the challenges and future prospects facing ML in cancer microbiomics. On this basis, we conclude that the development of cancer microbiomics can not be achieved without ML, and that ML can be used to develop tumor-targeting microbial therapies, ultimately contributing to personalized and precision medicine.
Collapse
Affiliation(s)
- Jia Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Kailan Yang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Xuexue Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Min Song
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Ping Zhan
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Mi Zhang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Jinsong Chen
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, China
| |
Collapse
|
3
|
Kong LY, Chen XY, Lu X, Caiyin Q, Yang DH. Association of lung-intestinal microecology and lung cancer therapy. Chin Med 2023; 18:37. [PMID: 37038223 PMCID: PMC10084624 DOI: 10.1186/s13020-023-00742-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023] Open
Abstract
In recent years, the incidence of lung cancer is increasing. Lung cancer has become one of the most malignant tumors with the highest incidence in the world, which seriously affects people's health. The most important cause of death of lung cancer is metastasis. Therefore, it is crucial to understand the mechanism of lung cancer progression and metastasis. This review article discusses the physiological functions, pathological states and disorders of the lung and intestine based on the concepts of traditional Chinese medicine (TCM), and analyzes the etiology and mechanisms of lung cancer formation from the perspective of TCM. From the theory of "the exterior and interior of the lung and gastrointestinal tract", the theory of "the lung-intestinal axis" and the progression and metastasis of lung cancer, we proposed e "lung-gut co-treatment" therapy for lung cancer. This study provides ideas for studying the mechanism of lung cancer and the comprehensive alternative treatment for lung cancer patients.
Collapse
Affiliation(s)
- Ling-Yu Kong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Traditional Chinese and Western Medicine Oncology Clinic, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Xuan-Yu Chen
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA
| | - Xin Lu
- Clinical School of Medicine, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, 11501, USA.
| |
Collapse
|
4
|
Shome M, Gao W, Engelbrektson A, Song L, Williams S, Murugan V, Park JG, Chung Y, LaBaer J, Qiu J. Comparative Microbiomics Analysis of Antimicrobial Antibody Response between Patients with Lung Cancer and Control Subjects with Benign Pulmonary Nodules. Cancer Epidemiol Biomarkers Prev 2023; 32:496-504. [PMID: 36066883 PMCID: PMC10494706 DOI: 10.1158/1055-9965.epi-22-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/15/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND CT screening can detect lung cancer early but suffers a high false-positive rate. There is a need for molecular biomarkers that can distinguish malignant and benign indeterminate pulmonary nodules (IPN) detected by CT scan. METHODS We profiled antibodies against 901 individual microbial antigens from 27 bacteria and 29 viruses in sera from 127 lung adenocarcinoma (ADC), 123 smoker controls (SMC), 170 benign nodule controls (BNC) individuals using protein microarrays to identify ADC and BNC specific antimicrobial antibodies. RESULTS Analyzing fourth quartile ORs, we found more antibodies with higher prevalence in the three BNC subgroups than in ADC or SMC. We demonstrated that significantly more anti-Helicobacter pylori antibodies showed higher prevalence in ADC relative to SMC. We performed subgroup analysis and found that more antibodies with higher prevalence in light smokers (≤20 pack-years) compared with heavy smokers (>20 pack-years), in BNC with nodule size >1 cm than in those with ≤1 cm nodules, and in stage I ADC than in stage II and III ADC. We performed multivariate analysis and constructed antibody panels that can distinguish ADC versus SMC and ADC versus BNC with area under the ROC curve (AUC) of 0.88 and 0.80, respectively. CONCLUSIONS Antimicrobial antibodies have the potential to reduce the false positive rate of CT screening and provide interesting insight in lung cancer development. IMPACT Microbial infection plays an important role in lung cancer development and the formation of benign pulmonary nodules.
Collapse
Affiliation(s)
- Mahasish Shome
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Weimin Gao
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | | | - Lusheng Song
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Stacy Williams
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Vel Murugan
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Jin G. Park
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Yunro Chung
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Joshua LaBaer
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Ji Qiu
- Biodesign Institute, Arizona State University, Tempe, Arizona
| |
Collapse
|
5
|
Forder A, Zhuang R, Souza VGP, Brockley LJ, Pewarchuk ME, Telkar N, Stewart GL, Benard K, Marshall EA, Reis PP, Lam WL. Mechanisms Contributing to the Comorbidity of COPD and Lung Cancer. Int J Mol Sci 2023; 24:ijms24032859. [PMID: 36769181 PMCID: PMC9918127 DOI: 10.3390/ijms24032859] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023] Open
Abstract
Lung cancer and chronic obstructive pulmonary disease (COPD) often co-occur, and individuals with COPD are at a higher risk of developing lung cancer. While the underlying mechanism for this risk is not well understood, its major contributing factors have been proposed to include genomic, immune, and microenvironment dysregulation. Here, we review the evidence and significant studies that explore the mechanisms underlying the heightened lung cancer risk in people with COPD. Genetic and epigenetic changes, as well as the aberrant expression of non-coding RNAs, predispose the lung epithelium to carcinogenesis by altering the expression of cancer- and immune-related genes. Oxidative stress generated by tobacco smoking plays a role in reducing genomic integrity, promoting epithelial-mesenchymal-transition, and generating a chronic inflammatory environment. This leads to abnormal immune responses that promote cancer development, though not all smokers develop lung cancer. Sex differences in the metabolism of tobacco smoke predispose females to developing COPD and accumulating damage from oxidative stress that poses a risk for the development of lung cancer. Dysregulation of the lung microenvironment and microbiome contributes to chronic inflammation, which is observed in COPD and known to facilitate cancer initiation in various tumor types. Further, there is a need to better characterize and identify the proportion of individuals with COPD who are at a high risk for developing lung cancer. We evaluate possible novel and individualized screening strategies, including biomarkers identified in genetic studies and exhaled breath condensate analysis. We also discuss the use of corticosteroids and statins as chemopreventive agents to prevent lung cancer. It is crucial that we optimize the current methods for the early detection and management of lung cancer and COPD in order to improve the health outcomes for a large affected population.
Collapse
Affiliation(s)
- Aisling Forder
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Rebecca Zhuang
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Vanessa G P Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Liam J Brockley
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michelle E Pewarchuk
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Greg L Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Katya Benard
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Erin A Marshall
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Patricia P Reis
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Wan L Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
6
|
Zarepour A, Egil AC, Cokol Cakmak M, Esmaeili Rad M, Cetin Y, Aydinlik S, Ozaydin Ince G, Zarrabi A. Fabrication of a Dual-Drug-Loaded Smart Niosome-g-Chitosan Polymeric Platform for Lung Cancer Treatment. Polymers (Basel) 2023; 15:298. [PMID: 36679179 PMCID: PMC9860619 DOI: 10.3390/polym15020298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Changes in weather conditions and lifestyle lead to an annual increase in the amount of lung cancer, and therefore it is one of the three most common types of cancer, making it important to find an appropriate treatment method. This research aims to introduce a new smart nano-drug delivery system with antibacterial and anticancer capabilities that could be applied for the treatment of lung cancer. It is composed of a niosomal carrier containing curcumin as an anticancer drug and is coated with a chitosan polymeric shell, alongside Rose Bengal (RB) as a photosensitizer with an antibacterial feature. The characterization results confirmed the successful fabrication of lipid-polymeric carriers with a size of nearly 80 nm and encapsulation efficiency of about 97% and 98% for curcumin and RB, respectively. It had the Korsmeyer-Peppas release pattern model with pH and temperature responsivity so that nearly 60% and 35% of RB and curcumin were released at 37 °C and pH 5.5. Moreover, it showed nearly 50% toxicity against lung cancer cells over 72 h and antibacterial activity against Escherichia coli. Accordingly, this nanoformulation could be considered a candidate for the treatment of lung cancer; however, in vivo studies are needed for better confirmation.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Biomedical Engineering Department, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Türkiye
| | - Abdurrahim Can Egil
- Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Sabanci University, Istanbul 34956, Türkiye
| | - Melike Cokol Cakmak
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla 34956, Türkiye
| | - Monireh Esmaeili Rad
- Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Sabanci University, Istanbul 34956, Türkiye
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla 34956, Türkiye
| | - Yuksel Cetin
- TUBITAK Marmara Research Center, Life Sciences Medical Biotechnology, Gebze 41470, Türkiye
| | - Seyma Aydinlik
- TUBITAK Marmara Research Center, Life Sciences, Industrial Biotechnology, Gebze 41470, Türkiye
| | - Gozde Ozaydin Ince
- Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Sabanci University, Istanbul 34956, Türkiye
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla 34956, Türkiye
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Sabanci University, Istanbul 34956, Türkiye
| | - Ali Zarrabi
- Biomedical Engineering Department, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Türkiye
| |
Collapse
|
7
|
Khan FH, Bhat BA, Sheikh BA, Tariq L, Padmanabhan R, Verma JP, Shukla AC, Dowlati A, Abbas A. Microbiome dysbiosis and epigenetic modulations in lung cancer: From pathogenesis to therapy. Semin Cancer Biol 2022; 86:732-742. [PMID: 34273520 DOI: 10.1016/j.semcancer.2021.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
The lung microbiome plays an essential role in maintaining healthy lung function, including host immune homeostasis. Lung microbial dysbiosis or disruption of the gut-lung axis can contribute to lung carcinogenesis by causing DNA damage, inducing genomic instability, or altering the host's susceptibility to carcinogenic insults. Thus far, most studies have reported the association of microbial composition in lung cancer. Mechanistic studies describing host-microbe interactions in promoting lung carcinogenesis are limited. Considering cancer as a multifaceted disease where epigenetic dysregulation plays a critical role, epigenetic modifying potentials of microbial metabolites and toxins and their roles in lung tumorigenesis are not well studied. The current review explains microbial dysbiosis and epigenetic aberrations in lung cancer and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Faizan Haider Khan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | | | | | - Lubna Tariq
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Roshan Padmanabhan
- Department of Medicine, Case Western Reserve University, and University Hospital, Cleveland, OH, 44106, USA
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University Varanasi, India
| | | | - Afshin Dowlati
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA; University Hospitals Seidman Cancer Center, Cleveland, OH, 44106, USA; Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA
| | - Ata Abbas
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA; Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA.
| |
Collapse
|
8
|
Gupta I, Pedersen S, Vranic S, Al Moustafa AE. Implications of Gut Microbiota in Epithelial-Mesenchymal Transition and Cancer Progression: A Concise Review. Cancers (Basel) 2022; 14:2964. [PMID: 35740629 PMCID: PMC9221329 DOI: 10.3390/cancers14122964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/04/2022] Open
Abstract
Advancement in the development of molecular sequencing platforms has identified infectious bacteria or viruses that trigger the dysregulation of a set of genes inducing the epithelial-mesenchymal transition (EMT) event. EMT is essential for embryogenesis, wound repair, and organ development; meanwhile, during carcinogenesis, initiation of the EMT can promote cancer progression and metastasis. Recent studies have reported that interactions between the host and dysbiotic microbiota in different tissues and organs, such as the oral and nasal cavities, esophagus, stomach, gut, skin, and the reproductive tract, may provoke EMT. On the other hand, it is revealed that certain microorganisms display a protective role against cancer growth, indicative of possible therapeutic function. In this review, we summarize recent findings elucidating the underlying mechanisms of pathogenic microorganisms, especially the microbiota, in eliciting crucial regulator genes that induce EMT. Such an approach may help explain cancer progression and pave the way for developing novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (S.V.)
| | - Shona Pedersen
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (S.V.)
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (S.V.)
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (S.P.); (S.V.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
9
|
Jin A, Zhao Y, Yuan Y, Ma S, Chen J, Yang X, Lu S, Sun Q. Single Treatment of Vitamin D3 Ameliorates LPS-Induced Acute Lung Injury through Changing Lung Rodentibacter abundance. Mol Nutr Food Res 2021; 66:e2100952. [PMID: 34894076 DOI: 10.1002/mnfr.202100952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/29/2021] [Indexed: 11/06/2022]
Abstract
Acute lung injury (ALI) is characterized by severe inflammation. Vitamin D3 is discussed to reduce inflammation in ALI, but the mechanism is not well understood. This study assesses the effect of different calcitriol administration strategies on inflammation and the lung microbiota composition in ALI. In a mouse model, the alveolus and airway pathology are assessed by immunohistology. mRNA expression is determined by Real-Time Quantitative PCR and protein expressions is detected by Western-blotting. The composition of microbiota is performed by 16s DNA high-throughput sequencing. Short-term vitamin D3 supplementation prevents lipopolysaccharide-induced ALI by preventing pro-inflammatory cytokines including interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α). In contrast, long-term treatment over 3 days, 6 days, or 10 days had no such effect. Short-term vitamin D3, but not long-term pretreatment significantly reduces the phosphorylation of signal transducer and activator of transcription 3 and suppressor of cytokine signaling 3, but upregulates the phosphorylation of inhibitor of nuclear factor-κ-gene binding. Furthermore, an increased relative abundance of Rodentibacter genus in LPS-challenged mice bronchoalveolar lavage fluid is observed, which is sensitive to short-term vitamin D3 treatment, effectively alleviating the Rodentibacter abundance. Correlation analysis shows that the load of Rodentibacter positively correlated with the IL-1β, IL-6, and TNF-α gene expression. The data support that a single administration of vitamin D3 may work as an adjuvant therapy for acute lung inflammation.
Collapse
Affiliation(s)
- Ai Jin
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yan Zhao
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Ye Yuan
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Shulan Ma
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jian Chen
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xiaojun Yang
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, P. R. China
| | - Qingzhu Sun
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
10
|
Fabbrizzi A, Nannini G, Lavorini F, Tomassetti S, Amedei A. Microbiota and IPF: hidden and detected relationships. SARCOIDOSIS VASCULITIS AND DIFFUSE LUNG DISEASES 2021; 38:e2021028. [PMID: 34744424 PMCID: PMC8552575 DOI: 10.36141/svdld.v38i3.11365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/02/2021] [Indexed: 12/23/2022]
Abstract
Lung microbiota (LM) is an interesting new way to consider and redesign pathogenesis and possible therapeutic approach to many lung diseases, such as idiopathic pulmonary fibrosis (IPF), which is an interstitial pneumonia with bad prognosis. Chronic inflammation is the basis but probably not the only cause of lung fibrosis and although the risk factors are not completely clear, endogenous factors (e.g. gastroesophageal reflux) and environmental factors like cigarette smoking, industrial dusts, and precisely microbial agents could contribute to the IPF development. It is well demonstrated that many bacteria can cause epithelial cell injuries in the airways through induction of a host immune response or by activating flogosis mediators following a chronic, low-level antigenic stimulus. This persistent host response could influence fibroblast responsiveness suggesting that LM may play a role in repetitive alveolar injury in IPF. We reviewed literature regarding not only bacteria but also the role of virome and mycobiome in IPF. In fact, some viruses such as hepatitis C virus or certain fungi could be etiological agents or co-factors in the IPF progress. We aim to illustrate how the cross-talk between different local microbiotas throughout specific axis and immune modulation governed by microorganisms could be at the basis of lung dysfunctions and IPF development. Finally, since the future direction of medicine will be personalized, we suggest that the analysis of LM could be a goal to research new therapies also in IPF.
Collapse
Affiliation(s)
- Alessio Fabbrizzi
- Department of Respiratory Physiopathology, Palagi Hospital, Florence, Italy
| | - Giulia Nannini
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Federico Lavorini
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Sara Tomassetti
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy.,SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Florence, Italy
| |
Collapse
|
11
|
Georgiou K, Marinov B, Farooqi AA, Gazouli M. Gut Microbiota in Lung Cancer: Where Do We Stand? Int J Mol Sci 2021; 22:10429. [PMID: 34638770 PMCID: PMC8508914 DOI: 10.3390/ijms221910429] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/19/2021] [Accepted: 09/26/2021] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota (GM) is considered to constitute a powerful "organ" capable of influencing the majority of the metabolic, nutritional, physiological, and immunological processes of the human body. To date, five microbial-mediated mechanisms have been revealed that either endorse or inhibit tumorigenesis. Although the gastrointestinal and respiratory tracts are distant physically, they have common embryonic origin and similarity in structure. The lung microbiota is far less understood, and it is suggested that the crosslink between the human microbiome and lung cancer is a complex, multifactorial relationship. Several pathways linking their respective microbiota have reinforced the existence of a gut-lung axis (GLA). Regarding implications of specific GM in lung cancer therapy, a few studies showed that the GM considerably affects immune checkpoint inhibitor (ICI) therapy by altering the differentiation of regulatory T cells and thus resulting in changes in immunomodulation mechanisms, as discovered by assessing drug metabolism directly and by assessing the host immune modulation response. Additionally, the GM may increase the efficacy of chemotherapeutic treatment in lung cancer. The mechanism underlying the role of the GLA in the pathogenesis and progression of lung cancer and its capability for diagnosis, manipulation, and treatment need to be further explored.
Collapse
Affiliation(s)
- Konstantinos Georgiou
- 1st Department of Propaedeutic Surgery, Hippokration General Hospital of Athens, Athens Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Blagoi Marinov
- Medical Simulation Training Center at Research Institute of Medical University of Plovdiv, Tsentar, 4002 Plovdiv, Bulgaria;
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), 24 Mauve Area, Sector G-9/1, Islamabad 54000, Pakistan;
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
12
|
Chen J, Jin A, Huang L, Zhao Y, Li Y, Zhang H, Yang X, Sun Q. Dynamic Changes in Lung Microbiota of Broilers in Response to Aging and Ammonia Stress. Front Microbiol 2021; 12:696913. [PMID: 34421851 PMCID: PMC8371464 DOI: 10.3389/fmicb.2021.696913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/08/2021] [Indexed: 12/04/2022] Open
Abstract
Comprehensive microbial analysis has revealed that the lung harbors a complex variety of microbiota, and although the dynamic distribution of the lung microbiota in mice and laying hens of different ages is well established, this distribution has not been clarified in broilers of different ages. Here, we performed 16S rRNA gene sequencing of lung lavage fluid from broilers at 3 (3D), 7 (7D), 14 (14D), 21 (21D), and 35 (35D) days of age to evaluate changes in the composition of their lung microbiota. Upon examination of the composition and function of the broiler lung microbiota, we found that their maturation increased significantly with age. Specifically, the microbiota composition was similar between 7 and 14D and between 21 and 35D. The relative abundance of aerobic bacteria in the broiler lungs gradually increased as the broilers developed, whereas the relative abundance of potentially pathogenic bacteria reached its highest level at 3D. The relative abundance of predicted functions in microbiota was very similar among 3, 7, and 14D, whereas the Glycan Biosynthesis and Metabolism pathway in microbiota was enriched at 21D. These findings suggest that these metabolic pathways play critical roles in shaping broiler microbiota at these age stages. In addition, short-term external ammonia stimulation significantly increased lung inflammation but did not significantly affect the lung microbiota. Taken together, these data reveal the dynamics of age-related changes in the microbiota of broiler lungs and the stability (the significant variation in the microbial composition) of these microbial communities in response to short-term ammonia stress. These findings provide new insights into the development of broiler lung microbiota and serve as a reference for subsequent studies to evaluate disease prevention in broilers subjected to large-scale breeding.
Collapse
Affiliation(s)
- Jian Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ai Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lei Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yan Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yuwen Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haotian Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qingzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Schamschula E, Lahnsteiner A, Assenov Y, Hagmann W, Zaborsky N, Wiederstein M, Strobl A, Stanke F, Muley T, Plass C, Tümmler B, Risch A. Disease-related blood-based differential methylation in cystic fibrosis and its representation in lung cancer revealed a regulatory locus in PKP3 in lung epithelial cells. Epigenetics 2021; 17:837-860. [PMID: 34415821 PMCID: PMC9423854 DOI: 10.1080/15592294.2021.1959976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis (CF) is a monogenic disease, characterized by massive chronic lung inflammation. The observed variability in clinical phenotypes in monozygotic CF twins is likely associated with the extent of inflammation. This study sought to investigate inflammation-related aberrant DNA methylation in CF twins and to determine to what extent acquired methylation changes may be associated with lung cancer. Blood-based genome-wide DNA methylation analysis was performed to compare the DNA methylomes of monozygotic twins, from the European CF Twin and Sibling Study with various degrees of disease severity. Putatively inflammation-related and differentially methylated positions were selected from a large lung cancer case-control study and investigated in blood by targeted bisulphite next-generation-sequencing. An inflammation-related locus located in the Plakophilin-3 (PKP3) gene was functionally analysed regarding promoter and enhancer activity in presence and absence of methylation using luciferase reporter assays. We confirmed in a unique cohort that monozygotic twins, even if clinically discordant, have only minor differences in global DNA methylation patterns and blood cell composition. Further, we determined the most differentially methylated positions, a high proportion of which are blood cell-type-specific, whereas others may be acquired and thus have potential relevance in the context of inflammation as lung cancer risk factors. We identified a sequence in the gene body of PKP3 which is hypermethylated in blood from CF twins with severe phenotype and highly variably methylated in lung cancer patients and controls, independent of known clinical parameters, and showed that this region exhibits methylation-dependent promoter activity in lung epithelial cells.
Collapse
Affiliation(s)
| | | | - Yassen Assenov
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Hagmann
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | | | - Anna Strobl
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Frauke Stanke
- Clinical Research Group, Clinic for Pediatric Pneumology, Allergology and NeonatologyClinic for Pediatric Pneumology, Allergology and Neonatology, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik Heidelberg, University of Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Burkhard Tümmler
- Clinical Research Group, Clinic for Pediatric Pneumology, Allergology and NeonatologyClinic for Pediatric Pneumology, Allergology and Neonatology, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Angela Risch
- Department of Biosciences, University of Salzburg, Salzburg, Austria.,Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Cancer Cluster Salzburg, Salzburg, Austria.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
14
|
Crawford MS, Nordgren TM, McCole DF. Every breath you take: Impacts of environmental dust exposure on intestinal barrier function-from the gut-lung axis to COVID-19. Am J Physiol Gastrointest Liver Physiol 2021; 320:G586-G600. [PMID: 33501887 PMCID: PMC8054554 DOI: 10.1152/ajpgi.00423.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
As countries continue to industrialize, major cities experience diminished air quality, whereas rural populations also experience poor air quality from sources such as agricultural operations. These exposures to environmental pollution from both rural and populated/industrialized sources have adverse effects on human health. Although respiratory diseases (e.g., asthma and chronic obstructive pulmonary disease) are the most commonly reported following long-term exposure to particulate matter and hazardous chemicals, gastrointestinal complications have also been associated with the increased risk of lung disease from inhalation of polluted air. The interconnectedness of these organ systems has offered valuable insights into the roles of the immune system and the micro/mycobiota as mediators of communication between the lung and the gut during disease states. A topical example of this relationship is provided by reports of multiple gastrointestinal symptoms in patients with coronavirus disease 2019 (COVID-19), whereas the rapid transmission and increased risk of COVID-19 has been linked to poor air quality and high levels of particulate matter. In this review, we focus on the mechanistic effects of environmental pollution on disease progression with special emphasis on the gut-lung axis.
Collapse
Affiliation(s)
- Meli'sa S Crawford
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| | - Declan F McCole
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California
| |
Collapse
|
15
|
Martins D, Mendes F, Schmitt F. Microbiome: A Supportive or a Leading Actor in Lung Cancer? Pathobiology 2020; 88:198-207. [PMID: 33352574 DOI: 10.1159/000511556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is still the leading cause of cancer death worldwide. Despite the major diagnostic and therapeutic innovations, the effect on mortality has been modest and the overall survival is still poor. Better understanding of the pathology of these tumors is necessary in order to develop personalized therapeutic strategies in lung cancer patients. Human microbiome has been associated with normal physiology and function, and increasing evidence points towards a key role of the microbiome in promoting the progression of lung disease. Studies have shown that although poorly understood, lung has a distinctive microbiome that may an important role in lung cancer development and progression, and interactions between microbial populations have the potential to influence disease, suggesting that microbiome can be an emerging target in cancer therapeutics. We will review mechanisms how the lung microbiota influences carcinogenesis, focusing on the bacterial dysbiosis and inflammation. Moreover, we will discuss the link between the microbiome and cancer and the consequences induced by the immune system, as the host microbiota plays an essential role in activating and modulating the immune response. We summarize current research advances in the lung microbiome and demonstrate the potential to exploit microbiome as a mechanism to prevent carcinogenesis and modulate therapeutic strategy, suggesting microbiome as a valuable approach in lung cancer patients.
Collapse
Affiliation(s)
- Diana Martins
- I3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,IPATIMUP, Institute of Molecular Pathology and Immunology of University of Porto, Porto, Portugal.,Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Department of Biomedical Laboratory Sciences, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Fernando Mendes
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Department of Biomedical Laboratory Sciences, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Fernando Schmitt
- I3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal, .,IPATIMUP, Institute of Molecular Pathology and Immunology of University of Porto, Porto, Portugal, .,FMUP, Faculty of Medicine, University of Porto, Porto, Portugal,
| |
Collapse
|
16
|
Vernocchi P, Gili T, Conte F, Del Chierico F, Conta G, Miccheli A, Botticelli A, Paci P, Caldarelli G, Nuti M, Marchetti P, Putignani L. Network Analysis of Gut Microbiome and Metabolome to Discover Microbiota-Linked Biomarkers in Patients Affected by Non-Small Cell Lung Cancer. Int J Mol Sci 2020; 21:ijms21228730. [PMID: 33227982 PMCID: PMC7699235 DOI: 10.3390/ijms21228730] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Several studies in recent times have linked gut microbiome (GM) diversity to the pathogenesis of cancer and its role in disease progression through immune response, inflammation and metabolism modulation. This study focused on the use of network analysis and weighted gene co-expression network analysis (WGCNA) to identify the biological interaction between the gut ecosystem and its metabolites that could impact the immunotherapy response in non-small cell lung cancer (NSCLC) patients undergoing second-line treatment with anti-PD1. Metabolomic data were merged with operational taxonomic units (OTUs) from 16S RNA-targeted metagenomics and classified by chemometric models. The traits considered for the analyses were: (i) condition: disease or control (CTRLs), and (ii) treatment: responder (R) or non-responder (NR). Network analysis indicated that indole and its derivatives, aldehydes and alcohols could play a signaling role in GM functionality. WGCNA generated, instead, strong correlations between short-chain fatty acids (SCFAs) and a healthy GM. Furthermore, commensal bacteria such as Akkermansia muciniphila, Rikenellaceae, Bacteroides, Peptostreptococcaceae, Mogibacteriaceae and Clostridiaceae were found to be more abundant in CTRLs than in NSCLC patients. Our preliminary study demonstrates that the discovery of microbiota-linked biomarkers could provide an indication on the road towards personalized management of NSCLC patients.
Collapse
MESH Headings
- Akkermansia/classification
- Akkermansia/genetics
- Akkermansia/isolation & purification
- Alcohols/metabolism
- Aldehydes/metabolism
- Antineoplastic Agents, Immunological/therapeutic use
- Bacteroides/classification
- Bacteroides/genetics
- Bacteroides/isolation & purification
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/microbiology
- Clostridiaceae/classification
- Clostridiaceae/genetics
- Clostridiaceae/isolation & purification
- Databases, Genetic
- Disease Progression
- Drug Monitoring/methods
- Fatty Acids, Volatile/metabolism
- Gastrointestinal Microbiome/genetics
- Gastrointestinal Microbiome/immunology
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Humans
- Immunotherapy/methods
- Indoles/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/microbiology
- Metabolome/genetics
- Metabolome/immunology
- Metagenomics/methods
- Peptostreptococcus/classification
- Peptostreptococcus/genetics
- Peptostreptococcus/isolation & purification
- Precision Medicine/methods
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- RNA, Ribosomal, 16S/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Pamela Vernocchi
- Area of Genetics and Rare Diseases, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (P.V.); (F.D.C.)
| | - Tommaso Gili
- IMT School for Advanced Studies Lucca, Networks Unit, 55100 Lucca, Italy;
| | - Federica Conte
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, 00185 Rome, Italy;
| | - Federica Del Chierico
- Area of Genetics and Rare Diseases, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (P.V.); (F.D.C.)
| | - Giorgia Conta
- Department of Chemistry, NMR-Based Metabolomics Laboratory Sapienza, University of Rome, 00185 Rome, Italy;
| | - Alfredo Miccheli
- Department of Environmental Biology and NMR-Based Metabolomics Laboratory, Sapienza University of Rome, 00185 Rome, Italy;
| | - Andrea Botticelli
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (A.B.); (P.M.)
- AOU Policlinico Umberto I, 00161 Rome, Italy
| | - Paola Paci
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, 00185 Rome, Italy;
| | - Guido Caldarelli
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari, University of Venice, 30172 Venice, Italy;
- European Centre for Living Technologies, 30172 Venice, Italy
- Institute of Complex Systems (CNR), Department of Physics, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Marianna Nuti
- Department of Experimental Medicine, University Sapienza of Rome, 00185 Rome, Italy;
| | - Paolo Marchetti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (A.B.); (P.M.)
- AOU Policlinico Umberto I, 00161 Rome, Italy
- AOU Sant’ Andrea Hospital, 00189 Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Parasitology and Area of Genetics and Rare Diseases, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Correspondence: ; Tel.: +39-066-859-2598 (ext. 8433)
| |
Collapse
|
17
|
Samet JM. Carcinogenesis and lung cancer: 70 years of progress and more to come. Carcinogenesis 2020; 41:1309-1317. [DOI: 10.1093/carcin/bgaa094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/10/2020] [Accepted: 08/31/2020] [Indexed: 01/25/2023] Open
Abstract
Abstract
This commentary celebrates the 40th year of Carcinogenesis, spanning 1980–2020 with a focus on lung cancer. For lung cancer, these 40 years come toward the end of a century of scientific inquiry that began with descriptions of this highly fatal malignancy and that closes with emphasis on molecular processes and genomics. This commentary gives a historical perspective of lung cancer research as well as a look into the questions that remain to be addressed. Over the 20th century and into the first two decades of the 21st, a series of issues have more or less sequentially been the focus of epidemiological investigation of lung cancer, as questions have been answered and methodologies have evolved. These questions began with whether an epidemic was occurring and continue now with exploration of causal mechanisms and molecular risk predictors. With tobacco smoking firmly established decades ago as a cause of lung cancer, the evidence has long been sufficient to motivate tobacco prevention and control. There is unfinished business as tobacco smoking remains widespread and the industry continues to market new, addicting, products.
Collapse
Affiliation(s)
- Jonathan M Samet
- Office of the Dean, Colorado School of Public Health, Aurora, CO, USA
| |
Collapse
|
18
|
Jiang X, Liu S, Zhang Y, Ji Y, Sohail A, Cao C, Wang P, Xiao H. Free-Flow Isoelectric Focusing for Comprehensive Separation and Analysis of Human Salivary Microbiome for Lung Cancer. Anal Chem 2020; 92:12017-12025. [DOI: 10.1021/acs.analchem.0c02627] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaoteng Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sha Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Ji
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Simcere Pharmaceutical Co., Ltd., Nanjing 210042, Jiangsu, China
| | - Amir Sohail
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengxi Cao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Wang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Simcere Pharmaceutical Co., Ltd., Nanjing 210042, Jiangsu, China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
19
|
Zheng Y, Fang Z, Xue Y, Zhang J, Zhu J, Gao R, Yao S, Ye Y, Wang S, Lin C, Chen S, Huang H, Hu L, Jiang GN, Qin H, Zhang P, Chen J, Ji H. Specific gut microbiome signature predicts the early-stage lung cancer. Gut Microbes 2020; 11:1030-1042. [PMID: 32240032 PMCID: PMC7524275 DOI: 10.1080/19490976.2020.1737487] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Alterations of gut microbiota have been implicated in multiple diseases including cancer. However, the gut microbiota spectrum in lung cancer remains largely unknown. Here we profiled the gut microbiota composition in a discovery cohort containing 42 early-stage lung cancer patients and 65 healthy individuals through the 16S ribosomal RNA (rRNA) gene sequencing analysis. We found that lung cancer patients displayed a significant shift of microbiota composition in contrast to the healthy populations. To identify the optimal microbiota signature for noninvasive diagnosis purpose, we took advantage of Support-Vector Machine (SVM) and found that the predictive model with 13 operational taxonomic unit (OTU)-based biomarkers achieved a high accuracy in lung cancer prediction (area under curve, AUC = 97.6%). This signature performed reasonably well in the validation cohort (AUC = 76.4%), which contained 34 lung cancer patients and 40 healthy individuals. To facilitate potential clinical practice, we further constructed a 'patient discrimination index' (PDI), which largely retained the prediction efficiency in both the discovery cohort (AUC = 92.4%) and the validation cohort (AUC = 67.7%). Together, our study uncovered the microbiota spectrum of lung cancer patients and established the specific gut microbial signature for the potential prediction of the early-stage lung cancer.
Collapse
Affiliation(s)
- Yajuan Zheng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhaoyuan Fang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yun Xue
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jian Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Junjie Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Renyuan Gao
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shun Yao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yi Ye
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Shihui Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Changdong Lin
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shiyang Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hsinyi Huang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Liang Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ge-Ning Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huanlong Qin
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China,Peng Zhang Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai200433, China
| | - Jianfeng Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China,CONTACT Hongbin Ji ; JianFeng Chen Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 YueYang Road, Shanghai200031, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| |
Collapse
|
20
|
Sulaiman I, Schuster S, Segal LN. Perspectives in lung microbiome research. Curr Opin Microbiol 2020; 56:24-29. [PMID: 32623064 DOI: 10.1016/j.mib.2020.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/05/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022]
Abstract
Our understanding of the existence and role of the lung microbiome has grown at a slower pace than other microbiome research areas. This is likely a consequence of the original dogma that the lung was a sterile environment although there are other barriers that are worth discussing. Here we will not be conducting an exhaustive review of the current literature on the lung microbiome, but rather we will focus on what we see as some important challenges that the field needs to face in order to improve our mechanistic understanding of the lung microbiome and its role on human health.
Collapse
Affiliation(s)
- Imran Sulaiman
- Division of Pulmonary, Critical Care, & Sleep Medicine, Department of Medicine, New York University School of Medicine, NY, United States
| | - Sheeja Schuster
- Division of Pulmonary, Critical Care, & Sleep Medicine, Department of Medicine, New York University School of Medicine, NY, United States
| | - Leopoldo N Segal
- Division of Pulmonary, Critical Care, & Sleep Medicine, Department of Medicine, New York University School of Medicine, NY, United States.
| |
Collapse
|
21
|
García-Pachón E, Padilla-Navas I. Microbioma de la vía aérea inferior y cáncer de pulmón. Arch Bronconeumol 2020. [DOI: 10.1016/j.arbres.2020.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
García-Pachón E, Padilla-Navas I. The Lower Airway Microbiome and Lung Cancer. ACTA ACUST UNITED AC 2020; 56:410. [DOI: 10.1016/j.arbr.2020.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 01/20/2020] [Indexed: 10/24/2022]
|
23
|
Cummings LA, Hoogestraat DR, Rassoulian-Barrett SL, Rosenthal CA, Salipante SJ, Cookson BT, Hoffman NG. Comprehensive evaluation of complex polymicrobial specimens using next generation sequencing and standard microbiological culture. Sci Rep 2020; 10:5446. [PMID: 32214207 PMCID: PMC7096443 DOI: 10.1038/s41598-020-62424-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/11/2020] [Indexed: 01/19/2023] Open
Abstract
Optimal clinical decision-making depends on identification of clinically relevant organisms present in a sample. Standard microbiological culture may fail to identify unusual or fastidious organisms and can misrepresent relative abundance of sample constituents. Culture-independent methods have improved our ability to deconvolute polymicrobial patient samples. We used next-generation 16S rRNA gene sequencing (NGS16S) to determine how often cultivatable organisms in complex polymicrobial samples are not reported by standard culture. Twenty consecutive bronchoalveolar lavage (BAL) samples were plated to standard and additional media; bacteria were identified by NGS16S analysis of DNA extracted directly from samples or from washed culture plates. 96% of organisms identified were cultivable, but only 21% were reported by standard culture, indicating that standard work-up provides an incomplete assessment of microbial constituents. Direct NGS16S correlated well with standard culture, identifying the same predominant organism in 50% of samples. When predominant organisms differed, NGS16S most often detected anaerobes, whose growth is unsupported by standard culture conditions for this specimen. NGS16S identified more organisms per sample and allowed identification of fastidious organisms, while culture was better at capturing organisms when bacterial load was low, and allowed incidental recovery of non-bacterial pathogens. Molecular and culture-based methods together detect more organisms than either method alone.
Collapse
Affiliation(s)
- Lisa A Cummings
- Departments of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Daniel R Hoogestraat
- Departments of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | | | | | - Stephen J Salipante
- Departments of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Brad T Cookson
- Departments of Laboratory Medicine, University of Washington, Seattle, Washington, USA.,Departments of Microbiology, University of Washington, Seattle, Washington, USA
| | - Noah G Hoffman
- Departments of Laboratory Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
24
|
Vergara D, Simeone P, Damato M, Maffia M, Lanuti P, Trerotola M. The Cancer Microbiota: EMT and Inflammation as Shared Molecular Mechanisms Associated with Plasticity and Progression. JOURNAL OF ONCOLOGY 2019; 2019:1253727. [PMID: 31772577 PMCID: PMC6854237 DOI: 10.1155/2019/1253727] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023]
Abstract
With the advent of novel molecular platforms for high-throughput/next-generation sequencing, the communities of commensal and pathogenic microorganisms that inhabit the human body have been defined in depth. In the last decade, the role of microbiota-host interactions in driving human cancer plasticity and malignant progression has been well documented. Germ-free preclinical models provided an invaluable tool to demonstrate that the human microbiota can confer susceptibility to various types of cancer and can also modulate the host response to therapeutic treatments. Of interest, besides the detrimental effects of dysbiosis on cancer etiopathogenesis, specific microorganisms have been shown to exert protective activities against cancer growth. This has strong clinical implications, as restoration of the physiologic microbiota is being rapidly implemented as a novel anticancer therapeutic strategy. Here, we reviewed past and recent literature depicting the role of microbiota-host interactions in modulating key molecular mechanisms that drive human cancer plasticity and lead to malignant progression. We analyzed microbiota-host interactions occurring in the gut as well as in other anatomic sites, such as oral and nasal cavities, lungs, breast, esophagus, stomach, reproductive tract, and skin. We revealed a common ground of biological alterations and pathways modulated by a dysbiotic microbiota and potentially involved in the control of cancer progression. The molecular mechanisms most frequently affected by the pathogenic microorganisms to induce malignant progression involve epithelial-mesenchymal transition- (EMT-) dependent barrier alterations and tumor-promoting inflammation. This evidence may pave the way to better stratify high-risk cancer patients based on unique microenvironmental/microbial signatures and to develop novel, personalized, biological therapies.
Collapse
Affiliation(s)
- Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
- Laboratory of Clinical Proteomic, “Giovanni Paolo II” Hospital, ASL-Lecce, Italy
| | - Pasquale Simeone
- Department of Medicine and Aging Sciences, “G.d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Laboratory of Cytomorphology, Center for Advanced Studies and Technology (CAST), “G.d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Marina Damato
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
- Laboratory of Clinical Proteomic, “Giovanni Paolo II” Hospital, ASL-Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
- Laboratory of Clinical Proteomic, “Giovanni Paolo II” Hospital, ASL-Lecce, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, “G.d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Laboratory of Cytomorphology, Center for Advanced Studies and Technology (CAST), “G.d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Marco Trerotola
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), “G.d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, “G.d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
25
|
Huang D, Su X, Yuan M, Zhang S, He J, Deng Q, Qiu W, Dong H, Cai S. The characterization of lung microbiome in lung cancer patients with different clinicopathology. Am J Cancer Res 2019; 9:2047-2063. [PMID: 31598405 PMCID: PMC6780665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023] Open
Abstract
There were few knowledge concerned correlation between lung microbiome and different clinicopathology of lung cancer. Bronchial washing fluid (BWF) and sputum are commonly used sample types but there was no study comparing difference of microbiome between these two in lung cancer. In this study, we aimed to compare difference of microbiome between these two sample types and characterize lung microbiome in squamous cell lung carcinoma with (SCC_M1) or without distant metastasis (SCC_M0) and lung adenocarcinoma with (AD_M1) or without distant metastasis (AD_M0). We collected 40 BWF samples and 52 sputum samples from newly diagnosed lung cancer patients. Bacterial species were sequenced via 16S rRNA sequencing. Phylum Proteobacteria in BWF samples were significantly higher than sputum samples (Wilcoxon test, P = 0.003). At phylum level, microbiome of BWF samples was more similar to that of lung cancer tissues reported in the previous literature. LEFse analysis showed that in BWF group, genera Veillonell, Megasphaera, Actinomyces and Arthrobacter in AD_M0 were significantly higher than those in SCC_M0, and genera Capnocytophaga and Rothia in AD_M1 were significantly lower than that in SCC_M1. Compared with AD_M0, genus Streptococcus of AD_M1 was significantly lower, and genera Veillonella and Rothia in SCC_M1 were significantly higher than that in SCC_M1. Our study suggested that BWF samples might better reflect the microbiome of lung cancer tissues. In different metastatic states of lung cancer, differential genera between squamous cell carcinoma and adenocarcinoma were different. And in different histologic types of lung cancer, distant metastasis-related genera were not the same.
Collapse
Affiliation(s)
- Danhui Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Xiaofang Su
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Man Yuan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Shujia Zhang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Jing He
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Qiuhua Deng
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, China
- Department of Respiratory and Critical Care Medicine, Zengcheng Branch of Nanfang Hospital, Southern Medical UniversityZengcheng 511338, Guangdong, China
| | - Wenjun Qiu
- First School of Clinical Medicine, Southern Medical University1838 North Guangzhou Avenue, Guangzhou 510515, Guangdong, China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| |
Collapse
|
26
|
Zhou H, Suo J, Zhu J. [Therapeutic Relevance of Human Microbiota and Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2019; 22:464-469. [PMID: 31315786 PMCID: PMC6712272 DOI: 10.3779/j.issn.1009-3419.2019.07.09] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
人体菌群与人类健康状态密切相关,如人体菌群的失调可能导致糖尿病、胃肠道疾病、肥胖等疾病的发生。人体内微生物与约20%的恶性肿瘤有关,肺癌(lung cancer, LC)是目前最为常见的恶性肿瘤之一,我国男性LC发病率及死亡率高居所有恶性肿瘤之首。近来研究表明,人体菌群可能通过代谢、炎症或免疫等途径影响着LC的发生,同时影响LC对放化疗、基因治疗、免疫治疗等治疗方法的疗效,如免疫治疗,是用于治疗LC的一种极有前景的手段,但不同患者从中获益不一,包含以肺癌细胞株的实验表明肠道微生物群可通过与宿主免疫系统的相互作用调节对免疫治疗的反应。但针对肺癌患者,肠道菌群是否仍能对免疫治疗进行调节仍存在争议。本文就人体菌群与LC的治疗相关性的近来研究进展进行综述。
Collapse
Affiliation(s)
- Huijie Zhou
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiaojiao Suo
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiang Zhu
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
27
|
Herrera S, Martínez-Sanz J, Serrano-Villar S. HIV, Cancer, and the Microbiota: Common Pathways Influencing Different Diseases. Front Immunol 2019; 10:1466. [PMID: 31316514 PMCID: PMC6610485 DOI: 10.3389/fimmu.2019.01466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022] Open
Abstract
HIV infection exerts profound and perhaps irreversible damage to the gut mucosal-associated lymphoid tissues, resulting in long-lasting changes in the signals required for the coordination of commensal colonization and in perturbations at the compositional and functional level of the gut microbiota. These abnormalities in gut microbial communities appear to affect clinical outcomes, including T-cell recovery, vaccine responses, HIV transmission, cardiovascular disease, and cancer pathogenesis. For example, the microbial signature associated with HIV infection has been shown to induce tryptophan catabolism, affect the butyrate synthesis pathway, impair anti-tumoral immunity and affect oxidative stress, which have also been linked to the pathogenesis of cancer. Furthermore, some of the taxa that are depleted in subjects with HIV have proved to modulate the anti-tumor efficacy of various chemotherapies and immunotherapeutic agents. The aim of this work is to provide a broad overview of recent advances in our knowledge of how HIV might affect the microbiota, with a focus on the pathways shared with cancer pathogenesis.
Collapse
Affiliation(s)
- Sabina Herrera
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, Universidad de Alcalá (IRYCIS), Madrid, Spain
| | - Javier Martínez-Sanz
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, Universidad de Alcalá (IRYCIS), Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, Universidad de Alcalá (IRYCIS), Madrid, Spain
| |
Collapse
|
28
|
Oz HS. Dirt, Saliva and Leprosy: Anti-Inflammatory and Anti-Infectious Effects. Diseases 2019; 7:diseases7010031. [PMID: 30909425 PMCID: PMC6473777 DOI: 10.3390/diseases7010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 11/17/2022] Open
Abstract
Ancient Egyptians smeared a mixture of dark soil on their eyelids and believed it protected eyes from unknown forces (illness). Recent studies have proven that the dark soil across the Nile River is rich in natural compounds including lead sulfide, which in low levels, promotes the production of nitric oxide (240-fold) by keratinocytes, with strong immune stimulatory and antimicrobial properties. Current investigations reveal anti-inflammatory and anti-infectious activities—including cytokines and chemokines—in saliva, as well as its friendly microbiota, which lines the surface of the oral cavity, its protection against inflammatory and infectious organisms in the stoma and other organs, such as the cardiovascular and central nervous systems. In fact, saliva may soon become a safe and practical surrogate biomarker for genomic/proteomic evaluations and to replace painful blood drawing and its side effects. Another example is leprosy, or Hansen’s disease, a chronic inflammatory syndrome and neglected tropical disease, which affects the skin, and peripheral and trigeminal neurons causing a lack of sensation to heat and cold and loss of extremities. Leprosy has horrified humans for over 2000 years, as lepers were considered unclean sinners and were subsequently drawn out of towns. This communication scrutinizes the past and the present state of saliva and leprosy to encounter possible mystery and/or wisdom in ancient healing as the mixture of “sputum and dirt” as reported in the biblical time.
Collapse
Affiliation(s)
- Helieh S Oz
- Department of Medicine, University of Kentucky Medical Center, Lexington, KY 40536, USA.
| |
Collapse
|