1
|
Zhang XF, Min RX, Wang Z, Qi Y, Li RN, Fan JM. Effects of Ginseng Consumption on Cardiovascular Health Biomarkers in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Phytother Res 2024. [PMID: 39387709 DOI: 10.1002/ptr.8339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/21/2024] [Accepted: 09/01/2024] [Indexed: 10/15/2024]
Abstract
Ginseng, with various pharmacological activities, has received increasing attention to improve cardiovascular health (CVH). Therefore, this meta-analysis synthesized the effect of ginseng consumption on biomarkers of CVH in adults. A systematic search was performed in the databases of PubMed, Scopus, Web of Science, Embase, and the Cochrane Library through July 24, 2023 to screen out English-language randomized controlled trials (RCTs) evaluating the effects of ginseng consumption on body composition, blood pressure, vascular stiffness, lipid metabolism, glucose metabolism, insulin resistance, inflammatory cytokines, and adipocytokines in adults. The weighted mean difference (WMD) and 95% confidence interval (CI) were used to evaluate the overall effect size, and STATA 12.0 was used for comprehensive analysis. Forty-five studies were included in the meta-analysis. Ginseng consumption significantly reduced systolic blood pressure (SBP) (WMD = -2.57 mmHg, 95% CI = -4.99 to -0.14, p = 0.038), total cholesterol (TC) (WMD = -4.40 mg/dL, 95% CI = -8.67 to -0.132, p = 0.043), low density lipoprotein cholesterol (LDL-C) (WMD = -2.81 mg/dL, 95% CI = -4.89 to -0.72, p = 0.008), C-reactive protein (CRP) (WMD = -0.41 mg/L, 95% CI = -0.73 to -0.10, p = 0.010), and interleukin-6 (IL-6) (WMD = -2.82 pg./mL, 95% CI = -4.31 to -1.32, p < 0.001). Subgroup analyses suggested that supplementation with ginseng for less than 12 weeks significantly reduced SBP, but 12 weeks or more improved TC and CRP. Ginseng consumption on SBP, TC, and CRP seemed to be more effective on unhealthy participants. The meta-analysis showed that ginseng consumption might have the potential to improve SBP, TC, LDL-C, CRP, and IL-6. These findings suggest that ginseng is a potential candidate for the maintenance of CVH. However, our results had high heterogeneity. Future high-quality studies are needed to firmly establish the clinical efficacy of ginseng consumption.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Rui-Xue Min
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yue Qi
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruo-Nan Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jian-Ming Fan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Vijayakumar A, Kim JH. Ginseng and ginsenosides on cardiovascular and pulmonary diseases; Pharmacological potentials for the coronavirus (COVID-19). J Ginseng Res 2024; 48:113-121. [PMID: 38465214 PMCID: PMC10920003 DOI: 10.1016/j.jgr.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/20/2023] [Accepted: 10/26/2023] [Indexed: 03/12/2024] Open
Abstract
Since its outbreak in late 2019, the Coronavirus disease 2019 (COVID-19) pandemic has profoundly caused global morbidity and deaths. The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has major complications in cardiovascular and pulmonary system. The increased rate of mortality is due to delayed detection of certain biomarkers that are crucial in the development of disease. Furthermore, certain proteins and enzymes in cellular signaling pathways play an important role in replication of SARS-CoV-2. Most cases are mild to moderate symptoms, however severe cases of COVID-19 leads to death. Detecting the level of biomarkers such as C-reactive protein, cardiac troponin, creatine kinase, creatine kinase-MB, procalcitonin and Matrix metalloproteinases helps in early detection of the severity of disease. Similarly, through downregulating Renin-angiotensin system, interleukin, Mitogen-activated protein kinases and Phosphoinositide 3-kinases pathways, COVID-19 can be effectively controlled and mortality could be prevented. Ginseng and ginsenosides possess therapeutic potential in cardiac and pulmonary complications, there are several studies performed in which they have suppressed these biomarkers and downregulated the pathways, thereby inhibiting the further spread of disease. Supplementation with ginseng or ginsenoside could act on multiple pathways to reduce the level of biomarkers significantly and alleviate cardiac and pulmonary damage. Therefore, this review summarizes the potential of ginseng extract and ginsenosides in controlling the cardiovascular and pulmonary diseases by COVID-19.
Collapse
Affiliation(s)
- Ajay Vijayakumar
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Republic of Korea
| |
Collapse
|
3
|
Fang Y, Tang M, Wei H, Feng Z, Yu N. Global ginseng trade networks: structural characteristics and influencing factors. Front Pharmacol 2023; 14:1119183. [PMID: 37492085 PMCID: PMC10364324 DOI: 10.3389/fphar.2023.1119183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023] Open
Abstract
Background: Ginseng is a rare and highly valued Chinese materia medica with a rich trading history and has a wide range of application, including medicine, food, healthcare, and daily chemical production. However, the global trade of ginseng exhibits diverse features and uneven development across different countries and regions. Surprisingly, the intricate network relationship and the underlying characteristics and influencing factors of ginseng trade networks remain unexplored. Methods: This study analyzed ginseng trade data obtained from the UN-Comtrade database and used social network analysis to construct global ginseng trade networks. To elucidate the structural characteristics, we analyzed the indicators of the overall network structure and node attributes. Core-periphery analysis is used to examine the evolutionary patterns within the global ginseng trade networks. Furthermore, we apply the quadratic assignment procedure to investigate the impact and relevance of spatial proximity, cultural differences, economic indicators, population size, technological similarity, and institutional distance. Results: The findings reveal that the global ginseng trade networks exhibit typical small-world and scale-free properties, as well as a core-periphery structure. Several core countries, including China, South Korea, Germany, and the United States, exert significant control over both trade volume and trade partners. South Korea and China initially occupied central positions in the export market due to their resource endowments, their prominence has gradually diminished with the ascendancy of Germany and the United States. According to the core-periphery analysis, the ginseng trade has shown a gradual concentration within specific trade groups comprising core and semi-periphery countries, most of which are along the "Belt and Road" religion. We also found that geographic distance and GDP per capita exert negative effects on ginseng trade, while factors such as land adjacency, technology and economic gap, population size, and institution similarity play significant positive roles. Conclusion: The global ginseng trade has experienced increasing concentration and close linkage among a limited numbers of participants. It is crucial to pay close attention to the relationship between ginseng industry development and resource conservation. Strategies such as expanding trade channels, implementing trade substitution measures, and optimizing the quality and standards of ginseng products can effectively enhance trade security.
Collapse
Affiliation(s)
- Yue Fang
- School of Economics and Management, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Mengxue Tang
- School of Economics and Management, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hua Wei
- Institute of Chinese Medicine Resources Protection and Utilization, Anhui Academic of Chinese Medicine, Hefei, Anhui, China
| | - Zhipei Feng
- School of Economics and Management, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
4
|
Yoon J, Park B, Kim H, Choi S, Jung D. Korean Red Ginseng Potentially Improves Maintaining Antibodies after COVID-19 Vaccination: A 24-Week Longitudinal Study. Nutrients 2023; 15:nu15071584. [PMID: 37049424 PMCID: PMC10097014 DOI: 10.3390/nu15071584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Despite the effectiveness and safety of COVID-19 vaccines, vaccine-induced responses decline over time; thus, booster vaccines have been approved globally. In addition, interest in natural compounds capable of improving host immunity has increased. This study aimed to examine the effect of Korean Red Ginseng (KRG) on virus-specific antibodies after COVID-19 vaccination. We conducted a 24 week clinical pilot study of 350 healthy subjects who received two doses of the COVID-19 vaccine and a booster vaccination (third dose). These subjects were randomized 1:2 to the KRG and control groups. We evaluated antibody response five times: just before the second dose (baseline), 2 weeks, 4 weeks, 12 weeks after the second dose, and 4 weeks after the third dose. The primary endpoints were changes in COVID-19 spike antibody titers and neutralizing antibody titers. The antibody formation rate of the KRG group was sustained higher than that of the control group for 12 weeks after the second dose. This trend was prominently observed in those above 50 years old. We found that KRG can help to increase and maintain vaccine response, highlighting that KRG could potentially be used as an immunomodulator with COVID-19 vaccines.
Collapse
Affiliation(s)
- Jihyun Yoon
- Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Byoungjin Park
- Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Heejung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seungjun Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Laboratory Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Republic of Korea
| | - Donghyuk Jung
- Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
5
|
Park KT, Jo H, Kim B, Kim W. Red Ginger Extract Prevents the Development of Oxaliplatin-Induced Neuropathic Pain by Inhibiting the Spinal Noradrenergic System in Mice. Biomedicines 2023; 11:432. [PMID: 36830967 PMCID: PMC9953630 DOI: 10.3390/biomedicines11020432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Oxaliplatin is a well-known chemotherapeutic drug that is widely used to treat colorectal cancer. However, it can induce acute side effects in up to 90% of patients. Serotonin and norepinephrine reuptake inhibitors (SNRIs) are used as first-choice drugs; however, even SNRIs are known to be effective only in treatment and not for prevention. Therefore, finding a drug that can prevent the development of cold and mechanical forms of allodynia induced by oxaliplatin is needed. This study demonstrated that multiple oral administrations of 100 mg/kg and 300 mg/kg of red ginger extract could significantly prevent pain development in mice. The role of the noradrenergic system was investigated as an underlying mechanism of action. Both the spinal α1- and α2-adrenergic receptors were significantly downregulated after treatment. Furthermore, the noradrenaline levels in the serum and spinal cord were upregulated and downregulated after treatment with paclitaxel and red ginger, respectively. As the active sub-component of red ginger, ginsenoside Rg3 (Rg3) was identified and quantified using HPLC. Moreover, multiple intraperitoneal injections of Rg3 prevented the development of pain in paclitaxel-treated mice, suggesting that RG3 may induce the effect of red ginger extract.
Collapse
Affiliation(s)
- Keun-Tae Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Heejoon Jo
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Bonglee Kim
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Recent advances in ginsenosides against respiratory diseases: Therapeutic targets and potential mechanisms. Biomed Pharmacother 2023; 158:114096. [PMID: 36502752 DOI: 10.1016/j.biopha.2022.114096] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Respiratory diseases mainly include asthma, influenza, pneumonia, chronic obstructive pulmonary disease, pulmonary hypertension, lung fibrosis, and lung cancer. Given their high prevalence and poor prognosis, the prevention and treatment of respiratory diseases are increasingly essential. In particular, the development for the novel strategies of drug treatment has been a hot topic in the research field. Ginsenosides are the major component of Panax ginseng C. A. Meyer (ginseng), a food homology and well-known medicinal herb. In this review, we summarize the current therapeutic effects and molecular mechanisms of ginsenosides in respiratory diseases. METHODS The reviewed studies were retrieved via a thorough analysis of numerous articles using electronic search tools including Sci-Finder, ScienceDirect, PubMed, and Web of Science. The following keywords were used for the online search: ginsenosides, asthma, influenza, pneumonia, chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PH), lung fibrosis, lung cancer, and clinical trials. We summarized the findings and the conclusions from 176 manuscripts on ginsenosides, including research articles and reviews. RESULTS Ginsenosides Rb1, Rg1, Rg3, Rh2, and CK, which are the most commonly reported ginsenosides for treating of respiratory diseases, and other ginsenosides such as Rh1, Rk1, Rg5, Rd and Re, all primarily reduce pneumonia, fibrosis, and inhibit tumor progression by targeting NF-κB, TGF-β/Smad, PI3K/AKT/mTOR, and JNK pathways, thereby ameliorating respiratory diseases. CONCLUSION This review provides novel ideas and important aspects for the future research of ginsenosides for treating respiratory diseases.
Collapse
|
7
|
Lee EJ, Yang JH, Yang HJ, Cho CK, Choi JG, Chung HS. Antitumor Effect of Korean Red Ginseng through Blockade of PD-1/PD-L1 Interaction in a Humanized PD-L1 Knock-In MC38 Cancer Mouse Model. Int J Mol Sci 2023; 24:ijms24031894. [PMID: 36768213 PMCID: PMC9915403 DOI: 10.3390/ijms24031894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Blocking immune checkpoints, programmed death-1 (PD-1) and its ligand PD-L1, has proven a promising anticancer strategy for enhancing cytotoxic T cell activity. Although we previously demonstrated that ginsenoside Rg3, Rh2, and compound K block the interaction of PD-1 and PD-L1, the antitumor effect through blockade of this interaction by Korean Red Ginseng alone is unknown. Therefore, we determined the effects of Korean Red Ginseng extract (RGE) on the PD-1/PD-L1 interaction and its antitumor effects using a humanized PD-1/PD-L1-expressing colorectal cancer (CRC) mouse model. RGE significantly blocked the interaction between human PD-1 and PD-L1 in a competitive ELISA. The CD8+ T cell-mediated tumor cell killing effect of RGE was evaluated using murine hPD-L1-expressing MC38 cells and tumor-infiltrating hPD-1-expressing CD8+ T cells isolated from hPD-L1 MC38 tumor-bearing hPD-1 mice. RGE also reduced the survival of hPD-L1 MC38 cells in a cell co-culture system using tumor-infiltrating CD8+ T cells as effector cells combined with hPD-L1 MC38 target cells. RGE or Keytruda (positive control) treatment markedly suppressed the growth of hPD-L1 MC38 allograft tumors, increased CD8+ T cell infiltration into tumors, and enhanced the production of Granzyme B. RGE exhibits anticancer effects through the PD-1/PD-L1 blockade, which warrants its further development as an immunotherapy.
Collapse
Affiliation(s)
- Eun-Ji Lee
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Ju-Hye Yang
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Hye Jin Yang
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Chong-Kwan Cho
- East-West Cancer Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon 35235, Republic of Korea
| | - Jang-Gi Choi
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Hwan-Suck Chung
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
- Correspondence: ; Tel.: +82-53-940-3865
| |
Collapse
|
8
|
Ye XW, Li CS, Zhang HX, Li Q, Cheng SQ, Wen J, Wang X, Ren HM, Xia LJ, Wang XX, Xu XF, Li XR. Saponins of ginseng products: a review of their transformation in processing. Front Pharmacol 2023; 14:1177819. [PMID: 37188270 PMCID: PMC10175582 DOI: 10.3389/fphar.2023.1177819] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
The primary processed product of Panax ginseng C.A. Meyer (P. ginseng) is red ginseng. As technology advances, new products of red ginseng have arisen. Red ginseng products, e.g., traditional red ginseng, sun ginseng, black ginseng, fermented red ginseng, and puffed red ginseng, are commonly used in herbal medicine. Ginsenosides are the major secondary metabolites of P. ginseng. The constituents of P. ginseng are significantly changed during processing, and several pharmacological activities of red ginseng products are dramatically increased compared to white ginseng. In this paper, we aimed to review the ginsenosides and pharmacological activities of various red ginseng products, the transformation law of ginsenosides in processing, and some clinical trials of red ginseng products. This article will help to highlight the diverse pharmacological properties of red ginseng products and aid in the future development of red ginseng industrialization.
Collapse
Affiliation(s)
- Xian-Wen Ye
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chun-Shuai Li
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Hai-Xia Zhang
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Li
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Shui-Qing Cheng
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Wen
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Xuan Wang
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Hong-Min Ren
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Liang-Jing Xia
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Xing Wang
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Fang Xu
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xin-Fang Xu, ; Xiang-Ri Li,
| | - Xiang-Ri Li
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xin-Fang Xu, ; Xiang-Ri Li,
| |
Collapse
|
9
|
Kim JH, Kim DH, Jo S, Cho MJ, Cho YR, Lee YJ, Byun S. Immunomodulatory functional foods and their molecular mechanisms. Exp Mol Med 2022; 54:1-11. [PMID: 35079119 PMCID: PMC8787967 DOI: 10.1038/s12276-022-00724-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/04/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
The immune system comprises a complex group of processes that provide defense against diverse pathogens. These defenses can be divided into innate and adaptive immunity, in which specific immune components converge to limit infections. In addition to genetic factors, aging, lifestyle, and environmental factors can influence immune function, potentially affecting the susceptibility of the host to disease-causing agents. Chemical compounds in certain foods have been shown to regulate signal transduction and cell phenotypes, ultimately impacting pathophysiology. Research has shown that the consumption of specific functional foods can stimulate the activity of immune cells, providing protection against cancer, viruses, and bacteria. Here, we review a number of functional foods reported to strengthen immunity, including ginseng, mushrooms, chlorella, and probiotics (Lactobacillus plantarum). We also discuss the molecular mechanisms involved in regulating the activity of various types of immune cells. Identifying immune-enhancing functional foods and understanding their mechanisms of action will support new approaches to maintain proper health and combat immunological diseases. Evidence is building to support the idea that specific ‘functional foods’ can stimulate the activity of cells and signaling systems of the immune system to provide protection against cancer, viruses and bacteria. Sanguine Byun and colleagues at Yonsei University in Seoul, South Korea, review research into a range of functional foods, foods thought to have health benefits beyond their nutritional value. These include ginseng, mushrooms, the green algae called Chlorella and the probiotic bacteria Lactobacillus plantarum. They also consider individual components of foods such as poly-gamma-glutamate, a natural polymer made by bacteria. A wide body of research is revealing diverse molecular mechanisms through which biochemicals in functional foods can modulate different aspects of the immune system. These include effects on both non-specific innate immunity and adaptive immunity, which targets specific invading pathogens and diseased cells.
Collapse
|
10
|
Chen W, Yao P, Vong CT, Li X, Chen Z, Xiao J, Wang S, Wang Y. Ginseng: A bibliometric analysis of 40-year journey of global clinical trials. J Adv Res 2021; 34:187-197. [PMID: 35024190 PMCID: PMC8655123 DOI: 10.1016/j.jare.2020.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Ginseng has a long history of widespread use and remarkable effects as traditional medicine, adjuvant and dietary supplement. The therapeutic value, diverse functionalities and rapid development of ginseng have driven a significant increase in the number of ginseng clinical trials, ranging from its use in various ailments, formulation to safety concerns. Despite the persistent interest in ginseng clinical research, the medical effectiveness of ginseng is inconclusive and there is a lack of bibliometric analysis of the hundreds of ginseng clinical trials. AIM OF REVIEW This review aims to provide an extensive overview of ginseng clinical trials over the past 40 years (1979-2018) in combination with a qualitative and quantitative analysis. The annual clinical trial analysis of time distribution, country and institution network analysis for space cooperation, statistical analysis for various functions, as well as efficiency and effect size were performed for global ginseng clinical trials. Besides, preparation categories, administration routes, and the safety of ginseng clinical trials were also investigated. KEY SCIENTIFIC CONCEPTS OF REVIEW The 40-year journey of ginseng clinical trials has experienced emerging, boom, and stable or transitional stages. The global network of ginseng clinical trials has relevant regional distribution in Asia, North America and Europe. South Korea makes a great contribution to building up large research clusters and strong cooperation links. Universities are the key contributors to ginseng clinical trials. The development of ginseng products could be focused on the clinical trial in diseases with higher effectiveness or effect size, such as sexual function and cognitive & behavior and require rigorous investigations and evidence to evaluate safety. More attention should be paid to different effects from different preparations. We believe this review will provide new insights into the understanding of global ginseng clinical trials and identifies potential future perspectives for research and development of ginseng.
Collapse
Affiliation(s)
- Weijie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Peifen Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Xiuzhu Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Jianbo Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
11
|
Bhattacharya S, Paul SMN. Efficacy of phytochemicals as immunomodulators in managing COVID-19: a comprehensive view. Virusdisease 2021; 32:435-445. [PMID: 34189187 PMCID: PMC8224255 DOI: 10.1007/s13337-021-00706-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Throughout history, disease outbreaks have worked havoc upon humanity, sometimes reorienting the history and at times, signaling the end of entire civilizations and the modern pandemic that the world is dealing with, is COVID-19 or SARS-CoV-2. A healthy immunity could be an ideal gear for resisting COVID-19 for neither medicines nor vaccines have been ascertained till date. In view of the present scenario, there is a demanding necessity to analyze innovative and valid techniques for forestalling and cure of COVID-19 by re-evaluating the structure of the natural compounds for drug designing. The Ayurveda has come forward by prescribing a lot of medicinal herbs for combating this dreaded disease. We have searched from sources in Pubmed and Google Scholar and found 1509 items. The search criteria were limited to the effect of phytochemicals in certain immunomodulatory aspects of viral infection. The original research papers related to the works on phytochemicals in the down regulation of NF-kB, activation of NK and CD8+ cells, inhibition of inflammatory cytokine release and ROS scavenging were included in our study. Here, we try to focus on the immunoregulatory cells which have a vital aspect in COVID-19 and highlight the potential effects of the restorative use of phytochemicals as drugs or dietary supplements. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-021-00706-2.
Collapse
Affiliation(s)
- Sonali Bhattacharya
- Department of Zoology, Rishi Bankim Chandra College, Naihati, West Bengal 743165 India
| | | |
Collapse
|
12
|
Alsayari A, Muhsinah AB, Almaghaslah D, Annadurai S, Wahab S. Pharmacological Efficacy of Ginseng against Respiratory Tract Infections. Molecules 2021; 26:molecules26134095. [PMID: 34279434 PMCID: PMC8271507 DOI: 10.3390/molecules26134095] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Respiratory tract infections are underestimated, as they are mild and generally not incapacitating. In clinical medicine, however, these infections are considered a prevalent problem. By 2030, the third most comprehensive reason for death worldwide will be chronic obstructive pulmonary disease (COPD), according to the World Health Organization. The current arsenal of anti-inflammatory drugs shows little or no benefits against COPD. For thousands of years, herbal drugs have been used to cure numerous illnesses; they exhibit promising results and enhance physical performance. Ginseng is one such herbal medicine, known to alleviate pro-inflammatory chemokines and cytokines (IL-2, IL-4, IFN-γ, TNF-α, IL-5, IL-6, IL-8) formed by macrophages and epithelial cells. Furthermore, the mechanisms of action of ginsenoside are still not fully understood. Various clinical trials of ginseng have exhibited a reduction of repeated colds and the flu. In this review, ginseng’s structural features, the pathogenicity of microbial infections, and the immunomodulatory, antiviral, and anti-bacterial effects of ginseng were discussed. The focus was on the latest animal studies and human clinical trials that corroborate ginseng’s role as a therapy for treating respiratory tract infections. The article concluded with future directions and significant challenges. This review would be a valuable addition to the knowledge base for researchers in understanding the promising role of ginseng in treating respiratory tract infections. Further analysis needs to be re-focused on clinical trials to study ginseng’s efficacy and safety in treating pathogenic infections and in determining ginseng-drug interactions.
Collapse
Affiliation(s)
- Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Dalia Almaghaslah
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
- Correspondence: or
| |
Collapse
|
13
|
Shokri-Mashhadi N, Kazemi M, Saadat S, Moradi S. Effects of select dietary supplements on the prevention and treatment of viral respiratory tract infections: a systematic review of randomized controlled trials. Expert Rev Respir Med 2021; 15:805-821. [PMID: 33858268 DOI: 10.1080/17476348.2021.1918546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Viral respiratory tract infections (RTIs) have been recognized as a global public health burden. Despite current theories about their effectiveness, the true benefits of dietary supplements on the prevention and treatment of viral RTIs remain elusive, due to contradictory reports. Hence, we aimed to evaluate the effectiveness of dietary supplements on the prevention and treatment of viral RTIs.Areas covered: We systematically searched databases of PubMed, Web of Science, Scopus, and Google Scholar through 4 March 2020, to identify randomized controlled trials that evaluated the effects of consuming selected dietary supplements on the prevention or treatment of viral RTIs.Expert opinion: Thirty-nine randomized controlled trials (n = 16,797 participants) were eligible and included. Namely, vitamin D supplementation appeared to improve viral RTIs across cohorts particulate in those with vitamin D deficiency. Among the evaluated dietary supplements, specific lactobacillus strains were used most commonly with selected prebiotics that showed potentially positive effects on the prevention and treatment of viral RTIs. Further, ginseng extract supplementation may effectively prevent viral RTIs as adjuvant therapy. However, longitudinal research is required to confirm these observations and address the optimal dose, duration, and safety of dietary supplements being publicly recommended.
Collapse
Affiliation(s)
- Nafiseh Shokri-Mashhadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Kazemi
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, Ithaca, NewYork, USA
| | - Saeed Saadat
- Department of Computer Sciences, Faculty of Mathematics and Natural Sciences, Heinrich Heine Universität, Düsseldorf, Germany
| | - Sajjad Moradi
- Halal Research Center of IRI, FDA, Tehran, Iran.,Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
14
|
Ding Q, Zhu W, Diao Y, Xu G, Wang L, Qu S, Shi Y. Elucidation of the Mechanism of Action of Ginseng Against Acute Lung Injury/Acute Respiratory Distress Syndrome by a Network Pharmacology-Based Strategy. Front Pharmacol 2021; 11:611794. [PMID: 33746744 PMCID: PMC7970560 DOI: 10.3389/fphar.2020.611794] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a complex cascade that develops from acute lung injury (ALI). Ginseng can be used to treat ALI/ARDS. Studies have shown that some of ingredients in ginseng had anti-inflammation, antioxidative, and immune regulation effects and can protect alveolar epithelial cells in mice. However, the potential targets, biological processes, and pathways related to ginseng against ALI/ARDS have not been investigated systematically. We employed network pharmacology, molecular docking, and animal experiments to explore the therapeutic effects and underlying mechanism of action of ginseng against ALI/ARDS. We identified 25 compounds using ultrahigh-performance liquid chromatography Q-Orbitrap mass spectrometry and their 410 putative targets through database analyses. Sixty-nine of them were considered to be key targets of ginseng against ALI/ARDS according to overlapping with ALI/ARDS-related targets and further screening in a protein–protein interaction (PPI) network. The phosphatidylinositol 3-kinase-protein kinase B (PI3K-AkT) and mitogen-activated protein kinase (MAPK) pathways were recognized to have critical roles for ginseng in ALI/ARDS treatment. Signal transducer and activator of transcription (STAT) 3, vascular endothelial growth factor A (VEGFA), fibroblast growth factor (FGF) 2, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), MAPK1, and interleukin (IL) 2 were the top six nodes identified by analyses of a compound–target-pathway network. Molecular docking showed that most of the ingredients in ginseng could combine well with the six nodes. Ginseng could reduce the pathologic damage, neutrophil aggregation, proinflammatory factors, and pulmonary edema in vivo and inhibit the PI3K-Akt signaling pathway and MAPK signaling pathway through downregulating expressions of STAT3, VEGFA, FGF2, PIK3CA, MAPK1, and IL2. Our study provides a theoretical basis for ginseng treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Qi Ding
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China.,Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Wenxiang Zhu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Yirui Diao
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Gonghao Xu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Sihao Qu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Shi
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China.,Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
15
|
Panossian AG, Efferth T, Shikov AN, Pozharitskaya ON, Kuchta K, Mukherjee PK, Banerjee S, Heinrich M, Wu W, Guo D, Wagner H. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress- and aging-related diseases. Med Res Rev 2021; 41:630-703. [PMID: 33103257 PMCID: PMC7756641 DOI: 10.1002/med.21743] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/26/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022]
Abstract
Adaptogens comprise a category of herbal medicinal and nutritional products promoting adaptability, resilience, and survival of living organisms in stress. The aim of this review was to summarize the growing knowledge about common adaptogenic plants used in various traditional medical systems (TMS) and conventional medicine and to provide a modern rationale for their use in the treatment of stress-induced and aging-related disorders. Adaptogens have pharmacologically pleiotropic effects on the neuroendocrine-immune system, which explain their traditional use for the treatment of a wide range of conditions. They exhibit a biphasic dose-effect response: at low doses they function as mild stress-mimetics, which activate the adaptive stress-response signaling pathways to cope with severe stress. That is in line with their traditional use for preventing premature aging and to maintain good health and vitality. However, the potential of adaptogens remains poorly explored. Treatment of stress and aging-related diseases require novel approaches. Some combinations of adaptogenic plants provide unique effects due to their synergistic interactions in organisms not obtainable by any ingredient independently. Further progress in this field needs to focus on discovering new combinations of adaptogens based on traditional medical concepts. Robust and rigorous approaches including network pharmacology and systems pharmacology could help in analyzing potential synergistic effects and, more broadly, future uses of adaptogens. In conclusion, the evolution of the adaptogenic concept has led back to basics of TMS and a new level of understanding of holistic approach. It provides a rationale for their use in stress-induced and aging-related diseases.
Collapse
Affiliation(s)
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and BiochemistryJohannes Gutenberg UniversityMainzGermany
| | - Alexander N. Shikov
- Department of technology of dosage formsSaint‐Petersburg State Chemical‐Pharmaceutical UniversitySt. PetersburgRussia
| | - Olga N. Pozharitskaya
- Department of BiotechnologyMurmansk Marine Biological Institute of the Kola Science Center of the Russian Academy of Sciences (MMBI KSC RAS)MurmanskRussia
| | - Kenny Kuchta
- Department of Far Eastern Medicine, Clinic for Gastroenterology and Gastrointestinal OncologyUniversity Medical Center GöttingenGöttingenGermany
| | - Pulok K. Mukherjee
- Department of Pharmaceutical Technology, School of Natural Product StudiesJadavpur UniversityKolkataIndia
| | - Subhadip Banerjee
- Department of Pharmaceutical Technology, School of Natural Product StudiesJadavpur UniversityKolkataIndia
| | - Michael Heinrich
- Research Cluster Biodiversity and Medicines, UCL School of Pharmacy, Centre for Pharmacognosy and PhytotherapyUniversity of LondonLondonUK
| | - Wanying Wu
- Shanghai Research Center for TCM Modernization, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - De‐an Guo
- Shanghai Research Center for TCM Modernization, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Hildebert Wagner
- Department of Pharmacy, Center for Pharma ResearchLudwig‐Maximilians‐Universität MünchenMunichGermany
| |
Collapse
|
16
|
Hyun SH, Ahn HY, Kim HJ, Kim SW, So SH, In G, Park CK, Han CK. Immuno-enhancement effects of Korean Red Ginseng in healthy adults: a randomized, double-blind, placebo-controlled trial. J Ginseng Res 2020; 45:191-198. [PMID: 33437171 PMCID: PMC7790881 DOI: 10.1016/j.jgr.2020.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 01/02/2023] Open
Abstract
Background Most clinical studies of immune responses activated by Korean Red Ginseng (KRG) have been conducted exclusively in patients. However, there is still a lack of clinical research on immune-boosting benefits of KRG for healthy persons. This study aims to confirm how KRG boosts the immune system of healthy subjects. Methods A total of 100 healthy adult subjects were randomly divided into two groups that took either a 2 g KRG tablet or a placebo per day for 8 weeks. The primary efficacy evaluation variables included changes in T cells, B cells, and white blood cells (WBCs) before and after eight weeks of KRG ingestion. Cytokines (TNF-α, INF-γ, IL-2 and IL-4), WBC differential count, and incidence of colds were measured in the secondary efficacy evaluation variables. Safety evaluation variables were used to identify changes in laboratory test results that incorporated adverse reactions, vital signs, hematological tests, blood chemistry tests, and urinalysis. Results Compared to the placebo group, the KRG intake group showed a significant increase in the number of T cells (CD3) and its subtypes (CD4 and CD8), B cells, and the WBC count before and after eight weeks of the intake. There were no clinically significant adverse reactions or other notable results in the safety evaluation factors observed. Conclusion This study has proven through its eight-week intake test and subsequent analysis that KRG boosts the immune system through an increase in T cells, B cells, and WBCs, and that it is safe according to the study's safety evaluation.
Collapse
Affiliation(s)
- Sun Hee Hyun
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Ha-Young Ahn
- Department of Obstetrics and Gynecology, Oriental Medical Hospital, Se-Myung University, Chungcheongbuk-do, Republic of Korea
| | - Hyeong-Jun Kim
- Department of Obstetrics and Gynecology, Oriental Medical Hospital, Se-Myung University, Chungcheongbuk-do, Republic of Korea
| | - Sung Won Kim
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Seung-Ho So
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Gyo In
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Chae-Kyu Park
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Chang-Kyun Han
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
17
|
Panossian A, Brendler T. The Role of Adaptogens in Prophylaxis and Treatment of Viral Respiratory Infections. Pharmaceuticals (Basel) 2020; 13:E236. [PMID: 32911682 PMCID: PMC7558817 DOI: 10.3390/ph13090236] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of our review is to demonstrate the potential of herbal preparations, specifically adaptogens for prevention and treatment of respiratory infections, as well as convalescence, specifically through supporting a challenged immune system, increasing resistance to viral infection, inhibiting severe inflammatory progression, and driving effective recovery. The evidence from pre-clinical and clinical studies with Andrographis paniculata, Eleutherococcus senticosus, Glycyrrhiza spp., Panax spp., Rhodiola rosea, Schisandra chinensis, Withania somnifera, their combination products and melatonin suggests that adaptogens can be useful in prophylaxis and treatment of viral infections at all stages of progression of inflammation as well as in aiding recovery of the organism by (i) modulating innate and adaptive immunity, (ii) anti-inflammatory activity, (iii) detoxification and repair of oxidative stress-induced damage in compromised cells, (iv) direct antiviral effects of inhibiting viral docking or replication, and (v) improving quality of life during convalescence.
Collapse
Affiliation(s)
- Alexander Panossian
- Phytomed AB, Vaxtorp, 31275 Halland, Sweden
- EuropharmaUSA, Green Bay, WI 54311, USA
| | - Thomas Brendler
- Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg 2000, South Africa;
- Traditional Medicinals Inc., Rohnert Park, CA 94928, USA
- Plantaphile, Collingswood, NJ 08108, USA
| |
Collapse
|
18
|
Antonelli M, Donelli D, Firenzuoli F. Ginseng integrative supplementation for seasonal acute upper respiratory infections: A systematic review and meta-analysis. Complement Ther Med 2020; 52:102457. [PMID: 32951718 PMCID: PMC7305750 DOI: 10.1016/j.ctim.2020.102457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The aim of the review was to assess whether ginseng can be a useful supplementation for seasonal acute upper respiratory infections (SAURIs). METHODS All clinical studies investigating ginseng efficacy for the treatment or prevention of SAURIs were included in the review. Medline, EMBASE, Web of Science, Scopus, Cochrane Library, Google Scholar were systematically screened for relevant articles up to May 26th, 2020. The risk of bias was assessed with the Cochrane tool (RoB 2). RESULTS Nine articles (describing ten trials about P. ginseng or P. quinquefolius) were included in the review. Evidence globally indicated some useful activity of intervention when administered in adjunct to influenza vaccination. The results of our quantitative synthesis suggested a significant effect on SAURIs incidence (RR = 0.69 [95 % C.I. 0.52 to 0.90], p < 0.05), as well as a significant reduction of their duration if only studies with healthy individuals were included in the analysis (MD=-3.11 [95 % C.I.-5.81 to -0.40], p < 0.05). However, the risk of bias was high-to-unclear for most included trials, and publication bias couldn't be excluded. DISCUSSION Limitations of existing evidence don't allow to draw conclusions on the topic. Nevertheless, it is not excluded that ginseng supplementation in adjunct to influenza vaccination and standard care might be useful for SAURIs prevention and management in healthy adult subjects, but further high-quality trials are needed to support this hypothesis. OTHER This research was not funded. The protocol was registered in PROSPERO under the following code: CRD42020156235.
Collapse
Affiliation(s)
- Michele Antonelli
- Terme di Monticelli, Parma, Italy; Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Careggi University Hospital, Florence, Italy; Institute of Public Health, University of Parma, Parma, Italy.
| | - Davide Donelli
- Terme di Monticelli, Parma, Italy; Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Careggi University Hospital, Florence, Italy; AUSL-IRCCS Reggio Emilia, Italy
| | - Fabio Firenzuoli
- Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Careggi University Hospital, Florence, Italy
| |
Collapse
|
19
|
Iqbal H, Rhee DK. Ginseng alleviates microbial infections of the respiratory tract: a review. J Ginseng Res 2020; 44:194-204. [PMID: 32148400 PMCID: PMC7031735 DOI: 10.1016/j.jgr.2019.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/26/2022] Open
Abstract
The detrimental impact of air pollution as a result of frequent exposure to fine particles posed a global public health risk mainly to the pulmonary disorders in pediatric and geriatric population. Here, we reviewed the current literature regarding the role of ginseng and/or its components as antimicrobials, especially against pathogens that cause respiratory infections in animal and in vitro models. Some of the possible mechanisms for ginseng-mediated viral inhibition suggested are improvements in systemic and mucosa-specific antibody responses, serum hemagglutinin inhibition, lymphocyte proliferation, cell survival rate, and viral clearance in the lungs. In addition, ginseng reduces the expression levels of proinflammatory cytokines (IFN-γ, TNF-α, IL-2, IL-4, IL-5, IL-6, IL-8) and chemokines produced by airway epithelial cells and macrophages, thus preventing weight loss. In case of bacterial infections, ginseng acts by alleviating inflammatory cytokine production, increasing survival rates, and activating phagocytes and natural killer cells. In addition, ginseng inhibits biofilm formation and induces the dispersion and dissolution of mature biofilms. Most clinical trials revealed that ginseng, at various dosages, is a safe and effective method of seasonal prophylaxis, relieving the symptoms and reducing the risk and duration of colds and flu. Taken together, these findings support the efficacy of ginseng as a therapeutic and prophylactic agent for respiratory infections.
Collapse
Key Words
- ARI, acute respiratory illness
- Bacteria
- COPD, chronic obstructive pulmonary disease
- Clinical trials
- GSLS, ginseng stem–leaf saponins
- Ginseng
- HRV, human rhinovirus
- IFN, interferon
- IL, interleukin
- IgA, immunoglobulin A
- PD, protopanaxadiol
- PT, protopanaxatriol
- ROS, reactive oxygen species
- RSV, respiratory syncytial virus
- RTIs, respiratory tract infections
- Respiratory tract infections
- TNF-α, tumor necrosis factor-alpha
- Virus
Collapse
Affiliation(s)
| | - Dong-kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
20
|
Lee YS, Yang WK, Yee SM, Kim SM, Park YC, Shin HJ, Han CK, Lee YC, Kang HS, Kim SH. KGC3P attenuates ovalbumin-induced airway inflammation through downregulation of p-PTEN in asthmatic mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152942. [PMID: 31102886 DOI: 10.1016/j.phymed.2019.152942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The roots of Korean red ginseng (Panax ginseng C.A.Mey.; KGC) have been used as an herbal supplement to enhance vital energy and immune capacity. Salvia plebeia R.Br. has been used to treat inflammatory diseases. PURPOSE The aim of this study was to examine the anti-asthmatic effects of a mixture of Korean red ginseng and Salvia plebeia R.Br. (KGC3P), its component nepetin, and their modes of action in alleviating ovalbumin (OVA)-induced asthma in mice. METHOD BALB/c mice were sensitized with OVA then subjected to intratracheal, intraperitoneal, and aerosol challenges. KGC3P and nepetin were administered orally for four weeks. Airway hyperresponsiveness (AHR), OVA-specific IgE levels, and Th2 cytokine- and gene expression levels in bronchoalveolar lavage fluid (BALF) and splenocytes were measured. Histological and immune cell subtype analyses were performed. PTEN and Akt phosphorylation levels were also evaluated. RESULTS KGC3P reduced OVA-induced AHR, serum IgE levels, histological changes, and eosinophils infiltration but also the absolute number of immune cell subtypes including CD3+/CD4+, CD3+/CD8+, CD4+/CD69+, and Gr-1+/CD11b+ in the lungs, BALF, and mesenteric lymph nodes (MLN). KGC3P also lowered the Th2 cytokines IL-4, IL-5, and IL-13 in the BALF and splenocytes and downregulated the IL-4, IL-13, IL-17, TNF-α, and MUC5AC genes in the lung. KGC3P upregulated the peroxisome proliferator-activated receptor (PPAR)γ gene but downregulated the p-Akt and p-PTEN phosphorylation. Similar results were obtained with nepetin treatment. CONCLUSION KGC3P and nepetin are anti-asthmatic because they reduce various immune cells such as eosinophils and Th2 cell as well as Th2 cytokines. These mechanisms may be accompanied by the regulation of PPARγ expression and the PTEN pathway. Taken together, our results indicate that KGC3P and nepetin may potentially prevent and treat asthma.
Collapse
Affiliation(s)
- Young-Sil Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Dajeon 34054, Republic of Korea
| | - Won-Kyung Yang
- Division of Respiratory Systems, Department of Internal Medicine, College of Korean Medicine, Daejeon University, Daejeon, Korea; Department of Herbology, College of Korean Medicine, Sangji University, Wonju 220-702, Republic of Korea
| | - Su-Min Yee
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Su-Man Kim
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Yang-Chun Park
- Division of Respiratory Systems, Department of Internal Medicine, College of Korean Medicine, Daejeon University, Daejeon, Korea
| | | | | | - Young Cheol Lee
- Department of Herbology, College of Korean Medicine, Sangji University, Wonju 220-702, Republic of Korea
| | - Hyung-Sik Kang
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, Republic of Korea.
| |
Collapse
|
21
|
Kim EH, Kim SW, Park SJ, Kim S, Yu KM, Kim SG, Lee SH, Seo YK, Cho NH, Kang K, Soung DY, Choi YK. Greater Efficacy of Black Ginseng (CJ EnerG) over Red Ginseng against Lethal Influenza A Virus Infection. Nutrients 2019; 11:nu11081879. [PMID: 31412594 PMCID: PMC6723933 DOI: 10.3390/nu11081879] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 01/28/2023] Open
Abstract
Black ginseng (BG, CJ EnerG), prepared via nine repeated cycles of steaming and drying of fresh ginseng, contains more accessible acid polysaccharides and smaller and less polar ginsenosides than red ginseng (RG) processed only once. Because RG exhibits the ability to increase host protection against viral respiratory infections, we investigated the antiviral effects of BG. Mice were orally administered either BG or RG extract at 10 mg/kg bw daily for two weeks. Mice were then infected with a A(H1N1) pdm09 (A/California/04/2009) virus and fed extracts for an additional week. Untreated, infected mice were assigned to either the negative control, without treatments, or the positive control, treated with Tamiflu. Infected mice were monitored for 14 days to determine the survival rate. Lung tissues were evaluated for virus titer and by histological analyses. Cytokine levels were measured in bronchoalveolar lavage fluid. Mice treated with BG displayed a 100% survival rate against infection, while mice treated with RG had a 50% survival rate. Further, mice treated with BG had fewer accumulated inflammatory cells in bronchioles following viral infection than did mice treated with RG. BG also enhanced the levels of GM-CSF and IL-10 during the early and late stages of infection, respectively, compared to RG. Thus, BG may be useful as an alternative antiviral adjuvant to modulate immune responses to influenza A virus.
Collapse
Affiliation(s)
- Eun-Ha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Son-Woo Kim
- The Institutes of Food, CJ CheilJedang, Suwon 16495, Korea
| | - Su-Jin Park
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Semi Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Kwang-Min Yu
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | | | - Seung Hun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Yong-Ki Seo
- The Institutes of Food, CJ CheilJedang, Suwon 16495, Korea
| | - Nam-Hoon Cho
- The Institutes of Food, CJ CheilJedang, Suwon 16495, Korea
| | - Kimoon Kang
- The Institutes of Food, CJ CheilJedang, Suwon 16495, Korea
| | - Do Y Soung
- The Institutes of Food, CJ CheilJedang, Suwon 16495, Korea.
| | - Young-Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea.
- ID Bio Corporation, Cheongju 28370, Korea.
| |
Collapse
|
22
|
Chan SMH, Selemidis S, Bozinovski S, Vlahos R. Pathobiological mechanisms underlying metabolic syndrome (MetS) in chronic obstructive pulmonary disease (COPD): clinical significance and therapeutic strategies. Pharmacol Ther 2019; 198:160-188. [PMID: 30822464 PMCID: PMC7112632 DOI: 10.1016/j.pharmthera.2019.02.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major incurable global health burden and is currently the 4th largest cause of death in the world. Importantly, much of the disease burden and health care utilisation in COPD is associated with the management of its comorbidities (e.g. skeletal muscle wasting, ischemic heart disease, cognitive dysfunction) and infective viral and bacterial acute exacerbations (AECOPD). Current pharmacological treatments for COPD are relatively ineffective and the development of effective therapies has been severely hampered by the lack of understanding of the mechanisms and mediators underlying COPD. Since comorbidities have a tremendous impact on the prognosis and severity of COPD, the 2015 American Thoracic Society/European Respiratory Society (ATS/ERS) Research Statement on COPD urgently called for studies to elucidate the pathobiological mechanisms linking COPD to its comorbidities. It is now emerging that up to 50% of COPD patients have metabolic syndrome (MetS) as a comorbidity. It is currently not clear whether metabolic syndrome is an independent co-existing condition or a direct consequence of the progressive lung pathology in COPD patients. As MetS has important clinical implications on COPD outcomes, identification of disease mechanisms linking COPD to MetS is the key to effective therapy. In this comprehensive review, we discuss the potential mechanisms linking MetS to COPD and hence plausible therapeutic strategies to treat this debilitating comorbidity of COPD.
Collapse
Affiliation(s)
- Stanley M H Chan
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
23
|
Saboori S, Falahi E, Yousefi Rad E, Asbaghi O, Khosroshahi MZ. Effects of ginseng on C-reactive protein level: A systematic review and meta-analysis of clinical trials. Complement Ther Med 2019; 45:98-103. [PMID: 31331589 DOI: 10.1016/j.ctim.2019.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/17/2019] [Accepted: 05/19/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE The aim of this meta-analysis was to assess effects of ginseng supplementation on CRP/hs-CRP levels in clinical trial studies. DESIGN A systematic literature search was carried out for clinical trials published in ISI web of Science, Scopus, PubMed and Cochrane Library databases from the beginning to 16th February 2018. Of 83 articles found in the first step of the systematic search, seven studies with nine arms included in this meta-analysis. RESULTS Results of pooled random-effect size analysis of nine trials showed non-significant decreasing effects of ginseng supplementation on CRP level (WMD: -0.1 mg/l, 95% CI, -0.26, 0.1; P = 0.27) with significant heterogeneity shown within the studies. The subgroup analysis showed that ginseng supplementation could significantly reduce CRP level by 0.51 (95% CI: -0.68, -0.34; P < 0001, test for heterogeneity: P = 0.44, I2 = 0.0%) in patients with a baseline serum CRP level of greater than 3 mg/dl. Trial duration and dose of ginseng supplementation included no significant effects on CRP level in this meta-analysis. CONCLUSION Results of the current meta-analysis study have shown that ginseng supplementation can decrease significantly serum CRP/hsCRP levels in patients with elevated serum level of this inflammatory marker.
Collapse
Affiliation(s)
- Somayeh Saboori
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ebrahim Falahi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Esmaeil Yousefi Rad
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Omid Asbaghi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | |
Collapse
|
24
|
Hwang JH, Park SH, Choi EK, Jung SJ, Pyo MK, Chae SW. A randomized, double-blind, placebo-controlled pilot study to assess the effects of protopanaxadiol saponin-enriched ginseng extract and pectinase-processed ginseng extract on the prevention of acute respiratory illness in healthy people. J Ginseng Res 2019; 44:697-703. [PMID: 32913399 PMCID: PMC7471208 DOI: 10.1016/j.jgr.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/28/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022] Open
Abstract
Background GS-3K8 and GINST, both of which are modified ginseng extracts, have never been examined in terms of their effectiveness for the prevention of acute respiratory illness (ARI) in humans. We conducted a pilot study to assess the feasibility of performing a large-scale, randomized, controlled trial. Methods This study was a randomized, double-blind, placebo-controlled, pilot study at a single center from October 2014 to March 2015. The 45 healthy applicants were randomly divided into the GS-3K8 (n = 15), GINST (n = 15), and placebo groups (n = 15). The study drug was administered as a capsule (500 mg/cap and 3000 mg/day). GS-3K8 contained 6.31 mg/g of Rg1, 15.05 mg/g of Re, 30.84 mg/g of Rb1, 15.02 mg/g of Rc, 12.44 mg/g of Rb2, 6.97 mg/g of Rd, 1.59 mg/g of Rg3, 3.25 mg/g of Rk1, and 4.84 mg/g of Rg5. GINST contained 7.54 mg/g of Rg1, 1.87 mg/g of Re, 5.42 mg/g of Rb1, 0.29 mg/g of Rc, 0.36 mg/g of Rb2, 0.70 mg/g of Rd, and 6.3 mg/g of compound K. The feasibility criteria were the rates of recruitment, drug compliance, and successful follow-up. The primary clinical outcome measure was the incidence of ARI. The secondary clinical outcome measures were the duration of symptoms. Results The rate of recruitment was 11.3 participants per week. The overall rate of completed follow-up was 97.8%. The mean compliance rate was 91.64 ± 9.80%, 95.28 ± 5.75%, and 89.70 ± 8.99% in the GS-3K8, GINST, and placebo groups, respectively. The incidence of ARI was 64.3% (9/14; 95% confidence interval [CI], 31.4-91.1%), 26.7% (4/15; 95% CI, 4.3-49.0%), and 80.0% (12/15; 95% CI, 54.8-93.0%) in the GS-3K8, GINST, and placebo groups, respectively. The average days of symptoms were 3.89 ± 4.65, 9.25 ± 7.63, and 12.25 ± 12.69 in the GS-3K8, GINST, and placebo groups, respectively. Conclusion The results support the feasibility of a full-scale trial. GS-3K8 and GINST appear to have a positive tendency toward preventing the development of ARI and reducing the symptom duration. A randomized controlled trial is needed to confirm these findings.
Collapse
Affiliation(s)
- Jeong-Hwan Hwang
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, Jeonbuk, Republic of Korea.,Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Soo-Hyun Park
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Eun-Kyung Choi
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Su-Jin Jung
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Mi Kyung Pyo
- International Ginseng and Herb Research Institute, Geumsan, Republic of Korea
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju, Jeonbuk, Republic of Korea.,Department of Pharmacology, Jeonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| |
Collapse
|
25
|
Davis MP, Behm B. Ginseng: A Qualitative Review of Benefits for Palliative Clinicians. Am J Hosp Palliat Care 2019; 36:630-659. [PMID: 30686023 DOI: 10.1177/1049909118822704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ginseng has been used for centuries to treat various diseases and has been commercially developed and cultivated in the past 300 years. Ginseng products may be fresh, dried (white), or dried and steamed (red). Extracts may be made using water or alcohol. There are over 50 different ginsenosides identified by chromatography. We did an informal systematic qualitative review that centered on fatigue, cancer, dementia, respiratory diseases, and heart failure, and we review 113 studies in 6 tables. There are multiple potential benefits to ginseng in cancer. Ginseng, in certain circumstances, has been shown to improve dementia, chronic obstructive pulmonary disease, and heart failure through randomized trials. Most trials had biases or unknown biases and so most evidence is of low quality. We review the gaps in the evidence and make some recommendations regarding future studies.
Collapse
Affiliation(s)
- Mellar P Davis
- 1 Palliative Care Department, Knapper Cancer Center, Geisinger Medical Center, Danville, PA, USA
| | - Bertrand Behm
- 1 Palliative Care Department, Knapper Cancer Center, Geisinger Medical Center, Danville, PA, USA
| |
Collapse
|
26
|
Lee JH, Min DS, Lee CW, Song KH, Kim YS, Kim HP. Ginsenosides from Korean Red Ginseng ameliorate lung inflammatory responses: inhibition of the MAPKs/NF-κB/c-Fos pathways. J Ginseng Res 2018; 42:476-484. [PMID: 30337808 PMCID: PMC6187099 DOI: 10.1016/j.jgr.2017.05.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/07/2017] [Accepted: 05/17/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Korean Red Ginseng (steamed and dried white ginseng, Panax ginseng Meyer) is well known for enhancing vital energy and immune capacity and for inhibiting cancer cell growth. Some clinical studies also demonstrated a therapeutic potential of ginseng extract for treating lung inflammatory disorders. This study was conducted to establish the therapeutic potential of ginseng saponins on the lung inflammatory response. METHODS From Korean Red Ginseng, 11 ginsenosides (Rb1, Rb2, Rb3, Rc, Rd, Re, Rf, Rg1, Rg2, Rg3, and Rh2) were isolated. Their inhibitory potential and action mechanism were evaluated using a mouse model of lung inflammation, acute lung injury induced by intranasal lipopolysaccharide administration. Their anti-inflammatory activities were also examined in lung epithelial cell line (A549) and alveolar macrophage (MH-S). RESULTS All ginsenosides orally administered at 20 mg/kg showed 11.5-51.6% reduction of total cell numbers in bronchoalveolar lavage fluid (BALF). Among the ginsenosides, Rc, Re, Rg1, and Rh2 exhibited significant inhibitory action by reducing total cell numbers in the BALF by 34.1-51.6% (n = 5). Particularly, Re showed strong and comparable inhibitory potency with that of dexamethasone, as judged by the number of infiltrated cells and histological observations. Re treatment clearly inhibited the activation of mitogen-activated protein kinases, nuclear factor-κB, and the c-Fos component in the lung tissue (n = 3). CONCLUSION Certain ginsenosides inhibit lung inflammatory responses by interrupting these signaling molecules and they are potential therapeutics for inflammatory lung diseases.
Collapse
Affiliation(s)
- Ju Hee Lee
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Dong Suk Min
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Chan Woo Lee
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Kwang Ho Song
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yeong Shik Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyun Pyo Kim
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
27
|
So SH, Lee JW, Kim YS, Hyun SH, Han CK. Red ginseng monograph. J Ginseng Res 2018; 42:549-561. [PMID: 30337816 PMCID: PMC6190493 DOI: 10.1016/j.jgr.2018.05.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 12/22/2022] Open
Abstract
Ginseng has been traditionally used for several millennia in Asian countries, including Korea, China, and Japan, not only as a nourishing and tonifying agent but also as a therapeutic agent for a variety of diseases. In recent years, the various effects of red ginseng including immunity improvement, fatigue relief, memory improvement, blood circulation improvement, antioxidation, mitigation of menopausal women's symptoms, and anticancer an effect have been reported in clinical as well as basic research. Around the world, there is a trend of the rising consumption of health functional foods on the level of disease prevention along with increased interest in maintaining health because of population aging and the awareness of lifestyle diseases and chronic diseases. Red ginseng occupies an important position as a health functional food. But till now, international ginseng monographs including those of the World Health Organization have been based on data on white ginseng and have mentioned red ginseng only partly. Therefore, the red ginseng monograph is needed for component of red ginseng, functionality certified as a health functional food in the Korea Food and Drug Administration, major efficacy, action mechanism, and safety. The present red ginseng monograph will contribute to providing accurate information on red ginseng to agencies, businesses, and consumers both in South Korea and abroad.
Collapse
Affiliation(s)
- Seung-Ho So
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Jong Won Lee
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Young-Sook Kim
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Sun Hee Hyun
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Chang-Kyun Han
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| |
Collapse
|
28
|
|
29
|
|
30
|
Mancuso C, Santangelo R. Panax ginseng and Panax quinquefolius: From pharmacology to toxicology. Food Chem Toxicol 2017; 107:362-372. [PMID: 28698154 PMCID: PMC7116968 DOI: 10.1016/j.fct.2017.07.019] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022]
Abstract
The use of Panax ginseng and Panax quinquefolius in traditional Chinese medicine dates back to about 5000 years ago thanks to its several beneficial and healing properties. Over the past few years, extensive preclinical and clinical evidence in the scientific literature worldwide has supported the beneficial effects of P. ginseng and P. quinquefolius in significant central nervous system, metabolic, infectious and neoplastic diseases. There has been growing research on ginseng because of its favorable pharmacokinetics, including the intestinal biotransformation which is responsible for the processing of ginsenosides - contained in the roots or extracts of ginseng - into metabolites with high pharmacological activity and how such principles act on numerous cell targets. The aim of this review is to provide a simple and extensive overview of the pharmacokinetics and pharmacodynamics of P. ginseng and P. quinquefolius, focusing on the clinical evidence which has shown particular effectiveness in specific diseases, such as dementia, diabetes mellitus, respiratory infections, and cancer. Furthermore, the review will also provide data on toxicological factors to support the favorable safety profile of these medicinal plants.
Collapse
Affiliation(s)
- Cesare Mancuso
- Institute of Pharmacology, Catholic University School of Medicine, Largo F. Vito, 1, 00168 Rome, Italy.
| | - Rosaria Santangelo
- Institute of Microbiology, Catholic University School of Medicine, Largo F. Vito, 1, 00168 Rome, Italy
| |
Collapse
|
31
|
Xu ML, Wi GR, Kim HJ, Kim HJ. Ameliorating Effect of Dietary Xylitol on Human Respiratory Syncytial Virus (hRSV) Infection. Biol Pharm Bull 2017; 39:540-6. [PMID: 27040626 DOI: 10.1248/bpb.b15-00773] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human respiratory syncytial virus (hRSV) is the most common cause of bronchiolitis and pneumonia in infants. The lack of proper prophylactics and therapeutics for controlling hRSV infection has been of great concern worldwide. Xylitol is a well-known sugar substitute and its effect against bacteria in the oral cavity is well known. However, little is known of its effect on viral infections. In this study, the effect of dietary xylitol on hRSV infection was investigated in a mouse model for the first time. Mice received xylitol for 14 d prior to virus challenge and for a further 3 d post challenge. Significantly larger reductions in lung virus titers were observed in the mice receiving xylitol than in the controls receiving phosphate-buffered saline (PBS). In addition, fewer CD3(+) and CD3(+)CD8(+) lymphocytes, whose numbers reflect inflammatory status, were recruited in the mice receiving xylitol. These results indicate that dietary xylitol can ameliorate hRSV infections and reduce inflammation-associated immune responses to hRSV infection.
Collapse
|
32
|
Patel S, Rauf A. Adaptogenic herb ginseng (Panax) as medical food: Status quo and future prospects. Biomed Pharmacother 2017; 85:120-127. [DOI: 10.1016/j.biopha.2016.11.112] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/22/2016] [Accepted: 11/27/2016] [Indexed: 02/07/2023] Open
|
33
|
Safety Analysis of Panax Ginseng in Randomized Clinical Trials: A Systematic Review. MEDICINES 2015; 2:106-126. [PMID: 28930204 PMCID: PMC5533164 DOI: 10.3390/medicines2020106] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 12/01/2022]
Abstract
Background:Panax ginseng C.A. Meyer is one of the most frequently used herbs in the world. The roots of Panax ginseng have been used as a traditional tonic and medicine for thousands of years in Korea and China. Today, ginseng root is used as a dietary supplement and complementary medicine and for adjuvant therapeutics worldwide. The efficacy of ginseng has been studied in a wide range of basic research and clinical studies. However, it has been reported that the results from clinical studies are conflicting, and they depend on the parameters of the protocol design including the conditions of the participants and the types of ginseng used such as red ginseng, white ginseng, fermented ginseng and cultured ginseng. Meanwhile, in addition to clinical efficacy, the safety of ginseng is a highly important matter for customers. With globally increasing demand for Panax ginseng as a dietary supplement or complementary medicine, it is necessary to provide information on its safe use to customers to improve their health conditions. Although the safety of Panax ginseng in pre-clinical studies is well known, the evaluation of safety in clinical studies has so far been insufficient. This systematic review was conducted to assess the safety of ginseng in randomized controlled clinical trials (RCT) over the last 10 years. We chose the last 10 years because many clinical trials have been conducted in the past 10 years, and it will help to understand the recent trends in RCTs of ginseng. Methods: Articles on ginseng studies were searched with keywords in MEDLINE and four other Korean online database sites. Studies with ginseng as a monopreparation were selected while studies with single administration, preparations combined with other herbs or drug combinations were excluded from the selected studies. Data from the selected studies meeting the criteria were extracted and reviewed in terms of study design, condition and number of participants, type of ginseng, dosage, duration, main results, adverse events and adverse reactions. Results: Forty-four studies met the selection criteria. These studies covered the efficacy of ginseng in areas such as cardiovascular function, glucose metabolism, sexual function, anti-oxidation, anti-fatigue and psychomotor function. Twenty-nine studies showed positive results while fifteen studies showed no effect. Sixteen studies reported adverse events while five studies had no adverse events. Twenty-three studies did not mention any adverse events. The main adverse events of ginseng reported were general symptoms such as hot flushes, insomnia and dyspepsia with no significant difference in frequency and symptoms between the ginseng and placebo groups. The symptoms were mild and temporary with no serious or severe adverse events. Conclusion:Panax ginseng showed a very safe profile in a limited number of RCTs with a small number of participants with various conditions ranging from healthy participants to patients with symptoms. However, to increase the usefulness and lower the health risk of Panax ginseng to customers, clinical trials on a larger scale and with a higher standard are necessary to define its efficacy and safety as a dietary supplement or complementary medicine.
Collapse
|
34
|
Wiwanitkit V. Red ginseng and H5N1 influenza infection. J Ginseng Res 2014; 38:226. [PMID: 25378999 PMCID: PMC4213816 DOI: 10.1016/j.jgr.2014.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Indexed: 11/28/2022] Open
|
35
|
Chang JW, Choi JW, Lee BH, Park JK, Shin YS, Oh YT, Noh OK, Kim CH. Protective effects of Korean red ginseng on radiation-induced oral mucositis in a preclinical rat model. Nutr Cancer 2014; 66:400-7. [PMID: 24617451 DOI: 10.1080/01635581.2014.884234] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Numerous studies' attempts to improve radiation-induced oral mucositis have not produced a qualified treatment yet. Our aim was to investigate the effectiveness of Korean red ginseng (KRG) on radiation-induced damage in an in vivo rat model. After 20 Gy of irradiation, rats were divided randomly into the following 4 groups: control, KRG only, radiotherapy (RT) only, and RT + KRG group. The rats were monitored in terms of survival rate, activity, mucositis grade, oral intake, and body weight. The tongue, buccal mucosa, and submandibular gland (SMG) were harvested, and the weight of the SMG was analyzed. The samples then underwent hematoxylin and eosin, TUNEL, and immunohistochemical staining. Radiation-induced severe oral mucositis and SMG injury led to poor oral intake and delayed healing, resulting in the death of some rats. We found that survival rate, oral intake, and body weight increased. Moreover, rats treated with KRG showed less severe mucositis and decreased histologic changes of the oral mucosa and SMG. Furthermore, we showed that the protective effects of KRG were caused by inhibition of the apoptotic signal transduction pathway linked to caspase-3. In conclusion, KRG protects the oral mucosa and SMG from radiation-induced damage by inhibiting caspase-mediated apoptosis in rats.
Collapse
Affiliation(s)
- Jae Won Chang
- a Department of Otolaryngology, School of Medicine , Ajou University, Suwon, Korea and Center for Cell Death Regulating Biodrugs, School of Medicine, Ajou University , Suwon , Korea
| | | | | | | | | | | | | | | |
Collapse
|