1
|
Daniūtė G, Pranckėnienė L, Pakerys J, Kloviņš J, Kučinskas V, Urnikytė A. Populations of Latvia and Lithuania in the context of some Indo-European and non-Indo-European speaking populations of Europe and India: insights from genetic structure analysis. Front Genet 2024; 15:1493270. [PMID: 39634275 PMCID: PMC11614816 DOI: 10.3389/fgene.2024.1493270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
The aim of this study was to investigate the relationship among Lithuanian, Latvian, Indian, and some other populations through a genome-wide data analysis of single nucleotide polymorphisms (SNPs). Limited data of Baltic populations were mostly compared with geographically closer modern and ancient populations in the past, but no previous investigation has explored their genetic relationships with distant populations, like the ones of India, in detail. To address this, we collected and merged genome-wide SNP data from diverse publicly available sources to create a comprehensive dataset with a substantial sample size especially from Lithuanians and Latvians. Principal component analysis (PCA) and admixture analysis methods were employed to assess the genetic structure and relationship among the populations under investigation. Additionally, we estimated an effective population size (Ne) and divergence time to shed light on potential past events between the Baltic and Indian populations. To gain a broader perspective, we also incorporated ancient and modern populations from different continents into our analyses. Our findings revealed that the Balts, unsurprisingly, have a closer genetic affinity with individuals from Indian population who speak Indo-European languages, compared to other Indian linguistic groups (such as speakers of Dravidian, Austroasiatic, and Sino-Tibetan languages). However, when compared to other populations from the European continent, which also speak Indo-European and some Uralic languages, the Balts did not exhibit a stronger resemblance to Indo-European-speaking Indians. In conclusion, this study provides an overview of the genetic relationship and structure of the populations investigated, along with insights into their divergence times.
Collapse
Affiliation(s)
- Gintė Daniūtė
- Department of Human and Medical Genetics, Biomedical Science Institute, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Laura Pranckėnienė
- Faculty of Medicine Population Genomics Laboratory, Translational health research Institute, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Jurgis Pakerys
- Department of Baltic Studies, Institute for the Languages and Cultures of the Baltic, Vilnius University, Vilnius, Lithuania
| | - Jānis Kloviņš
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Vaidutis Kučinskas
- Faculty of Medicine Population Genomics Laboratory, Translational health research Institute, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Alina Urnikytė
- Faculty of Medicine Population Genomics Laboratory, Translational health research Institute, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
2
|
Ding Y, Hou K, Xu Z, Pimplaskar A, Petter E, Boulier K, Privé F, Vilhjálmsson BJ, Olde Loohuis LM, Pasaniuc B. Polygenic scoring accuracy varies across the genetic ancestry continuum. Nature 2023; 618:774-781. [PMID: 37198491 PMCID: PMC10284707 DOI: 10.1038/s41586-023-06079-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/12/2023] [Indexed: 05/19/2023]
Abstract
Polygenic scores (PGSs) have limited portability across different groupings of individuals (for example, by genetic ancestries and/or social determinants of health), preventing their equitable use1-3. PGS portability has typically been assessed using a single aggregate population-level statistic (for example, R2)4, ignoring inter-individual variation within the population. Here, using a large and diverse Los Angeles biobank5 (ATLAS, n = 36,778) along with the UK Biobank6 (UKBB, n = 487,409), we show that PGS accuracy decreases individual-to-individual along the continuum of genetic ancestries7 in all considered populations, even within traditionally labelled 'homogeneous' genetic ancestries. The decreasing trend is well captured by a continuous measure of genetic distance (GD) from the PGS training data: Pearson correlation of -0.95 between GD and PGS accuracy averaged across 84 traits. When applying PGS models trained on individuals labelled as white British in the UKBB to individuals with European ancestries in ATLAS, individuals in the furthest GD decile have 14% lower accuracy relative to the closest decile; notably, the closest GD decile of individuals with Hispanic Latino American ancestries show similar PGS performance to the furthest GD decile of individuals with European ancestries. GD is significantly correlated with PGS estimates themselves for 82 of 84 traits, further emphasizing the importance of incorporating the continuum of genetic ancestries in PGS interpretation. Our results highlight the need to move away from discrete genetic ancestry clusters towards the continuum of genetic ancestries when considering PGSs.
Collapse
Affiliation(s)
- Yi Ding
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA.
| | - Kangcheng Hou
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA
| | - Ziqi Xu
- Department of Computer Science, UCLA, Los Angeles, CA, USA
| | - Aditya Pimplaskar
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA
| | - Ella Petter
- Department of Computer Science, UCLA, Los Angeles, CA, USA
| | - Kristin Boulier
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA
| | - Florian Privé
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
| | - Bjarni J Vilhjálmsson
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
| | - Loes M Olde Loohuis
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Bogdan Pasaniuc
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Department of Computational Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Institute for Precision Health, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Bánfai Z, Kövesdi E, Sümegi K, Büki G, Szabó A, Magyari L, Ádám V, Pálos F, Miseta A, Kásler M, Melegh B. Characterization of Danube Swabian population samples on a high-resolution genome-wide basis. BMC Genomics 2023; 24:9. [PMID: 36624381 PMCID: PMC9830925 DOI: 10.1186/s12864-022-09092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND German-derived ethnicities are one of the largest ethnic groups in Hungary, dating back to the formation of the Kingdom of Hungary, which took place at the beginning of the 11th century. Germans arrived in Hungary in many waves. The most significant immigration wave took place following the collapse of the Ottoman Empire in East-Central Europe which closed the 150 year long Ottoman occupation. To date, there are no comprehensive genome-wide studies investigating the genetic makeup of the Danube Swabians. Here we analyzed 47 Danube Swabian samples collected from elderly Swabian individuals living in the Dunaszekcső-Bár area, in Danube side villages of Southwest Hungary. These Swabians, according to self-declaration, did not admix with other ethnic groups for 3-6 succeeding generations. Using Illumina Infinium 720 K Beadchip genotype data, we applied allele frequency-based and haplotype-based genome-wide marker data analyses to investigate the ancestry and genetic composition of the collected Danube Swabian samples. RESULTS Haplotype-based analyses like identity by descent segment analysis show that the investigated Danube Swabians possess significant German and other West European ancestry, but their Hungarian ancestry is also prominent. Our results suggest that their main source of ancestry can be traced back to Western Europe, presumably to the region of Germany. CONCLUSION This is the first analysis of Danube Swabian population samples based on genome-wide autosomal data. Our results establish the basis for conducting further comprehensive research on Danube Swabians and on other German ethnicities of the Carpathian basin, which can help reconstruct their origin, and identify their major archaic genomic patterns.
Collapse
Affiliation(s)
- Zsolt Bánfai
- grid.9679.10000 0001 0663 9479Department of Medical Genetics, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary ,grid.9679.10000 0001 0663 9479Szentágothai Research Centre, University of Pécs, Ifjúság út 20, H-7624 Pécs, Hungary
| | - Erzsébet Kövesdi
- grid.9679.10000 0001 0663 9479Szentágothai Research Centre, University of Pécs, Ifjúság út 20, H-7624 Pécs, Hungary ,grid.9679.10000 0001 0663 9479Institute of Physiology, Medical School, Hungary, University of Pécs, Ifjúság út 12, H-7624 Pécs, Hungary
| | - Katalin Sümegi
- grid.9679.10000 0001 0663 9479Department of Medical Genetics, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary ,grid.9679.10000 0001 0663 9479Szentágothai Research Centre, University of Pécs, Ifjúság út 20, H-7624 Pécs, Hungary ,grid.9679.10000 0001 0663 9479Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Gergely Büki
- grid.9679.10000 0001 0663 9479Department of Medical Genetics, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary ,grid.9679.10000 0001 0663 9479Szentágothai Research Centre, University of Pécs, Ifjúság út 20, H-7624 Pécs, Hungary
| | - András Szabó
- grid.9679.10000 0001 0663 9479Department of Medical Genetics, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary ,grid.9679.10000 0001 0663 9479Szentágothai Research Centre, University of Pécs, Ifjúság út 20, H-7624 Pécs, Hungary
| | - Lili Magyari
- grid.9679.10000 0001 0663 9479Department of Medical Genetics, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary ,grid.9679.10000 0001 0663 9479Szentágothai Research Centre, University of Pécs, Ifjúság út 20, H-7624 Pécs, Hungary
| | - Valerián Ádám
- grid.9679.10000 0001 0663 9479Department of Medical Genetics, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Ferenc Pálos
- grid.9679.10000 0001 0663 9479Department of Medical Genetics, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Attila Miseta
- grid.9679.10000 0001 0663 9479Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság út 13, H-7624 Pécs, Hungary
| | - Miklós Kásler
- grid.419617.c0000 0001 0667 8064National Institute of Oncology, Ráth György u. 7-9, H-1122 Budapest, Hungary
| | - Béla Melegh
- grid.9679.10000 0001 0663 9479Department of Medical Genetics, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary ,grid.9679.10000 0001 0663 9479Szentágothai Research Centre, University of Pécs, Ifjúság út 20, H-7624 Pécs, Hungary
| |
Collapse
|
4
|
Rodríguez-Varela R, Moore KHS, Ebenesersdóttir SS, Kilinc GM, Kjellström A, Papmehl-Dufay L, Alfsdotter C, Berglund B, Alrawi L, Kashuba N, Sobrado V, Lagerholm VK, Gilbert E, Cavalleri GL, Hovig E, Kockum I, Olsson T, Alfredsson L, Hansen TF, Werge T, Munters AR, Bernhardsson C, Skar B, Christophersen A, Turner-Walker G, Gopalakrishnan S, Daskalaki E, Omrak A, Pérez-Ramallo P, Skoglund P, Girdland-Flink L, Gunnarsson F, Hedenstierna-Jonson C, Gilbert MTP, Lidén K, Jakobsson M, Einarsson L, Victor H, Krzewińska M, Zachrisson T, Storå J, Stefánsson K, Helgason A, Götherström A. The genetic history of Scandinavia from the Roman Iron Age to the present. Cell 2023; 186:32-46.e19. [PMID: 36608656 DOI: 10.1016/j.cell.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/14/2022] [Accepted: 11/22/2022] [Indexed: 01/07/2023]
Abstract
We investigate a 2,000-year genetic transect through Scandinavia spanning the Iron Age to the present, based on 48 new and 249 published ancient genomes and genotypes from 16,638 modern individuals. We find regional variation in the timing and magnitude of gene flow from three sources: the eastern Baltic, the British-Irish Isles, and southern Europe. British-Irish ancestry was widespread in Scandinavia from the Viking period, whereas eastern Baltic ancestry is more localized to Gotland and central Sweden. In some regions, a drop in current levels of external ancestry suggests that ancient immigrants contributed proportionately less to the modern Scandinavian gene pool than indicated by the ancestry of genomes from the Viking and Medieval periods. Finally, we show that a north-south genetic cline that characterizes modern Scandinavians is mainly due to the differential levels of Uralic ancestry and that this cline existed in the Viking Age and possibly earlier.
Collapse
Affiliation(s)
- Ricardo Rodríguez-Varela
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden.
| | | | - S Sunna Ebenesersdóttir
- deCODE Genetics/AMGEN, Inc., 102 Reykjavik, Iceland; Department of Anthropology, University of Iceland, 102 Reykjavik, Iceland
| | - Gulsah Merve Kilinc
- Department of Bioinformatics, Graduate School of Health Sciences, Hacettepe University, 06100 Ankara, Turkey
| | - Anna Kjellström
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | | | - Clara Alfsdotter
- Department of Archaeology, Bohusläns Museum, Museigatan 1, 451 19 Udevalla, Sweden
| | - Birgitta Berglund
- Department of Archaeology and Cultural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Loey Alrawi
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Natalija Kashuba
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden; Department of Archaeology and Ancient History, Archaeology, Uppsala University, 752 38 Uppsala, Sweden; Department of Organismal Biology, Human Evolution, and SciLife Lab, Uppsala University, 75236 Uppsala, Sweden
| | - Verónica Sobrado
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Vendela Kempe Lagerholm
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Edmund Gilbert
- School of Pharmacy and Biomolecular Sciences, RCSI, D02 YN77 Dublin, Ireland; FutureNeuro SFI Research Centre, RCSI, D02 YN77 Dublin, Ireland
| | - Gianpiero L Cavalleri
- School of Pharmacy and Biomolecular Sciences, RCSI, D02 YN77 Dublin, Ireland; FutureNeuro SFI Research Centre, RCSI, D02 YN77 Dublin, Ireland
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; Centre for Bioinformatics, Department of Informatics, University of Oslo, 166 0450 Oslo, Norway
| | - Ingrid Kockum
- Center for Molecular Medicine, Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Tomas Olsson
- Center for Molecular Medicine, Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Thomas F Hansen
- Institute of Biological Psychiatry, Copenhagen Mental Health Services, 4000 Roskilde, Denmark; Danish Headache Center, Department of Neurology, Copenhagen University Hospital, 2600 Glostrup, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Copenhagen Mental Health Services, 4000 Roskilde, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen 2200, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus, Denmark
| | - Arielle R Munters
- Department of Organismal Biology, Human Evolution, and SciLife Lab, Uppsala University, 75236 Uppsala, Sweden
| | - Carolina Bernhardsson
- Department of Organismal Biology, Human Evolution, and SciLife Lab, Uppsala University, 75236 Uppsala, Sweden
| | - Birgitte Skar
- Department of Archaeology and Cultural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Axel Christophersen
- Department of Archaeology and Cultural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Gordon Turner-Walker
- Department of Archaeology and Anthropology National Museum of Natural Science, 404023 Taichung City, Taiwan
| | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, the GLOBE Institute, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Eva Daskalaki
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Ayça Omrak
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Patxi Pérez-Ramallo
- isoTROPIC Research Group, Department of Archaeology, Max Planck Institute for Geoanthropology, 07745 Jena, Germany; Department of Medical and Surgical Specialities, Faculty of Medicine and Nursing, University of the Basque Country (EHU), Donostia-San Sebastián 20014, Spain
| | | | - Linus Girdland-Flink
- Department of Archaeology, School of Geosciences, University of Aberdeen, AB24 3FX Aberdeen, UK; School of Biological and Environmental Sciences, Liverpool John Moores University, L3 3AF Liverpool, UK
| | - Fredrik Gunnarsson
- Department of Museum Archaeology, Kalmar County Museum, Box 104, Kalmar 39121, Sweden
| | | | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, the GLOBE Institute, University of Copenhagen, 1353 Copenhagen, Denmark; Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Kerstin Lidén
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Mattias Jakobsson
- Department of Organismal Biology, Human Evolution, and SciLife Lab, Uppsala University, 75236 Uppsala, Sweden
| | - Lars Einarsson
- Kronan, Marine Archaeological Department, Kalmar County Museum, Box 104, Kalmar S-39121, Sweden
| | - Helena Victor
- Department of Museum Archaeology, Kalmar County Museum, Box 104, Kalmar 39121, Sweden
| | - Maja Krzewińska
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | | | - Jan Storå
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Kári Stefánsson
- deCODE Genetics/AMGEN, Inc., 102 Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik 101, Iceland
| | - Agnar Helgason
- deCODE Genetics/AMGEN, Inc., 102 Reykjavik, Iceland; Department of Anthropology, University of Iceland, 102 Reykjavik, Iceland.
| | - Anders Götherström
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
5
|
Genome-wide data from medieval German Jews show that the Ashkenazi founder event pre-dated the 14 th century. Cell 2022; 185:4703-4716.e16. [PMID: 36455558 PMCID: PMC9793425 DOI: 10.1016/j.cell.2022.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/26/2022] [Accepted: 11/01/2022] [Indexed: 12/05/2022]
Abstract
We report genome-wide data from 33 Ashkenazi Jews (AJ), dated to the 14th century, obtained following a salvage excavation at the medieval Jewish cemetery of Erfurt, Germany. The Erfurt individuals are genetically similar to modern AJ, but they show more variability in Eastern European-related ancestry than modern AJ. A third of the Erfurt individuals carried a mitochondrial lineage common in modern AJ and eight carried pathogenic variants known to affect AJ today. These observations, together with high levels of runs of homozygosity, suggest that the Erfurt community had already experienced the major reduction in size that affected modern AJ. The Erfurt bottleneck was more severe, implying substructure in medieval AJ. Overall, our results suggest that the AJ founder event and the acquisition of the main sources of ancestry pre-dated the 14th century and highlight late medieval genetic heterogeneity no longer present in modern AJ.
Collapse
|
6
|
Assessing temporal and geographic contacts across the Adriatic Sea through the analysis of genome-wide data from Southern Italy. Genomics 2022; 114:110405. [PMID: 35709925 DOI: 10.1016/j.ygeno.2022.110405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022]
Abstract
Southern Italy was characterised by a complex prehistory that started with different Palaeolithic cultures, later followed by the Neolithization and the demic dispersal from the Pontic-Caspian Steppe during the Bronze Age. Archaeological and historical evidences point to a link between Southern Italians and the Balkans still present in modern times. To shed light on these dynamics, we analysed around 700 South Mediterranean genomes combined with informative ancient DNAs. Our findings revealed high affinities of South-Eastern Italians with modern Eastern Peloponnesians, and a closer affinity of ancient Greek genomes with those from specific regions of South Italy than modern Greek genomes. The higher similarity could be associated with a Bronze Age component ultimately originating from the Caucasus with high Iranian and Anatolian Neolithic ancestries. Furthermore, extremely differentiated allele frequencies among Northern and Southern Italy revealed putatively adapted SNPs in genes involved in alcohol metabolism, nevi features and immunological traits.
Collapse
|
7
|
Privé F, Aschard H, Carmi S, Folkersen L, Hoggart C, O'Reilly PF, Vilhjálmsson BJ. Portability of 245 polygenic scores when derived from the UK Biobank and applied to 9 ancestry groups from the same cohort. Am J Hum Genet 2022; 109:12-23. [PMID: 34995502 PMCID: PMC8764121 DOI: 10.1016/j.ajhg.2021.11.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022] Open
Abstract
The low portability of polygenic scores (PGSs) across global populations is a major concern that must be addressed before PGSs can be used for everyone in the clinic. Indeed, prediction accuracy has been shown to decay as a function of the genetic distance between the training and test cohorts. However, such cohorts differ not only in their genetic distance but also in their geographical distance and their data collection and assaying, conflating multiple factors. In this study, we examine the extent to which PGSs are transferable between ancestries by deriving polygenic scores for 245 curated traits from the UK Biobank data and applying them in nine ancestry groups from the same cohort. By restricting both training and testing to the UK Biobank data, we reduce the risk of environmental and genotyping confounding from using different cohorts. We define the nine ancestry groups at a sub-continental level, based on a simple, robust, and effective method that we introduce here. We then apply two different predictive methods to derive polygenic scores for all 245 phenotypes and show a systematic and dramatic reduction in portability of PGSs trained using Northwestern European individuals and applied to nine ancestry groups. These analyses demonstrate that prediction already drops off within European ancestries and reduces globally in proportion to genetic distance. Altogether, our study provides unique and robust insights into the PGS portability problem.
Collapse
Affiliation(s)
- Florian Privé
- National Centre for Register-Based Research, Aarhus University, Aarhus 8210, Denmark.
| | - Hugues Aschard
- Department of Computational Biology, Institut Pasteur, Paris 75015, France; Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | | | - Clive Hoggart
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paul F O'Reilly
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bjarni J Vilhjálmsson
- National Centre for Register-Based Research, Aarhus University, Aarhus 8210, Denmark; Bioinformatics Research Centre, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
8
|
A common founder effect of the splice site variant c.-23 + 1G > A in GJB2 gene causing autosomal recessive deafness 1A (DFNB1A) in Eurasia. Hum Genet 2021; 141:697-707. [PMID: 34839402 DOI: 10.1007/s00439-021-02405-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/21/2021] [Indexed: 10/19/2022]
Abstract
Mutations in the GJB2 gene are known to be a major cause of autosomal recessive deafness 1A (OMIM 220290). The most common pathogenic variants of the GJB2 gene have a high ethno-geographic specificity in their distribution, being attributed to a founder effect related to the Neolithic migration routes of Homo sapiens. The c.-23 + 1G > A splice site variant is frequently found among deaf patients of both Caucasian and Asian origins. It is currently unknown whether the spread of this mutation across Eurasia is a result of the founder effect or if it could have multiple local centers of origin. To determine the origin of c.-23 + 1G > A, we reconstructed haplotypes by genotyping SNPs on an Illumina OmniExpress 730 K platform of 23 deaf individuals homozygous for this variant from different populations of Eurasia. The analyses revealed the presence of common regions of homozygosity in different individual genomes in the sample. These data support the hypothesis of the common founder effect in the distribution of the c.-23 + 1G > A variant of the GJB2 gene. Based on the published data on the c.-23 + 1G > A prevalence among 16,177 deaf people and the calculation of the TMRCA of the modified f2-haplotypes carrying this variant, we reconstructed the potential migration routes of the carriers of this mutation around the world. This analysis indicates that the c.-23 + 1G > A variant in the GJB2 gene may have originated approximately 6000 years ago in the territory of the Caucasus or the Middle East then spread throughout Europe, South and Central Asia and other regions of the world.
Collapse
|
9
|
Balanovsky O, Petrushenko V, Mirzaev K, Abdullaev S, Gorin I, Chernevskiy D, Agdzhoyan A, Balanovska E, Kryukov A, Temirbulatov I, Sychev D. Variation of Genomic Sites Associated with Severe Covid-19 Across Populations: Global and National Patterns. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1391-1402. [PMID: 34764675 PMCID: PMC8575442 DOI: 10.2147/pgpm.s320609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/04/2021] [Indexed: 01/10/2023]
Abstract
Background Information about the distribution of clinically significant genetic markers in different populations may be helpful in elaborating personalized approaches to the clinical management of COVID-19 in the absence of consensus guidelines. Aim Analyze frequencies and distribution patterns of two markers associated with severe COVID-19 (rs11385942 and rs657152) and look for potential correlations between these markers and deaths from COVID-19 among populations in Russia and across the world. Methods We genotyped 1883 samples from 91 ethnic groups pooled into 28 populations representing Russia and its neighbor states. We also compiled a dataset on 32 populations from other regions using genotypes extracted or imputed from the available databases. Geographic maps showing the frequency distribution of the analyzed markers were constructed using the obtained data. Results The cartographic analysis revealed that rs11385942 distribution follows the West Eurasian pattern: the marker is frequent among the populations of Europe, West Asia and South Asia but rare or absent in all other parts of the globe. Notably, the transition from high to low rs11385942 frequencies across Eurasia is not abrupt but follows the clinal variation pattern instead. The distribution of rs657152 is more homogeneous. The analysis of correlations between the frequencies of the studied markers and the epidemiological characteristics of COVID-19 in a population revealed that higher frequencies of both risk alleles correlated positively with mortality from this disease. For rs657152, the correlation was especially strong (r = 0.59, p = 0.02). These reasonable correlations were observed for the "Russian" dataset only: no such correlations were established for the "world" dataset. This could be attributed to the differences in methodology used to collect COVID-19 statistics in different countries. Conclusion Our findings suggest that genetic differences between populations make a small yet tangible contribution to the heterogeneity of the pandemic worldwide.
Collapse
Affiliation(s)
- Oleg Balanovsky
- Laboratory of Genome Geography, Vavilov Institute of General Genetics, Moscow, Russia.,Laboratory of Human Population Genetics, Research Centre for Medical Genetics, Moscow, Russia.,Biobank of North Eurasia, Moscow, Russia
| | - Valeria Petrushenko
- Laboratory of Genome Geography, Vavilov Institute of General Genetics, Moscow, Russia.,Department of Bioinformatics Moscow Institute of Physics and Technology, Moscow, Russia
| | - Karin Mirzaev
- Laboratory of Human Population Genetics, Research Centre for Medical Genetics, Moscow, Russia.,Department of Clinical Pharmacology and Therapeutics, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Sherzod Abdullaev
- Department of Clinical Pharmacology and Therapeutics, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Igor Gorin
- Laboratory of Genome Geography, Vavilov Institute of General Genetics, Moscow, Russia.,Department of Bioinformatics Moscow Institute of Physics and Technology, Moscow, Russia
| | - Denis Chernevskiy
- Laboratory of Human Population Genetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Anastasiya Agdzhoyan
- Laboratory of Genome Geography, Vavilov Institute of General Genetics, Moscow, Russia.,Laboratory of Human Population Genetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Elena Balanovska
- Laboratory of Human Population Genetics, Research Centre for Medical Genetics, Moscow, Russia.,Biobank of North Eurasia, Moscow, Russia
| | - Alexander Kryukov
- Department of Clinical Pharmacology and Therapeutics, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Ilyas Temirbulatov
- Laboratory of Human Population Genetics, Research Centre for Medical Genetics, Moscow, Russia.,Department of Clinical Pharmacology and Therapeutics, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Dmitriy Sychev
- Department of Clinical Pharmacology and Therapeutics, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
10
|
Warshauer EM, Brown A, Fuentes I, Shortt J, Gignoux C, Montinaro F, Metspalu M, Youssefian L, Vahidnezhad H, Jacków J, Christiano AM, Uitto J, Fajardo-Ramírez ÓR, Salas-Alanis JC, McGrath JA, Consuegra L, Rivera C, Maier PA, Runfeldt G, Behar DM, Skorecki K, Sprecher E, Palisson F, Norris DA, Bruckner AL, Kogut I, Bilousova G, Roop DR. Ancestral patterns of recessive dystrophic epidermolysis bullosa mutations in Hispanic populations suggest sephardic ancestry. Am J Med Genet A 2021; 185:3390-3400. [PMID: 34435747 DOI: 10.1002/ajmg.a.62456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 11/11/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genodermatosis caused by mutations in the gene coding for type VII collagen (COL7A1). More than 800 different pathogenic mutations in COL7A1 have been described to date; however, the ancestral origins of many of these mutations have not been precisely identified. In this study, 32 RDEB patient samples from the Southwestern United States, Mexico, Chile, and Colombia carrying common mutations in the COL7A1 gene were investigated to determine the origins of these mutations and the extent to which shared ancestry contributes to disease prevalence. The results demonstrate both shared European and American origins of RDEB mutations in distinct populations in the Americas and suggest the influence of Sephardic ancestry in at least some RDEB mutations of European origins. Knowledge of ancestry and relatedness among RDEB patient populations will be crucial for the development of future clinical trials and the advancement of novel therapeutics.
Collapse
Affiliation(s)
- Emily Mira Warshauer
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA.,Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Adam Brown
- Avotaynu Research Partnership LLC, Englewood, New Jersey, USA
| | - Ignacia Fuentes
- Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile.,Fundación DEBRA Chile, Santiago, Chile
| | - Jonathan Shortt
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chris Gignoux
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia.,Department of Biology and Genetics, University of Bari, Bari, Italy
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Joanna Jacków
- Department of Dermatology, Columbia University, New York, New York, USA.,St. John's Institute of Dermatology, King's College London (Guy's Campus), London, UK
| | - Angela M Christiano
- Department of Dermatology, Columbia University, New York, New York, USA.,Department of Genetics and Development, Columbia University, New York, New York, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Óscar R Fajardo-Ramírez
- DEBRA Mexico, Azteca Guadalupe, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Julio C Salas-Alanis
- DEBRA Mexico, Azteca Guadalupe, Mexico.,Instituto Dermatologico de Jalisco, Zapopan, Mexico
| | - John A McGrath
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London, UK
| | | | - Carolina Rivera
- Fundación DEBRA Colombia, Bogotá, Colombia.,Department of Medical Genetics, Pediatric Hospital, Fundacion Cardioinfantil-Universidad del Rosario, Bogotá, Colombia
| | - Paul A Maier
- Gene by Gene, Genomic Research Center, Houston, Texas, USA
| | - Goran Runfeldt
- Gene by Gene, Genomic Research Center, Houston, Texas, USA
| | - Doron M Behar
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia.,Gene by Gene, Genomic Research Center, Houston, Texas, USA
| | - Karl Skorecki
- Azrieli Faculty of Medicine of the Galilee, Bar-Ilan University, Safed, Israel
| | - Eli Sprecher
- Department of Dermatology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Francis Palisson
- Fundación DEBRA Chile, Santiago, Chile.,Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - David A Norris
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA.,Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anna L Bruckner
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Igor Kogut
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA.,Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ganna Bilousova
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA.,Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dennis R Roop
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA.,Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
11
|
Naseri A, Tang K, Geng X, Shi J, Zhang J, Shakya P, Liu X, Zhang S, Zhi D. Personalized genealogical history of UK individuals inferred from biobank-scale IBD segments. BMC Biol 2021; 19:32. [PMID: 33593342 PMCID: PMC7888130 DOI: 10.1186/s12915-021-00964-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/19/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The genealogical histories of individuals within populations are of interest to studies aiming both to uncover detailed pedigree information and overall quantitative population demographic histories. However, the analysis of quantitative details of individual genealogical histories has faced challenges from incomplete available pedigree records and an absence of objective and quantitative details in pedigree information. Although complete pedigree information for most individuals is difficult to track beyond a few generations, it is possible to describe a person's genealogical history using their genetic relatives revealed by identity by descent (IBD) segments-long genomic segments shared by two individuals within a population, which are identical due to inheritance from common ancestors. When modern biobanks collect genotype information for a significant fraction of a population, dense genetic connections of a person can be traced using such IBD segments, offering opportunities to characterize individuals in the context of the underlying populations. Here, we conducted an individual-centric analysis of IBD segments among the UK Biobank participants that represent 0.7% of the UK population. RESULTS We made a high-quality call set of IBD segments over 5 cM among all 500,000 UK Biobank participants. On average, one UK individual shares IBD segments with 14,000 UK Biobank participants, which we refer to as "relatives." Using these segments, approximately 80% of a person's genome can be imputed. We subsequently propose genealogical descriptors based on the genetic connections of relative cohorts of individuals sharing at least one IBD segment and show that such descriptors offer important information about one's genetic makeup, personal genealogical history, and social behavior. Through analysis of relative counts sharing segments at different lengths, we identified a group, potentially British Jews, who has a distinct pattern of familial expansion history. Finally, using the enrichment of relatives in one's neighborhood, we identified regional variations of personal preference favoring living closer to one's extended families. CONCLUSIONS Our analysis revealed genetic makeup, personal genealogical history, and social behaviors at the population scale, opening possibilities for further studies of individual's genetic connections in biobank data.
Collapse
Affiliation(s)
- Ardalan Naseri
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Kecong Tang
- Department of Computer Science, University of Central Florida, Orlando, FL, 32816, USA
| | - Xin Geng
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Junjie Shi
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jing Zhang
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Pramesh Shakya
- Department of Computer Science, University of Central Florida, Orlando, FL, 32816, USA
| | - Xiaoming Liu
- USF Genomics, College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Shaojie Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL, 32816, USA.
| | - Degui Zhi
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Center for Precision Health, School of Biomedical Informatics, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Balanovska EV, Petrushenko VS, Koshel SM, Pocheshkhova EA, Chernevskiy DK, Mirzaev KB, Abdullaev S, Balanovsky OP. Cartographic atlas of frequency variation for 45 pharmacogenetic markers in populations of Russia and its neighbor states. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lack of information about the frequency of pharmacogenetic markers in Russia impedes the adoption of personalized treatment algorithms originally developed for West European populations. The aim of this paper was to study the distribution of some clinically significant pharmacogenetic markers across Russia. A total of 45 pharmacogenetic markers were selected from a few population genetic datasets, including ADME, drug target and hemostasis-controlling genes. The total number of donors genotyped for these markers was 2,197. The frequencies of these markers were determined for 50 different populations, comprised of 137 ethnic and subethnic groups. A comprehensive pharmacogenetic atlas was created, i.e. a systematic collection of gene geographic maps of frequency variation for 45 pharmacogenetic DNA markers in Russia and its neighbor states. The maps revealed 3 patterns of geographic variation. Clinal variation (a gradient change in frequency along the East-West axis) is observed in the pharmacogenetic markers that follow the main pattern of variation for North Eurasia (13% of the maps). Uniform distribution singles out a group of markers that occur at average frequency in most Russian regions (27% of the maps). Focal variation is observed in the markers that are specific to a certain group of populations and are absent in other regions (60% of the maps). The atlas reveals that the average frequency of the marker and its frequency in individual populations do not indicate the type of its distribution in Russia: a gene geographic map is needed to uncover the pattern of its variation.
Collapse
Affiliation(s)
- EV Balanovska
- Bochkov Research Center for Medical Genetics, Moscow, Russia; Biobank of North Eurasia, Moscow, Russia
| | - VS Petrushenko
- Bochkov Research Center for Medical Genetics, Moscow, Russia; Vavilov Institute of General Genetics, Moscow, Russia
| | - SM Koshel
- Bochkov Research Center for Medical Genetics, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - EA Pocheshkhova
- Bochkov Research Center for Medical Genetics, Moscow, Russia; Kuban State Medical Institute, Krasnodar, Russia
| | - DK Chernevskiy
- Bochkov Research Center for Medical Genetics, Moscow, Russia
| | - KB Mirzaev
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - ShP Abdullaev
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - OP Balanovsky
- Bochkov Research Center for Medical Genetics, Moscow, Russia; Biobank of North Eurasia, Moscow, Russia; Vavilov Institute of General Genetics, Moscow, Russia
| |
Collapse
|
13
|
Middle eastern genetic legacy in the paternal and maternal gene pools of Chuetas. Sci Rep 2020; 10:21428. [PMID: 33293675 PMCID: PMC7722846 DOI: 10.1038/s41598-020-78487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/19/2020] [Indexed: 11/08/2022] Open
Abstract
Chuetas are a group of descendants of Majorcan Crypto-Jews (Balearic Islands, Spain) who were socially stigmatized and segregated by their Majorcan neighbours until recently; generating a community that, although after the seventeenth century no longer contained Judaic religious elements, maintained strong group cohesion, Jewishness consciousness, and endogamy. Collective memory fixed 15 surnames as a most important defining element of Chueta families. Previous studies demonstrated Chuetas were a differentiated population, with a considerable proportion of their original genetic make-up. Genetic data of Y-chromosome polymorphism and mtDNA control region showed, in Chuetas’ paternal lineages, high prevalence of haplogroups J2-M172 (33%) and J1-M267 (18%). In maternal lineages, the Chuetas hallmark is the presence of a new sub-branching of the rare haplogroup R0a2m as their modal haplogroup (21%). Genetic diversity in both Y-chromosome and mtDNA indicates the Chueta community has managed to avoid the expected heterogeneity decrease in their gene pool after centuries of isolation and inbreeding. Moreover, the composition of their uniparentally transmitted lineages demonstrates a remarkable signature of Middle Eastern ancestry—despite some degree of host admixture—confirming Chuetas have retained over the centuries a considerable degree of ancestral genetic signature along with the cultural memory of their Jewish origin.
Collapse
|
14
|
Grochowalski Ł, Jarczak J, Urbanowicz M, Słomka M, Szargut M, Borówka P, Sobalska-Kwapis M, Marciniak B, Ossowski A, Lorkiewicz W, Strapagiel D. Y-Chromosome Genetic Analysis of Modern Polish Population. Front Genet 2020; 11:567309. [PMID: 33193657 PMCID: PMC7644898 DOI: 10.3389/fgene.2020.567309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/27/2020] [Indexed: 01/11/2023] Open
Abstract
The study presents a full analysis of the Y-chromosome variability of the modern male Polish population. It is the first study of the Polish population to be conducted with such a large set of data (2,705 individuals), which includes genetic information from inhabitants of all voivodeships, i.e., the first administrative level, in the country and the vast majority of its counties, i.e., the second level. In addition, the available data were divided into clusters corresponding to more natural geographic regions. Genetic analysis included the estimation of FST distances, the visualization with the use of multidimensional scaling plots and analysis of molecular variance. Y-chromosome binary haplogroups were classified and visualized with the use of interpolation maps. Results showed that the level of differentiation within Polish population is quite low, but some differences were indicated. It was confirmed that the Polish population is characterized by a high degree of homogeneity, with only slight genetic differences being observed at the regional level. The use of regional clustering as an alternative to counties and voivodeships provided a more detailed view of the genetic structure of the population. Those regional differences identified in the present study highlighted the need for additional division of the population by cultural and ethnic criteria in such studies rather than just by geographical or administrative regionalization.
Collapse
Affiliation(s)
- Łukasz Grochowalski
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Justyna Jarczak
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland.,BBMRI.pl Consortium, Łódź, Poland
| | - Maria Urbanowicz
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Marcin Słomka
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland.,BBMRI.pl Consortium, Łódź, Poland
| | - Maria Szargut
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Szczecin, Poland.,The Polish Genetic Database of Totalitarianism Victims, Szczecin, Poland
| | - Paulina Borówka
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Marta Sobalska-Kwapis
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland.,BBMRI.pl Consortium, Łódź, Poland
| | - Błażej Marciniak
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland.,BBMRI.pl Consortium, Łódź, Poland
| | - Andrzej Ossowski
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Szczecin, Poland.,The Polish Genetic Database of Totalitarianism Victims, Szczecin, Poland
| | - Wiesław Lorkiewicz
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland.,BBMRI.pl Consortium, Łódź, Poland
| |
Collapse
|
15
|
Ádám V, Bánfai Z, Maász A, Sümegi K, Miseta A, Melegh B. Investigating the genetic characteristics of the Csangos, a traditionally Hungarian speaking ethnic group residing in Romania. J Hum Genet 2020; 65:1093-1103. [PMID: 32653894 DOI: 10.1038/s10038-020-0799-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 11/09/2022]
Abstract
Csango people are an East-Central European ethnographic group living mostly in the historical region of Moldavia, Romania. Their traditional language, the Csango is an old Hungarian dialect, which is a severely endangered language due to language shift. Their origin is still disputed among experts and there are many hypotheses since the 19th century. Previous genetic studies found connection with ethnic groups living in Hungary and provided evidence which might support their Hungarian origin. Another study found Inner Asian Altaic ancestry in their genetic makeup. The goal of this study was to analyze the genetic characteristics of the Csango people by comparing their genetic characteristics to contemporary Eurasian populations based on genome-wide autosomal marker data. Our findings suggest that genetic affinity of Csangos to Hungarians is more significant than to Romanians. They also have a detectable connection with Central-Asian and Siberian Turkic ethnic groups. Besides the presumable Middle Eastern/Central-Asian Turkic ancestry, Csangos show ~4% Turkic ancestry from Central Asia/Siberia, which makes them unique in comparison to all other East-Central European populations investigated in this study. The admixture that resulted in this Turkic ancestry could have occurred 30-40 generations ago, which date interval corresponds to Hungarian historical events regarding their migration and the conquest of the Carpathian basin.
Collapse
Affiliation(s)
- Valerián Ádám
- Department of Medical Genetics, Clinical Centre, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Zsolt Bánfai
- Department of Medical Genetics, Clinical Centre, University of Pécs, Pécs, Hungary. .,Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
| | - Anita Maász
- Department of Medical Genetics, Clinical Centre, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Katalin Sümegi
- Department of Medical Genetics, Clinical Centre, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Attila Miseta
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Béla Melegh
- Department of Medical Genetics, Clinical Centre, University of Pécs, Pécs, Hungary. .,Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
| |
Collapse
|
16
|
Abstract
Geographic patterns in human genetic diversity carry footprints of population history and provide insights for genetic medicine and its application across human populations. Summarizing and visually representing these patterns of diversity has been a persistent goal for human geneticists, and has revealed that genetic differentiation is frequently correlated with geographic distance. However, most analytical methods to represent population structure do not incorporate geography directly, and it must be considered post hoc alongside a visual summary of the genetic structure. Here, we estimate "effective migration" surfaces to visualize how human genetic diversity is geographically structured. The results reveal local patterns of differentiation in detail and emphasize that while genetic similarity generally decays with geographic distance, the relationship is often subtly distorted. Overall, the visualizations provide a new perspective on genetics and geography in humans and insight to the geographic distribution of human genetic variation.
Collapse
Affiliation(s)
- Benjamin M Peter
- Department of Human Genetics, University of Chicago, Chicago, IL
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Desislava Petkova
- Wellcome Trust Center for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - John Novembre
- Department of Human Genetics, University of Chicago, Chicago, IL
- Department of Ecology & Evolution, University of Chicago, Chicago, IL
| |
Collapse
|
17
|
Yelmen B, Mondal M, Marnetto D, Pathak AK, Montinaro F, Gallego Romero I, Kivisild T, Metspalu M, Pagani L. Ancestry-Specific Analyses Reveal Differential Demographic Histories and Opposite Selective Pressures in Modern South Asian Populations. Mol Biol Evol 2020; 36:1628-1642. [PMID: 30952160 PMCID: PMC6657728 DOI: 10.1093/molbev/msz037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Genetic variation in contemporary South Asian populations follows a northwest to southeast decreasing cline of shared West Eurasian ancestry. A growing body of ancient DNA evidence is being used to build increasingly more realistic models of demographic changes in the last few thousand years. Through high-quality modern genomes, these models can be tested for gene and genome level deviations. Using local ancestry deconvolution and masking, we reconstructed population-specific surrogates of the two main ancestral components for more than 500 samples from 25 South Asian populations and showed our approach to be robust via coalescent simulations. Our f3 and f4 statistics–based estimates reveal that the reconstructed haplotypes are good proxies for the source populations that admixed in the area and point to complex interpopulation relationships within the West Eurasian component, compatible with multiple waves of arrival, as opposed to a simpler one wave scenario. Our approach also provides reliable local haplotypes for future downstream analyses. As one such example, the local ancestry deconvolution in South Asians reveals opposite selective pressures on two pigmentation genes (SLC45A2 and SLC24A5) that are common or fixed in West Eurasians, suggesting post-admixture purifying and positive selection signals, respectively.
Collapse
Affiliation(s)
- Burak Yelmen
- Institute of Genomics, University of Tartu, Tartu, Estonia.,Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mayukh Mondal
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Ajai K Pathak
- Institute of Genomics, University of Tartu, Tartu, Estonia.,Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Francesco Montinaro
- Institute of Genomics, University of Tartu, Tartu, Estonia.,Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Irene Gallego Romero
- Melbourne Integrative Genomics and School of BioSciences, University of Melbourne, Parkville, Australia
| | - Toomas Kivisild
- Institute of Genomics, University of Tartu, Tartu, Estonia.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Mait Metspalu
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Luca Pagani
- Institute of Genomics, University of Tartu, Tartu, Estonia.,APE Lab, Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
18
|
High-resolution inference of genetic relationships among Jewish populations. Eur J Hum Genet 2020; 28:804-814. [PMID: 31919450 DOI: 10.1038/s41431-019-0542-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 09/25/2019] [Accepted: 10/13/2019] [Indexed: 11/08/2022] Open
Abstract
Recent studies have used genome-wide single-nucleotide polymorphisms (SNPs) to investigate relationships among various Jewish populations and their non-Jewish historical neighbors, often focusing on small subsets of populations from a limited geographic range or relatively small samples within populations. Here, building on the significant progress that has emerged from genomic SNP studies in the placement of Jewish populations in relation to non-Jewish populations, we focus on population structure among Jewish populations. In particular, we examine Jewish population-genetic structure in samples that span much of the historical range of Jewish populations in Europe, the Middle East, North Africa, and South Asia. Combining 429 newly genotyped samples from 29 Jewish and 3 non-Jewish populations with previously reported genotypes on Jewish and non-Jewish populations, we investigate variation in 2789 individuals from 114 populations at 486,592 genome-wide autosomal SNPs. Using multidimensional scaling analysis, unsupervised model-based clustering, and population trees, we find that, genetically, most Jewish samples fall into four major clusters that largely represent four culturally defined groupings, namely the Ashkenazi, Mizrahi, North African, and Sephardi subdivisions of the Jewish population. We detect high-resolution population structure, including separation of the Ashkenazi and Sephardi groups and distinctions among populations within the Mizrahi and North African groups. Our results refine knowledge of Jewish population-genetic structure and contribute to a growing understanding of the distinctive genetic ancestry evident in closely related but historically separate Jewish communities.
Collapse
|
19
|
West Asian sources of the Eurasian component in Ethiopians: a reassessment. Sci Rep 2019; 9:18811. [PMID: 31827175 PMCID: PMC6906521 DOI: 10.1038/s41598-019-55344-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/25/2019] [Indexed: 01/17/2023] Open
Abstract
The presence of genomic signatures of Eurasian origin in contemporary Ethiopians has been reported by several authors and estimated to have arrived in the area from 3000 years ago. Several studies reported plausible source populations for such a signature, using haplotype based methods on modern data or single-site methods on modern or ancient data. These studies did not reach a consensus and suggested an Anatolian or Sardinia-like proxy, broadly Levantine or Neolithic Levantine as possible sources. We demonstrate, however, that the deeply divergent, autochthonous African component which accounts for ~50% of most contemporary Ethiopian genomes, affects the overall allele frequency spectrum to an extent that makes it hard to control for it and, at once, to discern between subtly different, yet important, Eurasian sources (such as Anatolian or Levant Neolithic ones). Here we re-assess pattern of allele sharing between the Eurasian component of Ethiopians (here called “NAF” for Non African) and ancient and modern proxies. Our results unveil a genomic legacy that may connect the Eurasian genetic component of contemporary Ethiopians with Sea People and with population movements that affected the Mediterranean area and the Levant after the fall of the Minoan civilization.
Collapse
|
20
|
Ongaro L, Scliar MO, Flores R, Raveane A, Marnetto D, Sarno S, Gnecchi-Ruscone GA, Alarcón-Riquelme ME, Patin E, Wangkumhang P, Hellenthal G, Gonzalez-Santos M, King RJ, Kouvatsi A, Balanovsky O, Balanovska E, Atramentova L, Turdikulova S, Mastana S, Marjanovic D, Mulahasanovic L, Leskovac A, Lima-Costa MF, Pereira AC, Barreto ML, Horta BL, Mabunda N, May CA, Moreno-Estrada A, Achilli A, Olivieri A, Semino O, Tambets K, Kivisild T, Luiselli D, Torroni A, Capelli C, Tarazona-Santos E, Metspalu M, Pagani L, Montinaro F. The Genomic Impact of European Colonization of the Americas. Curr Biol 2019; 29:3974-3986.e4. [PMID: 31735679 DOI: 10.1016/j.cub.2019.09.076] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/06/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022]
Abstract
The human genetic diversity of the Americas has been affected by several events of gene flow that have continued since the colonial era and the Atlantic slave trade. Moreover, multiple waves of migration followed by local admixture occurred in the last two centuries, the impact of which has been largely unexplored. Here, we compiled a genome-wide dataset of ∼12,000 individuals from twelve American countries and ∼6,000 individuals from worldwide populations and applied haplotype-based methods to investigate how historical movements from outside the New World affected (1) the genetic structure, (2) the admixture profile, (3) the demographic history, and (4) sex-biased gene-flow dynamics of the Americas. We revealed a high degree of complexity underlying the genetic contribution of European and African populations in North and South America, from both geographic and temporal perspectives, identifying previously unreported sources related to Italy, the Middle East, and to specific regions of Africa.
Collapse
Affiliation(s)
- Linda Ongaro
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia; Department of Evolutionary Biology, Institute of Molecular and Cell Biology, Riia 23, Tartu 51010, Estonia.
| | - Marilia O Scliar
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, SP 05508-090, Brazil; Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Rodrigo Flores
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia
| | - Alessandro Raveane
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Davide Marnetto
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia
| | - Stefania Sarno
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna 40100, Italy
| | - Guido A Gnecchi-Ruscone
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna 40100, Italy; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Marta E Alarcón-Riquelme
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Pasteur Institute, UMR2000, CNRS, Paris 75015, France
| | - Pongsakorn Wangkumhang
- Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Garrett Hellenthal
- Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | | | - Roy J King
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
| | - Anastasia Kouvatsi
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Oleg Balanovsky
- Vavilov Institute of General Genetics, Ulitsa Gubkina, 3, Moscow 117971, Russia; Research Centre for Medical Genetics, Moskvorech'ye Ulitsa, 1, Moscow 115478, Russia; Biobank of North Eurasia, Kotlyakovskaya Ulitsa, 3 строение 12, Moscow 115201, Russia
| | - Elena Balanovska
- Vavilov Institute of General Genetics, Ulitsa Gubkina, 3, Moscow 117971, Russia; Research Centre for Medical Genetics, Moskvorech'ye Ulitsa, 1, Moscow 115478, Russia; Biobank of North Eurasia, Kotlyakovskaya Ulitsa, 3 строение 12, Moscow 115201, Russia
| | - Lubov Atramentova
- Department of Genetics and Cytology, V.N. Karazin Kharkiv National University, Kharkiv 61022, Ukraine
| | - Shahlo Turdikulova
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Academy of Sciences Republic of Uzbekistan, Tashkent 100047, Uzbekistan
| | - Sarabjit Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Damir Marjanovic
- Department of Genetics and Bioengineering, Faculty of Engineering and Information Technologies, International Burch University, Sarajevo 71000, Bosnia and Herzegovina; Institute for Anthropological Researches, Zagreb, Croatia
| | | | - Andreja Leskovac
- Vinca Institute of Nuclear Sciences, University of Belgrade, M. Petrovica Alasa 12-14, Belgrade 11001, Serbia
| | - Maria F Lima-Costa
- Instituto de Pesquisa Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG 30190-002, Brazil
| | - Alexandre C Pereira
- Instituto do Coração, Universidade de São Paulo, São Paulo, SP 05403-900, Brazil
| | - Mauricio L Barreto
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, BA 0110-040, Brazil; Center of Data and Knowledge Integration for Health (CIDACS), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, BA 41745-715, Brazil
| | - Bernardo L Horta
- Programa de Pós-Graduação em Epidemiologia, Universidade Federal de Pelotas, 464, Pelotas, RS 96001-970, Brazil
| | - Nédio Mabunda
- Instituto Nacional de Saúde, Distrito de Marracuene, Estrada Nacional N 1, Província de Maputo, Maputo 1120, Mozambique
| | - Celia A May
- Department of Genetics & Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Andrés Moreno-Estrada
- National Laboratory of Genomics for Biodiversity (LANGEBIO), CINVESTAV, Irapuato, Guanajuato 36821, Mexico
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Ornella Semino
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Kristiina Tambets
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia
| | - Toomas Kivisild
- Department of Human Genetics, KU Leuven, Herestraat 49 - box 602, Leuven 3000, Belgium
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Ravenna Campus, Ravenna 48100, Italy
| | - Antonio Torroni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | | | - Eduardo Tarazona-Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia; Department of Biology, University of Padua, Via Ugo Bassi 58B, Padua 35100, Italy
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia; Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK.
| |
Collapse
|
21
|
Tamm E, Di Cristofaro J, Mazières S, Pennarun E, Kushniarevich A, Raveane A, Semino O, Chiaroni J, Pereira L, Metspalu M, Montinaro F. Genome-wide analysis of Corsican population reveals a close affinity with Northern and Central Italy. Sci Rep 2019; 9:13581. [PMID: 31537848 PMCID: PMC6753063 DOI: 10.1038/s41598-019-49901-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/31/2019] [Indexed: 01/13/2023] Open
Abstract
Despite being the fourth largest island in the Mediterranean basin, the genetic variation of Corsica has not been explored as exhaustively as Sardinia, which is situated only 11 km South. However, it is likely that the populations of the two islands shared, at least in part, similar demographic histories. Moreover, the relative small size of the Corsica may have caused genetic isolation, which, in turn, might be relevant under medical and translational perspectives. Here we analysed genome wide data of 16 Corsicans, and integrated with newly (33 individuals) and previously generated samples from West Eurasia and North Africa. Allele frequency, haplotype-based, and ancient genome analyses suggest that although Sardinia and Corsica may have witnessed similar isolation and migration events, the latter is genetically closer to populations from continental Europe, such as Northern and Central Italians.
Collapse
Affiliation(s)
- Erika Tamm
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| | - Julie Di Cristofaro
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France.,Etablissement Français du Sang PACA Corse, Biologie des Groupes Sanguins, Marseille, France
| | | | - Erwan Pennarun
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Alena Kushniarevich
- Institute of Genomics, University of Tartu, Tartu, Estonia.,Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Belarus
| | - Alessandro Raveane
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani" Università di Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani" Università di Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Jacques Chiaroni
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France.,Etablissement Français du Sang PACA Corse, Biologie des Groupes Sanguins, Marseille, France
| | - Luisa Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135, Porto, Portugal
| | - Mait Metspalu
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Francesco Montinaro
- Institute of Genomics, University of Tartu, Tartu, Estonia. .,Department of Zoology, University of Oxford, Oxford, UK.
| |
Collapse
|
22
|
Raveane A, Aneli S, Montinaro F, Athanasiadis G, Barlera S, Birolo G, Boncoraglio G, Di Blasio AM, Di Gaetano C, Pagani L, Parolo S, Paschou P, Piazza A, Stamatoyannopoulos G, Angius A, Brucato N, Cucca F, Hellenthal G, Mulas A, Peyret-Guzzon M, Zoledziewska M, Baali A, Bycroft C, Cherkaoui M, Chiaroni J, Di Cristofaro J, Dina C, Dugoujon JM, Galan P, Giemza J, Kivisild T, Mazieres S, Melhaoui M, Metspalu M, Myers S, Pereira L, Ricaut FX, Brisighelli F, Cardinali I, Grugni V, Lancioni H, Pascali VL, Torroni A, Semino O, Matullo G, Achilli A, Olivieri A, Capelli C. Population structure of modern-day Italians reveals patterns of ancient and archaic ancestries in Southern Europe. SCIENCE ADVANCES 2019; 5:eaaw3492. [PMID: 31517044 PMCID: PMC6726452 DOI: 10.1126/sciadv.aaw3492] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/10/2019] [Accepted: 08/06/2019] [Indexed: 05/10/2023]
Abstract
European populations display low genetic differentiation as the result of long-term blending of their ancient founding ancestries. However, it is unclear how the combination of ancient ancestries related to early foragers, Neolithic farmers, and Bronze Age nomadic pastoralists can explain the distribution of genetic variation across Europe. Populations in natural crossroads like the Italian peninsula are expected to recapitulate the continental diversity, but have been systematically understudied. Here, we characterize the ancestry profiles of Italian populations using a genome-wide dataset representative of modern and ancient samples from across Italy, Europe, and the rest of the world. Italian genomes capture several ancient signatures, including a non-steppe contribution derived ultimately from the Caucasus. Differences in ancestry composition, as the result of migration and admixture, have generated in Italy the largest degree of population structure detected so far in the continent, as well as shaping the amount of Neanderthal DNA in modern-day populations.
Collapse
Affiliation(s)
- A. Raveane
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
- Department of Zoology, University of Oxford, Oxford, UK
| | - S. Aneli
- Department of Zoology, University of Oxford, Oxford, UK
- Department of Medical Sciences, University of Turin, Turin, Italy
- IIGM (Italian Institute for Genomic Medicine), Turin, Italy
| | - F. Montinaro
- Department of Zoology, University of Oxford, Oxford, UK
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - G. Athanasiadis
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - S. Barlera
- Department of Cardiovascular Research, Istituto di Ricovero e Cura a Carattere Scientifico–Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - G. Birolo
- Department of Medical Sciences, University of Turin, Turin, Italy
- IIGM (Italian Institute for Genomic Medicine), Turin, Italy
| | - G. Boncoraglio
- Department of Cerebrovascular Diseases, IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- PhD Program in Neuroscience, University Milano-Bicocca, Monza, Italy
| | - A. M. Di Blasio
- Istituto Auxologico Italiano, IRCCS, Centro di Ricerche e Tecnologie Biomediche, Milano, Italy
| | - C. Di Gaetano
- Department of Medical Sciences, University of Turin, Turin, Italy
- IIGM (Italian Institute for Genomic Medicine), Turin, Italy
| | - L. Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- APE lab, Department of Biology, University of Padua, Padua, Italy
| | - S. Parolo
- Computational Biology Unit, Institute of Molecular Genetics, National Research Council, Pavia, Italy
| | - P. Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - A. Piazza
- Department of Medical Sciences, University of Turin, Turin, Italy
- Academy of Sciences, Turin, Italy
| | - G. Stamatoyannopoulos
- Department of Medicine and Genome Sciences, University of Washington, Seattle, WA, USA
| | - A. Angius
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - N. Brucato
- Evolutionary Medicine Group, Laboratoire d’Anthropologie Moléculaire et Imagerie de Synthèse, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Toulouse, France
| | - F. Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - G. Hellenthal
- University College London Genetics Institute (UGI), University College London, London, UK
| | - A. Mulas
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Lanusei, Italy
| | - M. Peyret-Guzzon
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - M. Zoledziewska
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - A. Baali
- Faculté des Sciences Semlalia de Marrakech (FSSM), Université Cadi Ayyad, Marrakech, Morocco
| | - C. Bycroft
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - M. Cherkaoui
- Faculté des Sciences Semlalia de Marrakech (FSSM), Université Cadi Ayyad, Marrakech, Morocco
| | - J. Chiaroni
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
- Etablissement Français du Sang PACA Corse, Biologie des Groupes Sanguins, Marseille, France
| | - J. Di Cristofaro
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
- Etablissement Français du Sang PACA Corse, Biologie des Groupes Sanguins, Marseille, France
| | - C. Dina
- l’institut du thorax, INSERM, CNRS, University of Nantes, Nantes, France
| | - J. M. Dugoujon
- Evolutionary Medicine Group, Laboratoire d’Anthropologie Moléculaire et Imagerie de Synthèse, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Toulouse, France
| | - P. Galan
- Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre de Recherche en Epidémiologie et Statistiques, Université Paris 13/Inserm U1153/Inra U1125/ Cnam, COMUE Sorbonne Paris Cité, F-93017 Bobigny, France
| | - J. Giemza
- l’institut du thorax, INSERM, CNRS, University of Nantes, Nantes, France
| | - T. Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Human Genetics, KU Leuven, Herestraat 49, box 604, Leuven 3000, Belgium
| | - S. Mazieres
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
| | - M. Melhaoui
- Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - M. Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - S. Myers
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - L. Pereira
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP–Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | - F. X. Ricaut
- Evolutionary Medicine Group, Laboratoire d’Anthropologie Moléculaire et Imagerie de Synthèse, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Toulouse, France
| | - F. Brisighelli
- Section of Legal Medicine, Institute of Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - I. Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - V. Grugni
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - H. Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - V. L. Pascali
- Section of Legal Medicine, Institute of Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - A. Torroni
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - O. Semino
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - G. Matullo
- Department of Medical Sciences, University of Turin, Turin, Italy
- IIGM (Italian Institute for Genomic Medicine), Turin, Italy
| | - A. Achilli
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - A. Olivieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - C. Capelli
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Gladstein AL, Hammer MF. Substructured Population Growth in the Ashkenazi Jews Inferred with Approximate Bayesian Computation. Mol Biol Evol 2019; 36:1162-1171. [PMID: 30840069 DOI: 10.1093/molbev/msz047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Ashkenazi Jews (AJ) are a population isolate sharing ancestry with both European and Middle Eastern populations that has likely resided in Central Europe since at least the tenth century. Between the 11th and 16th centuries, the AJ population expanded eastward leading to two culturally distinct communities in Western/Central and Eastern Europe. Our aim was to determine whether the western and eastern groups are genetically distinct, and if so, what demographic processes contributed to population differentiation. We used Approximate Bayesian Computation to choose among models of AJ history and to infer demographic parameter values, including divergence times, effective population sizes, and levels of gene flow. For the ABC analysis, we used allele frequency spectrum and identical by descent-based statistics to capture information on a wide timescale. We also mitigated the effects of ascertainment bias when performing ABC on SNP array data by jointly modeling and inferring SNP discovery. We found that the most likely model was population differentiation between Eastern and Western AJ ∼400 years ago. The differentiation between the Eastern and Western AJ could be attributed to more extreme population growth in the Eastern AJ (0.250 per generation) than the Western AJ (0.069 per generation).
Collapse
Affiliation(s)
- Ariella L Gladstein
- Department of Ecology, Evolution and Biology, University of Arizona, Tucson, AZ
| | - Michael F Hammer
- Arizona Research Laboratory Division of Biotechnology, University of Arizona, Tucson, AZ
| |
Collapse
|
24
|
Järve M, Saag L, Scheib CL, Pathak AK, Montinaro F, Pagani L, Flores R, Guellil M, Saag L, Tambets K, Kushniarevich A, Solnik A, Varul L, Zadnikov S, Petrauskas O, Avramenko M, Magomedov B, Didenko S, Toshev G, Bruyako I, Grechko D, Okatenko V, Gorbenko K, Smyrnov O, Heiko A, Reida R, Sapiehin S, Sirotin S, Tairov A, Beisenov A, Starodubtsev M, Vasilev V, Nechvaloda A, Atabiev B, Litvinov S, Ekomasova N, Dzhaubermezov M, Voroniatov S, Utevska O, Shramko I, Khusnutdinova E, Metspalu M, Savelev N, Kriiska A, Kivisild T, Villems R. Shifts in the Genetic Landscape of the Western Eurasian Steppe Associated with the Beginning and End of the Scythian Dominance. Curr Biol 2019; 29:2430-2441.e10. [PMID: 31303491 DOI: 10.1016/j.cub.2019.06.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/03/2019] [Accepted: 06/07/2019] [Indexed: 01/08/2023]
Abstract
The Early Iron Age nomadic Scythians have been described as a confederation of tribes of different origins, based on ancient DNA evidence [1-3]. It is still unclear how much of the Scythian dominance in the Eurasian Steppe was due to movements of people and how much reflected cultural diffusion and elite dominance. We present new whole-genome sequences of 31 ancient Western and Eastern Steppe individuals, including Scythians as well as samples pre- and postdating them, allowing us to set the Scythians in a temporal context (in the Western, i.e., Ponto-Caspian Steppe). We detect an increase of eastern (Altaian) affinity along with a decrease in eastern hunter-gatherer (EHG) ancestry in the Early Iron Age Ponto-Caspian gene pool at the start of the Scythian dominance. On the other hand, samples of the Chernyakhiv culture postdating the Scythians in Ukraine have a significantly higher proportion of Near Eastern ancestry than other samples of this study. Our results agree with the Gothic source of the Chernyakhiv culture and support the hypothesis that the Scythian dominance did involve a demic component.
Collapse
Affiliation(s)
- Mari Järve
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia.
| | - Lehti Saag
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia; Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Christiana Lyn Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Ajai K Pathak
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia; Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia; Department of Biology, University of Padova, Via U. Bassi 58/B, Padova 35121, Italy
| | - Rodrigo Flores
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Meriam Guellil
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Lauri Saag
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Kristiina Tambets
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Alena Kushniarevich
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Anu Solnik
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Liivi Varul
- School of Humanities, Tallinn University, 29 Narva Street, Tallinn 10120, Estonia
| | - Stanislav Zadnikov
- Museum of Archaeology, V.N. Karazin Kharkiv National University, 4 Svobody Square, Kharkiv 61022, Ukraine
| | - Oleg Petrauskas
- Institute of Archaeology, National Academy of Sciences of Ukraine, 12 Heroyiv Stalinhradu Avenue, Kyiv 04210, Ukraine
| | - Maryana Avramenko
- Institute of Archaeology, National Academy of Sciences of Ukraine, 12 Heroyiv Stalinhradu Avenue, Kyiv 04210, Ukraine
| | - Boris Magomedov
- Institute of Archaeology, National Academy of Sciences of Ukraine, 12 Heroyiv Stalinhradu Avenue, Kyiv 04210, Ukraine
| | - Serghii Didenko
- National Museum of History of Ukraine, 2 Volodymyrs'ka Street, Kyiv 02000, Ukraine
| | - Gennadi Toshev
- Zaporizhzhya National University, 33A Dniprovska Street, Zaporizhzhya 69061, Ukraine
| | - Igor Bruyako
- Odessa Archaeological Museum, 4 Lanzheronivs'ka Street, Odessa 65000, Ukraine
| | - Denys Grechko
- Institute of Archaeology, National Academy of Sciences of Ukraine, 12 Heroyiv Stalinhradu Avenue, Kyiv 04210, Ukraine
| | - Vitalii Okatenko
- SC SRC "Protective Archeological Service of Ukraine," Institute of Archaeology, National Academy of Sciences of Ukraine, 12 Heroyiv Stalinhradu Avenue, Kyiv 04210, Ukraine
| | - Kyrylo Gorbenko
- Mykolaiv V.O. Sukhomlynskyi National University, 24 Nikolska Street, Mykolaiv 54030, Ukraine
| | - Oleksandr Smyrnov
- Mykolaiv V.O. Sukhomlynskyi National University, 24 Nikolska Street, Mykolaiv 54030, Ukraine
| | - Anatolii Heiko
- National Museum of Ukrainian Pottery in Opishne, 102 Partyzanska Street, Opishne 38164, Ukraine
| | - Roman Reida
- Institute of Archaeology, National Academy of Sciences of Ukraine, 12 Heroyiv Stalinhradu Avenue, Kyiv 04210, Ukraine
| | - Serheii Sapiehin
- Anton Makarenko Museum, Poltava Regional Makarenko Scientific Lyceum, 1-2 Makarenko Lane, Kovalivka 38701, Ukraine
| | - Sergey Sirotin
- Institute of Archaeology, Russian Academy of Sciences, 19 Dmitri Ulyanov Street, Moscow 117292, Russia
| | - Aleksandr Tairov
- South Ural State University, 76 Lenin Avenue, Chelyabinsk 454080, Russia
| | - Arman Beisenov
- A. Kh. Margulan Institute of Archaeology, 44 Dostyk Avenue, Almaty 480100, Kazakhstan
| | - Maksim Starodubtsev
- Sterlitamak Museum of Local History, 100 Karl Marx Street, Sterlitamak 453124, Russia
| | - Vitali Vasilev
- LoCom Medien Akademie Europäisches Bildungsinstitut, Bachstraße 4, Bonn 53115, Germany
| | - Alexei Nechvaloda
- Institute of History, Language and Literature, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 October Avenue, Ufa 450054, Russia
| | - Biyaslan Atabiev
- Institute for Caucasus Archaeology, 30 Katkhanova Street, Nalchik 361401, Russia
| | - Sergey Litvinov
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 October Avenue, Ufa 450054, Russia
| | - Natalia Ekomasova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 October Avenue, Ufa 450054, Russia; Department of Genetics and Fundamental Medicine, Bashkir State University, 32 Zaki Validi Street, Ufa 450076, Russia
| | - Murat Dzhaubermezov
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 October Avenue, Ufa 450054, Russia; Department of Genetics and Fundamental Medicine, Bashkir State University, 32 Zaki Validi Street, Ufa 450076, Russia
| | - Sergey Voroniatov
- Department of Archaeology of Eastern Europe and Siberia, State Hermitage Museum, 34 Dvortsovaya Embankment, St. Petersburg 190000, Russia
| | - Olga Utevska
- Department of Genetics and Cytology, V.N. Karazin Kharkiv National University, 4 Svobody Square, Kharkiv 61022, Ukraine
| | - Irina Shramko
- Museum of Archaeology, V.N. Karazin Kharkiv National University, 4 Svobody Square, Kharkiv 61022, Ukraine
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 October Avenue, Ufa 450054, Russia; Department of Genetics and Fundamental Medicine, Bashkir State University, 32 Zaki Validi Street, Ufa 450076, Russia
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Nikita Savelev
- Institute of History, Language and Literature, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 October Avenue, Ufa 450054, Russia
| | - Aivar Kriiska
- Department of Archaeology, Institute of History and Archaeology, University of Tartu, 2 Jakobi Street, Tartu 51014, Estonia
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia; Department of Human Genetics, KU Leuven, O&N IV Herestraat 49, Leuven 3000, Belgium
| | - Richard Villems
- Estonian Biocentre, Institute of Genomics, University of Tartu, 23b Riia Street, Tartu 51010, Estonia; Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| |
Collapse
|
25
|
Yardumian A, Schurr TG. The Geography of Jewish Ethnogenesis. JOURNAL OF ANTHROPOLOGICAL RESEARCH 2019. [DOI: 10.1086/702709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Saag L, Laneman M, Varul L, Malve M, Valk H, Razzak MA, Shirobokov IG, Khartanovich VI, Mikhaylova ER, Kushniarevich A, Scheib CL, Solnik A, Reisberg T, Parik J, Saag L, Metspalu E, Rootsi S, Montinaro F, Remm M, Mägi R, D'Atanasio E, Crema ER, Díez-Del-Molino D, Thomas MG, Kriiska A, Kivisild T, Villems R, Lang V, Metspalu M, Tambets K. The Arrival of Siberian Ancestry Connecting the Eastern Baltic to Uralic Speakers further East. Curr Biol 2019; 29:1701-1711.e16. [PMID: 31080083 PMCID: PMC6544527 DOI: 10.1016/j.cub.2019.04.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/18/2019] [Accepted: 04/09/2019] [Indexed: 01/08/2023]
Abstract
In this study, we compare the genetic ancestry of individuals from two as yet genetically unstudied cultural traditions in Estonia in the context of available modern and ancient datasets: 15 from the Late Bronze Age stone-cist graves (1200-400 BC) (EstBA) and 6 from the Pre-Roman Iron Age tarand cemeteries (800/500 BC-50 AD) (EstIA). We also included 5 Pre-Roman to Roman Iron Age Ingrian (500 BC-450 AD) (IngIA) and 7 Middle Age Estonian (1200-1600 AD) (EstMA) individuals to build a dataset for studying the demographic history of the northern parts of the Eastern Baltic from the earliest layer of Mesolithic to modern times. Our findings are consistent with EstBA receiving gene flow from regions with strong Western hunter-gatherer (WHG) affinities and EstIA from populations related to modern Siberians. The latter inference is in accordance with Y chromosome (chrY) distributions in present day populations of the Eastern Baltic, as well as patterns of autosomal variation in the majority of the westernmost Uralic speakers [1-5]. This ancestry reached the coasts of the Baltic Sea no later than the mid-first millennium BC; i.e., in the same time window as the diversification of west Uralic (Finnic) languages [6]. Furthermore, phenotypic traits often associated with modern Northern Europeans, like light eyes, hair, and skin, as well as lactose tolerance, can be traced back to the Bronze Age in the Eastern Baltic. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Lehti Saag
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia; Department of Evolutionary Biology, Institute of Cell and Molecular Biology, University of Tartu, Tartu 51010, Estonia.
| | - Margot Laneman
- Department of Archaeology, Institute of History and Archaeology, University of Tartu, Tartu 51014, Estonia
| | - Liivi Varul
- School of Humanities, Tallinn University, Tallinn 10120, Estonia
| | - Martin Malve
- Department of Archaeology, Institute of History and Archaeology, University of Tartu, Tartu 51014, Estonia
| | - Heiki Valk
- Department of Archaeology, Institute of History and Archaeology, University of Tartu, Tartu 51014, Estonia
| | - Maria A Razzak
- Department of Slavic and Finnic Archaeology, Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg 191186, Russia
| | - Ivan G Shirobokov
- Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Valeri I Khartanovich
- Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, St. Petersburg 199034, Russia
| | | | - Alena Kushniarevich
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Christiana Lyn Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Anu Solnik
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Tuuli Reisberg
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Jüri Parik
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia; Department of Evolutionary Biology, Institute of Cell and Molecular Biology, University of Tartu, Tartu 51010, Estonia
| | - Lauri Saag
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Ene Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Siiri Rootsi
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Maido Remm
- Department of Bioinformatics, Institute of Cell and Molecular Biology, University of Tartu, Tartu 51010, Estonia
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | | | | | - David Díez-Del-Molino
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm 104 05, Sweden; Department of Archaeology and Classical Studies, Stockholm University, Stockholm 106 91, Sweden
| | - Mark G Thomas
- Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK; UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Aivar Kriiska
- Department of Archaeology, Institute of History and Archaeology, University of Tartu, Tartu 51014, Estonia
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia; Department of Evolutionary Biology, Institute of Cell and Molecular Biology, University of Tartu, Tartu 51010, Estonia; Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Richard Villems
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia; Department of Evolutionary Biology, Institute of Cell and Molecular Biology, University of Tartu, Tartu 51010, Estonia
| | - Valter Lang
- Department of Archaeology, Institute of History and Archaeology, University of Tartu, Tartu 51014, Estonia
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Kristiina Tambets
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia.
| |
Collapse
|
27
|
Pathak AK, Kadian A, Kushniarevich A, Montinaro F, Mondal M, Ongaro L, Singh M, Kumar P, Rai N, Parik J, Metspalu E, Rootsi S, Pagani L, Kivisild T, Metspalu M, Chaubey G, Villems R. The Genetic Ancestry of Modern Indus Valley Populations from Northwest India. Am J Hum Genet 2018; 103:918-929. [PMID: 30526867 DOI: 10.1016/j.ajhg.2018.10.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/25/2018] [Indexed: 11/26/2022] Open
Abstract
The Indus Valley has been the backdrop for several historic and prehistoric population movements between South Asia and West Eurasia. However, the genetic structure of present-day populations from Northwest India is poorly characterized. Here we report new genome-wide genotype data for 45 modern individuals from four Northwest Indian populations, including the Ror, whose long-term occupation of the region can be traced back to the early Vedic scriptures. Our results suggest that although the genetic architecture of most Northwest Indian populations fits well on the broader North-South Indian genetic cline, culturally distinct groups such as the Ror stand out by being genetically more akin to populations living west of India; such populations include prehistorical and early historical ancient individuals from the Swat Valley near the Indus Valley. We argue that this affinity is more likely a result of genetic continuity since the Bronze Age migrations from the Steppe Belt than a result of recent admixture. The observed patterns of genetic relationships both with modern and ancient West Eurasians suggest that the Ror can be used as a proxy for a population descended from the Ancestral North Indian (ANI) population. Collectively, our results show that the Indus Valley populations are characterized by considerable genetic heterogeneity that has persisted over thousands of years.
Collapse
|
28
|
Granot-Hershkovitz E, Karasik D, Friedlander Y, Rodriguez-Murillo L, Dorajoo R, Liu J, Sewda A, Peter I, Carmi S, Hochner H. A study of Kibbutzim in Israel reveals risk factors for cardiometabolic traits and subtle population structure. Eur J Hum Genet 2018; 26:1848-1858. [PMID: 30108283 PMCID: PMC6244281 DOI: 10.1038/s41431-018-0230-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/24/2018] [Accepted: 07/17/2018] [Indexed: 11/09/2022] Open
Abstract
Genetic studies in isolated populations often increase power for identifying loci associated with complex diseases and traits. We present here the Kibbutzim Family Study (KFS), aimed at investigating the genetic basis of cardiometabolic traits in extended Israeli families characterized by long-term social stability and a homogeneous environment. Extensive information on cardiometabolic traits, as well as genome-wide genotypes, were collected on 901 individuals. We observed that most KFS participants were of Ashkenazi Jewish (AJ) genetic origin, confirmed a recent severe bottleneck in the AJ recent history, and detected a subtle within-AJ population structure. Focusing on genetic variants relatively common in the KFS but very rare in Europeans, we observed that AJ-enriched variants appear in cancer-related pathways more than expected by chance. We conducted an association study of the AJ-enriched variants against 16 cardiometabolic traits, and found seven loci (24 variants) to be significantly associated. The strongest association, which we also replicated in an independent study, was between a variant upstream of MSRA (frequency ≈1% in the KFS and nearly absent in Europeans) and weight (P = 3.6∙10-8). In conclusion, the KFS is a valuable resource for the study of the population genetics of Israel as well as the genetics of cardiometabolic traits.
Collapse
Affiliation(s)
| | - David Karasik
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Yechiel Friedlander
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Laura Rodriguez-Murillo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anshuman Sewda
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shai Carmi
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Hagit Hochner
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
29
|
Karafet TM, Osipova LP, Savina OV, Hallmark B, Hammer MF. Siberian genetic diversity reveals complex origins of the Samoyedic-speaking populations. Am J Hum Biol 2018; 30:e23194. [PMID: 30408262 DOI: 10.1002/ajhb.23194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/26/2018] [Accepted: 09/23/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES We examined autosomal genome-wide SNPs and Y-chromosome data from 15 Siberian and 12 reference populations to study the affinities of Siberian populations, and to address hypotheses about the origin of the Samoyed peoples. METHODS Samples were genotyped for 567 096 autosomal SNPs and 147 Y-chromosome polymorphic sites. For several analyses, we used 281 093 SNPs from the intersection of our data with publicly available ancient Siberian samples. To examine genetic relatedness among populations, we applied PCA, FST , TreeMix, and ADMIXTURE analyses. To explore the potential effect of demography and evolutionary processes, the distribution of ROH and IBD sharing within population were studied. RESULTS Analyses of autosomal and Y-chromosome data reveal high differentiation of the Siberian groups. The Siberian populations have a large proportion of their genome in ROH and IBD segments. Several populations (ie, Nganasans, Evenks, Yukagirs, and Koryaks) do not appear to have experienced admixture with other Siberian populations (ie, producing only positive f3), while for the other tested populations the composition of mixing sources always included Nganasans or Evenks. The Nganasans from the Taymyr Peninsula demonstrate the greatest level of shared shorter ROH and IBD with nearly all other Siberian populations. CONCLUSIONS Autosomal SNP and Y-chromosome data demonstrate that Samoyedic populations differ significantly in their genetic composition. Genetic relationship is observed only between Forest and Tundra Nentsi. Selkups are affiliated with the Kets from the Yenisey River, while the Nganasans are separated from their linguistic neighbors, showing closer affinities with the Evenks and Yukagirs.
Collapse
Affiliation(s)
- Tatiana M Karafet
- ARL Division of Biotechnology, University of Arizona, Tucson, Arizona
| | - Ludmila P Osipova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Olga V Savina
- ARL Division of Biotechnology, University of Arizona, Tucson, Arizona
| | - Brian Hallmark
- Interdisciplinary Program in Statistics, University of Arizona, Tucson, Arizona
| | - Michael F Hammer
- ARL Division of Biotechnology, University of Arizona, Tucson, Arizona.,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona
| |
Collapse
|
30
|
Martin AR, Karczewski KJ, Kerminen S, Kurki MI, Sarin AP, Artomov M, Eriksson JG, Esko T, Genovese G, Havulinna AS, Kaprio J, Konradi A, Korányi L, Kostareva A, Männikkö M, Metspalu A, Perola M, Prasad RB, Raitakari O, Rotar O, Salomaa V, Groop L, Palotie A, Neale BM, Ripatti S, Pirinen M, Daly MJ. Haplotype Sharing Provides Insights into Fine-Scale Population History and Disease in Finland. Am J Hum Genet 2018; 102:760-775. [PMID: 29706349 DOI: 10.1016/j.ajhg.2018.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/28/2018] [Indexed: 01/23/2023] Open
Abstract
Finland provides unique opportunities to investigate population and medical genomics because of its adoption of unified national electronic health records, detailed historical and birth records, and serial population bottlenecks. We assembled a comprehensive view of recent population history (≤100 generations), the timespan during which most rare-disease-causing alleles arose, by comparing pairwise haplotype sharing from 43,254 Finns to that of 16,060 Swedes, Estonians, Russians, and Hungarians from geographically and linguistically adjacent countries with different population histories. We find much more extensive sharing in Finns, with at least one ≥ 5 cM tract on average between pairs of unrelated individuals. By coupling haplotype sharing with fine-scale birth records from more than 25,000 individuals, we find that although haplotype sharing broadly decays with geographical distance, there are pockets of excess haplotype sharing; individuals from northeast Finland typically share several-fold more of their genome in identity-by-descent segments than individuals from southwest regions. We estimate recent effective population-size changes through time across regions of Finland, and we find that there was more continuous gene flow as Finns migrated from southwest to northeast between the early- and late-settlement regions than was dichotomously described previously. Lastly, we show that haplotype sharing is locally enriched by an order of magnitude among pairs of individuals sharing rare alleles and especially among pairs sharing rare disease-causing variants. Our work provides a general framework for using haplotype sharing to reconstruct an integrative view of recent population history and gain insight into the evolutionary origins of rare variants contributing to disease.
Collapse
Affiliation(s)
- Alicia R Martin
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Konrad J Karczewski
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sini Kerminen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland
| | - Mitja I Kurki
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Antti-Pekka Sarin
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland; National Institute for Health and Welfare of Finland, Helsinki 00271, Finland
| | - Mykyta Artomov
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Johan G Eriksson
- National Institute for Health and Welfare of Finland, Helsinki 00271, Finland; Folkhälsan Research Center, Helsinki 00290, Finland; Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki 00014, Finland
| | - Tõnu Esko
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Estonian Genome Center, University of Tartu, Tartu 50090, Estonia
| | - Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Aki S Havulinna
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland; National Institute for Health and Welfare of Finland, Helsinki 00271, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland; Department of Public Health, University of Helsinki, Helsinki 00014, Finland
| | - Alexandra Konradi
- Almazov National Medical Research Centre, Saint Petersburg 197341, Russia; National Research University of Information Technologies, Mechanics, and Optics, Saint Petersburg 197101, Russia
| | - László Korányi
- Heart Center Foundation, Drug Research Centre, Balatonfured H-8230, Hungary
| | - Anna Kostareva
- Almazov National Medical Research Centre, Saint Petersburg 197341, Russia; National Research University of Information Technologies, Mechanics, and Optics, Saint Petersburg 197101, Russia
| | - Minna Männikkö
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu 90014, Finland
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu 50090, Estonia
| | - Markus Perola
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland; Estonian Genome Center, University of Tartu, Tartu 50090, Estonia; Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku University Hospital, Turku 20520, Finland
| | - Rashmi B Prasad
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University CRC, Skåne University Hospital Malmö, SE-205 02, Malmö, Sweden
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku University Hospital, Turku 20520, Finland; Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20520, Finland
| | - Oxana Rotar
- Almazov National Medical Research Centre, Saint Petersburg 197341, Russia
| | - Veikko Salomaa
- National Institute for Health and Welfare of Finland, Helsinki 00271, Finland
| | - Leif Groop
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland; Lund University Diabetes Centre, Department of Clinical Sciences, Lund University CRC, Skåne University Hospital Malmö, SE-205 02, Malmö, Sweden
| | - Aarno Palotie
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland; Department of Public Health, University of Helsinki, Helsinki 00014, Finland
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland; Department of Public Health, University of Helsinki, Helsinki 00014, Finland; Helsinki Institute for Information Technology and Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|
31
|
Triska P, Chekanov N, Stepanov V, Khusnutdinova EK, Kumar GPA, Akhmetova V, Babalyan K, Boulygina E, Kharkov V, Gubina M, Khidiyatova I, Khitrinskaya I, Khrameeva EE, Khusainova R, Konovalova N, Litvinov S, Marusin A, Mazur AM, Puzyrev V, Ivanoshchuk D, Spiridonova M, Teslyuk A, Tsygankova S, Triska M, Trofimova N, Vajda E, Balanovsky O, Baranova A, Skryabin K, Tatarinova TV, Prokhortchouk E. Between Lake Baikal and the Baltic Sea: genomic history of the gateway to Europe. BMC Genet 2017; 18:110. [PMID: 29297395 PMCID: PMC5751809 DOI: 10.1186/s12863-017-0578-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The history of human populations occupying the plains and mountain ridges separating Europe from Asia has been eventful, as these natural obstacles were crossed westward by multiple waves of Turkic and Uralic-speaking migrants as well as eastward by Europeans. Unfortunately, the material records of history of this region are not dense enough to reconstruct details of population history. These considerations stimulate growing interest to obtain a genetic picture of the demographic history of migrations and admixture in Northern Eurasia. RESULTS We genotyped and analyzed 1076 individuals from 30 populations with geographical coverage spanning from Baltic Sea to Baikal Lake. Our dense sampling allowed us to describe in detail the population structure, provide insight into genomic history of numerous European and Asian populations, and significantly increase quantity of genetic data available for modern populations in region of North Eurasia. Our study doubles the amount of genome-wide profiles available for this region. We detected unusually high amount of shared identical-by-descent (IBD) genomic segments between several Siberian populations, such as Khanty and Ket, providing evidence of genetic relatedness across vast geographic distances and between speakers of different language families. Additionally, we observed excessive IBD sharing between Khanty and Bashkir, a group of Turkic speakers from Southern Urals region. While adding some weight to the "Finno-Ugric" origin of Bashkir, our studies highlighted that the Bashkir genepool lacks the main "core", being a multi-layered amalgamation of Turkic, Ugric, Finnish and Indo-European contributions, which points at intricacy of genetic interface between Turkic and Uralic populations. Comparison of the genetic structure of Siberian ethnicities and the geography of the region they inhabit point at existence of the "Great Siberian Vortex" directing genetic exchanges in populations across the Siberian part of Asia. Slavic speakers of Eastern Europe are, in general, very similar in their genetic composition. Ukrainians, Belarusians and Russians have almost identical proportions of Caucasus and Northern European components and have virtually no Asian influence. We capitalized on wide geographic span of our sampling to address intriguing question about the place of origin of Russian Starovers, an enigmatic Eastern Orthodox Old Believers religious group relocated to Siberia in seventeenth century. A comparative reAdmix analysis, complemented by IBD sharing, placed their roots in the region of the Northern European Plain, occupied by North Russians and Finno-Ugric Komi and Karelian people. Russians from Novosibirsk and Russian Starover exhibit ancestral proportions close to that of European Eastern Slavs, however, they also include between five to 10 % of Central Siberian ancestry, not present at this level in their European counterparts. CONCLUSIONS Our project has patched the hole in the genetic map of Eurasia: we demonstrated complexity of genetic structure of Northern Eurasians, existence of East-West and North-South genetic gradients, and assessed different inputs of ancient populations into modern populations.
Collapse
MESH Headings
- Algorithms
- Asia
- DNA
- Datasets as Topic
- Emigration and Immigration/history
- Ethnicity/genetics
- Europe
- Female
- Genetic Variation
- Genetics, Population
- Genotyping Techniques
- History, 15th Century
- History, 16th Century
- History, 17th Century
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- History, Ancient
- History, Medieval
- Humans
- Male
- Russia
Collapse
Affiliation(s)
- Petr Triska
- Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Nikolay Chekanov
- Federal State Institution "Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences", Moscow, Russia
- "Genoanalytica" CJSC, Moscow, Russia
| | - Vadim Stepanov
- Institute of Medical Genetics, Tomsk National Medical Research Center, Russian Academy of Sciences, Siberian Branch, Tomsk, Russia
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics, Russian Academy of Sciences, Ufa Scientific Centre of Russian Academy of Sciences, Ufa, Russia
- Bashkir State University, Ufa, Russia
| | | | - Vita Akhmetova
- Institute of Biochemistry and Genetics, Russian Academy of Sciences, Ufa Scientific Centre of Russian Academy of Sciences, Ufa, Russia
| | - Konstantin Babalyan
- Moscow Institute of Physics and Technology, Department of Molecular and Bio-Physics, Moscow, Russia
| | | | - Vladimir Kharkov
- Institute of Medical Genetics, Tomsk National Medical Research Center, Russian Academy of Sciences, Siberian Branch, Tomsk, Russia
| | - Marina Gubina
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Irina Khidiyatova
- Institute of Biochemistry and Genetics, Russian Academy of Sciences, Ufa Scientific Centre of Russian Academy of Sciences, Ufa, Russia
- Bashkir State University, Ufa, Russia
| | - Irina Khitrinskaya
- Institute of Medical Genetics, Tomsk National Medical Research Center, Russian Academy of Sciences, Siberian Branch, Tomsk, Russia
| | - Ekaterina E Khrameeva
- "Genoanalytica" CJSC, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| | - Rita Khusainova
- Institute of Biochemistry and Genetics, Russian Academy of Sciences, Ufa Scientific Centre of Russian Academy of Sciences, Ufa, Russia
- Bashkir State University, Ufa, Russia
| | | | - Sergey Litvinov
- Institute of Biochemistry and Genetics, Russian Academy of Sciences, Ufa Scientific Centre of Russian Academy of Sciences, Ufa, Russia
| | - Andrey Marusin
- Institute of Medical Genetics, Tomsk National Medical Research Center, Russian Academy of Sciences, Siberian Branch, Tomsk, Russia
| | - Alexandr M Mazur
- Federal State Institution "Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences", Moscow, Russia
| | - Valery Puzyrev
- Institute of Medical Genetics, Tomsk National Medical Research Center, Russian Academy of Sciences, Siberian Branch, Tomsk, Russia
| | - Dinara Ivanoshchuk
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Maria Spiridonova
- Institute of Medical Genetics, Tomsk National Medical Research Center, Russian Academy of Sciences, Siberian Branch, Tomsk, Russia
| | - Anton Teslyuk
- Moscow Institute of Physics and Technology, Department of Molecular and Bio-Physics, Moscow, Russia
| | - Svetlana Tsygankova
- Moscow Institute of Physics and Technology, Department of Molecular and Bio-Physics, Moscow, Russia
| | - Martin Triska
- Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Natalya Trofimova
- Institute of Biochemistry and Genetics, Russian Academy of Sciences, Ufa Scientific Centre of Russian Academy of Sciences, Ufa, Russia
| | - Edward Vajda
- Department of Modern and Classical Languages, Western Washington University, Bellingham, WA, USA
| | - Oleg Balanovsky
- Research Centre for Medical Genetics, Moscow, Russia
- Vavilov Institute of General Genetics, Moscow, Russia
| | - Ancha Baranova
- Research Centre for Medical Genetics, Moscow, Russia
- School of Systems Biology, George Mason University, Fairfax, VA, USA
- Atlas Biomed Group, Moscow, Russia
| | - Konstantin Skryabin
- Federal State Institution "Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences", Moscow, Russia
- Russian Scientific Centre "Kurchatov Institute", Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana V Tatarinova
- Vavilov Institute of General Genetics, Moscow, Russia.
- School of Systems Biology, George Mason University, Fairfax, VA, USA.
- Atlas Biomed Group, Moscow, Russia.
- Department of Biology, University of La Verne, La Verne, CA, USA.
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.
| | - Egor Prokhortchouk
- Federal State Institution "Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences", Moscow, Russia.
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
32
|
Genetic portrait of Jewish populations based on three sets of X-chromosome markers: Indels, Alu insertions and STRs. Forensic Sci Int Genet 2017; 31:e5-e11. [DOI: 10.1016/j.fsigen.2017.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/25/2017] [Accepted: 09/12/2017] [Indexed: 12/19/2022]
|
33
|
Kang JTL, Goldberg A, Edge MD, Behar DM, Rosenberg NA. Consanguinity Rates Predict Long Runs of Homozygosity in Jewish Populations. Hum Hered 2017; 82:87-102. [PMID: 28910803 DOI: 10.1159/000478897] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/14/2017] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Recent studies have highlighted the potential of analyses of genomic sharing to produce insight into the demographic processes affecting human populations. We study runs of homozygosity (ROH) in 18 Jewish populations, examining these groups in relation to 123 non-Jewish populations sampled worldwide. METHODS By sorting ROH into 3 length classes (short, intermediate, and long), we evaluate the impact of demographic processes on genomic patterns in Jewish populations. RESULTS We find that the portion of the genome appearing in long ROH - the length class most directly related to recent consanguinity - closely accords with data gathered from interviews during the 1950s on frequencies of consanguineous unions in various Jewish groups. CONCLUSION The high correlation between 1950s consanguinity levels and coverage by long ROH explains differences across populations in ROH patterns. The dissection of ROH into length classes and the comparison to consanguinity data assist in understanding a number of additional phenomena, including similarities of Jewish populations to Middle Eastern, European, and Central and South Asian non-Jewish populations in short ROH patterns, relative lengths of identity-by-descent tracts in different Jewish groups, and the "population isolate" status of the Ashkenazi Jews.
Collapse
|
34
|
Lazaridis I, Mittnik A, Patterson N, Mallick S, Rohland N, Pfrengle S, Furtwängler A, Peltzer A, Posth C, Vasilakis A, McGeorge PJP, Konsolaki-Yannopoulou E, Korres G, Martlew H, Michalodimitrakis M, Özsait M, Özsait N, Papathanasiou A, Richards M, Roodenberg SA, Tzedakis Y, Arnott R, Fernandes DM, Hughey JR, Lotakis DM, Navas PA, Maniatis Y, Stamatoyannopoulos JA, Stewardson K, Stockhammer P, Pinhasi R, Reich D, Krause J, Stamatoyannopoulos G. Genetic origins of the Minoans and Mycenaeans. Nature 2017; 548:214-218. [PMID: 28783727 PMCID: PMC5565772 DOI: 10.1038/nature23310] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/25/2017] [Indexed: 01/02/2023]
Abstract
The origins of the Bronze Age Minoan and Mycenaean cultures have puzzled archaeologists for more than a century. We assembled genome-wide data from nineteen ancient individuals, including Minoans from Crete, Mycenaeans from mainland Greece, and their eastern neighbours from southwestern Anatolia. We show that Minoans and Mycenaeans were genetically similar, having at least three quarters of their ancestry from the first Neolithic farmers of western Anatolia and the Aegean1,2, and most of the remainder from ancient populations like those of the Caucasus3 and Iran4,5. However, the Mycenaeans differed from Minoans in deriving additional ancestry from an ultimate source related to the hunter-gatherers of eastern Europe and Siberia6–8, introduced via a proximal source related to either the inhabitants of either the Eurasian steppe1,6,9 or Armenia4,9. Modern Greeks resemble the Mycenaeans, but with some additional dilution of the early Neolithic ancestry. Our results support the idea of continuity but not isolation in the history of populations of the Aegean, before and after the time of its earliest civilizations.
Collapse
Affiliation(s)
- Iosif Lazaridis
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Alissa Mittnik
- Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Institute for Archaeological Sciences, University of Tübingen, 72074 Tübingen, Germany
| | - Nick Patterson
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.,Radcliffe Institute, Cambridge, Massachusetts 02138, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Saskia Pfrengle
- Institute for Archaeological Sciences, University of Tübingen, 72074 Tübingen, Germany
| | - Anja Furtwängler
- Institute for Archaeological Sciences, University of Tübingen, 72074 Tübingen, Germany
| | - Alexander Peltzer
- Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Integrative Transcriptomics, Centre for Bioinformatics, University of Tübingen, 72076 Tübingen, Germany
| | - Cosimo Posth
- Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Institute for Archaeological Sciences, University of Tübingen, 72074 Tübingen, Germany
| | - Andonis Vasilakis
- 23rd Ephorate of Prehistoric and Classical Antiquities, 71202 Herakleion, Crete
| | | | | | - George Korres
- Department of Archaeology, University of Athens, 17584 Athens, Greece
| | - Holley Martlew
- The Holley Martlew Archaeological Foundation, The Hellenic Archaeological Foundation, Tivoli House, Tivoli Road, Cheltenham GL50 2TD, UK
| | | | - Mehmet Özsait
- Erenköy, Bayar caddesi, Eser Apt. Number 7, Daire 24, Kadıköy, Istanbul, Turkey
| | - Nesrin Özsait
- Erenköy, Bayar caddesi, Eser Apt. Number 7, Daire 24, Kadıköy, Istanbul, Turkey
| | - Anastasia Papathanasiou
- Ephorate of Paleoantropology and Speleology, Greek Ministry of Culture, 11636 Athens, Greece
| | - Michael Richards
- Department of Archaeology, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | | | - Yannis Tzedakis
- Hellenic Archaeological Service, Samara, 27, Paleo Psychico, 15452 Athens, Greece
| | - Robert Arnott
- Green Templeton College, University of Oxford, Woodstock Road, Oxford OX2 6HG, UK
| | - Daniel M Fernandes
- School of Archaeology and Earth Institute, Belfield, University College Dublin, Dublin 4, Ireland.,CIAS, Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
| | - Jeffery R Hughey
- Division of Mathematics, Science, and Engineering, Hartnell College, 411 Central Avenue, Salinas, California 93901, USA
| | - Dimitra M Lotakis
- Division of Medical Genetics, University of Washington, Seattle, Washington 98195, USA
| | - Patrick A Navas
- Division of Medical Genetics, University of Washington, Seattle, Washington 98195, USA
| | - Yannis Maniatis
- Laboratory of Archaeometry, National Center for Scientific Research 'Demokritos', Aghia Paraskevi 153 10, Attiki, Greece
| | - John A Stamatoyannopoulos
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA.,Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.,Altius Institute for Biomedical Sciences, Seattle, Washington 98121, USA
| | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Philipp Stockhammer
- Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Ludwig-Maximilians-Universität München, Institut für Vor- und Frühgeschichtliche Archäologie und Provinzialrömische Archäologie, 80799 München, Germany
| | - Ron Pinhasi
- School of Archaeology and Earth Institute, Belfield, University College Dublin, Dublin 4, Ireland.,Department of Anthropology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Institute for Archaeological Sciences, University of Tübingen, 72074 Tübingen, Germany
| | - George Stamatoyannopoulos
- Division of Medical Genetics, University of Washington, Seattle, Washington 98195, USA.,Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
35
|
Das R, Wexler P, Pirooznia M, Elhaik E. The Origins of Ashkenaz, Ashkenazic Jews, and Yiddish. Front Genet 2017; 8:87. [PMID: 28680441 PMCID: PMC5478715 DOI: 10.3389/fgene.2017.00087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 06/07/2017] [Indexed: 12/11/2022] Open
Abstract
Recently, the geographical origins of Ashkenazic Jews (AJs) and their native language Yiddish were investigated by applying the Geographic Population Structure (GPS) to a cohort of exclusively Yiddish-speaking and multilingual AJs. GPS localized most AJs along major ancient trade routes in northeastern Turkey adjacent to primeval villages with names that resemble the word "Ashkenaz." These findings were compatible with the hypothesis of an Irano-Turko-Slavic origin for AJs and a Slavic origin for Yiddish and at odds with the Rhineland hypothesis advocating a Levantine origin for AJs and German origins for Yiddish. We discuss how these findings advance three ongoing debates concerning (1) the historical meaning of the term "Ashkenaz;" (2) the genetic structure of AJs and their geographical origins as inferred from multiple studies employing both modern and ancient DNA and original ancient DNA analyses; and (3) the development of Yiddish. We provide additional validation to the non-Levantine origin of AJs using ancient DNA from the Near East and the Levant. Due to the rising popularity of geo-localization tools to address questions of origin, we briefly discuss the advantages and limitations of popular tools with focus on the GPS approach. Our results reinforce the non-Levantine origins of AJs.
Collapse
Affiliation(s)
- Ranajit Das
- Manipal Centre for Natural Sciences, Manipal UniversityManipal, India
| | - Paul Wexler
- Department of Linguistics, Tel Aviv UniversityTel-Aviv, Israel
| | - Mehdi Pirooznia
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins UniversityBaltimore, MD, United States
| | - Eran Elhaik
- Department of Animal and Plant Sciences, University of SheffieldSheffield, United Kingdom
| |
Collapse
|
36
|
Xue J, Lencz T, Darvasi A, Pe’er I, Carmi S. The time and place of European admixture in Ashkenazi Jewish history. PLoS Genet 2017; 13:e1006644. [PMID: 28376121 PMCID: PMC5380316 DOI: 10.1371/journal.pgen.1006644] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/18/2017] [Indexed: 12/21/2022] Open
Abstract
The Ashkenazi Jewish (AJ) population is important in genetics due to its high rate of Mendelian disorders. AJ appeared in Europe in the 10th century, and their ancestry is thought to comprise European (EU) and Middle-Eastern (ME) components. However, both the time and place of admixture are subject to debate. Here, we attempt to characterize the AJ admixture history using a careful application of new and existing methods on a large AJ sample. Our main approach was based on local ancestry inference, in which we first classified each AJ genomic segment as EU or ME, and then compared allele frequencies along the EU segments to those of different EU populations. The contribution of each EU source was also estimated using GLOBETROTTER and haplotype sharing. The time of admixture was inferred based on multiple statistics, including ME segment lengths, the total EU ancestry per chromosome, and the correlation of ancestries along the chromosome. The major source of EU ancestry in AJ was found to be Southern Europe (≈60–80% of EU ancestry), with the rest being likely Eastern European. The inferred admixture time was ≈30 generations ago, but multiple lines of evidence suggest that it represents an average over two or more events, pre- and post-dating the founder event experienced by AJ in late medieval times. The time of the pre-bottleneck admixture event, which was likely Southern European, was estimated to ≈25–50 generations ago. The Ashkenazi Jewish population has resided in Europe for much of its 1000-year existence. However, its ethnic and geographic origins are controversial, due to the scarcity of reliable historical records. Previous genetic studies have found links to Middle-Eastern and European ancestries, but the admixture history has not been studied in detail yet, partly due to technical difficulties in disentangling signals from multiple admixture events. Here, we present an in-depth analysis of the sources of European gene flow and the time of admixture events by using multiple new and existing methods and extensive simulations. Our results suggest a model of at least two events of European admixture. One event slightly pre-dated a late medieval founder event and was likely from a Southern European source. Another event post-dated the founder event and likely occurred in Eastern Europe. These results, as well as the methods introduced, will be highly valuable for geneticists and other researchers interested in Ashkenazi Jewish origins.
Collapse
Affiliation(s)
- James Xue
- Department of Computer Science, Columbia University, New York, New York, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Todd Lencz
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York, United States of America
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of the North Shore–Long Island Jewish Health System, Glen Oaks, New York, United States of America
- Departments of Psychiatry and Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, New York, United States of America
| | - Ariel Darvasi
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Itsik Pe’er
- Department of Computer Science, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
37
|
Balanovska EV, Zhabagin MK, Agdzhoyan AT, Chukhryaeva MI, Markina NV, Balaganskaya OA, Skhalyakho RA, Yusupov YM, Utevska OM, Bogunov YV, Asilguzhin RR, Dolinina DO, Kagazezheva ZA, Damba LD, Zaporozhchenko VV, Romanov AG, Dibirova KD, Kuznetsova MA, Lavryashina MB, Pocheshkhova EA, Balanovsky OP. Population biobanks: Organizational models and prospects of application in gene geography and personalized medicine. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416120024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Abstract
The Druze are an aggregate of communities in the Levant and Near East living almost exclusively in the mountains of Syria, Lebanon and Israel whose ~1000 year old religion formally opposes mixed marriages and conversions. Despite increasing interest in genetics of the population structure of the Druze, their population history remains unknown. We investigated the genetic relationships between Israeli Druze and both modern and ancient populations. We evaluated our findings in light of three hypotheses purporting to explain Druze history that posit Arabian, Persian or mixed Near Eastern-Levantine roots. The biogeographical analysis localised proto-Druze to the mountainous regions of southeastern Turkey, northern Iraq and southeast Syria and their descendants clustered along a trajectory between these two regions. The mixed Near Eastern–Middle Eastern localisation of the Druze, shown using both modern and ancient DNA data, is distinct from that of neighbouring Syrians, Palestinians and most of the Lebanese, who exhibit a high affinity to the Levant. Druze biogeographic affinity, migration patterns, time of emergence and genetic similarity to Near Eastern populations are highly suggestive of Armenian-Turkish ancestries for the proto-Druze.
Collapse
|
39
|
Flegontov P, Kassian A, Thomas MG, Fedchenko V, Changmai P, Starostin G. Pitfalls of the Geographic Population Structure (GPS) Approach Applied to Human Genetic History: A Case Study of Ashkenazi Jews. Genome Biol Evol 2016; 8:2259-65. [PMID: 27389685 PMCID: PMC4987117 DOI: 10.1093/gbe/evw162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In a recent interdisciplinary study, Das et al. have attempted to trace the homeland of Ashkenazi Jews and of their historical language, Yiddish (Das et al. 2016 Localizing Ashkenazic Jews to Primeval Villages in the Ancient Iranian Lands of Ashkenaz. Genome Biol Evol. 8:1132-1149). Das et al. applied the geographic population structure (GPS) method to autosomal genotyping data and inferred geographic coordinates of populations supposedly ancestral to Ashkenazi Jews, placing them in Eastern Turkey. They argued that this unexpected genetic result goes against the widely accepted notion of Ashkenazi origin in the Levant, and speculated that Yiddish was originally a Slavic language strongly influenced by Iranian and Turkic languages, and later remodeled completely under Germanic influence. In our view, there are major conceptual problems with both the genetic and linguistic parts of the work. We argue that GPS is a provenancing tool suited to inferring the geographic region where a modern and recently unadmixed genome is most likely to arise, but is hardly suitable for admixed populations and for tracing ancestry up to 1,000 years before present, as its authors have previously claimed. Moreover, all methods of historical linguistics concur that Yiddish is a Germanic language, with no reliable evidence for Slavic, Iranian, or Turkic substrata.
Collapse
Affiliation(s)
- Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia ,
| | - Alexei Kassian
- Institute of Linguistics, Russian Academy of Sciences, Moscow, Russia Russian Presidential Academy of National Economy and Public Administration (RANEPA), Moscow, Russia ,
| | - Mark G Thomas
- Research Department of Genetics, Evolution and Environment, University College London, United Kingdom
| | | | - Piya Changmai
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| | - George Starostin
- Russian Presidential Academy of National Economy and Public Administration (RANEPA), Moscow, Russia Russian State University for the Humanities, Moscow, Russia
| |
Collapse
|
40
|
Elhaik E. In Search of the jüdische Typus: A Proposed Benchmark to Test the Genetic Basis of Jewishness Challenges Notions of "Jewish Biomarkers". Front Genet 2016; 7:141. [PMID: 27547215 PMCID: PMC4974603 DOI: 10.3389/fgene.2016.00141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/20/2016] [Indexed: 11/13/2022] Open
Abstract
The debate as to whether Jewishness is a biological trait inherent from an "authentic" "Jewish type" (jüdische Typus) ancestor or a system of beliefs has been raging for over two centuries. While the accumulated biological and anthropological evidence support the latter argument, recent genetic findings, bolstered by the direct-to-consumer genetic industry, purport to identify Jews or quantify one's Jewishness from genomic data. To test the merit of claims that Jews and non-Jews are genetically distinguishable, we propose a benchmark where genomic data of Jews and non-Jews are hybridized over two generations and the observed and predicted Jewishness of the terminal offspring according to either the Orthodox religious law (Halacha) or the Israeli Law of Return are compared. Members of academia, the public, and 23andMe were invited to use the benchmark to test claims that Jews are genetically distinct from non-Jews. Here, we report the findings from these trials. We also compare the genomic similarity of ∼300 individuals from nearly thirty Afro-Eurasian Jewish communities to a simulated jüdische Typus population. The results are discussed in light of modern trends in the genetics of Jews and related fields and provide a tentative answer to the ageless question "who is a Jew?"
Collapse
Affiliation(s)
- Eran Elhaik
- Department of Animal and Plant Sciences, University of Sheffield Sheffield, UK
| |
Collapse
|
41
|
Das R, Wexler P, Pirooznia M, Elhaik E. Localizing Ashkenazic Jews to Primeval Villages in the Ancient Iranian Lands of Ashkenaz. Genome Biol Evol 2016; 8:1132-49. [PMID: 26941229 PMCID: PMC4860683 DOI: 10.1093/gbe/evw046] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2016] [Indexed: 12/11/2022] Open
Abstract
The Yiddish language is over 1,000 years old and incorporates German, Slavic, and Hebrew elements. The prevalent view claims Yiddish has a German origin, whereas the opposing view posits a Slavic origin with strong Iranian and weak Turkic substrata. One of the major difficulties in deciding between these hypotheses is the unknown geographical origin of Yiddish speaking Ashkenazic Jews (AJs). An analysis of 393 Ashkenazic, Iranian, and mountain Jews and over 600 non-Jewish genomes demonstrated that Greeks, Romans, Iranians, and Turks exhibit the highest genetic similarity with AJs. The Geographic Population Structure analysis localized most AJs along major primeval trade routes in northeastern Turkey adjacent to primeval villages with names that may be derived from "Ashkenaz." Iranian and mountain Jews were localized along trade routes on the Turkey's eastern border. Loss of maternal haplogroups was evident in non-Yiddish speaking AJs. Our results suggest that AJs originated from a Slavo-Iranian confederation, which the Jews call "Ashkenazic" (i.e., "Scythian"), though these Jews probably spoke Persian and/or Ossete. This is compatible with linguistic evidence suggesting that Yiddish is a Slavic language created by Irano-Turko-Slavic Jewish merchants along the Silk Roads as a cryptic trade language, spoken only by its originators to gain an advantage in trade. Later, in the 9th century, Yiddish underwent relexification by adopting a new vocabulary that consists of a minority of German and Hebrew and a majority of newly coined Germanoid and Hebroid elements that replaced most of the original Eastern Slavic and Sorbian vocabularies, while keeping the original grammars intact.
Collapse
Affiliation(s)
- Ranajit Das
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK Manipal Centre for Natural Sciences (MCNS), Manipal University, Manipal, Karnataka, India
| | - Paul Wexler
- Department of Linguistics, Tel Aviv University, Tel-Aviv, Israel
| | - Mehdi Pirooznia
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University
| | - Eran Elhaik
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
42
|
Flegontov P, Changmai P, Zidkova A, Logacheva MD, Altınışık NE, Flegontova O, Gelfand MS, Gerasimov ES, Khrameeva EE, Konovalova OP, Neretina T, Nikolsky YV, Starostin G, Stepanova VV, Travinsky IV, Tříska M, Tříska P, Tatarinova TV. Genomic study of the Ket: a Paleo-Eskimo-related ethnic group with significant ancient North Eurasian ancestry. Sci Rep 2016; 6:20768. [PMID: 26865217 PMCID: PMC4750364 DOI: 10.1038/srep20768] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/07/2016] [Indexed: 01/11/2023] Open
Abstract
The Kets, an ethnic group in the Yenisei River basin, Russia, are considered the last nomadic hunter-gatherers of Siberia, and Ket language has no transparent affiliation with any language family. We investigated connections between the Kets and Siberian and North American populations, with emphasis on the Mal'ta and Paleo-Eskimo ancient genomes, using original data from 46 unrelated samples of Kets and 42 samples of their neighboring ethnic groups (Uralic-speaking Nganasans, Enets, and Selkups). We genotyped over 130,000 autosomal SNPs, identified mitochondrial and Y-chromosomal haplogroups, and performed high-coverage genome sequencing of two Ket individuals. We established that Nganasans, Kets, Selkups, and Yukaghirs form a cluster of populations most closely related to Paleo-Eskimos in Siberia (not considering indigenous populations of Chukotka and Kamchatka). Kets are closely related to modern Selkups and to some Bronze and Iron Age populations of the Altai region, with all these groups sharing a high degree of Mal'ta ancestry. Implications of these findings for the linguistic hypothesis uniting Ket and Na-Dene languages into a language macrofamily are discussed.
Collapse
Affiliation(s)
- Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budĕjovice, Czech Republic
| | - Piya Changmai
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Anastassiya Zidkova
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Maria D. Logacheva
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - N. Ezgi Altınışık
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Olga Flegontova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budĕjovice, Czech Republic
| | - Mikhail S. Gelfand
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Evgeny S. Gerasimov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina E. Khrameeva
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Olga P. Konovalova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Neretina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri V. Nikolsky
- Biomedical Cluster, Skolkovo Foundation, Skolkovo, Russia
- George Mason University, Fairfax, VA, USA
| | - George Starostin
- Russian State University for the Humanities, Moscow, Russia
- Russian Presidential Academy (RANEPA), Moscow, Russia
| | - Vita V. Stepanova
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | | | - Martin Tříska
- Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Petr Tříska
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas da Universidade do Porto (ICBAS), Porto, Portugal
| | - Tatiana V. Tatarinova
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
43
|
Coevolution of genes and languages and high levels of population structure among the highland populations of Daghestan. J Hum Genet 2015; 61:181-91. [PMID: 26607180 DOI: 10.1038/jhg.2015.132] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/11/2015] [Accepted: 10/08/2015] [Indexed: 01/29/2023]
Abstract
As a result of the combination of great linguistic and cultural diversity, the highland populations of Daghestan present an excellent opportunity to test the hypothesis of language-gene coevolution at a fine geographic scale. However, previous genetic studies generally have been restricted to uniparental markers and have not included many of the key populations of the region. To improve our understanding of the genetic structure of Daghestani populations and to investigate possible correlations between genetic and linguistic variation, we analyzed ~550,000 autosomal single nucleotide polymorphisms, phylogenetically informative Y chromosome markers and mtDNA haplotypes in 21 ethnic Daghestani groups. We found high levels of population structure in Daghestan consistent with the hypothesis of long-term isolation among populations of the highland Caucasus. Highland Daghestani populations exhibit extremely high levels of between-population diversity for all genetic systems tested, leading to some of the highest FST values observed for any region of the world. In addition, we find a significant positive correlation between gene and language diversity, suggesting that these two aspects of human diversity have coevolved as a result of historical patterns of social interaction among highland farmers at the community level. Finally, our data are consistent with the hypothesis that most Daghestanian-speaking groups descend from a common ancestral population (~6000-6500 years ago) that spread to the Caucasus by demic diffusion followed by population fragmentation and low levels of gene flow.
Collapse
|
44
|
Genetic Heritage of the Balto-Slavic Speaking Populations: A Synthesis of Autosomal, Mitochondrial and Y-Chromosomal Data. PLoS One 2015; 10:e0135820. [PMID: 26332464 PMCID: PMC4558026 DOI: 10.1371/journal.pone.0135820] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/27/2015] [Indexed: 11/20/2022] Open
Abstract
The Slavic branch of the Balto-Slavic sub-family of Indo-European languages underwent rapid divergence as a result of the spatial expansion of its speakers from Central-East Europe, in early medieval times. This expansion–mainly to East Europe and the northern Balkans–resulted in the incorporation of genetic components from numerous autochthonous populations into the Slavic gene pools. Here, we characterize genetic variation in all extant ethnic groups speaking Balto-Slavic languages by analyzing mitochondrial DNA (n = 6,876), Y-chromosomes (n = 6,079) and genome-wide SNP profiles (n = 296), within the context of other European populations. We also reassess the phylogeny of Slavic languages within the Balto-Slavic branch of Indo-European. We find that genetic distances among Balto-Slavic populations, based on autosomal and Y-chromosomal loci, show a high correlation (0.9) both with each other and with geography, but a slightly lower correlation (0.7) with mitochondrial DNA and linguistic affiliation. The data suggest that genetic diversity of the present-day Slavs was predominantly shaped in situ, and we detect two different substrata: ‘central-east European’ for West and East Slavs, and ‘south-east European’ for South Slavs. A pattern of distribution of segments identical by descent between groups of East-West and South Slavs suggests shared ancestry or a modest gene flow between those two groups, which might derive from the historic spread of Slavic people.
Collapse
|
45
|
Raghavan M, Steinrücken M, Harris K, Schiffels S, Rasmussen S, DeGiorgio M, Albrechtsen A, Valdiosera C, Ávila-Arcos MC, Malaspinas AS, Eriksson A, Moltke I, Metspalu M, Homburger JR, Wall J, Cornejo OE, Moreno-Mayar JV, Korneliussen TS, Pierre T, Rasmussen M, Campos PF, de Barros Damgaard P, Allentoft ME, Lindo J, Metspalu E, Rodríguez-Varela R, Mansilla J, Henrickson C, Seguin-Orlando A, Malmström H, Stafford T, Shringarpure SS, Moreno-Estrada A, Karmin M, Tambets K, Bergström A, Xue Y, Warmuth V, Friend AD, Singarayer J, Valdes P, Balloux F, Leboreiro I, Vera JL, Rangel-Villalobos H, Pettener D, Luiselli D, Davis LG, Heyer E, Zollikofer CPE, Ponce de León MS, Smith CI, Grimes V, Pike KA, Deal M, Fuller BT, Arriaza B, Standen V, Luz MF, Ricaut F, Guidon N, Osipova L, Voevoda MI, Posukh OL, Balanovsky O, Lavryashina M, Bogunov Y, Khusnutdinova E, Gubina M, Balanovska E, Fedorova S, Litvinov S, Malyarchuk B, Derenko M, Mosher MJ, Archer D, Cybulski J, Petzelt B, Mitchell J, Worl R, Norman PJ, Parham P, Kemp BM, Kivisild T, Tyler-Smith C, Sandhu MS, Crawford M, Villems R, Smith DG, Waters MR, Goebel T, Johnson JR, Malhi RS, Jakobsson M, Meltzer DJ, Manica A, Durbin R, Bustamante CD, Song YS, Nielsen R, Willerslev E. POPULATION GENETICS. Genomic evidence for the Pleistocene and recent population history of Native Americans. Science 2015. [PMID: 26198033 DOI: 10.1126/science.aab3884] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
How and when the Americas were populated remains contentious. Using ancient and modern genome-wide data, we found that the ancestors of all present-day Native Americans, including Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand years ago (ka) and after no more than an 8000-year isolation period in Beringia. After their arrival to the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 ka, one that is now dispersed across North and South America and the other restricted to North America. Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative "Paleoamerican" relict populations, including the historical Mexican Pericúes and South American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model.
Collapse
Affiliation(s)
- Maanasa Raghavan
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Matthias Steinrücken
- Computer Science Division, University of California, Berkeley, CA 94720, USA.,Department of Statistics, University of California, Berkeley, CA 94720, USA.,Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Kelley Harris
- Department of Mathematics, University of California, Berkeley, CA 94720, USA
| | - Stephan Schiffels
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Simon Rasmussen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kemitorvet, Building 208, 2800 Kongens Lyngby, Denmark
| | - Michael DeGiorgio
- Departments of Biology and Statistics, Pennsylvania State University, 502 Wartik Laboratory, University Park, PA 16802, USA
| | - Anders Albrechtsen
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Cristina Valdiosera
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.,Department of Archaeology and History, La Trobe University, Melbourne, Victoria 3086, Australia
| | - María C Ávila-Arcos
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.,Department of Genetics, School of Medicine, Stanford University, 300 Pasteur Dr. Lane Bldg Room L331, Stanford, California 94305, USA
| | - Anna-Sapfo Malaspinas
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Anders Eriksson
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.,Integrative Systems Biology Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ida Moltke
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Mait Metspalu
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia.,Department of Evolutionary Biology, University of Tartu, Tartu 51010, Estonia
| | - Julian R Homburger
- Department of Genetics, School of Medicine, Stanford University, 300 Pasteur Dr. Lane Bldg Room L331, Stanford, California 94305, USA
| | - Jeff Wall
- Institute for Human Genetics, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Omar E Cornejo
- School of Biological Sciences, Washington State University, PO Box 644236, Heald 429, Pullman, Washington 99164, USA
| | - J Víctor Moreno-Mayar
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Thorfinn S Korneliussen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Tracey Pierre
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Morten Rasmussen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.,Department of Genetics, School of Medicine, Stanford University, 300 Pasteur Dr. Lane Bldg Room L331, Stanford, California 94305, USA
| | - Paula F Campos
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.,CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Peter de Barros Damgaard
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Morten E Allentoft
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - John Lindo
- Department of Anthropology, University of Illinois at Urbana-Champaign, 607 S. Mathews Ave, Urbana, IL 61801, USA
| | - Ene Metspalu
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia.,Department of Evolutionary Biology, University of Tartu, Tartu 51010, Estonia
| | - Ricardo Rodríguez-Varela
- Centro Mixto, Universidad Complutense de Madrid-Instituto de Salud Carlos III de Evolución y Comportamiento Humano, Madrid, Spain
| | - Josefina Mansilla
- Instituto Nacional de Antropología e Historia, Moneda 13, Centro, Cuauhtémoc, 06060 Mexico Mexico City, Mexico
| | - Celeste Henrickson
- University of Utah, Department of Anthropology, 270 S 1400 E, Salt Lake City, Utah 84112, USA
| | - Andaine Seguin-Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Helena Malmström
- Department of Evolutionary Biology and Science for Life Laboratory, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Thomas Stafford
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.,AMS 14C Dating Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus, Denmark
| | - Suyash S Shringarpure
- Department of Genetics, School of Medicine, Stanford University, 300 Pasteur Dr. Lane Bldg Room L331, Stanford, California 94305, USA
| | - Andrés Moreno-Estrada
- Department of Genetics, School of Medicine, Stanford University, 300 Pasteur Dr. Lane Bldg Room L331, Stanford, California 94305, USA.,Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), CINVESTAV, Irapuato, Guanajuato 36821, Mexico
| | - Monika Karmin
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia.,Department of Evolutionary Biology, University of Tartu, Tartu 51010, Estonia
| | - Kristiina Tambets
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia
| | - Anders Bergström
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Yali Xue
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Vera Warmuth
- UCL Genetics Institute, Gower Street, London WC1E 6BT, UK.,Evolutionsbiologiskt Centrum, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Andrew D Friend
- Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK
| | - Joy Singarayer
- Centre for Past Climate Change and Department of Meteorology, University of Reading, Earley Gate, PO Box 243, Reading, UK
| | - Paul Valdes
- School of Geographical Sciences, University Road, Clifton, Bristol BS8 1SS, UK
| | | | - Ilán Leboreiro
- Instituto Nacional de Antropología e Historia, Moneda 13, Centro, Cuauhtémoc, 06060 Mexico Mexico City, Mexico
| | - Jose Luis Vera
- Escuela Nacional de AntropologÍa e Historia, Periférico Sur y Zapote s/n. Colonia Isidro Fabela, Tlalpan, Isidro Fabela, 14030 Mexico City, Mexico
| | | | - Davide Pettener
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), Università di Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Donata Luiselli
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), Università di Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Loren G Davis
- Department of Anthropology, Oregon State University, 238 Waldo Hall, Corvallis, OR, 97331 USA
| | - Evelyne Heyer
- Museum National d'Histoire Naturelle, CNRS, Université Paris 7 Diderot, Sorbonne Paris Cité, Sorbonne Universités, Unité Eco-Anthropologie et Ethnobiologie (UMR7206), Paris, France
| | - Christoph P E Zollikofer
- Anthropological Institute and Museum, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Marcia S Ponce de León
- Anthropological Institute and Museum, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Colin I Smith
- Department of Archaeology and History, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Vaughan Grimes
- Department of Archaeology, Memorial University, Queen's College, 210 Prince Philip Drive, St. John's, Newfoundland, A1C 5S7, Canada.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Kelly-Anne Pike
- Department of Archaeology, Memorial University, Queen's College, 210 Prince Philip Drive, St. John's, Newfoundland, A1C 5S7, Canada
| | - Michael Deal
- Department of Archaeology, Memorial University, Queen's College, 210 Prince Philip Drive, St. John's, Newfoundland, A1C 5S7, Canada
| | - Benjamin T Fuller
- Department of Earth System Science, University of California, Irvine, Keck CCAMS Group, B321 Croul Hall, Irvine, California, 92697, USA
| | - Bernardo Arriaza
- Instituto de Alta Investigación, Universidad de Tarapacá, 18 de Septiembre 2222, Carsilla 6-D Arica, Chile
| | - Vivien Standen
- Departamento de Antropologia, Universidad de Tarapacá, 18 de Septiembre 2222. Casilla 6-D Arica, Chile
| | - Maria F Luz
- Fundação Museu do Homem Americano, Centro Cultural Sérgio Motta, Campestre, 64770-000 Sao Raimundo Nonato, Brazil
| | - Francois Ricaut
- Laboratoire d'Anthropologie Moléculaire et Imagérie de Synthèse UMR-5288, CNRS, Université de Toulouse, 31073 Toulouse, France
| | - Niede Guidon
- Fundação Museu do Homem Americano, Centro Cultural Sérgio Motta, Campestre, 64770-000 Sao Raimundo Nonato, Brazil
| | - Ludmila Osipova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia
| | - Mikhail I Voevoda
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia.,Institute of Internal Medicine, Siberian Branch of RAS, 175/1 ul. B. Bogatkova, Novosibirsk 630089, Russia.,Novosibirsk State University, Laboratory of Molecular Epidemiology and Bioinformatics, 630090 Novosibirsk, Russia
| | - Olga L Posukh
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia
| | - Oleg Balanovsky
- Vavilov Institute of General Genetics, Gubkina 3, 119333 Moscow, Russia.,Research Centre for Medical Genetics, Moskvorechie 1, 115478 Moscow, Russia
| | | | - Yuri Bogunov
- Vavilov Institute of General Genetics, Gubkina 3, 119333 Moscow, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Scientific Center of RAS, Prospekt Oktyabrya 71, 450054 Ufa, Russia.,Department of Genetics and Fundamental Medicine, Bashkir State University, Zaki Validi 32, 450076 Ufa, Russia
| | - Marina Gubina
- Fundação Museu do Homem Americano, Centro Cultural Sérgio Motta, Campestre, 64770-000 Sao Raimundo Nonato, Brazil
| | - Elena Balanovska
- Research Centre for Medical Genetics, Moskvorechie 1, 115478 Moscow, Russia
| | - Sardana Fedorova
- Department of Molecular Genetics, Yakut Scientific Centre of Complex Medical Problems, Sergelyahskoe Shosse 4, 677010 Yakutsk, Russia.,Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, 677000 Yakutsk, Russia
| | - Sergey Litvinov
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia.,Institute of Biochemistry and Genetics, Ufa Scientific Center of RAS, Prospekt Oktyabrya 71, 450054 Ufa, Russia
| | - Boris Malyarchuk
- Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya Street 18, Magadan 685000, Russia
| | - Miroslava Derenko
- Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya Street 18, Magadan 685000, Russia
| | - M J Mosher
- Department of Anthropology, Western Washington University, Bellingham Washington 98225, USA
| | - David Archer
- Department of Anthropology, Northwest Community College, 353 Fifth Street, Prince Rupert, British Columbia V8J 3L6, Canada
| | - Jerome Cybulski
- Canadian Museum of History, 100 Rue Laurier, Gatineau, Quebec K1A 0M8, Canada.,University of Western Ontario, London, Ontario N6A 3K7, Canada.,Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Barbara Petzelt
- Metlakatla Treaty Office, PO Box 224, Prince Rupert, BC, Canada V8J 3P6
| | | | - Rosita Worl
- Sealaska Heritage Institute, 105 S. Seward Street, Juneau, Alaska 99801, USA
| | - Paul J Norman
- Department of Structural Biology, Stanford University School of Medicine, D100 Fairchild Science Building, Stanford, California 94305-5126, USA
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, D100 Fairchild Science Building, Stanford, California 94305-5126, USA
| | - Brian M Kemp
- School of Biological Sciences, Washington State University, PO Box 644236, Heald 429, Pullman, Washington 99164, USA.,Department of Anthropology, Washington State University, Pullman Washington 99163, USA
| | - Toomas Kivisild
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia.,Division of Biological Anthropology, University of Cambridge, Henry Wellcome Building, Fitzwilliam Street, CB2 1QH, Cambridge, UK
| | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Manjinder S Sandhu
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK.,Dept of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Michael Crawford
- Laboratory of Biological Anthropology, University of Kansas, 1415 Jayhawk Blvd., 622 Fraser Hall, Lawrence, Kansas 66045, USA
| | - Richard Villems
- Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia.,Department of Evolutionary Biology, University of Tartu, Tartu 51010, Estonia
| | - David Glenn Smith
- Molecular Anthropology Laboratory, 209 Young Hall, Department of Anthropology, University of California, One Shields Avenue, Davis, California 95616, USA
| | - Michael R Waters
- Center for the Study of the First Americans, Texas A&M University, College Station, Texas 77843-4352, USA.,Department of Anthropology, Texas A&M University, College Station, Texas 77843-4352, USA.,Department of Geography, Texas A&M University, College Station, Texas 77843-4352, USA
| | - Ted Goebel
- Center for the Study of the First Americans, Texas A&M University, College Station, Texas 77843-4352, USA
| | - John R Johnson
- Santa Barbara Museum of Natural History, 2559 Puesta del Sol, Santa Barbara, CA 93105, USA
| | - Ripan S Malhi
- Department of Anthropology, University of Illinois at Urbana-Champaign, 607 S. Mathews Ave, Urbana, IL 61801, USA.,Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
| | - Mattias Jakobsson
- Department of Evolutionary Biology and Science for Life Laboratory, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - David J Meltzer
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.,Department of Anthropology, Southern Methodist University, Dallas, Texas 75275, USA
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Richard Durbin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Carlos D Bustamante
- Department of Genetics, School of Medicine, Stanford University, 300 Pasteur Dr. Lane Bldg Room L331, Stanford, California 94305, USA
| | - Yun S Song
- Computer Science Division, University of California, Berkeley, CA 94720, USA.,Department of Statistics, University of California, Berkeley, CA 94720, USA.,Department of Integrative Biology, University of California, 3060 Valley Life Sciences Bldg #3140, Berkeley, CA 94720, USA
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, 3060 Valley Life Sciences Bldg #3140, Berkeley, CA 94720, USA
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| |
Collapse
|
46
|
Yunusbayev B, Metspalu M, Metspalu E, Valeev A, Litvinov S, Valiev R, Akhmetova V, Balanovska E, Balanovsky O, Turdikulova S, Dalimova D, Nymadawa P, Bahmanimehr A, Sahakyan H, Tambets K, Fedorova S, Barashkov N, Khidiyatova I, Mihailov E, Khusainova R, Damba L, Derenko M, Malyarchuk B, Osipova L, Voevoda M, Yepiskoposyan L, Kivisild T, Khusnutdinova E, Villems R. The genetic legacy of the expansion of Turkic-speaking nomads across Eurasia. PLoS Genet 2015; 11:e1005068. [PMID: 25898006 PMCID: PMC4405460 DOI: 10.1371/journal.pgen.1005068] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/11/2015] [Indexed: 12/28/2022] Open
Abstract
The Turkic peoples represent a diverse collection of ethnic groups defined by the Turkic languages. These groups have dispersed across a vast area, including Siberia, Northwest China, Central Asia, East Europe, the Caucasus, Anatolia, the Middle East, and Afghanistan. The origin and early dispersal history of the Turkic peoples is disputed, with candidates for their ancient homeland ranging from the Transcaspian steppe to Manchuria in Northeast Asia. Previous genetic studies have not identified a clear-cut unifying genetic signal for the Turkic peoples, which lends support for language replacement rather than demic diffusion as the model for the Turkic language’s expansion. We addressed the genetic origin of 373 individuals from 22 Turkic-speaking populations, representing their current geographic range, by analyzing genome-wide high-density genotype data. In agreement with the elite dominance model of language expansion most of the Turkic peoples studied genetically resemble their geographic neighbors. However, western Turkic peoples sampled across West Eurasia shared an excess of long chromosomal tracts that are identical by descent (IBD) with populations from present-day South Siberia and Mongolia (SSM), an area where historians center a series of early Turkic and non-Turkic steppe polities. While SSM matching IBD tracts (> 1cM) are also observed in non-Turkic populations, Turkic peoples demonstrate a higher percentage of such tracts (p-values ≤ 0.01) compared to their non-Turkic neighbors. Finally, we used the ALDER method and inferred admixture dates (~9th–17th centuries) that overlap with the Turkic migrations of the 5th–16th centuries. Thus, our results indicate historical admixture among Turkic peoples, and the recent shared ancestry with modern populations in SSM supports one of the hypothesized homelands for their nomadic Turkic and related Mongolic ancestors. Centuries of nomadic migrations have ultimately resulted in the distribution of Turkic languages over a large area ranging from Siberia, across Central Asia to Eastern Europe and the Middle East. Despite the profound cultural impact left by these nomadic peoples, little is known about their prehistoric origins. Moreover, because contemporary Turkic speakers tend to genetically resemble their geographic neighbors, it is not clear whether their nomadic ancestors left an identifiable genetic trace. In this study, we show that Turkic-speaking peoples sampled across the Middle East, Caucasus, East Europe, and Central Asia share varying proportions of Asian ancestry that originate in a single area, southern Siberia and Mongolia. Mongolic- and Turkic-speaking populations from this area bear an unusually high number of long chromosomal tracts that are identical by descent with Turkic peoples from across west Eurasia. Admixture induced linkage disequilibrium decay across chromosomes in these populations indicates that admixture occurred during the 9th–17th centuries, in agreement with the historically recorded Turkic nomadic migrations and later Mongol expansion. Thus, our findings reveal genetic traces of recent large-scale nomadic migrations and map their source to a previously hypothesized area of Mongolia and southern Siberia.
Collapse
Affiliation(s)
- Bayazit Yunusbayev
- Evolutionary Biology group, Estonian Biocentre, Tartu, Estonia
- Institute of Biochemistry and Genetics, Ufa Research Centre, RAS, Ufa, Bashkortostan, Russia
- * E-mail: ,
| | - Mait Metspalu
- Evolutionary Biology group, Estonian Biocentre, Tartu, Estonia
- Department of Evolutionary Biology, University of Tartu, Tartu, Estonia
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Ene Metspalu
- Department of Evolutionary Biology, University of Tartu, Tartu, Estonia
| | - Albert Valeev
- Institute of Biochemistry and Genetics, Ufa Research Centre, RAS, Ufa, Bashkortostan, Russia
| | - Sergei Litvinov
- Evolutionary Biology group, Estonian Biocentre, Tartu, Estonia
- Institute of Biochemistry and Genetics, Ufa Research Centre, RAS, Ufa, Bashkortostan, Russia
| | - Ruslan Valiev
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Bashkortostan, Russia
| | - Vita Akhmetova
- Institute of Biochemistry and Genetics, Ufa Research Centre, RAS, Ufa, Bashkortostan, Russia
| | | | - Oleg Balanovsky
- Research Centre for Medical Genetics, RAMS, Moscow, Russia
- Vavilov Institute for General Genetics, RAS, Moscow, Russia
| | - Shahlo Turdikulova
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Academy of Sciences Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Dilbar Dalimova
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Academy of Sciences Republic of Uzbekistan, Tashkent, Uzbekistan
| | | | - Ardeshir Bahmanimehr
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hovhannes Sahakyan
- Evolutionary Biology group, Estonian Biocentre, Tartu, Estonia
- Laboratory of Ethnogenomics, Institute of Molecular Biology, Academy of Sciences of Armenia, Yerevan, Armenia
| | | | - Sardana Fedorova
- Laboratory of Molecular Genetics, Yakut Research Center of Complex Medical Problems, Yakutsk, Sakha Republic, Russia
- Laboratory of Molecular Biology, North-Eastern Federal University, Yakutsk, Sakha Republic, Russia
| | - Nikolay Barashkov
- Laboratory of Molecular Genetics, Yakut Research Center of Complex Medical Problems, Yakutsk, Sakha Republic, Russia
- Laboratory of Molecular Biology, North-Eastern Federal University, Yakutsk, Sakha Republic, Russia
| | - Irina Khidiyatova
- Institute of Biochemistry and Genetics, Ufa Research Centre, RAS, Ufa, Bashkortostan, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Bashkortostan, Russia
| | - Evelin Mihailov
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Gene Technology Workgroup, Estonian Biocentre, Tartu, Estonia
| | - Rita Khusainova
- Institute of Biochemistry and Genetics, Ufa Research Centre, RAS, Ufa, Bashkortostan, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Bashkortostan, Russia
| | - Larisa Damba
- Institute of Internal Medicine, SB RAMS, Novosibirsk, Russia
| | | | | | - Ludmila Osipova
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
| | - Mikhail Voevoda
- Institute of Internal Medicine, SB RAMS, Novosibirsk, Russia
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
| | - Levon Yepiskoposyan
- Laboratory of Ethnogenomics, Institute of Molecular Biology, Academy of Sciences of Armenia, Yerevan, Armenia
| | - Toomas Kivisild
- Division of Biological Anthropology, University of Cambridge, Cambridge, United Kingdom
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Research Centre, RAS, Ufa, Bashkortostan, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Bashkortostan, Russia
| | - Richard Villems
- Evolutionary Biology group, Estonian Biocentre, Tartu, Estonia
- Department of Evolutionary Biology, University of Tartu, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| |
Collapse
|
47
|
A genetic contribution from the Far East into Ashkenazi Jews via the ancient Silk Road. Sci Rep 2015; 5:8377. [PMID: 25669617 PMCID: PMC4323646 DOI: 10.1038/srep08377] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/14/2015] [Indexed: 11/08/2022] Open
Abstract
Contemporary Jews retain a genetic imprint from their Near Eastern ancestry, but obtained substantial genetic components from their neighboring populations during their history. Whether they received any genetic contribution from the Far East remains unknown, but frequent communication with the Chinese has been observed since the Silk Road period. To address this issue, mitochondrial DNA (mtDNA) variation from 55,595 Eurasians are analyzed. The existence of some eastern Eurasian haplotypes in eastern Ashkenazi Jews supports an East Asian genetic contribution, likely from Chinese. Further evidence indicates that this connection can be attributed to a gene flow event that occurred less than 1.4 kilo-years ago (kya), which falls within the time frame of the Silk Road scenario and fits well with historical records and archaeological discoveries. This observed genetic contribution from Chinese to Ashkenazi Jews demonstrates that the historical exchange between Ashkenazim and the Far East was not confined to the cultural sphere but also extended to an exchange of genes.
Collapse
|
48
|
Abstract
Humans differentiate, classify, and discriminate: social interaction is a basic property of human Darwinian evolution. Presumably inherent differential physical as well as behavioral properties have always been criteria for identifying friend or foe. Yet, biological determinism is a relatively modern term, and scientific racism is, oddly enough, largely a consequence or a product of the Age of Enlightenment and the establishment of the notion of human equality. In recent decades ever-increasing efforts and ingenuity were invested in identifying Biblical Israelite genotypic common denominators by analysing an assortment of phenotypes, like facial patterns, blood types, diseases, DNA-sequences, and more. It becomes overwhelmingly clear that although Jews maintained detectable vertical genetic continuity along generations of socio-religious-cultural relationship, also intensive horizontal genetic relations were maintained both between Jewish communities and with the gentile surrounding. Thus, in spite of considerable consanguinity, there is no Jewish genotype to identify.
Collapse
Affiliation(s)
- Raphael Falk
- Department of Genetics, Program for History and Philosophy of Science, The Hebrew University of Jerusalem Jerusalem, Israel
| |
Collapse
|
49
|
Efron JM. Commentary: Jewish genetic origins in the context of past historical and anthropological inquiries. Hum Biol 2014; 85:901-18. [PMID: 25079124 DOI: 10.3378/027.085.0602] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2013] [Indexed: 11/05/2022]
Abstract
The contemporary study of Jewish genetics has a long prehistory dating to the eighteenth century. Prior to the era of genetics, studies of the physical makeup of Jews were undertaken by comparative anatomists and physical anthropologists. In the nineteenth century the field was referred to as "race science." Believed by many race scientists to be a homogeneous and pure race, Jews occupied a central position in the discourse of race science because they were seen as the control group par excellence to determine the relative primacy of nature or nurture in the development of racial characteristics. In the nineteenth century, claims of Jewish homogeneity prompted research that sought to explain morphological differences among Jews, chief among them the difference between Sephardim and Ashkenazim. I examine some of these original debates here with a view to placing them in their historical and cultural contexts.
Collapse
Affiliation(s)
- John M Efron
- Koret Professor of Jewish History, Department of History, University of California, Berkeley, CA
| |
Collapse
|
50
|
Pemberton TJ, Rosenberg NA. Population-genetic influences on genomic estimates of the inbreeding coefficient: a global perspective. Hum Hered 2014; 77:37-48. [PMID: 25060268 DOI: 10.1159/000362878] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND/AIMS Culturally driven marital practices provide a key instance of an interaction between social and genetic processes in shaping patterns of human genetic variation, producing, for example, increased identity by descent through consanguineous marriage. A commonly used measure to quantify identity by descent in an individual is the inbreeding coefficient, a quantity that reflects not only consanguinity, but also other aspects of kinship in the population to which the individual belongs. Here, in populations worldwide, we examine the relationship between genomic estimates of the inbreeding coefficient and population patterns in genetic variation. METHODS Using genotypes at 645 microsatellites, we compare inbreeding coefficients from 5,043 individuals representing 237 populations worldwide to demographic consanguinity frequency estimates available for 26 populations as well as to other quantities that can illuminate population-genetic influences on inbreeding coefficients. RESULTS We observe higher inbreeding coefficient estimates in populations and geographic regions with known high levels of consanguinity or genetic isolation and in populations with an increased effect of genetic drift and decreased genetic diversity with increasing distance from Africa. For the small number of populations with specific consanguinity estimates, we find a correlation between inbreeding coefficients and consanguinity frequency (r = 0.349, p = 0.040). CONCLUSIONS The results emphasize the importance of both consanguinity and population-genetic factors in influencing variation in inbreeding coefficients, and they provide insight into factors useful for assessing the effect of consanguinity on genomic patterns in different populations.
Collapse
Affiliation(s)
- Trevor J Pemberton
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Man., Canada
| | | |
Collapse
|