1
|
Toomer OT, Redhead AK, Vu TC, Santos F, Malheiros R, Proszkowiec-Weglarz M. The effect of peanut skins as a natural antimicrobial feed additive on ileal and cecal microbiota in broiler chickens inoculated with Salmonella enterica Enteritidis. Poult Sci 2024; 103:104159. [PMID: 39153270 PMCID: PMC11471096 DOI: 10.1016/j.psj.2024.104159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024] Open
Abstract
The consumption of poultry products contaminated with Salmonella species is one of the most common causes of Salmonella infections. In vivo studies demonstrated the potential application of peanut skins (PS) as an antimicrobial poultry feed additive to help mitigate the proliferation of Salmonella in poultry environments. Tons of PS, a waste by-product of the peanut industry, are generated and disposed in U.S. landfills annually. Peanut skins and extracts have been shown to possess antimicrobial and antioxidant properties. Hence, we aimed to determine the effect of PS as a feed additive on the gut microbiota of broilers fed a control or PS supplemented (4% inclusion) diet and inoculated with or without Salmonella enterica Enteritidis (SE). At hatch 160 male broilers were randomly assigned to 4 treatments: 1) CON-control diet without SE, 2) PS-PS diet without SE, 3) CONSE-control diet with SE, 4) PSSE-PS diet with SE. On d 3, birds from CONSE and PSSE treatments were inoculated with 4.2 × 109 CFU/mL SE. At termination (4 wk), 10 birds/treatment were euthanized and ileal and cecal contents were collected for 16S rRNA analysis using standard methodologies. Sequencing data were analyzed using QIIME2. No effect of PS or SE was observed on ileal alpha and beta diversity, while evenness, richness, number of amplicon sequence variants (ASV) and Shannon, as well as beta diversity were significantly (P < 0.05) affected in ceca. Similarly, more differentially abundant taxa between treatment groups were identified in ceca than in ileum. However, more microbiota functional changes, based on the PICRUST2 prediction, were observed in ileum. Overall, relatively minor changes in microbiota were observed during SE infection and PS treatment, suggesting that PS addition may not attenuate the SE proliferation, as shown previously, through modulation of microbiota in gastrointestinal tract. However, while further studies are warranted, these results suggest that PS may potentially serve as a functional feed additive for poultry for improvement of animal health.
Collapse
Affiliation(s)
- Ondulla T Toomer
- Food Science & Market Quality and Handling Research Unit, ARS, USDA, Raleigh, NC 27695, USA.
| | - Adam K Redhead
- Math and Science Department, Andrew College, Cuthbert, GA 39840, USA
| | - Thien C Vu
- Food Science & Market Quality and Handling Research Unit, ARS, USDA, Raleigh, NC 27695, USA
| | - Fernanda Santos
- Food, Bioprocessing and Nutrition Sciences Dept., NC State University, Raleigh, NC 27695, USA
| | - Ramon Malheiros
- Prestage Department of Poultry Science, NC State University, Raleigh, NC 27695, USA
| | | |
Collapse
|
2
|
Volf J, Kaspers B, Schusser B, Crhanova M, Karasova D, Stepanova H, Babak V, Rychlik I. Immunoglobulin secretion influences the composition of chicken caecal microbiota. Sci Rep 2024; 14:25410. [PMID: 39455845 PMCID: PMC11512033 DOI: 10.1038/s41598-024-76856-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The chicken caecum is colonised by hundreds of different bacterial species. Which of these are targeted by immunoglobulins and how immunoglobulin expression shapes chicken caecal microbiota has been addressed in this study. Using cell sorting followed by sequencing of V3/V4 variable region of 16S rRNA, bacterial species with increased or decreased immunoglobulin coating were determined. Next, we determined also caecal microbiota composition in immunoglobulin knockout chickens. We found that immunoglobulin coating was common and major taxa were coated with immunoglobulins. Similarly, more taxa required immunoglobulin production for caecum colonisation compared to those which became abundant in immunoglobulin-deficient chickens. Taxa with low immunoglobulin coating such as Lactobacillus, Blautia, [Eubacterium] hallii, Megamonas, Fusobacterium and Desulfovibrio all encode S-layer proteins which may reduce interactions with immunoglobulins. Although there were taxa which overgrew in Ig-deficient chickens (e.g. Akkermansia) indicating immunoglobulin production acted to exclude them from the chicken caecum, in most of the cases, immunoglobulin production more likely contributed to fixing the desired microbiota in the chicken caecum.
Collapse
Affiliation(s)
- Jiri Volf
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Bernd Kaspers
- Veterinary Faculty, Department for Veterinary Sciences, Ludwig Maximilians University Munich, Planegg, Germany
| | - Benjamin Schusser
- Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
- Center for Infection Prevention (ZIP), Technical University of Munich, Freising, Germany
| | | | - Daniela Karasova
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Hana Stepanova
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Vladimir Babak
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Ivan Rychlik
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic.
| |
Collapse
|
3
|
Gómez-Velázquez HDJ, Peña-Medellín P, Guzmán-Hernández CO, González-Dávalos L, Varela-Echavarría A, Shimada A, Mora O. Isolation, Potential Beneficial Properties, and Assessment of Storage Stability of Direct-Fed Microbial Consortia from Wild-Type Chicken Intestine. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10387-0. [PMID: 39448448 DOI: 10.1007/s12602-024-10387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Direct-fed microorganisms (DFM) are recognized as an alternative to antibiotic-based growth promoters in poultry production due to their health benefits. DFM, however, should undergo rigorous safety testing to ensure they meet the criteria to be "Generally Recognized as Safe." This study assessed eight bacterial consortia (BC) isolated from the ileal and cecal intestinal regions of wild-type chickens, subjecting them to probiotic tests. Subsequently, they were spray- and freeze-dried to evaluate their storage stability for 30 days. BC5-I and BC7-I, isolated from the ileum, emerged as promising DFM, displaying a high content of Lactobacillales using a selective medium and higher susceptibility to Gram-positive and Gram-negative antibiotics. These BC showed a high tolerance to temperature (> 90%), pH > 4 (88-98%), and antagonist effects against Escherichia coli and Salmonella. BC5-I exhibited superior survival in the simulated gastric conditions and satisfactory intestine mucus adhesion. Freeze-drying was the best method to obtain BC5-I and BC7-I powders, with a survival efficiency of 80.3% and 73.2%, respectively, compared to the beginning of storage. BC5-I presented the lowest cell death rate and prolonged half-life through survival storage kinetics. BC5-I only contained Lactobacillus, and Limosilactobacillus reuteri was the predominant species in liquid (78.3%) and freeze-dried (59.8%) forms. BC5-I stands out as a promising Lactobacillus-based DFM that could improve chicken intestinal health and enhance meat and egg production.
Collapse
Affiliation(s)
- Haiku D J Gómez-Velázquez
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán (FESC), Universidad Nacional Autónoma de México (UNAM), 76231, Querétaro, Qro, Mexico
| | - Pamela Peña-Medellín
- Posgrado en Ciencias de La Producción y La Salud Animal, UNAM, Mexico City, Mexico
| | | | - Laura González-Dávalos
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán (FESC), Universidad Nacional Autónoma de México (UNAM), 76231, Querétaro, Qro, Mexico
| | | | - Armando Shimada
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán (FESC), Universidad Nacional Autónoma de México (UNAM), 76231, Querétaro, Qro, Mexico
| | - Ofelia Mora
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán (FESC), Universidad Nacional Autónoma de México (UNAM), 76231, Querétaro, Qro, Mexico.
| |
Collapse
|
4
|
Tang J, Wang Q, Yu H, Dong L, Tang M, Arif A, Zhang G, Zhang T, Xie K, Su S, Zhao Z, Dai G. A Comparison of the Cecal Microbiota between the Infection and Recovery Periods in Chickens with Different Susceptibilities to Eimeria tenella. Animals (Basel) 2024; 14:2709. [PMID: 39335298 PMCID: PMC11428751 DOI: 10.3390/ani14182709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
To investigate the effect of Eimeria tenella (E. tenella) infection on the cecal microbiota, resistant and susceptible families were screened out based on the coccidiosis resistance evaluation indexes after E. tenella infection. Subsequently, a comparative analysis of cecal microorganisms among control, resistant, and susceptible groups as well as between different periods following the E. tenella challenge was conducted using metagenomic sequencing technology. The results showed that the abundance of opportunistic pathogens, such as Pantoea, Sporomusa, and Pasteurella in the susceptible group and Helicobacter and Sutterella in the resistant group, was significantly higher on day 27 post-inoculation (PI) (the recovery period) than on day 5 PI (the infection period). Additionally, the abundance of Alistipes, Butyricicoccus, and Eubacterium in the susceptible group and Coprococcus, Roseburia, Butyricicoccus, and Lactobacillus in the resistant group showed a significant upward trend during the infection period compared with that in the recovery period. On day 5 PI, the abundance of Faecalibacterium and Lactobacillus was decreased in both the resistant and susceptible groups when compared with that in the control group and was greater in the resistant group than in the susceptible group, while Alistipes in the susceptible group had a relatively higher abundance than that in other groups. A total of 49 biomarker taxa were identified using the linear discriminant analysis (LDA) effect size (LEfSe) method. Of these, the relative abundance of Lactobacillus aviarius, Lactobacillus salivarius, Roseburia, and Ruminococcus gauvreauii was increased in the resistant group, while Bacteroides_sp__AGMB03916, Fusobacterium_mortiferum, Alistipes_sp__An31A, and Alistipes_sp__Marseille_P5061 were enriched in the susceptible group. On day 27 PI, LDA scores identified 43 biomarkers, among which the relative abundance of Elusimicrobium_sp__An273 and Desulfovibrio_sp__An276 was increased in the resistant group, while that of Bacteroides_sp__43_108, Chlamydiia, Chlamydiales, and Sutterella_sp__AM11 39 was augmented in the susceptible group. Our results indicated that E. tenella infection affects the structure of the cecal microbiota during both the challenge and recovery periods. These findings will enhance the understanding of the effects of changes in the cecal microbiota on chickens after coccidia infection and provide a reference for further research on the mechanisms underlying how the intestinal microbiota influence the growth and health of chickens.
Collapse
Affiliation(s)
- Jianqiang Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Qi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Hailiang Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Liyue Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Meihui Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Areej Arif
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Shijie Su
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Zhenhua Zhao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
5
|
da Silva JMS, Almeida AMDS, Borsanelli AC, de Athayde FRF, Nascente EDP, Batista JMM, Gouveia ABVS, Stringhini JH, Leandro NSM, Café MB. Intestinal Microbiome Profiles in Broiler Chickens Raised with Different Probiotic Strains. Microorganisms 2024; 12:1639. [PMID: 39203481 PMCID: PMC11357238 DOI: 10.3390/microorganisms12081639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
The composition of the intestinal microbiota can influence the metabolism and overall functioning of avian organisms. Therefore, the objective of this study was to evaluate the effect of three different probiotics and an antibiotic on the microbiomes of 1.400 male Cobb® broiler raised for 42 days. The experiment was conducted with the following treatments: positive control diet (basal diet + antibiotic); negative control diet (basal diet without antibiotic and without probiotic); basal diet + Normal Avian Gut Flora (NAGF); basal diet + multiple colonizing strain probiotics (MCSPs); and basal diet + non-colonizing single strain probiotics (NCSSPs). The antibiotic (enramycin-antibiotic growth promoter) and probiotics were administered orally during all experiment (1 to 42 days), mixed with broiler feed. To determine the composition of the microbiota, five samples of ileal digesta were collected from 42-day-old chickens of each experimental group. The alpha and beta diversity of the ileal microbiota showed differences between the groups. MCSPs presented greater richness and uniformity compared to the positive control, negative control, and NCSSPs treatments, while the negative control exhibited greater homogeneity among samples than NCSSPs. MCSPs also showed a higher abundance of the genus Enterococcus. There were differences between the groups for low-abundance taxa (<0.5%), with NAGF showing higher levels of Delftia, Brevibacterium, and Bulleidia. In contrast, NCSSPs had a higher abundance of Ochrobactrum, Rhodoplanes, and Nitrospira. It was concluded that the treatments analyzed in this study induced modulations in the ileal microbiota of the chickens examined.
Collapse
Affiliation(s)
- Julia Marixara Sousa da Silva
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| | - Ana Maria De Souza Almeida
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| | - Ana Carolina Borsanelli
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| | | | - Eduardo de Paula Nascente
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| | - João Marcos Monteiro Batista
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| | - Alison Batista Vieira Silva Gouveia
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| | - José Henrique Stringhini
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| | - Nadja Susana Mogyca Leandro
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| | - Marcos Barcellos Café
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| |
Collapse
|
6
|
Li F, Chen X, Xu X, Wang L, Yan J, Yu Y, Shan X, Zhang R, Xing H, Zhang T, Pan S. Alterations of intestinal mucosal barrier, cecal microbiota diversity, composition, and metabolites of yellow-feathered broilers under chronic corticosterone-induced stress: a possible mechanism underlying the anti-growth performance and glycolipid metabolism disorder. Microbiol Spectr 2024; 12:e0347323. [PMID: 38497712 PMCID: PMC11064513 DOI: 10.1128/spectrum.03473-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/25/2024] [Indexed: 03/19/2024] Open
Abstract
This study aimed to explore alterations in growth performance, glycolipid metabolism disorders, intestinal mucosal barrier, cecal microbiota community, and metabolites in a chronic corticosterone (CORT)-induced stress (CCIS) broiler model. Results showed that compared with control (CON) broilers, in CCIS broilers: (i) the final body weight (BW), BW gain, and average daily gain were significantly reduced. (ii) The glycolipid metabolism disorder and impairement of intestinal immune barrier and physical barrier function were observed. (iii) Diversity and richness of cecal microbiota were obviously increased. From phylum to genus level, the abundances of Firmicutes and Faecalibacterium were significantly decreased, while the abundances of Proteobacteria, RuminococcaceaeUCG-005, and Escherichia coli (Shigella) were significantly increased. Microbial network analysis and function pathways prediction showed that cecal microbiota was mainly concentrated in translation, metabolism, nucleotide metabolism, and endocrine system. (iv) The main differential metabolites identified include steroids and their derivatives, amino acids, fatty acids, and carbohydrates; among which 37 metabolites were significantly upregulated, while 27 metabolites were significantly downregulated. These differential metabolites were mainly enriched in pathways related to steroid hormone biosynthesis and tyrosine metabolism. (v) Correlation between cecal microbiota and glycolipid metabolism indexes showed that BW and total cholesterol (TC) were positively correlated with Christensenellaceae_R.7_group and Escherichia_Shigella, respectively. Furthermore, the downregulated Faecalibacterium and Christensenellaceae were negatively correlated with the upregulated differentially expressed metabolites. These findings suggested that CCIS altered cecal microbiota composition and metabolites, which led to glycolipid metabolism disorder and impaired the nutritional metabolism and immune homeostasis, providing a theoretical basis for efforts to eliminate the harm of chronic stress to human health and animal production. IMPORTANCE The study aimed to determine the influence of altered intestinal mucosal barrier, cecum flora community, and metabolites on anti-growth performance, glycolipid metabolism disorders of chronic corticosterone (CORT)-induced stress (CCIS) broilers. Compared with control (CON) broilers, in CCIS broilers: (i) anti-growth performance, glycolipid metabolism disorder, and impaired intestinal immune barrier and physical barrier function were observed. (ii) From phylum to genus level, the abundances of Firmicutes and Faecalibacterium were decreased; whereas, the abundances of Proteobacteria, RuminococcaceaeUCG-005, and Escherichia coli (Shigella) were increased. (iii) Differential metabolites in cecum were mainly enriched in steroid hormone biosynthesis and tyrosine metabolism. (iv) Body weight (BW) and total cholesterol (TC) were positively correlated with Christensenellaceae_R.7_group and Escherichia_Shigella, respectively, while downregulated Faecalibacterium and Christensenellaceae were negatively correlated with upregulated metabolites. Our findings suggest that CCIS induces anti-growth performance and glycolipid metabolism disorder by altering cecum flora and metabolites, providing a theoretical basis for efforts to eliminate the effect of chronic stress on human health and animal production.
Collapse
Affiliation(s)
- Fei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyu Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xingyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lijun Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yichen Yu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xuemei Shan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rui Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, Sichuan, China
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tangjie Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Animal Science, Washington State University, Pullman, Washington, USA
- Guangling College, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Tschritter CM, V. C. de Groot P, Branigan M, Dyck M, Sun Z, Lougheed SC. A new multiplexed magnetic capture-Droplet digital PCR tool for monitoring wildlife population health and pathogen surveillance. Ecol Evol 2023; 13:e10655. [PMID: 37915804 PMCID: PMC10616740 DOI: 10.1002/ece3.10655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
Anthropogenic stressors are exacerbating the emergence and spread of pathogens worldwide. In regions like the Arctic, where ecosystems are particularly susceptible, marked changes are predicted in regional diversity, intensity, and patterns of infectious diseases. To understand such rapidly changing host-pathogen dynamics and mitigate the impacts of novel pathogens, we need sensitive disease surveillance tools. We developed and validated a novel multiplexed, magnetic capture, and ddPCR tool for the surveillance of multiple pathogens in polar bears, a sentinel species that is considered susceptible to climate change and other stressors with a pan-Arctic distribution. Through sequence-specific magnetic capture, we concentrated five target template sequences from three zoonotic bacteria (Erysipelothrix rhusiopathiae, Francisella tularensis, and Mycobacterium tuberculosis complex) and two parasitic (Toxoplasma gondii and Trichinella spp.) pathogens from large quantities (<100 g) of host tissue. We then designed and validated two multiplexed probe-based ddPCR assays for the amplification and detection of the low-concentration target DNA. Validations used 48 polar bear tissues (muscle and liver). We detected 14, 1, 3, 4, and 22 tissue positives for E. rhusiopathiae, F. tularensis, M. tuberculosis complex, T. gondii, and Trichinella spp., respectively. These multiplexed assays offer a rapid, specific tool for quantifying and monitoring the changing geographical and host distributions of pathogens relevant to human and animal health.
Collapse
Affiliation(s)
| | | | - Marsha Branigan
- Department of Environment and Natural ResourcesGovernment of the Northwest TerritoriesInuvikNorthwest TerritoriesCanada
| | - Markus Dyck
- Department of EnvironmentGovernment of NunavutIgloolikNunavutCanada
| | - Zhengxin Sun
- Department of BiologyQueen's UniversityKingstonOntarioCanada
| | | |
Collapse
|
8
|
Zhu J, Song Y, Xiao Y, Ma L, Hu C, Yang H, Wang X, Lyu W. Metagenomic reconstructions of caecal microbiome in Landes, Roman and Zhedong White geese. Br Poult Sci 2023; 64:565-576. [PMID: 37493577 DOI: 10.1080/00071668.2023.2239172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023]
Abstract
1. The caecal microbiota in geese play a crucial role in determining the host's health, disease status and behaviour, as evidenced by extensive epidemiological data. The present investigation conducted 10× metagenomic sequencing of caecal content samples obtained from three distinct goose species, namely Landes geese, Roman geese and Zhedong White geese (n = 5), to explore the contribution of the gut microbiome to carbohydrate metabolism.2. In total, 337GB of Illumina data were generated, which identified 1,048,575 complete genes and construction of 331 metagenomic bins, encompassing 78 species from nine phyla. Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria and Bacteria were identified as the dominant phyla while Prevotella, Bacteroides, Streptococcus, and Subdoligranulum were the most abundant genera in the caecum of geese.3. The genes were allocated to 375 pathways using the Kyoto Encyclopedia of Genes and Genome (KEGG) analysis. The most abundant classes in the caecum of geese were confirmed to be glycoside hydrolases (GHs), glycosyl transferases (GTs), as identified through the carbohydrate-active enzyme (CAZyme) database mapping. Subdoligranulum variabile and Mediterraneibacter glycyrrhizinilyticus were discovered to potentially facilitate carbohydrate digestion in geese.4. Notwithstanding, further investigation and validation are required to establish a connection between these species and CAZymes. Based on binning analysis, Mediterraneibacter glycyrrhizinilyticus and Ruminococcus sp. CAG:177 are potential species in LD geese that contribute to the production of fatty liver.
Collapse
Affiliation(s)
- J Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Y Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Y Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - L Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - C Hu
- College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - H Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - X Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - W Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
9
|
Proskina L, Barzdina D, Valdovska A, Pilvere I, Vircava I, Cerina S, Meskis S. Assessment of the inclusion of a feed additive of sodium humate derived from freshwater sapropel in diets for broiler chickens. Vet World 2023; 16:2029-2041. [PMID: 38023265 PMCID: PMC10668554 DOI: 10.14202/vetworld.2023.2029-2041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background and Aim Poultry production is the fastest growing livestock industry in the world, as the rapid growth of and efficient absorption of feed by poultry ensure the production of poultry meat with a relatively low carbon footprint. Seeking new ways to increase livestock productivity as well as poultry product quality, the number of research studies on the use of humic substances of various origins in livestock farming has increased significantly, emphasizing the role of feed additives derived from local resources. The unique capability of humic substances to improve metabolic processes allows the immune protection of the bird body to be strengthened and production efficiency to be increased. This study aimed to identify the effects of sodium humate (NaHum) on the growth performance of broiler chickens and selected blood and ileum microbiota parameters. Materials and Methods Dietary research was conducted 2 times under production conditions in a poultry facility of a commercial company, with 210 1-day-old, unsorted broiler chickens of both sexes (Ross 308). The broiler chickens were fed with standard commercial feed, the rearing period of 35 days, and slaughtered on day 36. Sodium humate additive was added to drinking water for the research groups of broilers in period from 8th to 35th day of life, 25 mL (Group 1, n = 2 × 35) and 50 mL (Group 2, n = 2 × 35) per liter of drinking water. Sodium humate contained an average of 4.48% dry matter, a kilogram of dry matter containing 104.3 g of crude protein, 3.6 g of crude fiber and 0.9 g of crude fat, 14.3 MJ of metabolic energy, and 5.8 MJ of energy for live weight gain, as well as a very high content of crude ash -759.8 g, including 4.2 g Ca, 4.2 g Na, and 4.81 g Fe, the dry matter digestibility of NaHum was 87.0%, and the absorption capacity of dry matter was 113.2%., the pH level was 13.0, i.e., alkaline. At the end of the dietary research, the productivity and economic efficiency of the research groups of broilers were calculated by live weight gain, carcass weight, feed conversation ratio, and blood and intestinal samples of broilers were analyzed to identify the effects of NaHum on the growth performance and health status of broilers. Results Dietary research found that adding 25 mL/L and 50 mL/L of NaHum to drinking water for the broiler chickens increased their live weights at the selling age, average live weight gains by 3.06-3.93%, and carcass weights by 5.07-6.06%, while feed conversion increased in terms of both live weight (1.5 and 1.51) and carcass weight (1.84 and 1.86) compared with the control group. The best economic performance in terms of the economic efficiency index and the cost index (CI) was found in Group 1, which was fed with the NaHum additive at an intake rate of 25 mL/L. The NaHum additive modulated the ileal microbiota and metabolic processes in the broiler body. At the same time, a significant decrease in the levels of total protein, alkaline phosphatase and phosphorus (P) in blood was found in the research groups. Conclusion Considering the positive effects of NaHum derived from freshwater sapropel on the productivity and economic efficiency of broiler chickens, the NaHum feed additive should be further investigated on a larger scale to obtain results that could reasonably be used in practice. This study concluded that a decrease in P levels in the blood was observed when NaHum was added to the drinking water; therefore, it is important to continue the research to draw reasonable conclusions on the effects of NaHum in liquid form on the health performance of farm animals.
Collapse
Affiliation(s)
- Liga Proskina
- Institute of Economics and Finance, Faculty of Economics and Social Development, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - Dace Barzdina
- Institute of Animal Science, Faculty of Agriculture and Food Technology, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - Anda Valdovska
- Institute of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
- Research Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - Irina Pilvere
- Institute of Economics and Finance, Faculty of Economics and Social Development, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - Ilze Vircava
- Institute of Soil and Plant Sciences, Faculty of Agriculture and Food Technology, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - Sallija Cerina
- Department of Plant Breeding and Agroecology, Institute of Agricultural Resources and Economics, Latvia
| | - Sandijs Meskis
- Institute of Soil and Plant Sciences, Faculty of Agriculture and Food Technology, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| |
Collapse
|
10
|
Pechrkong T, Incharoen T, Hwanhlem N, Kaewkong W, Subsoontorn P, Tartrakoon W, Numthuam S, Jiménez G, Charoensook R. Effect of Bacillus toyonensis BCT-7112 T supplementation on growth performance, intestinal morphology, immune-related gene expression, and gut microbiome in Barbary ducks. Poult Sci 2023; 102:102991. [PMID: 37611452 PMCID: PMC10466923 DOI: 10.1016/j.psj.2023.102991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
This study aimed to investigate the effect of Bacillus toyonensis BCT-7112T supplementation on growth performance, intestinal morphology, immune-related gene expression, and the cecal microbiota of meat ducks. A total of 150 one-day-old male Barbary ducks were divided into 3 groups with 5 replicates (n = 10 ducks per replicate) by completely randomized design and offered diets supplemented with the commercial product Toyocerin (containing 1 × 109B. toyonensis BCT-7112T viable spores/g product) at the levels of 0, 500, or 1,000 mg/kg (0, 500, or 1,000 ppm), respectively, for 8 wk. The results showed that although ducks in the 500 ppm B. toyonensis BCT-7112T group displayed numerically better values (e.g., weight gain and feed conversion ratio) than those in the control group, the growth performance of ducks fed diets supplemented with B. toyonensis BCT-7112T did not differ significantly from that of the control group (P > 0.05). There were no significant differences in the intestinal mucosal morphology of ducks across the experimental groups (P > 0.05). However, ducks in the 500 ppm B. toyonensis BCT-7112T group showed a trend of greater values, for example, villus height per crypt depth of duodenum (P = 0.16) and ileum (P = 0.12) compared with those in the control group. The relative expression of immune-related genes, for example, interferon (IFN) and interleukin-6 (IL-6) in the meat duck spleen was significantly lower in both B. toyonensis BCT-7112T groups at 14 d and 35 d than in the control group (P < 0.05). Beta diversity analysis of the cecal microbiota of ducks in either the 500 ppm or the 1,000 ppm B. toyonensis BCT-7112T group showed to have higher diversity than that in the control group, where at the phylum level, Bacteroidetes was the most abundant, followed by Firmicutes, and at the genus level, Bacteroides, Fusobacterium, and Ruminococcaceae were the top 3 most abundant genera. In conclusion, our study demonstrates that 500 ppm supplementation with B. toyonensis BCT-7112T in duck diets can reduce proinflammatory cytokine gene expression, improve immunological function, and increase the variety of microbial communities in the ceca of meat-type ducks.
Collapse
Affiliation(s)
- Thitima Pechrkong
- Division of Animal Science and Feed Technology, Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 65000 Phitsanulok, Thailand
| | - Tossaporn Incharoen
- Division of Animal Science and Feed Technology, Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 65000 Phitsanulok, Thailand
| | - Noraphat Hwanhlem
- Division of Animal Science and Feed Technology, Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 65000 Phitsanulok, Thailand
| | - Worasak Kaewkong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, 65000 Phitsanulok, Thailand
| | - Pakpoom Subsoontorn
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, 65000 Phitsanulok, Thailand
| | - Wandee Tartrakoon
- Division of Animal Science and Feed Technology, Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 65000 Phitsanulok, Thailand
| | - Sonthaya Numthuam
- Division of Animal Science and Feed Technology, Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 65000 Phitsanulok, Thailand
| | | | - Rangsun Charoensook
- Division of Animal Science and Feed Technology, Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 65000 Phitsanulok, Thailand.
| |
Collapse
|
11
|
Campos PM, Schreier LL, Proszkowiec-Weglarz M, Dridi S. Cecal microbiota composition differs under normal and high ambient temperatures in genetically distinct chicken lines. Sci Rep 2023; 13:16037. [PMID: 37749169 PMCID: PMC10519933 DOI: 10.1038/s41598-023-43123-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023] Open
Abstract
Modern broilers, selected for high growth rate, are more susceptible to heat stress (HS) as compared to their ancestral jungle fowl (JF). HS affects epithelia barrier integrity, which is associated with gut microbiota. The aim of this study was to determine the effect of HS on the cecal luminal (CeL) and cecal mucosal (CeM) microbiota in JF and three broiler populations: Athens Canadian Random Bred (ACRB), 1995 Random Bred (L1995), and Modern Random Bred (L2015). Broiler chicks were subjected to thermoneutral TN (24 °C) or chronic cyclic HS (8 h/day, 36 °C) condition from day 29 until day 56. HS affected richness in CeL microbiota in a line-dependent manner, decreasing richness in slow-growing JF and ACRB lines, while increasing richness in faster-growing L1995 and L2015. Microbiota were distinct between HS and TN conditions in CeL microbiota of all four lines and in CeM microbiota of L2015. Certain bacterial genera were also affected in a line-dependent manner, with HS tending to increase relative abundance in CeL microbiota of slow-growing lines, while decreases were common in fast-growing lines. Predictive functional analysis suggested a greater impact of HS on metabolic pathways in L2015 compared to other lines.
Collapse
Affiliation(s)
- Philip M Campos
- USDA-ARS Research Participation Program, Oak Ridge Institute for Science and Education (ORISE), 1299 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
- USDA-ARS, NEA, Beltsville Agricultural Research Center, Animal Biosciences and Biotechnology Laboratory, 10300 Baltimore Avenue, Bldg. 307, BARC-East, Beltsville, MD, 20705, USA
- USDA-ARS, NEA Bioinformatics, Statistics Group, 10300 Baltimore Ave, Bldg. 003, Rooms 229E, 330, 331; BARC-West, Beltsville, MD, 20705, USA
| | - Lori L Schreier
- USDA-ARS, NEA, Beltsville Agricultural Research Center, Animal Biosciences and Biotechnology Laboratory, 10300 Baltimore Avenue, Bldg. 307, Room 304, BARC-East, Beltsville, MD, 20705, USA
| | - Monika Proszkowiec-Weglarz
- USDA-ARS, NEA, Beltsville Agricultural Research Center, Animal Biosciences and Biotechnology Laboratory, 10300 Baltimore Avenue, Bldg. 307, Room 335, BARC-East, Beltsville, MD, 20705, USA.
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| |
Collapse
|
12
|
Ncho CM, Goel A, Gupta V, Jeong CM, Jung JY, Ha SY, Yang JK, Choi YH. Dietary supplementation of solubles from shredded, steam-exploded pine particles modulates cecal microbiome composition in broiler chickens. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:971-988. [PMID: 37969336 PMCID: PMC10640930 DOI: 10.5187/jast.2023.e15] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/05/2023] [Accepted: 02/01/2023] [Indexed: 11/17/2023]
Abstract
This study evaluated the effects of supplementing solubles from shredded, steam-exploded pine particles (SSPP) on growth performances, plasma biochemicals, and microbial composition in broilers. The birds were reared for 28 days and fed basal diets with or without the inclusion of SSPP from 8 days old. There were a total of three dietary treatments supplemented with 0% (0% SSPP), 0.1% (0.1% SSPP) and 0.4% (0.4% SSPP) SSPP in basal diets. Supplementation of SSPP did not significantly affect growth or plasma biochemicals, but there was a clear indication of diet-induced microbial shifts. Beta-diversity analysis revealed SSPP supplementation-related clustering (ANOSIM: r = 0.31, p < 0.01), with an overall lower (PERMDISP: p < 0.05) individual dispersion in comparison to the control group. In addition, the proportions of the Bacteroides were increased, and the relative abundances of the families Vallitaleaceae, Defluviitaleaceae, Clostridiaceae, and the genera Butyricicoccus and Anaerofilum (p < 0.05) were significantly higher in the 0.4% SSPP group than in the control group. Furthermore, the linear discriminant analysis effect size (LEfSe) also showed that beneficial bacteria such as Ruminococcus albus and Butyricicoccus pullicaecorum were identified as microbial biomarkers of dietary SSPP inclusion (p < 0.05; | LDA effect size | > 2.0). Finally, network analysis showed that strong positive correlations were established among microbial species belonging to the class Clostridia, whereas Erysipelotrichia and Bacteroidia were mostly negatively correlated with Clostridia. Taken together, the results suggested that SSPP supplementation modulates the cecal microbial composition of broilers toward a "healthier" profile.
Collapse
Affiliation(s)
- Chris Major Ncho
- Department of Animal Science, Gyeongsang
National University, Jinju 52828, Korea
- Institute of Agriculture and Life
Sciences, Gyeongsang National University, Jinju 52828,
Korea
| | - Akshat Goel
- Department of Animal Science, Gyeongsang
National University, Jinju 52828, Korea
- Institute of Agriculture and Life
Sciences, Gyeongsang National University, Jinju 52828,
Korea
| | - Vaishali Gupta
- Department of Animal Science, Gyeongsang
National University, Jinju 52828, Korea
- Division of Applied Life Sciences (BK21
Plus Program), Gyeongsang National University, Jinju 52828,
Korea
| | - Chae-Mi Jeong
- Department of Animal Science, Gyeongsang
National University, Jinju 52828, Korea
- Division of Applied Life Sciences (BK21
Plus Program), Gyeongsang National University, Jinju 52828,
Korea
| | - Ji-Young Jung
- Institute of Agriculture and Life
Sciences, Gyeongsang National University, Jinju 52828,
Korea
- Department of Environmental Materials
Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Si-Young Ha
- Department of Environmental Materials
Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Jae-Kyung Yang
- Institute of Agriculture and Life
Sciences, Gyeongsang National University, Jinju 52828,
Korea
- Department of Environmental Materials
Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Yang-Ho Choi
- Department of Animal Science, Gyeongsang
National University, Jinju 52828, Korea
- Institute of Agriculture and Life
Sciences, Gyeongsang National University, Jinju 52828,
Korea
- Division of Applied Life Sciences (BK21
Plus Program), Gyeongsang National University, Jinju 52828,
Korea
| |
Collapse
|
13
|
Souza MD, Eeckhaut V, Goossens E, Ducatelle R, Van Nieuwerburgh F, Poulsen K, Baptista AAS, Bracarense APFRL, Van Immerseel F. Guar gum as galactomannan source induces dysbiosis and reduces performance in broiler chickens and dietary β-mannanase restores the gut homeostasis. Poult Sci 2023; 102:102810. [PMID: 37343353 PMCID: PMC10404764 DOI: 10.1016/j.psj.2023.102810] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Galactomannans are abundant nonstarch polysaccharides in broiler feed ingredients. In broilers, diets with high levels of galactomannans have been associated with innate immune response stimulation, poor zootechnical performance, nutrient and lipid absorption, and excessive digesta viscosity. However, data about its effects on the gut microbiome are scarce. β-Mannanases are enzymes that can hydrolyze β-mannans, resulting in better nutrient utilization. In the current study, we have evaluated the effect of guar gum, a source of galactomannans, supplemented to broiler diets, either with or without β-mannanase supplementation, on the microbiota composition, in an attempt to describe the potential role of the intestinal microbiota in β-mannanase-induced gut health and performance improvements. One-day-old broiler chickens (n = 756) were randomly divided into 3 treatments: control diet, guar gum-supplemented diet (1.7%), or guar gum-supplemented diet + β-mannanase (Hemicell 330 g/ton). The zootechnical performance, gut morphometry, ileal and cecal microbiome, and short-chain fatty acid concentrations were evaluated at different time points. The guar gum supplementation decreased the zootechnical performance, and the β-mannanase supplementation restored performance to control levels. The mannan-rich diet-induced dysbiosis, with marked effects on the cecal microbiota composition. The guar gum-supplemented diet increased the cecal abundance of the genera Lactobacillus, Roseburia, Clostridium sensu stricto 1, and Escherichia-Shigella, and decreased Intestinimonas, Alistipes, Butyricicoccus, and Faecalibacterium. In general, dietary β-mannanase supplementation restored the main microbial shifts induced by guar gum to levels of the control group. In addition, the β-mannanase supplementation reduced cecal isobutyric, isovaleric, valeric acid, and branched-chain fatty acid concentrations as compared to the guar gum-supplemented diet group, suggesting improved protein digestion and reduced cecal protein fermentation. In conclusion, a galactomannan-rich diet impairs zootechnical performance in broilers and results in a diet-induced dysbiosis. β-Mannanase supplementation restored the gut microbiota composition and zootechnical performance to control levels.
Collapse
Affiliation(s)
- Marielen de Souza
- Laboratory of Animal Pathology (LAP), Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil; Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Venessa Eeckhaut
- Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Evy Goossens
- Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Richard Ducatelle
- Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Ghent University Next Generation Sequencing Facility (NXTGNT), Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | - Ana Angelita Sampaio Baptista
- Laboratory of Avian Medicine (LAM), Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | | | - Filip Van Immerseel
- Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
14
|
Erinle TJ, Boulianne M, Adewole D. Red osier dogwood extract vs. trimethoprim-sulfadiazine (Part 2). Pharmacodynamic effects on ileal and cecal microbiota of broiler chickens challenged orally with Salmonella Enteritidis. Poult Sci 2023; 102:102550. [PMID: 36854216 PMCID: PMC9982684 DOI: 10.1016/j.psj.2023.102550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
With the subsisting restrictions on the use of antibiotics in poultry production, the use of plant extracts has shown some promising antimicrobial capacity similar to antibiotics; however, such capacity is largely dependent on their total polyphenol concentration and profile. Given the emerging antimicrobial potential of red osier dogwood (ROD) extract, the study aimed to investigate the pharmacodynamic effect of ROD extract on the ileal and cecal microbiota of broiler chickens challenged orally with Salmonella Enteritidis (SE). A 21 d 4 × 2 factorial experiment was conducted based on 2 main factors, including diets and SE challenge. A total of 384 one-day-old mixed-sex Cobb-500 broiler chicks were randomly allotted to 4 dietary treatments; Negative control (NC), NC + 0.075 mg trimethoprim-sulfadiazine (TMP/SDZ)/kg of diet, and NC containing either 0.3 or 0.5% ROD extract. On d 1, half of the birds were orally challenged with 0.5 mL of phosphate-buffered saline (Noninfected group) and the remaining half with 0.5 mL of 3.1 × 105 CFU/mL SE (Infected group). Dietary treatments were randomly assigned to 8 replicate cages at 6 birds/cage. On d 21, 10 birds/treatment were euthanized and eviscerated to collect ileal and cecal digesta for gut microbiota analysis. The ileal and cecal microbiota was dominated by phyla Firmicutes, Proteobacteria, and Actinobacteriota. The SE infection decreased (P < 0.05) the relative abundance of Proteobacteria and Actinobacteriota in the ileum and ceca, respectively, however, it increased (P < 0.05) Proteobacteria in the ceca. Both 0.3 and 0.5% ROD extracts (P < 0.05) depressed the relative abundance of Actinobacteriota in the ileum but marginally improved (P < 0.05) it in the ceca compared to the TMP/SDZ treatment. Dietary TMP/SDZ increased (P < 0.05) genus Bifidobacterium at the ileal and cecal segments compared to other treatments. Dietary 0.3 and 0.5% marginally improved (P < 0.05) Bifidobacterium in the ceca and depressed (P < 0.05) Weissella and was comparably similar to TMP/SDZ in the ileum. Regardless of the dietary treatments and SE infection, alpha diversity differed (P < 0.05) between ileal and cecal microbiota. Beta diversity was distinct (P < 0.05) in both ileal and cecal digesta along the SE infection model. Conclusively, both ROD extract levels yielded a pharmacodynamic effect similar to antibiotics on ileal and cecal microbiota.
Collapse
Affiliation(s)
- Taiwo J Erinle
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Martine Boulianne
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Deborah Adewole
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
15
|
Yi L, Zhang Z, Li Z, Li Q, Yang M, Huang Y, Pan H, Zhao S. Effects of citrus pulp on the composition and diversity of broiler cecal microbes. Poult Sci 2023; 102:102454. [PMID: 36682129 PMCID: PMC10014344 DOI: 10.1016/j.psj.2022.102454] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/02/2023] Open
Abstract
Diet may affect gut microbial composition and diversity. There were 3 dietary groups: 0% citrus pulp diet (C), 1.5% citrus pulp diet (I), and 2.5% citrus pulp diet (II). A total of 180 healthy AA broilers (21-day old) were divided into 3 groups (C, I, and II), each group was set up with 6 replicates, and each replicate including 10 broilers (half male and female). At 42 d, the cecal contents of 18 broiler chickens were collected after slaughter. The cecal contents were analyzed using 16S rRNA sequencing technology. Compared with group C, the abundance of Firmicutes in groups I and II decreased, while the relative abundances of Bacteroidetes, Verrucomicrobia, Lactobacillus, and Faecalibacterium increased. LEfSe analysis showed that Actinobacteria, Coriobacteriia, Coriobacteriales, and Ruminococcaceae_bacterium_Marseille_P2935 in group I were significantly higher than those in group C. Bacteria, Coriobacteriales, Coriobacteriia, Coriobacteriaceae, Slackia, Bacteroides_sp_Marseille_P3132, and Lactobacillus_pontis in group II were significantly higher than those in group C. The Staphylococcaceae, Bacteroides_sp_Marseille_P3132, Macroccus, Lactobacillus_pontis, and Streptococcus_equinus in group II were significantly higher than those in group I. Functional predictions indicated that the cecal microbiota of broilers fed the 2.5% citrus pulp diet was more tend to utilize carbohydrates through glycolytic/gluconeogenesis metabolism. Adding citrus pulp to the diet affects the microbial composition and has important implications for studying gut health and improving economic benefits.
Collapse
Affiliation(s)
- Lanlan Yi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zining Zhang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zhipeng Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Qiuyan Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Minghua Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ying Huang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hongbin Pan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Sumei Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.
| |
Collapse
|
16
|
Intestinal permeability, microbiota composition and expression of genes related to intestinal barrier function of broiler chickens fed different methionine sources supplemented at varying concentrations. Poult Sci 2023; 102:102656. [PMID: 37043958 PMCID: PMC10140141 DOI: 10.1016/j.psj.2023.102656] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Intestinal health of broiler chickens is influenced by the concentration of dietary amino acids but data are limited on the role of dietary methionine (Met). Two experiments were conducted to investigate the implications of different Met sources for performance, gut barrier function, and intestinal microbiota in broilers. In the first experiment, Ross 308 off-sex birds (n = 900) were assigned to 10 dietary treatments each replicated 9 times in a 35-day study. Three sources of Met included DL-Met, L-Met, or Met hydroxy analog free acid (MHA-FA), each supplemented at suboptimal (SUB) at 80%, adequate (ADE) at 100% and over-requirement (OVR) at 120% of the specifications against a deficient (DEF) diet with no added Met. The second experiment used 96 Ross 308 broilers in a 2 × 4 factorial arrangement. Four diets included 3 sources of Met supplemented at ADE level plus the DEF treatment. On d 17, 19, and 23, half of the birds in each dietary treatment were injected with dexamethasone (DEX) to induce leaky gut. In the first experiment, without an interaction, from d 0 to 35, birds fed DL-Met and L-Met performed similarly for BWG, feed intake, and FCR but birds fed MHA-FA had less feed intake and BWG (P < 0.05). At d 23, mRNA expression of selected tight junction proteins was not affected except for claudin 2. Ileal microbiota of DEF treatment was different from DL-MET or L-MET supplemented birds (P < 0.05). However, microbiota of MHA-FA treatments was only different at OVR from the DEF group. The abundance of Peptostreptococcus increased in DEF treatment whereas Lactobacillus decreased. In the second experiment, DEX independently increased (P < 0.001) intestinal permeability assayed by fluorescein isothiocyanate dextran, but diet had no effect. DL-Met and L-Met fed birds had a higher level of claudin 3 only in DEX-injected birds (P < 0.05). In conclusion, unlike the level of supplementation, DL-Met, L-Met, and MHA-FA were largely similar in their limited impacts on intestinal barrier function and gut microbiota in broilers.
Collapse
|
17
|
Messina M, Iacumin L, Pascon G, Tulli F, Tibaldi E, Cardinaletti G. Effect of feed restriction and refeeding on body condition, digestive functionality and intestinal microbiota in rainbow trout (Oncorhynchus mykiss). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:169-189. [PMID: 36680627 PMCID: PMC9935662 DOI: 10.1007/s10695-023-01170-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The aim of the present work was to investigate the influence of fasting and refeeding on body condition, gut physiology and microbiota in reared O. mykiss. Ninety-six fish were randomly allotted among three groups subjected to different feeding plan: C (control, fed for 5 weeks); R (restricted ration over 3 weeks followed by 2 weeks feeding); F (fasted over 3 weeks followed by 2 weeks feeding) in a well's fresh water flow-through rearing plan. Sampling occurred at 0, 1, 2, 4, 7, 14 days during the refeeding period. At day 0 and throughout the feeding period until day 14, the weight of the fish was significantly affected by the feeding restriction. Feed deprivation reduced significantly the viscerosomatic and hepatosomatic indexes. Brush border membrane enzymes' specific activity was modulated by feeding regimes until day 7, to level in all experimental groups at day 14. At the end of the restricted/fasted period, the microbiota of the C group was made up of 70% of Actinobacteria, 24% of Proteobacteria, 4.2% of Firmicutes and < 1% of Bacteroides, while the restricted and fasted group were characterized by a strong reduction of Actinobacteria, and a significant increase in Bacteroidetes and Firmicutes. The feed deprivation determined a dysbiosis, allowing the development of different commensal or pathogenic bacteria. In conclusion, the effects of 2 weeks of feed deprivation, excluding those related to body weight, are gradually mitigated by refeeding, which allows the restoration of digestive functions and a healthy intestinal microbiota.
Collapse
Affiliation(s)
- Maria Messina
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Udine, Italy
| | - Lucilla Iacumin
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Udine, Italy
| | - Giulia Pascon
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Udine, Italy
| | - Francesca Tulli
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Udine, Italy
| | - Emilio Tibaldi
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Udine, Italy
| | - Gloriana Cardinaletti
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Udine, Italy
| |
Collapse
|
18
|
Rychlik I, Karasova D, Crhanova M. Microbiota of Chickens and Their Environment in Commercial Production. Avian Dis 2023; 67:1-9. [PMID: 37140107 DOI: 10.1637/aviandiseases-d-22-00048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 01/24/2023]
Abstract
Chickens in commercial production are subjected to constant interaction with their environment, including the exchange of microbiota. In this review, we therefore focused on microbiota composition in different niches along the whole line of chicken production. We included a comparison of microbiota of intact eggshells, eggshell waste from hatcheries, bedding, drinking water, feed, litter, poultry house air and chicken skin, trachea, crop, small intestine, and cecum. Such a comparison showed the most frequent interactions and allowed for the identification of microbiota members that are the most characteristic for each type of sample as well as those that are the most widespread in chicken production. Not surprisingly, Escherichia coli was the most widely distributed species in chicken production, although its dominance was in the external aerobic environment and not in the intestinal tract. Other broadly distributed species included Ruminococcus torque, Clostridium disporicum, and different Lactobacillus species. The consequence and meaning of these and other observations are evaluated and discussed.
Collapse
Affiliation(s)
- Ivan Rychlik
- Veterinary Research Institute, Brno 621 00, Czech Republic
| | | | | |
Collapse
|
19
|
Feng J, Li Z, Ma H, Yue Y, Hao K, Li J, Xiang Y, Min Y. Quercetin alleviates intestinal inflammation and improves intestinal functions via modulating gut microbiota composition in LPS-challenged laying hens. Poult Sci 2022; 102:102433. [PMID: 36587451 PMCID: PMC9816806 DOI: 10.1016/j.psj.2022.102433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Quercetin, a well-known flavonoid, has been demonstrated to exert beneficial effects on intestinal functions and gut microbiota in birds. In this study, we investigated the effects of quercetin supplementation on inflammatory responses, intestinal barrier functions and gut microbial community in LPS-challenged laying hens. A total of two hundred eighty-eight 32-wk-old Jingfen No.6 laying hens were randomly assigned to 3 groups, the CON group, the LC group and the LQ group. LQ group was fed with 0.4 mg/kg quercetin and at the end of 12 wk, LC and LQ groups were challenged intraperitoneally with lipopolysaccharide (LPS). After LPS challenge, 8 birds of each group were randomly selected and sampled. LPS challenge induced an obvious intestinal mucosal injury, necrosis and shedding, while quercetin intervention maintained its structure. Quercetin significantly decreased the elevated malondialdehyde contents (P < 0.05), and increased the activity of total antioxidant capacity and glutathione peroxidase (P < 0.05) in intestinal mucosa of LPS-challenged laying hens. Quercetin rescued the LPS-induced decreases in goblet cell density and mucin2 expression levels (P < 0.05). There was a significant decline (P < 0.05) in the mRNA expression of Claudin1 and Occludin in intestinal mucosa of LPS-challenged layers, which could be alleviated (P < 0.05) by dietary quercetin. LPS challenge induced the increased expression levels (P < 0.05) of IL-1β and TLR-4 in intestinal mucosa, while these rises could be reversed (P < 0.05) following dietary quercetin supplementation. LPS challenge induced a shift in gut microenvironment, and quercetin addition could elevate the relative abundance of some short chain fatty acids (SCFA)-producing or health-promoting bacteria such as Phascolarctobacterium, Negativicutes, Selenomonadales, Megamonas, Prevotellaceae, and Bacteroides_salanitronis. In conclusion, dietary quercetin addition ameliorated the LPS challenge-induced intestinal inflammation and improved intestinal functions, possibly associated with its modulation on gut microbiota, particularly the increased population of SCFA-producing bacteria.
Collapse
Affiliation(s)
- Jia Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhuorui Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanrui Yue
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Keyang Hao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jinghe Li
- Tongchuan City Health Supervision Institute, Tongchuan, 629000, Shaanxi, China
| | - Yujun Xiang
- Tongchuan City Health Supervision Institute, Tongchuan, 629000, Shaanxi, China
| | - Yuna Min
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
20
|
Alvarenga BO, Paiva JB, Souza AI, Rodrigues DR, Tizioto PC, Ferreira AJP. Metagenomics analysis of the morphological aspects and bacterial composition of broiler feces. Poult Sci 2022; 102:102401. [PMID: 36565637 PMCID: PMC9800314 DOI: 10.1016/j.psj.2022.102401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
In this descriptive study, we used metagenomics to analyze the relationship between the morphological aspects of chicken feces and its respective bacterial compositions. The microbiota composition was determined by sequencing the V4 region of the 16S rRNA genes collected from fresh broiler feces at 19 d old. In total, 48 samples were collected and divided into 8 groups of 6 samples each. The morphological changes studied were feed passage (FP) and reddish mucus (RM). Each was classified into 3 levels of intensity: 1 (slight), 2 (moderate), or 3 (intense). Thus, the 8 groups studied were feed passage (FP-1; FP-2; FP-3), reddish mucus (RM-1; RM-2; RM-3), normal ileal feces (NIF), and cecal discharge (CD). The alpha diversity (Shannon's index) revealed that the CD group showed greater diversity, and was significantly different from FP-2, FP-3, and RM-1. The beta diversity showed that the CD group samples were more homogeneous than the ileal feces groups. The relative abundance analysis revealed that Firmicutes and Proteobacteria were the most abundant phyla in the ileal feces groups. In CD, Firmicutes and Bacteroidetes were the most abundant. The relative abundance at the genus level revealed 136 different bacterial genera. In the ileal feces groups, the two most abundant genera were Lactobacillus and Escherichia/Shigella, except in the FP-1 and RM-2 groups, which had the opposite order. Unlike the others, the CD group had a higher abundance of Bacteroides and Faecalibacterium. When comparing the NIF group with the others, significant changes were found in the fecal microbiota, with nine genera for the FP groups, 19 for the RM groups, and 61 when compared to CD. The results of the present study suggest that evaluation of fecal morphology is a fundamental task that makes it possible to act quickly and assertively, as the morphological aspects of the feces may be related to the composition and structure of fecal microbiota.
Collapse
Affiliation(s)
| | | | | | - Denise R. Rodrigues
- Department of Inspection of Animal Products, Ministry of Agriculture, Livestock and Food Supply (MAPA), Brasília, Brazil
| | | | - Antonio J. Piantino Ferreira
- School of Veterinary Medicine and Animal Science of University of São Paulo, São Paulo, Brazil,Corresponding author:
| |
Collapse
|
21
|
Barszcz M, Tuśnio A, Taciak M. Poultry nutrition. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Nutrition is the most important environmental factor affecting development, health status, growth performance and profitability of poultry production. Feeds for poultry constitute up to 70–75% of total production costs. Poultry nutrition differs considerably from that of other livestock, which is determined by the specific anatomy of the gastrointestinal tract. Protein, energy, fat, fiber, minerals, vitamins, and water are of basic importance for poultry nutrition and their content in feeds must cover the requirement that differ depending on the bird’s age and species. In general, feed protein must be of good value including the content of essential amino acids. Among them lysine, methionine, cysteine, threonine and tryptophan are the limiting ones. The main ingredient of poultry feeds are cereal grains, i.e. wheat and maize, which predominantly constitute an energy source because their protein content is insufficient for birds. Because of that cereals cannot be the only feed for poultry and must be combined with protein sources such as soybean or rapeseed meal, legume seeds or protein concentrates. Despite birds’ requirement for nutrients and chemical composition of feeds are well known, nutrition must face many problems. One of the most important issues is to find alternatives to antibiotic growth promoters.
Collapse
Affiliation(s)
- Marcin Barszcz
- Department of Animal Nutrition , The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences , Instytucka 3, 05-110 Jabłonna , Poland
| | - Anna Tuśnio
- Department of Animal Nutrition , The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences , Instytucka 3, 05-110 Jabłonna , Poland
| | - Marcin Taciak
- Department of Animal Nutrition , The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences , Instytucka 3, 05-110 Jabłonna , Poland
| |
Collapse
|
22
|
Tous N, Marcos S, Goodarzi Boroojeni F, Pérez de Rozas A, Zentek J, Estonba A, Sandvang D, Gilbert MTP, Esteve-Garcia E, Finn R, Alberdi A, Tarradas J. Novel strategies to improve chicken performance and welfare by unveiling host-microbiota interactions through hologenomics. Front Physiol 2022; 13:884925. [PMID: 36148301 PMCID: PMC9485813 DOI: 10.3389/fphys.2022.884925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Fast optimisation of farming practices is essential to meet environmental sustainability challenges. Hologenomics, the joint study of the genomic features of animals and the microbial communities associated with them, opens new avenues to obtain in-depth knowledge on how host-microbiota interactions affect animal performance and welfare, and in doing so, improve the quality and sustainability of animal production. Here, we introduce the animal trials conducted with broiler chickens in the H2020 project HoloFood, and our strategy to implement hologenomic analyses in light of the initial results, which despite yielding negligible effects of tested feed additives, provide relevant information to understand how host genomic features, microbiota development dynamics and host-microbiota interactions shape animal welfare and performance. We report the most relevant results, propose hypotheses to explain the observed patterns, and outline how these questions will be addressed through the generation and analysis of animal-microbiota multi-omic data during the HoloFood project.
Collapse
Affiliation(s)
- Núria Tous
- Animal Nutrition, Institute of Agrifood Research and Technology (IRTA), Constantí, Spain
| | - Sofia Marcos
- Applied Genomics and Bioinformatics, University of the Basque Country (UPV/EHU, Bilbao, Spain
| | - Farshad Goodarzi Boroojeni
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin (FUB), Berlin, Germany
| | - Ana Pérez de Rozas
- Animal Health-CReSA, Institute of Agrifood Research and Technology (IRTA), Bellaterra, Spain
| | - Jürgen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin (FUB), Berlin, Germany
| | - Andone Estonba
- Applied Genomics and Bioinformatics, University of the Basque Country (UPV/EHU, Bilbao, Spain
| | - Dorthe Sandvang
- Chr. Hansen A/S, Animal Health Innovation, Hoersholm, Denmark
| | - M. Thomas P. Gilbert
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Enric Esteve-Garcia
- Animal Nutrition, Institute of Agrifood Research and Technology (IRTA), Constantí, Spain
| | - Robert Finn
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Antton Alberdi,
| | - Joan Tarradas
- Animal Nutrition, Institute of Agrifood Research and Technology (IRTA), Constantí, Spain
| |
Collapse
|
23
|
Zou A, Nadeau K, Xiong X, Wang PW, Copeland JK, Lee JY, Pierre JS, Ty M, Taj B, Brumell JH, Guttman DS, Sharif S, Korver D, Parkinson J. Systematic profiling of the chicken gut microbiome reveals dietary supplementation with antibiotics alters expression of multiple microbial pathways with minimal impact on community structure. MICROBIOME 2022; 10:127. [PMID: 35965349 PMCID: PMC9377095 DOI: 10.1186/s40168-022-01319-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The emergence of antimicrobial resistance is a major threat to global health and has placed pressure on the livestock industry to eliminate the use of antibiotic growth promotants (AGPs) as feed additives. To mitigate their removal, efficacious alternatives are required. AGPs are thought to operate through modulating the gut microbiome to limit opportunities for colonization by pathogens, increase nutrient utilization, and reduce inflammation. However, little is known concerning the underlying mechanisms. Previous studies investigating the effects of AGPs on the poultry gut microbiome have largely focused on 16S rDNA surveys based on a single gastrointestinal (GI) site, diet, and/or timepoint, resulting in an inconsistent view of their impact on community composition. METHODS In this study, we perform a systematic investigation of both the composition and function of the chicken gut microbiome, in response to AGPs. Birds were raised under two different diets and AGP treatments, and 16S rDNA surveys applied to six GI sites sampled at three key timepoints of the poultry life cycle. Functional investigations were performed through metatranscriptomics analyses and metabolomics. RESULTS Our study reveals a more nuanced view of the impact of AGPs, dependent on age of bird, diet, and intestinal site sampled. Although AGPs have a limited impact on taxonomic abundances, they do appear to redefine influential taxa that may promote the exclusion of other taxa. Microbiome expression profiles further reveal a complex landscape in both the expression and taxonomic representation of multiple pathways including cell wall biogenesis, antimicrobial resistance, and several involved in energy, amino acid, and nucleotide metabolism. Many AGP-induced changes in metabolic enzyme expression likely serve to redirect metabolic flux with the potential to regulate bacterial growth or produce metabolites that impact the host. CONCLUSIONS As alternative feed additives are developed to mimic the action of AGPs, our study highlights the need to ensure such alternatives result in functional changes that are consistent with site-, age-, and diet-associated taxa. The genes and pathways identified in this study are therefore expected to drive future studies, applying tools such as community-based metabolic modeling, focusing on the mechanistic impact of different dietary regimes on the microbiome. Consequently, the data generated in this study will be crucial for the development of next-generation feed additives targeting gut health and poultry production. Video Abstract.
Collapse
Affiliation(s)
- Angela Zou
- Department of Biochemistry, University of Toronto, Toronto, ON Canada
- Program in Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4 Canada
| | - Kerry Nadeau
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - Xuejian Xiong
- Program in Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4 Canada
| | - Pauline W. Wang
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks St, Toronto, Ontario Canada
| | - Julia K. Copeland
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks St, Toronto, Ontario Canada
| | - Jee Yeon Lee
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks St, Toronto, Ontario Canada
| | - James St. Pierre
- Program in Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Maxine Ty
- Department of Biochemistry, University of Toronto, Toronto, ON Canada
- Program in Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4 Canada
| | - Billy Taj
- Program in Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4 Canada
| | - John H. Brumell
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Program in Cell Biology, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON Canada
- Institute of Medical Science, University of Toronto, Toronto, ON Canada
- SickKids IBD Centre, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON Canada
| | - David S. Guttman
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks St, Toronto, Ontario Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON Canada
| | - Doug Korver
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - John Parkinson
- Department of Biochemistry, University of Toronto, Toronto, ON Canada
- Program in Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| |
Collapse
|
24
|
Zhou H, Guo Y, Liu Z, Wu H, Zhao J, Cao Z, Zhang H, Shang H. Comfrey polysaccharides modulate the gut microbiota and its metabolites SCFAs and affect the production performance of laying hens. Int J Biol Macromol 2022; 215:45-56. [PMID: 35718145 DOI: 10.1016/j.ijbiomac.2022.06.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/17/2022] [Accepted: 06/11/2022] [Indexed: 12/24/2022]
Abstract
Effects of dietary supplementation of comfrey polysaccharides (CPs) on production performance, egg quality, and microbial composition of cecum in laying hens were evaluated. A total of 240 laying hens were allocated into 4 groups with 6 replicates per group. The laying hens were fed diets containing CPs at levels of 0, 0.5, 1.0, and 1.5 %, respectively. The results showed that the egg production rate increased by 5.97 %, the egg mass improved by 6.71 %, and the feed conversion rate reduced by 5.43 % in the 1.0 % supplementation group of CPs compared with those in the control group. The digestibility of ash, crude fat, and phosphorus was notably improved by the addition of CPs at 1.0 % (P < 0.05). The relative abundances of Bacteroidetes at the phylum level, Bacteroidaceae, Rikenellaceae, and Prevotellaceae at the family level were increased by CPs (P < 0.05). The relative abundances of Bacteroides, Megamonas, Rikenellaceae_RC9_gut_group, [Ruminococcus]_torques_group, Methanobrevibacter, Desulfovibrio, Romboutsia, Alistipes, and Intestinimonas at the genus level were increased by CPs (P < 0.05). Dietary supplementation of CPs could enhance the production performance of laying hens, which might be related to the improvement of nutrient digestibility and microbial community modulations in the cecum. Therefore, CPs have potential application value as prebiotics in laying hens.
Collapse
Affiliation(s)
- Haizhu Zhou
- College of Forestry and Pratacultural Science, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yang Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhenhua Liu
- The Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun 130000, China
| | - Hongxin Wu
- Institute of Grassland Research, CAAS, Hohhot 010010, China
| | - Jiangchao Zhao
- Department of Animal Science, University of Arkansas, Fayetteville 72701, USA
| | - Zihang Cao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hexiang Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hongmei Shang
- College of Forestry and Pratacultural Science, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
25
|
Juricova H, Matiasovicova J, Faldynova M, Sebkova A, Kubasova T, Prikrylova H, Karasova D, Crhanova M, Havlickova H, Rychlik I. Probiotic Lactobacilli Do Not Protect Chickens against Salmonella Enteritidis Infection by Competitive Exclusion in the Intestinal Tract but in Feed, Outside the Chicken Host. Microorganisms 2022; 10:microorganisms10020219. [PMID: 35208674 PMCID: PMC8877478 DOI: 10.3390/microorganisms10020219] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/21/2022] Open
Abstract
Lactobacilli are commonly used as probiotics in poultry to improve production parameters and to increase chicken resistance to enteric infections. However, lactobacilli do not efficiently colonise the chicken intestinal tract, and also, their anti-infection effect in vivo is sometimes questionable. In this study, we therefore evaluated the potential of a mixture of four Lactobacillus species (L. salivarius, L. reuteri, L. ingluviei and L. alvi) for the protection of chickens against Salmonella Enteritidis infection. Whenever the chickens were inoculated by lactobacilli and S. Enteritidis separately, there was no protective effect of lactobacilli. This means that when lactobacilli and S. Enteritidis are exposed to each other as late as in the crop of chickens, lactobacilli did not influence chicken resistance to S. Enteritidis at all. The only positive effect was recorded when the mixture of lactobacilli and S. Enteritidis was used for the inoculation of feed and the feed was anaerobically fermented for 1 to 5 days. In this case, chickens fed such a diet remained S. Enteritidis negative. In vitro experiments showed that the protective effect was caused by acidification of feed down to pH 4.6 due to lactobacilli fermentation and was associated with S. Enteritidis inactivation. The probiotic effect of lactobacilli was thus expressed in the feed, outside the chicken host.
Collapse
|
26
|
Campos PM, Miska KB, Kahl S, Jenkins MC, Shao J, Proszkowiec-Weglarz M. Effects of Eimeria tenella on Cecal Luminal and Mucosal Microbiota in Broiler Chickens. Avian Dis 2022; 66:39-52. [DOI: 10.1637/21-00068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/29/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Philip M. Campos
- Oak Ridge Institute for Science and Education (ORISE) USDA-ARS Research Participation Program, Oak Ridge, TN 37830
| | - Katarzyna B. Miska
- USDA-ARS, NEA, Beltsville Agriculture Research Center, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD 20705
| | - Stanislaw Kahl
- USDA-ARS, NEA, Beltsville Agriculture Research Center, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD 20705
| | - Mark C. Jenkins
- USDA-ARS, NEA, Beltsville Agriculture Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705
| | | | - Monika Proszkowiec-Weglarz
- USDA-ARS, NEA, Beltsville Agriculture Research Center, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD 20705
| |
Collapse
|
27
|
Schreier J, Karasova D, Crhanova M, Rychlik I, Rautenschlein S, Jung A. Influence of lincomycin-spectinomycin treatment on the outcome of Enterococcus cecorum infection and on the cecal microbiota in broilers. Gut Pathog 2022; 14:3. [PMID: 34983636 PMCID: PMC8729143 DOI: 10.1186/s13099-021-00467-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
Background Enterococcus cecorum (EC) is one of the main reasons for skeletal disease in meat type chickens. Intervention strategies are still rare and focus mainly on early antibiotic treatment of the disease, although there are no data available concerning the effectivity of this procedure. The present study aimed to investigate the effectivity of early lincomycin-spectinomycin treatment during the first week of life after EC-infection. Furthermore, the impact of lincomycin-spectinomycin treatment and EC infection on the development of cecal microbiota was investigated. Methods A total of 383 day-old broiler chicks were randomly assigned to four groups (non-infected and non-treated, non-infected and treated, EC-infected and non-treated, and EC-infected and treated). The EC-infected groups were inoculated orally with an EC suspension at the day of arrival and at study day 3. The treatment groups were treated with lincomycin-spectinomycin via the drinking water for six consecutive days, starting two hours after the first inoculation. Necropsy of 20 chickens per group was performed at study days 7, 14, 21, and 42. Bacteriological examination via culture and real-time PCR was performed to detect EC in different extraintestinal organs. Cecal samples of nine chickens per group and necropsy day were analyzed to characterize the composition of the cecal microbiota. Results No clinical signs or pathologic lesions were found at necropsy, and EC was not detected in extraintestinal organs of the EC-infected and treated birds. Lincomycin-spectinomycin promoted the growth of the bacterial genus Escherichia/Shigella and reduced the amount of potentially beneficial Lactobacillus spp. in the ceca regardless of EC-infection. Unexpectedly, the highest abundances of the genus Enterococcus were found directly after ending antibiotic treatment in both treatment groups, suggesting the growth of resistant enterococcal species. EC was not detected among the most abundant members of the genus Enterococcus. Oral EC-infection at the first day of life did not influence the development of cecal microbiota in the present study. Conclusions Lincomycin-spectinomycin treatment during the first week of life can prevent the EC-associated disease in broiler type chickens and has a direct impact on the development of the cecal microbiota. The low abundance of EC in the ceca of infected chickens underlines the pathogenic nature of the disease-causing EC strains. Further research on alternative prevention and intervention strategies is needed with regard to current efforts on reducing the use of antibiotics in livestock animals. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-021-00467-9.
Collapse
Affiliation(s)
- Jana Schreier
- Clinic for Poultry, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Daniela Karasova
- Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Magdalena Crhanova
- Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Ivan Rychlik
- Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Arne Jung
- Clinic for Poultry, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany.
| |
Collapse
|
28
|
Colombino E, Biasato I, Ferrocino I, Bellezza Oddon S, Caimi C, Gariglio M, Dabbou S, Caramori M, Battisti E, Zanet S, Ferroglio E, Cocolin L, Gasco L, Schiavone A, Capucchio MT. Effect of Insect Live Larvae as Environmental Enrichment on Poultry Gut Health: Gut Mucin Composition, Microbiota and Local Immune Response Evaluation. Animals (Basel) 2021; 11:2819. [PMID: 34679839 PMCID: PMC8532707 DOI: 10.3390/ani11102819] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to evaluate the effect of Hermetia illucens (HI) and Tenebrio molitor (TM) live larvae as environmental enrichment on the mucin composition, local immune response and microbiota of broilers. A total of 180 four-day-old male broiler chickens (Ross 308) were randomly allotted to three dietary treatments (six replicates/treatment; ten animals/replicate): (i) control (C); (ii) C+HI; (iii) C+TM. Live larvae were distributed based on 5% of the expected daily feed intake. At slaughter (39 days of age), samples of duodenum, jejunum and ileum (twelve animals/diet) were submitted to mucin histochemical evaluation. Expression of MUC-2 and cytokines was evaluated by rt-qPCR in jejunum. Mucin staining intensity was not influenced by diet (p > 0.05); however, this varied depending on the intestinal segment (p < 0.001). No significant differences were recorded for IL-4, IL-6 TNF-α, MUC-2 and INF-γ gene expression in jejunum, while IL-2 was lower in the TM group compared to HI and C (p = 0.044). Caecal microbiota showed higher abundance of Clostridium, Saccharibacteria and Victivallaceae in the HI group, while Collinsella was higher in the TM group. The results suggested that live insect larvae did not impair mucin composition or local immune response, and can slightly improve caecal microbiota by enhancing a minor fraction of short chain fatty acid-producing taxa.
Collapse
Affiliation(s)
- Elena Colombino
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (M.G.); (M.C.); (E.B.); (S.Z.); (E.F.); (A.S.); (M.T.C.)
| | - Ilaria Biasato
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.B.); (I.F.); (S.B.O.); (C.C.); (L.C.); (L.G.)
| | - Ilario Ferrocino
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.B.); (I.F.); (S.B.O.); (C.C.); (L.C.); (L.G.)
| | - Sara Bellezza Oddon
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.B.); (I.F.); (S.B.O.); (C.C.); (L.C.); (L.G.)
| | - Christian Caimi
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.B.); (I.F.); (S.B.O.); (C.C.); (L.C.); (L.G.)
| | - Marta Gariglio
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (M.G.); (M.C.); (E.B.); (S.Z.); (E.F.); (A.S.); (M.T.C.)
| | - Sihem Dabbou
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, TN, Italy;
| | - Marta Caramori
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (M.G.); (M.C.); (E.B.); (S.Z.); (E.F.); (A.S.); (M.T.C.)
| | - Elena Battisti
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (M.G.); (M.C.); (E.B.); (S.Z.); (E.F.); (A.S.); (M.T.C.)
| | - Stefania Zanet
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (M.G.); (M.C.); (E.B.); (S.Z.); (E.F.); (A.S.); (M.T.C.)
| | - Ezio Ferroglio
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (M.G.); (M.C.); (E.B.); (S.Z.); (E.F.); (A.S.); (M.T.C.)
| | - Luca Cocolin
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.B.); (I.F.); (S.B.O.); (C.C.); (L.C.); (L.G.)
| | - Laura Gasco
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.B.); (I.F.); (S.B.O.); (C.C.); (L.C.); (L.G.)
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (M.G.); (M.C.); (E.B.); (S.Z.); (E.F.); (A.S.); (M.T.C.)
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (M.G.); (M.C.); (E.B.); (S.Z.); (E.F.); (A.S.); (M.T.C.)
- Institute of Sciences of Food Production, CNR, 10095 Grugliasco, TO, Italy
| |
Collapse
|
29
|
Bai Y, Wang R, Yang Y, Li R, Wu X. Folic Acid Absorption Characteristics and Effect on Cecal Microbiota of Laying Hens. Front Vet Sci 2021; 8:720851. [PMID: 34485442 PMCID: PMC8416075 DOI: 10.3389/fvets.2021.720851] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/26/2021] [Indexed: 02/01/2023] Open
Abstract
This experiment was conducted to investigate the characteristics of folic acid (FA) absorption in laying hens and the effect of FA supplementation on cecal microbiota. A total of 432 healthy hens (30-week-old) were randomly assigned to four diets supplemented with FA: 0, 1, 6, and 24 mg/kg of feed for 8 w. Blood, duodenum, jejunum, ileum, cecum, and cecal chyme samples (six samples per treatment) were collected from the hens at the end of the feeding trial. Expression profiles of folate transport and transformation genes in intestine and cecal microbiota were detected. Results showed that serum folate level significantly increased (P < 0.01) with an increase in dietary FA supplementation, reaching a plateau at 6 mg/kg FA supplementation. The expression of FA transport and transformation genes was not affected in the cecum (P > 0.05) by dietary FA supplementation; however, it was affected in the duodenum, jejunum, and ileum and mostly showed a downward trend in treatment groups (P < 0.05). The genes affected include duodenal folate receptor (Folr) and dihydrofolate reductase (Dhfr), jejunal proton-coupled folate transporter (Pcft) and reduced folate carrier (Rfc), and ileal ATP binding cassette subfamily C member (Abcc2), Abcc3, Rfc, Folr, and Dhfr. Furthermore, according to the operational taxonomic unit classification and taxonomic position identification, the cecal microbiota population of the hens was not affected by dietary FA supplementation at the phylum, class, order, family, genus, and species levels (P > 0.05). However, the relative abundance of some microbiota was affected by dietary FA supplementation (P < 0.05). In conclusion, FA transport from the intestinal lumen into enterocytes, and then into the bloodstream, is strictly regulated, which may be associated with the regulation of the expression profiles of genes involved in FA absorption. Pathogenic bacteria decreased in the cecum, especially at 24 mg/kg supplementation, but the beneficial bacteria (Bifidobacteriaceae) decreased at this level, too. Overall, FA supplementation at 6 mg/kg, which was selected for folate-enriched egg production, did not affect the health and metabolism of laying hens negatively.
Collapse
Affiliation(s)
- Yan Bai
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Rui Wang
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jinzhong, China.,Department of Life Sciences, Luliang University, Luliang, China
| | - Yu Yang
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Ruirui Li
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Xiaotian Wu
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
30
|
Such N, Farkas V, Csitári G, Pál L, Márton A, Menyhárt L, Dublecz K. Relative Effects of Dietary Administration of a Competitive Exclusion Culture and a Synbiotic Product, Age and Sampling Site on Intestinal Microbiota Maturation in Broiler Chickens. Vet Sci 2021; 8:vetsci8090187. [PMID: 34564581 PMCID: PMC8472864 DOI: 10.3390/vetsci8090187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
In this research, the effects of early post-hatch inoculation of a competitive exclusion product (Br) and the continuous feeding of a synbiotic supplement (Sy) containing probiotic bacteria, yeast, and inulin on the production traits and composition of ileal chymus (IC), ileal mucosa (IM), and caecal chymus (CC) microbiota of broiler chickens were evaluated. The dietary treatments had no significant effects on the pattern of intestinal microbiota or production traits. The digestive tract bacteriota composition was affected mostly by the sampling place and age of birds. The dominant family of IC was Lactobacillaceae, without change with the age. The abundance of the two other major families, Enterococcaceae and Lachnospiraceae decreased with the age of birds. In the IM, Clostridiaceae was the main family in the first three weeks. Its ratio decreased later and Lactobacillaceae became the dominant family. In the CC, Ruminococcaceae and Lachnospiraceae were the main families with decreasing tendency in the age. In IC, Br treatment decreased the abundance of genus Lactobacillus, and both Br and Sy increased the ratio of Enterococcus at day 7. In all gut segments, a negative correlation was found between the IBD antibody titer levels and the ratio of genus Leuconostoc in the first three weeks, and a positive correlation was found in the case of Bifidobacterium, Rombutsia, and Turicibacter between day 21 and 40.
Collapse
Affiliation(s)
- Nikoletta Such
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (N.S.); (V.F.); (G.C.); (L.P.); (A.M.)
| | - Valéria Farkas
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (N.S.); (V.F.); (G.C.); (L.P.); (A.M.)
| | - Gábor Csitári
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (N.S.); (V.F.); (G.C.); (L.P.); (A.M.)
| | - László Pál
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (N.S.); (V.F.); (G.C.); (L.P.); (A.M.)
| | - Aliz Márton
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (N.S.); (V.F.); (G.C.); (L.P.); (A.M.)
| | - László Menyhárt
- Institute of Technology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
| | - Károly Dublecz
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (N.S.); (V.F.); (G.C.); (L.P.); (A.M.)
- Correspondence: ; Tel.: +36-30-6418597
| |
Collapse
|
31
|
Infection Heterogeneity and Microbiota Differences in Chicks Infected by Salmonella enteritidis. Microorganisms 2021; 9:microorganisms9081705. [PMID: 34442784 PMCID: PMC8399513 DOI: 10.3390/microorganisms9081705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 12/03/2022] Open
Abstract
This study was conducted to compare the infection heterogeneity and cecal microbiota in chicks infected by S. enteritidis. Forty-eight 8-d-old female Arbor Acres chicks were challenged with S. enteritidis and euthanized 24 h later. The eight chicks with the highest Salmonella tissue loads were assigned to group S (S. enteritidis-susceptible), and the eight chicks with the lowest Salmonella tissue loads were assigned to group R (S. enteritidis-resistant). Chicks in group S showed a higher liver index (p < 0.05), obvious liver lesions, and an decreasing trend for the villus height-to-crypt depth ratio (p < 0.10), compared with those in group R. Gene expression of occludin, MUC2, and IL10 was higher, whereas that of iNOS and IL6 was lower (p < 0.05), in chicks of group R relative to those in group S. Separation of the cecal microbial community structure has been found between the two groups. The S. enteritidis-susceptible chicks showed higher abundance of pathogenic bacteria (Fusobacterium and Helicobacter) in their cecal, while Desulfovibrio_piger was enriched in the cecal of S. enteritidis-resistant chicks. In summary, chicks showed heterogeneous responses to S. enteritidis infection. Enhanced intestinal barrier function and cecal microbiota structure, especially a higher abundance of Desulfovibrio_piger, may help chicks resist S. enteritidis invasion.
Collapse
|
32
|
Shini S, Bryden WL. Probiotics and gut health: linking gut homeostasis and poultry productivity. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of probiotics in poultry production has increased rapidly, and this movement has been promoted by global events, such as the prohibition or decline in the use of antibiotic growth promotants in poultry feeds. There has been a persistent search for alternative feed additives, and probiotics have shown that they can restore the composition of the gut microbiota, and produce health benefits to the host, including improvements in performance. Probiotics have shown potential to increase productivity in poultry, especially in flocks challenged by stressors. However, the outcomes of probiotic use have not always been consistent. There is an increasing demand for well defined products that can be applied strategically, and currently, probiotic research is focusing on delineating their mechanisms of action in the gut that contribute to an improved efficacy. In particular, mechanisms involved in the maintenance and protection of intestinal barrier integrity and the role of the gut microbiota are being extensively investigated. It has been shown that probiotics modulate intestinal immune pathways both directly and through interactions with the gut microbiota. These interactions are key to maintaining gut homeostasis and function, and improving feed efficiency. Research has demonstrated that probiotics execute their effects through multiple mechanisms. The present review describes recent advances in probiotic use in poultry. It focuses on the current understanding of gut homeostasis and gut health in chickens, and how it can be assessed and improved through supplementation of poultry diets with probiotics in poultry diets. In particular, cellular and molecular mechanisms involved in the maintenance and protection of gut barrier structure and function are described. It also highlights important factors that influence probiotic efficacy and bird performance.
Collapse
|
33
|
Zhang G, Wang H, Zhang J, Tang X, Raheem A, Wang M, Lin W, Liang L, Qi Y, Zhu Y, Jia Y, Cui S, Qin T. Modulatory Effects of Bacillus subtilis on the Performance, Morphology, Cecal Microbiota and Gut Barrier Function of Laying Hens. Animals (Basel) 2021; 11:1523. [PMID: 34073794 PMCID: PMC8225007 DOI: 10.3390/ani11061523] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
We investigated the efficacy of a single bacterium strain, Bacillus subtilis (B. subtilis) YW1, on the performance, morphology, cecal microbiota, and intestinal barrier function of laying hens. A total of 216 28-week-old Hy-line Brown laying hens were divided into three dietary treatment groups, with six replicates of 12 birds each for 4 weeks. The control group (Ctr) was fed a basal diet and the treatment groups, T1 and T2, were fed a basal diet supplemented with B. subtilis at a dose rate of 5 × 108 CFU/kg and 2.5 × 109 CFU/kg, respectively. Dietary supplementation with B. subtilis did not significantly affect overall egg production in both groups, with no obvious changes in average egg weight and intestine morphology. B. subtilis administration also improved the physical barrier function of the intestine by inducing significantly greater expression levels of the tight junction protein occludin in T1 (p = 0.07) and T2 (p < 0.05). Further, supplementation with B. subtilis effectively modulated the cecal microbiota, increasing the relative level of beneficial bacteria at the genus level (e.g., Bifidobacterium p < 0.05, Lactobacillus p = 0.298, Bacillus p = 0.550) and decreasing the level of potential pathogens (e.g., Fusobacterium p < 0.05, Staphylococcus p < 0.05, Campylobacter p = 0.298). Overall, B. subtilis YW1 supplementation cannot significantly improve the egg production; however, it modulated the cecal microbiota towards a healthier pattern and promoted the mRNA expression of the tight junction protein occludin in laying hens, making B. subtilis YW1 a good probiotic candidate for application in the poultry industry, and further expanding the resources of strains of animal probiotics.
Collapse
Affiliation(s)
- Guangzhi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Hao Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
| | - Jianwei Zhang
- Beijing General Station of Animal Husbandry, Beijing 100107, China;
| | - Xinming Tang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Abdul Raheem
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Mingyan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Weidong Lin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
| | - Lin Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Yuzhuo Qi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Yali Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Yaxiong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Shangjin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| | - Tong Qin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.Z.); (H.W.); (X.T.); (A.R.); (M.W.); (W.L.); (L.L.); (Y.Q.); (Y.Z.)
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing 100193, China
| |
Collapse
|
34
|
Bean-Hodgins L, Kiarie EG. Mandated restrictions on the use of medically important antibiotics in broiler chicken production in Canada: implications, emerging challenges, and opportunities for bolstering gastrointestinal function and health– A review. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2021-0015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chicken Farmers of Canada has been progressively phasing out prophylactic use of antibiotics in broiler chicken production. Consequently, hatcheries, veterinarians, and nutritionists have been mandated to contend with less reliance on use of preventive antibiotics. A topical concern is the increased risk of proliferation of enteric pathogens leading to poor performance, increased mortality and compromised welfare. Moreover, the gut harbors several taxa such as Campylobacter and Salmonella capable of causing significant illnesses in humans via contaminated poultry products. This has created opportunity for research and development of dietary strategies designed to modulate gastrointestinal environment for enhanced performance and food safety. Albeit with inconsistent responses, literature data suggests that dietary strategies such as feed enzymes, probiotics/prebiotics and phytogenic feed additives can bolster gut health and function in broiler chickens. However, much of the efficacy data was generated at controlled research settings that vary significantly with the complex commercial broiler production operations due to variation in dietary, health and environmental conditions. This review will summarize implications of mandated restrictions on the preventative use of antibiotics and emerging Canadian broiler production programs to meet processor specifications. Challenges and opportunities for integrating alternative dietary strategies in commercial broiler production settings will be highlighted.
Collapse
Affiliation(s)
- Lisa Bean-Hodgins
- New-Life Mills, A division of Parrish & Heimbecker, Cambridge , Ontario, Canada
- University of Guelph, 3653, Department of Animal Biosciences, Guelph, Ontario, Canada
| | - Elijah G. Kiarie
- University of Guelph, Department of Animal Biosciences, 50 Stone Road East, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
35
|
Gilroy R, Ravi A, Getino M, Pursley I, Horton DL, Alikhan NF, Baker D, Gharbi K, Hall N, Watson M, Adriaenssens EM, Foster-Nyarko E, Jarju S, Secka A, Antonio M, Oren A, Chaudhuri RR, La Ragione R, Hildebrand F, Pallen MJ. Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture. PeerJ 2021; 9:e10941. [PMID: 33868800 PMCID: PMC8035907 DOI: 10.7717/peerj.10941] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/22/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The chicken is the most abundant food animal in the world. However, despite its importance, the chicken gut microbiome remains largely undefined. Here, we exploit culture-independent and culture-dependent approaches to reveal extensive taxonomic diversity within this complex microbial community. RESULTS We performed metagenomic sequencing of fifty chicken faecal samples from two breeds and analysed these, alongside all (n = 582) relevant publicly available chicken metagenomes, to cluster over 20 million non-redundant genes and to construct over 5,500 metagenome-assembled bacterial genomes. In addition, we recovered nearly 600 bacteriophage genomes. This represents the most comprehensive view of taxonomic diversity within the chicken gut microbiome to date, encompassing hundreds of novel candidate bacterial genera and species. To provide a stable, clear and memorable nomenclature for novel species, we devised a scalable combinatorial system for the creation of hundreds of well-formed Latin binomials. We cultured and genome-sequenced bacterial isolates from chicken faeces, documenting over forty novel species, together with three species from the genus Escherichia, including the newly named species Escherichia whittamii. CONCLUSIONS Our metagenomic and culture-based analyses provide new insights into the bacterial, archaeal and bacteriophage components of the chicken gut microbiome. The resulting datasets expand the known diversity of the chicken gut microbiome and provide a key resource for future high-resolution taxonomic and functional studies on the chicken gut microbiome.
Collapse
Affiliation(s)
| | | | - Maria Getino
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Isabella Pursley
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Daniel L. Horton
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | | | - Dave Baker
- Quadram Institute Bioscience, Norwich, UK
| | - Karim Gharbi
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| | - Mick Watson
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | | | - Sheikh Jarju
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Banjul, The Gambia
| | - Arss Secka
- West Africa Livestock Innovation Centre, Banjul, The Gambia
| | - Martin Antonio
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Banjul, The Gambia
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roy R. Chaudhuri
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | | | - Falk Hildebrand
- Quadram Institute Bioscience, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Mark J. Pallen
- Quadram Institute Bioscience, Norwich, UK
- School of Veterinary Medicine, University of Surrey, Guildford, UK
- University of East Anglia, Norwich, UK
| |
Collapse
|
36
|
Assessment of Microbiota Modulation in Poultry to Combat Infectious Diseases. Animals (Basel) 2021; 11:ani11030615. [PMID: 33652795 PMCID: PMC7996944 DOI: 10.3390/ani11030615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 11/26/2022] Open
Abstract
Simple Summary This research was designed to evaluate the differences in caecal microbiota in broilers reared under two different farm conditions (commercial vs. optimal) during the growing period, using 16 rRNA sequencing analysis. Microbiota composition is affected by stress; for this reason, it could be considered a biomarker of poultry welfare and health. The main results demonstrated that no statistically significant differences were found between groups on microbiota composition from the beginning to the mid-period. However, significant differences were found at the end of growing, when a higher level of microbiota diversity was observed in the optimal farm conditions group. In conclusion, microbiota composition could be an interesting tool to evaluate new management conditions at field level, and could be developed to improve animal welfare during the growing period. Abstract Poultry is one of the main agricultural sub-sectors worldwide. However, public concern regarding animal welfare and antimicrobial resistance has risen in recent years. Due to the influence of management practices on microbiota, it might be considered to evaluate poultry welfare and health. Therefore, the objective of this research was to analyse the influence on microbiota balance of broilers under commercial and optimal farm conditions, using 16S rRNA sequencing analysis. The research was performed in two identical poultry houses (commercial vs. optimal). Results showed a higher level of microbiota complexity in the group reared under optimal farm conditions at the end of rearing. Regarding microbiota composition, Firmicutes was the dominant phylum during the entire growing period. However, the second most prevalent phylum was Proteobacteria at the arrival day, and Bacteroidetes from the mid-period onward in both groups. Moreover, the most predominant genera identified were Oscillospira, Ruminococcus, Bacteroides, and Coprococcus. In conclusion, it is necessary to optimize farm management as much as possible. Using gut microbiota diversity and composition as biomarkers of animal health could be an important tool for infectious disease control, with the aim of reducing the administration of antibiotics at field level.
Collapse
|
37
|
Juricova H, Matiasovicova J, Kubasova T, Cejkova D, Rychlik I. The distribution of antibiotic resistance genes in chicken gut microbiota commensals. Sci Rep 2021; 11:3290. [PMID: 33558560 PMCID: PMC7870933 DOI: 10.1038/s41598-021-82640-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Antibiotic resistance in bacterial pathogens or several indicator bacteria is commonly studied but the extent of antibiotic resistance in bacterial commensals colonising the intestinal tract is essentially unknown. In this study, we aimed to investigate the presence of horizontally acquired antibiotic resistance genes among chicken gut microbiota members in 259 isolates with known whole genomic sequences. Altogether 124 isolates contained at least one gene coding for antibiotic resistance. Genes coding for the resistance to tetracyclines (detected in 101 isolates), macrolide-lincosamide-streptogramin B antibiotics (28 isolates) and aminoglycosides (25 isolates) were the most common. The most frequent tetracycline resistance genes were tet(W), tet(32), tet(O) and tet(Q). Lachnospiraceae and Ruminococcaceae frequently encoded tet(W). Lachnospiraceae commonly coded also for tet(32) and tet(O). The tet(44) gene was associated with Erysipelotrichaceae and tet(Q) was detected in the genomes of Bacteroidaceae and Porphyromonadaceae. Without any bias we have shown that antibiotic resistance is quite common in gut commensals. However, a comparison of codon usage showed that the above-mentioned families represent the most common current reservoirs but probably not the original host of the detected resistances.
Collapse
Affiliation(s)
| | | | | | - Darina Cejkova
- Veterinary Research Institute, Brno, Czech Republic.,Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Ivan Rychlik
- Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
38
|
Chica Cardenas LA, Clavijo V, Vives M, Reyes A. Bacterial meta-analysis of chicken cecal microbiota. PeerJ 2021; 9:e10571. [PMID: 33505795 PMCID: PMC7792525 DOI: 10.7717/peerj.10571] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/23/2020] [Indexed: 01/08/2023] Open
Abstract
Poultry production is an industry that generates 90,000 metric tons of chicken meat worldwide. Thus, optimizing chicken growth and sustainable production is of great importance. A central factor determining not only production parameters, but also stability of the immune system and chicken health, is the diversity and variability of the microbiota present throughout the gastrointestinal tract. To date, several studies have investigated the relationship between bacterial communities and the gut microbiome, with limited data to compare. This study aims to create a bacterial meta-analysis based on studies using amplicon sequencing with Illumina sequencing technologies in order to build a baseline for comparison in future analyses of the cecal bacterial composition in chicken. A systematic literature review was performed (SYRF ID: e84f0468-e418-4eec-9da4-b517f1b4809d. Full project URL: https://app.syrf.org.uk/projects/e84f0468-e418-4eec-9da4-b517f1b4809d/detail). From all the available and analyzed manuscripts only nine contained full raw-sequence data available and the corresponding metadata. A total of 324 samples, comprising three different regions within the 16S rRNA gene, were analyzed. Due to the heterogeneity of the data, each region was analyzed independently and an effort for a joint analysis was performed as well. Taxonomic profiling revealed 11 phyla, with Firmicutes as the most prevalent phylum, followed by Bacteroidetes and Proteobacteria. At genus level, 109 genera were found. Shannon metric for alpha diversity showed that factors like type of chickens (Commercial or experimental) and 16S rRNA gene subregion have negligible effect on diversity. Despite the large number of parameters that were taken into account, the identification of common bacteria showed five genera to be common for all sets in at least 50% of the samples. These genera are highly associated to cellulose degradation and short chain fatty acids synthesis. In general, it was possible to identify some commonalities in the bacterial cecal microbial community despite the extensive variability and factors differing from one study to another.
Collapse
Affiliation(s)
- Luis Alberto Chica Cardenas
- Research Group on Computational Biology and Microbial Ecology, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia.,Max Planck Tandem Group in Computational Biology, Universidad de Los Andes, Bogotá, Colombia
| | - Viviana Clavijo
- Centro de Investigaciones Microbiológicas, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Martha Vives
- Centro de Investigaciones Microbiológicas, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Alejandro Reyes
- Research Group on Computational Biology and Microbial Ecology, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia.,Max Planck Tandem Group in Computational Biology, Universidad de Los Andes, Bogotá, Colombia.,The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
39
|
Richards-Rios P, Fothergill J, Bernardeau M, Wigley P. Development of the Ileal Microbiota in Three Broiler Breeds. Front Vet Sci 2020; 7:17. [PMID: 32083101 PMCID: PMC7002466 DOI: 10.3389/fvets.2020.00017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
The development and succession of the microbiota in ileal mucus and lumen samples from three breeds of broiler chicken (Cobb 500, n = 36; Hubbard JA87, n = 38; and Ross 308, n = 36) was observed between 3 and 42 days post hatch (d.p.h). Chicks were housed in the same room of a climate-controlled, biosecure chicken housing unit. Between 0 and 14 d.p.h, chicks were kept in three circular brooder pens ensuring a mixture of breeds in each brooder. From 22 d.p.h, chicks were removed from the brooders and kept in the same room. DNA was extracted from a pooled sample of ileal mucus and luminal contents taken from five birds of each breed at 3, 7, 14, 21, 28, and 42 d.p.h. High-throughput Illumina sequencing was performed for the V4 hypervariable region of the 16S rRNA gene. The initial microbiota in the ileum varied between breeds. The common features were a low diversity and general dominance by one or two taxa such as Enterococcus or Escherichia with relatively low numbers of Lactobacillus. Escherichia became the most abundant genus in samples where Enterococcus was previously the dominant taxa. The next phase of development was marked by an increase in the abundance of Candidatus Arthromitus in the mucus and Lactobacillus in the lumen. The high abundance of Candidatus Arthromitus persisted between 7 and 14 d.p.h after which Lactobacillus became the most abundant genus in both the mucus and lumen. Dominance of the ileal microbiota by Lactobacillus was a transient feature. By 42 d.p.h, the relative abundance of Lactobacillus had fallen while a range of other taxa including Escherichia, Turicibacter, and members of Clostridiales increased. This general pattern was followed by all breeds, however, the rate at which succession occurred differed as Ross matured quicker than Cobb with Hubbard as an intermediate.
Collapse
Affiliation(s)
- Peter Richards-Rios
- Department of Health and Life Sciences, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Jo Fothergill
- Department of Health and Life Sciences, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Marion Bernardeau
- DuPont Industrial Biosciences, Genencor International BV, Leiden, Netherlands
| | - Paul Wigley
- Department of Health and Life Sciences, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
40
|
Rychlik I. Composition and Function of Chicken Gut Microbiota. Animals (Basel) 2020; 10:ani10010103. [PMID: 31936291 PMCID: PMC7022619 DOI: 10.3390/ani10010103] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Chickens evolved for millions of years to be hatched in a nest in contact with an adult hen. However, current commercial production of chickens is based on hatching chicks in a clean hatchery environment in the absence of adult hens. The ancestors of domestic chickens inhabited a living environment different from that used for current commercial production. Currently, the lifespan of broilers is around 5 weeks, the lifespan of egg layers is around one year while chickens can live for 15–20 years. This means that studies on chicken–microbiota interactions are of specific importance. The intestinal tract of commercially hatched chicks is gradually colonised from environmental sources only, however, if the chicks are provided experimentally with microbiota from a hen they can be colonised by adult-type microbiota from the very first days of life and become resistant to infections with pathogenic Escherichia coli, Clostridium perfringens, or Salmonella. Because of such specificities in the interactions of chickens with their gut microbiota, current knowledge in this area is critically presented in this review. Abstract Studies analyzing the composition of gut microbiota are quite common at present, mainly due to the rapid development of DNA sequencing technologies within the last decade. This is valid also for chickens and their gut microbiota. However, chickens represent a specific model for host–microbiota interactions since contact between parents and offspring has been completely interrupted in domesticated chickens. Nearly all studies describe microbiota of chicks from hatcheries and these chickens are considered as references and controls. In reality, such chickens represent an extreme experimental group since control chicks should be, by nature, hatched in nests in contact with the parent hen. Not properly realising this fact and utilising only 16S rRNA sequencing results means that many conclusions are of questionable biological relevance. The specifics of chicken-related gut microbiota are therefore stressed in this review together with current knowledge of the biological role of selected microbiota members. These microbiota members are then evaluated for their intended use as a form of next-generation probiotics.
Collapse
Affiliation(s)
- Ivan Rychlik
- Department of Immunology, Veterinary Research Institute, 621 00 Brno, Czech Republic
| |
Collapse
|
41
|
Abstract
This article is a review of the most important, accessible, and relevant literature published between April 2018 and April 2019 in the field of Helicobacter species other than Helicobacter pylori. The initial part of the review covers new insights regarding the presence of gastric and enterohepatic non-H. pylori Helicobacter species (NHPH) in humans and animals, while the subsequent section focuses on the progress in our understanding of the pathogenicity and evolution of these species. Over the last year, relatively few cases of gastric NHPH infections in humans were published, with most NHPH infections being attributed to enterohepatic Helicobacters. A novel species, designated "Helicobacter caesarodunensis," was isolated from the blood of a febrile patient and numerous cases of human Helicobacter cinaedi infections underlined this species as a true emerging pathogen. With regard to NHPH in animals, canine/feline gastric NHPH cause little or no harm in their natural host; however they can become opportunistic when translocated to the hepatobiliary tract. The role of enterohepatic Helicobacter species in colorectal tumors in pets has also been highlighted. Several studies in rodent models have further elucidated the mechanisms underlying the development of NHPH-related disease, and the extra-gastric effects of a Helicobacter suis infection on brain homeostasis was also studied. Comparative genomics facilitated a breakthrough in the evolutionary history of Helicobacter in general and NHPH in particular. Investigation of the genome of Helicobacter apodemus revealed particular traits with regard to its virulence factors. A range of compounds including mulberries, dietary fiber, ginseng, and avian eggs which target the gut microbiota have also been shown to affect Helicobacter growth, with a potential therapeutic utilization and increase in survival.
Collapse
Affiliation(s)
- Armelle Ménard
- INSERM, UMR1053, Bordeaux Research in Translational Oncology, BaRITOn, Université de Bordeaux, Bordeaux, France
| | - Annemieke Smet
- Laboratorium of Experimental Medicine and Pediatrics, Department of Translational Research in Immunology and Inflammation, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk (Antwerp), Belgium
| |
Collapse
|
42
|
Chen L, Zhong R, Zhang L, Zhang H. The Chronic Effect of Transgenic Maize Line with mCry1Ac or maroACC Gene on Ileal Microbiota Using a Hen Model. Microorganisms 2019; 7:microorganisms7030092. [PMID: 30909622 PMCID: PMC6463162 DOI: 10.3390/microorganisms7030092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/03/2019] [Accepted: 03/12/2019] [Indexed: 01/16/2023] Open
Abstract
The experiment was to determine the chronic effects of two transgenic maize lines that contained the mCry1Ac gene from the Bacillus thuringiensis strain (BT) and the maroACC gene from Agrobacterium tumefaciens strain (CC), respectively, on ileal microbiota of laying hens. Seventy-two laying hens were randomly assigned to one of the three dietary treatments for 12 weeks, as follows: (1) nontransgenic near-isoline maize-based diet (CT diet), (2) BT maize-based diet (BT diet), and (3) CC maize-based diet (CC diet). Ileum histological examination did not indicate a chronic effect of two transgenic maize diets. Few differences were observed in any bacterial taxa among the treatments that used high-throughput 16S rRNA gene sequencing. The only differences that were observed for bacterial genera were that Bifidobacterium belong within the Bifidobacteriaceae family tended to be greater (p = 0.114) abundant in hens fed the transgenic maize-based diet than in hens fed the CT diet. Birds that consumed the CC maize diet tended to have less abundance (p = 0.135) of Enterobacteriaceae family in the ileum than those that consumed the CT maize diet. These results indicate the lack of adverse effects of the BT maize and the CC maize lines on the ileal microbiota of hens for long term and provide important data regarding biosafety assessment of the transgenic maize lines.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Lilan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|