1
|
Sun D, Xu C, Liu Y, Dai Z, Pan Z, Chen R, Guo R, Chen F, Shi Z, Ying S. The influence of relative humidity during the first 21 days post-hatch on the production performance, biochemical indices, and meat quality of Pekin ducks. Poult Sci 2024; 103:104473. [PMID: 39504820 PMCID: PMC11570727 DOI: 10.1016/j.psj.2024.104473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
This study aims to investigate the effects of different relative humidity (RH) during 4-21d of Beijing ducks on their condition at 42 d. A total of 48 Pekin duck were randomly allotted into 4 treatments (A:RH60 %, B:RH67 %,C:RH74 %,D:RH81 %), each having 3 replicates of 4 ducks. Different humidity treatments were applied from 4 to 21 days. At 42 d, there were no significant differences (P > 0.05) in body weight (BW), average daily gain (ADG), average daily feed intake (ADFI), and feed conversion ratio (FCR) among the 4 groups. Oblique body length in D was significantly higher than that in A (P < 0.05). Compared with A, the chest depth of the other groups was significantly increased, and the abdominal fat weight of B and C was significantly increased (p < 0.05). Liver weight and liver index in C and D significantly higher than that in B (p < 0.05). Abdominal fat ratio in B was significantly higher than that in A (P < 0.05). Cholesterol (CHOL) in D was significantly higher than that in A and C (P < 0.05), triglyceride (TG) in C was significantly higher than that in A and B (P < 0.05), and low-density lipoprotein cholesterol (LDL-C) in B was significantly higher than that in A, C, and D (P < 0.05). pH in B was significantly higher than that in A (P < 0.05), brightness (L*) in A was significantly higher than that in B and C (P < 0.05), redness (a*) in B and C was significantly higher than that in A and D (P < 0.05), and yellowness (b*) in C was significantly lower than that in A and D (P < 0.05).The results indicate that the RH of environment during the brooding period has no impact on duck production performance but induces some oxidative stress damage and changes in meat quality. Additionally, ducks subjected to different RH treatments during the brooding period exhibit varying adaptability to the same environment as they mature.
Collapse
Affiliation(s)
- Dongyue Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China; Institute of Animal Science, Animal Husbandry Research Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Congcong Xu
- Institute of Animal Science, Animal Husbandry Research Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, PR China
| | - Yi Liu
- Institute of Animal Science, Animal Husbandry Research Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; College of Life Sciences, Jiangsu University, Zhenjiang 212013, PR China
| | - Zichun Dai
- Institute of Animal Science, Animal Husbandry Research Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Ziyi Pan
- Institute of Animal Science, Animal Husbandry Research Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Rong Chen
- Institute of Animal Science, Animal Husbandry Research Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Rihong Guo
- Institute of Animal Science, Animal Husbandry Research Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Fang Chen
- Institute of Animal Science, Animal Husbandry Research Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Zhendan Shi
- Institute of Animal Science, Animal Husbandry Research Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, PR China
| | - Shijia Ying
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China; Institute of Animal Science, Animal Husbandry Research Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, PR China.
| |
Collapse
|
2
|
Lesiów T, Xiong YL. Heat/Cold Stress and Methods to Mitigate Its Detrimental Impact on Pork and Poultry Meat: A Review. Foods 2024; 13:1333. [PMID: 38731703 PMCID: PMC11083837 DOI: 10.3390/foods13091333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
This paper aims to provide an updated review and current understanding of the impact of extreme temperatures-focusing on heat stress (HS)-on the quality of pork and poultry meat, particularly amidst an unprecedented global rise in environmental temperatures. Acute or chronic HS can lead to the development of pale, soft, and exudative (PSE) meat during short transportation or of dark, firm, and dry (DFD) meat associated with long transportation and seasonal changes in pork and poultry meat. While HS is more likely to result in PSE meat, cold stress (CS) is more commonly linked to the development of DFD meat. Methods aimed at mitigating the effects of HS include showering (water sprinkling/misting) during transport, as well as control and adequate ventilation rates in the truck, which not only improve animal welfare but also reduce mortality and the incidence of PSE meat. To mitigate CS, bedding on trailers and closing the tracks' curtains (insulation) are viable strategies. Ongoing efforts to minimize meat quality deterioration due to HS or CS must prioritize the welfare of the livestock and focus on the scaleup of laboratory testing to commercial applications.
Collapse
Affiliation(s)
- Tomasz Lesiów
- Department of Agri-Engineering and Quality Analysis, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland
| | - Youling L. Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA;
| |
Collapse
|
3
|
Xu C, Sun D, Liu Y, Pan Z, Dai Z, Chen F, Guo R, Chen R, Shi Z, Ying S. Effects of ambient temperature on growth performance, slaughter traits, meat quality and serum antioxidant function in Pekin duck. Front Vet Sci 2024; 11:1363355. [PMID: 38601909 PMCID: PMC11005821 DOI: 10.3389/fvets.2024.1363355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/26/2024] [Indexed: 04/12/2024] Open
Abstract
The present study investigated the effects of temperature on growth performance, slaughtering traits, meat quality and antioxidant function of Pekin ducks from 21-42 d of age. Single factor analysis of variance was used in this experiment, 144 21 d-old Pekin ducks were randomly allotted to 4 environmentally controlled chambers: T20 (20°C), T23 (23°C), T26 (26°C) and T29 (29°C), with 3 replicates in each group (12 ducks in each replicate), the relative humidity of all groups is 74%. During the 21-day trial period, feed and water were freely available. At 42 d, the BW (body weight) and ADG (average daily gain) of T26 were significantly lower than T20 (p < 0.05), and the T29 was significantly lower than T20 and T23 (p < 0.05). The ADFI (average daily feed intake) of T26 and T29 were significantly lower than T20 and T23 (p < 0.05). Compared to the T29, the T20 showed a significant increase oblique body length and chest width, and both the keel length and thigh muscle weight significantly increased in both the T20 and T23, while the pectoral muscle weight increased significantly in other groups (p < 0.05). The cooking loss of the T29 was the lowest (p < 0.05). The T-AOC (total antioxidant capacity) of T29 was significantly higher than the other groups (p < 0.05), the SOD (superoxide dismutase) in the T29 was significantly higher than the T23 and T26 (p < 0.05). In conditions of 74% relative humidity, the BW and ADFI of Pekin ducks significantly decrease when the environmental temperature exceeds 26°C, and the development of body size and muscle weight follows this pattern. The growth development and serum redox state of Pekin ducks are more ideal and stable at temperatures of 20°C and 23°C.
Collapse
Affiliation(s)
- Congcong Xu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Animal Science and Technology, Beijing University of Agricultural, Beijing, China
| | - Dongyue Sun
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yi Liu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ziyi Pan
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zichun Dai
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fang Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rihong Guo
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rong Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhendan Shi
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, China
| | - Shijia Ying
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, China
| |
Collapse
|
4
|
Albert F, Kovács-Weber M, Bodnár Á, Pajor F, Egerszegi I. Seasonal Effects on the Performance of Finishing Pigs' Carcass and Meat Quality in Indoor Environments. Animals (Basel) 2024; 14:259. [PMID: 38254428 PMCID: PMC10812434 DOI: 10.3390/ani14020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Most retailers in EU countries pay pig breeders for their animals' lean meat percentage, which does not align fully with measures of pork quality (such as colour). In this study, we investigated the effects of season (summer vs. autumn) on finishing pigs' performance, carcass characteristics, and meat quality parameters in 24 slaughter pigs. Growing performance traits (live weights, average daily weight gain), slaughter values (warm and cold carcass weights, trunk length, fat thickness) and meat quality parameters (pH at 45 min and 24 h postmortem, colour, drip loss, thawing loss, cooking loss, shear force, and meat composition) were recorded. Seasonal differences were more pronounced for the initial age, the number of days in the growing-finishing phase, and the average daily gain. There was also a significant difference in the trunk length between groups, the fat thickness on withers and loin, and also in mean fat thickness. A significant difference was found in the case of pH, total drip loss, and meat colour (L*). The intramuscular fat and collagen content of meat was significantly higher in summer; in contrast, the protein content of meat samples was considerably lower in summer. In conclusion, seasonal effects on finishers' performance, lean meat values, and several meat quality parameters highlight the importance of more profound seasonal settings of climate control to fulfil the progressively changing quantitative and qualitative requests of pork sector participants from farm to fork.
Collapse
Affiliation(s)
| | | | | | - Ferenc Pajor
- Department of Animal Husbandry Technology and Animal Welfare, Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly 1, 2100 Gödöllő, Hungary; (F.A.); (M.K.-W.); (Á.B.); (I.E.)
| | | |
Collapse
|
5
|
Che S, Susta L, Barbut S. Effects of broiler chilling methods on the occurrence of pale, soft, exudative (PSE) meat and comparison of detection methods for PSE meat using traditional and Nix colorimeters. Poult Sci 2023; 102:102907. [PMID: 37579649 PMCID: PMC10448338 DOI: 10.1016/j.psj.2023.102907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 08/16/2023] Open
Abstract
The aims of this study were to i) estimate the occurrence of pale, soft, and exudative (PSE) meat in modern commercial Ontario broiler flocks, ii) determine the effects of the chilling method (water vs. air) on PSE meat, and iii) investigate a new inexpensive colorimeter (10% of the price of traditional color meters), the Nix Color Sensor, as an objective color measurement of chicken meat. Between June 2019 to March 2020, a total of 17 different broiler flocks were processed. The color of 1,700 boneless skinless Pectoralis major muscles was randomly measured (100/flock), where 255 samples were also measured for pH, water-holding capacity (WHC), cooking loss, and penetration force. In addition, a traditional Minolta colorimeter was used to measure random 95 samples from a single water-chilled flock and subsequently compared the values obtained with the Nix Color Sensor. Strong correlations of L* values (rho = 0.75; P < 0.001), a* values (rho = 0.72; P < 0.001), and b* values (rho = 0.80; P < 0.001) were observed. When an L* value of 43 was used as the cut-off for the Nix, 12.5% of fillets were classified as PSE meat. Statistical differences (P < 0.05) were observed between the air and water-chill methods for L*, pH, and WHC. However, there were no significant differences observed between the 2 methods for cooking loss and penetration force values. The study indicated that PSE meat is still a challenge in Ontario broilers, and that the L*, pH, and WHC of breast meat (all indicate meat quality) are affected by the chilling method. In addition, the Nix was found to be an affordable, objective, and convenient sensor for measuring chicken meat color.
Collapse
Affiliation(s)
- Sunoh Che
- Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Shai Barbut
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Adaptation Physiology Group, Wageningen University, The Netherlands.
| |
Collapse
|
6
|
Maynard CJ, Maynard CW, Mullenix GJ, Ramser A, Greene ES, Bedford MR, Dridi S. Impact of Phytase Supplementation on Meat Quality of Heat-Stressed Broilers. Animals (Basel) 2023; 13:2043. [PMID: 37370553 DOI: 10.3390/ani13122043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Heat stress (HS) is one of the most challenging stressors to poultry production sustainability. The adverse effects of HS range from feed intake and growth depression to alteration of meat quality and safety. As phytase supplementation is known to improve nutrient utilization and consequently growth, we undertook the present study to evaluate the effects of dietary phytase on growth and meat quality in heat-stressed broilers. A total of 720 day-old hatch Cobb 500 chicks were assigned to 24 pens within controlled environmental chambers and fed three diets: Negative Control (NC), Positive Control (PC), and NC diet supplemented with 2000 phytase units (FTU)/kg) of quantum blue (QB). On day 29, birds were exposed to two environmental conditions: thermoneutral (TN, 25 °C) or cyclic heat stress (HS, 35 °C, 8 h/d from 9 a.m. to 5 p.m.) in a 3 × 2 factorial design. Feed intake (FI), water consumption (WI), body weight (BW), and mortality were recorded. On day 42, birds were processed, carcass parts were weighed, and meat quality was assessed. Breast tissues were collected for determining the expression of target genes by real-time quantitative PCR using the 2-ΔΔCt method. HS significantly increased core body temperature, reduced feed intake and BW, increased water intake (WI), elevated blood parameters (pH, SO2, and iCa), and decreased blood pCO2. HS reduced the incidence of woody breast (WB) and white striping (WS), significantly decreased drip loss, and increased both 4- and 24-h postmortem pH. Instrumental L* and b* values were reduced (p < 0.05) by the environmental temperature at both 4- and 24-h postmortem. QB supplementation reduced birds' core body temperature induced by HS and improved the FCR and water conversion ratio (WCR) by 1- and 0.5-point, respectively, compared to PC under HS. QB increased blood SO2 and reduced the severity of WB and WS under TN conditions, but it increased it under an HS environment. The abovementioned effects were probably mediated through the modulation of monocarboxylate transporter 1, heat shock protein 70, mitogen-activated protein kinase, and/or glutathione peroxidase 1 gene expression, however, further mechanistic studies are warranted. In summary, QB supplementation improved growth performance and reduced muscle myopathy incidence under TN conditions. Under HS conditions, however, QB improved growth performance but increased the incidence of muscle myopathies. Therefore, further QB titration studies are needed.
Collapse
Affiliation(s)
- Clay J Maynard
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Craig W Maynard
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
- Bell & Evans, Fredericksburg, PA 17026, USA
| | - Garrett J Mullenix
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Alison Ramser
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Elizabeth S Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
7
|
Bejaoui B, Sdiri C, Ben Souf I, Belhadj Slimen I, Ben Larbi M, Koumba S, Martin P, M'Hamdi N. Physicochemical Properties, Antioxidant Markers, and Meat Quality as Affected by Heat Stress: A Review. Molecules 2023; 28:molecules28083332. [PMID: 37110566 PMCID: PMC10147039 DOI: 10.3390/molecules28083332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Heat stress is one of the most stressful events in livestock life, negatively impacting animal health, productivity, and product quality. Moreover, the negative impact of heat stress on animal product quality has recently attracted increasing public awareness and concern. The purpose of this review is to discuss the effects of heat stress on the quality and the physicochemical component of meat in ruminants, pigs, rabbits, and poultry. Based on PRISMA guidelines, research articles were identified, screened, and summarized based on inclusion criteria for heat stress on meat safety and quality. Data were obtained from the Web of Science. Many studies reported the increased incidences of heat stress on animal welfare and meat quality. Although heat stress impacts can be variable depending on the severity and duration, the exposure of animals to heat stress (HS) can affect meat quality. Recent studies have shown that HS not only causes physiological and metabolic disturbances in living animals but also alters the rate and extent of glycolysis in postmortem muscles, resulting in changes in pH values that affect carcasses and meat. It has been shown to have a plausible effect on quality and antioxidant activity. Acute heat stress just before slaughter stimulates muscle glycogenolysis and can result in pale, tender, and exudative (PSE) meat characterized by low water-holding capacity (WHC). The enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) act by scavenging both intracellular and extracellular superoxide radicals and preventing the lipid peroxidation of the plasma membrane. Therefore, understanding and controlling environmental conditions is crucial to successful animal production and product safety. The objective of this review was to investigate the effects of HS on meat quality and antioxidant status.
Collapse
Affiliation(s)
- Bochra Bejaoui
- Laboratory of Useful Materials, National Institute of Research and Pysico-Chemical Analysis (INRAP), Technopark of Sidi Thabet, Ariana 2020, Tunisia
- Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, Bizerte 7021, Tunisia
| | - Chaima Sdiri
- Research Laboratory of Ecosystems & Aquatic Resources, National Agronomic Institute of Tunisia, Carthage University, 43 Avenue Charles Nicolle, Tunis 1082, Tunisia
| | - Ikram Ben Souf
- Research Laboratory of Ecosystems & Aquatic Resources, National Agronomic Institute of Tunisia, Carthage University, 43 Avenue Charles Nicolle, Tunis 1082, Tunisia
| | - Imen Belhadj Slimen
- Department of Animal Sciences, National Agronomic Institute of Tunisia, Carthage University, 43 Avenue Charles Nicolle, Tunis 1082, Tunisia
- Laboratory of Materials, Molecules, and Application, Preparatory Institute for Scientific and Technical Studies, B.P. 51, La Marsa, Tunis 2078, Tunisia
| | - Manel Ben Larbi
- LR13AGR02, Higher School of Agriculture, University of Carthage, Mateur 7030, Tunisia
| | - Sidrine Koumba
- Unité Transformations & Agroressources, ULR7519, Université d'Artois-UniLaSalle, F-62408 Bethune, France
| | - Patrick Martin
- Unité Transformations & Agroressources, ULR7519, Université d'Artois-UniLaSalle, F-62408 Bethune, France
| | - Naceur M'Hamdi
- Research Laboratory of Ecosystems & Aquatic Resources, National Agronomic Institute of Tunisia, Carthage University, 43 Avenue Charles Nicolle, Tunis 1082, Tunisia
| |
Collapse
|
8
|
Bogucka J, Stadnicka K. Quality of poultry meat- the practical issues and knowledge based solutions. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2021-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Abstract
Animal protein is the most demanded and expensive source of nutritive protein, globally. Taking into account various types of poultry, the broiler (meat-type poultry) is widely accepted by various religious societies and relatively cheap amongst others animal protein sources. In particular, the chicken and turkey product is perceived to be healthier and of better quality due to a low content of fat, cholesterol and sodium compared to red meat. In order to maintain an unabated development and competitiveness of poultry industry, the priority is to focus on quality and safety of meat, during whole production and processing route. Consumers awareness of what should be considered a high quality product is constantly increasing, especially in the light of European and worldwide strategies to meet the common societal and environmental challenges, i.e. addressing the Zero Hunger goals, Green Deal and One Health concept. In this chapter, a common area of interest for a dialogue of poultry scientists and industrial practitioners is drawn from the background given on the consumer (demands and health)-centered issues.
Collapse
Affiliation(s)
- Joanna Bogucka
- The Independent Research Laboratory STANLAB LLC , Nakło nad Notecią , Poland
| | - Katarzyna Stadnicka
- Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Lu kasiewicza 1 , 85-821 , Bydgoszcz , Poland
| |
Collapse
|
9
|
Quality and Processability of Modern Poultry Meat. Animals (Basel) 2022; 12:ani12202766. [PMID: 36290153 PMCID: PMC9597840 DOI: 10.3390/ani12202766] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/03/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
The poultry meat industry has gone through many changes. It moved from growing dual-purpose birds (meat and egg production) taking ~110 days to reach 1.2 kg 100 years ago, to developing specialized meat breeds that grow to 2.5 kg within ~40 days. It also moved from selling ~80% whole birds to mostly selling cut up and further processed products in the Western world. This necessitated building large, centralized processing plants, capable of processing 15,000 birds per hr on a single line (60 years ago only 2500), that require higher bird uniformity (size, color, texture). Furthermore, consumer demand for convenient products resulted in introducing many cut-up fresh poultry (some companies have 500 SKU) and further processed products (chicken nuggets did not exist 50 years ago). Those developments were possible due to advancements in genetics, nutrition, medicine, and engineering at the farm and processing plant levels. Challenges keep on coming and today a rise in myopathies (e.g., so called woody breast, white striping, spaghetti meat), requires solutions from breeders, farmers, and processing plants, as more automation also requires more uniformity. This review focuses on the changes and challenges to the processing industry segment required to keep supplying high quality poultry to the individual consumer.
Collapse
|
10
|
Oxidative changes in cooled and cooked pale, soft, exudative (PSE) chicken meat. Food Chem 2022; 385:132471. [PMID: 35413659 DOI: 10.1016/j.foodchem.2022.132471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/19/2022] [Accepted: 02/12/2022] [Indexed: 11/23/2022]
Abstract
The mechanisms involved in the development of oxidative changes in pale, soft, exudative (PSE) chicken meat during storage in the dark at 4 °C for 5 days and after cooking at 80 °C for 30 min, light exposure and reheating were explored in this study. The results indicate that myoglobin, lipid and protein oxidation occurred concomitantly during both treatments in PSE chicken meat during storage, and each process seemed to promote the others. Transition metals and metmyoglobin played pivotal roles in the generation of free radicals that triggered lipid and protein oxidation in cooled and cooked PSE, respectively. In contrast, light played a secondary role as an oxidative inducer of these processes. Different pathways triggered the production of compounds from the interactions between oxidative reactions in cooled and cooked PSE chicken meat. The impact of these reactions on the functionality of PSE chicken meat requires further study.
Collapse
|
11
|
Ruixia L, Wei L, Wang Y, Wu F. AMP-activated protein kinase mediates glycolysis in post-mortem breast muscle of broilers. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2093138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Lan Ruixia
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Linlin Wei
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Yuchen Wang
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Fan Wu
- Department of Animal Science, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, P. R. China
| |
Collapse
|
12
|
Association of Serum Glucose, Serotonin, Aspartate Aminotransferase, and Calcium Levels with Meat Quality and Palatability Characteristics of Broiler Pectoralis Major Muscle. Animals (Basel) 2022; 12:ani12121567. [PMID: 35739904 PMCID: PMC9219423 DOI: 10.3390/ani12121567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
This study investigated the correlations between apoptosis-related blood biochemical parameters measured at exsanguination and the meat and sensory quality characteristics of broiler pectoralis major muscle. The concentration of serotonin showed a positive correlation with aspartate aminotransferase (AST) activity (p < 0.001) and a negative correlation with calcium content (p < 0.01). All serum parameters showed relationships with muscle pH at 15 min and/or 24 h postmortem (p < 0.05). Serum AST activity, which had a negative correlation with calcium content (p < 0.01), was positively related with muscle pH and negatively correlated with Warner−Bratzler shear force values (WBS, p < 0.05). Principal component analysis results revealed the associations between AST activity and meat quality traits, including pH24h, lightness, and WBS. Furthermore, cooked breast with higher AST activity and lower calcium level tended to exhibit higher scores of tenderness and overall acceptability than that with lower AST activity and higher calcium level (p < 0.05).
Collapse
|
13
|
Vanderhout RJ, Leishman EM, Abdalla EA, Barbut S, Wood BJ, Baes CF. Genetic Parameters of White Striping and Meat Quality Traits Indicative of Pale, Soft, Exudative Meat in Turkeys (Meleagris gallopavo). Front Genet 2022; 13:842584. [PMID: 35309137 PMCID: PMC8927805 DOI: 10.3389/fgene.2022.842584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the increasing prevalence of growth-related myopathies and abnormalities in turkey meat, the ability to include meat quality traits in poultry breeding strategies is an issue of key importance. In the present study, genetic parameters for meat quality traits and their correlations with body weight and meat yield were estimated using a population of purebred male turkeys. Information on live body, breast, thigh, and drum weights, breast meat yield, feed conversion ratio, breast lightness (L*), redness (a*), and yellowness (b*), ultimate pH, and white striping (WS) severity score were collected on 11,986 toms from three purebred genetic lines. Heritability and genetic and partial phenotypic correlations were estimated for each trait using an animal model with genetic line, hatch week-year, and age at slaughter included as fixed effects. Heritability of ultimate pH was estimated to be 0.34 ± 0.05 and a range of 0.20 ± 0.02 to 0.23 ± 0.02 for breast meat colour (L*, a*, and b*). White striping was also estimated to be moderately heritable at 0.15 ± 0.02. Unfavorable genetic correlations were observed between body weight and meat quality traits as well as white striping, indicating that selection for increased body weight and meat yield may decrease pH and increase the incidence of pale meat with more severe white striping. The results of this analysis provide insight into the effect of current selection strategies on meat quality and emphasize the need to include meat quality traits into future selection indexes for turkeys.
Collapse
Affiliation(s)
- Ryley J. Vanderhout
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Emily M. Leishman
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Emhimad A. Abdalla
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Shai Barbut
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Benjamin J. Wood
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
- Hybrid Turkeys, Kitchener, ON, Canada
- School of Veterinary Science, University of Queensland, Gatton, QLD, Australia
| | - Christine F. Baes
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- *Correspondence: Christine F. Baes,
| |
Collapse
|
14
|
Leishman EM, Vanderhout RJ, van Staaveren N, Barbut S, Mohr J, Wood BJ, Baes CF. Influence of Post Mortem Muscle Activity on Turkey Meat Quality. Front Vet Sci 2022; 9:822447. [PMID: 35265694 PMCID: PMC8900945 DOI: 10.3389/fvets.2022.822447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
Wing flapping and body movement can occur during the slaughter of poultry. Wing movement and flapping are driven primarily by the breast muscles (Pectoralis major and minor), and this muscle activity may have implications for meat quality. The objective of this study was to evaluate turkey post mortem activity during slaughter at a commercial poultry processing plant. Post mortem activity (during bleeding) was scored on 5,441 male turkeys, from six different genetic lines, using a 1–4 scale from none to severe wing flapping. Meat quality was measured on these birds in terms of pH (initial, ultimate, delta or change), color (L*, a*, b*), and physiochemical traits (drip loss, cooking loss, shear force). Linear mixed models were used to analyze the effect of activity (score 1–4), genetic line (A–F), and season (summer vs. autumn) on the nine meat quality traits. Post mortem activity influenced a*, drip loss, and shear force although the magnitude of the effects was small. There was an effect (P < 0.05) of genetic line on all the meat quality traits except for L*, cooking loss, and shear force. In general, larger, faster-growing lines had higher pH, but the relationship between the lines for the other traits is not as clear. Season affected all the meat quality traits, except for pHdelta, with meat having a higher pH, L*, b*, drip loss, cooking loss, and shear force in the summer. This study provides an exploratory assessment of post mortem activity in turkeys and identifies meat quality traits which are most affected while also accounting for the effects of genetic line and season. Although identified effect sizes are small, the cumulative effect on turkey meat quality may be more substantial.
Collapse
Affiliation(s)
- Emily M. Leishman
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | | | - Shai Barbut
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Jeff Mohr
- Hybrid Turkeys, Suite C, Kitchener, ON, Canada
| | - Benjamin J. Wood
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Hybrid Turkeys, Suite C, Kitchener, ON, Canada
- School of Veterinary Science, University of Queensland, Gatton, QLD, Australia
| | - Christine F. Baes
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern, Switzerland
- *Correspondence: Christine F. Baes
| |
Collapse
|
15
|
Liu J, Liu D, Wu X, Pan C, Wang S, Ma L. TMT Quantitative Proteomics Analysis Reveals the Effects of Transport Stress on Iron Metabolism in the Liver of Chicken. Animals (Basel) 2021; 12:ani12010052. [PMID: 35011158 PMCID: PMC8749932 DOI: 10.3390/ani12010052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Transport stress (TS) can impact the physiology and psychology of broilers, and this can be an important factor affecting liver iron metabolism in broilers. By establishing a transport model group, broilers (n = 144) reared under the same conditions were allocated into six groups and transported duration for 0, 0.5, 1, 2, 4, and 6 h. The results showed that the enrichment of iron content in the liver was the highest at a transport duration of 4 h, so the effect of transport duration of 4 h on iron metabolism was further investigated using TMT quantitative proteomic analysis. It was found that TS caused the enrichment of iron ions in the liver, TMT identified FTH1, IREB2, and HEPH as key proteins affecting iron metabolism, and key genes regulating iron homeostasis were validated using RT-PCR. Abstract Abnormal iron metabolism can cause oxidative stress in broilers, and transport stress (TS) may potentially influence iron metabolism. However, the mechanisms by which TS affects iron metabolism are unclear. This study used quantitative proteome analysis based on tandem mass tag (TMT) to investigate the effects of TS on liver iron metabolism in broilers. Broilers (n = 24) reared under the same conditions were selected randomly into the transported group for 4 h (T2) and non-transported group (T1). Results showed that the serum iron level and total iron-binding capacity of broilers in the T2 were significantly higher than those in the T1 (p < 0.05). The liver iron content of broilers in the T2 (0.498 ± 0.058 mg·gprot−1) was significantly higher than that in the T1 (0.357 ± 0.035 mg·gprot−1), and the iron-stained sections showed that TS caused the enrichment of iron in the liver. We identified 1139 differentially expressed proteins (DEPs). Twelve DEPs associated with iron metabolism were identified, of which eight were up-regulated, and four were down-regulated in T2 compared with T1. Prediction of the protein interaction network for DEPs showed that FTH1, IREB2, and HEPH play vital roles in this network. The results provide new insights into the effects of TS on broilers’ liver iron metabolism.
Collapse
Affiliation(s)
- Jun Liu
- School of Agriculture, Ningxia University, Yinchuan 750021, China;
| | - Dunhua Liu
- School of Agriculture, Ningxia University, Yinchuan 750021, China;
- School of Food & Wine, Ningxia University, Yinchuan 750021, China;
- Correspondence: or ; Tel.: +86-13995288707
| | - Xun Wu
- School of Food & Wine, Ningxia University, Yinchuan 750021, China;
| | - Cuili Pan
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China; (C.P.); (S.W.)
| | - Shuzhe Wang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China; (C.P.); (S.W.)
| | - Lu Ma
- Department of Business Management, Shizuishan Institute of Industry and Trade, Shizuishan 753000, China;
| |
Collapse
|
16
|
Ciborowska P, Michalczuk M, Bień D. The Effect of Music on Livestock: Cattle, Poultry and Pigs. Animals (Basel) 2021; 11:ani11123572. [PMID: 34944347 PMCID: PMC8698046 DOI: 10.3390/ani11123572] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary In times of intensified livestock production, the search for methods that reduce stress, which has an adverse impact on the health and welfare of their animals, has become a challenge for breeders and producers. Therefore, the possibility of using various musical genres to alleviate stress in chickens, cattle or pigs was considered. It has turned out that choosing a musical item is extremely important, as it can positively affect the health and production performance of animals by increasing the feeling of relaxation. The time of exposure to sounds and their intensity are important as well, and some authors propose to also pay attention to the frequency of sound waves. Music therapy, which was previously more widely deployed among humans, is increasingly used for farm animals as an element of enriching their living environment. Current research shows the importance of sound waves’ influence in animal production. Proper selection of the music genre, music intensity and tempo can reduce the adverse effects of noise and, thus, reduce the level of stress. It should be remembered, however, that silence is equally important and necessary for the welfare of animals. The paper presents literature findings regarding the influence of music on cattle, poultry and pigs. Abstract The welfare of animals, especially those kept in intensive production systems, is a priority for modern agriculture. This stems from the desire to keep animals healthy, to obtain a good-quality final product, and to meet the demands of today’s consumers, who have been increasingly persuaded to buy organic products. As a result, new sound-based methods have been pursued to reduce external stress in livestock. Music therapy has been known for thousands of years, and sounds were believed to improve both body and spirit. Today, they are mostly used to distract patients from their pain, as well as to treat depression and cardiovascular disorders. However, recent studies have suggested that appropriately selected music can confer some health benefits, e.g., by increasing the level and activity of natural killer cells. For use in livestock, the choice of genre, the loudness of the music and the tempo are all important factors. Some music tracks promote relaxation (thus improving yields), while others have the opposite effect. However, there is no doubt that enriching the animals’ environment with music improves their welfare and may also convince consumers to buy products from intensively farmed animals. The present paper explores the effects of music on livestock (cattle, poultry and pigs) on the basis of the available literature.
Collapse
|
17
|
Zhang M, Zhai C, Luo X, Lin H, Zhang M, Zhu L, Nair MN, Ahn DU, Liang R. An early-postmortem metabolic comparison among three extreme acute heat stress temperature settings in chicken breast muscle. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:4823-4829. [PMID: 34629547 PMCID: PMC8479024 DOI: 10.1007/s13197-021-05230-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/11/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Normally, preslaughter acute heat stress could accelerate postmortem glycolysis and impair chicken breast (pectoralis major muscle) quality. However, previous studies indicated that it might be different when the acute heat stress temperature rises to an extreme range (above 35 °C). Therefore, this study's objectives were to compare the pH decline, glycolytic enzyme activity, and AMP-activated protein kinase (AMPK) phosphorylation at early postmortem among three extreme acute heat stress temperature settings: a control group (36 °C) and two experimental groups (38 °C and 40 °C). Although the temperature did not affect glycogen phosphorylase a and pyruvate kinase activity, there was a decrease in pH decline rate, phosphofructokinase-1 activity, and phospho-AMPK-α[Thr172] within 4 h postmortem when temperature increased from 36 to 40 °C. Temperature also affected hexokinase activity, with the 36 °C-group having the highest activity. The results of the current study, for the first time, indicated that postmortem metabolic rate in chicken breast muscle could be changed by acute heat stress temperature setting at extreme range.
Collapse
Affiliation(s)
- Mingyue Zhang
- Laboratory of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, 61, Daizong Str, Tai’an, 271018 Shandong China
| | - Chaoyu Zhai
- Laboratory of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, 61, Daizong Str, Tai’an, 271018 Shandong China
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80521 USA
| | - Xin Luo
- Laboratory of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, 61, Daizong Str, Tai’an, 271018 Shandong China
| | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science & Technology, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Minghao Zhang
- Laboratory of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, 61, Daizong Str, Tai’an, 271018 Shandong China
| | - Lixian Zhu
- Laboratory of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, 61, Daizong Str, Tai’an, 271018 Shandong China
| | - Mahesh N. Nair
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80521 USA
| | - Dong U. Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011-3150 USA
| | - Rongrong Liang
- Laboratory of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, 61, Daizong Str, Tai’an, 271018 Shandong China
| |
Collapse
|
18
|
Leishman EM, Ellis J, van Staaveren N, Barbut S, Vanderhout RJ, Osborne VR, Wood BJ, Harlander-Matauschek A, Baes CF. Meta-analysis to predict the effects of temperature stress on meat quality of poultry. Poult Sci 2021; 100:101471. [PMID: 34607155 PMCID: PMC8496168 DOI: 10.1016/j.psj.2021.101471] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022] Open
Abstract
Temperature stress (TS) is a significant issue in poultry production, which has implications for animal health and welfare, productivity, and industry profitability. Temperature stress, including both hot (heat stress) and cold conditions (cold stress), is associated with increased incidence of meat quality defects such as pale, soft, and exudative (PSE) and dark, firm, and dry (DFD) meat costing poultry industries millions of dollars annually. A meta-analysis was conducted to determine the effect of ambient TS on meat quality parameters of poultry. Forty-eight publications which met specific criteria for inclusion were identified through a systematic literature review. Temperature stress was defined by extracting 2 descriptors for each treatment mean from the chosen studies: (1) temperature imposed for the experimental treatments (°C) and duration of temperature exposure. Treatment duration was categorized for analysis into acute (≤24 h) or chronic (>24 h) treatments. Meat quality parameters considered were color (L*-a*-b* scheme), pH (initial and ultimate), drip loss, cooking loss, and shear force. Linear mixed model analysis, including study as a random effect, was used to determine the effect of treatment temperature and duration on meat quality. Model evaluation was conducted by performing a k-fold cross-validation to estimate test error, and via assessment of the root mean square prediction error (RMSPE), and concordance correlation coefficient (CCC). Across both acute and chronic durations, treatment temperature was found to have a significant effect on all studied meat quality parameters. As treatment temperature increased, meat demonstrated characteristics of PSE meat and, as temperature decreased, meat demonstrated characteristics of DFD meat. The interaction between treatment temperature and duration was significant for most traits, however, the relative impact of treatment duration on the studied traits was inconsistent. Acute TS had a larger effect than chronic TS on ultimate pH, and chronic stress had a more considerable impact on color traits (L* and a*). This meta-analysis quantifies the effect of ambient TS on poultry meat quality. However, quantitative effects were generally small, and therefore may or may not be of practical significance from a processing perspective.
Collapse
Affiliation(s)
- Emily M Leishman
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Jennifer Ellis
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Nienke van Staaveren
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Shai Barbut
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Ryley J Vanderhout
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Vern R Osborne
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Benjamin J Wood
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1; Hybrid Turkeys, Kitchener, Ontario, Canada, N2K 3S2; School of Veterinary Science, University of Queensland, Gatton, Queensland 4343, Australia
| | | | - Christine F Baes
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1; Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern 3001, Switzerland.
| |
Collapse
|
19
|
Miranda-de la Lama GC, Bermejo-Poza R, Formoso-Rafferty N, Mitchell M, Barreiro P, Villarroel M. Long-Distance Transport of Finisher Pigs in the Iberian Peninsula: Effects of Season on Thermal and Enthalpy Conditions, Welfare Indicators and Meat pH. Animals (Basel) 2021; 11:ani11082410. [PMID: 34438868 PMCID: PMC8388748 DOI: 10.3390/ani11082410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Current legislation in the European Union places limits on live pig transport according to outside temperature, but less is known about the effects of sudden changes in the thermal microenvironment in trailers, particularly during long-distance transport. In this study, we measured the temperature and relative humidity inside livestock vehicles carrying 1920 Spanish finisher pigs (live weight 100 kg and 240 animals per journey) during eight long-distance (>15 h) commercial journeys to slaughter from northern Spain to Portugal in the summer and winter. Here, we report the rate of change in the air temperature (°C × min-1) and air enthalpies in the transport vehicle (kg water kg dry air-1). At sticking, blood samples were taken for to measure cortisol, glucose, and creatine kinase (CK) as stress response indicators, and the meat pH after 45 min and the pH after 24 h were also determined. The rate of change in the air temperature and enthalpy was higher inside the livestock vehicle during the winter months and was positively related with higher cortisol and glucose levels and lower pH after 45 min (p < 0.05). It is proposed that the rate of temperature change and air enthalpy represent useful integrated indices of thermal stress for pigs during transport.
Collapse
Affiliation(s)
- Genaro C. Miranda-de la Lama
- Department of Animal Production & Food Science, Agri-Food Institute of Aragon (IA2), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Correspondence: ; Tel.: +34-876554150
| | - Rubén Bermejo-Poza
- Department of Animal Production, Veterinary School, Complutense University of Madrid, 28036 Madrid, Spain;
| | - Nora Formoso-Rafferty
- Department of Animal Science, ETSIAAB Technical University of Madrid, 28036 Madrid, Spain; (N.F.-R.); (M.V.)
| | - Malcolm Mitchell
- Animal & Veterinary Sciences, Roslin Institute, Scotland’s Rural College (SRUC), Midlothian EH25 9RG, UK;
| | - Pilar Barreiro
- Department of Agroforestry Engineering, ETSIAAB Technical University of Madrid, 28036 Madrid, Spain;
| | - Morris Villarroel
- Department of Animal Science, ETSIAAB Technical University of Madrid, 28036 Madrid, Spain; (N.F.-R.); (M.V.)
| |
Collapse
|
20
|
Nawaz AH, Amoah K, Leng QY, Zheng JH, Zhang WL, Zhang L. Poultry Response to Heat Stress: Its Physiological, Metabolic, and Genetic Implications on Meat Production and Quality Including Strategies to Improve Broiler Production in a Warming World. Front Vet Sci 2021; 8:699081. [PMID: 34368284 PMCID: PMC8342923 DOI: 10.3389/fvets.2021.699081] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022] Open
Abstract
The continuous increase in poultry production over the last decades to meet the high growing demand and provide food security has attracted much concern due to the recent negative impacts of the most challenging environmental stressor, heat stress (HS), on birds. The poultry industry has responded by adopting different environmental strategies such as the use of environmentally controlled sheds and modern ventilation systems. However, such strategies are not long-term solutions and it cost so much for farmers to practice. The detrimental effects of HS include the reduction in growth, deterioration of meat quality as it reduces water-holding capacity, pH and increases drip loss in meat consequently changing the normal color, taste and texture of chicken meat. HS causes poor meat quality by impairing protein synthesis and augmenting undesirable fat in meat. Studies previously conducted show that HS negatively affects the skeletal muscle growth and development by changing its effects on myogenic regulatory factors, insulin growth factor-1, and heat-shock proteins. The focus of this article is in 3-fold: (1) to identify the mechanism of heat stress that causes meat production and quality loss in chicken; (2) to discuss the physiological, metabolic and genetic changes triggered by HS causing setback to the world poultry industry; (3) to identify the research gaps to be addressed in future studies.
Collapse
Affiliation(s)
- Ali H Nawaz
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Kwaku Amoah
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
| | - Qi Y Leng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Jia H Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Wei L Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Li Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
21
|
Raza SHA, Abdelnour SA, Dhshan AIM, Hassanin AA, Noreldin AE, Albadrani GM, Abdel-Daim MM, Cheng G, Zan L. Potential role of specific microRNAs in the regulation of thermal stress response in livestock. J Therm Biol 2021; 96:102859. [PMID: 33627286 DOI: 10.1016/j.jtherbio.2021.102859] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/07/2023]
Abstract
Thermal stress is known to have harmful effects on livestock productivity and can cause livestock enterprises considerable financial loss. These effects may be aggravated by climate change. Stress responses to nonspecific systemic actions lead to perturbation of molecular pathways in the organism. The molecular response is regulated in a dynamic and synchronized manner that assurances robustness and flexibility for the restoration of functional and structural homeostasis in stressed cells and tissues. MicroRNAs (miRNAs) are micro molecules of small non-coding RNA that control gene expression at the post-transcriptional level. Recently, various studies have discovered precise types of miRNA that regulate cellular machinery and homeostasis under various types of stress, suggesting a significant role of miRNA in thermal stress responses in animals. The miRNAs revealed in this paper could serve as promising candidates and biomarkers for heat stress and could be used as potential pharmacological targets for mitigating the consequences of thermal stress. Stress miRNA pathways may be associated with thermal stress, which offers some potential approaches to combat the negative impacts of thermal stress in livestock. The review provides new data that can assist the elucidation of the miRNA mechanisms that mediate animals' responses to thermal stress.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Sameh A Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Aya I M Dhshan
- Ministry of Health and Population, Health Affairs Directorate in Sharkia, Zagazig, Egypt
| | - Abdallah A Hassanin
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, The Scientific Campus, Damanhour University, 22511, Damanhour, Egypt
| | - Ghadeer M Albadrani
- 1Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
22
|
Aljarbou WA, England EM, Velleman SG, Reed KM, Strasburg GM. Phosphorylation state of pyruvate dehydrogenase and metabolite levels in turkey skeletal muscle in normal and pale, soft, exudative meats. Br Poult Sci 2021; 62:379-386. [PMID: 33225715 DOI: 10.1080/00071668.2020.1855629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
1. Turkey production has increased dramatically as genetic selection has succeeded in increasing body weight and muscle yield to fulfil increasing consumer demand. However, producing fast-growing, heavily muscled birds is linked to increased heat stress susceptibility and can result in pale, soft, exudative (PSE) meat. Previous studies indicated that pyruvate dehydrogenase kinase 4 (PDK4) is significantly reduced in PSE samples, suggesting this as a candidate gene associated with the development of this problem.2. The objective of this study was to determine whether pre-market thermal challenge results in PSE meat as a result of differential expression of PDK4. Two genetic lines of turkeys were used in this study; the Randombred Control Line 2 (RBC2) and a commercial line. Turkeys were exposed to a pre-market thermal challenge of 12 h at 35°C followed by 12 h at 27°C for 5 d. Birds were slaughtered and processed according to industry standards. Pectoralis major samples were categorised as PSE or normal based on marinade uptake and cook loss indicators. In the first experiment, the relative expression of pyruvate dehydrogenase (PDH) and the phosphorylation state of PDH in normal and PSE turkey meat were analysed by western blotting. In the second experiment, the same samples were used to measure metabolite levels at 5 min post-mortem, comparing the normal to the PSE samples.3. The results of the first experiment showed that PSE samples had significantly lower total PDH (P = 0.029) compared to normal meat. However, there was no significant difference in the degree of phosphorylation of sites 1, 2 or 3. In the second experiment, there were no significant differences in glycogen, lactate, glycolytic potential or ATP when comparing PSE to control samples.4. These results suggested that a reduction in PDK4 expression alone does not explain the development of PSE meat.
Collapse
Affiliation(s)
- W A Aljarbou
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA.,Executive Department of Monitoring and Risk Assessment, Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| | - E M England
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - S G Velleman
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, the Ohio State University, Wooster, OH, USA
| | - K M Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - G M Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
23
|
Oviedo-Rondón EO, Velleman SG, Wineland MJ. The Role of Incubation Conditions in the Onset of Avian Myopathies. Front Physiol 2020; 11:545045. [PMID: 33041856 PMCID: PMC7530269 DOI: 10.3389/fphys.2020.545045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
White striping, wooden breast, and spaghetti muscle have become common myopathies in broilers worldwide. Several research reports have indicated that the origin of these lesions is metabolic disorders. These failures in normal metabolism can start very early in life, and suboptimal incubation conditions may trigger some of the key alterations on muscle metabolism. Incubation conditions affect the development of muscle and can be associated with the onset of myopathies. A series of experiments conducted with broilers, turkeys, and ducks are discussed to overview primary information showing the main changes in breast muscle histomorphology, metabolism, and physiology caused by suboptimal incubation conditions. These modifications may be associated with current myopathies. Those effects of incubation on myopathy occurrence and severity have also been confirmed at slaughter age. The impact of egg storage, temperature profiles, oxygen concentrations, and time of hatch have been evaluated. The effects have been observed in diverse species, genetic lines, and both genders. Histological and muscle evaluations have detected that myopathies could be induced by extended hypoxia and high temperatures, and those effects depend on the genetic line. Thus, these modifications in muscle metabolic responses may make hatchlings more susceptible to develop myopathies during grow out due to thermal stress, high-density diets, and fast growth rates.
Collapse
Affiliation(s)
| | - Sandra G. Velleman
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
24
|
Oviedo-Rondón EO, Córdova-Noboa HA. The Potential of Guanidino Acetic Acid to Reduce the Occurrence and Severity of Broiler Muscle Myopathies. Front Physiol 2020; 11:909. [PMID: 32922302 PMCID: PMC7456982 DOI: 10.3389/fphys.2020.00909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/07/2020] [Indexed: 12/29/2022] Open
Abstract
Guanidinoacetic acid (GAA) is the biochemical precursor of creatine, which, in its phosphorylated form, is an essential high-energy carrier in the muscle. Although creatine has limited stability in feed processing, GAA is well established as a source of creatine in the animal feed industry. Published data demonstrate beneficial effects of GAA supplementation on muscle creatine, energy compounds, and antioxidant status, leading to improvements in broiler body weight gain, feed conversion ratio, and breast meat yield. Although increases in weight gain and meat yield are often associated with wooden breast (WB) and other myopathies, recent reports have suggested the potential of GAA supplementation to reduce the occurrence and severity of WB while improving breast meat yield. This disorder increases the hardness of the Pectoralis major muscle and has emerged as a current challenge to the broiler industry worldwide by impacting meat quality. Genetic selection, fast-growth rates, and environmental stressors have been identified to be the main factors related to this myopathy, but the actual cause of this disorder is still unknown. Creatine supplementation has been used as a nutritional prescription in the treatment of several muscular myopathies in humans and other animals. Because GAA is a common feed additive in poultry production, the potential of GAA supplementation to reduce broiler myopathies has been investigated in experimental and commercial scenarios. In addition, a few studies have evaluated the potential of creatine in plasma and blood enzymes related to creatine to be used as potential markers for WB. The evidence indicates that GAA could potentially minimize the incidence of WB. More data are warranted to understand the factors affecting the potential efficacy of GAA to reduce the occurrence and severity of myopathies.
Collapse
|
25
|
Piórkowska K, Żukowski K, Połtowicz K, Nowak J, Ropka-Molik K, Derebecka N, Wesoły J, Wojtysiak D. Identification of candidate genes and regulatory factors related to growth rate through hypothalamus transcriptome analyses in broiler chickens. BMC Genomics 2020; 21:509. [PMID: 32703165 PMCID: PMC7376931 DOI: 10.1186/s12864-020-06884-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background Intensive selection for growth rate (GR) in broiler chickens carries negative after-effects, such as aberrations in skeletal development and the immune system, heart failure, and deterioration of meat quality. In Poland, fast-growing chicken populations are highly non-uniform in term of growth rate, which is highly unprofitable for poultry producers. Therefore, the identification of genetic markers for boiler GR that could support the selection process is needed. The hypothalamus is strongly associated with growth regulation by inducing important pituitary hormones. Therefore, the present study used this tissue to pinpoint genes involved in chicken growth control. Results The experiment included male broilers of Ross 308 strain in two developmental stages, after 3rd and 6th week of age, which were maintained in the same housing and feeding conditions. The obtained results show for the overexpression of genes related to orexigenic molecules, such as neuropeptide Y (NPY), aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), galanin (GAL), and pro-melanin concentrating hormone (PMCH) in low GR cockerels. Conclusion The results reveal strong associations between satiety centre and the growth process. The present study delivers new insights into hypothalamic regulation in broiler chickens and narrows the area for the searching of genetic markers for GR. Graphical abstract ![]()
Collapse
Affiliation(s)
- Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Kacper Żukowski
- Department of Cattle Breeding, National Research Institute of Animal Production, Balice, Poland
| | - Katarzyna Połtowicz
- Department of Poultry Breeding, National Research Institute of Animal Production, Balice, Poland.
| | - Joanna Nowak
- Department of Poultry Breeding, National Research Institute of Animal Production, Balice, Poland
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Natalia Derebecka
- Adam Mickiewicz University, Faculty of Biology, Laboratory of High Throughput Technologies Institute of Molecular Biology and Biotechnology, Poznań, Poland
| | - Joanna Wesoły
- Adam Mickiewicz University, Faculty of Biology, Laboratory of High Throughput Technologies Institute of Molecular Biology and Biotechnology, Poznań, Poland
| | - Dorota Wojtysiak
- Department of Animal Genetics, Breeding and Ethology, University of Agriculture in Krakow, Cracow, Poland
| |
Collapse
|
26
|
Zampiga M, Soglia F, Baldi G, Petracci M, Strasburg GM, Sirri F. Muscle Abnormalities and Meat Quality Consequences in Modern Turkey Hybrids. Front Physiol 2020; 11:554. [PMID: 32595515 PMCID: PMC7304436 DOI: 10.3389/fphys.2020.00554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/04/2020] [Indexed: 11/19/2022] Open
Abstract
Turkey meat is the second most consumed poultry meat worldwide and represents an economic source of high-quality protein for human consumption. To fulfill the increasing demand for turkey meat, breeding companies have been selecting genetic lines with increased growth potential and breast muscle proportion. Moreover, the progressive shift toward further processed products has emphasized the need for higher standards in poultry meat to improve its technological characteristics and functional properties (i.e., water-holding capacity). However, as observed for broiler chickens, a growing body of scientific evidence suggests that the intense selection for the aforementioned traits could be associated with a greater occurrence of growth-related myopathies and abnormalities and, consequently, to increased downgrading rates and overall reduction of meat quality characteristics. In the past, muscle abnormalities such as deep pectoral myopathy, pale-soft-and-exudative-like meat, and focal myopathy have been reported in turkey lines selected for increased growth rate. In addition, the presence of white striations in the superficial layer of pectoralis major muscle, as well as the tendency of muscle fiber bundles to separate resulting in an altered breast muscle structure, has been detected in commercial turkey abattoirs. Furthermore, past investigations revealed the presence of another quality issue depicted by an overall toughening of the breast muscle. These meat abnormalities seem to macroscopically overlap the white striping, spaghetti meat, and wooden breast conditions observed in pectoral muscle of fast-growing, high-breast-yield chicken hybrids, respectively. Considering the high economic impact of these growth-related abnormalities in broilers, there is an increasing interest of the turkey industry in estimating the occurrence and the impact of these meat quality issues also in the modern turkey lines. Studies have been recently conducted to assess the effect of the genotype on the occurrence of these emerging growth-related defects and to evaluate how meat quality properties are affected by white-striping condition in turkeys, respectively. Therefore, this review aims to provide a critical overview of the current understanding regarding the growth-related abnormalities and their impact on meat quality in modern turkey hybrids with the hope that this information may improve the knowledge concerning their overall effect on poultry meat.
Collapse
Affiliation(s)
- Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Francesca Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Giulia Baldi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Gale M. Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| |
Collapse
|
27
|
Dong M, Chen H, Zhang Y, Xu Y, Han M, Xu X, Zhou G. Processing Properties and Improvement of Pale, Soft, and Exudative-Like Chicken Meat: a Review. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02464-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Gonzalez-Rivas PA, Chauhan SS, Ha M, Fegan N, Dunshea FR, Warner RD. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci 2019; 162:108025. [PMID: 31841730 DOI: 10.1016/j.meatsci.2019.108025] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/15/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
Heat stress is one of the most stressful events in the life of livestock with harmful consequences for animal health, productivity and product quality. Ruminants, pigs and poultry are susceptible to heat stress due to their rapid metabolic rate and growth, high level of production, and species-specific characteristics such as rumen fermentation, sweating impairment, and skin insulation. Acute heat stress immediately before slaughter stimulates muscle glycogenolysis and can result in pale, soft and exudative (PSE) meat characterized by low water holding capacity (WHC). By contrast, animals subjected to chronic heat stress, have reduced muscle glycogen stores resulting in dark, firm and dry (DFD) meat with high ultimate pH and high WHC. Furthermore, heat stress leads to oxidative stress, lipid and protein oxidation, and reduced shelf life and food safety due to bacterial growth and shedding. This review discusses the scientific evidence regarding the effects of heat stress on livestock physiology and metabolism, and their consequences for meat quality and safety.
Collapse
Affiliation(s)
- Paula A Gonzalez-Rivas
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Surinder S Chauhan
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Minh Ha
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Narelle Fegan
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robyn D Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
29
|
Abstract
The aim of the study was to evaluate the effect of feeding hempseed expellers in a feed mixture on the quality indicators of broiler chicken’s meat. One hundred and fifty Ross 308 hybrid cockerels were used in the present study. The control group (HS0) was fed without hempseed expellers; the other two groups received diets containing 50 g·kg-1 and 150 g·kg-1 of hempseed expellers (HS5 and HS15, respectively). The birds were slaughtered at the age of 37 days, and samples of breast and thigh muscles were collected for determination of proximate chemical composition and technological properties, and sensory analyses. Feeding with hempseed expellers influenced the colour of meat with a significant difference observed for a* (redness) and b* (yellowness) values in the HS15 group. The colour of breast meat in HS15 group is more intense compared to HS5 and HS0 groups. Breast meat was evaluated as the best in terms of odour for HS15 group compared to HS0. The colour of thigh meat was better rated in the HSE supplemented groups compared to the controls. In conclusion, dietary supplementation with hempseed expellers appears to affect the colour and odour of broiler chicken’s meat which is positive for the consumers. Including hempseed cakes can be recommended as a component of broiler chicken’s feed.
Collapse
|
30
|
Velleman SG. Recent Developments in Breast Muscle Myopathies Associated with Growth in Poultry. Annu Rev Anim Biosci 2019; 7:289-308. [DOI: 10.1146/annurev-animal-020518-115311] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The functional unit in skeletal muscle is the multinucleated myofiber, which is composed of parallel arrays of microfibrils. The myofiber and sarco-mere structure of skeletal muscle are established during embryogenesis, when mononuclear myoblast cells fuse to form multinucleated myotubes and develop into muscle fibers. With the myoblasts permanently unable to enter a proliferative state again after they fuse to form the multinucleated myotube, postnatal myofiber growth, muscle homeostasis, and myofiber regeneration are dependent on a myogenic stem cell, the satellite cell. Because the satellite cell is a partially differentiated stem cell controlling the state of skeletal muscle structure throughout the life of the bird, it can impact muscle development and structure, growth, and regeneration and, subsequently, meat quality. When myofibers are damaged, muscle repair is dependent on the satellite cells. Regenerated myofibers after the repair process should be similar to the original muscle fiber. Despite significant improvements in meat-type birds, degenerative myopathies have arisen. In many of these degenerative breast muscle myopathies, like Wooden Breast, satellite cell–mediated regeneration of muscle is suppressed. Thus, the biological function of avian myogenic satellite cells and their influence on cellular mechanisms affecting breast muscle development and growth, function during degenerative myopathies, and meat quality are discussed.
Collapse
Affiliation(s)
- Sandra G. Velleman
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA
| |
Collapse
|
31
|
Huang X, Ahn DU. The Incidence of Muscle Abnormalities in Broiler Breast Meat - A Review. Korean J Food Sci Anim Resour 2018; 38:835-850. [PMID: 30479493 PMCID: PMC6238037 DOI: 10.5851/kosfa.2018.e2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 11/23/2022] Open
Abstract
The dramatic improvements in the growth rate and breast muscle size and yield in
broilers through the intensive genetic selection, and the improvement in
nutrition and management over the past 50 years have introduced serious
abnormalities that influenced the quality of breast meat. The abnormalities
include pale-soft-exudative (PSE) conditions, deep pectoral muscle (DPM)
myopathy, spaghetti meat (SM), white striping (WS), and woody breast (WB) that
have serious negative implications to the broiler meat industry. The incidences
of PSE and DPM have been known for several decades, and their prevalence,
etiology and economic impact have been well discussed. However, other
abnormalities such as SM, WS and WB conditions have been reported just for few
years although these conditions have been known for some time. The newly
emerging quality issues in broilers are mainly associated with the
Pectoralis major muscles, and the incidences have been
increased dramatically in some regions of the world in recent years. As high as
90% of the broilers are affected by the abnormalities, which are expected to
cause from $200 million to $1 billion economic losses to the U.S. poultry
industry per year. So, this review mainly discusses the histopathological
characteristics and biochemical changes in the breast muscles with the emphasis
on the newly emerging abnormalities (SM, WS, and WB) although other
abnormalities are also discussed. The impacts of the anomalies on the
nutritional, functional, mechanical and sensory quality of the meat and their
implications to the poultry industry are discussed.
Collapse
Affiliation(s)
- Xi Huang
- College of Food Science & Technology, Huazhong Agricultural University, Egg Processing Technology Local Joint National Engineering Research Center, National R&D Center for Egg Processing, Wuhan, Hubei 430070, China
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
32
|
Zhang M, Zhu L, Zhang Y, Mao Y, Zhang M, Dong P, Niu L, Luo X, Liang R. Effect of different short-term high ambient temperature on chicken meat quality and ultra-structure. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 32:701-710. [PMID: 30381746 PMCID: PMC6502722 DOI: 10.5713/ajas.18.0232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/28/2018] [Indexed: 11/27/2022]
Abstract
Objective This study investigated the effect of different acute heat stress (HS) levels on chicken meat quality and ultra-structure. Methods Chickens were randomly divided into 7 groups to receive different HS treatments: i) 36°C for 1 h, ii) 36°C for 2 h, iii) 38°C for 1 h, iv) 38°C for 2 h, v) 40°C for 1 h, vi) 40°C for 2 h, and vii) un-stressed control group (25°C). Blood cortisol level, breasts initial temperature, color, pH, water holding capacity (WHC), protein solubility and ultra-structure were analyzed. Results HS temperatures had significant effects on breast meat temperature, lightness (L*), redness (a*), cooking loss and protein solubility (p<0.05). The HS at 36°C increased L*24 h value (p<0.01) and increased the cooking loss (p<0.05), but decreased a*24 h value (p<0.05). However, as the temperature increased to 38°C and 40°C, all the values of L*24 h, cooking loss and protein denaturation level decreased, and the differences disappeared compared to control group (p> 0.05). Only the ultimate pH24 h at 40°C decreased compared to the control group (p<0.01). The pH in 36°C group declined greater than other heat-stressed group in the first hour postmortem, which contributed breast muscle protein degeneration combining with high body temperature, and these variations reflected on poor meat quality parameters. The muscle fiber integrity level in group 40°C was much better than those in 36°C with the denatured position mainly focused on the interval of muscle fibers which probably contributes WHC and light reflection. Conclusion HS at higher temperature (above 38°C) before slaughter did not always lead to more pale and lower WHC breast meat. Breast meat quality parameters had a regression trend as HS temperature raised from 36°C. The interval of muscle fibers at 24 h postmortem and greater pH decline rate with high body temperature in early postmortem period could be a reasonable explanation for the variation of meat quality parameters.
Collapse
Affiliation(s)
- Minghao Zhang
- Laboratory of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Lixian Zhu
- Laboratory of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yimin Zhang
- Laboratory of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yanwei Mao
- Laboratory of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Mingyue Zhang
- Laboratory of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Pengcheng Dong
- Laboratory of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Lebao Niu
- Laboratory of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xin Luo
- Laboratory of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Rongrong Liang
- Laboratory of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
33
|
Structural and solubility properties of pale, soft and exudative (PSE)-like chicken breast myofibrillar protein: Effect of glycosylation. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Carvalho RH, Honorato DCB, Guarnieri PD, Soares AL, Pedrão MR, Oba A, Paião FG, Ida EI, Shimokomaki M. Assessment of turkey vehicle container microclimate on transit during summer season conditions. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2018; 62:961-970. [PMID: 29362871 DOI: 10.1007/s00484-018-1498-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 11/13/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
This study evaluated the formed microclimate commercial truck transport practices effects on the turkeys' welfare by measuring Dead on Arrival (DOA) index and pale, soft, and exudative (PSE-like) meat occurrence. The experimental design was entirely randomized in a 6 × 2 factorial arrangements (two truck container compartments × six water shower groups) with birds positioned at superior front (SF), inferior front (IF), superior middle (SM), inferior middle (IM), superior rear (SR), and inferior rear (IR) and two bath treatments: with water shower (WiS) and without water shower (WoS) with eight replications for each treatment. The animals were transported for 95 min' journey from the farm to the slaughterhouse under hot-humidity conditions. The results shown herein indicated the formation of a thermal core at the inferior middle and rear truck container regions, because the heat produced by the birds and the influence of developed microclimate consisting of temperature, relative humidity, and air ventilation. The IM and IR container compartments under the WoS treatment presented the highest (P < 0.01) numbers of PSE-like meat incidence and DOA index values compared with those located at the front under WiS treatment as the consequence of the altered to birds unbearable conditions within the container microclimate in transit. The formed microclimate during the commercial transport practices under hot-humidity conditions affected the bird's welfare consequently turkey meat qualities.
Collapse
Affiliation(s)
- Rafael H Carvalho
- Department of Veterinary Preventive Medicine, Londrina State University, PO Box 6001, Londrina, PR, 86010-951, Brazil.
| | - Danielle C B Honorato
- Department of Food Science and Technology, Londrina State University, Londrina, PR, Brazil
| | | | - Adriana L Soares
- Department of Food Science and Technology, Londrina State University, Londrina, PR, Brazil
| | - Mayka R Pedrão
- Paraná Federal Technological University in Londrina, Campus Londrina, Londrina, PR, Brazil
| | - Alexandre Oba
- Department of Veterinary Preventive Medicine, Londrina State University, PO Box 6001, Londrina, PR, 86010-951, Brazil
| | - Fernanda G Paião
- Paraná Federal Technological University in Londrina, Campus Londrina, Londrina, PR, Brazil
| | - Elza I Ida
- Department of Food Science and Technology, Londrina State University, Londrina, PR, Brazil
| | - Massami Shimokomaki
- Department of Veterinary Preventive Medicine, Londrina State University, PO Box 6001, Londrina, PR, 86010-951, Brazil
- Paraná Federal Technological University in Londrina, Campus Londrina, Londrina, PR, Brazil
| |
Collapse
|
35
|
Giampietro-Ganeco A, Mello JLM, Souza RA, Ferrari FB, Machado BM, Souza PA, Borba H. Effect of freezing on the quality of meat from broilers raised in different rearing systems. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an16818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We evaluated the effect of freezing (−18°C) for 12 months on the qualitative characteristics of breast, thigh and drumstick meat. Samples from male Cobb 500 broilers raised in antibiotic-free (n = 125), conventional (n = 125) and organic (n = 125) rearing systems and samples from male Hubbard ISA broilers raised in a free-range (n = 125) rearing system were used. Among the studied systems, up to the ninth month of freezing, the organic chicken breast meat showed lower (P < 0.001) water activity (aw) (0.966, on average). After 12 months of freezing, samples of antibiotic-free and organic poultry showed a pH value similar to that of fresh meat (5.94 and 5.86, respectively). Freezing for 12 months preserved the redness of drumstick meat from conventional broilers (a* = 4.86, on average) and the rearing system did not influence the aw of drumstick meat during the entire experimental period. Freezing preserved the aw of conventional and organic chicken meat samples until the ninth month of evaluation (0.978 and 0.974, respectively). Lipid oxidation in the breast, thigh and drumstick samples from the four rearing systems increased (P < 0.001) from the third month of freezing onwards. There were variations in colour, pH, aw and lipid oxidation of chicken meat among birds raised in different rearing systems. Freezing chicken meat did not prevent colour and pH changes or occurrence of lipid oxidation and did not promote a reduction of aw to levels unfavourable to microbiological development.
Collapse
|
36
|
Ismail I, Joo ST. Poultry Meat Quality in Relation to Muscle Growth and Muscle Fiber Characteristics. Korean J Food Sci Anim Resour 2017; 37:873-883. [PMID: 29725209 PMCID: PMC5932941 DOI: 10.5851/kosfa.2017.37.6.87] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022] Open
Abstract
Variations in the definition of poultry meat quality exist because the quality traits are not solely based on intrinsic and extrinsic factors but also consumers’ preference. Appearance quality traits (AQT), eating quality traits (EQT), and reliance quality traits (RQT) are the major factors focused by the consumer before buying good quality of poultry meat. AQT and EQT of poultry meat are controlled by physical and biochemical characteristics of muscle fibers which can be categorized into a total number of fibers (TNF), cross-sectional area of fibers (CSAF), and fiber type composition (FTC). In poultry meat, it has been shown that muscle fiber properties play a key role in meat quality because numerous studies have reported the relationships between quality traits and fiber characteristics. Despite intensive research has been carried out to manipulate the muscle fiber to improve poultry meat quality, demand in a rapid growth of poultry muscle has correlated to the deterioration in the meat quality. The present paper reviews the definition of poultry meat quality, meat quality traits, and variations of meat quality. Also, this review presents recent knowledge underlying the relationship between poultry meat quality traits and muscle fiber characteristics.
Collapse
Affiliation(s)
- Ishamri Ismail
- Division of Applied Life Science (BK21+), Gyeongsang National University, Jinju 52852, Korea.,Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200, Terengganu, Malaysia
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21+), Gyeongsang National University, Jinju 52852, Korea.,Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52852, Korea
| |
Collapse
|
37
|
The effects of egg albumin incorporation on quality attributes of pale, soft, exudative (PSE-like) turkey rolls. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2017; 54:1384-1394. [PMID: 28559597 DOI: 10.1007/s13197-017-2550-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/10/2016] [Accepted: 02/10/2017] [Indexed: 10/19/2022]
Abstract
Pale, soft, exudative (PSE-like) poultry phenomenon has been a growing problem in meat industry in terms of quality and economic losses, thus data is required to evaluate PSE raw material in product formulations. The aim of our study was to investigate the effects of egg albumin (EA) utilization on quality characteristics of PSE-like turkey rolls. Turkey Pectoralis major muscles were exposed to either 40 °C to stimulate typical processing causing PSE or 0 °C to reduce PSE and keep the muscles "normal". Turkey rolls were prepared in nine different formulations; using 100% normal (N), 50% normal + 50% PSE (NP) or 100% PSE meat (P). Treatments also included 0, 1 or 2% EA. Addition of EA increased protein content of all samples. L*, a* and b* values were affected by PSE level. Increased levels of PSE caused decreased processing yields, while EA incorporation increased processing yield of the samples. Addition of 1% EA increased water-holding capacity (WHC) of the samples, while higher level of EA (2%) caused decrement in the same. Addition of either 1% or 2% EA was effective in reducing purge loss in P samples. Texture profile analysis showed that EA addition rather had considerable effects on N samples. Sensory scores showed that 1% EA utilization has the potential to increase mostly the mouthfeel of PSE-like products. Results showed that EA could be used as a promising ingredient that improved overall quality of PSE-like turkey rolls.
Collapse
|
38
|
Desai MA, Jackson V, Zhai W, Suman SP, Nair MN, Beach CM, Schilling MW. Proteome basis of pale, soft, and exudative-like (PSE-like) broiler breast (Pectoralis major) meat. Poult Sci 2016; 95:2696-2706. [DOI: 10.3382/ps/pew213] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2016] [Indexed: 11/20/2022] Open
|
39
|
Freitas AS, Carvalho LM, Soares AL, Neto ACDS, Madruga MS, Carvalho RH, Ida EI, Shimokomak M. Simultaneous Occurrence of Broiler Chicken Hyper and
Hypothermia In-transit and Lairage and Dead on Arrival (DOA)
Index Under Tropical Climate. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ijps.2016.459.466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Zhao X, Chen X, Han MY, Qian C, Xu XL, Zhou GH. Application of isoelectric solubilization/precipitation processing to improve gelation properties of protein isolated from pale, soft, exudative (PSE)-like chicken breast meat. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.04.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Öztürk B, Serdaroǧlu M. Quality Characteristics of PSE-Like Turkey Pectoralis major Muscles Generated by High Post-Mortem Temperature in a Local Turkish Slaughterhouse. Korean J Food Sci Anim Resour 2016; 35:524-32. [PMID: 26761875 PMCID: PMC4662136 DOI: 10.5851/kosfa.2015.35.4.524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/13/2015] [Accepted: 07/20/2015] [Indexed: 11/06/2022] Open
Abstract
The objective of this study was to investigate the effects of high post-mortem temperature application on development of pale, soft, exudative (PSE) turkey meat characteristics in terms of local slaughter conditions. Within this scope, it was targeted to obtain PSE-like muscles benefiting from different post-mortem temperature applications. Immediately after slaughter, turkey Pectoralis major (n=15) muscles were kept at various post-mortem temperatures (0, 10, 20, 30, and 40℃) for 5 h. pH values of 40℃ treatment were lower than four other treatments (p<0.05). L* values, drip loss, cook loss, and thawing loss of 40℃ group were higher than the other groups (p< 0.05). Napole yield of 40℃ treatment indicated that high post-mortem temperature decreases brine uptake. Protein solubility of 40℃ group was lower than 0℃ group (p<0.05). Expressible moisture did not differ between 0 and 40℃ treatments. Hardness, gumminess and chewiness of 40℃ treatment were higher than 0℃ treatment. The results of this research showed that high post-mortem temperature treatment induced development of PSE-like turkey meat, with lower pH, paler color, higher technological and storage losses, and reduced protein solubility and texture.
Collapse
Affiliation(s)
- Burcu Öztürk
- Ege University, Engineering Faculty, Food Engineering Department, Bornova, Izmir, Turkey
| | - Meltem Serdaroǧlu
- Ege University, Engineering Faculty, Food Engineering Department, Bornova, Izmir, Turkey
| |
Collapse
|
42
|
Simple Method for Screening the Affected Birds with Remarkably Hardened Pectoralis Major Muscles among Broiler Chickens. J Poult Sci 2016; 53:291-297. [PMID: 32908396 PMCID: PMC7477172 DOI: 10.2141/jpsa.0160036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Remarkably hardened pectoralis major muscles are increasingly found in broiler chickens in some slaughterhouses in Japan. Based on physical examinations, we selected three affected birds and three control birds from a 43-day-old Ross 308 commercial broiler flock, and examined them biochemically, pathologically, and microbiologically. We found that the presence of degenerative lesions in the pectoralis major muscles was associated with an inability to lift the wings to achieve back-to-back wing contact. As the pectoralis major muscle is a major adductor of the humerus, these degenerative lesions may inhibit the extensibility of the muscle, thereby limiting the range of motion of the humerus. Testing the ability to lift the wing is proposed as a new diagnostic method for detecting affected birds.
Collapse
|
43
|
Spurio RS, Soares AL, Carvalho RH, Silveira Junior V, Grespan M, Oba A, Shimokomaki M. Improving transport container design to reduce broiler chicken PSE (pale, soft, exudative) meat in Brazil. Anim Sci J 2015; 87:277-83. [PMID: 26304672 DOI: 10.1111/asj.12407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/26/2015] [Accepted: 02/08/2015] [Indexed: 11/28/2022]
Abstract
Throughout the chicken production chain, transport from farm to the commercial abattoir is one of the most critical sources of stress, particularly heat stress. The aim of this work was to describe the performance of a new prototype truck container designed to improve the microenvironment and reduce the incidence of pale, soft and exudative (PSE) meat and dead on arrival (DOA) occurrences. Experiments were carried out for four different conditions: regular and prototype truck, both with and without wetting loaded cages at the farm (for bird thermal stress relief) just before transporting. While there was no difference in the DOA index (P ≥ 0.05), the prototype truck caused a reduction (P < 0.05) in the occurrence of PSE meat by 66.3% and 49.6% with and without wetting, respectively. The results of this experiment clearly revealed a low-cost solution for transporting chickens that yields better animal welfare conditions and improves meat quality.
Collapse
Affiliation(s)
- Rafael S Spurio
- Graduate Program in Food Science, Department of Food Science and Technology, State University of Londrina, PR, Brazil
| | - Adriana L Soares
- Graduate Program in Food Science, Department of Food Science and Technology, State University of Londrina, PR, Brazil
| | - Rafael H Carvalho
- Graduate Program in Animal Science Department of Veterinary Preventive Medicine, State University of Londrina, PR, Brazil
| | | | | | - Alexandre Oba
- Graduate Program in Animal Science Department of Veterinary Preventive Medicine, State University of Londrina, PR, Brazil
| | - Massami Shimokomaki
- Graduate Program in Food Science, Department of Food Science and Technology, State University of Londrina, PR, Brazil.,Graduate Program in Animal Science Department of Veterinary Preventive Medicine, State University of Londrina, PR, Brazil.,Professional Master in Food Technology Program, Paraná Federal Technological University, Campus Londrina, Londrina, PR, Brazil
| |
Collapse
|
44
|
Malila Y, Carr KM, Ernst CW, Velleman SG, Reed KM, Strasburg GM. Deep transcriptome sequencing reveals differences in global gene expression between normal and pale, soft, and exudative turkey meat1. J Anim Sci 2014; 92:1250-60. [DOI: 10.2527/jas.2013-7293] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Y. Malila
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing 48824
| | - K. M. Carr
- Research Technology Support Facility, Michigan State University, East Lansing 48824
| | - C. W. Ernst
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - S. G. Velleman
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691
| | - K. M. Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul 55108
| | - G. M. Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing 48824
| |
Collapse
|
45
|
Sanchez-Peña AG, Alvarado CZ. Marination and packaging impact on textural properties of home-frozen broiler breast fillets. Poult Sci 2013; 92:2404-10. [PMID: 23960124 DOI: 10.3382/ps.2012-02553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Different packaging is available to consumers, and marination is widely applied. However, their effects on the quality of broiler breast fillets during home freezing are not well known to consumers. Therefore, the objective of this study was to evaluate the effect of packaging materials on the quality of chicken breast fillets after 1, 3, and 6 wk storage at -18°C. A total of 256 fillet were randomly placed in tray packs, freezer bags, butcher paper, and nonpackaged controls. Samples were analyzed for raw pH, color, percent moisture content, and TBA reactive substances (TBARS) at d 0 (only nonpackaged controls), wk 1, 3, and 6, and cooked texture and sensory attributes at wk 1 and 6. There were differences (P < 0.05) in pH, color, percent moisture content, and texture among the treatments by wk 6, but no differences (P < 0.05) in TBARS values and the sensory evaluation (tenderness, juiciness, and overall flavor) were seen. Consumers were not able to detect quality differences (P < 0.05) among treatments despite analytical differences. Experiment 2 was conducted to evaluate the effects of marination on the quality of chicken breast fillets after 2 wk of storage in a home freezer (-18°C). A total of 240 fillets were used in the treatments: nonmarinated fresh nonfrozen, nonmarinated frozen, marinated fresh nonfrozen, and marinated frozen. Fillets were vacuum-tumbled in a 10% solution yielding a final concentration of 0.45% sodium tripolyphosphate and 0.65% salt in the meat. Raw samples were evaluated for color, TBARS, and thaw loss. Cooked samples after 2 wk of storage were analyzed for cook loss, texture, moisture, and sensory evaluation (color, juiciness, tenderness, overall flavor, and preference). Both marinated samples showed better (P < 0.05) quality in terms of L* value, TBARS, cook loss, texture, moisture content, and better sensory attributes (except color) than nonmarinated samples. Quality of marinated samples was not negatively affected by home freezing after 2 wk.
Collapse
Affiliation(s)
- A G Sanchez-Peña
- Department of Poultry Science, Texas A&M University, College Station 77843-2472, USA
| | | |
Collapse
|
46
|
Imik H, Atasever MA, Urcar S, Ozlu H, Gumus R, Atasever M. Meat quality of heat stress exposed broilers and effect of protein and vitamin E. Br Poult Sci 2013; 53:689-98. [PMID: 23281765 DOI: 10.1080/00071668.2012.736609] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. This study was designed to determine the effects of heat stress exposure on broiler fattening performance, meat quality and microbial counts. 2. Six groups were established: CHP (24°C+210 g/kg crude protein (CP)), SHP (34°C+210 g/kg CP), CLP (24°C+190 g/kg CP), SLP (34°C+190 g/kg CP), SHPVE (34°C+210 g/kg CP+Vitamin E) and SLPVE (34°C+190 g/kg CP+Vitamin E) groups. 3. It was determined that the body weights of the male animals included in Group CHP displayed statistically significant differences in comparison to those of Groups SHP, CLP and SLP. Furthermore, it was ascertained that the values of Group CLP also displayed statistically significant differences in comparison to those of Groups CHP, SHP and SLP. The feed consumptions in Groups CHP and CLP were significantly different from those of the remaining groups, excluding Group SHP. The highest feed conversion rate was determined in Group SHPVE. 4. When evaluated for chicken drumstick TBA values, Group CHP differed significantly from Groups SHP, SHPVE, CLP and SLP, whilst Group CLP differed significantly from Groups SHP, SHPVE and SLP. On the other hand, when evaluated for breast meat TBA values, Group CHP displayed statistically significant differences in comparison to Groups SHP, SLP and SLPVE, whilst Group CLP differed significantly from Groups CHP, SHP, SLP and SLPVE. 5. The sensitivity of breast meat to colour susceptibility was greater than that of chicken drumsticks. While storage period affected the TBA values and microbial counts of meat significantly, its effect on colour parameters was found to be variable. Trial groups significantly affected total aerobic mesophilic bacteria counts in chicken drumsticks, and Enterobacteriaceae and total aerobic mesophilic bacteria counts in breast meat. 6. In conclusion, heat stress adversely affected final body weights and the lipid oxidation of meat, whilst vitamin E alleviated these adverse effects.
Collapse
Affiliation(s)
- H Imik
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Sciences, Ataturk University, 25240 Erzurum, Turkey.
| | | | | | | | | | | |
Collapse
|
47
|
Malila Y, Tempelman R, Sporer K, Ernst C, Velleman S, Reed K, Strasburg G. Differential gene expression between normal and pale, soft, and exudative turkey meat. Poult Sci 2013; 92:1621-33. [DOI: 10.3382/ps.2012-02778] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Popp J, Krischek C, Janisch S, Wicke M, Klein G. Physico-chemical and microbiological properties of raw fermented sausages are not influenced by color differences of turkey breast meat. Poult Sci 2013; 92:1366-75. [DOI: 10.3382/ps.2012-02724] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
Imik H, Ozlu H, Gumus R, Atasever MA, Urcar S, Atasever M. Effects of ascorbic acid andα-lipoic acid on performance and meat quality of broilers subjected to heat stress. Br Poult Sci 2012; 53:800-8. [DOI: 10.1080/00071668.2012.740615] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Huffman K, Zapata I, Reddish JM, Lilburn MS, Wick M. Feed restriction delays developmental fast skeletal muscle myosin heavy chain isoforms in turkey poults selected for differential growth. Poult Sci 2012; 91:3178-83. [PMID: 23155028 DOI: 10.3382/ps.2012-02367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic selection has been very successful at significantly increasing BW and breast muscle proportion in commercial broiler and turkey strains. The mechanisms of breast muscle growth in poultry and the interactive effects of nutritional status and selection are not fully understood. The hypothesis underlying the current study is that feed restriction, simply as a vehicle for controlling early growth, would delay the temporal expression pattern of neonatal (nMyHC) and adult (aMyHC) fast skeletal muscle myosin heavy chain (MyHC) isoforms in the pectoralis major muscle of turkey poults. The poultry growth model used to evaluate this hypothesis consisted of a randombred control turkey line (RBC2) that represents commercial turkeys of the 1960s and a line developed from the RBC2 by selection for BW at 16 wk of age (F line). The F line has significantly heavier breast muscles than the RBC2 concomitant with increased BW, but the proportion of breast muscle relative to BW is similar. A quantitative indirect ELISA using fast skeletal MyHC isoform specific monoclonal antibodies revealed no significant line differences in the temporal expression of posthatch fast skeletal muscle MyHC in ad libitum fed poults. Feed restriction, however, altered the temporal expression patterns of nMyHC and aMyHC in both F line and RBC2 poults compared with the poults fed ad libitum.
Collapse
Affiliation(s)
- K Huffman
- Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691, USA
| | | | | | | | | |
Collapse
|