1
|
Park SH, Gye MC. Dibutyl phthalate disrupts [Ca 2+] i, reactive oxygen species, [pH] i, protein kinases and mitochondrial activity, impairing sperm function. J Environ Sci (China) 2025; 151:68-78. [PMID: 39481973 DOI: 10.1016/j.jes.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 11/03/2024]
Abstract
To explore the mechanism of sperm dysfunction caused by dibutyl phthalate (DBP), the effects of DBP on intracellular [Ca2+] and [pH], reactive oxygen species (ROS), lipid peroxidation (LPO), mitochondrial permeability transition pore (mPTP) opening, mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) levels, phosphorylation of protein kinase A (PKA) substrate proteins and phosphotyrosine (p-Tyr) proteins, sperm motility, spontaneous acrosome reaction, and tail bending were examined in mouse spermatozoa. At 100 µg/mL, DBP significantly increased tail bending and [Ca2+]i. Interestingly, DBP showed biphasic effects on [pH]i. DBP at 10-100 µg/mL significantly decreased sperm motility. Similarly, Ca2+ ionophore A23187 decreased [pH]i sperm motility, suggesting that DBP-induced excessive [Ca2+]i decreased sperm motility. DBP significantly increased ROS and LPO. DBP at 100 µg/mL significantly decreased mPTP closing, MMP, and ATP levels in spermatozoa, as did H2O2, indicative of ROS-mediated mitochondrial dysfunction caused by DBP. DBP as well as H2O2 increased p-Tyr sperm proteins and phosphorylated PKA substrate sperm proteins. DBP at 1-10 µg/mL significantly increased the spontaneous acrosome reaction, suggesting that DBP can activate sperm capacitation. Altogether, DBP showed a biphasic effect on intracellular signaling in spermatozoa. At concentrations relevant to seminal ortho-phthalate levels, DBP activates [pH]i, protein tyrosine kinases and PKA via physiological levels of ROS generation, potentiating sperm capacitation. DBP at high doses excessively raises [Ca2+]i and ROS and disrupts [pH]i, impairing the mitochondrial function, tail structural integrity, and sperm motility.
Collapse
Affiliation(s)
- Seung Hyun Park
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Myung Chan Gye
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
2
|
Chen YL, Li CY, Wang PH, Wang R, Zhuo X, Zhang Y, Wang SJ, Sun ZP, Chen JH, Cheng X, Zhang ZJ, Ren CH, Wang QJ. Comparative Proteomic Identification of Ram Sperm before and after In Vitro Capacitation. Animals (Basel) 2024; 14:2363. [PMID: 39199899 PMCID: PMC11350773 DOI: 10.3390/ani14162363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Ram sperm undergo a sequence of physiological and biochemical changes collectively termed as capacitation to perform oocyte fertilization. However, the protein changes induced by capacitation remain in need of further exploration. Thus, the present study investigated the comparative proteomic profiling in ram spermatozoa under non-capacitating (NC) and capacitating (CAP) conditions in vitro using a liquid chromatography-tandem mass spectrometry combined with tandem mass tag labeling strategy. As a results, 2050 proteins were identified and quantified; 348 of them were differentially abundant, with 280 of the proteins upregulated and 68 of the proteins downregulated between the CAP and NC spermatozoa, respectively. Functional enrichment analysis indicated that the differentially abundant proteins Prune Exopolyphosphatase 1, Galactose-1-Phosphate Uridylyltransferase, and ATP Citrate Lyase were strictly related to energy production and conversion, and Phosphoglycolate phosphatase, Glucosamine-6-Phosphate Deaminase 1 and 2 were related to metabolism, RNA processing, and vesicular transport pathways. Furthermore, the networks of protein-protein interaction indicated a strong interaction among these differential proteins in annotated pathways such as ubiquitin and transport metabolism. Our findings indicate that capacitation progress might be regulated through different pathways, providing insights into mechanisms involved in ram sperm capacitation and fertility.
Collapse
Affiliation(s)
- Ya-Le Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Chun-Yan Li
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (C.-Y.L.); (Y.Z.)
| | - Peng-Hui Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Ru Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Xian Zhuo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Yan Zhang
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (C.-Y.L.); (Y.Z.)
| | - Shi-Jia Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Zhi-Peng Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Jia-Hong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
| | - Xiao Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Zi-Jun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
| | - Chun-Huan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
| | - Qiang-Jun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
| |
Collapse
|
3
|
Lynda EO, Kingsley NE, Obukohwo OM, Benneth BA, Victor E, Simon OI, Agbonifo-Chijiokwu E, Oghenetega OB. Arjunolic acid reverses fluoxetine-induced alterations in testicular steroidogenic enzymes and membrane bound ionic pump imbalance through suppression of oxido-inflammatory stress and apoptosis. JBRA Assist Reprod 2024; 28:66-77. [PMID: 37962970 PMCID: PMC10936923 DOI: 10.5935/1518-0557.20230062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/21/2023] [Indexed: 11/16/2023] Open
Abstract
OBJECTIVE The impact of the anti-depressant therapy on gonadal function has been recognized and discussed over the years. However, data to supplement our understanding of the impact of arjunolic acid (AA) therapies in protecting against FXT-induced gonadal dysfunction is lacking clear scientific evidence. Hence, this study aimed to investigate the possible effect of AA on fluoxetine-induced altered testicular function in rats. METHODS After 14 days acclimatization, Thirty-six (36) adult male rats were randomly divided into 6 groups (n=6). Rats in groups 1 received normal saline (10mL/kg); groups 2 & 3 were given AA (1.0mg/kg body weight) and AA (2.0mg/kg body weight), respectively; whereas, rats in group 4 were given FXT (10mg/kg/p.o/day), and groups 5 & 6 were given a combination of FXT (10mg/kg) + AA (1.0mg/kg body weight); and FXT (10mg/kg) + AA (2.0mg/kg body weight), respectively. RESULTS The results shows that FXT significantly altered testicular steroidogenic enzymes (3ß-HSD and 17ß-HSD) and proton pump ATPase (Na+/K+ ATPase, Ca2+ ATPase and H+ ATPase) activities, as well as testicular architecture when compared with controls. More so, FXT caused oxido-inflammation and apoptosis, as evidence by increases in MDA, MPO, TNF-α, IL-1ß, Caspase 3 and p53. However, AA at a different dose significantly ameliorated the destructive impacts of FXT on steroidogenic enzymes, proton pump ATPase as well as increased Bcl-2, SOD, CAT, GSH and improved testicular architecture in rats. CONCLUSIONS AA reverses fluoxetine-induced alterations in testicular steroidogenic enzymes and membrane-bound ionic pump through suppression of oxido-inflammatory stress and apoptosis.
Collapse
Affiliation(s)
- Edozie Ojochem Lynda
- Department of Human Physiology, Faculty of Basic Medical Science,
Delta State University, Abraka, Delta State, Nigeria
| | - Nwangwa Eze Kingsley
- Department of Human Physiology, Faculty of Basic Medical Science,
Delta State University, Abraka, Delta State, Nigeria
| | | | - Ben-Azu Benneth
- Department of Pharmacology, Faculty of Basic Medical Science, Delta
State University, Abraka, Delta State, Nigeria
| | - Emojevvwe Victor
- Department of Human Physiology, University of Medical Sciences,
Ondo, Ondo State, Nigeria
| | - Ovuakporaye I. Simon
- Department of Human Physiology, Faculty of Basic Medical Science,
Delta State University, Abraka, Delta State, Nigeria
| | - Ejime Agbonifo-Chijiokwu
- Department of Human Physiology, Faculty of Basic Medical Science,
Delta State University, Abraka, Delta State, Nigeria
| | - Onome B. Oghenetega
- Department of Physiology, School of Basic Medical Science, Babcock
University, Illisan-Romo, Ogun State, Nigeria
| |
Collapse
|
4
|
Lykins J, Moschitto MJ, Zhou Y, Filippova EV, Le HV, Tomita T, Fox BA, Bzik DJ, Su C, Rajagopala SV, Flores K, Spano F, Woods S, Roberts CW, Hua C, El Bissati K, Wheeler KM, Dovgin S, Muench SP, McPhillie M, Fishwick CW, Anderson WF, Lee PJ, Hickman M, Weiss LM, Dubey JP, Lorenzi HA, Silverman RB, McLeod RL. From TgO/GABA-AT, GABA, and T-263 Mutant to Conception of Toxoplasma. iScience 2024; 27:108477. [PMID: 38205261 PMCID: PMC10776954 DOI: 10.1016/j.isci.2023.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/28/2023] [Accepted: 11/13/2023] [Indexed: 01/12/2024] Open
Abstract
Toxoplasma gondii causes morbidity, mortality, and disseminates widely via cat sexual stages. Here, we find T. gondii ornithine aminotransferase (OAT) is conserved across phyla. We solve TgO/GABA-AT structures with bound inactivators at 1.55 Å and identify an inactivator selective for TgO/GABA-AT over human OAT and GABA-AT. However, abrogating TgO/GABA-AT genetically does not diminish replication, virulence, cyst-formation, or eliminate cat's oocyst shedding. Increased sporozoite/merozoite TgO/GABA-AT expression led to our study of a mutagenized clone with oocyst formation blocked, arresting after forming male and female gametes, with "Rosetta stone"-like mutations in genes expressed in merozoites. Mutations are similar to those in organisms from plants to mammals, causing defects in conception and zygote formation, affecting merozoite capacitation, pH/ionicity/sodium-GABA concentrations, drawing attention to cyclic AMP/PKA, and genes enhancing energy or substrate formation in TgO/GABA-AT-related-pathways. These candidates potentially influence merozoite's capacity to make gametes that fuse to become zygotes, thereby contaminating environments and causing disease.
Collapse
Affiliation(s)
- Joseph Lykins
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Matthew J. Moschitto
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
| | - Ying Zhou
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Ekaterina V. Filippova
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hoang V. Le
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
| | - Tadakimi Tomita
- Division of Parasitology, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Barbara A. Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - David J. Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Seesandra V. Rajagopala
- Department of Infectious Diseases, The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Kristin Flores
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Furio Spano
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Stuart Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow Scotland, UK
| | - Craig W. Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow Scotland, UK
| | - Cong Hua
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Kamal El Bissati
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Kelsey M. Wheeler
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah Dovgin
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Stephen P. Muench
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, The University of Leeds, Leeds, West York LS2 9JT, UK
| | - Martin McPhillie
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Colin W.G. Fishwick
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Patricia J. Lee
- Division of Experimental Therapeutics, Military Malaria Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Mark Hickman
- Division of Experimental Therapeutics, Military Malaria Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Louis M. Weiss
- Division of Parasitology, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jitender P. Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Hernan A. Lorenzi
- Department of Infectious Diseases, The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Rima L. McLeod
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
- Department of Pediatrics (Infectious Diseases), Institute of Genomics, Genetics, and Systems Biology, Global Health Center, Toxoplasmosis Center, CHeSS, The College, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Grahn E, Kaufmann SV, Askarova M, Ninov M, Welp LM, Berger TK, Urlaub H, Kaupp UB. Control of intracellular pH and bicarbonate by CO 2 diffusion into human sperm. Nat Commun 2023; 14:5395. [PMID: 37669933 PMCID: PMC10480191 DOI: 10.1038/s41467-023-40855-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 08/14/2023] [Indexed: 09/07/2023] Open
Abstract
The reaction of CO2 with H2O to form bicarbonate (HCO3-) and H+ controls sperm motility and fertilization via HCO3--stimulated cAMP synthesis. A complex network of signaling proteins participates in this reaction. Here, we identify key players that regulate intracellular pH (pHi) and HCO3- in human sperm by quantitative mass spectrometry (MS) and kinetic patch-clamp fluorometry. The resting pHi is set by amiloride-sensitive Na+/H+ exchange. The sperm-specific putative Na+/H+ exchanger SLC9C1, unlike its sea urchin homologue, is not gated by voltage or cAMP. Transporters and channels implied in HCO3- transport are not detected, and may be present at copy numbers < 10 molecules/sperm cell. Instead, HCO3- is produced by diffusion of CO2 into cells and readjustment of the CO2/HCO3-/H+ equilibrium. The proton channel Hv1 may serve as a unidirectional valve that blunts the acidification ensuing from HCO3- synthesis. This work provides a new framework for the study of male infertility.
Collapse
Affiliation(s)
- Elena Grahn
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Svenja V Kaufmann
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Malika Askarova
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Momchil Ninov
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Luisa M Welp
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Thomas K Berger
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstrasse 1-2, 35037, Marburg, Germany.
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany.
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
- Cluster of Excellence, Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany.
| | - U Benjamin Kaupp
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
- Life & Medical Sciences Institute (LIMES), University Bonn, Carl-Troll-Strasse 31, 53115, Bonn, Germany.
| |
Collapse
|
6
|
Mariani NAP, Silva JV, Fardilha M, Silva EJR. Advances in non-hormonal male contraception targeting sperm motility. Hum Reprod Update 2023; 29:545-569. [PMID: 37141450 DOI: 10.1093/humupd/dmad008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND The high rates of unintended pregnancy and the ever-growing world population impose health, economic, social, and environmental threats to countries. Expanding contraceptive options, including male methods, are urgently needed to tackle these global challenges. Male contraception is limited to condoms and vasectomy, which are unsuitable for many couples. Thus, novel male contraceptive methods may reduce unintended pregnancies, meet the contraceptive needs of couples, and foster gender equality in carrying the contraceptive burden. In this regard, the spermatozoon emerges as a source of druggable targets for on-demand, non-hormonal male contraception based on disrupting sperm motility or fertilization. OBJECTIVE AND RATIONALE A better understanding of the molecules governing sperm motility can lead to innovative approaches toward safe and effective male contraceptives. This review discusses cutting-edge knowledge on sperm-specific targets for male contraception, focusing on those with crucial roles in sperm motility. We also highlight challenges and opportunities in male contraceptive drug development targeting spermatozoa. SEARCH METHODS We conducted a literature search in the PubMed database using the following keywords: 'spermatozoa', 'sperm motility', 'male contraception', and 'drug targets' in combination with other related terms to the field. Publications until January 2023 written in English were considered. OUTCOMES Efforts for developing non-hormonal strategies for male contraception resulted in the identification of candidates specifically expressed or enriched in spermatozoa, including enzymes (PP1γ2, GAPDHS, and sAC), ion channels (CatSper and KSper), transmembrane transporters (sNHE, SLC26A8, and ATP1A4), and surface proteins (EPPIN). These targets are usually located in the sperm flagellum. Their indispensable roles in sperm motility and male fertility were confirmed by genetic or immunological approaches using animal models and gene mutations associated with male infertility due to sperm defects in humans. Their druggability was demonstrated by the identification of drug-like small organic ligands displaying spermiostatic activity in preclinical trials. WIDER IMPLICATIONS A wide range of sperm-associated proteins has arisen as key regulators of sperm motility, providing compelling druggable candidates for male contraception. Nevertheless, no pharmacological agent has reached clinical developmental stages. One reason is the slow progress in translating the preclinical and drug discovery findings into a drug-like candidate adequate for clinical development. Thus, intense collaboration among academia, private sectors, governments, and regulatory agencies will be crucial to combine expertise for the development of male contraceptives targeting sperm function by (i) improving target structural characterization and the design of highly selective ligands, (ii) conducting long-term preclinical safety, efficacy, and reversibility evaluation, and (iii) establishing rigorous guidelines and endpoints for clinical trials and regulatory evaluation, thus allowing their testing in humans.
Collapse
Affiliation(s)
- Noemia A P Mariani
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| | - Joana V Silva
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Erick J R Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| |
Collapse
|
7
|
Cavarocchi E, Sayou C, Lorès P, Cazin C, Stouvenel L, El Khouri E, Coutton C, Kherraf ZE, Patrat C, Govin J, Thierry-Mieg N, Whitfield M, Ray PF, Dulioust E, Touré A. Identification of IQCH as a calmodulin-associated protein required for sperm motility in humans. iScience 2023; 26:107354. [PMID: 37520705 PMCID: PMC10382937 DOI: 10.1016/j.isci.2023.107354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/23/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Sperm fertilization ability mainly relies on proper sperm progression through the female genital tract and capacitation, which involves phosphorylation signaling pathways triggered by calcium and bicarbonate. We performed exome sequencing of an infertile asthenozoospermic patient and identified truncating variants in MAP7D3, encoding a microtubule-associated protein, and IQCH, encoding a protein of unknown function with enzymatic and signaling features. We demonstrate the deleterious impact of both variants on sperm transcripts and proteins from the patient. We show that, in vitro, patient spermatozoa could not induce the phosphorylation cascades associated with capacitation. We also provide evidence for IQCH association with calmodulin, a well-established calcium-binding protein that regulates the calmodulin kinase. Notably, we describe IQCH spatial distribution around the sperm axoneme, supporting its function within flagella. Overall, our work highlights the cumulative pathological impact of gene mutations and identifies IQCH as a key protein required for sperm motility and capacitation.
Collapse
Affiliation(s)
- Emma Cavarocchi
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Camille Sayou
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Patrick Lorès
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014 Paris, France
| | - Caroline Cazin
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- CHU de Grenoble Alpes, UM GI-DPI, 38000 Grenoble, France
| | - Laurence Stouvenel
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014 Paris, France
| | - Elma El Khouri
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014 Paris, France
| | - Charles Coutton
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | | | - Catherine Patrat
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014 Paris, France
- Laboratoire d’Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
| | - Jérôme Govin
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | | | - Marjorie Whitfield
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Pierre F. Ray
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- CHU de Grenoble Alpes, UM GI-DPI, 38000 Grenoble, France
| | - Emmanuel Dulioust
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014 Paris, France
- Laboratoire d’Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
| | - Aminata Touré
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
8
|
Balbach M, Ghanem L, Violante S, Kyaw A, Romarowski A, Cross JR, Visconti PE, Levin LR, Buck J. Capacitation induces changes in metabolic pathways supporting motility of epididymal and ejaculated sperm. Front Cell Dev Biol 2023; 11:1160154. [PMID: 37440924 PMCID: PMC10335746 DOI: 10.3389/fcell.2023.1160154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Mammalian sperm require sufficient energy to support motility and capacitation for successful fertilization. Previous studies cataloging the changes to metabolism in sperm explored ejaculated human sperm or dormant mouse sperm surgically extracted from the cauda epididymis. Due to the differences in methods of collection, it remains unclear whether any observed differences between mouse and human sperm represent species differences or reflect the distinct maturation states of the sperm under study. Here we compare the metabolic changes during capacitation of epididymal versus ejaculated mouse sperm and relate these changes to ejaculated human sperm. Using extracellular flux analysis and targeted metabolic profiling, we show that capacitation-induced changes lead to increased flux through both glycolysis and oxidative phosphorylation in mouse and human sperm. Ejaculation leads to greater flexibility in the ability to use different carbon sources. While epididymal sperm are dependent upon glucose, ejaculated mouse and human sperm gain the ability to also leverage non-glycolytic energy sources such as pyruvate and citrate.
Collapse
Affiliation(s)
- Melanie Balbach
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Lubna Ghanem
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Sara Violante
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Aye Kyaw
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ana Romarowski
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, MA, United States
| | - Justin R. Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Pablo E. Visconti
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, MA, United States
| | - Lonny R. Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
9
|
Zheng W, Zhang T, Zhao T, Zhu Z, Qin S, Yan H, He M, Zhou B, Xia G, Zhang H, Wang C. cAMP controls the balance between dormancy and activation of primordial follicles in mouse ovaries. PNAS NEXUS 2023; 2:pgad055. [PMID: 36938502 PMCID: PMC10019762 DOI: 10.1093/pnasnexus/pgad055] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/22/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023]
Abstract
In mammalian ovaries, the balance between dormancy and activation of primordial follicles determines the female fecundity and endocrine homeostasis. Recently, several functional molecules and pathways have been reported to be involved in the activation of primordial follicles. However, the homeostasis regulatory mechanisms of primordial follicle activation are still scant. Our previous study has proved that a relatively higher concentration of cyclic AMP (cAMP) is required for primordial follicle formation. Here, we identified that cAMP also plays a vital role in the balance between dormancy and activation of primordial follicles. Our results showed that the concentration of cAMP remained stable in neonatal mouse ovaries, which is due to ADCY3, the synthetase of cAMP, and PDE3A, the hydrolytic enzyme of cAMP, were synchronously increased during the activation of primordial follicles in mouse ovaries. Once the concentration of cAMP in neonatal ovaries was either elevated or reduced in vitro, the activation of primordial follicles was either accelerated or decelerated accordingly. In addition, a higher concentration of cAMP in the ovaries of puberty mice improved primordial follicle activation in vivo. Finally, cAMP promoted primordial follicle activation via canonical mTORC1-PI3K signaling cascades and PKA signaling. In conclusion, our findings reveal that the concentration of cAMP acts as a key regulator in balancing the dormancy and activation of primordial follicles in the mouse ovary.
Collapse
Affiliation(s)
| | | | - Ting Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zijian Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaogang Qin
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hao Yan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meina He
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou Province 550025, China
| | - Bo Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan 750021, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chao Wang
- To whom correspondence should be addressed:
| |
Collapse
|
10
|
Zhao H, Yu Y, Mei C, Zhang T, Kang Y, Li N, Huang D. Effect of C-Type Natriuretic Peptide (CNP) on Spermatozoa Maturation in Adult Rat Epididymis. Curr Issues Mol Biol 2023; 45:1681-1692. [PMID: 36826053 PMCID: PMC9955803 DOI: 10.3390/cimb45020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
C-type natriuretic peptide (CNP) is highly expressed in male reproductive tissues, such as the epididymis. The aim of this study is to explore the role of CNP in the maturation of rat epididymal spermatozoa. First, the expression levels of CNP and its specific natriuretic peptide receptor-B (NPR-B) were detected in various tissues of rats and epididymis at different stages after birth. Then a castrated rat model was established to analyze the relationship between testosterone and CNP/NPR-B expression in the epididymis. Finally, CNP and different inhibitors (NPR-B inhibitors, cGMP inhibitors) were used to incubate epididymal sperm in vitro to examine sperm mobility and expression of sperm maturation-related factors. The results showed CNP/NPR-B mRNAs were expressed in all tissues of rats, but were extremely highly expressed in male genital ducts (seminal vesicle, prostate and epididymis). The expression of CNP/NPR-B in epididymis was the highest at birth and the fifth week after birth. In the epididymis, CNP/NPR-B were highly expressed in the caput and located in the epididymal epithelial cells. After castration, the expression of CNP/NPR-B decreased sharply and was restored quickly after testosterone supplementation. In vitro, CNP could significantly promote the acquisition of epididymal sperm motility through the NPR-B/cGMP pathway and induce the expression of sperm maturation-related factors (such as Bin1b, Catsper 1, Dnah17, Fertilin). This study shows that CNP plays a role in epididymal sperm maturation. The mechanism of CNP is to promote the acquisition of epididymal sperm fluidity through the NPR-B/cGMP signaling pathway and also to regulate sperm maturation-related genes. Moreover, the expression of CNP/NPR-B was regulated by testosterone.
Collapse
Affiliation(s)
- Hu Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.Z.); (Y.Y.); (C.M.); (T.Z.); (Y.K.); (N.L.)
- Department of Human Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuejin Yu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.Z.); (Y.Y.); (C.M.); (T.Z.); (Y.K.); (N.L.)
| | - Chunlei Mei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.Z.); (Y.Y.); (C.M.); (T.Z.); (Y.K.); (N.L.)
| | - Tianyu Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.Z.); (Y.Y.); (C.M.); (T.Z.); (Y.K.); (N.L.)
| | - Yafei Kang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.Z.); (Y.Y.); (C.M.); (T.Z.); (Y.K.); (N.L.)
| | - Na Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.Z.); (Y.Y.); (C.M.); (T.Z.); (Y.K.); (N.L.)
| | - Donghui Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.Z.); (Y.Y.); (C.M.); (T.Z.); (Y.K.); (N.L.)
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518063, China
- Correspondence: ; Tel.: +86-188-7226-2607
| |
Collapse
|
11
|
Ferreira AF, Santiago J, Silva JV, Oliveira PF, Fardilha M. PP1, PP2A and PP2B Interplay in the Regulation of Sperm Motility: Lessons from Protein Phosphatase Inhibitors. Int J Mol Sci 2022; 23:ijms232315235. [PMID: 36499559 PMCID: PMC9737803 DOI: 10.3390/ijms232315235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Male fertility relies on the ability of spermatozoa to fertilize the egg in the female reproductive tract (FRT). Spermatozoa acquire activated motility during epididymal maturation; however, to be capable of fertilization, they must achieve hyperactivated motility in the FRT. Extensive research found that three protein phosphatases (PPs) are crucial to sperm motility regulation, the sperm-specific protein phosphatase type 1 (PP1) isoform gamma 2 (PP1γ2), protein phosphatase type 2A (PP2A) and protein phosphatase type 2B (PP2B). Studies have reported that PP activity decreases during epididymal maturation, whereas protein kinase activity increases, which appears to be a requirement for motility acquisition. An interplay between these PPs has been extensively investigated; however, many specific interactions and some inconsistencies remain to be elucidated. The study of PPs significantly advanced following the identification of naturally occurring toxins, including calyculin A, okadaic acid, cyclosporin, endothall and deltamethrin, which are powerful and specific PP inhibitors. This review aims to overview the protein phosphorylation-dependent biochemical pathways underlying sperm motility acquisition and hyperactivation, followed by a discussion of the PP inhibitors that allowed advances in the current knowledge of these pathways. Since male infertility cases still attain alarming numbers, additional research on the topic is required, particularly using other PP inhibitors.
Collapse
Affiliation(s)
- Ana F. Ferreira
- Laboratory of Signal Transduction, Institute for Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Santiago
- Laboratory of Signal Transduction, Institute for Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana V. Silva
- Laboratory of Signal Transduction, Institute for Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro F. Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Institute for Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: ; Tel.: +351-918-143-947
| |
Collapse
|
12
|
Tesarik J, Mendoza-Tesarik R. Cyclic Adenosine Monophosphate: A Central Player in Gamete Development and Fertilization, and Possible Target for Infertility Therapies. Int J Mol Sci 2022; 23:ijms232315068. [PMID: 36499392 PMCID: PMC9736025 DOI: 10.3390/ijms232315068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Human infertility, of both male and female origin, is often caused by the deficient response of the testis and the ovary to hormonal stimuli that govern sperm and oocyte development and fertilization. The effects of hormones and other extracellular ligands involved in these events are often mediated by G-protein-coupled receptors that employ cyclic adenosine monophosphate (cAMP) as the principal second messenger transducing the receptor-generated signal to downstream elements. This opinion article summarizes the actions of cAMP in sperm and oocyte development and fertilization, leading to therapeutic actions targeting cAMP metabolism to alleviate human male and female infertility.
Collapse
|
13
|
Cordero-Martínez J, Jimenez-Gutierrez GE, Aguirre-Alvarado C, Alacántara-Farfán V, Chamorro-Cevallos G, Roa-Espitia AL, Hernández-González EO, Rodríguez-Páez L. Participation of signaling proteins in sperm hyperactivation. Syst Biol Reprod Med 2022; 68:315-330. [DOI: 10.1080/19396368.2022.2122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Joaquín Cordero-Martínez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | | | - Charmina Aguirre-Alvarado
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Unidad de Investigación Médica en Inmunología e Infectología Centro Médico Nacional La Raza, IMSS, Ciudad de México, Mexico
| | - Verónica Alacántara-Farfán
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Germán Chamorro-Cevallos
- Laboratorio de Toxicología Preclínica Departamento de Farmacia Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ana L. Roa-Espitia
- Departamento de Biología Celular Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional, México City, Mexico
| | - Enrique O. Hernández-González
- Departamento de Biología Celular Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional, México City, Mexico
| | - Lorena Rodríguez-Páez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
14
|
Soria-Tiedemann M, Michel G, Urban I, Aldrovandi M, O’Donnell VB, Stehling S, Kuhn H, Borchert A. Unbalanced Expression of Glutathione Peroxidase 4 and Arachidonate 15-Lipoxygenase Affects Acrosome Reaction and In Vitro Fertilization. Int J Mol Sci 2022; 23:ijms23179907. [PMID: 36077303 PMCID: PMC9456195 DOI: 10.3390/ijms23179907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/25/2022] Open
Abstract
Glutathione peroxidase 4 (Gpx4) and arachidonic acid 15 lipoxygenase (Alox15) are counterplayers in oxidative lipid metabolism and both enzymes have been implicated in spermatogenesis. However, the roles of the two proteins in acrosomal exocytosis have not been explored in detail. Here we characterized Gpx4 distribution in mouse sperm and detected the enzyme not only in the midpiece of the resting sperm but also at the anterior region of the head, where the acrosome is localized. During sperm capacitation, Gpx4 translocated to the post-acrosomal compartment. Sperm from Gpx4+/Sec46Ala mice heterozygously expressing a catalytically silent enzyme displayed an increased expression of phosphotyrosyl proteins, impaired acrosomal exocytosis after in vitro capacitation and were not suitable for in vitro fertilization. Alox15-deficient sperm showed normal acrosome reactions but when crossed into a Gpx4-deficient background spontaneous acrosomal exocytosis was observed during capacitation and these cells were even less suitable for in vitro fertilization. Taken together, our data indicate that heterozygous expression of a catalytically silent Gpx4 variant impairs acrosomal exocytosis and in vitro fertilization. Alox15 deficiency hardly impacted the acrosome reaction but when crossed into the Gpx4-deficient background spontaneous acrosomal exocytosis was induced. The detailed molecular mechanisms for the observed effects may be related to the compromised redox homeostasis.
Collapse
Affiliation(s)
- Mariana Soria-Tiedemann
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Geert Michel
- Department of Transgenic Technologies, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, D-13125 Berlin, Germany
| | - Iris Urban
- Department of Transgenic Technologies, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, D-13125 Berlin, Germany
| | - Maceler Aldrovandi
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Valerie B. O’Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Sabine Stehling
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Astrid Borchert
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, D-10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-528-034
| |
Collapse
|
15
|
Pathobiology and Therapeutic Relevance of GSK-3 in Chronic Hematological Malignancies. Cells 2022; 11:cells11111812. [PMID: 35681507 PMCID: PMC9180032 DOI: 10.3390/cells11111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 12/10/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is an evolutionarily conserved, ubiquitously expressed, multifunctional serine/threonine protein kinase involved in the regulation of a variety of physiological processes. GSK-3 comprises two isoforms (α and β) which were originally discovered in 1980 as enzymes involved in glucose metabolism via inhibitory phosphorylation of glycogen synthase. Differently from other proteins kinases, GSK-3 isoforms are constitutively active in resting cells, and their modulation mainly involves inhibition through upstream regulatory networks. In the early 1990s, GSK-3 isoforms were implicated as key players in cancer cell pathobiology. Active GSK-3 facilitates the destruction of multiple oncogenic proteins which include β-catenin and Master regulator of cell cycle entry and proliferative metabolism (c-Myc). Therefore, GSK-3 was initially considered to be a tumor suppressor. Consistently, GSK-3 is often inactivated in cancer cells through dysregulated upstream signaling pathways. However, over the past 10–15 years, a growing number of studies highlighted that in some cancer settings GSK-3 isoforms inhibit tumor suppressing pathways and therefore act as tumor promoters. In this article, we will discuss the multiple and often enigmatic roles played by GSK-3 isoforms in some chronic hematological malignancies (chronic myelogenous leukemia, chronic lymphocytic leukemia, multiple myeloma, and B-cell non-Hodgkin’s lymphomas) which are among the most common blood cancer cell types. We will also summarize possible novel strategies targeting GSK-3 for innovative therapies of these disorders.
Collapse
|
16
|
Mirihagalle S, Hughes JR, Miller DJ. Progesterone-Induced Sperm Release from the Oviduct Sperm Reservoir. Cells 2022; 11:1622. [PMID: 35626659 PMCID: PMC9139440 DOI: 10.3390/cells11101622] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
In mammalian females, after sperm are deposited in the reproductive tract, a fraction of sperm migrates to the lower oviduct (isthmus) and forms a sperm storage site known as the functional sperm reservoir. The interactions between sperm membrane proteins and oviduct epithelial cells facilitate sperm binding to the oviductal epithelium and retention in the reservoir. Sperm are bound by glycans that contain specific motifs present on isthmic epithelial cells. Capacitated sperm are released from the reservoir and travel further in the oviduct to the ampulla where fertilization occurs. For decades, researchers have been studying the molecules and mechanisms of sperm release from the oviductal sperm reservoir. However, it is still not clear if the release of sperm is triggered by changes in sperm, oviduct cells, oviduct fluid, or a combination of these. While there is a possibility that more than one of these events are involved in the release of sperm from the reservoir, one activator of sperm release has the largest accumulation of supporting evidence. This mechanism involves the steroid hormone, progesterone, as a signal that induces the release of sperm from the reservoir. This review gathers and synthesizes evidence for the role of progesterone in inducing sperm release from the oviduct functional sperm reservoir.
Collapse
Affiliation(s)
| | | | - David Joel Miller
- Department of Animal Sciences, Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA; (S.M.); (J.R.H.)
| |
Collapse
|
17
|
Grinshtain E, Shpungin S, Baum M, Nir U, Breitbart H. The Fer tyrosine kinase protects sperm from spontaneous acrosome reaction. Dev Biol 2022; 487:24-33. [DOI: 10.1016/j.ydbio.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 03/23/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022]
|
18
|
Xue R, Lin W, Fujita H, Sun J, Kinoshita R, Ochiai K, Futami J, Watanabe M, Ohuchi H, Sakaguchi M, Tang Z, Huang P, Nasu Y, Kumon H. Dkk3/REIC Deficiency Impairs Spermiation, Sperm Fibrous Sheath Integrity and the Sperm Motility of Mice. Genes (Basel) 2022; 13:genes13020285. [PMID: 35205329 PMCID: PMC8872165 DOI: 10.3390/genes13020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/06/2023] Open
Abstract
The role of Dickkopf-3 (Dkk3)/REIC (The Reduced Expression in Immortalized Cells), a Wnt-signaling inhibitor, in male reproductive physiology remains unknown thus far. To explore the functional details of Dkk3/REIC in the male reproductive process, we studied the Dkk3/REIC knock-out (KO) mouse model. By examining testicular sections and investigating the sperm characteristics (count, vitality and motility) and ultrastructure, we compared the reproductive features between Dkk3/REIC-KO and wild-type (WT) male mice. To further explore the underlying molecular mechanism, we performed RNA sequencing (RNA-seq) analysis of testicular tissues. Our results showed that spermiation failure existed in seminiferous tubules of Dkk3/REIC-KO mice, and sperm from Dkk3/REIC-KO mice exhibited inferior motility (44.09 ± 8.12% vs. 23.26 ± 10.02%, p < 0.01). The Ultrastructure examination revealed defects in the sperm fibrous sheath of KO mice. Although the average count of Dkk3/REIC-KO epididymal sperm was less than that of the wild-types (9.30 ± 0.69 vs. 8.27 ± 0.87, ×106), neither the gap (p > 0.05) nor the difference in the sperm vitality rate (72.83 ± 1.55% vs. 72.50 ± 0.71%, p > 0.05) were statistically significant. The RNA-seq and GO (Gene Oncology) enrichment results indicated that the differential genes were significantly enriched in the GO terms of cytoskeleton function, cAMP signaling and calcium ion binding. Collectively, our research demonstrates that Dkk3/REIC is involved in the process of spermiation, fibrous sheath integrity maintenance and sperm motility of mice.
Collapse
Affiliation(s)
- Ruizhi Xue
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (R.X.); (W.L.); (J.S.); (M.W.); (Y.N.)
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenfeng Lin
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (R.X.); (W.L.); (J.S.); (M.W.); (Y.N.)
| | - Hirofumi Fujita
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.F.); (H.O.)
| | - Jingkai Sun
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (R.X.); (W.L.); (J.S.); (M.W.); (Y.N.)
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (R.K.); (M.S.)
| | - Kazuhiko Ochiai
- Laboratory of Veterinary Hygiene, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan;
| | - Junichiro Futami
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan;
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (R.X.); (W.L.); (J.S.); (M.W.); (Y.N.)
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.F.); (H.O.)
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (R.K.); (M.S.)
| | - Zhengyan Tang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (Z.T.); (P.H.); Tel.: +86-731-89753012 (Z.T.); +81-86-235-7997 (P.H.)
| | - Peng Huang
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (R.X.); (W.L.); (J.S.); (M.W.); (Y.N.)
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Okayama Medical Innovation Center, Okayama University, Okayama 700-8558, Japan
- Correspondence: (Z.T.); (P.H.); Tel.: +86-731-89753012 (Z.T.); +81-86-235-7997 (P.H.)
| | - Yasutomo Nasu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (R.X.); (W.L.); (J.S.); (M.W.); (Y.N.)
| | - Hiromi Kumon
- Innovation Center Okayama for Nanobio-Targeted Therapy, Okayama University, Okayama 700-8558, Japan;
| |
Collapse
|
19
|
A multiplier peroxiporin signal transduction pathway powers piscine spermatozoa. Proc Natl Acad Sci U S A 2021; 118:2019346118. [PMID: 33674382 DOI: 10.1073/pnas.2019346118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The primary task of a spermatozoon is to deliver its nuclear payload to the egg to form the next-generation zygote. With polyandry repeatedly evolving in the animal kingdom, however, sperm competition has become widespread, with the highest known intensities occurring in fish. Yet, the molecular controls regulating spermatozoon swimming performance in these organisms are largely unknown. Here, we show that the kinematic properties of postactivated piscine spermatozoa are regulated through a conserved trafficking mechanism whereby a peroxiporin ortholog of mammalian aquaporin-8 (Aqp8bb) is inserted into the inner mitochondrial membrane to facilitate H2O2 efflux in order to maintain ATP production. In teleosts from more ancestral lineages, such as the zebrafish (Danio rerio) and the Atlantic salmon (Salmo salar), in which spermatozoa are activated in freshwater, an intracellular Ca2+-signaling directly regulates this mechanism through monophosphorylation of the Aqp8bb N terminus. In contrast, in more recently evolved marine teleosts, such the gilthead seabream (Sparus aurata), in which spermatozoa activation occurs in seawater, a cross-talk between Ca2+- and oxidative stress-activated pathways generate a multiplier regulation of channel trafficking via dual N-terminal phosphorylation. These findings reveal that teleost spermatozoa evolved increasingly sophisticated detoxification pathways to maintain swimming performance under a high osmotic stress, and provide insight into molecular traits that are advantageous for postcopulatory sexual selection.
Collapse
|
20
|
Xu Y, Han Q, Ma C, Wang Y, Zhang P, Li C, Cheng X, Xu H. Comparative Proteomics and Phosphoproteomics Analysis Reveal the Possible Breed Difference in Yorkshire and Duroc Boar Spermatozoa. Front Cell Dev Biol 2021; 9:652809. [PMID: 34336820 PMCID: PMC8322956 DOI: 10.3389/fcell.2021.652809] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Sperm cells are of unique elongated structure and function, the development of which is tightly regulated by the existing proteins and the posttranslational modifications (PTM) of these proteins. Based on the phylogenetic relationships of various swine breeds, Yorkshire boar is believed to be distinctly different from Duroc boar. The comprehensive differential proteomics and phosphoproteomics profilings were performed on spermatozoa from both Yorkshire and Duroc boars. By both peptide and PTM peptide quantification followed by statistical analyses, 167 differentially expressed proteins were identified from 1,745 proteins, and 283 differentially expressed phosphopeptides corresponding to 102 unique differentially phosphorylated proteins were measured from 1,140 identified phosphopeptides derived from 363 phosphorylated proteins. The representative results were validated by Western blots. Pathway enrichment analyses revealed that majority of differential expression proteins and differential phosphorylation proteins were primarily concerned with spermatogenesis, male gamete generation, sperm motility, energy metabolism, cilium morphogenesis, axonemal dynein complex assembly, sperm–egg recognition, and capacitation. Remarkably, axonemal dynein complex assembly related proteins, such as SMCP, SUN5, ODF1, AKAP3, and AKAP4 that play a key regulatory role in the sperm physiological functions, were significantly higher in Duroc spermatozoa than that of Yorkshire. Furthermore, phosphorylation of sperm-specific proteins, such as CABYR, ROPN1, CALM1, PRKAR2A, and PRKAR1A, participates in regulation of the boar sperm motility mainly through the cAMP/PKA signal pathway in different breeds, demonstrating that protein phosphorylation may be an important mechanism underlying the sperm diversity. Protein–protein interaction analysis revealed that the 14 overlapped proteins between differential expression proteins and differential phosphorylation proteins potentially played a key role in sperm development and motility of the flagellum, including the proteins ODF1, SMCP, AKAP4, FSIP2, and SUN5. Taken together, these physiologically and functionally differentially expressed proteins (DEPs) and differentially expressed phosphorylated proteins (DPPs) may constitute the proteomic backgrounds between the two different boar breeds. The validation will be performed to delineate the roles of these PTM proteins as modulators of Yorkshire and Duroc boar spermatozoa.
Collapse
Affiliation(s)
- Yongjie Xu
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Qiu Han
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Chaofeng Ma
- Xinyang Animal Disease Control and Prevention Center, Xinyang, China
| | - Yaling Wang
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Pengpeng Zhang
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Cencen Li
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Xiaofang Cheng
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Haixia Xu
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
21
|
Mouse and Fly Sperm Motility Changes Differently under Modelling Microgravity. Curr Issues Mol Biol 2021; 43:590-604. [PMID: 34287235 PMCID: PMC8929020 DOI: 10.3390/cimb43020043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 11/26/2022] Open
Abstract
Sperm motility is essential for the natural fertilization process in most animal species. Despite the fact that evolution took place under conditions of constant gravity, the motility of spermatozoa of insects and mammals under microgravity conditions changes in different ways. In this work, an attempt was made to explain this effect. The sperm motility of the fruit fly Drosophila melanogaster and the mouse was evaluated after exposure to a random positioning machine for 6 h. Sodium fluoride was used to inhibit serine/threonine phosphatases, sodium orthovanadate was used to inhibit tyrosine phosphatases, and 6-(dimethylamino)purine was used to inhibit protein kinases. The results obtained indicate that simulated microgravity leads to an increase in the speed of movement of fly spermatozoa by 30% (p < 0.05), and this effect is blocked by sodium fluoride. In contrast, a 29% (p < 0.05) decrease in the speed of movement of mouse spermatozoa under simulated microgravity is prevented by 6-(dimethylamino)purine. Moreover, after 6 h of exposure, the content of tubulin cytoskeleton and actin proteins remains at the control level in the spermatozoa of flies and mice. However, the content of the actin-binding protein alpha-actinin in fly sperm decreases by 29% (p < 0.05), while in mouse sperm, the relative content of alpha-actinin1 increases by 94% (p < 0.05) and alpha-actinin4 by 121% (p < 0.05) relative to the control, as determined by 6 simulated microgravity tests. It can be assumed that the effect of simulated microgravity on the motility of mammalian spermatozoa is mediated through the regulation of phosphorylation and that of insects through the regulation of dephosphorylation of motor proteins; moreover, the development of a response to changes in external mechanical conditions has a different time scale.
Collapse
|
22
|
Martelli AM, Evangelisti C, Paganelli F, Chiarini F, McCubrey JA. GSK-3: a multifaceted player in acute leukemias. Leukemia 2021; 35:1829-1842. [PMID: 33811246 DOI: 10.1038/s41375-021-01243-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
Glycogen synthase kinase 3 (GSK-3) consists of two isoforms (α and β) that were originally linked to glucose metabolism regulation. However, GSK-3 is also involved in several signaling pathways controlling many different key functions in healthy cells. GSK-3 is a unique kinase in that its isoforms are constitutively active, while they are inactivated mainly through phosphorylation at Ser residues by a variety of upstream kinases. In the early 1990s, GSK-3 emerged as a key player in cancer cell pathophysiology. Since active GSK-3 promotes destruction of multiple oncogenic proteins (e.g., β-catenin, c-Myc, Mcl-1) it was considered to be a tumor suppressor. Accordingly, GSK-3 is frequently inactivated in human cancer via aberrant regulation of upstream signaling pathways. More recently, however, it has emerged that GSK-3 isoforms display also oncogenic properties, as they up-regulate pathways critical for neoplastic cell proliferation, survival, and drug-resistance. The regulatory roles of GSK-3 isoforms in cell cycle, apoptosis, DNA repair, tumor metabolism, invasion, and metastasis reflect the therapeutic relevance of these kinases and provide the rationale for combining GSK-3 inhibitors with other targeted drugs. Here, we discuss the multiple and often conflicting roles of GSK-3 isoforms in acute leukemias. We also review the current status of GSK-3 inhibitor development for innovative leukemia therapy.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Chiarini
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
23
|
Oyovwi MO, Nwangwa EK, Ben-Azu B, Rotue RA, Edesiri TP, Emojevwe V, Igweh JC, Uruaka CI. Prevention and reversal of chlorpromazine induced testicular dysfunction in rats by synergistic testicle-active flavonoids, taurine and coenzyme-10. Reprod Toxicol 2021; 101:50-62. [PMID: 33548410 DOI: 10.1016/j.reprotox.2021.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 12/21/2022]
Abstract
Evidences have shown that alterations in testicular dehydrogenase and ionic-ATPase activities have important implications in spermatogenesis and sperm capacitation, a penultimate biochemical change required for fertilization. Previous studies have revealed that taurine and coenzyme-Q10 (COQ-10), which are synergistic testicle-active bioflavonoids, with proven gonadotropin-enhancing properties reduce testicular damage in rats. Hence, this study investigated the effects of taurine and COQ-10 or their combination alone, and in the preventive and reversal of chlorpromazine-induced inhibition of testicular dehydrogenase enzymes, electrogenic pumps, sperm capacitation and acrosomal-reaction in male Wister rats. In the drug-treatment alone or preventive-protocol, rats received oral treatment of saline (10 mL/kg), taurine (150 mg/kg/day), COQ-10 (10 mg/kg/day) or both alone repeatedly for 56 days, or in combination with chlorpromazine (30 mg/kg/p.o./day) from days 29-56. In the reversal-protocol, the animals received chlorpromazine for 56 days prior to saline, taurine, COQ-10 or the combination from days 29-56. Thereafter, spermatogenesis (sperm count, viability, motility and morphology), testicular dehydrogenase [3beta-hydroxysteroid dehydrogenase (3ß-HSD), 17beta-hydroxysteroid dehydrogenase (17ß-HSD), glucose-6-phosphate dehydrogenase (G6PDH), lactate dehydrogenase-X (LDH-X)], ATPase (Na+/K+, Ca2+, Mg2+, H+) activities, sperm capacitation and acrosomal reaction were evaluated. Taurine and COQ-10 or their combination increased spermatogenesis, testicular 3ß-HSD, 17ß-HSD, G6PDH and LDH-X enzymes of naïve and chlorpromazine-treated rats. Both taurine and COQ-10 increased Na+/K+, Ca2+, Mg2+ and H+-ATPase activities. Also, taurine and COQ-10 or their combination prevented and reversed chlorpromazine-induced inhibition of sperm capacitation and acrosomal-reaction. The study showed that taurine and COQ-10 prevent and reverse chlorpromazine-induced inhibition of spermatogenesis, epididymal sperm capacitation and acrosomal reaction in rats through increased testicular dehydrogenases and electrogenic pump activities.
Collapse
Affiliation(s)
- Mega O Oyovwi
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medicine, Delta State University, Abraka, Delta State, Nigeria; Department of Basic Medical Sciences, Achievers University, Owo, Ondo State, Nigeria
| | - Eze K Nwangwa
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medicine, Delta State University, Abraka, Delta State, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, Delta State University, Abraka, Delta State, Nigeria.
| | - Rume A Rotue
- Department of Physiology, Faculty of Basic Medical Science, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Tesi P Edesiri
- Department of Science Laboratory Technology, Delta State Polytechnic, Ogwashi-Uku, Delta State, Nigeria
| | - Victor Emojevwe
- Department of Physiology, University of Medical Sciences, Ondo, Ondo State, Nigeria
| | - John C Igweh
- Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medicine, Delta State University, Abraka, Delta State, Nigeria
| | - Christian I Uruaka
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Rivers State University, Port Harcourt, Rivers State, Nigeria
| |
Collapse
|
24
|
Cavarocchi E, Whitfield M, Chargui A, Stouvenel L, Lorès P, Coutton C, Arnoult C, Santulli P, Patrat C, Thierry-Mieg N, Ray PF, Dulioust E, Touré A. The sodium/proton exchanger SLC9C1 (sNHE) is essential for human sperm motility and fertility. Clin Genet 2021; 99:684-693. [PMID: 33462806 DOI: 10.1111/cge.13927] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 02/02/2023]
Abstract
Asthenozoospermia, defined by the absence or reduction of sperm motility, constitutes the most frequent cause of human male infertility. This pathological condition is caused by morphological and/or functional defects of the sperm flagellum, which preclude proper sperm progression. While in the last decade many causal genes were identified for asthenozoospermia associated with severe sperm flagellar defects, the causes of purely functional asthenozoospermia are still poorly defined. We describe here the case of an infertile man, displaying asthenozoospermia without major morphological flagellar anomalies and carrying a homozygous splicing mutation in SLC9C1 (sNHE), which we identified by whole-exome sequencing. SLC9C1 encodes a sperm-specific sodium/proton exchanger, which in mouse regulates pH homeostasis and interacts with the soluble adenylyl cyclase (sAC), a key regulator of the signalling pathways involved in sperm motility and capacitation. We demonstrate by means of RT-PCR, immunodetection and immunofluorescence assays on patient's semen samples that the homozygous splicing mutation (c.2748 + 2 T > C) leads to in-frame exon skipping resulting in a deletion in the cyclic nucleotide-binding domain of the protein. Our work shows that in human, similar to mouse, SLC9C1 is required for sperm motility. Overall, we establish a homozygous truncating mutation in SLC9C1 as a novel cause of human asthenozoospermia and infertility.
Collapse
Affiliation(s)
- Emma Cavarocchi
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France
| | | | - Ahmed Chargui
- Laboratoire d'Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Patrick Lorès
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France
| | - Charles Coutton
- Institut pour l'avancée des Biosciences, INSERM, CNRS, Université Grenoble Alpes, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Christophe Arnoult
- Institut pour l'avancée des Biosciences, INSERM, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Pietro Santulli
- Service de Chirurgie Gynécologie Obstétrique 2 et Médecine de la Reproduction, Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Catherine Patrat
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France.,Laboratoire d'Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Pierre F Ray
- Institut pour l'avancée des Biosciences, INSERM, CNRS, Université Grenoble Alpes, Grenoble, France.,CHU de Grenoble, UM GI-DPI, Grenoble, France
| | - Emmanuel Dulioust
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France.,Laboratoire d'Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aminata Touré
- Institut pour l'avancée des Biosciences, INSERM, CNRS, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|