1
|
Abassah-Oppong S, Zoia M, Mannion BJ, Rouco R, Tissières V, Spurrell CH, Roland V, Darbellay F, Itum A, Gamart J, Festa-Daroux TA, Sullivan CS, Kosicki M, Rodríguez-Carballo E, Fukuda-Yuzawa Y, Hunter RD, Novak CS, Plajzer-Frick I, Tran S, Akiyama JA, Dickel DE, Lopez-Rios J, Barozzi I, Andrey G, Visel A, Pennacchio LA, Cobb J, Osterwalder M. A gene desert required for regulatory control of pleiotropic Shox2 expression and embryonic survival. Nat Commun 2024; 15:8793. [PMID: 39389973 PMCID: PMC11467299 DOI: 10.1038/s41467-024-53009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Approximately a quarter of the human genome consists of gene deserts, large regions devoid of genes often located adjacent to developmental genes and thought to contribute to their regulation. However, defining the regulatory functions embedded within these deserts is challenging due to their large size. Here, we explore the cis-regulatory architecture of a gene desert flanking the Shox2 gene, which encodes a transcription factor indispensable for proximal limb, craniofacial, and cardiac pacemaker development. We identify the gene desert as a regulatory hub containing more than 15 distinct enhancers recapitulating anatomical subdomains of Shox2 expression. Ablation of the gene desert leads to embryonic lethality due to Shox2 depletion in the cardiac sinus venosus, caused in part by the loss of a specific distal enhancer. The gene desert is also required for stylopod morphogenesis, mediated via distributed proximal limb enhancers. In summary, our study establishes a multi-layered role of the Shox2 gene desert in orchestrating pleiotropic developmental expression through modular arrangement and coordinated dynamics of tissue-specific enhancers.
Collapse
Affiliation(s)
- Samuel Abassah-Oppong
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
- Department of Biological Sciences, Fort Hays State University, Hays, KS, 67601, USA
| | - Matteo Zoia
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | - Brandon J Mannion
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
| | - Raquel Rouco
- Department of Genetic Medicine and Development and iGE3, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Virginie Tissières
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, 41013, Seville, Spain
- Department of Cardiology, Bern University Hospital, 3010, Bern, Switzerland
| | - Cailyn H Spurrell
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Virginia Roland
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | - Fabrice Darbellay
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Genetic Medicine and Development and iGE3, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anja Itum
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
| | - Julie Gamart
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, 3010, Bern, Switzerland
| | - Tabitha A Festa-Daroux
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
| | - Carly S Sullivan
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Eddie Rodríguez-Carballo
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Yoko Fukuda-Yuzawa
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Riana D Hunter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Catherine S Novak
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Stella Tran
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer A Akiyama
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, 41013, Seville, Spain
- School of Health Sciences, Universidad Loyola Andalucía, Seville, Spain
| | - Iros Barozzi
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Guillaume Andrey
- Department of Genetic Medicine and Development and iGE3, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - John Cobb
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada.
| | - Marco Osterwalder
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Cardiology, Bern University Hospital, 3010, Bern, Switzerland.
| |
Collapse
|
2
|
Hines MA, Taneyhill LA. Elp1 function in placode-derived neurons is critical for proper trigeminal ganglion development. Dev Dyn 2024. [PMID: 39381860 DOI: 10.1002/dvdy.749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The trigeminal nerve is the largest cranial nerve and functions in somatosensation. Cell bodies of this nerve are positioned in the trigeminal ganglion, which arises from the coalescence of neural crest and placode cells. While this dual cellular origin has been known for decades, the molecular mechanisms controlling trigeminal ganglion development remain obscure. We performed RNA sequencing on the forming chick trigeminal ganglion and identified Elongator acetyltransferase complex subunit 1 (Elp1) for further study. Mutations in ELP1 cause familial dysautonomia (FD), a fatal disorder characterized by the presence of smaller trigeminal nerves and sensory deficits. While Elp1 has established roles in neurogenesis, its function in placode cells during trigeminal gangliogenesis has not been investigated. RESULTS To this end, we used morpholinos to deplete Elp1 from chick trigeminal placode cells. Elp1 knockdown decreased trigeminal ganglion size and led to aberrant innervation of the eye by placode-derived neurons. Trigeminal nerve branches also appeared to exhibit reduced axon outgrowth to target tissues. CONCLUSIONS These findings reveal a new role for Elp1 in placode-derived neurons during chick trigeminal ganglion development. These results have potential high significance to provide new insights into trigeminal ganglion development and the etiology of FD.
Collapse
Affiliation(s)
- Margaret A Hines
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
3
|
Kumar S, Bareke E, Lee J, Carlson E, Merkuri F, Schwager EE, Maglio S, Fish JL, Majewski J, Jerome-Majewska LA. Etiology of craniofacial and cardiac malformations in a mouse model of SF3B4-related syndromes. Proc Natl Acad Sci U S A 2024; 121:e2405523121. [PMID: 39292749 PMCID: PMC11441570 DOI: 10.1073/pnas.2405523121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/26/2024] [Indexed: 09/20/2024] Open
Abstract
Pathogenic variants in SF3B4, a component of the U2 snRNP complex important for branchpoint sequence recognition and splicing, are responsible for the acrofacial disorders Nager and Rodriguez Syndrome, also known as SF3B4-related syndromes. Patients exhibit malformations in the head, face, limbs, vertebrae as well as the heart. To uncover the etiology of craniofacial malformations found in SF3B4-related syndromes, mutant mouse lines with homozygous deletion of Sf3b4 in neural crest cells (NCC) were generated. Like in human patients, these embryos had craniofacial and cardiac malformations with variable expressivity and penetrance. The severity and survival of Sf3b4 NCC mutants was modified by the level of Sf3b4 in neighboring non-NCC. RNA sequencing analysis of heads of embryos prior to morphological abnormalities revealed significant changes in expression of genes forming the NCC regulatory network, as well as an increase in exon skipping. Additionally, several key histone modifiers involved in craniofacial and cardiac development showed increased exon skipping. Increased exon skipping was also associated with use of a more proximal branch point, as well as an enrichment in thymidine bases in the 50 bp around the branch points. We propose that decrease in Sf3b4 causes changes in the expression and splicing of transcripts required for proper craniofacial and cardiac development, leading to abnormalities.
Collapse
Affiliation(s)
- Shruti Kumar
- Department of Human Genetics, McGill University, Montreal, QCH3A 0G1, Canada
| | - Eric Bareke
- Department of Human Genetics, McGill University, Montreal, QCH3A 0G1, Canada
| | - Jimmy Lee
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QCH3A 0G1, Canada
| | - Emma Carlson
- Department of Human Genetics, McGill University, Montreal, QCH3A 0G1, Canada
| | - Fjodor Merkuri
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA01854
| | - Evelyn E. Schwager
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA01854
| | - Steven Maglio
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA01854
| | - Jennifer L. Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA01854
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QCH3A 0G1, Canada
| | - Loydie A. Jerome-Majewska
- Department of Human Genetics, McGill University, Montreal, QCH3A 0G1, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QCH3A 2B2, Canada
- Department of Pediatrics, McGill University, Montreal, QCH4A 3J1, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre at Glen Site, Montreal, QCH4A 3J1, Canada
| |
Collapse
|
4
|
Alam MR, Singh S, Agarwal A, Prithviraj M, Tripathi R. From Psychiatric Care to Dermatologic Dilemmas: A Case Report of Risperidone-Induced Bullous Pemphigoid. Cureus 2024; 16:e69125. [PMID: 39398712 PMCID: PMC11466902 DOI: 10.7759/cureus.69125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
The patient, a 64-year-old male with a history of delusional disorder, first experienced symptoms of suspicion toward his spouse at age 34. He was treated with psychotropic drugs for two years, leading to complete symptom remission and discontinuation of medication. After years of stability, delusions resurfaced two years ago. Amisulpride was ineffective, and risperidone was started but led to itching and plaques on his thighs, which evolved into fluid-filled and hemorrhagic lesions. Diagnosed with bullous pemphigoid (BP) via skin biopsy, he received corticosteroids, dapsone, and antibiotics. Risperidone was discontinued, but delusions reappeared, prompting its reintroduction. New bullous lesions emerged, suggesting risperidone's role in triggering them. Risperidone was replaced with aripiprazole, and melatonin improved sleep. The patient responded well, with both delusional symptoms and skin condition well-managed. This case highlights the need to consider drug-induced BP in elderly patients on antipsychotic medications.
Collapse
Affiliation(s)
- Mohd Rashid Alam
- Psychiatry, All India Institute of Medical Sciences, Gorakhpur, Gorakhpur, IND
| | - Samant Singh
- Psychiatry, All India Institute of Medical Sciences, Gorakhpur, Gorakhpur, IND
| | - Astha Agarwal
- Psychiatry, All India Institute of Medical Sciences, Gorakhpur, Gorakhpur, IND
| | - Manoj Prithviraj
- Psychiatry, All India Institute of Medical Sciences, Gorakhpur, Gorakhpur, IND
| | - Richa Tripathi
- Psychiatry, All India Institute of Medical Sciences, Gorakhpur, Gorakhpur, IND
| |
Collapse
|
5
|
Leonard CE, McIntosh A, Taneyhill LA. The transcriptional landscape of the developing chick trigeminal ganglion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.20.604400. [PMID: 39211243 PMCID: PMC11361123 DOI: 10.1101/2024.07.20.604400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The trigeminal ganglion is a critical structure in the peripheral nervous system, responsible for transmitting sensations of touch, pain, and temperature from craniofacial regions to the brain. Trigeminal ganglion development depends upon intrinsic cellular programming as well as extrinsic signals exchanged by diverse cell populations. With its complex anatomy and dual cellular origin from cranial placodes and neural crest cells, the trigeminal ganglion offers a rich context for examining diverse biological processes, including cell migration, fate determination, adhesion, and axon guidance. Avian models have, so far, enabled key insights into craniofacial and peripheral nervous system development. Yet, the molecular mechanisms driving trigeminal ganglion formation and subsequent nerve growth remain elusive. In this study, we performed RNA-sequencing at multiple stages of chick trigeminal ganglion development and generated a novel transcriptomic dataset that has been curated to illustrate temporally dynamic gene expression patterns. This publicly available resource identifies major pathways involved in trigeminal gangliogenesis, particularly with respect to the condensation and maturation of placode-derived neurons, thus inviting new lines of research into the essential processes governing trigeminal ganglion development.
Collapse
|
6
|
Hines MA, Taneyhill LA. Elp1 function in placode-derived neurons is critical for proper trigeminal ganglion development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603323. [PMID: 39071383 PMCID: PMC11275904 DOI: 10.1101/2024.07.12.603323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background The trigeminal nerve is the largest cranial nerve and functions in somatosensation. Cell bodies of this nerve are positioned in the trigeminal ganglion, which arises from the coalescence of neural crest and placode cells. While this dual cellular origin has been known for decades, the molecular mechanisms controlling trigeminal ganglion development remain obscure. We performed RNAsequencing on the forming chick trigeminal ganglion and identified Elongator acetyltransferase complex subunit 1 ( Elp1 ) for further study. Mutations in ELP1 cause familial dysautonomia (FD), a fatal disorder characterized by the presence of smaller trigeminal nerves and sensory deficits. While Elp1 has established roles in neurogenesis, its functions in placode cells during trigeminal gangliogenesis have not been investigated. Results To this end, we used morpholinos to deplete Elp1 from chick trigeminal placode cells. Elp1 knockdown decreased trigeminal ganglion size and led to aberrant innervation of the eye by placode-derived neurons. Trigeminal nerve branches exhibited fewer axons, and abnormal interactions between placode-derived neurons and neural crest cells were observed. Conclusions These findings reveal a new role for Elp1 in chick placode-derived neurons during trigeminal ganglion development. These results have potential high significance to provide new insights into trigeminal ganglion development and the etiology of FD. Bullet points Elp1 is expressed in undifferentiated neural crest cells and placode-derived neurons contributing to the trigeminal ganglion.Elp1 knockdown in trigeminal placode cells reduces trigeminal ganglion size.Elp1 depletion from trigeminal placode cells leads to aberrant target tissue innervation and disrupts proper neural crest-placodal neuron interactions in the trigeminal ganglion. Grant sponsor and number NIH R01DE024217 and NIH R03HD108480.
Collapse
|
7
|
Vignard V, Baruteau AE, Toutain B, Mercier S, Isidor B, Redon R, Schott JJ, Küry S, Bézieau S, Monsoro-Burq AH, Ebstein F. Exploring the origins of neurodevelopmental proteasomopathies associated with cardiac malformations: are neural crest cells central to certain pathological mechanisms? Front Cell Dev Biol 2024; 12:1370905. [PMID: 39071803 PMCID: PMC11272537 DOI: 10.3389/fcell.2024.1370905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/05/2024] [Indexed: 07/30/2024] Open
Abstract
Neurodevelopmental proteasomopathies constitute a recently defined class of rare Mendelian disorders, arising from genomic alterations in proteasome-related genes. These alterations result in the dysfunction of proteasomes, which are multi-subunit protein complexes essential for maintaining cellular protein homeostasis. The clinical phenotype of these diseases manifests as a syndromic association involving impaired neural development and multisystem abnormalities, notably craniofacial anomalies and malformations of the cardiac outflow tract (OFT). These observations suggest that proteasome loss-of-function variants primarily affect specific embryonic cell types which serve as origins for both craniofacial structures and the conotruncal portion of the heart. In this hypothesis article, we propose that neural crest cells (NCCs), a highly multipotent cell population, which generates craniofacial skeleton, mesenchyme as well as the OFT of the heart, in addition to many other derivatives, would exhibit a distinctive vulnerability to protein homeostasis perturbations. Herein, we introduce the diverse cellular compensatory pathways activated in response to protein homeostasis disruption and explore their potential implications for NCC physiology. Altogether, the paper advocates for investigating proteasome biology within NCCs and their early cranial and cardiac derivatives, offering a rationale for future exploration and laying the initial groundwork for therapeutic considerations.
Collapse
Affiliation(s)
- Virginie Vignard
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
| | - Alban-Elouen Baruteau
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Department of Pediatric Cardiology and Pediatric Cardiac Surgery, FHU PRECICARE, Nantes Université, Nantes, France
- Nantes Université, CHU Nantes, INSERM, CIC FEA 1413, Nantes, France
| | - Bérénice Toutain
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
| | - Sandra Mercier
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Service de Génétique Médicale, Nantes Université, Nantes, France
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Service de Génétique Médicale, Nantes Université, Nantes, France
| | - Richard Redon
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
| | | | - Sébastien Küry
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Service de Génétique Médicale, Nantes Université, Nantes, France
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Service de Génétique Médicale, Nantes Université, Nantes, France
| | - Anne H. Monsoro-Burq
- Faculté des Sciences d'Orsay, CNRS, UMR 3347, INSERM, Université Paris-Saclay, Orsay, France
- Institut Curie, PSL Research University, CNRS, UMR 3347, INSERM, Orsay, France
- Institut Universitaire de France, Paris, France
| | - Frédéric Ebstein
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
| |
Collapse
|
8
|
Oliver Goral R, Lamb PW, Yakel JL. Acetylcholine Neurons Become Cholinergic during Three Time Windows in the Developing Mouse Brain. eNeuro 2024; 11:ENEURO.0542-23.2024. [PMID: 38942474 PMCID: PMC11253243 DOI: 10.1523/eneuro.0542-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024] Open
Abstract
Acetylcholine (ACh) neurons in the central nervous system are required for the coordination of neural network activity during higher brain functions, such as attention, learning, and memory, as well as locomotion. Disturbed cholinergic signaling has been described in many neurodevelopmental and neurodegenerative disorders. Furthermore, cotransmission of other signaling molecules, such as glutamate and GABA, with ACh has been associated with essential roles in brain function or disease. However, it is unknown when ACh neurons become cholinergic during development. Thus, understanding the timeline of how the cholinergic system develops and becomes active in the healthy brain is a crucial part of understanding brain development. To study this, we used transgenic mice to selectively label ACh neurons with tdTomato. We imaged serial sectioned brains and generated whole-brain reconstructions at different time points during pre- and postnatal development. We found three crucial time windows-two in the prenatal and one in the postnatal brain-during which most ACh neuron populations become cholinergic in the brain. We also found that cholinergic gene expression is initiated in cortical ACh interneurons, while the cerebral cortex is innervated by cholinergic projection neurons from the basal forebrain. Taken together, we show that ACh neuron populations are present and become cholinergic before postnatal day 12, which is the onset of major sensory processes, such as hearing and vision. We conclude that the birth of ACh neurons and initiation of cholinergic gene expression are temporally separated during development but highly coordinated by brain anatomical structure.
Collapse
Affiliation(s)
- Rene Oliver Goral
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
- Center on Compulsive Behaviors, National Institutes of Health, Bethesda, Maryland 20892
| | - Patricia W Lamb
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| |
Collapse
|
9
|
Knyazeva A, Dyachuk V. Neural crest and sons: role of neural crest cells and Schwann cell precursors in development and gland embryogenesis. Front Cell Dev Biol 2024; 12:1406199. [PMID: 38989061 PMCID: PMC11233730 DOI: 10.3389/fcell.2024.1406199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
In this review, we consider the multipotency of neural crest cells (NCCs), Schwann cell precursors (SCPs), and their role in embryogenesis base on genetic tracing and knock out model animals and single cell transcriptomic analysis. In particular, we summarize and analyze data on the contribution of NCCs and SCPs to the gland development and functions.
Collapse
|
10
|
Wu HF, Saito-Diaz K, Huang CW, McAlpine JL, Seo DE, Magruder DS, Ishan M, Bergeron HC, Delaney WH, Santori FR, Krishnaswamy S, Hart GW, Chen YW, Hogan RJ, Liu HX, Ivanova NB, Zeltner N. Parasympathetic neurons derived from human pluripotent stem cells model human diseases and development. Cell Stem Cell 2024; 31:734-753.e8. [PMID: 38608707 PMCID: PMC11069445 DOI: 10.1016/j.stem.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024]
Abstract
Autonomic parasympathetic neurons (parasymNs) control unconscious body responses, including "rest-and-digest." ParasymN innervation is important for organ development, and parasymN dysfunction is a hallmark of autonomic neuropathy. However, parasymN function and dysfunction in humans are vastly understudied due to the lack of a model system. Human pluripotent stem cell (hPSC)-derived neurons can fill this void as a versatile platform. Here, we developed a differentiation paradigm detailing the derivation of functional human parasymNs from Schwann cell progenitors. We employ these neurons (1) to assess human autonomic nervous system (ANS) development, (2) to model neuropathy in the genetic disorder familial dysautonomia (FD), (3) to show parasymN dysfunction during SARS-CoV-2 infection, (4) to model the autoimmune disease Sjögren's syndrome (SS), and (5) to show that parasymNs innervate white adipocytes (WATs) during development and promote WAT maturation. Our model system could become instrumental for future disease modeling and drug discovery studies, as well as for human developmental studies.
Collapse
Affiliation(s)
- Hsueh-Fu Wu
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Kenyi Saito-Diaz
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Chia-Wei Huang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Jessica L McAlpine
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Dong Eun Seo
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - D Sumner Magruder
- Department of Genetics, Department of Computer Science, Wu Tsai Institute, Program for Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Mohamed Ishan
- Regenerative Bioscience Center, Department of Animal and Dairy Science College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Harrison C Bergeron
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - William H Delaney
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Fabio R Santori
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Smita Krishnaswamy
- Department of Genetics, Department of Computer Science, Wu Tsai Institute, Program for Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Gerald W Hart
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ya-Wen Chen
- Department of Otolaryngology, Department of Cell, Developmental, and Regenerative Biology, Institute for Airway Sciences, Institute for Regenerative Medicine, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert J Hogan
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Hong-Xiang Liu
- Regenerative Bioscience Center, Department of Animal and Dairy Science College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Natalia B Ivanova
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
11
|
Kalia AK, Rösseler C, Granja-Vazquez R, Ahmad A, Pancrazio JJ, Neureiter A, Zhang M, Sauter D, Vetter I, Andersson A, Dussor G, Price TJ, Kolber BJ, Truong V, Walsh P, Lampert A. How to differentiate induced pluripotent stem cells into sensory neurons for disease modelling: a functional assessment. Stem Cell Res Ther 2024; 15:99. [PMID: 38581069 PMCID: PMC10998320 DOI: 10.1186/s13287-024-03696-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/13/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Human induced pluripotent stem cell (iPSC)-derived peripheral sensory neurons present a valuable tool to model human diseases and are a source for applications in drug discovery and regenerative medicine. Clinically, peripheral sensory neuropathies can result in maladies ranging from a complete loss of pain to severe painful neuropathic disorders. Sensory neurons are located in the dorsal root ganglion and are comprised of functionally diverse neuronal types. Low efficiency, reproducibility concerns, variations arising due to genetic factors and time needed to generate functionally mature neuronal populations from iPSCs remain key challenges to study human nociception in vitro. Here, we report a detailed functional characterization of iPSC-derived sensory neurons with an accelerated differentiation protocol ("Anatomic" protocol) compared to the most commonly used small molecule approach ("Chambers" protocol). Anatomic's commercially available RealDRG™ were further characterized for both functional and expression phenotyping of key nociceptor markers. METHODS Multiple iPSC clones derived from different reprogramming methods, genetics, age, and somatic cell sources were used to generate sensory neurons. Manual patch clamp was used to functionally characterize both control and patient-derived neurons. High throughput techniques were further used to demonstrate that RealDRGs™ derived from the Anatomic protocol are amenable to high throughput technologies for disease modelling. RESULTS The Anatomic protocol rendered a purer culture without the use of mitomycin C to suppress non-neuronal outgrowth, while Chambers differentiations yielded a mix of cell types. Chambers protocol results in predominantly tonic firing when compared to Anatomic protocol. Patient-derived nociceptors displayed higher frequency firing compared to control subject with both, Chambers and Anatomic differentiation approaches, underlining their potential use for clinical phenotyping as a disease-in-a-dish model. RealDRG™ sensory neurons show heterogeneity of nociceptive markers indicating that the cells may be useful as a humanized model system for translational studies. CONCLUSIONS We validated the efficiency of two differentiation protocols and their potential application for functional assessment and thus understanding the disease mechanisms from patients suffering from pain disorders. We propose that both differentiation methods can be further exploited for understanding mechanisms and development of novel treatments in pain disorders.
Collapse
Affiliation(s)
- Anil Kumar Kalia
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
| | - Corinna Rösseler
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Rafael Granja-Vazquez
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Ayesha Ahmad
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Joseph J Pancrazio
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Anika Neureiter
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Mei Zhang
- Sophion Bioscience Inc., Bedford, MA, 01730, USA
| | | | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Asa Andersson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Gregory Dussor
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Theodore J Price
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Benedict J Kolber
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Vincent Truong
- Anatomic Incorporated, 2112 Broadway Street NE #135, Minneapolis, MN, 55413, USA
| | - Patrick Walsh
- Anatomic Incorporated, 2112 Broadway Street NE #135, Minneapolis, MN, 55413, USA
| | - Angelika Lampert
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany.
- Scientific Center for Neuropathic Pain Aachen - SCN-Aachen, Uniklinik RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
12
|
Sun J, Li M, Sun H, Lin Z, Shi B, Jia Z. Genetic association and functional validation of ZFP36L2 in non-syndromic orofacial cleft subtypes. J Hum Genet 2024; 69:139-144. [PMID: 38321215 DOI: 10.1038/s10038-024-01222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Non-syndromic orofacial cleft (NSOC) is one of the most common craniofacial malformations with complex etiology. This study aimed to explore the role of specific SNPs in ZFP36L2 and its functional relevance in zebrafish models. METHODS We analyzed genetic data of the Chinese Han population from two previous GWAS, comprising of 2512 cases and 2255 controls. Based on the Hardy-Weinberg Equilibrium (HWE) and minor allele frequency (MAF), SNPs in the ZFP36L2 were selected for association analysis. In addition, zebrafish models were used to clarify the in-situ expression pattern of zfp36l2 and the impact of its Morpholino-induced knockdown. RESULTS Via association analysis, rs7933 in ZFP36L2 was significantly associated with various non-syndromic cleft lip-only subtypes, potentially conferring a protective effect. Zebrafish embryos showed elevated expression of zfp36l2 in the craniofacial region during critical stages of oral cavity formation. Furthermore, Morpholino-induced knockdown of zfp36l2 led to craniofacial abnormalities, including cleft lip, which was partially rescued by the addition of zfp36l2 mRNA. CONCLUSION Our findings highlight the significance of ZFP36L2 in the etiology of NSOC, supported by both human genetic association data and functional studies in zebrafish. These results pave the way for further exploration of targeted interventions for craniofacial malformations.
Collapse
Affiliation(s)
- Jialin Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of cleft lip and palate, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Mujia Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of cleft lip and palate, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Huaqin Sun
- SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziyuan Lin
- SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of cleft lip and palate, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Zhonglin Jia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of cleft lip and palate, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
13
|
Caiaffa CD, Ambekar YS, Singh M, Lin YL, Wlodarczyk B, Aglyamov SR, Scarcelli G, Larin KV, Finnell RH. Disruption of Fuz in mouse embryos generates hypoplastic hindbrain development and reduced cranial nerve ganglia. Dev Dyn 2024; 253:846-858. [PMID: 38501709 PMCID: PMC11411014 DOI: 10.1002/dvdy.702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND The brain and spinal cord formation is initiated in the earliest stages of mammalian pregnancy in a highly organized process known as neurulation. Environmental or genetic interferences can impair neurulation, resulting in clinically significant birth defects known collectively as neural tube defects. The Fuz gene encodes a subunit of the CPLANE complex, a macromolecular planar polarity effector required for ciliogenesis. Ablation of Fuz in mouse embryos results in exencephaly and spina bifida, including dysmorphic craniofacial structures due to defective cilia formation and impaired Sonic Hedgehog signaling. RESULTS We demonstrate that knocking Fuz out during embryonic mouse development results in a hypoplastic hindbrain phenotype, displaying abnormal rhombomeres with reduced length and width. This phenotype is associated with persistent reduction of ventral neuroepithelial stiffness in a notochord adjacent area at the level of the rhombomere 5. The formation of cranial and paravertebral ganglia is also impaired in these embryos. CONCLUSIONS This study reveals that hypoplastic hindbrain development, identified by abnormal rhombomere morphology and persistent loss of ventral neuroepithelial stiffness, precedes exencephaly in Fuz ablated murine mutants, indicating that the gene Fuz has a critical function sustaining normal neural tube development and neuronal differentiation.
Collapse
Affiliation(s)
- Carlo Donato Caiaffa
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, Austin, Texas, USA
| | - Yogeshwari S Ambekar
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Ying Linda Lin
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Bogdan Wlodarczyk
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Salavat R Aglyamov
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Richard H Finnell
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
14
|
Zhang K, Yao E, Aung T, Chuang PT. The alveolus: Our current knowledge of how the gas exchange unit of the lung is constructed and repaired. Curr Top Dev Biol 2024; 159:59-129. [PMID: 38729684 DOI: 10.1016/bs.ctdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The mammalian lung completes its last step of development, alveologenesis, to generate sufficient surface area for gas exchange. In this process, multiple cell types that include alveolar epithelial cells, endothelial cells, and fibroblasts undergo coordinated cell proliferation, cell migration and/or contraction, cell shape changes, and cell-cell and cell-matrix interactions to produce the gas exchange unit: the alveolus. Full functioning of alveoli also involves immune cells and the lymphatic and autonomic nervous system. With the advent of lineage tracing, conditional gene inactivation, transcriptome analysis, live imaging, and lung organoids, our molecular understanding of alveologenesis has advanced significantly. In this review, we summarize the current knowledge of the constituents of the alveolus and the molecular pathways that control alveolar formation. We also discuss how insight into alveolar formation may inform us of alveolar repair/regeneration mechanisms following lung injury and the pathogenic processes that lead to loss of alveoli or tissue fibrosis.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Thin Aung
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States.
| |
Collapse
|
15
|
Hwang CD, Hoftiezer YAJ, Raasveld FV, Gomez-Eslava B, van der Heijden EPA, Jayakar S, Black BJ, Johnston BR, Wainger BJ, Renthal W, Woolf CJ, Eberlin KR. Biology and pathophysiology of symptomatic neuromas. Pain 2024; 165:550-564. [PMID: 37851396 DOI: 10.1097/j.pain.0000000000003055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/07/2023] [Indexed: 10/19/2023]
Abstract
ABSTRACT Neuromas are a substantial cause of morbidity and reduction in quality of life. This is not only caused by a disruption in motor and sensory function from the underlying nerve injury but also by the debilitating effects of neuropathic pain resulting from symptomatic neuromas. A wide range of surgical and therapeutic modalities have been introduced to mitigate this pain. Nevertheless, no single treatment option has been successful in completely resolving the associated constellation of symptoms. While certain novel surgical techniques have shown promising results in reducing neuroma-derived and phantom limb pain, their effectiveness and the exact mechanism behind their pain-relieving capacities have not yet been defined. Furthermore, surgery has inherent risks, may not be suitable for many patients, and may yet still fail to relieve pain. Therefore, there remains a great clinical need for additional therapeutic modalities to further improve treatment for patients with devastating injuries that lead to symptomatic neuromas. However, the molecular mechanisms and genetic contributions behind the regulatory programs that drive neuroma formation-as well as the resulting neuropathic pain-remain incompletely understood. Here, we review the histopathological features of symptomatic neuromas, our current understanding of the mechanisms that favor neuroma formation, and the putative contributory signals and regulatory programs that facilitate somatic pain, including neurotrophic factors, neuroinflammatory peptides, cytokines, along with transient receptor potential, and ionotropic channels that suggest possible approaches and innovations to identify novel clinical therapeutics.
Collapse
Affiliation(s)
- Charles D Hwang
- Division of Plastic and Reconstructive Surgery, Department of General Surgery, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| | - Yannick Albert J Hoftiezer
- Hand and Arm Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, United States
- Department of Plastic, Reconstructive and Hand Surgery, Radboudumc, Nijmegen, the Netherlands
| | - Floris V Raasveld
- Hand and Arm Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, United States
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Barbara Gomez-Eslava
- Hand and Arm Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, United States
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - E P A van der Heijden
- Department of Plastic, Reconstructive and Hand Surgery, Radboudumc, Nijmegen, the Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Jeroen Bosch Ziekenhuis, Den Bosch, the Netherlands
| | - Selwyn Jayakar
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Bryan James Black
- Department of Biomedical Engineering, UMass Lowell, Lowell, MA, United States
| | - Benjamin R Johnston
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, United States
| | - Brian J Wainger
- Departments of Anesthesia, Critical Care & Pain Medicine and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Kyle R Eberlin
- Division of Plastic and Reconstructive Surgery, Department of General Surgery, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| |
Collapse
|
16
|
Saumweber E, Mzoughi S, Khadra A, Werberger A, Schumann S, Guccione E, Schmeisser MJ, Kühl SJ. Prdm15 acts upstream of Wnt4 signaling in anterior neural development of Xenopus laevis. Front Cell Dev Biol 2024; 12:1316048. [PMID: 38444828 PMCID: PMC10912572 DOI: 10.3389/fcell.2024.1316048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Mutations in PRDM15 lead to a syndromic form of holoprosencephaly (HPE) known as the Galloway-Mowat syndrome (GAMOS). While a connection between PRDM15, a zinc finger transcription factor, and WNT/PCP signaling has been established, there is a critical need to delve deeper into their contributions to early development and GAMOS pathogenesis. We used the South African clawed frog Xenopus laevis as the vertebrate model organism and observed that prdm15 was enriched in the tissues and organs affected in GAMOS. Furthermore, we generated a morpholino oligonucleotide-mediated prdm15 knockdown model showing that the depletion of Prdm15 leads to abnormal eye, head, and brain development, effectively recapitulating the anterior neural features in GAMOS. An analysis of the underlying molecular basis revealed a reduced expression of key genes associated with eye, head, and brain development. Notably, this reduction could be rescued by the introduction of wnt4 RNA, particularly during the induction of the respective tissues. Mechanistically, our data demonstrate that Prdm15 acts upstream of both canonical and non-canonical Wnt4 signaling during anterior neural development. Our findings describe severe ocular and anterior neural abnormalities upon Prdm15 depletion and elucidate the role of Prdm15 in canonical and non-canonical Wnt4 signaling.
Collapse
Affiliation(s)
- Ernestine Saumweber
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Slim Mzoughi
- Center of OncoGenomics and Innovative Therapeutics (COGIT), Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New-York, NY, United States
| | - Arin Khadra
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Anja Werberger
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Sven Schumann
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ernesto Guccione
- Center of OncoGenomics and Innovative Therapeutics (COGIT), Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New-York, NY, United States
| | - Michael J. Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Susanne J. Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| |
Collapse
|
17
|
Alexander BE, Zhao H, Astrof S. SMAD4: A critical regulator of cardiac neural crest cell fate and vascular smooth muscle development. Dev Dyn 2024; 253:119-143. [PMID: 37650555 PMCID: PMC10842824 DOI: 10.1002/dvdy.652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/07/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND During embryogenesis, cardiac neural crest-derived cells (NCs) migrate into the pharyngeal arches and give rise to the vascular smooth muscle cells (vSMCs) of the pharyngeal arch arteries (PAAs). vSMCs are critical for the remodeling of the PAAs into their final adult configuration, giving rise to the aortic arch and its arteries (AAAs). RESULTS We investigated the role of SMAD4 in NC-to-vSMC differentiation using lineage-specific inducible mouse strains. We found that the expression of SMAD4 in the NC is indelible for regulating the survival of cardiac NCs. Although the ablation of SMAD4 at E9.5 in the NC lineage led to a near-complete absence of NCs in the pharyngeal arches, PAAs became invested with vSMCs derived from a compensatory source. Analysis of AAA development at E16.5 showed that the alternative vSMC source compensated for the lack of NC-derived vSMCs and rescued AAA morphogenesis. CONCLUSIONS Our studies uncovered the requisite role of SMAD4 in the contribution of the NC to the pharyngeal arch mesenchyme. We found that in the absence of SMAD4+ NCs, vSMCs around the PAAs arose from a different progenitor source, rescuing AAA morphogenesis. These findings shed light on the remarkable plasticity of developmental mechanisms governing AAA development.
Collapse
Affiliation(s)
- Brianna E. Alexander
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Huaning Zhao
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Molecular Biology, Genetics, and Cancer Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| |
Collapse
|
18
|
Inoue O, Goten C, Hashimuko D, Yamaguchi K, Takeda Y, Nomura A, Ootsuji H, Takashima S, Iino K, Takemura H, Halurkar M, Lim HW, Hwa V, Sanchez-Gurmaches J, Usui S, Takamura M. Single-cell transcriptomics identifies adipose tissue CD271 + progenitors for enhanced angiogenesis in limb ischemia. Cell Rep Med 2023; 4:101337. [PMID: 38118404 PMCID: PMC10772587 DOI: 10.1016/j.xcrm.2023.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 11/21/2023] [Indexed: 12/22/2023]
Abstract
Therapeutic angiogenesis using mesenchymal stem/stromal cell grafts have shown modest and controversial effects in preventing amputation for patients with critical limb ischemia. Through single-cell transcriptomic analysis of human tissues, we identify CD271+ progenitors specifically from subcutaneous adipose tissue (AT) as having the most prominent pro-angiogenic gene profile distinct from other stem cell populations. AT-CD271+ progenitors demonstrate robust in vivo angiogenic capacity over conventional adipose stromal cell grafts, characterized by long-term engraftment, augmented tissue regeneration, and significant recovery of blood flow in a xenograft model of limb ischemia. Mechanistically, the angiogenic capacity of CD271+ progenitors is dependent on functional CD271 and mTOR signaling. Notably, the number and angiogenic capacity of CD271+ progenitors are strikingly reduced in insulin-resistant donors. Our study highlights the identification of AT-CD271+ progenitors with in vivo superior efficacy for limb ischemia. Furthermore, we showcase comprehensive single-cell transcriptomics strategies for identification of suitable grafts for cell therapy.
Collapse
Affiliation(s)
- Oto Inoue
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chiaki Goten
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Daiki Hashimuko
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kosei Yamaguchi
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yusuke Takeda
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Ayano Nomura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Ootsuji
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinichiro Takashima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenji Iino
- Department of Thoracic, Cardiovascular and General Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hirofumi Takemura
- Department of Thoracic, Cardiovascular and General Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Manasi Halurkar
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Vivian Hwa
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Premium Research Institute for Human Medicine (WPI-PRIMe), Osaka University, Osaka, Japan; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Joan Sanchez-Gurmaches
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
19
|
Tolouei AE, Oruji F, Tehrani S, Rezaei S, Mozaffari A, Jahri M, Nasiri K. Gingival mesenchymal stem cell therapy, immune cells, and immunoinflammatory application. Mol Biol Rep 2023; 50:10461-10469. [PMID: 37904011 DOI: 10.1007/s11033-023-08826-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/12/2023] [Indexed: 11/01/2023]
Abstract
MSC-based therapeutic strategies have proven to be incredibly effective. Robust self-renewal, multilineage differentiation, and potential for tissue regeneration and disease treatments are all features of MSCs isolated from oral tissue. Human exfoliated deciduous teeth, dental follicles, dental pulp, apical papilla SCs, and alveolar bone are the primary sources of oral MSC production. The early immunoinflammatory response is the first stage of the healing process. Oral MSCs can interact with various cells, such as immune cells, revealing potential immunomodulatory regulators. They also have strong differentiation and regeneration potential. Therefore, a ground-breaking strategy would be to research novel immunomodulatory approaches for treating disease and tissue regeneration that depend on the immunomodulatory activities of oral MSCs during tissue regeneration.
Collapse
Affiliation(s)
| | - Farshid Oruji
- College of Medicine, Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sahar Tehrani
- Department of Pediatric Dentistry, School of Dentistry, Ahvaz Jundishapour University of Medical Sciences Ahvaz, Ahvaz, Iran
| | - Sara Rezaei
- Restorative Dentistry Resident, Faculty of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - Asieh Mozaffari
- Department of Periodontics, Faculty of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Jahri
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
20
|
Kalia AK, Rösseler C, Granja-Vazquez R, Ahmad A, Pancrazio JJ, Neureiter A, Zhang M, Sauter D, Vetter I, Andersson A, Dussor G, Price TJ, Kolber BJ, Truong V, Walsh P, Lampert A. How to differentiate induced pluripotent stem cells into sensory neurons for disease modelling: a comparison of two protocols. RESEARCH SQUARE 2023:rs.3.rs-3127017. [PMID: 37961300 PMCID: PMC10635298 DOI: 10.21203/rs.3.rs-3127017/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Human induced pluripotent stem cell (iPSC)-derived peripheral sensory neurons present a valuable tool to model human diseases and are a source for applications in drug discovery and regenerative medicine. Clinically, peripheral sensory neuropathies can result in maladies ranging from a complete loss of pain to severe painful neuropathic symptoms. Sensory neurons are located in the dorsal root ganglion and are comprised of functionally diverse neuronal types. Low efficiency, reproducibility concerns, variations arising due to genetic factors and time needed to generate functionally mature neuronal populations from iPSCs for disease modelling remain key challenges to study human nociception in vitro. Here, we report a detailed characterization of iPSC-derived sensory neurons with an accelerated differentiation protocol ("Anatomic" protocol) compared to the most commonly used small molecule approach ("Chambers" protocol). Methods Multiple iPSC clones derived from different reprogramming methods, genetics, age, and somatic cell sources were used to generate sensory neurons. Expression profiling of sensory neurons was performed with Immunocytochemistry and in situ hybridization techniques. Manual patch clamp and high throughput cellular screening systems (Fluorescence imaging plate reader, automated patch clamp and multi-well microelectrode arrays recordings) were applied to functionally characterize the generated sensory neurons. Results The Anatomic protocol rendered a purer culture without the use of mitomycin C to suppress non-neuronal outgrowth, while Chambers differentiations yielded a mix of cell types. High throughput systems confirmed functional expression of Na+ and K+ ion channels. Multi-well microelectrode recordings display spontaneously active neurons with sensitivity to increased temperature indicating expression of heat sensitive ion channels. Patient-derived nociceptors displayed higher frequency firing compared to control subject with both, Chambers and Anatomic differentiation approaches, underlining their potential use for clinical phenotyping as a disease-in-a-dish model. Conclusions We validated the efficiency of two differentiation protocols and their potential application for understanding the disease mechanisms from patients suffering from pain disorders. We propose that both differentiation methods can be further exploited for understanding mechanisms and development of novel treatments in pain disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mei Zhang
- Sophion Bioscience A/S: Biolin Scientific AB
| | | | - Irina Vetter
- The University of Queensland Institute for Molecular Bioscience
| | - Asa Andersson
- The University of Queensland Institute for Molecular Bioscience
| | | | | | | | | | | | | |
Collapse
|
21
|
Xing WB, Wu ST, Wang XX, Li FY, Wang RX, He JH, Fu J, He Y. Potential of dental pulp stem cells and their products in promoting peripheral nerve regeneration and their future applications. World J Stem Cells 2023; 15:960-978. [PMID: 37970238 PMCID: PMC10631371 DOI: 10.4252/wjsc.v15.i10.960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023] Open
Abstract
Peripheral nerve injury (PNI) seriously affects people's quality of life. Stem cell therapy is considered a promising new option for the clinical treatment of PNI. Dental stem cells, particularly dental pulp stem cells (DPSCs), are adult pluripotent stem cells derived from the neuroectoderm. DPSCs have significant potential in the field of neural tissue engineering due to their numerous advantages, such as easy isolation, multidifferentiation potential, low immunogenicity, and low transplant rejection rate. DPSCs are extensively used in tissue engineering and regenerative medicine, including for the treatment of sciatic nerve injury, facial nerve injury, spinal cord injury, and other neurodegenerative diseases. This article reviews research related to DPSCs and their advantages in treating PNI, aiming to summarize the therapeutic potential of DPSCs for PNI and the underlying mechanisms and providing valuable guidance and a foundation for future research.
Collapse
Affiliation(s)
- Wen-Bo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Shu-Ting Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Xin-Xin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Fen-Yao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Ruo-Xuan Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Ji-Hui He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Jiao Fu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, Hubei Province, China.
| |
Collapse
|
22
|
Spildrejorde M, Samara A, Sharma A, Leithaug M, Falck M, Modafferi S, Sundaram AY, Acharya G, Nordeng H, Eskeland R, Gervin K, Lyle R. Multi-omics approach reveals dysregulated genes during hESCs neuronal differentiation exposure to paracetamol. iScience 2023; 26:107755. [PMID: 37731623 PMCID: PMC10507163 DOI: 10.1016/j.isci.2023.107755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/30/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Prenatal paracetamol exposure has been associated with neurodevelopmental outcomes in childhood. Pharmacoepigenetic studies show differences in cord blood DNA methylation between unexposed and paracetamol-exposed neonates, however, causality and impact of long-term prenatal paracetamol exposure on brain development remain unclear. Using a multi-omics approach, we investigated the effects of paracetamol on an in vitro model of early human neurodevelopment. We exposed human embryonic stem cells undergoing neuronal differentiation with paracetamol concentrations corresponding to maternal therapeutic doses. Single-cell RNA-seq and ATAC-seq integration identified paracetamol-induced chromatin opening changes linked to gene expression. Differentially methylated and/or expressed genes were involved in neurotransmission and cell fate determination trajectories. Some genes involved in neuronal injury and development-specific pathways, such as KCNE3, overlapped with differentially methylated genes previously identified in cord blood associated with prenatal paracetamol exposure. Our data suggest that paracetamol may play a causal role in impaired neurodevelopment.
Collapse
Affiliation(s)
- Mari Spildrejorde
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Athina Samara
- Division of Clinical Paediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children′s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Ankush Sharma
- Department of Informatics, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Magnus Leithaug
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Martin Falck
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Stefania Modafferi
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Arvind Y.M. Sundaram
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Alfred Nobels Allé 8, SE-14152 Stockholm, Sweden
- Center for Fetal Medicine, Karolinska University Hospital, SE-14186 Stockholm, Sweden
| | - Hedvig Nordeng
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Ragnhild Eskeland
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kristina Gervin
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Robert Lyle
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
23
|
Doda D, Alonso Jimenez S, Rehrauer H, Carreño JF, Valsamides V, Di Santo S, Widmer HR, Edge A, Locher H, van der Valk WH, Zhang J, Koehler KR, Roccio M. Human pluripotent stem cell-derived inner ear organoids recapitulate otic development in vitro. Development 2023; 150:dev201865. [PMID: 37791525 PMCID: PMC10565253 DOI: 10.1242/dev.201865] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/01/2023] [Indexed: 10/05/2023]
Abstract
Our molecular understanding of the early stages of human inner ear development has been limited by the difficulty in accessing fetal samples at early gestational stages. As an alternative, previous studies have shown that inner ear morphogenesis can be partially recapitulated using induced pluripotent stem cells directed to differentiate into inner ear organoids (IEOs). Once validated and benchmarked, these systems could represent unique tools to complement and refine our understanding of human otic differentiation and model developmental defects. Here, we provide the first direct comparisons of the early human embryonic otocyst and fetal sensory organs with human IEOs. We use multiplexed immunostaining and single-cell RNA-sequencing to characterize IEOs at three key developmental steps, providing a new and unique signature of in vitro-derived otic placode, epithelium, neuroblasts and sensory epithelia. In parallel, we evaluate the expression and localization of crucial markers at these equivalent stages in human embryos. Together, our data indicate that the current state-of-the-art protocol enables the specification of bona fide otic tissue, supporting the further application of IEOs to inform inner ear biology and disease.
Collapse
Affiliation(s)
- Daniela Doda
- Inner Ear Stem Cell Laboratory, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), 8091 Zurich,Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich (UZH), 8006 Zurich, Switzerland
| | - Sara Alonso Jimenez
- Inner Ear Stem Cell Laboratory, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), 8091 Zurich,Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich (UZH), 8006 Zurich, Switzerland
| | - Hubert Rehrauer
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich (UZH), 8006 Zurich, Switzerland
- Functional Genomics Center Zurich (ETH Zurich and University of Zurich), 8092 Zurich, Switzerland
| | - Jose F. Carreño
- Inner Ear Stem Cell Laboratory, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), 8091 Zurich,Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich (UZH), 8006 Zurich, Switzerland
- Functional Genomics Center Zurich (ETH Zurich and University of Zurich), 8092 Zurich, Switzerland
| | - Victoria Valsamides
- Inner Ear Stem Cell Laboratory, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), 8091 Zurich,Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich (UZH), 8006 Zurich, Switzerland
| | - Stefano Di Santo
- Program for Regenerative Neuroscience, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Hans R. Widmer
- Program for Regenerative Neuroscience, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Albert Edge
- Eaton Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA
- Department of Otorhinolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Heiko Locher
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Wouter H. van der Valk
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jingyuan Zhang
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital,Boston, MA 02115, USA
| | - Karl R. Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital,Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Marta Roccio
- Inner Ear Stem Cell Laboratory, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), 8091 Zurich,Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich (UZH), 8006 Zurich, Switzerland
| |
Collapse
|
24
|
Zupančič M, Tretiakov E, Máté Z, Erdélyi F, Szabó G, Clotman F, Hökfelt T, Harkany T, Keimpema E. Brain-wide mapping of efferent projections of glutamatergic (Onecut3 + ) neurons in the lateral mouse hypothalamus. Acta Physiol (Oxf) 2023; 238:e13973. [PMID: 37029761 PMCID: PMC10909463 DOI: 10.1111/apha.13973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
AIM This study mapped the spatiotemporal positions and connectivity of Onecut3+ neuronal populations in the developing and adult mouse brain. METHODS We generated fluorescent reporter mice to chart Onecut3+ neurons for brain-wide analysis. Moreover, we crossed Onecut3-iCre and Mapt-mGFP (Tau-mGFP) mice to visualize axonal projections. A dual Cre/Flp-dependent AAV construct in Onecut3-iCre cross-bred with Slc17a6-FLPo mice was used in an intersectional strategy to map the connectivity of glutamatergic lateral hypothalamic neurons in the adult mouse. RESULTS We first found that Onecut3 marks a hitherto undescribed Slc17a6+ /Vglut2+ neuronal cohort in the lateral hypothalamus, with the majority expressing thyrotropin-releasing hormone. In the adult, Onecut3+ /Vglut2+ neurons of the lateral hypothalamus had both intra- and extrahypothalamic efferents, particularly to the septal complex and habenula, where they targeted other cohorts of Onecut3+ neurons and additionally to the neocortex and hippocampus. This arrangement suggests that intrinsic reinforcement loops could exist for Onecut3+ neurons to coordinate their activity along the brain's midline axis. CONCLUSION We present both a toolbox to manipulate novel subtypes of hypothalamic neurons and an anatomical arrangement by which extrahypothalamic targets can be simultaneously entrained.
Collapse
Affiliation(s)
- Maja Zupančič
- Department of Molecular Neurosciences, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Evgenii Tretiakov
- Department of Molecular Neurosciences, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Zoltán Máté
- Institute of Experimental Medicine, Hungarian Academy of SciencesBudapestHungary
| | - Ferenc Erdélyi
- Institute of Experimental Medicine, Hungarian Academy of SciencesBudapestHungary
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of SciencesBudapestHungary
| | - Frédéric Clotman
- Animal Molecular and Cellular Biology Group, Louvain Institute of Biomolecular Science and TechnologyUniversité Catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Tomas Hökfelt
- Department of Neuroscience, Biomedicum 7DKarolinska InstitutetSolnaSweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain ResearchMedical University of ViennaViennaAustria
- Department of Neuroscience, Biomedicum 7DKarolinska InstitutetSolnaSweden
| | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain ResearchMedical University of ViennaViennaAustria
| |
Collapse
|
25
|
Doda D, Jimenez SA, Rehrauer H, Carre O JF, Valsamides V, Santo SD, Widmer HR, Edge A, Locher H, van der Valk W, Zhang J, Koehler KR, Roccio M. Human pluripotent stem cells-derived inner ear organoids recapitulate otic development in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536448. [PMID: 37090562 PMCID: PMC10120641 DOI: 10.1101/2023.04.11.536448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Our molecular understanding of the early stages of human inner ear development has been limited by the difficulty in accessing fetal samples at early gestational stages. As an alternative, previous studies have shown that inner ear morphogenesis can be partially recapitulated using induced pluripotent stem cells (iPSCs) directed to differentiate into Inner Ear Organoids (IEOs). Once validated and benchmarked, these systems could represent unique tools to complement and refine our understanding of human otic differentiation and model developmental defects. Here, we provide the first direct comparisons of the early human embryonic otocyst and human iPSC-derived IEOs. We use multiplexed immunostaining, and single-cell RNA sequencing to characterize IEOs at three key developmental steps, providing a new and unique signature of in vitro derived otic -placode, -epithelium, -neuroblasts, and -sensory epithelia. In parallel, we evaluate the expression and localization of critical markers at these equivalent stages in human embryos. We show that the placode derived in vitro (days 8-12) has similar marker expression to the developing otic placode of Carnegie Stage (CS) 11 embryos and subsequently (days 20-40) this gives rise to otic epithelia and neuroblasts comparable to the CS13 embryonic stage. Differentiation of sensory epithelia, including supporting cells and hair cells starts in vitro at days 50-60 of culture. The maturity of these cells is equivalent to vestibular sensory epithelia at week 10 or cochlear tissue at week 12 of development, before functional onset. Together, our data indicate that the current state-of-the-art protocol enables the specification of bona fide otic tissue, supporting the further application of IEOs to inform inner ear biology and disease.
Collapse
|
26
|
Alexander BE, Zhao H, Astrof S. SMAD4: A Critical Regulator of Cardiac Neural Crest Cell Fate and Vascular Smooth Muscle Differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532676. [PMID: 36993156 PMCID: PMC10055180 DOI: 10.1101/2023.03.14.532676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background The pharyngeal arch arteries (PAAs) are precursor vessels which remodel into the aortic arch arteries (AAAs) during embryonic cardiovascular development. Cardiac neural crest cells (NCs) populate the PAAs and differentiate into vascular smooth muscle cells (vSMCs), which is critical for successful PAA-to-AAA remodeling. SMAD4, the central mediator of canonical TGFβ signaling, has been implicated in NC-to-vSMC differentiation; however, its distinct roles in vSMC differentiation and NC survival are unclear. Results Here, we investigated the role of SMAD4 in cardiac NC differentiation to vSMCs using lineage-specific inducible mouse strains in an attempt to avoid early embryonic lethality and NC cell death. We found that with global SMAD4 loss, its role in smooth muscle differentiation could be uncoupled from its role in the survival of the cardiac NC in vivo . Moreover, we found that SMAD4 may regulate the induction of fibronectin, a known mediator of NC-to-vSMC differentiation. Finally, we found that SMAD4 is required in NCs cell-autonomously for NC-to-vSMC differentiation and for NC contribution to and persistence in the pharyngeal arch mesenchyme. Conclusions Overall, this study demonstrates the critical role of SMAD4 in the survival of cardiac NCs, their differentiation to vSMCs, and their contribution to the developing pharyngeal arches.
Collapse
|
27
|
Olivencia-Delgado MN, Jusino-Álamo JF, De Miranda-Sánchez E, Quiñones-Rodríguez JI. From Cadaveric Dissection to the Operating Room: A Unilateral Double Intercostobrachial Nerve and the Implications in Axillary Lymph Node Dissection. Cureus 2023; 15:e36647. [PMID: 37102027 PMCID: PMC10123002 DOI: 10.7759/cureus.36647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 04/28/2023] Open
Abstract
There are multiple treatment options for breast cancer (BC), including lumpectomy, chemo- and radiotherapy, complete mastectomy, and, when indicated, an axillary lymph node dissection. Such node dissections commonly lead the surgeon to encounter the intercostobrachial nerve (ICBN), which, if injured, leads to significant postoperative numbness of the upper arm. To assist in identifying the ICBN, we report a unilateral variation of a dual ICBN. The first ICBN (ICBN I) originates from the second intercostal space, as classically described in human anatomy. On the contrary, the second ICBN (ICBN II) originates from the second and third intercostal spaces. The anatomical knowledge of ICBN origin and its variations are crucial for axillary lymph node dissection in BC and other surgical interventions that involve the axillary region (e.g., regional nerve blocks). An iatrogenic injury of the ICBN has been associated with postoperative pain, paresthesia, and loss of upper extremity sensation in the dermatome supplied by this nerve. Therefore, maintaining the integrity of the ICBN is a worthy goal during axillary dissections in BC patients. Increasing the awareness of ICBN variants among surgeons reduces potential injuries, which would contribute to the BC patient's quality of life.
Collapse
Affiliation(s)
| | - Javier F Jusino-Álamo
- Department of Anatomy and Cell Biology, Universidad Central del Caribe School of Medicine, Bayamon, PRI
| | | | | |
Collapse
|
28
|
Inoue O, Goten C, Hashimuko D, Yamaguchi K, Takeda Y, Nomura A, Ootsuji H, Takashima S, Iino K, Takemura H, Halurkar M, Lim HW, Hwa V, Sanchez-Gurmaches J, Usui S, Takamura M. Single cell transcriptomics identifies adipose tissue CD271+ progenitors for enhanced angiogenesis in limb ischemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527726. [PMID: 36865239 PMCID: PMC9980009 DOI: 10.1101/2023.02.09.527726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Therapeutic angiogenesis using mesenchymal stem/stromal cell grafts have shown modest and controversial effects in preventing amputation for patients with critical limb ischemia. Through single-cell transcriptomic analysis of human tissues, we identified CD271 + progenitors specifically from subcutaneous adipose tissue (AT) as having the most prominent pro-angiogenic gene profile distinct from other stem cell populations. AT-CD271 + progenitors demonstrated robust in vivo angiogenic capacity, over conventional adipose stromal cell grafts, characterized by long-term engraftment, augmented tissue regeneration, and significant recovery of blood flow in a xenograft model of limb ischemia. Mechanistically, the angiogenic capacity of CD271 + progenitors is dependent on functional CD271 and mTOR signaling. Notably, the number and angiogenic capacity of CD271 + progenitors was strikingly reduced in insulin resistant donors. Our study highlights the identification of AT-CD271 + progenitors with in vivo superior efficacy for limb ischemia. Furthermore, we showcase comprehensive single-cell transcriptomics strategies for identification of suitable grafts for cell therapy. HIGHLIGHTS Adipose tissue stromal cells have a distinct angiogenic gene profile among human cell sources. CD271 + progenitors in adipose tissue have a prominent angiogenic gene profile. CD271 + progenitors show superior therapeutic capacities for limb ischemia. CD271 + progenitors are reduced and functionally impaired in insulin resistant donors. GRAPHICAL ABSTRACT
Collapse
|
29
|
Lannon M, Al-Sajee D, Bourgeois J, Sehl J, Reddy K, Lu JQ. Diagnosis and management of intraparenchymal rhabdomyosarcoma. Br J Neurosurg 2023:1-8. [PMID: 36597892 DOI: 10.1080/02688697.2022.2163980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/13/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Intracranial rhabdomyosarcomas represent a rare condition, posing a diagnostic challenge to physicians. Brain intraparenchymal rhabdomyosarcomas are exceptionally rare with poorly understood pathogenesis. METHODS Here we report the first adult case of intraparenchymal rhabdomyosarcoma (RMS) with brainstem and cranial nerve involvement. We conducted a literature search using Embase, MEDLINE, and PubMed for published cases of patients with rhabdomyosarcoma of the brain. The keywords used were 'rhabdomyosarcoma' combined with 'intraparenchymal', 'parenchymal', 'cerebral' or 'brain' for title/abstract. Included cases were adult patients (>18 years of age). RESULTS A 59-year-old man presents with multiple cranial nerve palsies. MRI revealed a solitary pontine lesion that was not responsive to steroids. No systemic lesions were identified with an extensive imaging workup. A wide range of serum and cerebrospinal fluid tests were non-diagnostic during a ten-month workup until, ultimately, the patient died as a result of aspiration pneumonia. At autopsy, pathological examination on whole-brain autopsy revealed RMS, centred in the left side of pons with extension to the left side of the midbrain and the right side of pons with multiple cranial nerve involvement. There are only 20 adult cases of primary intraparenchymal RMS reported in the literature. Our present case is the first reported adult RMS in this location, with novel molecular information, providing some insight into the pathogenesis of this rare diagnosis. CONCLUSIONS Intraparenchymal rhabdomyosarcoma without evidence of systemic primary disease is extremely rare, resulting in delayed diagnosis in some cases, particularly those not amenable to biopsy. The diagnostic challenge posed by this complementary case highlights the importance of maintaining a differential of neoplasm in the face of non-diagnostic investigations to the contrary.
Collapse
Affiliation(s)
- Melissa Lannon
- Division of Neurosurgery, Hamilton Health Sciences, McMaster University, Hamilton, Canada
| | - Dhuha Al-Sajee
- Neuropathology Section, Department of Pathology and Molecular Medicine, Hamilton Health Sciences, McMaster University, Hamilton, Canada
| | - Jacqueline Bourgeois
- Neuropathology Section, Department of Pathology and Molecular Medicine, Hamilton Health Sciences, McMaster University, Hamilton, Canada
- Department of Pathology and Molecular Medicine, Cambridge Memorial Hospital, Cambridge, Canada
| | - John Sehl
- Department of Pathology and Molecular Medicine, Cambridge Memorial Hospital, Cambridge, Canada
| | - Kesava Reddy
- Division of Neurosurgery, Hamilton Health Sciences, McMaster University, Hamilton, Canada
| | - Jian-Qiang Lu
- Neuropathology Section, Department of Pathology and Molecular Medicine, Hamilton Health Sciences, McMaster University, Hamilton, Canada
| |
Collapse
|
30
|
Weaver NE, Healy A, Wingert RA. gldc Is Essential for Renal Progenitor Patterning during Kidney Development. Biomedicines 2022; 10:biomedicines10123220. [PMID: 36551976 PMCID: PMC9776136 DOI: 10.3390/biomedicines10123220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The glycine cleavage system (GCS) is a complex located on the mitochondrial membrane that is responsible for regulating glycine levels and contributing one-carbon units to folate metabolism. Congenital mutations in GCS components, such as glycine decarboxylase (gldc), cause an elevation in glycine levels and the rare disease, nonketotic hyperglycinemia (NKH). NKH patients suffer from pleiotropic symptoms including seizures, lethargy, mental retardation, and early death. Therefore, it is imperative to fully elucidate the pathological effects of gldc dysfunction and glycine accumulation during development. Here, we describe a zebrafish model of gldc deficiency that recapitulates phenotypes seen in humans and mice. gldc deficient embryos displayed impaired fluid homeostasis suggesting renal abnormalities, as well as aberrant craniofacial morphology and neural development defects. Whole mount in situ hybridization (WISH) revealed that gldc transcripts were highly expressed in the embryonic kidney, as seen in mouse and human repository data, and that formation of several nephron segments was disrupted in gldc deficient embryos, including proximal and distal tubule populations. These kidney defects were caused by alterations in renal progenitor populations, revealing that the proper function of Gldc is essential for the patterning of this organ. Additionally, further analysis of the urogenital tract revealed altered collecting duct and cloaca morphology in gldc deficient embryos. Finally, to gain insight into the molecular mechanisms underlying these disruptions, we examined the effects of exogenous glycine treatment and observed analogous renal and cloacal defects. Taken together, these studies indicate for the first time that gldc function serves an essential role in regulating renal progenitor development by modulating glycine levels.
Collapse
|
31
|
Norcross RG, Abdelmoti L, Rouchka EC, Andreeva K, Tussey O, Landestoy D, Galperin E. Shoc2 controls ERK1/2-driven neural crest development by balancing components of the extracellular matrix. Dev Biol 2022; 492:156-171. [PMID: 36265687 PMCID: PMC10019579 DOI: 10.1016/j.ydbio.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 02/02/2023]
Abstract
The extracellular signal-regulated kinase (ERK1/2) pathway is essential in embryonic development. The scaffold protein Shoc2 is a critical modulator of ERK1/2 signals, and mutations in the shoc2 gene lead to the human developmental disease known as Noonan-like syndrome with loose anagen hair (NSLH). The loss of Shoc2 and the shoc2 NSLH-causing mutations affect the tissues of neural crest (NC) origin. In this study, we utilized the zebrafish model to dissect the role of Shoc2-ERK1/2 signals in the development of NC. These studies established that the loss of Shoc2 significantly altered the expression of transcription factors regulating the specification and differentiation of NC cells. Using comparative transcriptome analysis of NC-derived cells from shoc2 CRISPR/Cas9 mutant larvae, we found that Shoc2-mediated signals regulate gene programs at several levels, including expression of genes coding for the proteins of extracellular matrix (ECM) and ECM regulators. Together, our results demonstrate that Shoc2 is an essential regulator of NC development. This study also indicates that disbalance in the turnover of the ECM may lead to the abnormalities found in NSLH patients.
Collapse
Affiliation(s)
- Rebecca G Norcross
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Lina Abdelmoti
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Eric C Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA
| | - Kalina Andreeva
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA; Department of Neuroscience Training, University of Louisville, Louisville, KY, 40292, USA; Department of Genetics, Stanford University, Palo Alto, CA, 94304, USA
| | - Olivia Tussey
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Daileen Landestoy
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
32
|
Abstract
Neural crest cells (NCCs) are a dynamic, multipotent, vertebrate-specific population of embryonic stem cells. These ectodermally-derived cells contribute to diverse tissue types in developing embryos including craniofacial bone and cartilage, the peripheral and enteric nervous systems and pigment cells, among a host of other cell types. Due to their contribution to a significant number of adult tissue types, the mechanisms that drive their formation, migration and differentiation are highly studied. NCCs have a unique ability to transition from tightly adherent epithelial cells to mesenchymal and migratory cells by altering their polarity, expression of cell-cell adhesion molecules and gaining invasive abilities. In this Review, we discuss classical and emerging factors driving NCC epithelial-to-mesenchymal transition and migration, highlighting the role of signaling and transcription factors, as well as novel modifying factors including chromatin remodelers, small RNAs and post-translational regulators, which control the availability and longevity of major NCC players.
Collapse
Affiliation(s)
| | - Crystal D. Rogers
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| |
Collapse
|
33
|
Emerging Roles of RNA-Binding Proteins in Neurodevelopment. J Dev Biol 2022; 10:jdb10020023. [PMID: 35735914 PMCID: PMC9224834 DOI: 10.3390/jdb10020023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Diverse cell types in the central nervous system (CNS) are generated by a relatively small pool of neural stem cells during early development. Spatial and temporal regulation of stem cell behavior relies on precise coordination of gene expression. Well-studied mechanisms include hormone signaling, transcription factor activity, and chromatin remodeling processes. Much less is known about downstream RNA-dependent mechanisms including posttranscriptional regulation, nuclear export, alternative splicing, and transcript stability. These important functions are carried out by RNA-binding proteins (RBPs). Recent work has begun to explore how RBPs contribute to stem cell function and homeostasis, including their role in metabolism, transport, epigenetic regulation, and turnover of target transcripts. Additional layers of complexity are provided by the different target recognition mechanisms of each RBP as well as the posttranslational modifications of the RBPs themselves that alter function. Altogether, these functions allow RBPs to influence various aspects of RNA metabolism to regulate numerous cellular processes. Here we compile advances in RNA biology that have added to our still limited understanding of the role of RBPs in neurodevelopment.
Collapse
|
34
|
Vieira AG, Guzen FP, de Paiva JRL, de Oliveira LC, Jales MCDA, Lucena EEDS, Lucena VRDS, Morais HHAD. Morphofunctional regeneration by mesenchymal stem cell and IGF-1 inoculation in a model of facial nerve crush injury in rats. Braz J Otorhinolaryngol 2022; 89:244-253. [PMID: 35715336 PMCID: PMC10071527 DOI: 10.1016/j.bjorl.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/25/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To analyze the morphofunctional regeneration process of facial nerve injury in the presence of insulin-like growth factor-1 and mesenchymal stem cells. METHODS Fourteen Wistar rats suffered unilateral facial nerve crushing and were randomly divided into two groups. All received insulin-like growth factor-1 inoculation, but only half of the animals received an additional inoculation of mesenchymal stem cells. The animals were followed for 90 days and facial nerve regeneration was analyzed via spontaneous facial motor function tests and immunohistochemistry in the nerve motor nucleus. RESULTS The group that received the growth factor and stem cells showed a statistically superior mean in vibrissae movements (p < 0.01), touch reflex (p = 0.05) and eye closure (p < 0.01), in addition to better immunohistochemistry reactivity. There was a statistically significant difference in the mean number of cells in the facial nerve nucleus between the experimental groups (p = 0.025), with the group that received the growth factor and stem cells showing the highest mean. CONCLUSION The association between growth factor and stem cells potentiates the morphofunctional regeneration of the facial nerve, occurring faster and more effectively. LEVEL OF EVIDENCE 4, degree of recommendation C.
Collapse
|
35
|
Cerrizuela S, Vega-Lopez GA, Méndez-Maldonado K, Velasco I, Aybar MJ. The crucial role of model systems in understanding the complexity of cell signaling in human neurocristopathies. WIREs Mech Dis 2022; 14:e1537. [PMID: 35023327 DOI: 10.1002/wsbm.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/07/2022]
Abstract
Animal models are useful to study the molecular, cellular, and morphogenetic mechanisms underlying normal and pathological development. Cell-based study models have emerged as an alternative approach to study many aspects of human embryonic development and disease. The neural crest (NC) is a transient, multipotent, and migratory embryonic cell population that generates a diverse group of cell types that arises during vertebrate development. The abnormal formation or development of the NC results in neurocristopathies (NCPs), which are characterized by a broad spectrum of functional and morphological alterations. The impaired molecular mechanisms that give rise to these multiphenotypic diseases are not entirely clear yet. This fact, added to the high incidence of these disorders in the newborn population, has led to the development of systematic approaches for their understanding. In this article, we have systematically reviewed the ways in which experimentation with different animal and cell model systems has improved our knowledge of NCPs, and how these advances might contribute to the development of better diagnostic and therapeutic tools for the treatment of these pathologies. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Neurological Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
36
|
Leonard CE, Quiros J, Lefcort F, Taneyhill LA. Loss of Elp1 disrupts trigeminal ganglion neurodevelopment in a model of familial dysautonomia. eLife 2022; 11:71455. [PMID: 35713404 PMCID: PMC9273214 DOI: 10.7554/elife.71455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 06/17/2022] [Indexed: 01/28/2023] Open
Abstract
Familial dysautonomia (FD) is a sensory and autonomic neuropathy caused by mutations in elongator complex protein 1 (ELP1). FD patients have small trigeminal nerves and impaired facial pain and temperature perception. These signals are relayed by nociceptive neurons in the trigeminal ganglion, a structure that is composed of both neural crest- and placode-derived cells. Mice lacking Elp1 in neural crest derivatives ('Elp1 CKO') are born with small trigeminal ganglia, suggesting Elp1 is important for trigeminal ganglion development, yet the function of Elp1 in this context is unknown. We demonstrate that Elp1, expressed in both neural crest- and placode-derived neurons, is not required for initial trigeminal ganglion formation. However, Elp1 CKO trigeminal neurons exhibit abnormal axon outgrowth and deficient target innervation. Developing nociceptors expressing the receptor TrkA undergo early apoptosis in Elp1 CKO, while TrkB- and TrkC-expressing neurons are spared, indicating Elp1 supports the target innervation and survival of trigeminal nociceptors. Furthermore, we demonstrate that specific TrkA deficits in the Elp1 CKO trigeminal ganglion reflect the neural crest lineage of most TrkA neurons versus the placodal lineage of most TrkB and TrkC neurons. Altogether, these findings explain defects in cranial gangliogenesis that may lead to loss of facial pain and temperature sensation in FD.
Collapse
Affiliation(s)
- Carrie E Leonard
- Department of Avian and Animal Sciences, University of Maryland, College ParkCollege ParkUnited States
| | - Jolie Quiros
- Department of Avian and Animal Sciences, University of Maryland, College ParkCollege ParkUnited States
| | - Frances Lefcort
- Department of Microbiology and Cell Biology, Montana State UniversityBozemanUnited States
| | - Lisa A Taneyhill
- Department of Avian and Animal Sciences, University of Maryland, College ParkCollege ParkUnited States
| |
Collapse
|
37
|
Introducing dorsoventral patterning in adult regenerating lizard tails with gene-edited embryonic neural stem cells. Nat Commun 2021; 12:6010. [PMID: 34650077 PMCID: PMC8516916 DOI: 10.1038/s41467-021-26321-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/23/2021] [Indexed: 11/09/2022] Open
Abstract
Lizards regenerate amputated tails but fail to recapitulate the dorsoventral patterning achieved during embryonic development. Regenerated lizard tails form ependymal tubes (ETs) that, like embryonic tail neural tubes (NTs), induce cartilage differentiation in surrounding cells via sonic hedgehog (Shh) signaling. However, adult ETs lack characteristically roof plate-associated structures and express Shh throughout their circumferences, resulting in the formation of unpatterned cartilage tubes. Both NTs and ETs contain neural stem cells (NSCs), but only embryonic NSC populations differentiate into roof plate identities when protected from endogenous Hedgehog signaling. NSCs were isolated from parthenogenetic lizard embryos, rendered unresponsive to Hedgehog signaling via CRISPR/Cas9 gene knockout of smoothened (Smo), and implanted back into clonally-identical adults to regulate tail regeneration. Here we report that Smo knockout embryonic NSCs oppose cartilage formation when engrafted to adult ETs, representing an important milestone in the creation of regenerated lizard tails with dorsoventrally patterned skeletal tissues. Organisms with regenerative capacity typically regrow organs with correct axial patterning, however, regrown lizard tails lack this feature. Here the authors used neural stem cells to induce patterning in regenerating lizard tails and rescued normal skeletal morphology.
Collapse
|
38
|
Advances and Perspectives in Dental Pulp Stem Cell Based Neuroregeneration Therapies. Int J Mol Sci 2021; 22:ijms22073546. [PMID: 33805573 PMCID: PMC8036729 DOI: 10.3390/ijms22073546] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Human dental pulp stem cells (hDPSCs) are some of the most promising stem cell types for regenerative therapies given their ability to grow in the absence of serum and their realistic possibility to be used in autologous grafts. In this review, we describe the particular advantages of hDPSCs for neuroregenerative cell therapies. We thoroughly discuss the knowledge about their embryonic origin and characteristics of their postnatal niche, as well as the current status of cell culture protocols to maximize their multilineage differentiation potential, highlighting some common issues when assessing neuronal differentiation fates of hDPSCs. We also review the recent progress on neuroprotective and immunomodulatory capacity of hDPSCs and their secreted extracellular vesicles, as well as their combination with scaffold materials to improve their functional integration on the injured central nervous system (CNS) and peripheral nervous system (PNS). Finally, we offer some perspectives on the current and possible future applications of hDPSCs in neuroregenerative cell therapies.
Collapse
|
39
|
Beleaua MA, Jung I, Braicu C, Milutin D, Gurzu S. SOX11, SOX10 and MITF Gene Interaction: A Possible Diagnostic Tool in Malignant Melanoma. Life (Basel) 2021; 11:life11040281. [PMID: 33801642 PMCID: PMC8065671 DOI: 10.3390/life11040281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
Malignant melanoma (MM) is a highly heterogenic tumor whose histological diagnosis might be difficult. This study aimed to investigate the diagnostic and prognostic utility of the conventional pan-melanoma cocktail members (HMB-45, melan-A and tyrosinase), in conjunction with SOX10 and SOX11 immunohistochemical (IHC) expression. In 105 consecutive cases of MMs and 44 of naevi, the IHC examination was performed using the five-abovementioned markers, along with microphthalmia transcription factor (MITF), S100, and Ki67. Correlation with the clinicopathological factors and a long-term follow-up was also done. Survival analysis was performed with Kaplan–Meier curves and compared with TCGA public datasets. None of the 44 naevi expressed SOX11, but its positivity was seen in 52 MMs (49.52%), being directly correlated with lymphovascular invasion, the Ki67 index, and SOX10 expression. HMB-45, SOX10, and tyrosinase, but not melan-A, proved to differentiate the naevi from MMs successfully, with high specificity. Triple MITF/SOX10/SOX11 co-expression was seen in 9 out of 15 negative conventional pan-melanoma-cocktail cases. The independent prognostic value was proved for the conventional pan-melanoma cocktail (triple positivity for HMB-45, melan-A, and tyrosinase) and, independently for HMB-45 and tyrosinase, but not for melan-A, SOX10, or SOX11. As consequence, to differentiate MMs from benign naevi, melan-A should be substituted by SOX10 in the conventional cocktail. Although the conventional pan-melanoma cocktail, along with S100 can be used for the identification of melanocytic origin of tumor cells and predicting prognosis of MMs, the conventional-adapted cocktail (triple positivity for HMB-45, SOX10, and tyrosinase) has a slightly higher diagnostic specificity. SOX11 can be added to identify the aggressive MMs with risk for lymphatic dissemination and the presence of circulating tumor cells.
Collapse
Affiliation(s)
- Marius-Alexandru Beleaua
- Department of Pathology, Clinical County Emergency Hospital, Targu-Mures, Romania, 540139 Targu Mures, Romania; (M.-A.B.); (D.M.)
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 38 Gheorghe Marinescu Street, 540139 Targu Mures, Romania;
| | - Ioan Jung
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 38 Gheorghe Marinescu Street, 540139 Targu Mures, Romania;
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
- Research Center (CCAMF), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540139 Targu Mures, Romania
| | - Doina Milutin
- Department of Pathology, Clinical County Emergency Hospital, Targu-Mures, Romania, 540139 Targu Mures, Romania; (M.-A.B.); (D.M.)
| | - Simona Gurzu
- Department of Pathology, Clinical County Emergency Hospital, Targu-Mures, Romania, 540139 Targu Mures, Romania; (M.-A.B.); (D.M.)
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 38 Gheorghe Marinescu Street, 540139 Targu Mures, Romania;
- Research Center (CCAMF), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540139 Targu Mures, Romania
- Correspondence: ; Tel.: +40-745-673550; Fax: +40-265-210407
| |
Collapse
|