1
|
Casatejada-Anchel R, Torres-Moncho A, Anoman AD, Budhagatapalli N, Pérez-Lorences E, Alcántara-Enguídanos A, Rosa-Téllez S, de Souza LP, Kumlehn J, Fernie AR, Muñoz-Bertomeu J, Ros R. Metabolic engineering of the serine/glycine network as a means to improve the nitrogen content of crops. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:268-280. [PMID: 39450589 DOI: 10.1111/pbi.14495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
In plants, L-serine (Ser) biosynthesis occurs through various pathways and is highly dependent on the atmospheric CO2 concentration, especially in C3 species, due to the association of the Glycolate Pathway of Ser Biosynthesis (GPSB) with photorespiration. Characterization of a second plant Ser pathway, the Phosphorylated Pathway of Ser Biosynthesis (PPSB), revealed that it is at the crossroads of carbon, nitrogen, and sulphur metabolism. The PPSB comprises three sequential reactions catalysed by 3-phosphoglycerate dehydrogenase (PGDH), 3-phosphoSer aminotransferase (PSAT) and 3-phosphoSer phosphatase (PSP). PPSB was overexpressed in plants exhibiting two different modes of photosynthesis: Arabidopsis (C3 metabolism), and maize (C4 metabolism), under ambient (aCO2) and elevated (eCO2) CO2 growth conditions. Overexpression in Arabidopsis of the PGDH1 gene alone or PGDH1, PSAT1 and PSP1 in combination increased the Ser levels but also the essential amino acids threonine (aCO2), isoleucine, leucine, lysine, phenylalanine, threonine and methionine (eCO2) compared to the wild-type. These increases translated into higher protein levels. Likewise, starch levels were also increased in the PPSB-overexpressing lines. In maize, PPSB-deficient lines were obtained by targeting PSP1 using Cas9 endonuclease. We concluded that the expression of PPSB in maize male gametophyte is required for viable pollen development. Maize lines overexpressing the AtPGDH1 gene only displayed higher protein levels but not starch at both aCO2 and eCO2 conditions, this translated into a significant rise in the nitrogen/carbon ratio. These results suggest that metabolic engineering of PPSB in crops could enhance nitrogen content, particularly under upcoming eCO2 conditions where the activity of GPSB is limited.
Collapse
Affiliation(s)
- Ruben Casatejada-Anchel
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Alejandro Torres-Moncho
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Armand D Anoman
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Nagaveni Budhagatapalli
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | - Ester Pérez-Lorences
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
| | | | - Sara Rosa-Téllez
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | | | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Jesús Muñoz-Bertomeu
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
| | - Roc Ros
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| |
Collapse
|
2
|
Garza-Aguilar SM, Ramos-Parra PA, Urrea-López R, Berdeja-Zamudio WJ, Lozano-Guajardo J, Benavides-Lozano J, Ramírez-Yáñez M, Díaz de la Garza RI. Folate Biosynthesis is Boosted in Legume Nodules. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39587701 DOI: 10.1111/pce.15294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/27/2024]
Abstract
Symbiotic nitrogen fixation (SNF) profoundly alters plant and bacteroid metabolism; however, SNF impact on folates and one-carbon (1C) metabolism are unknown. To explore this, SNF was induced in Phaseolus Vulgaris with Rhizobium etli. Nodules accumulated the highest folate concentration yet reported in a plant tissue (60 nmol/g fresh weight). Folate upregulation was not exclusive of determinate nodules, moderate to high folate contents were also encounter in Medicago truncatula and sativa. Moreover, folates correlated partial and positively with N2-fixation. 1C metabolism-associated amino acids (Ser, Gly, Cys, Thr, and Met) accumulated more in nodules than roots. Subcellular profiling of nodule folates revealed that the cytosol fraction primarily contained 5-methyl-tetrahydrofolate, cofactor for Met synthesis. 10-formyl-tetrahydrofolate, required for purine synthesis, was most abundant in nodule plastids, while bacteroids contained low folate levels. Differential transcriptome analysis from nodule legume studies revealed that only a few biosynthetic folate genes expression was increased in nodules whereas several genes for 1C reactions were upregulated. For the first time folates were detected in the xylem sap, with higher concentrations during SNF. We postulate that folates are needed during SNF to sustain purines, thymidylate, and Met synthesis, during both N2-fixation and nodule growth; nodule metabolism is then a 1C-unit sink.
Collapse
Affiliation(s)
- Sara M Garza-Aguilar
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | - Perla A Ramos-Parra
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | - Rafael Urrea-López
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
- Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Jalisco, Mexico
| | | | | | - Jorge Benavides-Lozano
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | - Mario Ramírez-Yáñez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Rocío I Díaz de la Garza
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| |
Collapse
|
3
|
Tang X, Ferraz Júnior ADN, Karu K, Campos LC, Kim M. Atmospheric pressure dielectric barrier discharge plasma for in-situ water treatment using a bubbling reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122574. [PMID: 39321675 DOI: 10.1016/j.jenvman.2024.122574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Non-thermal plasma has been an emerging technology for water treatment for decades. In this study, we have designed and fabricated a bubbling plasma batch reactor using an atmospheric pressure dielectric barrier discharge with a hydrophobic porous membrane. The reactor performance is assessed for purifying synthetic contaminated water samples containing chemical contaminant sulfamethoxazole (SMX), a widely used antibiotic, and biological contaminant E. coli K12. The SMX decontamination tests indicate that the degradation process is not first-order and the reaction rate dwindle with increasing initial concentration. The yield at 50% removal achieves its highest value of 8.12 g/kWh for 50 mg/L SMX sample. For inactivation of E. coli K12 tests, the inactivation process is also not first-order, and the pathogen is completely inactivated for 102 CFU/mL and 104 CFU/mL cases after 10 min and 45 min of plasma treatment, respectively. For the 108 CFU/mL sample, a 5-log reduction is achieved after 60 min of treatment. The developed plasma reactor can achieve fast deployment in point of use, low cost for manufacturing, and simple for maintenance. Moreover, it can be used for in-situ water purification in future long duration crewed space missions as well as tackling with water pollution issues on our planet.
Collapse
Affiliation(s)
- Xin Tang
- Department of Aeronautics and Astronautics Engineering, University of Southampton, SO16 7QF, United Kingdom.
| | - Antônio D N Ferraz Júnior
- Centre for Urban Sustainability and Resilience, Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Kersti Karu
- UCL Chemistry Mass Spectrometry Facility, Department of Chemistry, University College London, London, WC1E 6BT, United Kingdom
| | - Luiza C Campos
- Centre for Urban Sustainability and Resilience, Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Minkwan Kim
- Department of Aeronautics and Astronautics Engineering, University of Southampton, SO16 7QF, United Kingdom
| |
Collapse
|
4
|
Sun J, Dai W, Zhao S, Liu J, Zhang J, Xu J, He P. Response to the CO 2 concentrating mechanisms and transcriptional time series analysis of Ulva prolifera under inorganic carbon limitation. HARMFUL ALGAE 2024; 139:102727. [PMID: 39567081 DOI: 10.1016/j.hal.2024.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 11/22/2024]
Abstract
Ulva prolifera is a dominant species in green tides and has been affecting marine ecosystem for many years. Due to the low availability of CO2 in the environment, U. prolifera utilizes the CO2 concentrating mechanisms (CCMs) to increase intracellular inorganic carbon concentration. However, the transcriptional response mechanism and temporal changes of U. prolifera CCMs based on transcriptomics have not been thoroughly described. Therefore, we induced U. prolifera CCMs in a low CO2 environment to explore the dynamic regulation of CCMs expression under inadequate inorganic carbon supply. The results showed that inorganic carbon limitation increased the inorganic carbon affinity of U. prolifera, upregulating CCMs. The first 24 h of inorganic carbon environmental changes were the most active period for U. prolifera's expression regulation. U. prolifera gradually achieved a new steady state by regulating metabolic processes such as nucleic acids, energy, and ethylene-activated signaling pathways. In the carbon fixation system of U. prolifera, there are characteristics of both biophysical and biochemical CCMs. After 24 h of inorganic carbon limitation, the biophysical CCMs becomes more effective under conditions of inorganic carbon depletion. This study aids in exploring the CCMs of U. prolifera and their evolution in response to environmental changes.
Collapse
Affiliation(s)
- Jingyi Sun
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Dai
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Shuang Zhao
- Ocean College, Fujian Polytechnic Normal University, Fuzhou 350300, China
| | - Jinlin Liu
- State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China; Project Management Office of China National Scientific Seafloor Observatory, Tongji University, Shanghai 200092, China
| | - Jianheng Zhang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Juntian Xu
- Jiangsu Key Laboratory for Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Peimin He
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
5
|
Zhao Y, Hao J, Men Y, Yuan J, Ma C, Yang Y, Han Y, Mur LAJ, Sun Z, Hou S. Over-expression of SiADCL1 in Arabidopsis modulates folate and amino acid metabolism to impact on flowering time. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109253. [PMID: 39488163 DOI: 10.1016/j.plaphy.2024.109253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Foxtail millet is a C4 crop rich in folate (FA). This study explores the roles of the 4-amino-4-deoxychorismate lyase (ADCL) - a member of the transaminase IV group of enzymes - in FA metabolism and conferred phenotypes. Phylogenetic comparisons identified diversity in the transaminase IV/ADCL gene family in the foxtail millet genome which was associated with genomic duplications. Molecular docking studies suggested that SiADCL1 bound most strongly to aminodeoxychorismate (ADC) and most likely had the highest catalytic activities. SiADCL1 which was highly expressed in roots, peduncles and flag leaves. Over-expression of SiADCL1 in Arabidopsis significantly increased total FA content (1.14-1.84 fold) and this was linked to a delayed flowering time. Metabolomic and transcriptomic characterization of the derived over-expression lines, found that FA promotes the change of methylation-related genes, ethylene synthesis, amino acid metabolism and flowering-related genes. This study revealed a potential gene coexpression network linked with FA and targeted key genes that could be exploited in foxtail millet breeding programs.
Collapse
Affiliation(s)
- Yue Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Jiongyu Hao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yihan Men
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Jiaqi Yuan
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Cui Ma
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yang Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China; Houji Lab of Shanxi Province, China, Taiyuan, 030031, China
| | - Yuanhuai Han
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China; Houji Lab of Shanxi Province, China, Taiyuan, 030031, China; Shanxi Innovation Centre for Foxtail Millet Production, Qin Xian, Changzhi, China
| | - Luis A J Mur
- Department of Life Science, Aberystwyth University, Aberystwyth, SY23 3DA, Ceredigion, United Kingdom
| | - Zhaoxia Sun
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China; Houji Lab of Shanxi Province, China, Taiyuan, 030031, China.
| | - Siyu Hou
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China; Houji Lab of Shanxi Province, China, Taiyuan, 030031, China.
| |
Collapse
|
6
|
Uji T, Kandori T, Mizuta H. Identification of differential gene expression related to reproduction in the sporophytes of Saccharina japonica. FRONTIERS IN PLANT SCIENCE 2024; 15:1417582. [PMID: 39166251 PMCID: PMC11333212 DOI: 10.3389/fpls.2024.1417582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024]
Abstract
Saccharina japonica, a significant brown macroalga in the Pacific Ocean, serves as a food source and industrial material. In aquaculture, collecting mature sporophytes for seedling production is essential but challenging due to environmental changes. In this study, transcriptomic analysis of vegetative and sorus tissues was done to identify differentially expressed genes (DEGs) and enhance our understanding of sorus formation regulation in S. japonica. KEGG pathway and Gene Otology (GO) analysis revealed that upregulated DEGs were involved in folate biosynthesis, riboflavin metabolism, and amino acid biosynthesis. In addition, the upregulation of genes associated with cell wall remodeling, such as mannuronan C-5-epimerases, vanadium-dependent haloperoxidases, and NADPH oxidase, was observed in sorus parts. Meanwhile, downregulated DEGs in sorus portions included genes related to chloroplast function. These findings will help us understand the regulatory mechanisms behind sorus formation in S. japonica and extracellular matrix remodeling in brown algae.
Collapse
Affiliation(s)
- Toshiki Uji
- Laboratory of Aquaculture Genetics and Genomics, Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | | | | |
Collapse
|
7
|
Bai Y, Zheng X, Ma J, Liu H, Zeng H, Zhang F, Wang J, Song K. Multiple Perspectives of Study on the Potential of Bacillus amyloliquefaciens JB20221020 for Alleviating Nutrient Stress in Lettuce. Curr Microbiol 2024; 81:228. [PMID: 38890167 DOI: 10.1007/s00284-024-03752-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 06/01/2024] [Indexed: 06/20/2024]
Abstract
Soil nutrient deficiency has become a key factor limiting crop growth. Plant growth-promoting rhizobacteria (PGPR) are vital in resisting abiotic stress. In this study, we investigated the effects of inoculation with Bacillus amyloliquefaciens JB20221020 on the physiology, biochemistry, rhizosphere microorganisms, and metabolism of lettuce under nutrient stress. Pot experiments showed that inoculation with B. amyloliquefaciens JB20221020 significantly promoted lettuce growth under nutrient deficiency. At the same time, the activities of the antioxidant enzymes superoxide dismutase, peroxidase, and catalase and the content of proline increased, and the content of Malondialdehyde decreased in the lettuce inoculated with B. amyloliquefaciens JB20221020. Inoculation with B. amyloliquefaciens JB20221020 altered the microbial community of the rhizosphere and increased the relative abundances of Myxococcales, Deltaproteobacteria, Proteobacteria, Devosia, and Verrucomicrobia. Inoculation also altered the rhizosphere metabolism under nutrient deficiency. The folate metabolism pathway was significantly enriched in the Kyoto Encyclopedia of Genes and Genomes enrichment analysis. This study explored the interaction between plants and microorganisms under nutrient deficiency, further explained the critical role of rhizosphere microorganisms in the process of plant nutrient stress, and provided a theoretical basis for the use of microorganisms to improve plant resistance.
Collapse
Affiliation(s)
- Yinshuang Bai
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- College of Life Sciences, Yangtze University, Jingzhou, 434025, China
| | - Xianqing Zheng
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Juan Ma
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, 201106, China
| | - Hua Liu
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, 201106, China
- Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China
| | - Haijuan Zeng
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, 201106, China
- Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China
| | - Fujian Zhang
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, 201106, China
| | - Jinbin Wang
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, 201106, China.
- Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai, 201106, China.
| | - Ke Song
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
8
|
Casimiro-Soriguer I, Aguilar-Benitez D, Gutierrez N, Torres AM. Transcriptome Analysis of Stigmas of Vicia faba L. Flowers. PLANTS (BASEL, SWITZERLAND) 2024; 13:1443. [PMID: 38891252 PMCID: PMC11175038 DOI: 10.3390/plants13111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Pollination in angiosperms depends on complex communication between pollen grains and stigmas, classified as wet or dry, depending on the presence or absence of secretions at the stigma surface, respectively. In species with wet stigma, the cuticle is disrupted and the presence of exudates is indicative of their receptivity. Most stigma studies are focused on a few species and families, many of them with self-incompatibility systems. However, there is scarce knowledge about the stigma composition in Fabaceae, the third angiosperm family, whose stigmas have been classified as semidry. Here we report the first transcriptome profiling and DEGs of Vicia faba L. styles and stigmas from autofertile (flowers able to self-fertilize in the absence of manipulation, whose exudate is released spontaneously) and autosterile (flowers that need to be manipulated to break the cuticle and release the exudates to be receptive) inbred lines. From the 76,269 contigs obtained from the de novo assembly, only 45.1% of the sequences were annotated with at least one GO term. A total of 115,920, 75,489, and 70,801 annotations were assigned to Biological Process (BP), Cellular Component (CC), and Molecular Function (MF) categories, respectively, and 5918 differentially expressed genes (DEGs) were identified between the autofertile and the autosterile lines. Among the most enriched metabolic pathways in the DEGs subset were those related with amino acid biosynthesis, terpenoid metabolism, or signal transduction. Some DEGs have been related with previous QTLs identified for autofertility traits, and their putative functions are discussed. The results derived from this work provide an important transcriptomic reference for style-stigma processes to aid our understanding of the molecular mechanisms involved in faba bean fertilization.
Collapse
Affiliation(s)
- Inés Casimiro-Soriguer
- Área de Mejora Vegetal y Biotecnología, IFAPA Centro Alameda del Obispo, Apdo. 3092, 14080 Cordoba, Spain; (D.A.-B.); (N.G.); (A.M.T.)
| | | | | | | |
Collapse
|
9
|
Zhao Y, Shi J, Feng B, Yuan S, Yue X, Shi W, Yan Z, Xu D, Zuo J, Wang Q. Multi-omic analysis of the extension of broccoli quality during storage by folic acid. J Adv Res 2024; 59:65-78. [PMID: 37406731 PMCID: PMC11081962 DOI: 10.1016/j.jare.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023] Open
Abstract
INTRODUCTION Folic acid (FA) is a critical metabolite in all living organisms and an important nutritional component of broccoli. Few studies have been conducted on the impact of an exogenous application of FA on the postharvest physiology of fruits and vegetables during storage. In this regard, the mechanism by which an exogenous application of FA extends the postharvest quality of broccoli is unclear. OBJECTIVE This study utilized a multicomponent analysis to investigate how an exogenous application of FA effects the postharvest quality of broccoli. METHODS Broccoli was soaked in 5 mg/L FA for 10 min and the effect of the treatment on the appearance and nutritional quality of broccoli was evaluated. These data were combined with transcriptomic, metabolomic, and DNA methylation data to provide insight into the potential mechanism by which FA delays senescence. RESULTS The FA treatment inhibited the yellowing of broccoli during storage. CHH methylation was identified as the main type of methylation that occurs in broccoli and the FA treatment was found to inhibit DNA methylation, promote the accumulation of endogenous FA and chlorophyl, and inhibit ethylene biosynthesis in stored broccoli. The FA treatment also prevented the formation of off-odors by inhibiting the degradation of glucosinolate. CONCLUSIONS FA treatment inhibited the loss of nutrients during the storage of broccoli, delayed its yellowing, and inhibited the generation of off-odors. Our study provides deeper insight into the mechanism by which the postharvest application of FA delays postharvest senescence in broccoli and provides the foundation for further studies of postharvest metabolism in broccoli.
Collapse
Affiliation(s)
- Yaqi Zhao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Agriculture, Guangxi University, Nanning 530004, China
| | - Junyan Shi
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Bihong Feng
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Shuzhi Yuan
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaozhen Yue
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wenlin Shi
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhicheng Yan
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Dongying Xu
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
10
|
Sofio SPC, Caeiro A, Ribeiro ACF, Cabral AMTDPV, Valente AJM, Canhoto J, Esteso MA. On Interactions of Sulfamerazine with Cyclodextrins from Coupled Diffusometry and Toxicity Tests. Biomolecules 2024; 14:462. [PMID: 38672478 PMCID: PMC11048702 DOI: 10.3390/biom14040462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
This scientific study employs the Taylor dispersion technique for diffusion measurements to investigate the interaction between sulfamerazine (NaSMR) and macromolecular cyclodextrins (β-CD and HP-β-CD). The results reveal that the presence of β-CD influences the diffusion of the solution component, NaSMR, indicating a counterflow of this drug due to solute interaction. However, diffusion data indicate no inclusion of NaSMR within the sterically hindered HP-β-CD cavity. Additionally, toxicity tests were conducted, including pollen germination (Actinidia deliciosa) and growth curve assays in BY-2 cells. The pollen germination tests demonstrate a reduction in sulfamerazine toxicity, suggesting potential applications for this antimicrobial agent with diminished adverse effects. This comprehensive investigation contributes to a deeper understanding of sulfamerazine-cyclodextrin interactions and their implications for pharmaceutical and biological systems.
Collapse
Affiliation(s)
- Sara P. C. Sofio
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (S.P.C.S.); (A.J.M.V.)
- Faculty of Health Sciences, Catholic University of Ávila, Calle Los Canteros s/n, 05005 Ávila, Spain;
| | - André Caeiro
- Laboratory Associate TERRA, Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (A.C.); (J.C.)
| | - Ana C. F. Ribeiro
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (S.P.C.S.); (A.J.M.V.)
| | | | - Artur J. M. Valente
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (S.P.C.S.); (A.J.M.V.)
| | - Jorge Canhoto
- Laboratory Associate TERRA, Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (A.C.); (J.C.)
| | - Miguel A. Esteso
- Faculty of Health Sciences, Catholic University of Ávila, Calle Los Canteros s/n, 05005 Ávila, Spain;
| |
Collapse
|
11
|
He Y, Li C, Yang M, Wang C, Guo H, Liu J, Liu H. Transcriptome Analysis Reveals the Mechanisms of Accumulation and Conversion of Folate Derivatives during Germination of Quinoa ( Chenopodium quinoa Willd.) Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3800-3813. [PMID: 38327020 DOI: 10.1021/acs.jafc.3c08209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Folate was enriched during quinoa germination, while molecular mechanisms were not well understood. In this study, three quinoa varieties were selected for germination, and changes in substrate content and enzyme activity of the folate biosynthesis pathway were monitored. 5-Methyltetrahydrofolate (5-CH3-THF) and 5-formyltetrahydrofolate (5-CHO-THF) were significantly enriched in quinoa sprouts. Among the selected varieties, QL-2 exhibited the lowest content of the oxidation product MeFox and the highest total folate content. Based on transcriptome analysis, the p-ABA branch was found to be crucial for folate accumulation, while the pterin branch served as a key control point for the one carbon pool by folate pathway, which limited further folate biosynthesis. In the one carbon pool by folate pathway, genes CqMTHFR and CqAMT significantly contributed to the enrichment of 5-CH3-THF and 5-CHO-THF. Findings gained here would facilitate the potential application of quinoa sprouts as an alternative strategy for folate supplementation.
Collapse
Affiliation(s)
- Yanan He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Cui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Miao Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | | - Haiyun Guo
- Hebei Tongfu Group Co., Ltd., Shijiazhuang 050000, China
| | - Jun Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haijie Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
12
|
Rosa-Téllez S, Alcántara-Enguídanos A, Martínez-Seidel F, Casatejada-Anchel R, Saeheng S, Bailes CL, Erban A, Barbosa-Medeiros D, Alepúz P, Matus JT, Kopka J, Muñoz-Bertomeu J, Krueger S, Roje S, Fernie AR, Ros R. The serine-glycine-one-carbon metabolic network orchestrates changes in nitrogen and sulfur metabolism and shapes plant development. THE PLANT CELL 2024; 36:404-426. [PMID: 37804096 PMCID: PMC10827325 DOI: 10.1093/plcell/koad256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023]
Abstract
L-serine (Ser) and L-glycine (Gly) are critically important for the overall functioning of primary metabolism. We investigated the interaction of the phosphorylated pathway of Ser biosynthesis (PPSB) with the photorespiration-associated glycolate pathway of Ser biosynthesis (GPSB) using Arabidopsis thaliana PPSB-deficient lines, GPSB-deficient mutants, and crosses of PPSB with GPSB mutants. PPSB-deficient lines mainly showed retarded primary root growth. Mutation of the photorespiratory enzyme Ser-hydroxymethyltransferase 1 (SHMT1) in a PPSB-deficient background resumed primary root growth and induced a change in the plant metabolic pattern between roots and shoots. Grafting experiments demonstrated that metabolic changes in shoots were responsible for the changes in double mutant development. PPSB disruption led to a reduction in nitrogen (N) and sulfur (S) contents in shoots and a general transcriptional response to nutrient deficiency. Disruption of SHMT1 boosted the Gly flux out of the photorespiratory cycle, which increased the levels of the one-carbon (1C) metabolite 5,10-methylene-tetrahydrofolate and S-adenosylmethionine. Furthermore, disrupting SHMT1 reverted the transcriptional response to N and S deprivation and increased N and S contents in shoots of PPSB-deficient lines. Our work provides genetic evidence of the biological relevance of the Ser-Gly-1C metabolic network in N and S metabolism and in interorgan metabolic homeostasis.
Collapse
Affiliation(s)
- Sara Rosa-Téllez
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain
| | - Andrea Alcántara-Enguídanos
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain
| | | | - Ruben Casatejada-Anchel
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain
| | - Sompop Saeheng
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Clayton L Bailes
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Paula Alepúz
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain
- Departament de Bioquímica y Biologia Molecular, Facultat de Biologia, Universitat de València, 46100 Burjassot, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology, I²SysBio, Universitat de València—CSIC, 46908 Paterna, Spain
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Jesús Muñoz-Bertomeu
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain
| | - Stephan Krueger
- Institute for Plant Sciences, University of Cologne, Zülpicherstraße 47b, 50674 Cologne, Germany
| | - Sanja Roje
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Roc Ros
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain
| |
Collapse
|
13
|
Bilea F, Bradu C, Cicirma M, Medvedovici AV, Magureanu M. Plasma treatment of sulfamethoxazole contaminated water: Intermediate products, toxicity assessment and potential agricultural reuse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168524. [PMID: 37972787 DOI: 10.1016/j.scitotenv.2023.168524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The increasing global water demand has prompted the reuse of treated wastewater. However, the persistence of organic micropollutants in inefficiently treated effluents can have detrimental effects depending on the scope of the reclaimed water usage. One example is the presence of sulfamethoxazole, a widely used antibiotic whose interference with the folate synthesis pathway negatively affects plants and microorganisms. The goal of this study is to assess the suitability of a non-thermal plasma-ozonation technique for the removal of the organic pollutant and reduction of its herbicidal effect. Fast sulfamethoxazole degradation was achieved with apparent reaction rate constants in the range 0.21-0.49 min-1, depending on the initial concentration. The highest energy yield (64.5 g/kWh at 50 % removal) exceeds the values reported thus far in plasma degradation experiments. During treatment, 38 degradation intermediates were detected and identified, of which only 9 are still present after 60 min. The main reactive species that contribute to the degradation of sulfamethoxazole and its intermediate products were hydroxyl radicals and ozone, which led to the formation of several hydroxylated compounds, ring opening and fragmentation. The herbicidal effect of the target compound was eliminated with its removal, showing that the remanent intermediates do not retain phytotoxic properties.
Collapse
Affiliation(s)
- Florin Bilea
- National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Romania; Faculty of Chemistry, University of Bucharest, Regina Elisabeta Bd. 4-12, 030018 Bucharest, Romania.
| | - Corina Bradu
- Faculty of Biology, University of Bucharest, Splaiul Independenței Str. 91-95, 050095 Bucharest, Romania
| | - Marius Cicirma
- National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Romania
| | | | - Monica Magureanu
- National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Romania.
| |
Collapse
|
14
|
Kuntz M, Dimnet L, Pullara S, Moyet L, Rolland N. The Main Functions of Plastids. Methods Mol Biol 2024; 2776:89-106. [PMID: 38502499 DOI: 10.1007/978-1-0716-3726-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Plastids are semi-autonomous organelles like mitochondria and derive from a cyanobacterial ancestor that was engulfed by a host cell. During evolution, they have recruited proteins originating from the nuclear genome, and only parts of their ancestral metabolic properties were conserved and optimized to limit functional redundancy with other cell compartments. Furthermore, large disparities in metabolic functions exist among various types of plastids, and the characterization of their various metabolic properties is far from being accomplished. In this review, we provide an overview of the main functions, known to be achieved by plastids or shared by plastids and other compartments of the cell. In short, plastids appear at the heart of all main plant functions.
Collapse
Affiliation(s)
- Marcel Kuntz
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France.
| | - Laura Dimnet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| | - Sara Pullara
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| | - Lucas Moyet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| |
Collapse
|
15
|
Lee KT, Liao HS, Hsieh MH. Glutamine Metabolism, Sensing and Signaling in Plants. PLANT & CELL PHYSIOLOGY 2023; 64:1466-1481. [PMID: 37243703 DOI: 10.1093/pcp/pcad054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Glutamine (Gln) is the first amino acid synthesized in nitrogen (N) assimilation in plants. Gln synthetase (GS), converting glutamate (Glu) and NH4+ into Gln at the expense of ATP, is one of the oldest enzymes in all life domains. Plants have multiple GS isoenzymes that work individually or cooperatively to ensure that the Gln supply is sufficient for plant growth and development under various conditions. Gln is a building block for protein synthesis and an N-donor for the biosynthesis of amino acids, nucleic acids, amino sugars and vitamin B coenzymes. Most reactions using Gln as an N-donor are catalyzed by Gln amidotransferase (GAT) that hydrolyzes Gln to Glu and transfers the amido group of Gln to an acceptor substrate. Several GAT domain-containing proteins of unknown function in the reference plant Arabidopsis thaliana suggest that some metabolic fates of Gln have yet to be identified in plants. In addition to metabolism, Gln signaling has emerged in recent years. The N regulatory protein PII senses Gln to regulate arginine biosynthesis in plants. Gln promotes somatic embryogenesis and shoot organogenesis with unknown mechanisms. Exogenous Gln has been implicated in activating stress and defense responses in plants. Likely, Gln signaling is responsible for some of the new Gln functions in plants.
Collapse
Affiliation(s)
- Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
16
|
Martins FB, Aono AH, Moraes ADCL, Ferreira RCU, Vilela MDM, Pessoa-Filho M, Rodrigues-Motta M, Simeão RM, de Souza AP. Genome-wide family prediction unveils molecular mechanisms underlying the regulation of agronomic traits in Urochloa ruziziensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1303417. [PMID: 38148869 PMCID: PMC10749977 DOI: 10.3389/fpls.2023.1303417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023]
Abstract
Tropical forage grasses, particularly those belonging to the Urochloa genus, play a crucial role in cattle production and serve as the main food source for animals in tropical and subtropical regions. The majority of these species are apomictic and tetraploid, highlighting the significance of U. ruziziensis, a sexual diploid species that can be tetraploidized for use in interspecific crosses with apomictic species. As a means to support breeding programs, our study investigates the feasibility of genome-wide family prediction in U. ruziziensis families to predict agronomic traits. Fifty half-sibling families were assessed for green matter yield, dry matter yield, regrowth capacity, leaf dry matter, and stem dry matter across different clippings established in contrasting seasons with varying available water capacity. Genotyping was performed using a genotyping-by-sequencing approach based on DNA samples from family pools. In addition to conventional genomic prediction methods, machine learning and feature selection algorithms were employed to reduce the necessary number of markers for prediction and enhance predictive accuracy across phenotypes. To explore the regulation of agronomic traits, our study evaluated the significance of selected markers for prediction using a tree-based approach, potentially linking these regions to quantitative trait loci (QTLs). In a multiomic approach, genes from the species transcriptome were mapped and correlated to those markers. A gene coexpression network was modeled with gene expression estimates from a diverse set of U. ruziziensis genotypes, enabling a comprehensive investigation of molecular mechanisms associated with these regions. The heritabilities of the evaluated traits ranged from 0.44 to 0.92. A total of 28,106 filtered SNPs were used to predict phenotypic measurements, achieving a mean predictive ability of 0.762. By employing feature selection techniques, we could reduce the dimensionality of SNP datasets, revealing potential genotype-phenotype associations. The functional annotation of genes near these markers revealed associations with auxin transport and biosynthesis of lignin, flavonol, and folic acid. Further exploration with the gene coexpression network uncovered associations with DNA metabolism, stress response, and circadian rhythm. These genes and regions represent important targets for expanding our understanding of the metabolic regulation of agronomic traits and offer valuable insights applicable to species breeding. Our work represents an innovative contribution to molecular breeding techniques for tropical forages, presenting a viable marker-assisted breeding approach and identifying target regions for future molecular studies on these agronomic traits.
Collapse
Affiliation(s)
- Felipe Bitencourt Martins
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alexandre Hild Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Aline da Costa Lima Moraes
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | - Marco Pessoa-Filho
- Embrapa Cerrados, Brazilian Agricultural Research Corporation, Brasília, Brazil
| | | | - Rosangela Maria Simeão
- Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Mato Grosso, Brazil
| | - Anete Pereira de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
17
|
Lasok H, Nziengui H, Kochersperger P, Ditengou FA. Arabidopsis Root Development Regulation by the Endogenous Folate Precursor, Para-Aminobenzoic Acid, via Modulation of the Root Cell Cycle. PLANTS (BASEL, SWITZERLAND) 2023; 12:4076. [PMID: 38140403 PMCID: PMC10748309 DOI: 10.3390/plants12244076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
The continuous growth of roots depends on their ability to maintain a balanced ratio between cell production and cell differentiation at the tip. This process is regulated by the hormonal balance of cytokinin and auxin. However, other important regulators, such as plant folates, also play a regulatory role. In this study, we investigated the impact of the folate precursor para-aminobenzoic acid (PABA) on root development. Using pharmacological, genetic, and imaging approaches, we show that the growth of Arabidopsis thaliana roots is repressed by either supplementing the growth medium with PABA or overexpressing the PABA synthesis gene GAT-ADCS. This is associated with a smaller root meristem consisting of fewer cells. Conversely, reducing the levels of free root endogenous PABA results in longer roots with extended meristems. We provide evidence that PABA represses Arabidopsis root growth in a folate-independent manner and likely acts through two mechanisms: (i) the G2/M transition of cell division in the root apical meristem and (ii) promoting premature cell differentiation in the transition zone. These data collectively suggest that PABA plays a role in Arabidopsis root growth at the intersection between cell division and cell differentiation.
Collapse
Affiliation(s)
- Hanna Lasok
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland;
- Faculty of Biology, Institute of Biology II, Albert Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Hugues Nziengui
- Department of Biology, Faculty of Sciences, Science and Technology University of Masuku, Franceville P.O. Box 913, Gabon;
| | - Philip Kochersperger
- Faculty of Biology, Institute of Biology II, Albert Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Franck Anicet Ditengou
- Faculty of Biology, Institute of Biology II, Albert Ludwigs University Freiburg, 79104 Freiburg, Germany
- Lighthouse Core Facility, Medical Center University of Freiburg, Albert Ludwigs University Freiburg, 79106 Freiburg, Germany
- Bio Imaging Core Light Microscopy (BiMiC), Institute for Disease Modelling and Targeted Medicine (IMITATE), Medical Center University of Freiburg, Albert Ludwigs University Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
18
|
Xie J, Kittur FS, Hung CY, Ding TT. Regulation of one-carbon metabolism may open new avenues to slow down the initiation and progression of Huntington's disease. Neural Regen Res 2023; 18:2401-2402. [PMID: 37282468 PMCID: PMC10360093 DOI: 10.4103/1673-5374.371363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 06/08/2023] Open
Affiliation(s)
- Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Farooqahmed S. Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Tomas T. Ding
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC, USA
| |
Collapse
|
19
|
Siripongvutikorn S, Usawakesmanee W, Pisuchpen S, Khatcharin N, Rujirapong C. Nutritional Content and Microbial Load of Fresh Liang, Gnetum gnemon var. tenerum Leaves. Foods 2023; 12:3848. [PMID: 37893741 PMCID: PMC10605991 DOI: 10.3390/foods12203848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Liang (Gnetum gnemon var. tenerum) leaves are widely consumed as a green vegetable in Southern Thailand, and the plant is valued for its nutritional benefits. However, like other leafy greens, liang is vulnerable to microbial contamination, generating foodborne illnesses. This study examined the nutritional content and microbial load of liang leaves at different maturity stages and the effects of washing with chlorinated water. Various growth stages were analysed for proximate composition, amino acids, vitamins, and minerals. Results revealed distinct nutritional profiles, with tip leaves rich in protein and fat and intermediate leaves high in dietary fibre. Liang leaves are abundant in essential amino acids and proteins. Washing with chlorinated water increased leaf weight due to water retention but also caused physical damage, fostering microbial growth and spoilage. Microbiological analysis showed marginal reductions in total viable counts after washing with chlorinated water and significant decreases in coliform and Escherichia coli counts. However, stem detachment during washing increased the coliform and E. coli counts. Liang leaves exhibited favourable nutritional content, especially in the intermediate stage. Proper handling and storage of liang leaves are crucial to preventing physical damage and microbial contamination. Improved food safety measures, including appropriate post-harvest washing and handling of leafy vegetables, will ensure that consumers can safely enjoy the nutritional benefits of liang leaves.
Collapse
Affiliation(s)
- Sunisa Siripongvutikorn
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (W.U.); (N.K.); (C.R.)
| | - Worapong Usawakesmanee
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (W.U.); (N.K.); (C.R.)
| | - Supachai Pisuchpen
- Centre of Excellence in Bio-Based Materials and Packaging Innovation, Faculty of Agro-Industry Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Nicha Khatcharin
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (W.U.); (N.K.); (C.R.)
| | - Chanonkarn Rujirapong
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (W.U.); (N.K.); (C.R.)
| |
Collapse
|
20
|
Cadena-Zamudio JD, Monribot-Villanueva JL, Pérez-Torres CA, Alatorre-Cobos F, Guerrero-Analco JA, Ibarra-Laclette E. Non-Targeted Metabolomic Analysis of Arabidopsis thaliana (L.) Heynh: Metabolic Adaptive Responses to Stress Caused by N Starvation. Metabolites 2023; 13:1021. [PMID: 37755301 PMCID: PMC10535036 DOI: 10.3390/metabo13091021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
As sessile organisms, plants develop the ability to respond and survive in changing environments. Such adaptive responses maximize phenotypic and metabolic fitness, allowing plants to adjust their growth and development. In this study, we analyzed the metabolic plasticity of Arabidopsis thaliana in response to nitrate deprivation by untargeted metabolomic analysis and using wild-type (WT) genotypes and the loss-of-function nia1/nia2 double mutant. Secondary metabolites were identified using seedlings grown on a hydroponic system supplemented with optimal or limiting concentrations of N (4 or 0.2 mM, respectively) and harvested at 15 and 30 days of age. Then, spectral libraries generated from shoots and roots in both ionization modes (ESI +/-) were compared. Totals of 3407 and 4521 spectral signals (m/z_rt) were obtained in the ESI+ and ESI- modes, respectively. Of these, approximately 50 and 65% were identified as differentially synthetized/accumulated. This led to the presumptive identification of 735 KEGG codes (metabolites) belonging to 79 metabolic pathways. The metabolic responses in the shoots and roots of WT genotypes at 4 mM of N favor the synthesis/accumulation of metabolites strongly related to growth. In contrast, for the nia1/nia2 double mutant (similar as the WT genotype at 0.2 mM N), metabolites identified as differentially synthetized/accumulated help cope with stress, regulating oxidative stress and preventing programmed cell death, meaning that metabolic responses under N starvation compromise growth to prioritize a defensive response.
Collapse
Affiliation(s)
- Jorge David Cadena-Zamudio
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
| | - Juan Luis Monribot-Villanueva
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
| | - Claudia-Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
- Consejo Nacional de Ciencia y Tecnología, Unidad de Bioquímica y Biología Molecular de Plantas, Merida 97205, Yucatan, Mexico;
| | - Fulgencio Alatorre-Cobos
- Consejo Nacional de Ciencia y Tecnología, Unidad de Bioquímica y Biología Molecular de Plantas, Merida 97205, Yucatan, Mexico;
- Centro de Investigación Científica de Yucatán (CICY), Unidad de Biotecnología, Merida 97205, Yucatan, Mexico
| | - José Antonio Guerrero-Analco
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
| |
Collapse
|
21
|
Monti MM, Mancini I, Gualtieri L, Domingo G, Beccaccioli M, Bossa R, Bracale M, Loreto F, Ruocco M. Volatilome and proteome responses to Colletotrichum lindemuthianum infection in a moderately resistant and a susceptible bean genotype. PHYSIOLOGIA PLANTARUM 2023; 175:e14044. [PMID: 37882283 DOI: 10.1111/ppl.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/07/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023]
Abstract
We analyzed the changes in the volatilome, proteome, stomatal conductance, salicylic and jasmonic acid contents of a susceptible and a moderately resistant genotype of common bean, Phaseoulus vulgaris L., challenged with Colletotrichum lindemuthianum, the causal agent of fungal anthracnose. Our results indicate differences at both proteome and volatilome levels between the two genotypes, before and after the infection, and different defense strategies. The moderately resistant genotype hindered pathogen infection, invasion, and replication mainly by maintaining epidermal and cell wall structure. The susceptible genotype was not able to limit the early stages of pathogen infection. Rather, stomatal conductance increased in the infected susceptible genotype, and enhanced synthesis of Green Leaf Volatiles and salicylic acid was observed, together with a strong hypersensitive response. Proteomic investigation provided a general framework for physiological changes, whereas observed variations in the volatilome suggested that volatile organic compounds may principally represent stress markers rather than defensive compounds per se.
Collapse
Affiliation(s)
- Maurilia M Monti
- Istituto per la Protezione Sostenibile delle Piante, CNR, Portici, Napoli, Italy
| | - Ilaria Mancini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Liberata Gualtieri
- Istituto per la Protezione Sostenibile delle Piante, CNR, Portici, Napoli, Italy
| | - Guido Domingo
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Marzia Beccaccioli
- Dipartimento di Biologia Ambientale, Università Sapienza Roma, Roma, Italy
| | - Rosanna Bossa
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Marcella Bracale
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Francesco Loreto
- Istituto per la Protezione Sostenibile delle Piante, CNR, Portici, Napoli, Italy
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Michelina Ruocco
- Istituto per la Protezione Sostenibile delle Piante, CNR, Portici, Napoli, Italy
| |
Collapse
|
22
|
Errickson W, Huang B. Rhizobacteria-enhanced drought tolerance and post-drought recovery of creeping bentgrass involving differential modulation of leaf and root metabolism. PHYSIOLOGIA PLANTARUM 2023; 175:e14004. [PMID: 37882287 DOI: 10.1111/ppl.14004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/19/2023] [Indexed: 10/27/2023]
Abstract
Rhizobacteria that produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCd) that inhibits ethylene production may mitigate stress damages. The objectives of this study were to examine whether a novel strain of ACCd-producing bacteria, Paraburkholderia aspalathi "WSF23," promotes plant tolerance to drought stress and post-stress recovery and determine changes in metabolic profiles in leaves and roots associated with the positive ACCd-bacteria effects in cool-season perennial grass species. Creeping bentgrass (Agrostis Stolonifera L. cv. "Penncross") plants were inoculated with P. aspalathi "WSF23" and exposed to drought by withholding irrigation for 35 days, followed by re-watering for 15 days in growth chambers. Inoculated plants demonstrated increased turf quality, canopy density, and root growth during drought stress and more rapid re-growth upon re-watering. Metabolomic analysis demonstrated that inoculation with P. aspalathi "WSF 23" increased the content of metabolites in the metabolic pathways related to stress defense, including osmoregulation, cell wall stability, and antioxidant protection in both leaves and roots, as well as nitrogen metabolism in roots of creeping bentgrass exposed to drought stress. The promotion of post-stress recovery by P. aspalathi "WSF 23" was mainly associated with enhanced carbohydrate and pyrimidine metabolism and zeatin biosynthesis pathways in leaves and increased carbohydrates, biosynthesis of DNA and proteins, cellular metabolism, and TCA cycle activity in roots. These results provide insights into the metabolic pathways regulated by "WSF23," with the PGPR conferring improvements in drought stress tolerance and post-drought recovery in a perennial grass species.
Collapse
Affiliation(s)
- William Errickson
- Department of Agriculture and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
23
|
Yan H, Ding M, Lin J, Zhao L, Han D, Hu Q. Folate-mediated one-carbon metabolism as a potential antifungal target for the sustainable cultivation of microalga Haematococcus pluvialis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:104. [PMID: 37330505 DOI: 10.1186/s13068-023-02353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Microalgae are widely considered as multifunctional cell factories that are able to transform the photo-synthetically fixed CO2 to numerous high-value compounds, including lipids, carbohydrates, proteins and pigments. However, contamination of the algal mass culture with fungal parasites continues to threaten the production of algal biomass, which dramatically highlights the importance of developing effective measures to control the fungal infection. One viable solution is to identify potential metabolic pathways that are essential for fungal pathogenicity but are not obligate for algal growth, and to use inhibitors targeting such pathways to restrain the infection. However, such targets remain largely unknown, making it challenging to develop effective measures to mitigate the infection in algal mass culture. RESULTS In the present study, we conducted RNA-Seq analysis for the fungus Paraphysoderma sedebokerense, which can infect the astaxanthin-producing microalga Haematococcus pluvialis. It was found that many differentially expressed genes (DEGs) related to folate-mediated one-carbon metabolism (FOCM) were enriched in P. sedebokerense, which was assumed to produce metabolites required for the fungal parasitism. To verify this hypothesis, antifolate that hampered FOCM was applied to the culture systems. Results showed that when 20 ppm of the antifolate co-trimoxazole were added, the infection ratio decreased to ~ 10% after 9 days inoculation (for the control, the infection ratio was 100% after 5 days inoculation). Moreover, application of co-trimoxazole to H. pluvialis mono-culture showed no obvious differences in the biomass and pigment accumulation compared with the control, suggesting that this is a potentially algae-safe, fungi-targeted treatment. CONCLUSIONS This study demonstrated that applying antifolate to H. pluvialis culturing systems can abolish the infection of the fungus P. sedebokerense and the treatment shows no obvious disturbance to the algal culture, suggesting FOCM is a potential target for antifungal drug design in the microalgal mass culture industry.
Collapse
Affiliation(s)
- Hailong Yan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Meng Ding
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Juan Lin
- Poyang Lake Eco-Economy Research Center, Jiujiang University, Jiujiang, 332005, China
| | - Liang Zhao
- Demeter Bio-Tech Co., Ltd, Zhuhai, 519000, China
| | - Danxiang Han
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Qiang Hu
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China.
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
24
|
Agyenim-Boateng KG, Zhang S, Gu R, Zhang S, Qi J, Azam M, Ma C, Li Y, Feng Y, Liu Y, Li J, Li B, Qiu L, Sun J. Identification of quantitative trait loci and candidate genes for seed folate content in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:149. [PMID: 37294438 DOI: 10.1007/s00122-023-04396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
KEY MESSAGE From 61 QTL mapped, a stable QTL cluster of 992 kb was discovered on chromosome 5 for folate content and a putative candidate gene, Glyma.05G237500, was identified. Folate (vitamin B9) is one of the most essential micronutrients whose deficiencies lead to various health defects in humans. Herein, we mapped the quantitative trait loci (QTL) underlying seed folate content in soybean using recombinant inbred lines developed from cultivars, ZH35 and ZH13, across four environments. We identified 61 QTL on 12 chromosomes through composite interval mapping, with phenotypic variance values ranging from 1.68 to 24.68%. A major-effect QTL cluster (qFo-05) was found on chromosome 5, spanning 992 kb and containing 134 genes. Through gene annotation and single-locus haplotyping analysis of qFo-05 in a natural soybean population, we identified seven candidate genes significantly associated with 5MTHF and total folate content in multiple environments. RNA-seq analysis showed a unique expression pattern of a hemerythrin RING zinc finger gene, Glyma.05G237500, between both parental cultivars during seed development, which suggest the gene might regulate folate content in soybean. This is the first study to investigate QTL underlying folate content in soybean and provides new insight for molecular breeding to improve folate content in soybean.
Collapse
Affiliation(s)
- Kwadwo Gyapong Agyenim-Boateng
- The National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shengrui Zhang
- The National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rongzhe Gu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/ Key Laboratory of Germplasm and Biotechnology (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shibi Zhang
- The National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Qi
- The National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Muhammad Azam
- The National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Caiyou Ma
- The National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yecheng Li
- The National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yue Feng
- The National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yitian Liu
- The National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Li
- The National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bin Li
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Lijuan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/ Key Laboratory of Germplasm and Biotechnology (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Junming Sun
- The National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
25
|
da Fonseca-Pereira P, Monteiro-Batista RDC, Araújo WL, Nunes-Nesi A. Harnessing enzyme cofactors and plant metabolism: an essential partnership. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1014-1036. [PMID: 36861364 DOI: 10.1111/tpj.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 05/31/2023]
Abstract
Cofactors are fundamental to the catalytic activity of enzymes. Additionally, because plants are a critical source of several cofactors (i.e., including their vitamin precursors) within the context of human nutrition, there have been several studies aiming to understand the metabolism of coenzymes and vitamins in plants in detail. For example, compelling evidence has been brought forth regarding the role of cofactors in plants; specifically, it is becoming increasingly clear that an adequate supply of cofactors in plants directly affects their development, metabolism, and stress responses. Here, we review the state-of-the-art knowledge on the significance of coenzymes and their precursors with regard to general plant physiology and discuss the emerging functions attributed to them. Furthermore, we discuss how our understanding of the complex relationship between cofactors and plant metabolism can be used for crop improvement.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Rita de Cássia Monteiro-Batista
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
26
|
Yang Z, Zhu S, Wang X, Chen C, Huang D, Feng J. Nitric oxide modulates folate-mediated one-carbon metabolism and mitochondrial energy levels of peaches during cold storage. Front Nutr 2023; 10:1184736. [PMID: 37215226 PMCID: PMC10196066 DOI: 10.3389/fnut.2023.1184736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Folate-mediated one-carbon metabolism (FOCM) is closely associated with postharvest preservation. This study investigated the effects of exogenous nitric oxide (NO) on FOCM, storage quality, energy metabolism, and mitochondrial membrane integrity in cold-storage peach fruit. In this experiment, peaches were soaked with 1.5 mmol L-1S-nitrosoglutathione (GSNO) as NO donor, and the negative treatment (NT) solution containing 5 μmol L-1 carboxy-PTIO (c-PTIO, NO scavenger), 200 μmol L-1 NG-Nitro-L-arginine methyl ester (L-NAME, NO synthase-like enzyme inhibitor), and 200 μmol L-1 sodium tungstate dihydrate (nitrate reductase inhibitor) and stored at 0°C. The results showed that NO decreased the activity of S-adenosylmethionine synthase and S-adenosylhomocysteine hydrolase and increased the activity of methionine sulfoxide reductase A, as well as the content of N5-methyl-THF, the ratio of tetrahydrofolate (THF), homocysteine, methionine, S-adenosylmethionine (SAM), and SAM to S-adenosylhomocysteine compared with the control, indicating that NO effectively increased FOCM flux by affecting the activity of FOCM enzymes. Meanwhile, NO increased the activities of H+-ATPase, Ca2+-ATPase, cytochrome c oxidase, succinate dehydrogenase, and the contents of adenosine triphosphate and adenosine diphosphate, and maintained high energy charge in peaches during storage. NO retarded the increase in mitochondrial permeability transition, reactive oxygen species content, and the decrease in mitochondrial membrane fluidity, membrane potential, and swelling. NT treatment exhibited the opposite results. In conclusion, these results suggested that NO could induce the accumulation of folate and FOCM flux and maintain mitochondrial energy levels, which might be responsible for maintaining the quality of peaches during cold storage.
Collapse
Affiliation(s)
- Zhifeng Yang
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi, China
| | - Shuhua Zhu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi, China
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, China
| | - Xiaoyu Wang
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi, China
| | - Changbao Chen
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, China
| | - Dandan Huang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, China
| | - Jianrong Feng
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi, China
| |
Collapse
|
27
|
McNeil CJ, Araujo K, Godfrey K, Slupsky CM. Metabolite Signature and Differential Expression of Genes in Washington Navel Oranges ( Citrus sinensis) Infected by Spiroplasma citri. PHYTOPATHOLOGY 2023; 113:299-308. [PMID: 35984373 DOI: 10.1094/phyto-05-22-0177-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spiroplasma citri is the pathogen that causes citrus stubborn disease (CSD). Infection of citrus with S. citri has been shown to cause leaf mottling, reduce fruit yield, and stunt tree growth. Fruit from trees exhibiting symptoms of CSD are misshapen and discolored. The symptoms of CSD are easily confused with nutrient deficiencies or symptoms of citrus greening disease. In this study, young Washington navel oranges (Citrus sinensis) were graft-inoculated with budwood originating from trees confirmed to be infected with S. citri. Leaf samples were collected monthly for 10 months for metabolomics and differential gene expression analyses. Significant differences in the concentration of metabolites and expressed genes were observed between control and S. citri-infected trees throughout the experiment. Metabolites and genes associated with important defense and stress pathways, including jasmonic acid signaling, cell wall modification, amino acid biosynthesis, and the production of antioxidant and antimicrobial secondary metabolites, were impacted by S. citri throughout the study, and even prior to symptom development. This work fills a current gap in knowledge surrounding the pathogenicity of S. citri and provides an updated mechanistic explanation for the development of CSD symptoms in S. citri-infected plants.
Collapse
Affiliation(s)
- Christopher J McNeil
- Department of Food Science & Technology, University of California-Davis, Davis, CA 95616
| | - Karla Araujo
- Contained Research Facility, University of California-Davis, Davis, CA 95616
| | - Kristine Godfrey
- Contained Research Facility, University of California-Davis, Davis, CA 95616
| | - Carolyn M Slupsky
- Department of Food Science & Technology, University of California-Davis, Davis, CA 95616
- Department of Nutrition, University of California-Davis, Davis, CA 95616
| |
Collapse
|
28
|
Berdugo-Cely JA, Céron-Lasso MDS, Yockteng R. Phenotypic and molecular analyses in diploid and tetraploid genotypes of Solanum tuberosum L. reveal promising genotypes and candidate genes associated with phenolic compounds, ascorbic acid contents, and antioxidant activity. FRONTIERS IN PLANT SCIENCE 2023; 13:1007104. [PMID: 36743552 PMCID: PMC9889998 DOI: 10.3389/fpls.2022.1007104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/08/2022] [Indexed: 06/18/2023]
Abstract
Potato tubers contain biochemical compounds with antioxidant properties that benefit human health. However, the genomic basis of the production of antioxidant compounds in potatoes has largely remained unexplored. Therefore, we report the first genome-wide association study (GWAS) based on 4488 single nucleotide polymorphism (SNP) markers and the phenotypic evaluation of Total Phenols Content (TPC), Ascorbic Acid Content (AAC), and Antioxidant Activity (AA) traits in 404 diverse potato genotypes (84 diploids and 320 tetraploids) conserved at the Colombian germplasm bank that administers AGROSAVIA. The concentration of antioxidant compounds correlated to the skin tuber color and ploidy level. Especially, purple-blackish tetraploid tubers had the highest TPC (2062.41 ± 547.37 mg GAE), while diploid pink-red tubers presented the highest AA (DDPH: 14967.1 ± 4687.79 μmol TE; FRAP: 2208.63 ± 797.35 mg AAE) and AAC (4.52 mg ± 0.68 AA). The index selection allowed us to choose 20 promising genotypes with the highest values for the antioxidant compounds. Genome Association mapping identified 58 SNP-Trait Associations (STAs) with single-locus models and 28 Quantitative Trait Nucleotide (QTNs) with multi-locus models associated with the evaluated traits. Among models, eight STAs/QTNs related to TPC, AAC, and AA were detected in common, flanking seven candidate genes, from which four were pleiotropic. The combination in one population of diploid and tetraploid genotypes enabled the identification of more genetic associations. However, the GWAS analysis implemented independently in populations detected some regions in common between diploids and tetraploids not detected in the mixed population. Candidate genes have molecular functions involved in phenolic compounds, ascorbic acid biosynthesis, and antioxidant responses concerning plant abiotic stress. All candidate genes identified in this study can be used for further expression analysis validation and future implementation in marker-assisted selection pre-breeding platforms targeting fortified materials. Our study further revealed the importance of potato germplasm conserved in national genebanks, such as AGROSAVIA's, as a valuable genetic resource to improve existing potato varieties.
Collapse
Affiliation(s)
- Jhon A. Berdugo-Cely
- Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, Centro de Investigación Turipaná, Km 13 vía Montería-Cereté, Montería, Córdoba, Colombia
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Tibaitatá, Km 13 vía Mosquera-Bogotá, Mosquera, Cundinamarca, Colombia
| | - María del Socorro Céron-Lasso
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Tibaitatá, Km 13 vía Mosquera-Bogotá, Mosquera, Cundinamarca, Colombia
| | - Roxana Yockteng
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Tibaitatá, Km 13 vía Mosquera-Bogotá, Mosquera, Cundinamarca, Colombia
- Institut de Systématique, Evolution, Biodiversité-UMR-CNRS 7205, National Museum of Natural History, Paris, France
| |
Collapse
|
29
|
Agyenim-Boateng KG, Zhang S, Zhang S, Khattak AN, Shaibu A, Abdelghany AM, Qi J, Azam M, Ma C, Feng Y, Feng H, Liu Y, Li J, Li B, Sun J. The nutritional composition of the vegetable soybean (maodou) and its potential in combatting malnutrition. Front Nutr 2023; 9:1034115. [PMID: 36687682 PMCID: PMC9849953 DOI: 10.3389/fnut.2022.1034115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/25/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Global malnutrition continues to be a canker owing to poor eating habits and over-reliance on the major staple crops. Vegetable soybean (maodou) is gaining popularity globally as an affordable snack and vegetable. Methods In this study, we profiled the nutritional composition of 12 soybean cultivars at the vegetable (R6-R7) and mature (R8) stages. We also conducted an RNA-seq analysis during seed development, focusing on key biosynthesis enzymes for quality traits. Results The results showed that 100 g of maodou contained 66.54% moisture, 13.49% protein, 7.81% fatty acids, 2.47% soluble sugar, abundant content of minerals, and micronutrients, including folate (462.27 μg FW) and carotenoids (3,935.41 μg FW). Also, the isoflavone content of maodou ranged between 129.26 and 2,359.35 μg/g FW. With regard to the recommended daily allowance, 100 g fresh weight of maodou can contribute 26.98, 115.57, and 11.60% of protein, folate, and zinc, respectively, and significant proportions of other nutrients including linoleic acid (21.16%), linolenic acid (42.96%), zinc (11.60%), and iron (18.01%). On a dry weight basis, maodou has two to six folds higher contents of folate, tocopherol, and carotenoid than the mature soybean. Furthermore, RNA-seq analysis revealed that key biosynthesis enzymes of quality traits are differentially expressed during seed development and may contribute to variations in the content of quality traits at the vegetable and mature stages. Correlation analysis of quality traits at both stages revealed that protein only correlated positively with zinc at the vegetable stage but negatively correlated with total tocopherol and total fatty acid at the mature stage. Complex associations among folates, soluble sugar, and isoflavones were also identified. Discussion This study provides insight into the nutritional contents of vegetable soybean and demonstrates that maodou is essential for meeting the nutritional requirements of most countries.
Collapse
|
30
|
Bauwe H. Photorespiration - Rubisco's repair crew. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153899. [PMID: 36566670 DOI: 10.1016/j.jplph.2022.153899] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The photorespiratory repair pathway (photorespiration in short) was set up from ancient metabolic modules about three billion years ago in cyanobacteria, the later ancestors of chloroplasts. These prokaryotes developed the capacity for oxygenic photosynthesis, i.e. the use of water as a source of electrons and protons (with O2 as a by-product) for the sunlight-driven synthesis of ATP and NADPH for CO2 fixation in the Calvin cycle. However, the CO2-binding enzyme, ribulose 1,5-bisphosphate carboxylase (known under the acronym Rubisco), is not absolutely selective for CO2 and can also use O2 in a side reaction. It then produces 2-phosphoglycolate (2PG), the accumulation of which would inhibit and potentially stop the Calvin cycle and subsequently photosynthetic electron transport. Photorespiration removes the 2-PG and in this way prevents oxygenic photosynthesis from poisoning itself. In plants, the core of photorespiration consists of ten enzymes distributed over three different types of organelles, requiring interorganellar transport and interaction with several auxiliary enzymes. It goes together with the release and to some extent loss of freshly fixed CO2. This disadvantageous feature can be suppressed by CO2-concentrating mechanisms, such as those that evolved in C4 plants thirty million years ago, which enhance CO2 fixation and reduce 2PG synthesis. Photorespiration itself provided a pioneer variant of such mechanisms in the predecessors of C4 plants, C3-C4 intermediate plants. This article is a review and update particularly on the enzyme components of plant photorespiration and their catalytic mechanisms, on the interaction of photorespiration with other metabolism and on its impact on the evolution of photosynthesis. This focus was chosen because a better knowledge of the enzymes involved and how they are embedded in overall plant metabolism can facilitate the targeted use of the now highly advanced methods of metabolic network modelling and flux analysis. Understanding photorespiration more than before as a process that enables, rather than reduces, plant photosynthesis, will help develop rational strategies for crop improvement.
Collapse
Affiliation(s)
- Hermann Bauwe
- University of Rostock, Plant Physiology, Albert-Einstein-Straße 3, D-18051, Rostock, Germany.
| |
Collapse
|
31
|
Srivarathan S, Phan ADT, Hong HT, Netzel G, Wright OR, Sultanbawa Y, Netzel ME. Nutritional composition and anti-nutrients of underutilized Australian indigenous edible halophytes – Saltbush, Seablite and Seapurslane. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Hou S, Men Y, Zhang Y, Zhao K, Ma G, Li H, Han Y, Sun Z. Role of miRNAs in regulation of SA-mediated upregulation of genes involved in folate and methionine metabolism in foxtail millet. FRONTIERS IN PLANT SCIENCE 2022; 13:1023764. [PMID: 36561440 PMCID: PMC9763449 DOI: 10.3389/fpls.2022.1023764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The effect of exogenous salicylic acid (SA) on folate metabolism and the related gene regulatory mechanisms is still unclear. In this study, the panicle of foxtail millet treated with different SA concentrations showed that 6 mM SA doubled the 5-methyltetrahydrofolate content compared to that of the control. An untargeted metabolomic analysis revealed that 275 metabolites were enriched in amino acid metabolic pathways. Significantly, the relative content of methionine (Met) after 6 mM SA treatment was 3.14 times higher than the control. Transcriptome analysis revealed that differentially expressed genes were mainly enriched in the folate and amino acid biosynthesis pathways (including Met, Cys, Pro, Ser et al.). The miRNA-mRNA interactions related to the folate and Met metabolic pathways were analyzed and several likely structural gene targets for miRNAs were identified, miRNA-seq analysis revealed that 33 and 51 miRNAs targeted 11 and 15 genes related to the folate and Met pathways, respectively. Eight key genes in the folate metabolism pathway were likely to be up-regulated by 14 new miRNAs and 20 new miRNAs up-regulated the 9 key genes in the Met metabolism pathway. The 6 miRNA-mRNA interactions related to the folate and Met metabolism pathways were verified by qRT-PCR, and consistent with the prediction. The results showed that DHFR1 gene expression level related to folate synthesis was directly up-regulated by Nov-m0139-3p with 3.8 times, but DHFR2 was down-regulated by Nov-m0731-5p with 0.62 times. The expression level of CYSC1 and APIP related to Met synthesis were up-regulated by Nov-m0461-5p and Nov-m0664-3p with 4.27 and 1.32 times, respectively. Our results suggested that exogenous SA could induce the folate and Met accumulated in the panicle of foxtail millet. The higher expression level of DHFR1, FTHFD, CYSC1 and APIP in the folate and Met metabolism pathway and their regulators, including Nov-m0139-3p, Nov-m0717-5p, Nov-m0461-5p and Nov-m0664-3p, could be responsible for these metabolites accumulation. This study lays the theoretical foundation for elucidating the post-transcription regulatory mechanisms of folate and Met metabolism.
Collapse
Affiliation(s)
- Siyu Hou
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yihan Men
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yijuan Zhang
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Kai Zhao
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Guifang Ma
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Hongying Li
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yuanhuai Han
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Zhaoxia Sun
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taiyuan, Shanxi, China
| |
Collapse
|
33
|
Kwiatkowski M, Wong A, Bi C, Gehring C, Jaworski K. Twin cyclic mononucleotide cyclase and phosphodiesterase domain architecture as a common feature in complex plant proteins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111493. [PMID: 36216295 DOI: 10.1016/j.plantsci.2022.111493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The majority of proteins in both prokaryote and eukaryote proteomes consist of two or more functional centers, which allows for intramolecular tuning of protein functions. Such architecture, as opposed to animal orthologs, applies to the plant cyclases (CNC) and phosphodiesterases (PDEs), the vast majority of which are part of larger multifunctional proteins. In plants, until recently, only two cases of combinations of CNC-PDE in one protein were reported. Here we propose that in plants, multifunctional proteins in which the PDE motif has been identified, the presence of the additional CNC center is common. Searching the Arabidopsis thaliana proteome with a combined PDE-CNC motif allowed the creation of a database of proteins with both activities. One such example is methylenetetrahydrofolate dehydrogenase, in which we determined the activities of adenylate cyclase (AC) and PDE. Based on biochemical and mutagenesis analyses we assessed the impact of the AC and PDE catalytic centers on the dehydrogenase activity. This allowed us to propose additional regulatory mechanism that govern folate metabolism by cAMP. It is therefore conceivable that the combined CNC-PDE architecture is a common regulatory configuration, where control of the level of cyclic nucleotides (cNMP) influences other catalytic activities of the protein.
Collapse
Affiliation(s)
- Mateusz Kwiatkowski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Toruń, Lwowska St. 1, 87-100 Toruń, Poland.
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Wenzhou 325060, Zhejiang Province, China; Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou 325060, Zhejiang Province, China; Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou 325060, Zhejiang Province, China.
| | - Chuyun Bi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Wenzhou 325060, Zhejiang Province, China; Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou 325060, Zhejiang Province, China; Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou 325060, Zhejiang Province, China
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy.
| | - Krzysztof Jaworski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Toruń, Lwowska St. 1, 87-100 Toruń, Poland
| |
Collapse
|
34
|
Tyagi K, Sunkum A, Gupta P, Kilambi HV, Sreelakshmi Y, Sharma R. Reduced γ-glutamyl hydrolase activity likely contributes to high folate levels in Periyakulam-1 tomato. HORTICULTURE RESEARCH 2022; 10:uhac235. [PMID: 36643736 PMCID: PMC9832877 DOI: 10.1093/hr/uhac235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Tomato cultivars show wide variation in nutraceutical folate in ripe fruits, yet the loci regulating folate levels in fruits remain unexplored. To decipher regulatory points, we compared two contrasting tomato cultivars: Periyakulam-1 (PKM-1) with high folate and Arka Vikas (AV) with low folate. The progression of ripening in PKM-1 was nearly similar to AV but had substantially lower ethylene emission. In parallel, the levels of phytohormones salicylic acid, ABA, and jasmonic acid were substantially lower than AV. The fruits of PKM-1 were metabolically distinct from AV, with upregulation of several amino acids. Consistent with higher °Brix, the red ripe fruits also showed upregulation of sugars and sugar-derived metabolites. In parallel with higher folate, PKM-1 fruits also had higher carotenoid levels, especially lycopene and β-carotene. The proteome analysis showed upregulation of carotenoid sequestration and folate metabolism-related proteins in PKM-1. The deglutamylation pathway mediated by γ-glutamyl hydrolase (GGH) was substantially reduced in PKM-1 at the red-ripe stage. The red-ripe fruits had reduced transcript levels of GGHs and lower GGH activity than AV. Conversely, the percent polyglutamylation of folate was much higher in PKM-1. Our analysis indicates the regulation of GGH activity as a potential target to elevate folate levels in tomato fruits.
Collapse
Affiliation(s)
| | - Anusha Sunkum
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad-500046, India
| | - Prateek Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad-500046, India
| | - Himabindu Vasuki Kilambi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad-500046, India
| | | | | |
Collapse
|
35
|
Khan MT, Ahmed S, Sardar R, Shareef M, Abbasi A, Mohiuddin M, Ercisli S, Fiaz S, Marc RA, Attia K, Khan N, Golokhvast KS. Impression of foliar-applied folic acid on coriander ( Coriandrum sativum L.) to regulate aerial growth, biochemical activity, and essential oil profiling under drought stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1005710. [PMID: 36340333 PMCID: PMC9633984 DOI: 10.3389/fpls.2022.1005710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Drought is one of the major environmental limitations in the crop production sector that has a great impact on food security worldwide. Coriander (Coriandrum sativum L.) is an herbaceous angiosperm of culinary significance and highly susceptible to rootzone dryness. Elucidating the drought-induced physio-chemical changes and the foliar-applied folic acid (FA; vitamin B9)-mediated stress tolerance mechanism of coriander has been found as a research hotspot under the progressing water scarcity challenges for agriculture. The significance of folic acid in ameliorating biochemical activities for the improved vegetative growth and performance of coriander under the mild stress (MS75), severe stress (SS50), and unstressed (US100) conditions was examined in this study during two consecutive seasons. The results revealed that the plants treated with 50 mM FA showed the highest plant fresh biomass, leaf fresh biomass, and shoot fresh biomass from bolting stage to seed filling stage under mild drought stress. In addition, total soluble sugars, total flavonoids content, and chlorophyll content showed significant results by the foliar application of FA, while total phenolic content showed non-significant results under MS75 and SS50. It was found that 50 mM of FA upregulated the activity of catalase, superoxide dismutase, and ascorbate peroxidase enzymes in MS75 and SS50 plants compared with untreated FA plants. Thus, FA treatment improved the overall biological yield and economic yield regardless of water deficit conditions. FA-accompanied plants showed a decline in drought susceptibility index, while it improved the drought tolerance efficiency, indicating this variety to become stress tolerant. The optimum harvest index, essential oil (EO) percentage, and oil yield were found in MS75 followed by SS50 in FA-supplemented plants. The gas chromatography-mass spectrometry analysis revealed a higher abundance of linalool as the major chemical constituent of EO, followed by α-terpeniol, terpinene, and p-Cymene in FA-treated SS50 plants. FA can be chosen as a shotgun tactic to improve drought tolerance in coriander by delimiting the drastic changes due to drought stress.
Collapse
Affiliation(s)
- Muhammad Tajammal Khan
- Institute of Botany, University of the Punjab, Lahore, Pakistan
- Division of Science and Technology, Department of Botany, University of Education, Lahore, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Rehana Sardar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | | | - Asim Abbasi
- Department of Environmental Sciences, Kohsar University, Murree, Pakistan
| | - Muhammad Mohiuddin
- Department of Environmental Sciences, Kohsar University, Murree, Pakistan
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Kotb Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Kiril S. Golokhvast
- Siberian Federal Scientific Center of Agrobiotechnology, Russian Academy of Sciences (RAS), Krasnoobsk, Russia
| |
Collapse
|
36
|
Hung CY, Zhu C, Kittur FS, He M, Arning E, Zhang J, Johnson AJ, Jawa GS, Thomas MD, Ding TT, Xie J. A plant-based mutant huntingtin model-driven discovery of impaired expression of GTPCH and DHFR. Cell Mol Life Sci 2022; 79:553. [PMID: 36251090 PMCID: PMC9576654 DOI: 10.1007/s00018-022-04587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/13/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022]
Abstract
Pathophysiology associated with Huntington's disease (HD) has been studied extensively in various cell and animal models since the 1993 discovery of the mutant huntingtin (mHtt) with abnormally expanded polyglutamine (polyQ) tracts as the causative factor. However, the sequence of early pathophysiological events leading to HD still remains elusive. To gain new insights into the early polyQ-induced pathogenic events, we expressed Htt exon1 (Httex1) with a normal (21), or an extended (42 or 63) number of polyQ in tobacco plants. Here, we show that transgenic plants accumulated Httex1 proteins with corresponding polyQ tracts, and mHttex1 induced protein aggregation and affected plant growth, especially root and root hair development, in a polyQ length-dependent manner. Quantitative proteomic analysis of young roots from severely affected Httex1Q63 and unaffected Httex1Q21 plants showed that the most reduced protein by polyQ63 is a GTP cyclohydrolase I (GTPCH) along with many of its related one-carbon (C1) metabolic pathway enzymes. GTPCH is a key enzyme involved in folate biosynthesis in plants and tetrahydrobiopterin (BH4) biosynthesis in mammals. Validating studies in 4-week-old R6/2 HD mice expressing a mHttex1 showed reduced levels of GTPCH and dihydrofolate reductase (DHFR, a key folate utilization/alternate BH4 biosynthesis enzyme), and impaired C1 and BH4 metabolism. Our findings from mHttex1 plants and mice reveal impaired expressions of GTPCH and DHFR and may contribute to a better understanding of mHtt-altered C1 and BH4 metabolism, and their roles in the pathogenesis of HD.
Collapse
Affiliation(s)
- Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA
| | - Chuanshu Zhu
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA.,College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Farooqahmed S Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA
| | - Maotao He
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA.,Department of Pathology, Weifang Medical University, Weifang, Shandong, 261000, China
| | - Erland Arning
- Baylor Scott and White Research Institute, Institute of Metabolic Disease, Dallas, TX, 75204, USA
| | - Jianhui Zhang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA
| | - Asia J Johnson
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA
| | - Gurpreet S Jawa
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA.,DePuy Synthes Companies of Johnson & Johnson, West Chester, PA, 19380, USA
| | - Michelle D Thomas
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA.,University of North Carolina, Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA
| | - Tomas T Ding
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA.
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, 27707, USA.
| |
Collapse
|
37
|
Fyfe S, Hong H, Schirra HJ, Smyth HE, Sultanbawa Y, Rychlik M. Folate vitamers in the Australian green plum: Through growth and ripening and across locations. Front Nutr 2022; 9:1006393. [PMID: 36313068 PMCID: PMC9614220 DOI: 10.3389/fnut.2022.1006393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
The green plum is a native fruit of Australia that grows on the tree Buchanania obovata. This study aimed to confirm the high level of folate in green plums by analyzing a large number of ripe samples from multiple locations and to understand how folate vitamers change as the fruit grows through maturity stages. This study analyzed green plums for five vitamers of folate, H4folate, 5-CH3-H4folate, 5-CHO-H4folate, 10-CHO-PteGlu, and PteGlu (folic acid) using a stable isotope dilution assay on a liquid chromatograph mass spectrometer (LC-MS). Green plums were tested from four locations, two harvests and five maturity stages. Another 11 ripe samples, each from different tree clumps from one location, were also tested as were ripe red-colored green plums. The results show the 5-CH3-H4folate in green plum increases and accumulates in the fruit through development, ripening and senescence. The ripe green plums contain between 82.4 ± 5.5 and 149.4 ± 10.7 μg/100 g Fresh Weight (FW). The red-colored green plums are even higher in folate, with total folate measured as 192.5 ± 7.0 and 293.7 ± 27.4 μg/100 g FW, and further analysis of them is suggested. There is some variation in amounts of folate between fruit from different locations and sets of trees, but all ripe green plums tested are considered good dietary sources of folate.
Collapse
Affiliation(s)
- Selina Fyfe
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Hung Hong
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| | - Horst Joachim Schirra
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
- School of Environment and Science, Griffith University, Brisbane, QLD, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Heather E. Smyth
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Yasmina Sultanbawa
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Rychlik
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| |
Collapse
|
38
|
Tyagi K, Sunkum A, Rai M, Yadav A, Sircar S, Sreelakshmi Y, Sharma R. Seeing the unseen: a trifoliate (MYB117) mutant allele fortifies folate and carotenoids in tomato fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:38-54. [PMID: 35899408 DOI: 10.1111/tpj.15925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
In tomato (Solanum lycopersicum), mutations in the gene encoding the R2R3-MYB117 transcription factor elicit trifoliate leaves and initiate the formation of axillary meristems; however, their effects on fruit ripening remain unexplored. The fruits of a new trifoliate (tf) mutant (tf-5) were firmer and had higher °Brix values and higher folate and carotenoid contents. The transcriptome, proteome, and metabolome profiling of tf-5 reflected a broad-spectrum change in cellular homeostasis. The tf-5 allele enhanced the fruit firmness by suppressing cell wall softening-related proteins. tf-5 fruit displayed a substantial increase in amino acids, particularly γ-aminobutyric acid, with a parallel reduction in aminoacyl-tRNA synthases. The increased lipoxygenase protein and transcript levels seemingly elevated jasmonic acid levels. In addition, increased abscisic acid hydrolase transcript levels coupled with reduced precursor supply lowered abscisic acid levels. The upregulation of carotenoids was mediated by modulation of methylerythreitol and plastoquinone pathways and increased the levels of carotenoid isomerization proteins. The upregulation of folate in tf-5 was connoted by the increase in the precursor p-aminobenzoic acid and transcript levels of several folate biosynthesis genes. The reduction in pterin-6-carboxylate levels and γ-glutamyl hydrolase activity indicated that reduced folate degradation in tf-5 increased folate levels. Our study delineates that in addition to leaf development, MYB117 also influences fruit metabolism. The tf-5 allele can be used to increase γ-aminobutyric acid, carotenoid, and folate levels in tomato.
Collapse
Affiliation(s)
- Kamal Tyagi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Anusha Sunkum
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Meenakshi Rai
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Amita Yadav
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sanchari Sircar
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
39
|
Xiao Y, Yu Y, Xie L, Li K, Guo X, Li G, Liu J, Li G, Hu J. A genome-wide association study of folates in sweet corn kernels. FRONTIERS IN PLANT SCIENCE 2022; 13:1004455. [PMID: 36247547 PMCID: PMC9562826 DOI: 10.3389/fpls.2022.1004455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/02/2022] [Indexed: 06/10/2023]
Abstract
Folate is commonly synthesized in natural plants and is an essential water-soluble vitamin of great importance inhuman health. Although the key genes involved in folate biosynthesis and transformation pathways have been identified in plants, the genetic architecture of folate in sweet corn kernels remain largely unclear. In this study, an association panel of 295 inbred lines of sweet corn was constructed. Six folate derivatives were quantified in sweet corn kernels at 20 days after pollination and a total of 95 loci were identified for eight folate traits using a genome-wide association study. A peak GWAS signal revealed that natural variation in ZmFCL, encoding a 5-formyltetrahydrofolate cyclo-ligase, accounted for 30.12% of phenotypic variation in 5-FTHF content. Further analysis revealed that two adjacent SNPs on the second exon resulting in an AA-to-GG in the gene and an Asn-to-Gly change in the protein could be the causative variant influencing 5-FTHF content. Meanwhile, 5-FTHF content was negatively correlated with ZmFCL expression levels in the population. These results extend our knowledge regarding the genetic basis of folate and provide molecular markers for the optimization of folate levels in sweet corn kernels.
Collapse
Affiliation(s)
- Yingni Xiao
- Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Yongtao Yu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Lihua Xie
- Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Kun Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Xinbo Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Guangyu Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Jianhua Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Gaoke Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| | - Jianguang Hu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, China
| |
Collapse
|
40
|
Jo J, Lee J, Ahn Y, Hwang YS, Park J, Lee J, Choi J. Metabolome and transcriptome analyses of plants grown in naturally attenuated soil after hydrogen fluoride exposure. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129323. [PMID: 35749895 DOI: 10.1016/j.jhazmat.2022.129323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Accidental chemical leaks and illegal chemical discharges are a global environmental issue. In 2012, a hydrogen fluoride leak in Gumi, South Korea, killed several people and contaminated the environment. This leak also led to a significant decline in crop yield, even after the soil concentration of hydrogen fluoride decreased to below the standard level following natural attenuation. To determine the cause of this decreased plant productivity, we designed direct and indirect exposure tests by evaluating the metabolome, transcriptome, and phenome of the plants. In an indirect exposure test, soil metabolomics revealed downregulation of metabolites in vitamin B6, lipopolysaccharide, osmolyte, and exopolysaccharide metabolism. Next-generation sequencing of the plants showed that ABR1 and DREB1A were overexpressed in response to stress. Plant metabolomics demonstrated upregulation of folate biosynthesis and nicotinate and nicotinamide metabolism associated with detoxification of reactive oxygen species. These results demonstrate impaired metabolism of soil microbes and plants even after natural attenuation of hydrogen fluoride in soil. The novel chemical exposure testing used in this study can be applied to identify hidden damage to organisms after natural attenuation of chemicals in soil, as well as biomarkers for explaining the decline in yield of plants grown in soil near pollutant-emitting industrial facilities.
Collapse
Affiliation(s)
- Jungman Jo
- Center for Sustainable Environment Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Civil and Environmental Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jinkyung Lee
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yongtae Ahn
- Center for Sustainable Environment Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yu Sik Hwang
- Environmental Fate and Exposure Research Group, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Junboum Park
- Department of Civil and Environmental Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jeongae Lee
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Jaeyoung Choi
- Center for Sustainable Environment Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Graduate School of Energy and Environment, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
41
|
Aljuaid BS, Mukherjee S, Sayed AN, El-Gabry YAEG, Omar MMA, Mahmoud SF, Alsubeie MS, Darwish DBE, Al-Qahtani SM, Al-Harbi NA, Alzuaibr FM, Basahi MA, Hamada MMA. Folic Acid Reinforces Maize Tolerance to Sodic-Alkaline Stress through Modulation of Growth, Biochemical and Molecular Mechanisms. Life (Basel) 2022; 12:life12091327. [PMID: 36143364 PMCID: PMC9506096 DOI: 10.3390/life12091327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The mechanism by which folic acid (FA) or its derivatives (folates) mediates plant tolerance to sodic-alkaline stress has not been clarified in previous literature. To apply sodic-alkaline stress, maize seedlings were irrigated with 50 mM of a combined solution (1:1) of sodic-alkaline salts (NaHCO3 and Na2CO3; pH 9.7). Maize seedlings under stressed and non-stressed conditions were sprayed with folic acid (FA) at 0 (distilled water as control), 0.05, 0.1, and 0.2 mM. Under sodic-alkaline stress, FA applied at 0.2 mM significantly improved shoot fresh weight (95%), chlorophyll (Chl a (41%), Chl b (57%), and total Chl (42%)), and carotenoids (27%) compared to the untreated plants, while root fresh weight was not affected compared to the untreated plants. This improvement was associated with a significant enhancement in the cell-membrane stability index (CMSI), relative water content (RWC), free amino acids (FAA), proline, soluble sugars, K, and Ca. In contrast, Na, Na/K ratio, H2O2, malondialdehyde (MDA), and methylglycoxal (MG) were significantly decreased. Moreover, seedlings treated with FA demonstrated significantly higher activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), and ascorbate peroxidase (APX) compared to the untreated plants. The molecular studies using RT-qPCR demonstrated that FA treatments, specifically at 0.2 mM, enhanced the K+/Na+ selectivity and the performance of photosynthesis under alkaline-stress conditions. These responses were observed through up-regulation of the expression of the high-affinity potassium-transporter protein (ZmHKT1), the major core protein of photosystem II (D2-Protein), and the activity of the first enzyme of carbon fixation cycle in C4 plants (PEP-case) by 74, 248, and 225% over the untreated plants, respectively. Conversely, there was a significant down-regulation in the expression ZmSOS1 and ZmNHX1 by 48.2 and 27.8%, respectively, compared to the untreated plants.
Collapse
Affiliation(s)
- Bandar S. Aljuaid
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, Kalyani 742213, India
- Correspondence: (S.M.); (M.M.A.H.)
| | - Amany N. Sayed
- Department of Agronomy, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | | | - Mohamed M. A. Omar
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Samy F. Mahmoud
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Moodi Saham Alsubeie
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Doaa Bahaa Eldin Darwish
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt
- Biology Department, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia
| | - Salem Mesfir Al-Qahtani
- Biology Department, University College of Tayma, University of Tabuk, P.O. Box 741, Tabuk 47512, Saudi Arabia
| | - Nadi Awad Al-Harbi
- Biology Department, University College of Tayma, University of Tabuk, P.O. Box 741, Tabuk 47512, Saudi Arabia
| | - Fahad Mohammed Alzuaibr
- Department of Biology, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Mohammed A. Basahi
- College of Science and Arts Sajir, Shaqra University, P.O. Box 33, Shaqra 11961, Saudi Arabia
| | - Maha M. A. Hamada
- Department of Agronomy, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (S.M.); (M.M.A.H.)
| |
Collapse
|
42
|
Liu Z, Farkas P, Wang K, Kohli M, Fitzpatrick TB. B vitamin supply in plants and humans: the importance of vitamer homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:662-682. [PMID: 35673947 PMCID: PMC9544542 DOI: 10.1111/tpj.15859] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 05/26/2023]
Abstract
B vitamins are a group of water-soluble micronutrients that are required in all life forms. With the lack of biosynthetic pathways, humans depend on dietary uptake of these compounds, either directly or indirectly, from plant sources. B vitamins are frequently given little consideration beyond their role as enzyme accessory factors and are assumed not to limit metabolism. However, it should be recognized that each individual B vitamin is a family of compounds (vitamers), the regulation of which has dedicated pathways. Moreover, it is becoming increasingly evident that individual family members have physiological relevance and should not be sidelined. Here, we elaborate on the known forms of vitamins B1 , B6 and B9 , their distinct functions and importance to metabolism, in both human and plant health, and highlight the relevance of vitamer homeostasis. Research on B vitamin metabolism over the past several years indicates that not only the total level of vitamins but also the oft-neglected homeostasis of the various vitamers of each B vitamin is essential to human and plant health. We briefly discuss the potential of plant biology studies in supporting human health regarding these B vitamins as essential micronutrients. Based on the findings of the past few years we conclude that research should focus on the significance of vitamer homeostasis - at the organ, tissue and subcellular levels - which could improve the health of not only humans but also plants, benefiting from cross-disciplinary approaches and novel technologies.
Collapse
Affiliation(s)
- Zeguang Liu
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Peter Farkas
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Kai Wang
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Morgan‐Océane Kohli
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Teresa B. Fitzpatrick
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| |
Collapse
|
43
|
Al-Elwany OAAI, Hemida KA, Abdel-Razek MA, El-Mageed TAA, El-Saadony MT, AbuQamar SF, El-Tarabily KA, Taha RS. Impact of Folic Acid in Modulating Antioxidant Activity, Osmoprotectants, Anatomical Responses, and Photosynthetic Efficiency of Plectranthus amboinicus Under Salinity Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:887091. [PMID: 35968108 PMCID: PMC9367479 DOI: 10.3389/fpls.2022.887091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Salinity is a major threat to the sustainability of agricultural production systems. Salt stress has unfavorable implications on various plant physio-morphological and biochemical reactions, causing osmotic and ionic stress. Exogenously applied folic acid (FA) may at least provide one mechanism to evade the injurious stress effects of saline irrigation water on Plectranthus amboinicus. In this regard, two pot trials were performed during the 2018-2019 and 2019-2020 seasons in an open greenhouse of an experimental farm (29°17'N; 30°53'E) in Fayoum, Egypt. We tested four levels of saline irrigation water (SW): 34, 68, and 102 mM NaCl, plus tap water as the control = 0), combined with FA at three concentrations (25 and 50 μM, plus spray with distilled water as the control = 0). The growth parameters, biochemistry, physiology, elemental leaf status, essential oil content, and anatomical responses were assessed. Salt markedly reduced photosynthetic productivity [Fv/Fm and performance index (PI)], total chlorophyll [soil plant analysis development (SPAD)], and leaf osmoprotectant compounds, i.e., total soluble sugars (TSS), free amino acids, proline, and total phenolics, thus hampering P. amboinicus growth and essential oil yield. However, the addition of FA as a foliar spray to P. amboinicus irrigated with saline water induced increases in Fv/Fm, SPAD, and PI. These were linked with enriched stem anatomical structures, leaf osmoprotectant compounds, and enhanced leaf enzymatic activity, e.g., superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, glutathione, ascorbic acid, and antioxidant content. Under salt stress, supplementation of 25 and 50 μM FA increased the growth and production of essential oil by 27.8 and 55.6%, respectively, compared with no applied FA. The highest growth characteristics and elemental leaf contents were obtained when P. amboinicus was irrigated with 0 mM saline water and treated foliarly with 50 μM of FA compared with non-treated plants. Overall, these data showed that foliar spraying with FA reduces the impact of salt stress on P. amboinicus irrigated with saline water.
Collapse
Affiliation(s)
| | | | | | | | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Ragab S. Taha
- Botany Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
44
|
He Y, Song S, Li C, Zhang X, Liu H. Effect of germination on the main chemical compounds and 5-methyltetrahydrofolate metabolism of different quinoa varieties. Food Res Int 2022; 159:111601. [DOI: 10.1016/j.foodres.2022.111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/01/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022]
|
45
|
Yadav R, Chakraborty S, Ramakrishna W. Wheat grain proteomic and protein-metabolite interactions analyses provide insights into plant growth promoting bacteria-arbuscular mycorrhizal fungi-wheat interactions. PLANT CELL REPORTS 2022; 41:1417-1437. [PMID: 35396966 DOI: 10.1007/s00299-022-02866-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Proteomic, protein-protein and protein-metabolite interaction analyses in wheat inoculated with PGPB and AMF identified key proteins and metabolites that may have a role in enhancing yield and biofortification. Plant growth-promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) have an impact on grain yield and nutrition. This dynamic yet complex interaction implies a broad reprogramming of the plant's metabolic and proteomic activities. However, little information is available regarding the role of native PGPB and AMF and how they affect the plant proteome, especially under field conditions. Here, proteomic, protein-protein and protein-metabolite interaction studies in wheat triggered by PGPB, Bacillus subtilis CP4 either alone or together with AMF under field conditions was carried out. The dual inoculation with native PGPB (CP4) and AMF promoted the differential abundance of many proteins, such as histones, glutenin, avenin and ATP synthase compared to the control and single inoculation. Interaction study of these differentially expressed proteins using STRING revealed that they interact with other proteins involved in seed development and abiotic stress tolerance. Furthermore, these interacting proteins are involved in carbon fixation, sugar metabolism and biosynthesis of amino acids. Molecular docking predicted that wheat seed storage proteins, avenin and glutenin interact with secondary metabolites, such as trehalose, and sugars, such as xylitol. Mapping of differentially expressed proteins to KEGG pathways showed their involvement in sugar metabolism, biosynthesis of secondary metabolites and modulation of histones. These proteins and metabolites can serve as markers for improving wheat-PGPB-AMF interactions leading to higher yield and biofortification.
Collapse
Affiliation(s)
- Radheshyam Yadav
- Department of Biochemistry, Central University of Punjab, VPO Ghudda, Punjab, India
| | - Sudip Chakraborty
- Department of Computational Sciences, Central University of Punjab, VPO Ghudda, Punjab, India
| | - Wusirika Ramakrishna
- Department of Biochemistry, Central University of Punjab, VPO Ghudda, Punjab, India.
| |
Collapse
|
46
|
Alsamadany H, Mansour H, Elkelish A, Ibrahim MFM. Folic Acid Confers Tolerance against Salt Stress-Induced Oxidative Damages in Snap Beans through Regulation Growth, Metabolites, Antioxidant Machinery and Gene Expression. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111459. [PMID: 35684231 PMCID: PMC9182733 DOI: 10.3390/plants11111459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 06/01/2023]
Abstract
Although the effect of folic acid (FA) and its derivatives (folates) have been extensively studied in humans and animals, their effects are still unclear in most plant species, specifically under various abiotic stress conditions. Here, the impact of FA as a foliar application at 0, 0.1, and 0.2 mM was studied on snap bean seedlings grown under non-saline and salinity stress (50 mM NaCl) conditions. The results indicated that under salinity stress, FA-treated plants revealed a significant (p ≤ 0.05) increase in growth parameters (fresh and dry weight of shoot and root). A similar trend was observed in chlorophyll (Chl b), total chlorophyll, carotenoids, leaf relative water content (RWC), proline, free amino acids (FAA), soluble sugars, cell membrane stability index (CMSI), and K, Ca, and K/Na ratio compared to the untreated plants. In contrast, a significant decrease was observed in Na and salinity-induced oxidative damage as indicated by reduced H2O2 production (using biochemical and histochemical detection methods) and rate of lipid peroxidation (malondialdehyde; MDA). This enhancement was correlated by increasing the activities of antioxidant enzymes, i.e., superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (G-POX), and ascorbate peroxidase (APX). Gene expression analyses conducted using qRT-PCR demonstrated that genes coding for the Na+/H+ antiporter protein Salt Overly Sensitive 1 (SOS1), the tonoplast-localized Na+/H+ antiporter protein (NHX1), and the multifunctional osmotic protective protein (Osmotin) were significantly up-regulated in the FA-treated plants under both saline and non-saline treatments. Generally, treatment with 0.2 mM FA was more potent than 0.1 mM and can be recommended to improve snap bean tolerance to salinity stress.
Collapse
Affiliation(s)
- Hameed Alsamadany
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hassan Mansour
- Department of Biological Sciences, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia;
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Amr Elkelish
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohamed F. M. Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
47
|
Hou S, Zhang Y, Zhao B, Man X, Ma G, Men Y, Du W, Yang Y, Li H, Han Y, Zhao Y, Sun Z. Heterologous Expression of SiFBP, a Folate-Binding Protein from Foxtail Millet, Confers Increased Folate Content and Altered Amino Acid Profiles with Nutritional Potential to Arabidopsis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6272-6284. [PMID: 35575700 DOI: 10.1021/acs.jafc.2c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The mechanism underlying folate degradation in foxtail millet grains remains unclear. Here, we identified SiFBP (Setaria italica folate-binding protein) from foxtail millet. A phylogenetic tree revealed that FBPs have close genetic relationships among cereal crop species. Docking analysis and heterologous expression of SiFBP in yeast showed that it could bind folic acid (FA). The SiFBP localized to the plasma membrane in tobacco mesophyll cells by transient expression. In Arabidopsis, it was expressed specifically in the roots and germinating seeds. Overexpressing SiFBP in yeast and Arabidopsis significantly increased folate contents. Untargeted metabolome analysis revealed differentially accumulated metabolites between the transgenic lines (TLs) and wild type (WT); these metabolites were mainly enriched in the amino acid metabolism pathway. The relative contents of lysine and leucine, threonine, and l-methionine were significantly higher in the TLs than in WT. Genes related to the folate and lysine synthesis pathways were upregulated in the TLs. Thus, SiFBP can be used for biofortification of folate and important amino acids in crops via genetic engineering.
Collapse
Affiliation(s)
- Siyu Hou
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan, Shanxi 030031, China
| | - Yijuan Zhang
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan, Shanxi 030031, China
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China
| | - Xiaxia Man
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Guifang Ma
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yihan Men
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Wei Du
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yang Yang
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan, Shanxi 030031, China
| | - Hongying Li
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan, Shanxi 030031, China
| | - Yuanhuai Han
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan, Shanxi 030031, China
| | - Yaofei Zhao
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan, Shanxi 030031, China
| | - Zhaoxia Sun
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan, Shanxi 030031, China
| |
Collapse
|
48
|
Liao HS, Chung YH, Hsieh MH. Glutamate: A multifunctional amino acid in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111238. [PMID: 35351313 DOI: 10.1016/j.plantsci.2022.111238] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Glutamate (Glu) is a versatile metabolite and a signaling molecule in plants. Glu biosynthesis is associated with the primary nitrogen assimilation pathway. The conversion between Glu and 2-oxoglutarate connects Glu metabolism to the tricarboxylic acid cycle, carbon metabolism, and energy production. Glu is the predominant amino donor for transamination reactions in the cell. In addition to protein synthesis, Glu is a building block for tetrapyrroles, glutathione, and folate. Glu is the precursor of γ-aminobutyric acid that plays an important role in balancing carbon/nitrogen metabolism and various cellular processes. Glu can conjugate to the major auxin indole 3-acetic acid (IAA), and IAA-Glu is destined for oxidative degradation. Glu also conjugates with isochorismate for the production of salicylic acid. Accumulating evidence indicates that Glu functions as a signaling molecule to regulate plant growth, development, and defense responses. The ligand-gated Glu receptor-like proteins (GLRs) mediate some of these responses. However, many of the Glu signaling events are GLR-independent. The receptor perceiving extracellular Glu as a danger signal is still unknown. In addition to GLRs, Glu may act on receptor-like kinases or receptor-like proteins to trigger immune responses. Glu metabolism and Glu signaling may entwine to regulate growth, development, and defense responses in plants.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
49
|
Elkanzi NAA, El Azab IH, Bakr RB. Design, Synthesis, and In Silico Molecular Docking Study of Some Novel Thiochromene Derivatives with Antimicrobial Potential. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2041052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Nadia A. A. Elkanzi
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
- Chemistry Department, Faculty of Science, Aswan University, Aswan, Egypt
| | - Islam H. El Azab
- Food Science & Nutrition Department, College of Science, Taif University, Taif, Saudi Arabia
| | - Rania B. Bakr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
50
|
Lian T, Wang X, Li S, Jiang H, Zhang C, Wang H, Jiang L. Comparative Transcriptome Analysis Reveals Mechanisms of Folate Accumulation in Maize Grains. Int J Mol Sci 2022; 23:ijms23031708. [PMID: 35163628 PMCID: PMC8836222 DOI: 10.3390/ijms23031708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
Previously, the complexity of folate accumulation in the early stages of maize kernel development has been reported, but the mechanisms of folate accumulation are unclear. Two maize inbred lines, DAN3130 and JI63, with different patterns of folate accumulation and different total folate contents in mature kernels were used to investigate the transcriptional regulation of folate metabolism during late stages of kernel formation by comparative transcriptome analysis. The folate accumulation during DAP 24 to mature kernels could be controlled by circumjacent pathways of folate biosynthesis, such as pyruvate metabolism, glutamate metabolism, and serine/glycine metabolism. In addition, the folate variation between these two inbred lines was related to those genes among folate metabolism, such as genes in the pteridine branch, para-aminobenzoate branch, serine/tetrahydrofolate (THF)/5-methyltetrahydrofolate cycle, and the conversion of THF monoglutamate to THF polyglutamate. The findings provided insight into folate accumulation mechanisms during maize kernel formation to promote folate biofortification.
Collapse
Affiliation(s)
- Tong Lian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
- Plant Genetics, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Xuxia Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.W.); (H.J.)
| | - Sha Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
| | - Haiyang Jiang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.W.); (H.J.)
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.W.); (H.J.)
- National Agricultural Science and Technology Center, Chengdu 610213, China
- Correspondence: (H.W.); (L.J.)
| | - Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
- Correspondence: (H.W.); (L.J.)
| |
Collapse
|