1
|
Kong C, Guo Z, Teng T, Yao Q, Yu J, Wang M, Ma Y, Wang P, Tang Q. Electroactive Nanomaterials for the Prevention and Treatment of Heart Failure: From Materials and Mechanisms to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406206. [PMID: 39268781 DOI: 10.1002/smll.202406206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Heart failure (HF) represents a cardiovascular disease that significantly threatens global well-being and quality of life. Electroactive nanomaterials, characterized by their distinctive physical and chemical properties, emerge as promising candidates for HF prevention and management. This review comprehensively examines electroactive nanomaterials and their applications in HF intervention. It presents the definition, classification, and intrinsic characteristics of conductive, piezoelectric, and triboelectric nanomaterials, emphasizing their mechanical robustness, electrical conductivity, and piezoelectric coefficients. The review elucidates their applications and mechanisms: 1) early detection and diagnosis, employing nanomaterial-based sensors for real-time cardiac health monitoring; 2) cardiac tissue repair and regeneration, providing mechanical, chemical, and electrical stimuli for tissue restoration; 3) localized administration of bioactive biomolecules, genes, or pharmacotherapeutic agents, using nanomaterials as advanced drug delivery systems; and 4) electrical stimulation therapies, leveraging their properties for innovative pacemaker and neurostimulation technologies. Challenges in clinical translation, such as biocompatibility, stability, and scalability, are discussed, along with future prospects and potential innovations, including multifunctional and stimuli-responsive nanomaterials for precise HF therapies. This review encapsulates current research and future directions concerning the use of electroactive nanomaterials in HF prevention and management, highlighting their potential to innovating in cardiovascular medicine.
Collapse
Affiliation(s)
- Chunyan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Qi Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Jiabin Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Mingyu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Yulan Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Pan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, P. R. China
| |
Collapse
|
2
|
Kim SE, Yoon JC, Muthurasu A, Kim HY. Functionalized Triangular Carbon Quantum Dot Stabilized Gold Nanoparticles Decorated Boron Nitride Nanosheets Interfaced for Electrochemical Detection of Cardiac Troponin T. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25051-25060. [PMID: 39530172 DOI: 10.1021/acs.langmuir.4c03281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The fast, and highly sensitive estimation of cardiac troponin T (cTnT) is crucial for the early identification of acute myocardial infarction (AMI). The electrochemical immunoassay-based (EIB) sensors are highly promising for this purpose, as they offer precise measurements and can be directly assessed in intricate matrices, including blood. To increase sensitivity, EIB sensors use nanomaterials or amplification processes, which can be laborious to develop. With this, we develop an electrochemical immunosensor for the sensitive detection of cardiac troponin T (cTnT). The sensing platform is composed of functionalized triangular carbon quantum dots stabilized gold nanoparticles which are integrated with boron nitride nanosheets (caf-TCQDs@AuNPs on HO-BNNS). Ferrocene carboxylic acid (Fc-COOH) serves as the signal label. The composite was developed and examined using several techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), cyclic voltammetry, and chronocoulometry. The caf-TCQDs@AuNPs supported on HO-BNNS, have a large surface area and excellent electrical conductivity, and serve as an effective platform for the immobilization of anti-cTnT monoclonal antibodies via carbodiimide coupling. The Fc-COOH, functioning as a signal label through the oxidation process, was integrated with caf-TCQDs@AuNPs on the HO-BNNS platform to establish an electrochemical immunosensor for the detection of cTnT. The electrochemical immunosensor demonstrated excellent performance for the determination of cTnT under optimal conditions, exhibiting a linearity range spanning from 0.0001 to 100 ng mL-1, accompanied by a low detection limit of 0.0013 ng mL-1. Notably, the immunosensor revealed high specificity, as well as excellent levels of reproducibility and reliability for the examination of human serum samples.
Collapse
Affiliation(s)
- So Eun Kim
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, South Korea
| | - Jae Chol Yoon
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, South Korea
| | - Alagan Muthurasu
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Hak Yong Kim
- Department of Nano Convergence Technology, Jeonbuk National University, Jeonju 561-756, Republic of Korea
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| |
Collapse
|
3
|
Tong Y, Chen M, Huang X, Xu Y, Zhang L, Yu Z, Liu SY, Dai Z. Aptasensor based on gold nanostructure-decorated 2D Cu metal-organic framework nanosheets for highly sensitive and specific electrochemical lipopolysaccharide detection. Mikrochim Acta 2024; 191:500. [PMID: 39088046 DOI: 10.1007/s00604-024-06587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Detecting lipopolysaccharide (LPS) using electrochemical methods is significant because of their exceptional sensitivity, simplicity, and user-friendliness. Two-dimensional metal-organic framework (2D-MOF) that merges the benefits of MOF and 2D nanostructure has exhibited remarkable performance in constructing electrochemical sensors, notably surpassing traditional 3D-MOFs. In this study, Cu[tetrakis(4-carboxylphenyl)porphyrin] (Cu-TCPP) and Cu(tetrahydroxyquinone) (Cu-THQ) 2D nanosheets were synthesized and applied on a glassy carbon electrode (GCE). The 2D-MOF nanosheets, which serve as supporting layers, exhibit improved electron transfer and electronic conductivity characteristics. Subsequently, the modified electrode was subjected to electrodeposition with Au nanostructures, resulting in the formation of Au/Cu-TCPP/GCE and Au/Cu-THQ/GCE. Notably, the Au/Cu-THQ/GCE demonstrated superior electrochemical activity because of the 2D morphology, redox ligand, dense Cu sites, and improved deposition of flower-like Au nanostructure based on Cu-THQ. The electron transfer specific surface area was increased by the improved deposition of Au nanostructures, which facilitates enriched binding of LPS aptamer and significantly improved the detection performance of Apt/Au/Cu-THQ/GCE electrochemical aptasensor. The limit of detection for LPS reached 0.15 fg/mL with a linear range of 1 fg/mL - 100 pg/mL. The proposed aptasensor demonstrated the ability to detect LPS in serum samples with satisfactory accuracy, indicating significant potential for clinical diagnosis.
Collapse
Affiliation(s)
- Yanli Tong
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Meng Chen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xing Huang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yuzhi Xu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Lang Zhang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhenning Yu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Si-Yang Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
4
|
Devaraj R, Loganathan AK, Krishnamoorthy L. Development of an aptasensor for highly sensitive detection of cardiac troponin I using cobalt-nickel metal-organic framework (CoNi-MOF). Heliyon 2024; 10:e33238. [PMID: 39022011 PMCID: PMC11253065 DOI: 10.1016/j.heliyon.2024.e33238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Objective and rationale This study aimed to develop a highly sensitive and selective single-stranded DNA (ssDNA) aptamer targeting cardiac troponin I (cTnI), a crucial biomarker for acute myocardial infarction (AMI). The objective was to fabricate a novel aptamer electrochemical sensor using a composite material of cobalt-nickel metal-organic framework (CoNi-MOF) on screen-printed carbon electrodes (SPCE), leveraging the composite's large surface area and excellent electrical conductivity alongside the aptamer's high affinity for cTnI. Methods The aptamer electrochemical sensor was fabricated using the CoNi-MOF composite on SPCE and characterized its properties. They conducted electrochemical measurements to assess the sensor's performance in detecting cTnI. The sensor's stability, reproducibility, and electro-catalytic activity were evaluated. Results The sensor demonstrated linear detection of cTnI over a concentration range of 5-75 pg/mL, with a low limit of detection (LOD) of 13.2 pM. Remarkable stability and reproducibility were observed in cTnI detection. The sensor exhibited exceptional electro-catalytic activity, enabling accurate quantification of cTnI levels in various solutions. Conclusions This research presents a significant advancement towards the development of reliable, cost-effective, and easily deployable cTnI sensors for clinical applications. The sensor's versatility in detecting cTnI across different concentration ranges highlights its potential utility in diverse clinical settings, particularly for early detection and monitoring of cardiac conditions.
Collapse
Affiliation(s)
- Ramya Devaraj
- Department of Electrical & Electronics Engineering, PSG College of Technology, Coimbatore, India
| | - Ashok Kumar Loganathan
- Department of Electrical & Electronics Engineering, PSG College of Technology, Coimbatore, India
| | | |
Collapse
|
5
|
Lin H, Buerki-Thurnherr T, Kaur J, Wick P, Pelin M, Tubaro A, Carniel FC, Tretiach M, Flahaut E, Iglesias D, Vázquez E, Cellot G, Ballerini L, Castagnola V, Benfenati F, Armirotti A, Sallustrau A, Taran F, Keck M, Bussy C, Vranic S, Kostarelos K, Connolly M, Navas JM, Mouchet F, Gauthier L, Baker J, Suarez-Merino B, Kanerva T, Prato M, Fadeel B, Bianco A. Environmental and Health Impacts of Graphene and Other Two-Dimensional Materials: A Graphene Flagship Perspective. ACS NANO 2024; 18:6038-6094. [PMID: 38350010 PMCID: PMC10906101 DOI: 10.1021/acsnano.3c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Two-dimensional (2D) materials have attracted tremendous interest ever since the isolation of atomically thin sheets of graphene in 2004 due to the specific and versatile properties of these materials. However, the increasing production and use of 2D materials necessitate a thorough evaluation of the potential impact on human health and the environment. Furthermore, harmonized test protocols are needed with which to assess the safety of 2D materials. The Graphene Flagship project (2013-2023), funded by the European Commission, addressed the identification of the possible hazard of graphene-based materials as well as emerging 2D materials including transition metal dichalcogenides, hexagonal boron nitride, and others. Additionally, so-called green chemistry approaches were explored to achieve the goal of a safe and sustainable production and use of this fascinating family of nanomaterials. The present review provides a compact survey of the findings and the lessons learned in the Graphene Flagship.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS,
UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| | - Tina Buerki-Thurnherr
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Jasreen Kaur
- Nanosafety
& Nanomedicine Laboratory, Institute
of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Peter Wick
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Marco Pelin
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Aurelia Tubaro
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | | | - Mauro Tretiach
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Emmanuel Flahaut
- CIRIMAT,
Université de Toulouse, CNRS, INPT,
UPS, 31062 Toulouse CEDEX 9, France
| | - Daniel Iglesias
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Ester Vázquez
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Giada Cellot
- International
School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Laura Ballerini
- International
School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Valentina Castagnola
- Center
for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Fabio Benfenati
- Center
for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Andrea Armirotti
- Analytical
Chemistry Facility, Istituto Italiano di
Tecnologia, 16163 Genoa, Italy
| | - Antoine Sallustrau
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Frédéric Taran
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Mathilde Keck
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Cyrill Bussy
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Sandra Vranic
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Kostas Kostarelos
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Mona Connolly
- Instituto Nacional de Investigación y Tecnología
Agraria
y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain
| | - José Maria Navas
- Instituto Nacional de Investigación y Tecnología
Agraria
y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain
| | - Florence Mouchet
- Laboratoire
Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - Laury Gauthier
- Laboratoire
Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - James Baker
- TEMAS Solutions GmbH, 5212 Hausen, Switzerland
| | | | - Tomi Kanerva
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Maurizio Prato
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Bengt Fadeel
- Nanosafety
& Nanomedicine Laboratory, Institute
of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Alberto Bianco
- CNRS,
UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
6
|
Chen Q, Wu W, Wang K, Han Z, Yang C. Methods for detecting of cardiac troponin I biomarkers for myocardial infarction using biosensors: a narrative review of recent research. J Thorac Dis 2023; 15:5112-5121. [PMID: 37868839 PMCID: PMC10586976 DOI: 10.21037/jtd-23-1263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023]
Abstract
Background and Objective In cardiovascular diseases (CVDs), acute myocardial infarction (AMI) is considered one of the leading causes of human death, and its diagnosis mainly relies on the detection of the cardiac biomarker troponin I. Traditional detection methods have certain limitations, which has prompted the development of methods with higher sensitivity and specificity. In recent years, biosensors, as an emerging technology, have been widely applied in the clinical medicine and biodetection fields. We retrieved and reviewed relevant articles published over the past 3 years and subsequently summarized the research progress of different types of biosensors in detecting cardiac troponin I and the challenges faced in achieving simple, specific, and portable point-of-care testing (POCT) technology for bedside rapid detection. The aim of this review is to serve as reference for the early diagnosis and treatment of CVDs. Methods This study searched for relevant literature published from 2019 to 2022 in the PubMed database of the National Center for Biotechnology Information (NCBI). The keywords used were as follows: "cardiac troponin I", "biosensor", "point-of-care testing", "electrochemical detection", and "surface-enhanced Raman spectroscopy". Key Content and Findings The review found that biosensor technology has high specificity and sensitivity in the detection of cardiac troponin I and is simpler and more convenient than is traditional laboratory testing. Its vigorous development can facilitate the diagnosis of AMI earlier and faster. Conclusions This study reviewed the progress of cardiac troponin I detection based on biosensing strategies. We found that cardiac troponin I detection methods based on biosensing strategies have their own advantages and disadvantages in clinical applications, and their sensitivity has been constantly improved. In the future, the detection of cardiac troponin I using biosensing technology will be simpler, faster, more sensitive, and portable.
Collapse
Affiliation(s)
- Qingzhuo Chen
- Department of Cardiology, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Wenxin Wu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Ke Wang
- National Key Laboratory of Radiopharmaceuticals, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, National Health Commission, Wuxi, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Zhijun Han
- Department of Clinical Research Center, Jiangnan University Medical Center, Wuxi, China
| | - Chengjian Yang
- Department of Cardiology, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
7
|
Aliqab K, Wekalao J, Alsharari M, Armghan A, Agravat D, Patel SK. Designing a Graphene Metasurface Organic Material Sensor for Detection of Organic Compounds in Wastewater. BIOSENSORS 2023; 13:759. [PMID: 37622845 PMCID: PMC10452360 DOI: 10.3390/bios13080759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023]
Abstract
In many fields, such as environmental monitoring, food safety, and medical diagnostics, the identification of organic compounds is essential. It is crucial to create exceptionally sensitive and selective sensors for the detection of organic compounds in order to safeguard the environment and human health. Due to its outstanding electrical, mechanical, and chemical characteristics, the two-dimensional carbon substance graphene has recently attracted much attention for use in sensing applications. The purpose of this research is to create an organic material sensor made from graphene for the detection of organic substances like phenol, ethanol, methanol, chloroform, etc. Due to its high surface-to-volume ratio and potent interactions with organic molecules, graphene improves the sensor's performance while the metasurface structure enables the design of highly sensitive and selective sensing elements. The suggested sensor is highly sensitive and accurate at detecting a broad spectrum of organic molecules, making it appropriate for a number of applications. The creation of this sensor has the potential to have a substantial impact on the field of organic sensing and increase the safety of food, medicine, and the environment. The graphene metasurface organic material sensor (GMOMS) was categorized into three types denoted as GMOMS1, GMOMS2, and GMOMS3 based on the specific application of the graphene chemical potential (GCP). In GMOMS1, GCP was applied on both the CSRR and CS surfaces. In GMOMS2, GCP was applied to the CS surface and the surrounding outer region of the CSRR. In GMOMS3, GCP was applied to the CSRR and the surrounding outer region of the CSRR surface. The results show that all three designs exhibit high relative sensitivity, with the maximum values ranging from 227 GHz/RIU achieved by GMOMS1 to 4318 GHz/RIU achieved by GMOMS3. The FOM values achieved for all the designs range from 2.038 RIU-1 achieved by GMOMS2 to 31.52 RIU-1 achieved by GMOMS3, which is considered ideal in this paper.
Collapse
Affiliation(s)
- Khaled Aliqab
- Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
| | - Jacob Wekalao
- Department of Physics, Marwadi University, Rajkot 360003, India
| | - Meshari Alsharari
- Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
| | - Ammar Armghan
- Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia
| | - Dhruvik Agravat
- Department of Physics, Marwadi University, Rajkot 360003, India
| | - Shobhit K. Patel
- Department of Computer Engineering, Marwadi University, Rajkot 360003, India
| |
Collapse
|
8
|
Irkham I, Ibrahim AU, Pwavodi PC, Al-Turjman F, Hartati YW. Smart Graphene-Based Electrochemical Nanobiosensor for Clinical Diagnosis: Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:2240. [PMID: 36850837 PMCID: PMC9964617 DOI: 10.3390/s23042240] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The technological improvement in the field of physics, chemistry, electronics, nanotechnology, biology, and molecular biology has contributed to the development of various electrochemical biosensors with a broad range of applications in healthcare settings, food control and monitoring, and environmental monitoring. In the past, conventional biosensors that have employed bioreceptors, such as enzymes, antibodies, Nucleic Acid (NA), etc., and used different transduction methods such as optical, thermal, electrochemical, electrical and magnetic detection, have been developed. Yet, with all the progresses made so far, these biosensors are clouded with many challenges, such as interference with undesirable compound, low sensitivity, specificity, selectivity, and longer processing time. In order to address these challenges, there is high need for developing novel, fast, highly sensitive biosensors with high accuracy and specificity. Scientists explore these gaps by incorporating nanoparticles (NPs) and nanocomposites (NCs) to enhance the desired properties. Graphene nanostructures have emerged as one of the ideal materials for biosensing technology due to their excellent dispersity, ease of functionalization, physiochemical properties, optical properties, good electrical conductivity, etc. The Integration of the Internet of Medical Things (IoMT) in the development of biosensors has the potential to improve diagnosis and treatment of diseases through early diagnosis and on time monitoring. The outcome of this comprehensive review will be useful to understand the significant role of graphene-based electrochemical biosensor integrated with Artificial Intelligence AI and IoMT for clinical diagnostics. The review is further extended to cover open research issues and future aspects of biosensing technology for diagnosis and management of clinical diseases and performance evaluation based on Linear Range (LR) and Limit of Detection (LOD) within the ranges of Micromolar µM (10-6), Nanomolar nM (10-9), Picomolar pM (10-12), femtomolar fM (10-15), and attomolar aM (10-18).
Collapse
Affiliation(s)
- Irkham Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung 40173, Indonesia
| | - Abdullahi Umar Ibrahim
- Department of Biomedical Engineering, Near East University, Mersin 10, Nicosia 99010, Turkey
| | - Pwadubashiyi Coston Pwavodi
- Department of Bioengineering/Biomedical Engineering, Faculty of Engineering, Cyprus International University, Haspolat, North Cyprus via Mersin 10, Nicosia 99010, Turkey
| | - Fadi Al-Turjman
- Research Center for AI and IoT, Faculty of Engineering, University of Kyrenia, Mersin 10, Kyrenia 99320, Turkey
- Artificial Intelligence Engineering Department, AI and Robotics Institute, Near East University, Mersin 10, Nicosia 99010, Turkey
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung 40173, Indonesia
| |
Collapse
|
9
|
Graphene-Based Biosensors for Molecular Chronic Inflammatory Disease Biomarker Detection. BIOSENSORS 2022; 12:bios12040244. [PMID: 35448304 PMCID: PMC9030187 DOI: 10.3390/bios12040244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Chronic inflammatory diseases, such as cancer, diabetes mellitus, stroke, ischemic heart diseases, neurodegenerative conditions, and COVID-19 have had a high number of deaths worldwide in recent years. The accurate detection of the biomarkers for chronic inflammatory diseases can significantly improve diagnosis, as well as therapy and clinical care in patients. Graphene derivative materials (GDMs), such as pristine graphene (G), graphene oxide (GO), and reduced graphene oxide (rGO), have shown tremendous benefits for biosensing and in the development of novel biosensor devices. GDMs exhibit excellent chemical, electrical and mechanical properties, good biocompatibility, and the facility of surface modification for biomolecular recognition, opening new opportunities for simple, accurate, and sensitive detection of biomarkers. This review shows the recent advances, properties, and potentialities of GDMs for developing robust biosensors. We show the main electrochemical and optical-sensing methods based on GDMs, as well as their design and manufacture in order to integrate them into robust, wearable, remote, and smart biosensors devices. We also describe the current application of such methods and technologies for the biosensing of chronic disease biomarkers. We also describe the current application of such methods and technologies for the biosensing of chronic disease biomarkers with improved sensitivity, reaching limits of detection from the nano to atto range concentration.
Collapse
|
10
|
Tabish TA, Hayat H, Abbas A, Narayan RJ. Graphene Quantum Dots-Based Electrochemical Biosensing Platform for Early Detection of Acute Myocardial Infarction. BIOSENSORS 2022; 12:77. [PMID: 35200338 PMCID: PMC8869523 DOI: 10.3390/bios12020077] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 05/15/2023]
Abstract
Heart failure resulting from acute myocardial infarction (AMI) is an important global health problem. Treatments of heart failure and AMI have improved significantly over the past two decades; however, the available diagnostic tests only give limited insights into these heterogeneous conditions at a reversible stage and are not precise enough to evaluate the status of the tissue at high risk. Innovative diagnostic tools for more accurate, more reliable, and early diagnosis of AMI are urgently needed. A promising solution is the timely identification of prognostic biomarkers, which is crucial for patients with AMI, as myocardial dysfunction and infarction lead to more severe and irreversible changes in the cardiovascular system over time. The currently available biomarkers for AMI detection include cardiac troponin I (cTnI), cardiac troponin T (cTnT), myoglobin, lactate dehydrogenase, C-reactive protein, and creatine kinase and myoglobin. Most recently, electrochemical biosensing technologies coupled with graphene quantum dots (GQDs) have emerged as a promising platform for the identification of troponin and myoglobin. The results suggest that GQDs-integrated electrochemical biosensors can provide useful prognostic information about AMI at an early, reversible, and potentially curable stage. GQDs offer several advantages over other nanomaterials that are used for the electrochemical detection of AMI such as strong interactions between cTnI and GQDs, low biomarker consumption, and reusability of the electrode; graphene-modified electrodes demonstrate excellent electrochemical responses due to the conductive nature of graphene and other features of GQDs (e.g., high specific surface area, π-π interactions with the analyte, facile electron-transfer mechanisms, size-dependent optical features, interplay between bandgap and photoluminescence, electrochemical luminescence emission capability, biocompatibility, and ease of functionalization). Other advantages include the presence of functional groups such as hydroxyl, carboxyl, carbonyl, and epoxide groups, which enhance the solubility and dispersibility of GQDs in a wide variety of solvents and biological media. In this perspective article, we consider the emerging knowledge regarding the early detection of AMI using GQDs-based electrochemical sensors and address the potential role of this sensing technology which might lead to more efficient care of patients with AMI.
Collapse
Affiliation(s)
- Tanveer A. Tabish
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK;
| | - Hasan Hayat
- College of Engineering, Swansea University, Wales SA1 8EN, UK;
| | - Aumber Abbas
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Roger J. Narayan
- Joint Department of Biomedical Engineering, North Carolina and North Carolina State University, Raleigh, NC 27695-7907, USA
| |
Collapse
|
11
|
Du X, Su X, Zhang W, Yi S, Zhang G, Jiang S, Li H, Li S, Xia F. Progress, Opportunities, and Challenges of Troponin Analysis in the Early Diagnosis of Cardiovascular Diseases. Anal Chem 2021; 94:442-463. [PMID: 34843218 DOI: 10.1021/acs.analchem.1c04476] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuewei Du
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xujie Su
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wanxue Zhang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Suyan Yi
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Ge Zhang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shan Jiang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shaoguang Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
12
|
Wei S, Chen X, Zhang X, Chen L. Recent Development of Graphene Based Electrochemical Sensor for Detecting Hematological Malignancies-Associated Biomarkers: A Mini-Review. Front Chem 2021; 9:735668. [PMID: 34513800 PMCID: PMC8423913 DOI: 10.3389/fchem.2021.735668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Hematologic malignancies are a group of malignant diseases of the hematologic system that seriously endanger human health, mainly involving bone marrow, blood and lymphatic tissues. However, among the available treatments for malignant hematologic diseases, low detection rates and high recurrence rates are major problems in the treatment process. The quantitative detection of hematologic malignancies-related biomarkers is the key to refine the pathological typing of the disease to implement targeted therapy and thus improve the prognosis. In recent years, bioelectrochemical methods for tumor cell and blood detection have attracted the attention of an increasing number of scientists. The development of biosensor technology, nanotechnology, probe technology, and lab-on-a-chip technology has greatly facilitated the development of bioelectrochemical studies of cells, especially for blood and cell-based assays and drug resistance differentiation. To improve the sensitivity of detection, graphene is often used in the design of electrochemical sensors. This mini-review provides an overview of the types of hematological malignancies-associated biomarkers and their detection based on graphene assisted electrochemical sensors.
Collapse
Affiliation(s)
- Shougang Wei
- Department of Pediatrics, Yidu Central Hospital, Weifang, China
| | - Xiuju Chen
- Department of Public Health, Yidu Central Hospital, Weifang, China
| | - Xinyu Zhang
- Shandong Freda Pharmaceutical Group Co., Ltd, Linshu, China
| | - Lei Chen
- Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| |
Collapse
|
13
|
Quantification of Silicon in Rice Based on an Electrochemical Sensor via an Amplified Electrocatalytic Strategy. MICROMACHINES 2021; 12:mi12091048. [PMID: 34577693 PMCID: PMC8469415 DOI: 10.3390/mi12091048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 11/17/2022]
Abstract
Silicon plays a very important role in the growth of rice. The study of the relationship between rice and silicon has become a hot area in the last decade. Currently, the silica-molybdenum blue spectrophotometric method is mostly used for the determination of silicon content in rice. However, the results of this method vary greatly due to the different choices of reducing agents, measurement wavelengths and color development times. In this work, we present for the first time an electrochemical sensor for the detection of silicon content in rice. This electrochemical analysis technique not only provides an alternative detection strategy, but also, due to the rapid detection by electrochemical methods and the miniaturization of the instrument, it is suitable for field testing. Methodological construction using electrochemical techniques is a key objective. The silicon in rice was extracted by HF and becomes silica after pH adjustment. The silica was then immobilized onto the glassy carbon surface. These silica nanoparticles provided additional specific surface area for adsorption of sodium borohydride and Ag ions, which in turn formed Ag nanoparticles to fabricate an electrochemical sensor. The proposed electrochemical sensor can be used for indirect measurements of 10-400 mg/L of SiO2, and thus, the method can measure 4.67-186.8 mg/g of silicon. The electrochemical sensor can be used to be comparable with the conventional silicon-molybdenum blue spectrophotometric method. The RSD of the current value was only 3.4% for five sensors. In practical use, 200 samples of glume, leaf, leaf sheath and culm were tested. The results showed that glume had the highest silicon content and culm had the lowest silicon content. The linear correlation coefficients for glume, leaf, leaf sheath and culm were 0.9841, 0.9907, 0.9894 and 0.993, respectively.
Collapse
|
14
|
Wang Y, Chen L, Xuan T, Wang J, Wang X. Label-free Electrochemical Impedance Spectroscopy Aptasensor for Ultrasensitive Detection of Lung Cancer Biomarker Carcinoembryonic Antigen. Front Chem 2021; 9:721008. [PMID: 34350159 PMCID: PMC8326396 DOI: 10.3389/fchem.2021.721008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/07/2021] [Indexed: 01/13/2023] Open
Abstract
In this work, an integrated electrode system consisting of a graphene working electrode, a carbon counter electrode and an Ag/AgCl reference electrode was fabricated on an FR-4 glass fiber plate by a polyethylene self-adhesive mask stencil method combined with a manual screen printing technique. The integrated graphene electrode was used as the base electrode, and AuNPs were deposited on the working electrode surface by cyclic voltammetry. Then, the carcinoembryonic antigen aptamer was immobilized using the sulfhydryl self-assembly technique. The sensor uses [Fe(CN)6]3-/4- as a redox probe for label free detection of carcinoembryonic antigen based on the impedance change caused by the difference in electron transfer rate before and after the binding of carcinoembryonic antigen aptamer and the target carcinoembryonic antigen. The results showed a good linear relationship when the CEA concentration is in the range of 0.2-15.0 ng/ml. The detection limit was calculated to be 0.085 ng/ml (S/N = 3).
Collapse
Affiliation(s)
- Yawei Wang
- Department of Medical Oncology, Qilu Hospital, Shandong University, Jinan, China
| | - Lei Chen
- Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Tiantian Xuan
- Department of Medical Oncology, Qilu Hospital, Shandong University, Jinan, China
| | - Jian Wang
- Department of Medical Oncology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiuwen Wang
- Department of Medical Oncology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|