1
|
Jones AM, Rademeyer KM, Rosen EP, Contaifer S, Wijesinghe D, Hauser KF, McRae M. Examining the effects of the HIV-1 protein Tat and morphine on antiretroviral accumulation and distribution within the brain. Clin Transl Sci 2024; 17:e70035. [PMID: 39382215 PMCID: PMC11462598 DOI: 10.1111/cts.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
Despite combination antiretroviral therapy effectively suppressing HIV within the periphery, neuro-acquired HIV (neuroHIV) remains a significant problem and approximately half of people living with HIV will experience HIV-associated neurocognitive disorders (HAND). Concurrent opioid use exacerbates neuroHIV by promoting neuroinflammation, neuronal injury and synaptodendritic culling, viral replication, and potentially altering antiretroviral concentrations within the brain. The present study examined the effects of HIV and morphine co-exposure on the accumulation and spatial distribution of antiretroviral drugs across multiple regions within the brain in an HIV-1 Tat transgenic mouse model by using infrared-matrix-assisted laser desorption electrospray ionization mass spectrometry imaging (IR-MALDESI MSI). Morphine exposure uniquely decreased antiretroviral concentrations in anterior cerebral (primary motor and somatosensory) cortices, corpus collosum (anterior forceps), caudoputamen, nucleus accumbens, and posterior regions including the hippocampus, corpus callosum (main body), cerebral cortex (somatosensory and auditory cortices), thalamus, and hypothalamus. Interestingly, male mice experienced greater morphine-associated decreases in antiretroviral concentrations than females. The study also assessed whether changes in antiretroviral concentrations were linked with inflammation in astroglia, assessed through the measurement of astroglial activation using glial fibrillary acidic protein (GFAP) as a marker. Alterations in antiretroviral concentrations co-registering with areas of astroglial activation exhibited sex-specific treatment differences. This study highlights the intricate interplay between HIV, opioids, and antiretroviral drugs within the CNS, elucidating distinct regional and sex variations in responsiveness. Our findings emphasize the identification of vulnerabilities within the neural landscape and underscore the necessity of carefully monitoring opioid use to maintain the efficacy of antiretroviral therapies.
Collapse
Affiliation(s)
- Austin M. Jones
- Department of Pharmacotherapy and Outcomes Science, School of PharmacyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Kara M. Rademeyer
- Department of Pharmacotherapy and Outcomes Science, School of PharmacyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Elias P. Rosen
- Division of Pharmacotherapy and Experimental TherapeuticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Silas Contaifer
- Department of Pharmacotherapy and Outcomes Science, School of PharmacyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Dayanjan Wijesinghe
- Department of Pharmacotherapy and Outcomes Science, School of PharmacyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, School of MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Anatomy and Neurobiology, School of MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
- Institute for Drug and Alcohol StudiesVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of PharmacyVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
2
|
Ostermann PN, Evering TH. The impact of aging on HIV-1-related neurocognitive impairment. Ageing Res Rev 2024; 102:102513. [PMID: 39307316 DOI: 10.1016/j.arr.2024.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Depending on the population studied, HIV-1-related neurocognitive impairment is estimated to impact up to half the population of people living with HIV (PLWH) despite the availability of combination antiretroviral therapy (cART). Various factors contribute to this neurocognitive impairment, which complicates our understanding of the molecular mechanisms involved. Biological aging has been implicated as one factor possibly impacting the development and progression of HIV-1-related neurocognitive impairment. This is increasingly important as the life expectancy of PLWH with virologic suppression on cART is currently projected to be similar to that of individuals not living with HIV. Based on our increasing understanding of the biological aging process on a cellular level, we aim to dissect possible interactions of aging- and HIV-1 infection-induced effects and their role in neurocognitive decline. Thus, we begin by providing a brief overview of the clinical aspects of HIV-1-related neurocognitive impairment and review the accumulating evidence implicating aging in its development (Part I). We then discuss potential interactions between aging-associated pathways and HIV-1-induced effects at the molecular level (Part II).
Collapse
Affiliation(s)
- Philipp Niklas Ostermann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Teresa Hope Evering
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
3
|
Liu Y, Xie X, Li J, Xiao Q, He S, Fu H, Zhang X, Liu Y. Immune Characteristics and Immunotherapy of HIV-Associated Lymphoma. Curr Issues Mol Biol 2024; 46:9984-9997. [PMID: 39329948 PMCID: PMC11429793 DOI: 10.3390/cimb46090596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
In the era of antiretroviral therapy (ART), mortality among people living with the human immunodeficiency virus (HIV) has significantly decreased, yet the population of people living with HIV remains substantial. Among people living with HIV (PLWH), HIV-associated lymphoma (HAL) has surpassed Kaposi's sarcoma to become the most common tumor in this population in developed countries. However, there remains a dearth of comprehensive and systematic understanding regarding HIV-associated lymphomas. This review aims to shed light on the changes in the immune system among PLWH and the characteristics of the immune microenvironment in HIV-associated lymphoma, with a specific focus on the immune system's role in these individuals. Additionally, it seeks to explore recent advancements in immunotherapy for the treatment of HIV-associated lymphoma, intending to enhance strategies for immunotherapy in this specific population.
Collapse
Affiliation(s)
- Yi Liu
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Xiaoqing Xie
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Jun Li
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Qing Xiao
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Sanxiu He
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Huihui Fu
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Xiaomei Zhang
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yao Liu
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
4
|
Williams ME, Asia LK, Lindeque Z, Jansen van Vuren E. The association between HIV-1 Tat and Vif amino acid sequence variation, inflammation and Trp-Kyn metabolism: an exploratory investigation. BMC Infect Dis 2024; 24:943. [PMID: 39251983 PMCID: PMC11385500 DOI: 10.1186/s12879-024-09874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND HIV-1 has well-established mechanisms to disrupt essential pathways in people with HIV, such as inflammation and metabolism. Moreover, diversity of the amino acid sequences in fundamental HIV-1 proteins including Tat and Vif, have been linked to dysregulating these pathways, and subsequently influencing clinical outcomes in people with HIV. However, the relationship between Tat and Vif amino acid sequence variation and specific immune markers and metabolites of the tryptophan-kynurenine (Trp-Kyn) pathway remains unclear. Therefore, this study aimed to investigate the relationship between Tat/Vif amino acid sequence diversity and Trp-Kyn metabolites (quinolinic acid (QUIN), Trp, kynurenic acid (KA), Kyn and Trp/Kyn ratio), as well as specific immune markers (sCD163, suPAR, IL-6, NGAL and hsCRP) in n = 67 South African cART-naïve people with HIV. METHODS Sanger sequencing was used to determine blood-derived Tat/Vif amino acid sequence diversity. To measure Trp-Kyn metabolites, a LC-MS/MS metabolomics platform was employed using a targeted approach. To measure immune markers, Enzyme-linked immunosorbent assays and the Particle-enhanced turbidimetric assay was used. RESULTS After adjusting for covariates, sCD163 (p = 0.042) and KA (p = 0.031) were higher in participants with Tat signatures N24 and R57, respectively, and amino acid variation at position 24 (adj R2 = 0.048, β = -0.416, p = 0.042) and 57 (adj R2 = 0.166, β = 0.535, p = 0.031) of Tat were associated with sCD163 and KA, respectively. CONCLUSIONS These preliminary findings suggest that amino acid variation in Tat may have an influence on underlying pathogenic HIV-1 mechanisms and therefore, this line of work merits further investigation.
Collapse
Affiliation(s)
- Monray E Williams
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | - Levanco K Asia
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Zander Lindeque
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Esmé Jansen van Vuren
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
- South African Medical Research Council Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| |
Collapse
|
5
|
McGraw A, Hillmer G, Medehincu SM, Hikichi Y, Gagliardi S, Narayan K, Tibebe H, Marquez D, Mei Bose L, Keating A, Izumi C, Peese K, Joshi S, Krystal M, DeCicco-Skinner KL, Freed EO, Sardo L, Izumi T. Exploring HIV-1 Maturation: A New Frontier in Antiviral Development. Viruses 2024; 16:1423. [PMID: 39339899 PMCID: PMC11437483 DOI: 10.3390/v16091423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
HIV-1 virion maturation is an essential step in the viral replication cycle to produce infectious virus particles. Gag and Gag-Pol polyproteins are assembled at the plasma membrane of the virus-producer cells and bud from it to the extracellular compartment. The newly released progeny virions are initially immature and noninfectious. However, once the Gag polyprotein is cleaved by the viral protease in progeny virions, the mature capsid proteins assemble to form the fullerene core. This core, harboring two copies of viral genomic RNA, transforms the virion morphology into infectious virus particles. This morphological transformation is referred to as maturation. Virion maturation influences the distribution of the Env glycoprotein on the virion surface and induces conformational changes necessary for the subsequent interaction with the CD4 receptor. Several host factors, including proteins like cyclophilin A, metabolites such as IP6, and lipid rafts containing sphingomyelins, have been demonstrated to have an influence on virion maturation. This review article delves into the processes of virus maturation and Env glycoprotein recruitment, with an emphasis on the role of host cell factors and environmental conditions. Additionally, we discuss microscopic technologies for assessing virion maturation and the development of current antivirals specifically targeting this critical step in viral replication, offering long-acting therapeutic options.
Collapse
Affiliation(s)
- Aidan McGraw
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Grace Hillmer
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Stefania M. Medehincu
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Sophia Gagliardi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kedhar Narayan
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Hasset Tibebe
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Dacia Marquez
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Lilia Mei Bose
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Adleigh Keating
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Coco Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kevin Peese
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Samit Joshi
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Mark Krystal
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Kathleen L. DeCicco-Skinner
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Luca Sardo
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Taisuke Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
- District of Columbia Center for AIDS Research, Washington, DC 20052, USA
| |
Collapse
|
6
|
Jiménez-Torres AC, Porter KD, Hastie JA, Adeniran C, Moukha-Chafiq O, Nguyen TH, Ananthan S, Augelli-Szafran CE, Zhan CG, Zhu J. Effects of SRI-32743, a Novel Quinazoline Structure-Based Compound, on HIV-1 Tat and Cocaine Interaction with Norepinephrine Transporter. Int J Mol Sci 2024; 25:7881. [PMID: 39063123 PMCID: PMC11277056 DOI: 10.3390/ijms25147881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Prolonged exposure to HIV-1 transactivator of transcription (Tat) protein dysregulates monoamine transmission, a physiological change implicated as a key factor in promoting neurocognitive disorders among people living with HIV. We have demonstrated that in vivo expression of Tat in Tat transgenic mice decreases dopamine uptake through both dopamine transporter (DAT) and norepinephrine transporter (NET) in the prefrontal cortex. Further, our novel allosteric inhibitor of monoamine transporters, SRI-32743, has been shown to attenuate Tat-inhibited dopamine transport through DAT and alleviates Tat-potentiated cognitive impairments. The current study reports the pharmacological profiles of SRI-32743 in basal and Tat-induced inhibition of human NET (hNET) function. SRI-32743 exhibited less affinity for hNET binding than desipramine, a classical NET inhibitor, but displayed similar potency for inhibiting hDAT and hNET activity. SRI-32743 concentration-dependently increased hNET affinity for [3H]DA uptake but preserved the Vmax of dopamine transport. SRI-32743 slowed the cocaine-mediated dissociation of [3H]Nisoxetine binding and reduced both [3H]DA and [3H]MPP+ efflux but did not affect d-amphetamine-mediated [3H]DA release through hNET. Finally, we determined that SRI-32743 attenuated a recombinant Tat1-86-induced decrease in [3H]DA uptake via hNET. Our findings demonstrated that SRI-32743 allosterically disrupts the recombinant Tat1-86-hNET interaction, suggesting a potential treatment for HIV-infected individuals with concurrent cocaine abuse.
Collapse
Affiliation(s)
- Ana Catya Jiménez-Torres
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA; (A.C.J.-T.); (K.D.P.); (J.A.H.)
| | - Katherine D. Porter
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA; (A.C.J.-T.); (K.D.P.); (J.A.H.)
| | - Jamison A. Hastie
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA; (A.C.J.-T.); (K.D.P.); (J.A.H.)
| | - Charles Adeniran
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; (C.A.); (C.-G.Z.)
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Omar Moukha-Chafiq
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, AL 35205, USA; (O.M.-C.); (T.H.N.); (S.A.); (C.E.A.-S.)
| | - Theresa H. Nguyen
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, AL 35205, USA; (O.M.-C.); (T.H.N.); (S.A.); (C.E.A.-S.)
| | - Subramaniam Ananthan
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, AL 35205, USA; (O.M.-C.); (T.H.N.); (S.A.); (C.E.A.-S.)
| | - Corinne E. Augelli-Szafran
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, AL 35205, USA; (O.M.-C.); (T.H.N.); (S.A.); (C.E.A.-S.)
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; (C.A.); (C.-G.Z.)
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA; (A.C.J.-T.); (K.D.P.); (J.A.H.)
| |
Collapse
|
7
|
Deshetty UM, Chatterjee N, Buch S, Periyasamy P. HIV-1 Tat-Mediated Human Müller Glial Cell Senescence Involves Endoplasmic Reticulum Stress and Dysregulated Autophagy. Viruses 2024; 16:903. [PMID: 38932195 PMCID: PMC11209317 DOI: 10.3390/v16060903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Antiretroviral treatments have notably extended the lives of individuals with HIV and reduced the occurrence of comorbidities, including ocular manifestations. The involvement of endoplasmic reticulum (ER) stress in HIV-1 pathogenesis raises questions about its correlation with cellular senescence or its role in initiating senescent traits. This study investigated how ER stress and dysregulated autophagy impact cellular senescence triggered by HIV-1 Tat in the MIO-M1 cell line (human Müller glial cells). Cells exposed to HIV-1 Tat exhibited increased vimentin expression combined with markers of ER stress (BiP, p-eIF2α), autophagy (LC3, Beclin-1, p62), and the senescence marker p21 compared to control cells. Western blotting and staining techniques like SA-β-gal were employed to examine these markers. Additionally, treatments with ER stress inhibitor 4-PBA before HIV-1 Tat exposure led to a decreased expression of ER stress, senescence, and autophagy markers. Conversely, pre-treatment with the autophagy inhibitor 3-MA resulted in reduced autophagy and senescence markers but did not alter ER stress markers compared to control cells. The findings suggest a link between ER stress, dysregulated autophagy, and the initiation of a senescence phenotype in MIO-M1 cells induced by HIV-1 Tat exposure.
Collapse
Affiliation(s)
- Uma Maheswari Deshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA;
| | - Nivedita Chatterjee
- Vision Research Foundation, Sankara Netralaya, 18, College Road, Chennai 600006, India;
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA;
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA;
| |
Collapse
|
8
|
Zhang H, Cheng L, Ju F. In vitro and silico studies of geraniin interfering with HSV-2 replication by targeting glycoprotein D. Nat Prod Res 2024; 38:2053-2059. [PMID: 37585693 DOI: 10.1080/14786419.2023.2241153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
Residues ASN94 and GLN41 presented the highest frequency in molecular docking tests. The geraniin-glycoprotein D(gD) complexes was stable with RMSD(root mean square deviation)value less than 0.3 nm. The Molecular dynamic (MD) simulations revealed stable hydrogen bonds between gD and geraniin. Root mean square fluctuation (RMSF) values were less than 0.15 nm around the interface of geraniin-gD complex. In virucidal assays showed a much higher anti-HSV-2 inhibition activity of geraniin as compared to acyclovir(ACV).Human immunodeficiency virus transactivator (HIV-TAT) treatment significantly enhanced HSV-2 replication and lethal effect on HaCaT cells. The inhibitory rate of geraniin against HSV-2 coinfected with HIV-TAT was significantly decreased. The immunofluorescence results also revealed that HSV-2 gD expression presented a green fluorescence on HaCaT cells membranes and showed clear downregulation in geraniin-treated cells, but was expressed clearly on cell membranes under geraniin, HSV-2 and HIV-TAT cotreatment. The anti-apoptotic effect from geraniin persisted after 72 h, while the anti-apoptotic effect from geraniin diminished when HIV-TAT and geraniin were combined.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Infection Medicine, Wuxi No.5 People's Hospital, Wuxi, China
| | - Liang Cheng
- Department of Tuberculosis Medicine, Wuxi No.5 People's Hospital, Wuxi, China
| | - Feng Ju
- Department of Gastroenterology, Wuxi No.5 People's Hospital, Wuxi, China
| |
Collapse
|
9
|
Shmakova A, Tsimailo I, Kozhevnikova Y, Gérard L, Boutboul D, Oksenhendler E, Tuaillon E, Rivault A, Germini D, Vassetzky Y, Beaumelle B. HIV-1 Tat is present in the serum of people living with HIV-1 despite viral suppression. Int J Infect Dis 2024; 142:106994. [PMID: 38447753 DOI: 10.1016/j.ijid.2024.106994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
OBJECTIVES Despite successful human immunodeficiency virus (HIV) control with combination antiretroviral therapy (cART), individuals with HIV still face health risks, including cancers, cardiovascular and neurocognitive diseases. An HIV protein, Tat, is potentially involved in these HIV-related diseases. Previous studies demonstrated circulating Tat in the blood of untreated people with HIV. Here, we measured Tat levels in the serum of cART-treated people with HIV to examine the effect of cART on Tat production. METHODS Serum samples from 63 HIV-positive and 20 HIV-seronegative individuals were analyzed using an ELISA assay that detected Tat concentrations above 2.5 ng/mL. RESULTS Among HIV-positive individuals, the Tat level ranged from 0 to 14 ng/mL. 25.4% (16 out of 63) exceeded the 2.5 ng/mL cut-off, with a median HIV Tat level of 4.518 [3.329-8.120] ng/mL. No correlation was revealed between Tat levels and CD4+ T cell counts, serum HIV RNA, p24 antigen, or anti-Tat levels. CONCLUSIONS Despite cART, circulating HIV Tat persists and may contribute to HIV-related diseases. This emphasizes the need for further research on the mechanisms of Tat action in non-infected cells where it can penetrate upon circulation in the blood.
Collapse
Affiliation(s)
- Anna Shmakova
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, 94800 France; Koltzov Institute of Developmental Biology, Moscow, 119334 Russia
| | - Ivan Tsimailo
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, 94800 France
| | - Yana Kozhevnikova
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, 94800 France
| | - Laurence Gérard
- Service d'Immunopathologie Clinique, Hôpital St Louis, APHP, Paris, 75012 France
| | - David Boutboul
- Service d'Immunopathologie Clinique, Hôpital St Louis, APHP, Paris, 75012 France
| | - Eric Oksenhendler
- Service d'Immunopathologie Clinique, Hôpital St Louis, APHP, Paris, 75012 France
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic and Emerging Infections, Montpellier University, INSERM U1058, Montpellier University Hospital, Montpellier, France
| | - Aurélie Rivault
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS UMR 9004, Montpellier, France
| | - Diego Germini
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, 94800 France
| | - Yegor Vassetzky
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, 94800 France; Koltzov Institute of Developmental Biology, Moscow, 119334 Russia.
| | - Bruno Beaumelle
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS UMR 9004, Montpellier, France
| |
Collapse
|
10
|
Kanmogne GD. HIV Infection, Antiretroviral Drugs, and the Vascular Endothelium. Cells 2024; 13:672. [PMID: 38667287 PMCID: PMC11048826 DOI: 10.3390/cells13080672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Endothelial cell activation, injury, and dysfunction underlies the pathophysiology of vascular diseases and infections associated with vascular dysfunction, including human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome. Despite viral suppression with combination antiretroviral therapy (ART), people living with HIV (PLWH) are prone to many comorbidities, including neurological and neuropsychiatric complications, cardiovascular and metabolic diseases, premature aging, and malignancies. HIV and viral proteins can directly contribute to the development of these comorbidities. However, with the continued high prevalence of these comorbidities despite viral suppression, it is likely that ART or some antiretroviral (ARVs) drugs contribute to the development and persistence of comorbid diseases in PLWH. These comorbid diseases often involve vascular activation, injury, and dysfunction. The purpose of this manuscript is to review the current literature on ARVs and the vascular endothelium in PLWH, animal models, and in vitro studies. I also summarize evidence of an association or lack thereof between ARV drugs or drug classes and the protection or injury/dysfunction of the vascular endothelium and vascular diseases.
Collapse
Affiliation(s)
- Georgette D Kanmogne
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| |
Collapse
|
11
|
Yadav-Samudrala BJ, Gorman BL, Barmada KM, Ravula HP, Huguely CJ, Wallace ED, Peace MR, Poklis JL, Jiang W, Fitting S. Effects of acute cannabidiol on behavior and the endocannabinoid system in HIV-1 Tat transgenic female and male mice. Front Neurosci 2024; 18:1358555. [PMID: 38505774 PMCID: PMC10949733 DOI: 10.3389/fnins.2024.1358555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
Background Some evidence suggests that cannabidiol (CBD) has potential to help alleviate HIV symptoms due to its antioxidant and anti-inflammatory properties. Here we examined acute CBD effects on various behaviors and the endocannabinoid system in HIV Tat transgenic mice. Methods Tat transgenic mice (female/male) were injected with CBD (3, 10, 30 mg/kg) and assessed for antinociception, activity, coordination, anxiety-like behavior, and recognition memory. Brains were taken to quantify endocannabinoids, cannabinoid receptors, and cannabinoid catabolic enzymes. Additionally, CBD and metabolite 7-hydroxy-CBD were quantified in the plasma and cortex. Results Tat decreased supraspinal-related nociception and locomotion. CBD and sex had little to no effects on any of the behavioral measures. For the endocannabinoid system male sex was associated with elevated concentration of the proinflammatory metabolite arachidonic acid in various CNS regions, including the cerebellum that also showed higher FAAH expression levels for Tat(+) males. GPR55 expression levels in the striatum and cerebellum were higher for females compared to males. CBD metabolism was altered by sex and Tat expression. Conclusion Findings indicate that acute CBD effects are not altered by HIV Tat, and acute CBD has no to minimal effects on behavior and the endocannabinoid system.
Collapse
Affiliation(s)
- Barkha J. Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin L. Gorman
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Karenna M. Barmada
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Havilah P. Ravula
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Caitlin J. Huguely
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - E. Diane Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michelle R. Peace
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
12
|
Rani A, Ergün S, Karnati S, Jha HC. Understanding the link between neurotropic viruses, BBB permeability, and MS pathogenesis. J Neurovirol 2024; 30:22-38. [PMID: 38189894 DOI: 10.1007/s13365-023-01190-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/04/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024]
Abstract
Neurotropic viruses can infiltrate the CNS by crossing the blood-brain barrier (BBB) through various mechanisms including paracellular, transcellular, and "Trojan horse" mechanisms during leukocyte diapedesis. These viruses belong to several families, including retroviruses; human immunodeficiency virus type 1 (HIV-1), flaviviruses; Japanese encephalitis (JEV); and herpesviruses; herpes simplex virus type 1 (HSV-1), Epstein-Barr virus (EBV), and mouse adenovirus 1 (MAV-1). For entering the brain, viral proteins act upon the tight junctions (TJs) between the brain microvascular endothelial cells (BMECs). For instance, HIV-1 proteins, such as glycoprotein 120, Nef, Vpr, and Tat, disrupt the BBB and generate a neurotoxic effect. Recombinant-Tat triggers amendments in the BBB by decreasing expression of the TJ proteins such as claudin-1, claudin-5, and zona occludens-1 (ZO-1). Thus, the breaching of BBB has been reported in myriad of neurological diseases including multiple sclerosis (MS). Neurotropic viruses also exhibit molecular mimicry with several myelin sheath proteins, i.e., antibodies against EBV nuclear antigen 1 (EBNA1) aa411-426 cross-react with MBP and EBNA1 aa385-420 was found to be associated with MS risk haplotype HLA-DRB1*150. Notably, myelin protein epitopes (PLP139-151, MOG35-55, and MBP87-99) are being used to generate model systems for MS such as experimental autoimmune encephalomyelitis (EAE) to understand the disease mechanism and therapeutics. Viruses like Theiler's murine encephalomyelitis virus (TMEV) are also commonly used to generate EAE. Altogether, this review provide insights into the viruses' association with BBB leakiness and MS along with possible mechanistic details which could potentially use for therapeutics.
Collapse
Affiliation(s)
- Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India.
| |
Collapse
|
13
|
Shmakova A, Hugot C, Kozhevnikova Y, Schwager Karpukhina A, Tsimailo I, Gérard L, Boutboul D, Oksenhendler E, Szewczyk-Roszczenko O, Roszczenko P, Buzun K, Sheval EV, Germini D, Vassetzky Y. Chronic HIV-1 Tat action induces HLA-DR downregulation in B cells: A mechanism for lymphoma immune escape in people living with HIV. J Med Virol 2024; 96:e29423. [PMID: 38285479 DOI: 10.1002/jmv.29423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Despite the success of combination antiretroviral therapy, people living with human immunodeficiency virus (HIV) still have an increased risk of Epstein-Barr virus (EBV)-associated B cell malignancies. In the HIV setting, B cell physiology is altered by coexistence with HIV-infected cells and the chronic action of secreted viral proteins, for example, HIV-1 Tat that, once released, efficiently penetrates noninfected cells. We modeled the chronic action of HIV-1 Tat on B cells by ectopically expressing Tat or TatC22G mutant in two lymphoblastoid B cell lines. The RNA-sequencing analysis revealed that Tat deregulated the expression of hundreds of genes in B cells, including the downregulation of a subset of major histocompatibility complex (MHC) class II-related genes. Tat-induced downregulation of HLA-DRB1 and HLA-DRB5 genes led to a decrease in HLA-DR surface expression; this effect was reproduced by coculturing B cells with Tat-expressing T cells. Chronic Tat presence decreased the NF-ᴋB pathway activity in B cells; this downregulated NF-ᴋB-dependent transcriptional targets, including MHC class II genes. Notably, HLA-DRB1 and surface HLA-DR expression was also decreased in B cells from people with HIV. Tat-induced HLA-DR downregulation in B cells impaired EBV-specific CD4+ T cell response, which contributed to the escape from immune surveillance and could eventually promote B cell lymphomagenesis in people with HIV.
Collapse
Affiliation(s)
- Anna Shmakova
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
- Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Coline Hugot
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
| | - Yana Kozhevnikova
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
| | - Anna Schwager Karpukhina
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
- Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Ivan Tsimailo
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
| | - Laurence Gérard
- Service d'Immunopathologie Clinique, Hôpital St Louis, APHP, Paris, France
| | - David Boutboul
- Service d'Immunopathologie Clinique, Hôpital St Louis, APHP, Paris, France
| | - Eric Oksenhendler
- Service d'Immunopathologie Clinique, Hôpital St Louis, APHP, Paris, France
| | - Olga Szewczyk-Roszczenko
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | - Kamila Buzun
- Department of Pharmaceutical Sciences, Poznan University of Medical Sciences, Poznan, Poland
| | - Eugene V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Cell Biology and Histology, Lomonosov Moscow State University, Moscow, Russia
| | - Diego Germini
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
| | - Yegor Vassetzky
- CNRS, UMR 9018, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
- Koltzov Institute of Developmental Biology, Moscow, Russia
| |
Collapse
|
14
|
Duggan NN, Dragic T, Chanda SK, Pache L. Breaking the Silence: Regulation of HIV Transcription and Latency on the Road to a Cure. Viruses 2023; 15:2435. [PMID: 38140676 PMCID: PMC10747579 DOI: 10.3390/v15122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Antiretroviral therapy (ART) has brought the HIV/AIDS epidemic under control, but a curative strategy for viral eradication is still needed. The cessation of ART results in rapid viral rebound from latently infected CD4+ T cells, showing that control of viral replication alone does not fully restore immune function, nor does it eradicate viral reservoirs. With a better understanding of factors and mechanisms that promote viral latency, current approaches are primarily focused on the permanent silencing of latently infected cells ("block and lock") or reactivating HIV-1 gene expression in latently infected cells, in combination with immune restoration strategies to eliminate HIV infected cells from the host ("shock and kill"). In this review, we provide a summary of the current, most promising approaches for HIV-1 cure strategies, including an analysis of both latency-promoting agents (LPA) and latency-reversing agents (LRA) that have shown promise in vitro, ex vivo, and in human clinical trials to reduce the HIV-1 reservoir.
Collapse
Affiliation(s)
- Natasha N. Duggan
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Tatjana Dragic
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Sumit K. Chanda
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Lars Pache
- NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
15
|
Kuznetsova A, Kim K, Tumanov A, Munchak I, Antonova A, Lebedev A, Ozhmegova E, Orlova-Morozova E, Drobyshevskaya E, Pronin A, Prilipov A, Kazennova E. Features of Tat Protein in HIV-1 Sub-Subtype A6 Variants Circulating in the Moscow Region, Russia. Viruses 2023; 15:2212. [PMID: 38005889 PMCID: PMC10675479 DOI: 10.3390/v15112212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Tat, the trans-activator of transcription, is a multifunctional HIV-1 protein that can induce chronic inflammation and the development of somatic diseases in HIV-infected patients. Natural polymorphisms in Tat can impact the propagation of the inflammatory signal. Currently, Tat is considered an object for creating new therapeutic agents. Therefore, the identification of Tat protein features in various HIV-1 variants is a relevant task. The purpose of the study was to characterize the genetic variations of Tat-A6 in virus variants circulating in the Moscow Region. The authors analyzed 252 clinical samples from people living with HIV (PLWH) with different stages of HIV infection. Nested PCR for two fragments (tat1, tat2) with subsequent sequencing, subtyping, and statistical analysis was conducted. The authors received 252 sequences for tat1 and 189 for tat2. HIV-1 sub-subtype A6 was identified in 250 samples. The received results indicated the features of Tat1-A6 in variants of viruses circulating in the Moscow Region. In PLWH with different stages of HIV infection, C31S in Tat1-A6 was detected with different occurrence rates. It was demonstrated that Tat2-A6, instead of a functional significant 78RGD80 motif, had a 78QRD80 motif. Herewith, G79R in Tat2-A6 was defined as characteristic amino acid substitution for sub-subtype A6. Tat2-A6 in variants of viruses circulating in the Moscow Region demonstrated high conservatism.
Collapse
Affiliation(s)
- Anna Kuznetsova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (A.T.); (I.M.); (A.A.); (A.L.); (E.O.); (A.P.); (E.K.)
| | - Kristina Kim
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (A.T.); (I.M.); (A.A.); (A.L.); (E.O.); (A.P.); (E.K.)
| | - Alexander Tumanov
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (A.T.); (I.M.); (A.A.); (A.L.); (E.O.); (A.P.); (E.K.)
| | - Iana Munchak
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (A.T.); (I.M.); (A.A.); (A.L.); (E.O.); (A.P.); (E.K.)
| | - Anastasiia Antonova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (A.T.); (I.M.); (A.A.); (A.L.); (E.O.); (A.P.); (E.K.)
| | - Aleksey Lebedev
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (A.T.); (I.M.); (A.A.); (A.L.); (E.O.); (A.P.); (E.K.)
- Mechnikov Scientific Research Institute of Vaccines and Serums, 105064 Moscow, Russia
| | - Ekaterina Ozhmegova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (A.T.); (I.M.); (A.A.); (A.L.); (E.O.); (A.P.); (E.K.)
| | - Elena Orlova-Morozova
- Moscow Regional Center for the Prevention and Control of AIDS and Infectious Diseases, 129110 Moscow, Russia; (E.O.-M.); (E.D.); (A.P.)
| | - Elena Drobyshevskaya
- Moscow Regional Center for the Prevention and Control of AIDS and Infectious Diseases, 129110 Moscow, Russia; (E.O.-M.); (E.D.); (A.P.)
| | - Alexander Pronin
- Moscow Regional Center for the Prevention and Control of AIDS and Infectious Diseases, 129110 Moscow, Russia; (E.O.-M.); (E.D.); (A.P.)
| | - Aleksey Prilipov
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (A.T.); (I.M.); (A.A.); (A.L.); (E.O.); (A.P.); (E.K.)
| | - Elena Kazennova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (A.T.); (I.M.); (A.A.); (A.L.); (E.O.); (A.P.); (E.K.)
| |
Collapse
|
16
|
Eren E, Watts NR, Randazzo D, Palmer I, Sackett DL, Wingfield PT. Structural basis of microtubule depolymerization by the kinesin-like activity of HIV-1 Rev. Structure 2023; 31:1233-1246.e5. [PMID: 37572662 PMCID: PMC10592302 DOI: 10.1016/j.str.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/07/2023] [Accepted: 07/18/2023] [Indexed: 08/14/2023]
Abstract
HIV-1 Rev is an essential regulatory protein that transports unspliced and partially spliced viral mRNAs from the nucleus to the cytoplasm for the expression of viral structural proteins. During its nucleocytoplasmic shuttling, Rev interacts with several host proteins to use the cellular machinery for the advantage of the virus. Here, we report the 3.5 Å cryo-EM structure of a 4.8 MDa Rev-tubulin ring complex. Our structure shows that Rev's arginine-rich motif (ARM) binds to both the acidic surfaces and the C-terminal tails of α/β-tubulin. The Rev-tubulin interaction is functionally homologous to that of kinesin-13, potently destabilizing microtubules at sub-stoichiometric levels. Expression of Rev in astrocytes and HeLa cells shows that it can modulate the microtubule cytoskeleton within the cellular environment. These results show a previously undefined regulatory role of Rev.
Collapse
Affiliation(s)
- Elif Eren
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Norman R Watts
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Davide Randazzo
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ira Palmer
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dan L Sackett
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul T Wingfield
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Campbell GR, Rawat P, To RK, Spector SA. HIV-1 Tat Upregulates TREM1 Expression in Human Microglia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:429-442. [PMID: 37326481 PMCID: PMC10352590 DOI: 10.4049/jimmunol.2300152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Because microglia are a reservoir for HIV and are resistant to the cytopathic effects of HIV infection, they are a roadblock for any HIV cure strategy. We have previously identified that triggering receptor expressed on myeloid cells 1 (TREM1) plays a key role in human macrophage resistance to HIV-mediated cytopathogenesis. In this article, we show that HIV-infected human microglia express increased levels of TREM1 and are resistant to HIV-induced apoptosis. Moreover, upon genetic inhibition of TREM1, HIV-infected microglia undergo cell death in the absence of increased viral or proinflammatory cytokine expression or the targeting of uninfected cells. We also show that the expression of TREM1 is mediated by HIV Tat through a TLR4, TICAM1, PG-endoperoxide synthase 2, PGE synthase, and PGE2-dependent manner. These findings highlight the potential of TREM1 as a therapeutic target to eradicate HIV-infected microglia without inducing a proinflammatory response.
Collapse
Affiliation(s)
- Grant R. Campbell
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD
| | - Pratima Rawat
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Rachel K. To
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA
- Rady Children’s Hospital, San Diego, CA
| |
Collapse
|
18
|
Robledo SM, Pérez-Silanes S, Fernández-Rubio C, Poveda A, Monzote L, González VM, Alonso-Collado P, Carrión J. Neglected Zoonotic Diseases: Advances in the Development of Cell-Penetrating and Antimicrobial Peptides against Leishmaniosis and Chagas Disease. Pathogens 2023; 12:939. [PMID: 37513786 PMCID: PMC10383258 DOI: 10.3390/pathogens12070939] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
In 2020, the WHO established the road map for neglected tropical diseases 2021-2030, which aims to control and eradicate 20 diseases, including leishmaniosis and Chagas disease. In addition, since 2015, the WHO has been developing a Global Action Plan on Antimicrobial Resistance. In this context, the achievement of innovative strategies as an alternative to replace conventional therapies is a first-order socio-sanitary priority, especially regarding endemic zoonoses in poor regions, such as those caused by Trypanosoma cruzi and Leishmania spp. infections. In this scenario, it is worth highlighting a group of natural peptide molecules (AMPs and CPPs) that are promising strategies for improving therapeutic efficacy against these neglected zoonoses, as they avoid the development of toxicity and resistance of conventional treatments. This review presents the novelties of these peptide molecules and their ability to cross a whole system of cell membranes as well as stimulate host immune defenses or even serve as vectors of molecules. The efforts of the biotechnological sector will make it possible to overcome the limitations of antimicrobial peptides through encapsulation and functionalization methods to obtain approval for these treatments to be used in clinical programs for the eradication of leishmaniosis and Chagas disease.
Collapse
Affiliation(s)
- Sara M Robledo
- Programa de Estudio y Control de Enfermedades Tropicales PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia
| | - Silvia Pérez-Silanes
- Department of Pharmaceutical Technology and Chemistry, ISTUN Instituto de Salud Tropical, IdiSNA, Universidad de Navarra, 31008 Pamplona, Spain
| | - Celia Fernández-Rubio
- Department of Microbiology and Parasitology, ISTUN Instituto de Salud Tropical, IdiSNA, Universidad de Navarra, 31008 Pamplona, Spain
| | - Ana Poveda
- DNA Replication and Genome Instability Unit, Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis-CIZ, Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Lianet Monzote
- Department of Parasitology, Institute of Tropical Medicine "Pedro Kourí", Apartado Postal No. 601, Marianao 13, La Habana 10400, Cuba
| | - Víctor M González
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - Paloma Alonso-Collado
- Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, 28040 Madrid, Spain
| | - Javier Carrión
- Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
19
|
Azevedo-Pereira JM, Pires D, Calado M, Mandal M, Santos-Costa Q, Anes E. HIV/Mtb Co-Infection: From the Amplification of Disease Pathogenesis to an “Emerging Syndemic”. Microorganisms 2023; 11:microorganisms11040853. [PMID: 37110276 PMCID: PMC10142195 DOI: 10.3390/microorganisms11040853] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Human immunodeficiency virus (HIV) and Mycobacterium tuberculosis (Mtb) are pathogens responsible for millions of new infections each year; together, they cause high morbidity and mortality worldwide. In addition, late-stage HIV infection increases the risk of developing tuberculosis (TB) by a factor of 20 in latently infected people, and even patients with controlled HIV infection on antiretroviral therapy (ART) have a fourfold increased risk of developing TB. Conversely, Mtb infection exacerbates HIV pathogenesis and increases the rate of AIDS progression. In this review, we discuss this reciprocal amplification of HIV/Mtb coinfection and how they influence each other’s pathogenesis. Elucidating the infectious cofactors that impact on pathogenesis may open doors for the design of new potential therapeutic strategies to control disease progression, especially in contexts where vaccines or the sterile clearance of pathogens are not effectively available.
Collapse
Affiliation(s)
- José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (J.M.A.-P.); (E.A.)
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal
| | - Marta Calado
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Manoj Mandal
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Quirina Santos-Costa
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (J.M.A.-P.); (E.A.)
| |
Collapse
|
20
|
Datta G, Miller NM, Chen X. 17⍺-Estradiol Protects against HIV-1 Tat-Induced Endolysosome Dysfunction and Dendritic Impairments in Neurons. Cells 2023; 12:813. [PMID: 36899948 PMCID: PMC10000619 DOI: 10.3390/cells12050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
HIV-1 Tat continues to play an important role in the development of HIV-associated neurocognitive disorders (HAND), which persist in 15-55% of people living with HIV even with virological control. In the brain, Tat is present on neurons, where Tat exerts direct neuronal damaging effects by, at least in part, disrupting endolysosome functions, a pathological feature present in HAND. In this study, we determined the protective effects of 17α-estradiol (17αE2), the predominant form of estrogen in the brain, against Tat-induced endolysosome dysfunction and dendritic impairment in primary cultured hippocampal neurons. We demonstrated that pre-treatment with 17αE2 protected against Tat-induced endolysosome dysfunction and reduction in dendritic spine density. Estrogen receptor alpha (ERα) knockdown impairs the ability of 17αE2 to protect against Tat-induced endolysosome dysfunction and reduction in dendritic spine density. Furthermore, over-expressing an ERα mutant that fails to localize on endolysosomes impairs 17αE2's protective effects against Tat-induced endolysosome dysfunction and reduction in dendritic spine density. Our findings demonstrate that 17αE2 protects against Tat-induced neuronal injury via a novel ERα-mediated and endolysosome-dependent pathway, and such a finding might lead to the development of novel adjunct therapeutics against HAND.
Collapse
Affiliation(s)
| | | | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| |
Collapse
|
21
|
Ramirez-Mata AS, Ostrov D, Salemi M, Marini S, Magalis BR. Machine Learning Prediction and Phyloanatomic Modeling of Viral Neuroadaptive Signatures in the Macaque Model of HIV-Mediated Neuropathology. Microbiol Spectr 2023; 11:e0308622. [PMID: 36847516 PMCID: PMC10100676 DOI: 10.1128/spectrum.03086-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
In human immunodeficiency virus (HIV) infection, virus replication in and adaptation to the central nervous system (CNS) can result in neurocognitive deficits in approximately 25% of patients with unsuppressed viremia. While no single viral mutation can be agreed upon as distinguishing the neuroadapted population, earlier studies have demonstrated that a machine learning (ML) approach could be applied to identify a collection of mutational signatures within the virus envelope glycoprotein (Gp120) predictive of disease. The S[imian]IV-infected macaque is a widely used animal model of HIV neuropathology, allowing in-depth tissue sampling infeasible for human patients. Yet, translational impact of the ML approach within the context of the macaque model has not been tested, much less the capacity for early prediction in other, noninvasive tissues. We applied the previously described ML approach to prediction of SIV-mediated encephalitis (SIVE) using gp120 sequences obtained from the CNS of animals with and without SIVE with 97% accuracy. The presence of SIVE signatures at earlier time points of infection in non-CNS tissues indicated these signatures cannot be used in a clinical setting; however, combined with protein structural mapping and statistical phylogenetic inference, results revealed common denominators associated with these signatures, including 2-acetamido-2-deoxy-beta-d-glucopyranose structural interactions and high rate of alveolar macrophage (AM) infection. AMs were also determined to be the phyloanatomic source of cranial virus in SIVE animals, but not in animals that did not develop SIVE, implicating a role for these cells in the evolution of the signatures identified as predictive of both HIV and SIV neuropathology. IMPORTANCE HIV-associated neurocognitive disorders remain prevalent among persons living with HIV (PLWH) owing to our limited understanding of the contributing viral mechanisms and ability to predict disease onset. We have expanded on a machine learning method previously used on HIV genetic sequence data to predict neurocognitive impairment in PLWH to the more extensively sampled SIV-infected macaque model in order to (i) determine the translatability of the animal model and (ii) more accurately characterize the predictive capacity of the method. We identified eight amino acid and/or biochemical signatures in the SIV envelope glycoprotein, the most predominant of which demonstrated the potential for aminoglycan interaction characteristic of previously identified HIV signatures. These signatures were not isolated to specific points in time or to the central nervous system, limiting their use as an accurate clinical predictor of neuropathogenesis; however, statistical phylogenetic and signature pattern analyses implicate the lungs as a key player in the emergence of neuroadapted viruses.
Collapse
Affiliation(s)
- Andrea S. Ramirez-Mata
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - David Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Simone Marini
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Brittany Rife Magalis
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
22
|
Involvement of lncRNA TUG1 in HIV-1 Tat-Induced Astrocyte Senescence. Int J Mol Sci 2023; 24:ijms24054330. [PMID: 36901763 PMCID: PMC10002460 DOI: 10.3390/ijms24054330] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
HIV-1 infection in the era of combined antiretroviral therapy has been associated with premature aging. Among the various features of HIV-1 associated neurocognitive disorders, astrocyte senescence has been surmised as a potential cause contributing to HIV-1-induced brain aging and neurocognitive impairments. Recently, lncRNAs have also been implicated to play essential roles in the onset of cellular senescence. Herein, using human primary astrocytes (HPAs), we investigated the role of lncRNA TUG1 in HIV-1 Tat-mediated onset of astrocyte senescence. We found that HPAs exposed to HIV-1 Tat resulted in significant upregulation of lncRNA TUG1 expression that was accompanied by elevated expression of p16 and p21, respectively. Additionally, HIV-1 Tat-exposed HPAs demonstrated increased expression of senescence-associated (SA) markers-SA-β-galactosidase (SA-β-gal) activity and SA-heterochromatin foci-cell-cycle arrest, and increased production of reactive oxygen species and proinflammatory cytokines. Intriguingly, gene silencing of lncRNA TUG1 in HPAs also reversed HIV-1 Tat-induced upregulation of p21, p16, SA-β gal activity, cellular activation, and proinflammatory cytokines. Furthermore, increased expression of astrocytic p16 and p21, lncRNA TUG1, and proinflammatory cytokines were observed in the prefrontal cortices of HIV-1 transgenic rats, thereby suggesting the occurrence of senescence activation in vivo. Overall, our data indicate that HIV-1 Tat-induced astrocyte senescence involves the lncRNA TUG1 and could serve as a potential therapeutic target for dampening accelerated aging associated with HIV-1/HIV-1 proteins.
Collapse
|
23
|
Kalidasan V, Ravichantar N, Muhd Besari A, Yunus MA, Mohd Yusoff N, Mohamed Z, Theva Das K. Latent HIV-1 provirus in vitro suppression using combinatorial CRISPR/Cas9 strategy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Periyasamy P, Thangaraj A, Kannan M, Oladapo A, Buch S. The Epigenetic Role of miR-124 in HIV-1 Tat- and Cocaine-Mediated Microglial Activation. Int J Mol Sci 2022; 23:ijms232315017. [PMID: 36499350 PMCID: PMC9738975 DOI: 10.3390/ijms232315017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
HIV-1 and drug abuse have been indissolubly allied as entwined epidemics. It is well-known that drug abuse can hasten the progression of HIV-1 and its consequences, especially in the brain, causing neuroinflammation. This study reports the combined effects of HIV-1 Transactivator of Transcription (Tat) protein and cocaine on miR-124 promoter DNA methylation and its role in microglial activation and neuroinflammation. The exposure of mouse primary microglial cells to HIV-1 Tat (25 ng/mL) and/or cocaine (10 μM) resulted in the significantly decreased expression of primary (pri)-miR-124-1, pri-miR-124-2, and mature miR-124 with a concomitant upregulation in DNMT1 expression as well as global DNA methylation. Our bisulfite-converted genomic DNA sequencing also revealed significant promoter DNA methylation in the pri-miR-124-1 and pri-miR-124-2 in HIV-1 Tat- and cocaine-exposed mouse primary microglial cells. We also found the increased expression of proinflammatory cytokines such as IL1β, IL6 and TNF in the mouse primary microglia exposed to HIV-1 Tat and cocaine correlated with microglial activation. Overall, our findings demonstrate that the exposure of mouse primary microglia to both HIV-1 Tat and cocaine could result in intensified microglial activation via the promoter DNA hypermethylation of miR-124, leading to the exacerbated release of proinflammatory cytokines, ultimately culminating in neuroinflammation.
Collapse
|
25
|
Singh A, Kumar V, Mishra A, Singh VK. Targeting the HIV-1 Tat and Human Tat Protein Complex through Natural
Products: An In Silico Docking and Molecular Dynamics Simulation
Approach. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220330122542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Tat protein is considered essential for substantial HIV-1 replication, and is also
required to break HIV-1 latency, resulting in productive HIV replication. The multifaceted regulatory role
of HIV Tat and the fact that it is expressed in the early stages of HIV infection justify its potential as an
anti-HIV drug target.
Objective:
The present study was undertaken with the aim to target HIV-1 Tat protein with natural compounds
which could help in identifying potential inhibitors against HIV-1 Tat.
Methods:
In this study, we compared the binding of Tat protein and Human P-TEFb Tat protein complex
(TPC) with phyto-steroids and terpenes to evaluate their potential for HIV-1 treatment. The docking ability
of plant products with HIV-1 Tat and TPC was studied with respect to dissociation constant, geometric
shape complementary score, approximate interface area, and binding energy using Patch dock and
YASARA. Molecular dynamics simulation was set up to investigate the interactions of the natural compounds
with Tat protein and human tat protein complex (TPC).
Results:
The binding energy and dissociation constant of Diosgenin, Catharanthine and Ginkgolide A
with Tat and TPC were comparable to antiretroviral drugs, Maraviroc and Emtricitabine. The natural
products, Diosgenin, Ginkgolide A and Catharanthine, showed the highest binding energy and were stable
with Tat protein and TPC in the entire MD simulation run.
Conclusion:
The natural products, Diosgenin, Ginkgolide A and Catharanthine, showed highest binding
energy and were stable with Tat protein and TPC in the entire MD simulation run. The binding energy
and dissociation constant of Diosgenin, Catharanthine and Ginkgolide A with Tat and TPC were comparable
to antiretroviral drugs, Maraviroc and Emtricitabine.
Collapse
Affiliation(s)
- Anchal Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Vipin Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Ayushi Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Vinay Kumar Singh
- Centre for
Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| |
Collapse
|
26
|
Mediouni S, Lyu S, Schader SM, Valente ST. Forging a Functional Cure for HIV: Transcription Regulators and Inhibitors. Viruses 2022; 14:1980. [PMID: 36146786 PMCID: PMC9502519 DOI: 10.3390/v14091980] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Current antiretroviral therapy (ART) increases the survival of HIV-infected individuals, yet it is not curative. The major barrier to finding a definitive cure for HIV is our inability to identify and eliminate long-lived cells containing the dormant provirus, termed viral reservoir. When ART is interrupted, the viral reservoir ensures heterogenous and stochastic HIV viral gene expression, which can reseed infection back to pre-ART levels. While strategies to permanently eradicate the virus have not yet provided significant success, recent work has focused on the management of this residual viral reservoir to effectively limit comorbidities associated with the ongoing viral transcription still observed during suppressive ART, as well as limit the need for daily ART. Our group has been at the forefront of exploring the viability of the block-and-lock remission approach, focused on the long-lasting epigenetic block of viral transcription such that without daily ART, there is no risk of viral rebound, transmission, or progression to AIDS. Numerous studies have reported inhibitors of both viral and host factors required for HIV transcriptional activation. Here, we highlight and review some of the latest HIV transcriptional inhibitor discoveries that may be leveraged for the clinical exploration of block-and-lock and revolutionize the way we treat HIV infections.
Collapse
Affiliation(s)
- Sonia Mediouni
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| | - Shuang Lyu
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| | - Susan M. Schader
- Department of Infectious Disease Research, Drug Development Division, Southern Research, 431 Aviation Way, Frederick, MD 21701, USA
| | - Susana T. Valente
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| |
Collapse
|
27
|
Yao J, Yin W, Chen Y, Chen X, Jiang Y, Wang T, Ma C, Zhou M, Chen T, Shaw C, Wang L. Conjugation of a Cationic Cell-Penetrating Peptide with a Novel Kunitzin-like Trypsin Inhibitor: New Insights for Enhancement of Peptide Bioactivities. Pharmaceutics 2022; 14:pharmaceutics14091805. [PMID: 36145553 PMCID: PMC9501525 DOI: 10.3390/pharmaceutics14091805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Cationic cell-penetrating peptides (CPPs), such as transactivator of transcription (TAT) peptide, have been proposed as effective drug carriers to improve intracellular delivery of biological macromolecules. Amphibian skin-derived Kunitz-type trypsin inhibitors (KTIs), short counterparts of KTIs from plant sources, were found to possess potent serine protease inhibitory activity. However, poor transmembrane permeability of these molecules has largely hindered the study of the full spectrum of their biological actions. As a result, this study aimed to extend the biological activities of amphibian KTIs by their conjugation to cationic CPPs. Herein, a novel peptide (kunitzin-OV2) and its phenylalanine-substituted analogue F9-kunitzin-OV2 (F9-KOV2) were evaluated for inhibition of trypsin/chymotrypsin and showed weak antibacterial activity against Escherichia coli (E. coli). As expected, the conjugation to TAT peptide did not increase membrane lysis compared with the original kunitzin-OV2, but effectively assisted this complex to enter cells. TAT-kunitzin-OV2 (TAT-KOV2) exhibited a 32-fold increase in antibacterial activity and an enhanced bactericidal rate against E. coli. In addition, the conjugation enabled the parent peptides to exhibit antiproliferative activity against cancer cells. Interestingly, TAT-F9-kunitzin-OV2 (TAT-F9-KOV2) showed stronger antiproliferative activity against human breast cancer (MCF-7) and human glioblastoma (U251MG) cell lines, which TAT-KOV2 did not possess. Moreover, TAT-F9-KOV2 showed a 20–25-fold increase in antiproliferative capacity against human lung cancer (H157, H460) cell lines compared with TAT-KOV2. Therefore, the conjugation of CPPs effectively solves the problem of cell penetration that short KTIs lack and provides evidence for new potential applications for their subsequent development as new antibacterial and anticancer agents.
Collapse
Affiliation(s)
- Junting Yao
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Weining Yin
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Yuqing Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaoling Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Correspondence: (X.C.); (L.W.)
| | - Yangyang Jiang
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Tao Wang
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Chengbang Ma
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Mei Zhou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Tianbao Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Chris Shaw
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Lei Wang
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Correspondence: (X.C.); (L.W.)
| |
Collapse
|
28
|
Donoso M, D’Amico D, Valdebenito S, Hernandez CA, Prideaux B, Eugenin EA. Identification, Quantification, and Characterization of HIV-1 Reservoirs in the Human Brain. Cells 2022; 11:2379. [PMID: 35954221 PMCID: PMC9367788 DOI: 10.3390/cells11152379] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
The major barrier to cure HIV infection is the early generation and extended survival of HIV reservoirs in the circulation and tissues. Currently, the techniques used to detect and quantify HIV reservoirs are mostly based on blood-based assays; however, it has become evident that viral reservoirs remain in tissues. Our study describes a novel multi-component imaging method (HIV DNA, mRNA, and viral proteins in the same assay) to identify, quantify, and characterize viral reservoirs in tissues and blood products obtained from HIV-infected individuals even when systemic replication is undetectable. In the human brains of HIV-infected individuals under ART, we identified that microglia/macrophages and a small population of astrocytes are the main cells with integrated HIV DNA. Only half of the cells with integrated HIV DNA expressed viral mRNA, and one-third expressed viral proteins. Surprisingly, we identified residual HIV-p24, gp120, nef, vpr, and tat protein expression and accumulation in uninfected cells around HIV-infected cells suggesting local synthesis, secretion, and bystander uptake. In conclusion, our data show that ART reduces the size of the brain's HIV reservoirs; however, local/chronic viral protein secretion still occurs, indicating that the brain is still a major anatomical target to cure HIV infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Eliseo A. Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 105 11th Street, Galveston, TX 77555, USA; (M.D.); (D.D.); (S.V.); (C.A.H.); (B.P.)
| |
Collapse
|
29
|
Treatment strategies for HIV infection with emphasis on role of CRISPR/Cas9 gene: Success so far and road ahead. Eur J Pharmacol 2022; 931:175173. [DOI: 10.1016/j.ejphar.2022.175173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
|
30
|
Mowla S, Ahmed R. HIV infection and the risk of cancer: tumorigenicity of HIV-1 auxiliary proteins. Future Virol 2022. [DOI: 10.2217/fvl-2022-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Shaheen Mowla
- Department of Pathology, Division of Haematology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, Western Cape, 7925, South Africa
| | - Riyaadh Ahmed
- Department of Pathology, Division of Haematology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, Western Cape, 7925, South Africa
| |
Collapse
|
31
|
Qrareya AN, Mahdi F, Kaufman MJ, Ashpole NM, Paris JJ. Age-related neuroendocrine, cognitive, and behavioral co-morbidities are promoted by HIV-1 Tat expression in male mice. Aging (Albany NY) 2022; 14:5345-5365. [PMID: 35830469 PMCID: PMC9320553 DOI: 10.18632/aging.204166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
Abstract
In the U.S. about half of the HIV-infected individuals are aged 50 and older. In men living with HIV, secondary hypogonadism is common and occurs earlier than in seronegative men, and its prevalence increases with age. While the mechanisms(s) are unknown, the HIV-1 trans-activator of transcription (Tat) protein disrupts neuroendocrine function in mice partly by dysregulating mitochondria and neurosteroidogenesis. We hypothesized that conditional Tat expression in middle-aged male transgenic mice [Tat(+)] would promote age-related comorbidities compared to age-matched controls [Tat(−)]. We expected Tat to alter steroid hormone milieu consistent with behavioral deficits. Middle-aged Tat(+) mice had lower circulating testosterone and progesterone than age-matched controls and greater circulating corticosterone and central allopregnanolone than other groups. Young Tat(+) mice had greater circulating progesterone and estradiol-to-testosterone ratios. Older age or Tat exposure increased anxiety-like behavior (open field; elevated plus-maze), increased cognitive errors (radial arm water maze), and reduced grip strength. Young Tat(+), or middle-aged Tat(−), males had higher mechanical nociceptive thresholds than age-matched counterparts. Steroid levels correlated with behaviors. Thus, Tat may contribute to HIV-accelerated aging.
Collapse
Affiliation(s)
- Alaa N Qrareya
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Fakhri Mahdi
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Marc J Kaufman
- Department of Psychiatry, McLean Imaging Center, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | - Nicole M Ashpole
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.,Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| | - Jason J Paris
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.,Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
32
|
T-cell evasion and invasion during HIV-1 infection: The role of HIV-1 Tat protein. Cell Immunol 2022; 377:104554. [DOI: 10.1016/j.cellimm.2022.104554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
|
33
|
Siddiqui A, He C, Lee G, Figueroa A, Slaughter A, Robinson-Papp J. Neuropathogenesis of HIV and emerging therapeutic targets. Expert Opin Ther Targets 2022; 26:603-615. [PMID: 35815686 PMCID: PMC9887458 DOI: 10.1080/14728222.2022.2100253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/07/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION HIV infection causes a wide range of neurological complications, many of which are among the most common complications of chronic HIV infection in the era of combined antiretroviral therapy. These neurological conditions arise due to complex interactions between HIV viral proteins and neuronal and glial cells that lead to the activation of various inflammatory and neurotoxic pathways across the nervous system. AREAS COVERED This review summarizes the current literature on the pathogenesis and clinical manifestations of neurological injuries associated with HIV in the brain, spinal cord, and peripheral nervous system. Molecular pathways relevant for possible therapeutic targets or advancements are emphasized. Gaps in knowledge and current challenges in therapeutic design are also discussed. EXPERT OPINION Several challenges exist in the development of therapeutic targets for HIV-associated cognitive impairments. However, recent developments in drug delivery systems and treatment strategies are encouraging. Treatments for HIV-associated pain and peripheral sensory neuropathies currently consist of symptomatic management, but a greater understanding of their pathogenesis can lead to the development of targeted molecular therapies and disease-modifying therapies. HIV-associated autonomic dysfunction may affect the course of systemic disease via disrupted neuro-immune interactions; however, more research is needed to facilitate our understanding of how these processes present clinically.
Collapse
Affiliation(s)
- Alina Siddiqui
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| | - Celestine He
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| | - Gina Lee
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| | - Alex Figueroa
- University of Texas at Southwestern Medical School, Dallas, TX, 75390 USA
| | - Alexander Slaughter
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| | - Jessica Robinson-Papp
- Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York City, NY, 10029 USA
| |
Collapse
|
34
|
Cafaro A, Ensoli B. HIV-1 therapeutic vaccines in clinical development to intensify or replace antiretroviral therapy: the promising results of the Tat vaccine. Expert Rev Vaccines 2022; 21:1243-1253. [PMID: 35695268 DOI: 10.1080/14760584.2022.2089119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Upon the introduction of the combination antiretroviral therapy (cART), HIV infection has become a chronic disease. However, cART is unable to eradicate the virus and fails to restore the CD4 counts in about 30% of the treated individuals. Furthermore, treatment is life-long, and it does not protect from morbidities typically observed in the elderly. Therapeutic vaccines represent the most cost-effective intervention to intensify or replace cART. AREAS COVERED Here, we briefly discuss the obstacles to the development and evaluation of the efficacy of therapeutic vaccines and review recent approaches evaluated in clinical trials. EXPERT OPINION Although vaccines were generally safe and immunogenic, evidence of efficacy was negligible or marginal in most trials. A notable exception is the therapeutic Tat vaccine approach showing promising results of cART intensification, with CD4 T-cell increase and proviral load reduction beyond those afforded by cART alone. Rationale and evidence in support of choosing Tat as the vaccine target are thoroughly discussed.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore Di Sanità, Rome, Italy
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore Di Sanità, Rome, Italy
| |
Collapse
|
35
|
Vijayakumar A, Park A, Steitz JA. Modulation of mRNA 3'-End Processing and Transcription Termination in Virus-Infected Cells. Front Immunol 2022; 13:828665. [PMID: 35222412 PMCID: PMC8866245 DOI: 10.3389/fimmu.2022.828665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
Eukaryotic mRNA 3´-end processing is a multi-step process beginning with pre-mRNA transcript cleavage followed by poly(A) tail addition. Closely coupled to transcription termination, 3´-end processing is a critical step in the regulation of gene expression, and disruption of 3´-end processing is known to affect mature mRNA levels. Various viral proteins interfere with the 3´-end processing machinery, causing read-through transcription and altered levels of mature transcripts through inhibition of cleavage and polyadenylation. Thus, disruption of 3´-end processing contributes to widespread host shutoff, including suppression of the antiviral response. Additionally, observed features of read-through transcripts such as decreased polyadenylation, nuclear retention, and decreased translation suggest that viruses may utilize these mechanisms to modulate host protein production and dominate cellular machinery. The degree to which the effects of read-through transcript production are harnessed by viruses and host cells remains unclear, but existing research highlights the importance of host 3´-end processing modulation during viral infection.
Collapse
Affiliation(s)
- Aarthi Vijayakumar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Annsea Park
- Department of Immunobiology, Yale University, New Haven, CT, United States
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
36
|
Ruhanya V, Jacobs GB, Paul RH, Joska JA, Seedat S, Nyandoro G, Glashoff RH, Engelbrecht S. HIV-1 subtype C Tat exon-1 amino acid residue 24K is a signature for neurocognitive impairment. J Neurovirol 2022; 28:392-403. [PMID: 35394614 DOI: 10.1007/s13365-022-01073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/11/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
Variation and differential selection pressures on Tat genes have been shown to alter the biological function of the protein, resulting in pathological consequences in a number of organs including the brain. We evaluated the impact of genetic variation and selection pressure on 147 HIV-1 subtype C Tat exon 1 sequences from monocyte-depleted peripheral lymphocytes on clinical diagnosis of neurocognitive impairment. Genetic analyses identified two signature amino acid residues, lysine at codon 24 (24K) with a frequency of 43.4% and arginine at codon 29 (29R) with a frequency of 34.0% in individuals with HIV-associated neurocognitive impairment. The analyses also revealed two signature residues, asparagine, 24 N (31.9%), and histidine, 29H (21.3%), in individuals without neurocognitive impairment. Both codons, 24 and 29, were associated with high entropy but only codon 29 was under positive selection. The presence of signature K24 increased by 2.08 times the risk of neurocognitive impairment, 3.15 times higher proviral load, and 69% lower absolute CD4 T-cell count compared to those without the signature. The results support a linkage between HIV-1 C Tat N24K polymorphism, proviral load, immunosuppression, and neurocognitive impairment. The signature may induce more neurotoxic effects, which contributes to establishment and severity of HIV-associated neurocognitive impairment.
Collapse
Affiliation(s)
- Vurayai Ruhanya
- Division of Medical Virology, Stellenbosch University, Francie van Zijl Avenue, Cape Town, 8000, South Africa. .,Department of Medical Microbiology, Harare, Zimbabwe.
| | - Graeme Brendon Jacobs
- Division of Medical Virology, Stellenbosch University, Francie van Zijl Avenue, Cape Town, 8000, South Africa
| | - Robert H Paul
- Department of Psychology and Behavioral Neuroscience, University of Missouri-St Louis, University Boulevard, St Louis, USA
| | - John A Joska
- MRC Unit of Anxiety & Stress Disorders, Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
| | - Soraya Seedat
- MRC Unit of Anxiety & Stress Disorders, Department of Psychiatry, University of Stellenbosch, Cape Town, South Africa
| | | | - Richard H Glashoff
- Division of Medical Microbiology, Stellenbosch University, Cape Town, South Africa.,National Health Laboratory Service (NHLS), Tygerberg Business Unit, Cape Town, South Africa
| | - Susan Engelbrecht
- Division of Medical Virology, Stellenbosch University, Francie van Zijl Avenue, Cape Town, 8000, South Africa.,National Health Laboratory Service (NHLS), Tygerberg Business Unit, Cape Town, South Africa
| |
Collapse
|
37
|
Mori L, Valente ST. Cure and Long-Term Remission Strategies. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2407:391-428. [PMID: 34985678 DOI: 10.1007/978-1-0716-1871-4_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The majority of virally suppressed individuals will experience rapid viral rebound upon antiretroviral therapy (ART) interruption, providing a strong rationale for the development of cure strategies. Moreover, despite ART virological control, HIV infection is still associated with chronic immune activation, inflammation, comorbidities, and accelerated aging. These effects are believed to be due, in part, to low-grade persistent transcription and trickling production of viral proteins from the pool of latent proviruses constituting the viral reservoir. In recent years there has been an increasing interest in developing what has been termed a functional cure for HIV. This approach entails the long-term, durable control of viral expression in the absence of therapy, preventing disease progression and transmission, despite the presence of detectable integrated proviruses. One such strategy, the block-and-lock approach for a functional cure, proposes the epigenetic silencing of proviral expression, locking the virus in a profound latent state, from which reactivation is very unlikely. The proof-of-concept for this approach was demonstrated with the use of a specific small molecule targeting HIV transcription. Here we review the principles behind the block-and-lock approach and some of the additional strategies proposed to silence HIV expression.
Collapse
Affiliation(s)
- Luisa Mori
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Susana T Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
38
|
Khan N, Halcrow PW, Afghah Z, Baral A, Geiger J, Chen X. HIV-1 Tat endocytosis and retention in endolysosomes affects HIV-1 Tat-induced LTR transactivation in astrocytes. FASEB J 2022; 36:e22184. [PMID: 35113458 PMCID: PMC9627655 DOI: 10.1096/fj.202101722r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/11/2022]
Abstract
The presence of latent HIV-1 reservoirs in the periphery and brain represents a major obstacle to curing HIV-1 infection. As an essential protein for HIV-1 viral replication, HIV-1 Tat, mostly intracellular, has been implicated in latent HIV-1 infection. From HIV-1 infected cells, HIV-1 Tat is actively secreted and bystander cells uptake the released Tat whereupon it is endocytosed and internalized into endolysosomes. However, to activate the HIV-1 LTR promoter and increase HIV-1 replication, HIV-1 Tat must first escape from the endolysosomes and then enter the nucleus. Here, we tested the hypothesis that HIV-1 Tat can accumulate in endolysosomes and contribute to the activation of latent HIV-1 in astrocytes. Using U87MG astrocytoma cells expressing HIV-1 LTR-driven luciferase and primary human astrocytes we found that exogenous HIV-1 Tat enters endolysosomes, resides in endolysosomes for extended periods of time, and induces endolysosome de-acidification as well as enlargement. The weak base chloroquine promoted the release of HIV-1 Tat from endolysosomes and induced HIV-1 LTR transactivation. Similar results were observed by activating endolysosome Toll-like receptor 3 (TLR3) and TLR7/8. Conversely, pharmacological block of TLRs and knocking down expression levels of TLR3 and TLR7, but not TLR8, prevented endolysosome leakage and attenuated HIV-1 Tat-mediated HIV-1 LTR transactivation. Our findings suggest that HIV-1 Tat accumulation in endolysosomes may play an important role in controlling HIV-1 transactivation.
Collapse
Affiliation(s)
- Nabab Khan
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Peter W. Halcrow
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Zahra Afghah
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Aparajita Baral
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Jonathan D. Geiger
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Xuesong Chen
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| |
Collapse
|
39
|
van Heuvel Y, Schatz S, Rosengarten JF, Stitz J. Infectious RNA: Human Immunodeficiency Virus (HIV) Biology, Therapeutic Intervention, and the Quest for a Vaccine. Toxins (Basel) 2022; 14:toxins14020138. [PMID: 35202165 PMCID: PMC8876946 DOI: 10.3390/toxins14020138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Different mechanisms mediate the toxicity of RNA. Genomic retroviral mRNA hijacks infected host cell factors to enable virus replication. The viral genomic RNA of the human immunodeficiency virus (HIV) encompasses nine genes encoding in less than 10 kb all proteins needed for replication in susceptible host cells. To do so, the genomic RNA undergoes complex alternative splicing to facilitate the synthesis of the structural, accessory, and regulatory proteins. However, HIV strongly relies on the host cell machinery recruiting cellular factors to complete its replication cycle. Antiretroviral therapy (ART) targets different steps in the cycle, preventing disease progression to the acquired immunodeficiency syndrome (AIDS). The comprehension of the host immune system interaction with the virus has fostered the development of a variety of vaccine platforms. Despite encouraging provisional results in vaccine trials, no effective vaccine has been developed, yet. However, novel promising vaccine platforms are currently under investigation.
Collapse
Affiliation(s)
- Yasemin van Heuvel
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany
| | - Stefanie Schatz
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany
| | - Jamila Franca Rosengarten
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany
| | - Jörn Stitz
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Correspondence:
| |
Collapse
|
40
|
Kuznetsova AI, Gromov KB, Kireev DE, Shlykova AV, Lopatukhin AE, Kazennova EV, Lebedev AV, Tumanov AS, Kim KV, Bobkova MR. [Analysis of Tat protein characteristics in human immunodeficiency virus type 1 sub-subtype A6 (Retroviridae: Orthoretrovirinae: Lentivirus: Human immunodeficiency virus-1)]. Vopr Virusol 2022; 66:452-464. [PMID: 35019252 DOI: 10.36233/0507-4088-83] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Tat protein is a major factor of HIV (human immunodeficiency virus) transcription regulation and has other activities. Tat is characterized by high variability, with some amino acid substitutions, including subtypespecific ones, being able to influence on its functionality. HIV type 1 (HIV-1) sub-subtype A6 is the most widespread in Russia. Previous studies of the polymorphisms in structural regions of the A6 variant have shown numerous characteristic features; however, Tat polymorphism in A6 has not been studied.Goals and tasks. The main goal of the work was to analyze the characteristics of Tat protein in HIV-1 A6 variant, that is, to identify substitutions characteristic for A6 and A1 variants, as well as to compare the frequency of mutations in functionally significant domains in sub-subtype A6 and subtype B. MATERIAL AND METHODS The nucleotide sequences of HIV-1 sub-subtypes A6, A1, A2, A3, A4, subtype B and the reference nucleotide sequence were obtained from the Los Alamos international database. RESULTS AND DISCUSSION Q54H and Q60H were identified as characteristic substitutions. Essential differences in natural polymorphisms between sub-subtypes A6 and A1 have been demonstrated. In the CPP-region, there were detected mutations (R53K, Q54H, Q54P, R57G) which were more common in sub-subtype A6 than in subtype B. CONCLUSION Tat protein of sub-subtype A6 have some characteristics that make it possible to reliably distinguish it from other HIV-1 variants. Mutations identified in the CPP region could potentially alter the activity of Tat. The data obtained could form the basis for the drugs and vaccines development.
Collapse
Affiliation(s)
- A I Kuznetsova
- D.I. Ivanovsky Institute of Virology FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| | - K B Gromov
- D.I. Ivanovsky Institute of Virology FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia; FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - D E Kireev
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - A V Shlykova
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - A E Lopatukhin
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - E V Kazennova
- D.I. Ivanovsky Institute of Virology FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| | - A V Lebedev
- D.I. Ivanovsky Institute of Virology FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| | - A S Tumanov
- D.I. Ivanovsky Institute of Virology FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| | - K V Kim
- D.I. Ivanovsky Institute of Virology FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| | - M R Bobkova
- D.I. Ivanovsky Institute of Virology FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| |
Collapse
|
41
|
HIV-1 Tat and Heparan Sulfate Proteoglycans Orchestrate the Setup of in Cis and in Trans Cell-Surface Interactions Functional to Lymphocyte Trans-Endothelial Migration. Molecules 2021; 26:molecules26247488. [PMID: 34946571 PMCID: PMC8705413 DOI: 10.3390/molecules26247488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
HIV-1 transactivating factor Tat is released by infected cells. Extracellular Tat homodimerizes and engages several receptors, including integrins, vascular endothelial growth factor receptor 2 (VEGFR2) and heparan sulfate proteoglycan (HSPG) syndecan-1 expressed on various cells. By means of experimental cell models recapitulating the processes of lymphocyte trans-endothelial migration, here, we demonstrate that upon association with syndecan-1 expressed on lymphocytes, Tat triggers simultaneously the in cis activation of lymphocytes themselves and the in trans activation of endothelial cells (ECs). This "two-way" activation eventually induces lymphocyte adhesion and spreading onto the substrate and vascular endothelial (VE)-cadherin reorganization at the EC junctions, with consequent endothelial permeabilization, leading to an increased extravasation of Tat-presenting lymphocytes. By means of a panel of biochemical activation assays and specific synthetic inhibitors, we demonstrate that during the above-mentioned processes, syndecan-1, integrins, FAK, src and ERK1/2 engagement and activation are needed in the lymphocytes, while VEGFR2, integrin, src and ERK1/2 are needed in the endothelium. In conclusion, the Tat/syndecan-1 complex plays a central role in orchestrating the setup of the various in cis and in trans multimeric complexes at the EC/lymphocyte interface. Thus, by means of computational molecular modelling, docking and dynamics, we also provide a characterization at an atomic level of the binding modes of the Tat/heparin interaction, with heparin herein used as a structural analogue of the heparan sulfate chains of syndecan-1.
Collapse
|
42
|
Pujals M, Resar L, Villanueva J. HMGA1, Moonlighting Protein Function, and Cellular Real Estate: Location, Location, Location! Biomolecules 2021; 11:1334. [PMID: 34572547 PMCID: PMC8468999 DOI: 10.3390/biom11091334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
The gene encoding the High Mobility Group A1 (HMGA1) chromatin remodeling protein is upregulated in diverse cancers where high levels portend adverse clinical outcomes. Until recently, HMGA1 was assumed to be a nuclear protein exerting its role in cancer by transcriptionally modulating gene expression and downstream signaling pathways. However, the discovery of an extracellular HMGA1-RAGE autocrine loop in invasive triple-negative breast cancer (TNBC) cell lines implicates HMGA1 as a "moonlighting protein" with different functions depending upon cellular location. Here, we review the role of HMGA1, not only as a chromatin regulator in cancer and stem cells, but also as a potential secreted factor that drives tumor progression. Prior work found that HMGA1 is secreted from TNBC cell lines where it signals through the receptor for advanced glycation end products (RAGE) to foster phenotypes involved in tumor invasion and metastatic progression. Studies in primary TNBC tumors also suggest that HMGA1 secretion associates with distant metastasis in TNBC. Given the therapeutic potential to target extracellular proteins, further work to confirm this role in other contexts is warranted. Indeed, crosstalk between nuclear and secreted HMGA1 could change our understanding of tumor development and reveal novel therapeutic opportunities relevant to diverse human cancers overexpressing HMGA1.
Collapse
Affiliation(s)
- Mireia Pujals
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain;
| | - Linda Resar
- Department of Medicine, Division of Hematology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Medicine (Hematology), Oncology, Pathology and Institute of Cellular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Pathobiology, Cellular and Molecular Medicine and Human Genetics Graduate Programs, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Josep Villanueva
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
43
|
HIV-Associated Neurotoxicity: The Interplay of Host and Viral Proteins. Mediators Inflamm 2021; 2021:1267041. [PMID: 34483726 PMCID: PMC8410439 DOI: 10.1155/2021/1267041] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/12/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
HIV-1 can incite activation of chemokine receptors, inflammatory mediators, and glutamate receptor-mediated excitotoxicity. The mechanisms associated with such immune activation can disrupt neuronal and glial functions. HIV-associated neurocognitive disorder (HAND) is being observed since the beginning of the AIDS epidemic due to a change in the functional integrity of cells from the central nervous system (CNS). Even with the presence of antiretroviral therapy, there is a decline in the functioning of the brain especially movement skills, noticeable swings in mood, and routine performance activities. Under the umbrella of HAND, various symptomatic and asymptomatic conditions are categorized and are on a rise despite the use of newer antiretroviral agents. Due to the use of long-lasting antiretroviral agents, this deadly disease is becoming a manageable chronic condition with the occurrence of asymptomatic neurocognitive impairment (ANI), symptomatic mild neurocognitive disorder, or HIV-associated dementia. In-depth research in the pathogenesis of HIV has focused on various mechanisms involved in neuronal dysfunction and associated toxicities ultimately showcasing the involvement of various pathways. Increasing evidence-based studies have emphasized a need to focus and explore the specific pathways in inflammation-associated neurodegenerative disorders. In the current review, we have highlighted the association of various HIV proteins and neuronal cells with their involvement in various pathways responsible for the development of neurotoxicity.
Collapse
|
44
|
Zhang Y, Guo P, Ma Z, Lu P, Kebebe D, Liu Z. Combination of cell-penetrating peptides with nanomaterials for the potential therapeutics of central nervous system disorders: a review. J Nanobiotechnology 2021; 19:255. [PMID: 34425832 PMCID: PMC8381574 DOI: 10.1186/s12951-021-01002-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/15/2021] [Indexed: 12/20/2022] Open
Abstract
Although nanomedicine have greatly developed and human life span has been extended, we have witnessed the soared incidence of central nervous system (CNS) diseases including neurodegenerative diseases (Alzheimer's disease, Parkinson's disease), ischemic stroke, and brain tumors, which have severely damaged the quality of life and greatly increased the economic and social burdens. Moreover, partial small molecule drugs and almost all large molecule drugs (such as recombinant protein, therapeutic antibody, and nucleic acid) cannot cross the blood-brain barrier. Therefore, it is especially important to develop a drug delivery system that can effectively deliver therapeutic drugs to the central nervous system for the treatment of central nervous system diseases. Cell penetrating peptides (CPPs) provide a potential strategy for the transport of macromolecules through the blood-brain barrier. This study analyzed and summarized the progress of CPPs in CNS diseases from three aspects: CPPs, the conjugates of CPPs and drug, and CPPs modified nanoparticles to provide scientific basis for the application of CPPs for CNS diseases.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Pan Guo
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhe Ma
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Peng Lu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Dereje Kebebe
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Zhidong Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China. .,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
45
|
Ensoli B, Moretti S, Borsetti A, Maggiorella MT, Buttò S, Picconi O, Tripiciano A, Sgadari C, Monini P, Cafaro A. New insights into pathogenesis point to HIV-1 Tat as a key vaccine target. Arch Virol 2021; 166:2955-2974. [PMID: 34390393 PMCID: PMC8363864 DOI: 10.1007/s00705-021-05158-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
Despite over 30 years of enormous effort and progress in the field, no preventative and/or therapeutic vaccines against human immunodeficiency virus (HIV) are available. Here, we briefly summarize the vaccine strategies and vaccine candidates that in recent years advanced to efficacy trials with mostly unsatisfactory results. Next, we discuss a novel and somewhat contrarian approach based on biological and epidemiological evidence, which led us to choose the HIV protein Tat for the development of preventive and therapeutic HIV vaccines. Toward this goal, we review here the role of Tat in the virus life cycle as well as experimental and epidemiological evidence supporting its key role in the natural history of HIV infection and comorbidities. We then discuss the preclinical and clinical development of a Tat therapeutic vaccine, which, by improving the functionality and homeostasis of the immune system and by reducing the viral reservoir in virologically suppressed vaccinees, helps to establish key determinants for intensification of combination antiretroviral therapy (cART) and a functional cure. Future developments and potential applications of the Tat therapeutic vaccine are also discussed, as well as the rationale for its use in preventative strategies. We hope this contribution will lead to a reconsideration of the current paradigms for the development of HIV/AIDS vaccines, with a focus on targeting of viral proteins with key roles in HIV pathogenesis.
Collapse
Affiliation(s)
- Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Maria Teresa Maggiorella
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Stefano Buttò
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Orietta Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Antonella Tripiciano
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
46
|
Moretti S, Virtuoso S, Sernicola L, Farcomeni S, Maggiorella MT, Borsetti A. Advances in SIV/SHIV Non-Human Primate Models of NeuroAIDS. Pathogens 2021; 10:pathogens10081018. [PMID: 34451482 PMCID: PMC8398602 DOI: 10.3390/pathogens10081018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 01/09/2023] Open
Abstract
Non-human primates (NHPs) are the most relevant model of Acquired Immunodeficiency Syndrome (AIDS) and neuroAIDS, being of great importance in explaining the pathogenesis of HIV-induced nervous system damage. Simian Immunodeficiency Virus (SIV)/ Simian-Human Immunodeficiency Virus (SHIV)-infected monkeys have provided evidence of complex interactions between the virus and host that include host immune response, viral genetic diversity, and genetic susceptibility, which may explain virus-associated central nervous system (CNS) pathology and HIV-associated neurocognitive disorders (HAND). In this article, we review the recent progress contributions obtained using monkey models of HIV infection of the CNS, neuropathogenesis and SIV encephalitis (SIVE), with an emphasis on pharmacologic therapies and dependable markers that predict development of CNS AIDS.
Collapse
|
47
|
Red Algal Sulfated Galactan Binds and Protects Neural Cells from HIV-1 gp120 and Tat. Pharmaceuticals (Basel) 2021; 14:ph14080714. [PMID: 34451811 PMCID: PMC8398392 DOI: 10.3390/ph14080714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 01/31/2023] Open
Abstract
The potential neuroprotective capacity of four different sulfated glycans: Botryocladia occidentalis-derived sulfated galactan (BoSG) (MW > 100 kDa), Lytechinus variegatus-derived sulfated fucan (LvSF) (MW~90 kDa), high-molecular weight dextran sulfate (DxS) (MW 100 kDa), and unfractionated heparin (UFH) (MW~15 kDa), was assessed in response to the HIV-1 proteins, R5-tropic glycoprotein 120 (gp120) and/or trans-activator of transcription (Tat), using primary murine neurons co-cultured with mixed glia. Compared to control-treated cells in which HIV-1 proteins alone or combined were neurotoxic, BoSG was, among the four tested sulfated glycans, the only one capable of showing significant concentration-dependent neuroprotection against Tat and/or gp120, alone or combined. Surface plasmon resonance-based data indicate that BoSG can bind both HIV-1 proteins at nM concentrations with preference for Tat (7.5 × 10−8 M) over gp120 (3.2 × 10−7 M) as compared to UFH, which bound gp120 (8.7 × 10−7 M) over Tat (5.7 × 10−6 M). Overall, these data support the notion that sulfated glycan extracted from the red alga B. occidentalis, BoSG, can exert neuroprotection against HIV-1 Tat and gp120, potentially via direct molecular interactions.
Collapse
|
48
|
Zhao Y, Hasse S, Bourgoin SG. Phosphatidylserine-specific phospholipase A1: A friend or the devil in disguise. Prog Lipid Res 2021; 83:101112. [PMID: 34166709 DOI: 10.1016/j.plipres.2021.101112] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
Various human tissues and cells express phospholipase A1 member A (PLA1A), including the liver, lung, prostate gland, and immune cells. The enzyme belongs to the pancreatic lipase family. PLA1A specifically hydrolyzes sn-1 fatty acid of phosphatidylserine (PS) or 1-acyl-lysophosphatidylserine (1-acyl-lysoPS). PS externalized by activated cells or apoptotic cells or extracellular vesicles is a potential source of substrate for the production of unsaturated lysoPS species by PLA1A. Maturation and functions of many immune cells, such as T cells, dendritic cells, macrophages, and mast cells, can be regulated by PLA1A and lysoPS. Several lysoPS receptors, including GPR34, GPR174 and P2Y10, have been identified. High serum levels and high PLA1A expression are associated with autoimmune disorders such as Graves' disease and systemic lupus erythematosus. Increased expression of PLA1A is associated with metastatic melanomas. PLA1A may contribute to cardiometabolic disorders through mediating cholesterol transportation and producing lysoPS. Furthermore, PLA1A is necessary for hepatitis C virus assembly and can play a role in the antivirus innate immune response. This review summarizes recent findings on PLA1A expression, lysoPS and lysoPS receptors in autoimmune disorders, cancers, cardiometabolic disorders, antivirus immune responses, as well as regulations of immune cells.
Collapse
Affiliation(s)
- Yang Zhao
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, G1V 4G2, Canada
| | - Stephan Hasse
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, G1V 4G2, Canada
| | - Sylvain G Bourgoin
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, G1V 4G2, Canada.
| |
Collapse
|
49
|
Pretorius E. Platelets in HIV: A Guardian of Host Defence or Transient Reservoir of the Virus? Front Immunol 2021; 12:649465. [PMID: 33968041 PMCID: PMC8102774 DOI: 10.3389/fimmu.2021.649465] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/06/2021] [Indexed: 01/28/2023] Open
Abstract
The immune and inflammatory responses of platelets to human immunodeficiency virus 1 (HIV-1) and its envelope proteins are of great significance to both the treatment of the infection, and to the comorbidities related to systemic inflammation. Platelets can interact with the HIV-1 virus itself, or with viral membrane proteins, or with dysregulated inflammatory molecules in circulation, ensuing from HIV-1 infection. Platelets can facilitate the inhibition of HIV-1 infection via endogenously-produced inhibitors of HIV-1 replication, or the virus can temporarily hide from the immune system inside platelets, whereby platelets act as HIV-1 reservoirs. Platelets are therefore both guardians of the host defence system, and transient reservoirs of the virus. Such reservoirs may be of particular significance during combination antiretroviral therapy (cART) interruption, as it may drive viral persistence, and result in significant implications for treatment. Both HIV-1 envelope proteins and circulating inflammatory molecules can also initiate platelet complex formation with immune cells and erythrocytes. Complex formation cause platelet hypercoagulation and may lead to an increased thrombotic risk. Ultimately, HIV-1 infection can initiate platelet depletion and thrombocytopenia. Because of their relatively short lifespan, platelets are important signalling entities, and could be targeted more directly during HIV-1 infection and cART.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
50
|
Isaguliants M, Bayurova E, Avdoshina D, Kondrashova A, Chiodi F, Palefsky JM. Oncogenic Effects of HIV-1 Proteins, Mechanisms Behind. Cancers (Basel) 2021; 13:305. [PMID: 33467638 PMCID: PMC7830613 DOI: 10.3390/cancers13020305] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
People living with human immunodeficiency virus (HIV-1) are at increased risk of developing cancer, such as Kaposi sarcoma (KS), non-Hodgkin lymphoma (NHL), cervical cancer, and other cancers associated with chronic viral infections. Traditionally, this is linked to HIV-1-induced immune suppression with depletion of CD4+ T-helper cells, exhaustion of lymphopoiesis and lymphocyte dysfunction. However, the long-term successful implementation of antiretroviral therapy (ART) with an early start did not preclude the oncological complications, implying that HIV-1 and its antigens are directly involved in carcinogenesis and may exert their effects on the background of restored immune system even when present at extremely low levels. Experimental data indicate that HIV-1 virions and single viral antigens can enter a wide variety of cells, including epithelial. This review is focused on the effects of five viral proteins: envelope protein gp120, accessory protein negative factor Nef, matrix protein p17, transactivator of transcription Tat and reverse transcriptase RT. Gp120, Nef, p17, Tat, and RT cause oxidative stress, can be released from HIV-1-infected cells and are oncogenic. All five are in a position to affect "innocent" bystander cells, specifically, to cause the propagation of (pre)existing malignant and malignant transformation of normal epithelial cells, giving grounds to the direct carcinogenic effects of HIV-1.
Collapse
Affiliation(s)
- Maria Isaguliants
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
| | - Ekaterina Bayurova
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Darya Avdoshina
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Alla Kondrashova
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Joel M. Palefsky
- Department of Medicine, University of California, San Francisco, CA 94117, USA;
| |
Collapse
|