1
|
Owolabi AI, Corbett RC, Flatt PR, McKillop AM. Positive interplay between FFAR4/GPR120, DPP-IV inhibition and GLP-1 in beta cell proliferation and glucose homeostasis in obese high fat fed mice. Peptides 2024; 177:171218. [PMID: 38621590 DOI: 10.1016/j.peptides.2024.171218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
G-protein coupled receptor-120 (GPR120; FFAR4) is a free fatty acid receptor, widely researched for its glucoregulatory and insulin release activities. This study aimed to investigate the metabolic advantage of FFAR4/GPR120 activation using combination therapy. C57BL/6 mice, fed a High Fat Diet (HFD) for 120 days to induce obesity-diabetes, were subsequently treated with a single daily oral dose of FFAR4/GPR120 agonist Compound A (CpdA) (0.1μmol/kg) alone or in combination with sitagliptin (50 mg/kg) for 21 days. After 21-days, glucose homeostasis, islet morphology, plasma hormones and lipids, tissue genes (qPCR) and protein expression (immunocytochemistry) were assessed. Oral administration of CpdA improved glucose tolerance (34% p<0.001) and increased circulating insulin (38% p<0.001). Addition of CpdA with the dipeptidyl peptidase-IV (DPP-IV) inhibitor, sitagliptin, further improved insulin release (44%) compared to sitagliptin alone and reduced fat mass (p<0.05). CpdA alone (50%) and in combination with sitagliptin (89%) induced marked reductions in LDL-cholesterol, with greater effects in combination (p<0.05). All treatment regimens restored pancreatic islet and beta-cell area and mass, complemented with significantly elevated beta-cell proliferation rates. A marked increase in circulating GLP-1 (53%) was observed, with further increases in combination (38%). With treatment, mice presented with increased Gcg (proglucagon) gene expression in the jejunum (130% increase) and ileum (120% increase), indicative of GLP-1 synthesis and secretion. These data highlight the therapeutic promise of FFAR4/GPR120 activation and the potential for combined benefit with incretin enhancing DPP-IV inhibitors in the regulation of beta cell proliferation and diabetes.
Collapse
Affiliation(s)
- A I Owolabi
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - R C Corbett
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - P R Flatt
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - A M McKillop
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK.
| |
Collapse
|
2
|
Prado TP, Jara CP, Dias Bóbbo VC, Carraro RS, Sidarta-Oliveira D, de Mendonça GRA, Velloso LA, Araújo EP. A Free Fatty Acid Synthetic Agonist Accelerates Wound Healing and Improves Scar Quality in Mice. Biol Res Nurs 2023; 25:353-366. [PMID: 36444640 DOI: 10.1177/10998004221142331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
BACKGROUND Impaired wound healing is a health problem around the world, and the search for a novel product to repair wounded skin is a major topic in the field. GW9508 is a synthetic molecule described as a selective agonist of free fatty acid receptors (FFARs) 1 and 4, and there is evidence of its anti-inflammatory effects on several organs of the body. PURPOSE Here, we aimed to evaluate the effects of topical GW9508 on wound healing in mice. RESEARCH DESIGN First, we used bioinformatic methods to determine the expression of FFAR1 and FFAR4 mRNA in the skin from a human cell atlas assembled with single-cell transcriptomes. Next, we employed 6-week-old C57BL6J mice with 2 wounds inflicted in the back. The mice were randomly divided into 2 groups, a control group, which received topical vehicle, and a treatment group, which received GW9508, for 12 days. The wound was monitored by photographic documentation every 2 days, and samples were collected at day 6 and 12 post injury for RT-PCR, western blot and histology analyses. RESULTS FFAR1 and FFAR4 mRNA are expressed in skin cells in similar amounts to those in other tissues. Topical GW9508 accelerated wound healing and decreased gene expression of IL-10 and metalloproteinase 9 on days 6 and 12 post injury. It increased the quantity of Collagen I and improved the organization of collagen fibres. Conclusions: Our results show that GW9508 could be an attractive drug treatment for wounded skin. Future studies need to be performed to assess the impact of GW9508 in chronic wound models.
Collapse
Affiliation(s)
- Thais P Prado
- Nursing School, Laboratory of Cell Signaling Obesity and Comorbidities Center, OCRC, University of Campinas, Campinas, Brazil
- Faculty of Medical Sciences, Laboratory of Cell Signaling, Obesity and Comorbidities Center - OCRC, University of Campinas, Campinas, Brazil
| | - Carlos P Jara
- Nursing School, Laboratory of Cell Signaling Obesity and Comorbidities Center, OCRC, University of Campinas, Campinas, Brazil
- Faculty of Medical Sciences, Laboratory of Cell Signaling, Obesity and Comorbidities Center - OCRC, University of Campinas, Campinas, Brazil
| | - Vanessa C Dias Bóbbo
- Nursing School, Laboratory of Cell Signaling Obesity and Comorbidities Center, OCRC, University of Campinas, Campinas, Brazil
- Faculty of Medical Sciences, Laboratory of Cell Signaling, Obesity and Comorbidities Center - OCRC, University of Campinas, Campinas, Brazil
| | - Rodrigo S Carraro
- Faculty of Medical Sciences, Laboratory of Cell Signaling, Obesity and Comorbidities Center - OCRC, University of Campinas, Campinas, Brazil
- Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Davi Sidarta-Oliveira
- Faculty of Medical Sciences, Laboratory of Cell Signaling, Obesity and Comorbidities Center - OCRC, University of Campinas, Campinas, Brazil
- Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Guilherme R A de Mendonça
- Faculty of Medical Sciences, Laboratory of Cell Signaling, Obesity and Comorbidities Center - OCRC, University of Campinas, Campinas, Brazil
- Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Licio A Velloso
- Faculty of Medical Sciences, Laboratory of Cell Signaling, Obesity and Comorbidities Center - OCRC, University of Campinas, Campinas, Brazil
- Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Eliana P Araújo
- Nursing School, Laboratory of Cell Signaling Obesity and Comorbidities Center, OCRC, University of Campinas, Campinas, Brazil
- Faculty of Medical Sciences, Laboratory of Cell Signaling, Obesity and Comorbidities Center - OCRC, University of Campinas, Campinas, Brazil
| |
Collapse
|
3
|
Liu Y, Lei YX, Li JW, Ma YZ, Wang XY, Meng FH, Wu YJ, Wang N, Liang J, Zhao CQ, Yang Y, Chen GX, Yu SX. G Protein-Coupled Receptor 120 Mediates Host Defense against Clostridium perfringens Infection through Regulating NOD-like Receptor Family Pyrin Domain-Containing 3 Inflammasome Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7119-7130. [PMID: 37115810 DOI: 10.1021/acs.jafc.3c01242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Clostridium perfringens is a major cause of infectious foodborne disease, frequently associated with the consumption of raw and undercooked food. Despite intensive studies on clarifying C. perfringens pathogenesis, the molecular mechanisms of host-pathogen interactions remain poorly understood. In soft tissue and mucosal infection models, Gpr120-/- mice, G protein-coupled receptor 120 (GPR120), are more susceptible to C. perfringens infection. Gpr120 deficiency leads to a low survival rate (30 and 10%, p < 0.01), more bacterial loads in the muscle (2.26 × 108 ± 2.08 × 108 CFUs/g, p < 0.01), duodenum (2.80 × 107 ± 1.61 × 107 CFUs/g, p < 0.01), cecum (2.50 × 108 ± 2.05 × 108 CFUs/g, p < 0.01), and MLN (1.23 × 106 ± 8.06 × 105 CFUs/g, p < 0.01), less IL-18 production in the muscle (8.54 × 103 ± 1.20 × 103 pg/g, p < 0.01), duodenum (3.34 × 103 ± 2.46 × 102 pg/g, p < 0.01), and cecum (3.81 × 103 ± 5.29 × 102 pg/g, p < 0.01), and severe organ injury. Obviously, GPR120 facilitates IL-18 production and pathogen control via potassium efflux-dependent NOD-like receptor family pyrin domain-containing 3 (NLRP3) signaling. Mechanistically, GPR120 interaction with NLRP3 potentiates the NLRP3 inflammasome assembly. Thus, this study uncovers a novel role of GPR120 in host protection and reveals that GPR120 may be a potential therapeutic target for limiting pathogen infection.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
- Animal Husbandry Institute, Agriculture and Animal Husbandry Academy of Inner Mongolia, Hohhot 010031, China
| | - Yu-Xin Lei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jian-Wei Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yu-Ze Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xue-Yin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Fan-Hua Meng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yu-Jing Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Na Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jing Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Cai-Quan Zhao
- College of Biological Science and Technology, Bao Tou Teachers' College, Baotou 014030, China
| | - Yang Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Guang-Xin Chen
- Institutes of Biomedical Sciences, the Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan 030006, China
| | - Shui-Xing Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
4
|
Ronca A, Pellegrini N, Pagliai G, Dinu M, Manfredini M, Incerti M, Favari E, Sofi F. Effects of a dietary intervention with Mediterranean vs lacto-ovo vegetarian diets on HDL function: Results from the CARDIVEG study. Nutr Metab Cardiovasc Dis 2023; 33:651-658. [PMID: 36642608 DOI: 10.1016/j.numecd.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/18/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND AIM HDL-cholesterol efflux capacity (CEC) has been shown to be a better cardiovascular (CVD) risk marker than serum HDL concentration. Several foods and nutrients have been shown to improve HDL functions, however no effective dietetic nor pharmacological strategy is available to increase CEC. This study aims to evaluate the possible effect of Mediterranean diet (MD) and lacto-ovo-vegetarian diet (VD) on HDL function in a group of clinically healthy subjects at low-to-moderate CVD risk. METHODS AND RESULTS Thirty apparently healthy subjects with a low-to-moderate cardiovascular risk profile (21 F; mean age: 51.3 ± 9.7 years) were randomly assigned to a 3-month MD or VD diet and then crossed. Participants on VD showed a reduction in total HDL CEC by 8.99% (p < 0.001) as well as a reduction in ABCA1 mediated-CEC by 18.62% (p < 0.001) compared to participants on MD. Regarding CEC mediated by aqueous diffusion, no significant changes were observed after treatment with either diet. Finally, a significant positive association between CEC mediated by the ABCA1 transporter and adiponectin was found (r = 0.462; p = 0.010). CONCLUSION The results of this study suggest that HDL activity in promoting cholesterol efflux and thereby reducing the concentration of pro-atherogenic lipoproteins was more effective in participants undergoing MD than VD. Based on these findings, the MD could be considered a better therapeutic strategy for cardiovascular prevention than VD. CLINICAL TRIAL REGISTRATION URL http://www. CLINICALTRIALS gov. Unique identifier: NCT02641834.
Collapse
Affiliation(s)
- Annalisa Ronca
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Giuditta Pagliai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Manfredini
- Department of Chemistry, Life Science, And Environmental Sustainability, University of Parma, Parma, Italy
| | - Matteo Incerti
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parma, Italy.
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
5
|
Checa-Ros A, D’Marco L. Role of Omega-3 Fatty Acids as Non-Photic Zeitgebers and Circadian Clock Synchronizers. Int J Mol Sci 2022; 23:12162. [PMID: 36293015 PMCID: PMC9603208 DOI: 10.3390/ijms232012162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 10/23/2024] Open
Abstract
Omega-3 fatty acids (ω-3 FAs) are well-known for their actions on immune/inflammatory and neurological pathways, functions that are also under circadian clock regulation. The daily photoperiod represents the primary circadian synchronizer ('zeitgeber'), although diverse studies have pointed towards an influence of dietary FAs on the biological clock. A comprehensive literature review was conducted following predefined selection criteria with the aim of updating the evidence on the molecular mechanisms behind circadian rhythm regulation by ω-3 FAs. We collected preclinical and clinical studies, systematic reviews, and metanalyses focused on the effect of ω-3 FAs on circadian rhythms. Twenty animal (conducted on rodents and piglets) and human trials and one observational study providing evidence on the regulation of neurological, inflammatory/immune, metabolic, reproductive, cardiovascular, and biochemical processes by ω-3 FAs via clock genes were discussed. The evidence suggests that ω-3 FAs may serve as non-photic zeitgebers and prove therapeutically beneficial for circadian disruption-related pathologies. Future work should focus on the role of clock genes as a target for the therapeutic use of ω-3 FAs in inflammatory and neurological disorders, as well as on the bidirectional association between the molecular clock and ω-3 FAs.
Collapse
Affiliation(s)
- Ana Checa-Ros
- Department of Medicine and Surgery, Faculty of Health Sciences, Universidad Cardenal Herrera—CEU, CEU Universities, 46115 Valencia, Spain
- Aston Institute of Health and Neurosciences, School of Life & Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Luis D’Marco
- Department of Medicine and Surgery, Faculty of Health Sciences, Universidad Cardenal Herrera—CEU, CEU Universities, 46115 Valencia, Spain
- Department of Nephrology, Hospital General Universitario de Valencia, 46014 Valencia, Spain
| |
Collapse
|
6
|
Modification of High-Density Lipoprotein Functions by Diet and Other Lifestyle Changes: A Systematic Review of Randomized Controlled Trials. J Clin Med 2021; 10:jcm10245897. [PMID: 34945193 PMCID: PMC8707678 DOI: 10.3390/jcm10245897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 01/01/2023] Open
Abstract
High-density lipoprotein (HDL) functional traits have emerged as relevant elements that may explain HDL antiatherogenic capacity better than HDL cholesterol levels. These properties have been improved in several lifestyle intervention trials. The aim of this systematic review is to summarize the results of such trials of the most commonly used dietary modifications (fatty acids, cholesterol, antioxidants, alcohol, and calorie restriction) and physical activity. Articles were screened from the Medline database until March 2021, and 118 randomized controlled trials were selected. Results from HDL functions and associated functional components were extracted, including cholesterol efflux capacity, cholesteryl ester transfer protein, lecithin-cholesterol acyltransferase, HDL antioxidant capacity, HDL oxidation status, paraoxonase-1 activity, HDL anti-inflammatory and endothelial protection capacity, HDL-associated phospholipase A2, HDL-associated serum amyloid A, and HDL-alpha-1-antitrypsin. In mainly short-term clinical trials, the consumption of monounsaturated and polyunsaturated fatty acids (particularly omega-3 in fish), and dietary antioxidants showed benefits to HDL functionality, especially in subjects with cardiovascular risk factors. In this regard, antioxidant-rich dietary patterns were able to improve HDL function in both healthy individuals and subjects at high cardiovascular risk. In addition, in randomized trial assays performed mainly in healthy individuals, reverse cholesterol transport with ethanol in moderate quantities enhanced HDL function. Nevertheless, the evidence summarized was of unclear quality and short-term nature and presented heterogeneity in lifestyle modifications, trial designs, and biochemical techniques for the assessment of HDL functions. Such findings should therefore be interpreted with caution. Large-scale, long-term, randomized, controlled trials in different populations and individuals with diverse pathologies are warranted.
Collapse
|
7
|
Strassheim D, Sullivan T, Irwin DC, Gerasimovskaya E, Lahm T, Klemm DJ, Dempsey EC, Stenmark KR, Karoor V. Metabolite G-Protein Coupled Receptors in Cardio-Metabolic Diseases. Cells 2021; 10:3347. [PMID: 34943862 PMCID: PMC8699532 DOI: 10.3390/cells10123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have originally been described as a family of receptors activated by hormones, neurotransmitters, and other mediators. However, in recent years GPCRs have shown to bind endogenous metabolites, which serve functions other than as signaling mediators. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.
Collapse
Affiliation(s)
- Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - David C. Irwin
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Tim Lahm
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Dwight J. Klemm
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Liu T, Ji RL, Tao YX. Naturally occurring mutations in G protein-coupled receptors associated with obesity and type 2 diabetes mellitus. Pharmacol Ther 2021; 234:108044. [PMID: 34822948 DOI: 10.1016/j.pharmthera.2021.108044] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors involved in the regulation of almost all known physiological processes. Dysfunctions of GPCR-mediated signaling have been shown to cause various diseases. The prevalence of obesity and type 2 diabetes mellitus (T2DM), two strongly associated disorders, is increasing worldwide, with tremendous economical and health burden. New safer and more efficacious drugs are required for successful weight reduction and T2DM treatment. Multiple GPCRs are involved in the regulation of energy and glucose homeostasis. Mutations in these GPCRs contribute to the development and progression of obesity and T2DM. Therefore, these receptors can be therapeutic targets for obesity and T2DM. Indeed some of these receptors, such as melanocortin-4 receptor and glucagon-like peptide 1 receptor, have provided important new drugs for treating obesity and T2DM. This review will focus on the naturally occurring mutations of several GPCRs associated with obesity and T2DM, especially incorporating recent large genomic data and insights from structure-function studies, providing leads for future investigations.
Collapse
Affiliation(s)
- Ting Liu
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States.
| |
Collapse
|
9
|
Notch1 haploinsufficiency in mice accelerates adipogenesis. Sci Rep 2021; 11:16761. [PMID: 34408185 PMCID: PMC8373919 DOI: 10.1038/s41598-021-96017-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 07/28/2021] [Indexed: 11/08/2022] Open
Abstract
Notch signaling has been recognized recently as a key regulator of metabolism. Here, we determined the role of Notch1 in adipogenesis in wild-type (WT) and Notch1 hetero-mutant (N1+/-) mice provided with 12-week normal or high-fat diet. Haploinsufficiency of Notch1 was associated with adipose tissue accumulation despite similar food intake. White adipose tissue (WAT) of N1+/- showed accumulation of adipogenic cells (CD34+CD68+ cells), crown-like structures, and upregulation of cell proliferation markers (cyclin D1 and Ki67). Notch1 expression in WAT reached peak levels in 8-week-old WT mice in parallel with fat accumulation, especially under HF/HS-feeding, whereas such increment was blunted in N1+/- mice. Downstream of Notch1 haploinsufficiency, over-expression of adipogenic factors PPARγ and C/EBPα was noted following down-regulation of downstream transcriptional factors of Notch signaling (Hes-1, Pref-1, and Sox9). Both pharmacological Notch signal inhibition and Notch1 knockdown enhanced adipogenesis of 3T3-L1 preadipocytes. N1+/- mice showed impaired glucose and insulin tolerance with downregulation of IRS-1 and GLUT4 in WAT after high-fat diet. Taken together, our results suggest that haploinsufficiency of Notch1 promotes fat accumulation and adipogenesis and provides a mechanistic link between Notch signaling and development of metabolic syndrome.
Collapse
|
10
|
Mediterranean Diet and White Blood Cell Count-A Randomized Controlled Trial. Foods 2021; 10:foods10061268. [PMID: 34199545 PMCID: PMC8227102 DOI: 10.3390/foods10061268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/26/2022] Open
Abstract
We aimed to assess the effects of the antioxidant-rich Mediterranean diet (MedDiet) on white blood cell count. Our study population included participants in the PREvención con DIeta MEDiterránea study (average age 67 years old, 58% women, high cardiovascular risk). We assessed whether a MedDiet intervention enriched in extra-virgin olive oil or nuts, versus a low-fat control diet, modified the incidence of leukocytosis (>11 × 109 leukocytes/L), mild leukopenia (<4.5 × 109 leukocytes/L), or severe leukopenia (<3.5 × 109 leukocytes/L) in individuals without the condition at baseline (n = 3190, n = 2925, and n = 3190, respectively). We also examined whether MedDiet modified the association between leukocyte count alterations and all-cause mortality. Both MedDiet interventions were associated with a lower risk of developing leukopenia (incidence rates: 5.06% in control diet, 3.29% in MedDiet groups combined; hazard ratio [95% confidence interval]: 0.54 [0.36-0.80]) and severe leukopenia (incidence rates: 1.26% in control diet, 0.46% in MedDiet groups combined; hazard ratio: 0.25 [0.10-0.60]). High cumulative adherence to a MedDiet was linked to lower risk of leukocytosis (incidence rates: 2.08% in quartile 1, 0.65% in quartile 4; HRQ4-Q1: 0.29 [0.085-0.99]) and attenuated the association between leukopenia and all-cause mortality (P-interaction = 0.032). In brief, MedDiet decreased the incidence of white blood cell count-related alterations in high cardiovascular risk individuals.
Collapse
|
11
|
Iannotti FA, Vitale RM. The Endocannabinoid System and PPARs: Focus on Their Signalling Crosstalk, Action and Transcriptional Regulation. Cells 2021; 10:586. [PMID: 33799988 PMCID: PMC8001692 DOI: 10.3390/cells10030586] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors including PPARα, PPARγ, and PPARβ/δ, acting as transcription factors to regulate the expression of a plethora of target genes involved in metabolism, immune reaction, cell differentiation, and a variety of other cellular changes and adaptive responses. PPARs are activated by a large number of both endogenous and exogenous lipid molecules, including phyto- and endo-cannabinoids, as well as endocannabinoid-like compounds. In this view, they can be considered an extension of the endocannabinoid system. Besides being directly activated by cannabinoids, PPARs are also indirectly modulated by receptors and enzymes regulating the activity and metabolism of endocannabinoids, and, vice versa, the expression of these receptors and enzymes may be regulated by PPARs. In this review, we provide an overview of the crosstalk between cannabinoids and PPARs, and the importance of their reciprocal regulation and modulation by common ligands, including those belonging to the extended endocannabinoid system (or "endocannabinoidome") in the control of major physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Rosa Maria Vitale
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| |
Collapse
|
12
|
San-Cristobal R, Navas-Carretero S, Martínez-González MÁ, Ordovas JM, Martínez JA. Contribution of macronutrients to obesity: implications for precision nutrition. Nat Rev Endocrinol 2020; 16:305-320. [PMID: 32235875 DOI: 10.1038/s41574-020-0346-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/04/2020] [Indexed: 01/03/2023]
Abstract
The specific metabolic contribution of consuming different energy-yielding macronutrients (namely, carbohydrates, protein and lipids) to obesity is a matter of active debate. In this Review, we summarize the current research concerning associations between the intake of different macronutrients and weight gain and adiposity. We discuss insights into possible differential mechanistic pathways where macronutrients might act on either appetite or adipogenesis to cause weight gain. We also explore the role of dietary macronutrient distribution on thermogenesis or energy expenditure for weight loss and maintenance. On the basis of the data discussed, we describe a novel way to manage excessive body weight; namely, prescribing personalized diets with different macronutrient compositions according to the individual's genotype and/or enterotype. In this context, the interplay of macronutrient consumption with obesity incidence involves mechanisms that affect appetite, thermogenesis and metabolism, and the outcomes of these mechanisms are altered by an individual's genotype and microbiota. Indeed, the interactions of the genetic make-up and/or microbiota features of a person with specific macronutrient intakes or dietary pattern consumption help to explain individualized responses to macronutrients and food patterns, which might represent key factors for comprehensive precision nutrition recommendations and personalized obesity management.
Collapse
Affiliation(s)
- Rodrigo San-Cristobal
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, Madrid, Spain
| | - Santiago Navas-Carretero
- Centre for Nutrition Research, University of Navarra, Pamplona, Spain.
- CIBERobn, Centro de Investigacion Biomedica en Red Area de Fisiologia de la Obesidad y la Nutricion, Madrid, Spain.
- IdisNA, Navarra Institute for Health Research, Pamplona, Spain.
| | - Miguel Ángel Martínez-González
- CIBERobn, Centro de Investigacion Biomedica en Red Area de Fisiologia de la Obesidad y la Nutricion, Madrid, Spain
- IdisNA, Navarra Institute for Health Research, Pamplona, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra, Pamplona, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - José María Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
- Department of Cardiovascular Epidemiology and Population Genetics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Nutritional Genomics of Cardiovascular Disease and Obesity Fundation IMDEA Food, Campus of International Excellence, Spanish National Research Council, Madrid, Spain
| | - José Alfredo Martínez
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, Madrid, Spain
- Centre for Nutrition Research, University of Navarra, Pamplona, Spain
- CIBERobn, Centro de Investigacion Biomedica en Red Area de Fisiologia de la Obesidad y la Nutricion, Madrid, Spain
- IdisNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
13
|
Nakamoto K, Tokuyama S. [Involvement of the Free Fatty Acid Receptor GPR120/FFAR4 in the Development of Nonalcoholic Steatohepatitis]. YAKUGAKU ZASSHI 2020; 139:1169-1175. [PMID: 31474633 DOI: 10.1248/yakushi.19-00011-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by the pathological accumulation of fat in the liver in the absence of any other disease related to liver steatosis, which includes a wide spectrum ranging from mild asymptomatic fatty liver to nonalcoholic steatohepatitis (NASH) and cirrhosis. However, the pathogenesis of NASH has not been established. In this study, we investigated the involvement of the G-protein-coupled receptor 120/free fatty acid receptor 4 (GPR120/FFAR4) in the pathogenesis of NASH. Mice fed a 0.1% methionine- and choline-deficient l-amino acid-defined, high-fat (CDAHF) diet showed a significant increase in plasma aspartate aminotransferase and alanine aminotransferase levels, fatty deposition, inflammatory cell infiltration, and slight fibrosis. Docosahexanoic acid (DHA, a GPR120/FFAR4 agonist) suppressed the inflammatory cytokines in hepatic tissues and prevented liver fibrosis. On the other hand, GPR120/FFAR4-deficient CDAHF-fed mice showed increments in the number of hepatic crown-like structures and immunoreactivity to F4/80-positive cells compared with wild-type mice. Furthermore, the levels of hepatic TNF-α mRNA expression increased in GPR120-deficient mice. These findings suggest that the GPR120/FFAR4-mediating system could be a key signaling pathway to prevent the development of NASH. In this review, we describe our recent data showing that GPR120/FFAR4 could be a therapeutic target in NASH/NAFLD.
Collapse
Affiliation(s)
- Kazuo Nakamoto
- Department of Clinical Pharmacy, School of Pharmaceutucal Sciences, Kobe Gakuin University
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutucal Sciences, Kobe Gakuin University
| |
Collapse
|
14
|
Spatiotemporal dynamic monitoring of fatty acid-receptor interaction on single living cells by multiplexed Raman imaging. Proc Natl Acad Sci U S A 2020; 117:3518-3527. [PMID: 32015136 DOI: 10.1073/pnas.1916238117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Numerous fatty acid receptors have proven to play critical roles in normal physiology. Interactions among these receptor types and their subsequent membrane trafficking has not been fully elucidated, due in part to the lack of efficient tools to track these cellular events. In this study, we fabricated the surface-enhanced Raman scattering (SERS)-based molecular sensors for detection of two putative fatty acid receptors, G protein-coupled receptor 120 (GPR120) and cluster of differentiation 36 (CD36), in a spatiotemporal manner in single cells. These SERS probes allowed multiplex detection of GPR120 and CD36, as well as a peak that represented the cell. This multiplexed sensing system enabled the real-time monitoring of fatty acid-induced receptor activation and dynamic distributions on the cell surface, as well as tracking of the receptors' internalization processes on the addition of fatty acid. Increased SERS signals were seen in engineered HEK293 cells with higher fatty acid concentrations, while decreased responses were found in cell line TBDc1, suggesting that the endocytic process requires innate cellular components. SERS mapping results confirm that GPR120 is the primary receptor and may work synergistically with CD36 in sensing polyunsaturated fatty acids and promoting Ca2+ mobilization, further activating the process of fatty acid uptake. The ability to detect receptors' locations and monitor fatty acid-induced receptor redistribution demonstrates the specificity and potential of our multiplexed SERS imaging platform in the study of fatty acid-receptor interactions and might provide functional information for better understanding their roles in fat intake and development of fat-induced obesity.
Collapse
|
15
|
Hernáez Á, Estruch R. The Mediterranean Diet and Cancer: What Do Human and Molecular Studies Have to Say about It? Nutrients 2019; 11:E2155. [PMID: 31505794 PMCID: PMC6769497 DOI: 10.3390/nu11092155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023] Open
Abstract
Mediterranean diet (MD) is a well-known healthy dietary pattern, linked to: (1) high intakes of olive oil as main the culinary fat, plant-based foods (fruits, vegetables, legumes, whole grains, tree nuts, and seeds), and fish; and (2) a moderate consumption of white meat, eggs, dairy products such as yogurt and cheese, and wine always with meals [...].
Collapse
Affiliation(s)
- Álvaro Hernáez
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.
- CIBER of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Ramón Estruch
- CIBER of Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Internal Medicine, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain.
| |
Collapse
|
16
|
Protective effects of GPR120 agonist-programmed macrophages on renal interstitial fibrosis in unilateral ureteral obstruction (UUO) rats. Biomed Pharmacother 2019; 117:109172. [PMID: 31261028 DOI: 10.1016/j.biopha.2019.109172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/30/2022] Open
Abstract
Macrophages in the kidney play different roles in renal interstitial fibrosis (RIF) depending on their phenotypes. M2 phenotype macrophages are believed to protect the kidney against RIF. Free fatty acid receptor GPR120 is expressed in macrophages, and its activation induces macrophage transition to M2 phenotype. In this study, the effects of GPR120 agonist-programmed macrophages on RIF were investigated. The peritoneal macrophages collected from rats were incubated with GPR120 agonist TUG891 in vitro for 24 h, and then they were transplanted autologously to the kidney with ureteral obstruction by intrarenal injection for 7 days on the same day following unilateral ureteral obstruction (UUO) operation. RIF was identified by Masson trichrome histological staining, and the expression of RIF-related proteins was analyzed by immunohistochemistry and western blot. It was observed that TUG891-programmed macrophages up-regulated the expression of CD206 and arginase-1 while the expression of interleukin-6 and tumor necrosis factor-α were down-regulated. RIF in rats was significantly increased following UUO, which was markedly alleviated by TUG891-programmed macrophages but not untreated macrophages. TUG891-programmed macrophages inhibited the abnormal expression of TGF-β1 and SMAD2. The abnormal expression of epithelial-mesenchymal transition (EMT)-related proteins including vimentin, α-SMA and β-catenin was also significantly decreased in rats with transplantation of TUG891-programmed macrophages as compared to UUO rats. This study suggests that autologous administration of peritoneal macrophages programmed in vitro by GPR120 agonist to kidney has a protective effect against RIF following UUO.
Collapse
|
17
|
Amos D, Cook C, Santanam N. Omega 3 rich diet modulates energy metabolism via GPR120-Nrf2 crosstalk in a novel antioxidant mouse model. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:466-488. [PMID: 30658097 DOI: 10.1016/j.bbalip.2019.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/12/2018] [Accepted: 01/07/2019] [Indexed: 02/08/2023]
Abstract
With obesity rates reaching epidemic proportions, more studies concentrated on reducing the risk and treating this epidemic are vital. Redox stress is an important metabolic regulator involved in the pathophysiology of cardiovascular disease, Type 2 diabetes, and obesity. Oxygen and nitrogen-derived free radicals alter glucose and lipid homeostasis in key metabolic tissues, leading to increases in risk of developing metabolic syndrome. Oxidants derived from dietary fat differ in their metabolic regulation, with numerous studies showing benefits from a high omega 3 rich diet compared to the frequently consumed "western diet" rich in saturated fat. Omega 3 (OM3) fatty acids improve lipid profile, lower inflammation, and ameliorate insulin resistance, possibly through maintaining redox homeostasis. This study is based on the hypothesis that altering endogenous antioxidant production and/or increasing OM3 rich diet consumption will improve energy metabolism and maintain insulin sensitivity. We tested the comparative metabolic effects of a diet rich in saturated fat (HFD) and an omega 3-enriched diet (OM3) in the newly developed 'stress-less' mice model that overexpresses the endogenous antioxidant catalase. Eight weeks of dietary intervention showed that mice overexpressing endogenous catalase compared to their wild-type controls when fed an OM3 enriched diet, in contrast to HFD, activated GPR120-Nrf2 cross-talk to maintain balanced energy metabolism, normal circadian rhythm, and insulin sensitivity. These findings suggest that redox regulation of GPR120/FFAR4 might be an important target in reducing risk of metabolic syndrome and associated diseases.
Collapse
Affiliation(s)
- Deborah Amos
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave, Huntington, WV 25755-0001, United States
| | - Carla Cook
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave, Huntington, WV 25755-0001, United States
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave, Huntington, WV 25755-0001, United States.
| |
Collapse
|
18
|
Bódis K, Kahl S, Simon MC, Zhou Z, Sell H, Knebel B, Tura A, Strassburger K, Burkart V, Müssig K, Markgraf D, Al-Hasani H, Szendroedi J, Roden M. Reduced expression of stearoyl-CoA desaturase-1, but not free fatty acid receptor 2 or 4 in subcutaneous adipose tissue of patients with newly diagnosed type 2 diabetes mellitus. Nutr Diabetes 2018; 8:49. [PMID: 30190473 PMCID: PMC6127327 DOI: 10.1038/s41387-018-0054-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 07/23/2018] [Accepted: 08/03/2018] [Indexed: 12/27/2022] Open
Abstract
Background In subcutaneous adipose tissue (SAT), higher stearoyl-CoA desaturase-1 (SCD1) expression has been related to improved insulin sensitivity in thiazolidinedione-treated type 2 diabetes mellitus patients. In animal models, deficiency of the free fatty acid receptor (FFAR) 2 associated with higher and FFAR4-deficiency with lower insulin sensitivity. We hypothesized that increased FFAR2 expression and reductions in FFAR4 and SCD1 expression in SAT of type 2 diabetes mellitus patients associate positively with insulin resistance and impaired beta cell function. Methods Twenty-five type 2 diabetes mellitus patients and 25 glucose-tolerant humans (CON) matched for sex, age, and BMI underwent mixed-meal tests to assess insulin sensitivity (OGIS) and beta cell function (ΔAUC(C-peptide)0–180 min/ΔAUC(glucose)0–180 min) in a cross-sectional study. Gene and protein expression of SCD1 and FFAR2/4 were quantified in SAT biopsies. Results Insulin sensitivity was 14% and beta cell function 71% (both p < 0.001) lower in type 2 diabetes mellitus patients. In type 2 diabetes mellitus, SCD1 mRNA was fivefold (p < 0.001) and protein expression twofold (p < 0.01) lower. While FFAR2/4 mRNA and protein expression did not differ between groups, FFAR2 protein levels correlated negatively with beta cell function only in CON (r = −0.74, p < 0.01). However, neither SCD1 nor FFAR2/4 protein expression correlated with insulin sensitivity in both groups. Conclusions Type 2 diabetes patients have lower SCD1, which does not associate with insulin resistance. Only in non-diabetic humans, FFAR2 associated with impaired beta cell function.
Collapse
Affiliation(s)
- Kálmán Bódis
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Sabine Kahl
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Marie-Christine Simon
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Zhou Zhou
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
| | - Henrike Sell
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Birgit Knebel
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
| | - Andrea Tura
- Metabolic Unit, Institute of Biomedical Engineering, National Research Council, Padua, Italy
| | - Klaus Strassburger
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Karsten Müssig
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Daniel Markgraf
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich Heine University, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany. .,German Center for Diabetes Research (DZD), München-Neuherberg, Germany. .,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| | | |
Collapse
|
19
|
Li J, Song J, Li X, Rock SB, Sinner HF, Weiss HL, Weiss T, Townsend CM, Gao T, Evers BM. FFAR4 Is Involved in Regulation of Neurotensin Release From Neuroendocrine Cells and Male C57BL/6 Mice. Endocrinology 2018; 159:2939-2952. [PMID: 29796668 PMCID: PMC6486825 DOI: 10.1210/en.2018-00284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023]
Abstract
Neurotensin (NT), a 13 amino-acid peptide, is predominantly released from enteroendocrine cells of the small bowel in response to fat ingestion. Free fatty acid receptors (FFARs) FFAR1 and FFAR4 regulate secretion of gut hormones and insulin. Here, we show that docosahexaenoic acid, a long-chain fatty acid, has the most dramatic effect on NT release. FFAR1 agonists slightly stimulate and FFAR4 agonists dramatically stimulate and amplify NT secretion. Double knockdown of FFAR1 and FFAR4 decreases NT release, whereas overexpression of FFAR4, but not FFAR1, increases NT release. Administration of cpdA, an FFAR4 agonist, but not TAK-875, a selective FFAR1 agonist, increases plasma NT levels and further increases olive oil-stimulated plasma NT levels. Inhibition of MAPK kinase (MEK)/ERK1/2 decreased fatty acid-stimulated NT release but increased AMP-activated protein kinase (AMPK) phosphorylation. In contrast, inhibition of AMPK further increased NT secretion and ERK1/2 phosphorylation mediated by FFAR1 or FFAR4. Our results indicate that FFAR4 plays a more critical role than FFAR1 in mediation of fat-regulated NT release and in inhibitory crosstalk between MEK/ERK1/2 and AMPK in the control of NT release downstream of FFAR1 and FFAR4.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Jun Song
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Xian Li
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Stephanie B Rock
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Heather F Sinner
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Heidi L Weiss
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Todd Weiss
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Courtney M Townsend
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas
| | - Tianyan Gao
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - B Mark Evers
- Department of Surgery, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
- Correspondence: B. Mark Evers, MD, University of Kentucky, Markey Cancer Center, CC140 Roach Building, Lexington, Kentucky 40536. E-mail:
| |
Collapse
|
20
|
Volpi-Lagreca G, Duckett SK. Supplementation of glycerol or fructose via drinking water to grazing lambs on tissue glycogen level and lipogenesis. J Anim Sci 2018; 95:2558-2575. [PMID: 28727036 DOI: 10.2527/jas.2017.1449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lambs ( = 18; 40.1 ± 7.4 kg BW) were used to assess supplementation of glycerol or fructose via drinking water on growth, tissue glycogen levels, postmortem glycolysis, and lipogenesis. Lambs were blocked by BW and allocated to alfalfa paddocks (2 lambs/paddock and 3 paddocks/treatment). Each paddock within a block was assigned randomly to drinking water treatments for 30 d: 1) control (CON), 2) 120 g fructose/L of drinking water (FRU), or 3) 120 g glycerol/L of drinking water (GLY). Lambs grazed alfalfa with free access to water treatments for 28 d and then were fasted in indoor pens for a final 2 d with access to only water treatments. Data were analyzed using the MIXED procedure of SAS with water treatment and time (when appropriate) in the model. During the 28-d grazing period, ADG was greater ( < 0.05) for GLY than for CON or FRU. During the 2-d fasting period, BW shrink was lower ( < 0.05) for GLY compared with CON or FRU. Hot carcass weight was greater ( < 0.05) for GLY than for FRU. The interaction for glycogen content × postmortem time was significant ( = 0.003) in LM and semitendinosus (ST) muscles. Glycogen content in the LM was greater ( < 0.05) for GLY at 2 and 3 h and for FRU at 1 h postmortem compared with CON. Glycogen content in ST did not differ between treatments ( > 0.05). Liver glycogen content was over 14-fold greater ( < 0.05) for GLY compared with FRU or CON. Liver free glucose was greater ( < 0.05) for GLY than for CON, whereas liver lipid content was higher ( < 0.05) for CON than for GLY. Supplementation with GLY increased ( < 0.05) odd-chain fatty acids in LM, subcutaneous fat (SQ), and the liver. Stearic acid (C18:0) concentrations were reduced in LM ( = 0.064) and subcutaneous adipose tissue (SQ; = 0.018), whereas oleic acid (C18:1 -9) concentration tended to be increased ( = 0.066) in SQ with FRU and GLY. Linolenic acid (C18:3 -3) was reduced ( = 0.031) and all long-chain -3 fatty acid (eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid) concentrations were increased ( < 0.05) with FRU and GLY compared with CON. Glycerol supplementation upregulated ( < 0.05) stearoyl-CoA desaturate () and fatty acid synthase () mRNA by over 40-fold in the SQ and 5-fold in the liver. Glycerol supplementation also upregulated ( < 0.05) glucose transporters and glycogen branching enzyme in the liver. Overall, glycerol supplementation improved growth, reduced BW shrink during fasting, increased glycogen content in muscle and the liver, and stimulated de novo lipogenesis.
Collapse
|
21
|
Cai X, Hayashi S, Fang C, Hao S, Wang X, Nishiguchi S, Tsutsui H, Sheng J. Pu'erh tea extract-mediated protection against hepatosteatosis and insulin resistance in mice with diet-induced obesity is associated with the induction of de novo lipogenesis in visceral adipose tissue. J Gastroenterol 2017; 52:1240-1251. [PMID: 28364190 DOI: 10.1007/s00535-017-1332-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/16/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND White adipose tissue (WAT) is important for the maintenance of metabolic homeostasis, and metabolic syndrome is sometimes associated with WAT dysfunction in humans and animals. WAT reportedly plays a key, beneficial role in the maintenance of glucose and lipid homeostasis during de novo lipogenesis (DNL). Pu'erh tea extract (PTE) can inhibit harmful, ectopic DNL in the liver, thus protecting against hepatosteatosis, in mice with diet-induced obesity. We examined whether PTE could induce DNL in WAT and consequently protect against hepatosteatosis. METHODS C57BL/6 male mice were fed a high-fat diet (HFD) with/without PTE for 16 weeks. Systemic insulin sensitivity was determined using HOMA-IR, insulin- and glucose-tolerance tests, and WAT adipogenesis was evaluated by histological analysis. Adipogenesis-, inflammation-, and DNL-related gene expression in visceral AT (VAT) and subcutaneous AT (SAT) was measured using quantitative reverse transcription-PCR. Regression analysis was used to investigate the association between DNL in WAT and systemic insulin resistance or hepatosteatosis. RESULTS Pu'erh tea extract significantly reduced the gain of body weight and SAT, but not VAT adiposity, in mice fed the high-fat diet and induced adipogenesis in VAT. The expression of DNL-related genes, including Glut4, encoding an important insulin-regulated glucose transporter (GLUT4), were highly elevated in VAT. Moreover, PTE inhibited VAT inflammation by simultaneously downregulating inflammatory molecules and inducing expression of Gpr120 that encodes an anti-inflammatory and pro-adipogenesis receptor (GPR-120) that recognizes unsaturated long-chain fatty acids, including DNL products. The expression of DNL-related genes in VAT was inversely correlated with hepatosteatosis and systemic insulin resistance. CONCLUSIONS Activation of DNL in VAT may explain PTE-mediated alleviation of hepatosteatosis symptoms and systemic insulin resistance.
Collapse
Affiliation(s)
- Xianbin Cai
- Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Shuhei Hayashi
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
- Department of Pu-erh Tea and Medical Science, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Chongye Fang
- Department of Pu-erh Tea and Medical Science, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
- Key Laboratory of Pu-erh Tea Science, The Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | | | - Xuanjun Wang
- Key Laboratory of Pu-erh Tea Science, The Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| | - Shuhei Nishiguchi
- Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Hiroko Tsutsui
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
- Department of Pu-erh Tea and Medical Science, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Jun Sheng
- Key Laboratory of Pu-erh Tea Science, The Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China.
- Pu'erh Tea Research Institute, Pu'erh, China.
| |
Collapse
|
22
|
Castilla-Madrigal R, Barrenetxe J, Moreno-Aliaga MJ, Lostao MP. EPA blocks TNF-α-induced inhibition of sugar uptake in Caco-2 cells via GPR120 and AMPK. J Cell Physiol 2017; 233:2426-2433. [DOI: 10.1002/jcp.26115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 08/01/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Rosa Castilla-Madrigal
- Department of Nutrition, Food Science and Physiology; University of Navarra; Pamplona Spain
- University of Navarra; Nutrition Research Centre; Pamplona Spain
| | - Jaione Barrenetxe
- Department of Nutrition, Food Science and Physiology; University of Navarra; Pamplona Spain
| | - María J. Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology; University of Navarra; Pamplona Spain
- University of Navarra; Nutrition Research Centre; Pamplona Spain
- IdiSNA; Navarra Institute for Health Research; Pamplona Spain
- CIBERobn, Physiopathology of Obesity and Nutrition; Institute of Health Carlos III (ISCIII); Madrid Spain
| | - María Pilar Lostao
- Department of Nutrition, Food Science and Physiology; University of Navarra; Pamplona Spain
- University of Navarra; Nutrition Research Centre; Pamplona Spain
- IdiSNA; Navarra Institute for Health Research; Pamplona Spain
| |
Collapse
|
23
|
Bae IS, Park PJ, Lee JH, Cho EG, Lee TR, Kim SH. PPARγ-mediated G-protein coupled receptor 120 signaling pathway promotes transcriptional activation of miR-143 in adipocytes. Gene 2017; 626:64-69. [PMID: 28495174 DOI: 10.1016/j.gene.2017.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/16/2017] [Accepted: 05/03/2017] [Indexed: 10/19/2022]
Abstract
MicroRNAs (miRNAs), the small noncoding RNAs, regulate various biological processes such as adipogenesis. MicroRNA-143 (miR-143) promotes adipocyte differentiation, and is correlated with obesity in mice fed a high-fat diet. However, the transcriptional regulation of miR-143 is largely unknown. In this study, we identified that miR-143 is a target of peroxisome proliferator-activated receptor γ (PPARγ), a key transcription factor in adipogenesis. Four putative peroxisome proliferator response elements (PPREs) were identified in the miR-143 promoter region. Using chromatin immune-precipitation, we observed that PPARγ was bound with two PPRE regions of the miR-143 promoter in 3T3-L1 adipocytes. A luciferase reporter assay showed that the PPRE1 region (-1330/-1309) of the miR-143 promoter played an important role in PPARγ transcriptional activation. In addition, we determined that G-protein coupled receptor 120 (GPR 120), which functions as an omega 3 fatty acid receptor, affected miR-143 expression in adipocytes. GPR120 silencing in adipocytes inhibited the expression of PPARγ and miR-143, whereas GPR120 overexpression led to increased expressions of PPARγ and miR-143. Silencing of PPARγ inhibited the induction of miR-143 by GPR-120. These results suggested that a PPARγ-mediated GPR120 signaling pathway promotes transcriptional activation of miR-143 in adipocytes.
Collapse
Affiliation(s)
- In-Seon Bae
- Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Phil June Park
- Bioscience Research Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do 17074, Republic of Korea
| | - Jeong Hwa Lee
- Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eun-Gyung Cho
- Bioscience Research Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do 17074, Republic of Korea
| | - Tae Ryong Lee
- Bioscience Research Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do 17074, Republic of Korea.
| | - Sang Hoon Kim
- Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
24
|
Song T, Yang Y, Zhou Y, Wei H, Peng J. GPR120: a critical role in adipogenesis, inflammation, and energy metabolism in adipose tissue. Cell Mol Life Sci 2017; 74:2723-2733. [PMID: 28285320 PMCID: PMC11107682 DOI: 10.1007/s00018-017-2492-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/12/2023]
Abstract
It is well known that adipose tissue has a critical role in the development of obesity and metabolic diseases and that adipose tissue acts as an endocrine organ to regulate lipid and glucose metabolism. Accumulating in the adipose tissue, fatty acids serve as a primary source of essential nutrients and act on intracellular and cell surface receptors to regulate biological events. G protein-coupled receptor 120 (GPR120) represents a promising target for the treatment of obesity-related metabolic disorders for its involvement in the regulation of adipogenesis, inflammation, glucose uptake, and insulin resistance. In this review, we summarize recent studies and advances regarding the systemic role of GPR120 in adipose tissue, including both white and brown adipocytes. We offer a new perspective by comparing the different roles in a variety of homeostatic processes from adipogenic development to adipocyte metabolism, and we also discuss the effects of natural and synthetic agonists that may be potential agents for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Tongxing Song
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yang Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yuanfei Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
25
|
Nakamoto K, Obata T, Hirasawa A, Kim KI, Kim SR, Tokuyama S. [A Future Perspective on the Involvement of n-3 Polyunsaturated Fatty Acid in the Development of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis]. YAKUGAKU ZASSHI 2017; 136:583-9. [PMID: 27040343 DOI: 10.1248/yakushi.15-00264-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by the pathological accumulation of fat in the liver in the absence of any other disease related to liver steatosis, which includes a wide spectrum of liver diseases ranging from mild asymptomatic fatty liver to nonalcoholic steatohepatitis (NASH) and cirrhosis. Recently, it was reported that NAFLD is characterized by the impaired bioavailability of liver n-6 and n-3 long-chain polyunsaturated fatty acids (PUFAs). That is, compared with healthy individuals, steatosis and steatohepatitis patients have higher n-6/n-3 PUFA ratios. Furthermore, per recent research, decreasing the intake of total fats and increasing the intake of n-3 PUFAs may be beneficial in the treatment of NAFLD. In contrast, some reports describe that NASH patients have more metabolic abnormalities than NAFLD patients; however, these are not influenced by dietary fatty acids. Thus, at present, various opinions exist regarding the efficacy of n-3 PUFA in the treatment of NAFLD. In this review, we discuss the considerable interest n-3 PUFA has attracted as a potential treatment for NAFLD.
Collapse
Affiliation(s)
- Kazuo Nakamoto
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| | | | | | | | | | | |
Collapse
|
26
|
Huang CW, Chien YS, Chen YJ, Ajuwon KM, Mersmann HM, Ding ST. Role of n-3 Polyunsaturated Fatty Acids in Ameliorating the Obesity-Induced Metabolic Syndrome in Animal Models and Humans. Int J Mol Sci 2016; 17:ijms17101689. [PMID: 27735847 PMCID: PMC5085721 DOI: 10.3390/ijms17101689] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/05/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023] Open
Abstract
The incidence of obesity and its comorbidities, such as insulin resistance and type II diabetes, are increasing dramatically, perhaps caused by the change in the fatty acid composition of common human diets. Adipose tissue plays a role as the major energy reservoir in the body. An excess of adipose mass accumulation caused by chronic positive energy balance results in obesity. The n-3 polyunsaturated fatty acids (n-3 PUFA), DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) exert numerous beneficial effects to maintain physiological homeostasis. In the current review, the physiology of n-3 PUFA effects in the body is delineated from studies conducted in both human and animal experiments. Although mechanistic studies in human are limited, numerous studies conducted in animals and models in vitro provide potential molecular mechanisms of the effects of these fatty acids. Three aspects of n-3 PUFA in adipocyte regulation are discussed: (1) lipid metabolism, including adipocyte differentiation, lipolysis and lipogenesis; (2) energy expenditure, such as mitochondrial and peroxisomal fatty acid β-oxidation; and (3) inflammation, including adipokines and specialized pro-resolving lipid mediators. Additionally, the mechanisms by which n-3 PUFA regulate gene expression are highlighted. The beneficial effects of n-3 PUFA may help to reduce the incidence of obesity and its comorbidities.
Collapse
Affiliation(s)
- Chao-Wei Huang
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Yi-Shan Chien
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Yu-Jen Chen
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan.
| | - Kolapo M Ajuwon
- Department of Animal Science, Purdue University, West Lafayette, IN 47907-2054, USA.
| | - Harry M Mersmann
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan.
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
27
|
Lamri A, Bonnefond A, Meyre D, Balkau B, Roussel R, Marre M, Froguel P, Fumeron F. Interaction between GPR120 p.R270H loss-of-function variant and dietary fat intake on incident type 2 diabetes risk in the D.E.S.I.R. study. Nutr Metab Cardiovasc Dis 2016; 26:931-936. [PMID: 27212621 DOI: 10.1016/j.numecd.2016.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND AIMS GPR120 (encoded by FFAR4) is a lipid sensor that plays an important role in the control of energy balance. GPR120 is activated by long chain fatty acids (FAs) including omega-3 FAs. In humans, the loss of function p.R270H variant of the gene FFAR4 has been associated with a lower protein activity, an increased risk of obesity and higher fasting plasma glucose levels. The aim of this study was to investigate whether p.R270H interacts with dietary fat intake to modulate the risk of type 2 diabetes (T2D, 198 incident; 368 prevalent cases) and overweight (787 incident and 2891 prevalent cases) in the prospective D.E.S.I.R. study (n = 5,212, 9 years follow-up). METHODS AND RESULTS The association of p.R270H with dietary fat and total calories was assessed by linear mixed models. The interaction between p.R270H and dietary fat on T2D and overweight was assessed by logistic regression analysis. The p.R270H variant had a minor allele frequency of 1.45% and was not significantly associated with total calories intake, fat intake or the total calories derived from fat (%). However, there was a significant interaction between p.R270H and dietary fat modulating the incidence of T2D (Pinteraction = 0.02) where the H-carriers had a higher risk of T2D than RR homozygotes in the low fat intake category only. The interaction between p.R270H and fat intake modulating the incidence and prevalence of overweight was not significant. CONCLUSION The p.R270H variant of GPR120 modulates the risk of T2D in interaction with dietary fat intake in the D.E.S.I.R.
Collapse
Affiliation(s)
- A Lamri
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherches des Cordeliers, Research Unit 1138, Paris, France; Paris Diderot University, Sorbonne Paris Cité, Paris, France; Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Canada
| | - A Bonnefond
- CNRS-UMR8199, Lille Pasteur Institute, Lille, France; Lille University, Lille, France; European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
| | - D Meyre
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - B Balkau
- INSERM, CESP Centre for Research in Epidemiology and Population Health, U1018, Villejuif, France; Universities of St Quentin-Versailles and Paris Sud 11, UMRS 1018, Villejuif, France
| | - R Roussel
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherches des Cordeliers, Research Unit 1138, Paris, France; Paris Diderot University, Sorbonne Paris Cité, Paris, France; Assistance Publique Hôpitaux de Paris (APHP), Bichat Hospital, Department of Diabetology, Endocrinology and Nutrition, Paris, France
| | - M Marre
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherches des Cordeliers, Research Unit 1138, Paris, France; Paris Diderot University, Sorbonne Paris Cité, Paris, France; Assistance Publique Hôpitaux de Paris (APHP), Bichat Hospital, Department of Diabetology, Endocrinology and Nutrition, Paris, France
| | - P Froguel
- CNRS-UMR8199, Lille Pasteur Institute, Lille, France; Lille University, Lille, France; European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
| | - F Fumeron
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherches des Cordeliers, Research Unit 1138, Paris, France; Paris Diderot University, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
28
|
Ran T, Li H, Liu Y, Zhou C, Tang S, Han X, Wang M, He Z, Kang J, Yan Q, Tan Z, Beauchemin KA. Cloning, Phylogenetic Analysis, and Distribution of Free Fatty Acid Receptor GPR120 Expression along the Gastrointestinal Tract of Housing versus Grazing Kid Goats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2333-2341. [PMID: 26914739 DOI: 10.1021/acs.jafc.5b06131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
G-protein-coupled receptor 120 (GPR120) is reported as a long-chain fatty acid (LCFA) receptor that elicits free fatty acid (FFA) regulation on metabolism homeostasis. The study aimed to clone the gpr120 gene of goats (g-GPR120) and subsequently investigate phylogenetic analysis and tissue distribution throughout the digestive tracts of kid goats, as well as the effect of housing versus grazing (H vs G) feeding systems on GPR120 expression. Partial coding sequence (CDS) of g-GPR120 was cloned and submitted to NCBI (accession no. KU161270 ). Phylogenetic analysis revealed that g-GPR120 shared higher homology in both mRNA and amino acid sequences for ruminants than nonruminants. Immunochemistry, real-time PCR, and Western blot analysis showed that g-GPR120 was expressed throughout the digestive tracts of goats. The expression of g-GPR120 was affected by feeding system and age, with greater expression of g-GPR120 in the G group. It was concluded that the g-GPR120-mediated LCFA chemosensing mechanism is widely present in the tongue and gastrointestinal tract of goats and that its expression can be affected by feeding system and age.
Collapse
Affiliation(s)
- Tao Ran
- Key Laboratory for Agro-Ecological Processes in Subtropical Region and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
- Graduate University of the Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Hengzhi Li
- Key Laboratory for Agro-Ecological Processes in Subtropical Region and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
- Graduate University of the Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Yong Liu
- Key Laboratory for Agro-Ecological Processes in Subtropical Region and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México , Toluca, Estado de México C.P. 50090, Mexico
| | - Chuanshe Zhou
- Key Laboratory for Agro-Ecological Processes in Subtropical Region and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
| | - Shaoxun Tang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
| | - Xuefeng Han
- Key Laboratory for Agro-Ecological Processes in Subtropical Region and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
| | - Min Wang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
| | - Zhixiong He
- Key Laboratory for Agro-Ecological Processes in Subtropical Region and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
- Lethbridge Research Centre, Agriculture and Agri-Food Canada , Lethbridge, Alberta T1J 4B1, Canada
| | - Jinghe Kang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
| | - Qiongxian Yan
- Key Laboratory for Agro-Ecological Processes in Subtropical Region and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
| | - Zhiliang Tan
- Key Laboratory for Agro-Ecological Processes in Subtropical Region and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
| | - Karen A Beauchemin
- Lethbridge Research Centre, Agriculture and Agri-Food Canada , Lethbridge, Alberta T1J 4B1, Canada
| |
Collapse
|
29
|
|
30
|
Li AJ, Wang Q, Dinh TT, Simasko SM, Ritter S. Mercaptoacetate blocks fatty acid-induced GLP-1 secretion in male rats by directly antagonizing GPR40 fatty acid receptors. Am J Physiol Regul Integr Comp Physiol 2016; 310:R724-32. [PMID: 26791830 DOI: 10.1152/ajpregu.00387.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/19/2016] [Indexed: 12/13/2022]
Abstract
Mercaptoacetate (MA) is an orexigenic agent reported to block fatty acid (FA) oxidation. Recently, however, we reported evidence from isolated nodose ganglion neurons that MA antagonizes the G protein-coupled long- and medium-chain FA receptor GPR40. GPR40 mediates FA-induced secretion of the satietogenic incretin peptide glucagon-like peptide 1 (GLP-1), by enteroendocrine L cells, as well as FA-induced enhancement of glucose-stimulated insulin secretion. Our results in cultured nodose neurons suggest that MA would also block GPR40 in enteroendocrine cells controlling GLP-1 secretion. If so, this would suggest an alternative mechanism by which MA increases food intake. We tested the hypothesis that MA blocks FA-induced GLP-1 secretion in vitro using cultured STC-1 cells (a murine enteroendocrine cell line) and in vivo in adult male rats. In vitro, MA blocked the increase in both cytosolic Ca(2+)and GLP-1 release stimulated by FAs and also reduced (but less effectively) the response of STC-1 cells to grifolic acid, a partial agonist of the GPR120 FA receptor. In vivo, MA reduced GLP-1 secretion following olive oil gavage while also increasing glucose and decreasing insulin levels. The carnitine palmatoyltransferase 1 antagonist etomoxir did not alter these responses. Results indicate that MA's actions, including its orexigenic effect, are mediated by GPR40 (and possibly GPR120) receptor antagonism and not by blockade of fat oxidation, as previously believed. Analysis of MA's interaction with GPR40 may facilitate understanding of the multiple functions of this receptor and the manner in which FAs participate in the control of hunger and satiety.
Collapse
Affiliation(s)
- Ai-Jun Li
- Programs in Neuroscience, Washington State University, Pullman, Washington
| | - Qing Wang
- Programs in Neuroscience, Washington State University, Pullman, Washington
| | - Thu T Dinh
- Programs in Neuroscience, Washington State University, Pullman, Washington
| | - Steve M Simasko
- Programs in Neuroscience, Washington State University, Pullman, Washington
| | - Sue Ritter
- Programs in Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
31
|
Anbazhagan AN, Priyamvada S, Gujral T, Bhattacharyya S, Alrefai WA, Dudeja PK, Borthakur A. A novel anti-inflammatory role of GPR120 in intestinal epithelial cells. Am J Physiol Cell Physiol 2016; 310:C612-21. [PMID: 26791484 DOI: 10.1152/ajpcell.00123.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022]
Abstract
GPR120 (free fatty acid receptor-4) is a G protein-coupled receptor for medium- and long-chain unsaturated fatty acids, including ω-3 fatty acids. Recent studies have shown GPR120 to play cardinal roles in metabolic disorders via modulation of gut hormone secretion and insulin sensitivity and to exert anti-inflammatory effects in macrophages and adipose tissues. However, information on anti-inflammatory role of GPR120 at the level of intestinal epithelium is very limited. Current studies demonstrated differential levels of GPR120 mRNA and protein along the length of the human, mouse, and rat intestine and delineated distinct anti-inflammatory responses following GPR120 activation in model human intestinal epithelial Caco-2 cells, but not in model mouse intestinal epithelial endocrine cell line STC-1. In Caco-2 cells, GPR120 was internalized, bound to β-arrestin-2, and attenuated NF-κB activation in response to 30-min exposure to the agonists GW9508, TUG-891, or docosahexaenoic acid. These effects were abrogated in response to small interfering RNA silencing of β-arrestin-2. Treatment of STC-1 cells with these agonists did not induce receptor internalization and had no effects on NF-κB activation, although treatment with the agonists GW9508 or TUG-891 for 6 h augmented the synthesis and secretion of the gut hormone glucagon-like peptide-1 in this cell line. Our studies for the first time demonstrated a GPR120-mediated novel anti-inflammatory pathway in specific intestinal epithelial cell types that could be of therapeutic relevance to intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Arivarasu N Anbazhagan
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, Illinois; and
| | - Shubha Priyamvada
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, Illinois; and
| | - Tarunmeet Gujral
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, Illinois; and
| | - Sumit Bhattacharyya
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, Illinois; and
| | - Waddah A Alrefai
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, Illinois; and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Pradeep K Dudeja
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, Illinois; and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Alip Borthakur
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
32
|
Sclafani A, Touzani K, Ackroff K. Intragastric fat self-administration is impaired in GPR40/120 double knockout mice. Physiol Behav 2015; 147:141-8. [PMID: 25911263 DOI: 10.1016/j.physbeh.2015.04.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/18/2015] [Accepted: 04/14/2015] [Indexed: 11/15/2022]
Abstract
Mice acquire strong preferences for flavors paired with intragastric (IG) fat infusions. This IG fat conditioning is attenuated in double knockout (DoKO) mice missing GPR40 and GPR120 fatty acid receptors. Here we determined if GPR40/120 DoKO mice are also impaired in IG fat self-administration in an operant lick task. In daily 1-h sessions the mice were trained with a sipper spout that contained dry food pellets; licks on the spout triggered infusions of IG fat (Intralipid). The training sessions were followed by test sessions with an empty spout. GPR40/120 DoKO mice self-infused more 20% fat than wild type (WT) C57BL/6 mice in training with a food-baited spout (2.4 vs. 2.0kcal/h) but self-infused less 20% fat than WT mice in empty spout tests (1.2 vs. 1.7kcal/h). The DoKO mice also self-infused less 5% fat than WT mice (0.6 vs. 1.3kcal/h) although both groups emitted more licks for 5% fat than 20% fat. The DoKO and WT mice did not differ, however, in their self-infusion of 12.5% glucose (1.5 vs. 1.6kcal/h), which is isocaloric to 5% fat. A second 5% IL test showed that the DoKO mice reverted to a reduced self-infusion compared to WT mice. When the infusion was shifted to water, WT mice reduced licking in the first extinction session, whereas DoKO mice were less sensitive to the absence of infused fat. Our results indicate that post-oral GPR40/120 signaling is not required to process IG fat infusions in food-baited spout training sessions but contributes to post-oral fat reinforcement in empty spout tests and flavor conditioning tests.
Collapse
|
33
|
Ichimura A, Kimura I. Editorial: Obesity and Diabetes: Energy Regulation by Free Fatty Acid Receptors. Front Endocrinol (Lausanne) 2015; 6:178. [PMID: 26635727 PMCID: PMC4653295 DOI: 10.3389/fendo.2015.00178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/05/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Atsuhiko Ichimura
- Department of Biological Chemistry, Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, Japan
- Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
- *Correspondence: Atsuhiko Ichimura, ; Ikuo Kimura,
| | - Ikuo Kimura
- Tokyo University of Agriculture and Technology, Tokyo, Japan, Kyoto, Japan
- *Correspondence: Atsuhiko Ichimura, ; Ikuo Kimura,
| |
Collapse
|