1
|
Lewko B, Wodzińska M, Daca A, Płoska A, Obremska K, Kalinowski L. Urolithin A Ameliorates the TGF Beta-Dependent Impairment of Podocytes Exposed to High Glucose. J Pers Med 2024; 14:914. [PMID: 39338168 PMCID: PMC11433157 DOI: 10.3390/jpm14090914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/30/2024] Open
Abstract
Increased activity of transforming growth factor-beta (TGF-β) is a key factor mediating kidney impairment in diabetes. Glomerular podocytes, the crucial component of the renal filter, are a direct target of TGF-β action, resulting in irreversible cell loss and progression of chronic kidney disease (CKD). Urolithin A (UA) is a member of the family of polyphenol metabolites produced by gut microbiota from ellagitannins and ellagic acid-rich foods. The broad spectrum of biological activities of UA makes it a promising candidate for the treatment of podocyte disorders. In this in vitro study, we investigated whether UA influences the changes exerted in podocytes by TGF-β and high glucose. Following a 7-day incubation in normal (NG, 5.5 mM) or high (HG, 25 mM) glucose, the cells were treated with UA and/or TGF-β1 for 24 h. HG and TGF-β1, each independent and in concert reduced expression of nephrin, increased podocyte motility, and up-regulated expression of b3 integrin and fibronectin. These typical-for-epithelial-to-mesenchymal transition (EMT) effects were inhibited by UA in both HG and NG conditions. UA also reduced the typically elevated HG expression of TGF-β receptors and activation of the TGF-β signal transducer Smad2. Our results indicate that in podocytes cultured in conditions mimicking the diabetic milieu, UA inhibits and reverses changes underlying podocytopenia in diabetic kidneys. Hence, UA should be considered as a potential therapeutic agent in podocytopathies.
Collapse
Affiliation(s)
- Barbara Lewko
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland
| | | | - Agnieszka Daca
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland
| | | | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland
- BioTechMed Center, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 80-223 Gdansk, Poland
| |
Collapse
|
2
|
Lin J, Lin Y, Li X, He F, Gao Q, Wang Y, Huang Z, Xiong F. Uncovering the Role of Anoikis-Related Genes in Modulating Immune Infiltration and Pathogenesis of Diabetic Kidney Disease. J Inflamm Res 2024; 17:4975-4991. [PMID: 39070131 PMCID: PMC11283803 DOI: 10.2147/jir.s446752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/22/2024] [Indexed: 07/30/2024] Open
Abstract
Background Diabetic kidney disease (DKD) is an intricate complication of diabetes with limited treatment options. Anoikis, a programmed cell death activated by loss of cell anchorage to the extracellular matrix, participated in various physiological and pathological processes. Our study aimed to elucidate the role of anoikis-related genes in DKD pathogenesis. Methods Differentially expressed genes (DEGs) associated with anoikis in DKD were identified. Weighted gene co-expression network analysis (WGCNA) was conducted to identify DKD-correlated modules and assess their functional implications. A diagnostic model for DKD was developed using LASSO regression and Gene set variation analysis (GSVA) was performed for enrichment analysis. Experimental validation was employed to validate the significance of selected genes in the progression of DKD. Results We identified 10 anoikis-related DEGs involved in key signaling pathways impacting DKD progression. WGCNA highlighted the yellow module's significant enrichment in immune response and regulatory pathways. Correlation analysis further revealed the association between immune infiltration and anoikis-related DEGs. Our LASSO regression-based diagnostic model demonstrated a well-predictive efficacy with seven identified genes. GSVA indicated that gene function in the high-risk group was primarily associated with immune regulation. Further experimental validation using diabetic mouse models and data analysis in the single-cell dataset confirmed the significance of PYCARD and SFN in DKD progression. High glucose stimulation in RAW264.7 and TCMK-1 cells showed significantly increased expression levels of both Pycard and Sfn. Co-expression analysis demonstrated distinct functions of PYCARD and SFN, with KEGG pathway analysis showing significant enrichment in immune regulation and cell proliferation pathway. Conclusion In conclusion, our study provides valuable insights into the molecular mechanisms involved in DKD pathogenesis, specifically highlighting the role of anoikis-related genes in modulating immune infiltration. These findings suggest that targeting these genes may hold promise for future diagnostic and therapeutic approaches in DKD management.
Collapse
Affiliation(s)
- Jiaqiong Lin
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People’s Republic of China
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, People’s Republic of China
| | - Yan Lin
- Yunkang School of Medicine and Health, Nanfang College, Guangzhou, People’s Republic of China
| | - Xiaoyong Li
- General Surgery Department; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Fei He
- Department of Medical Genetics/Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Qinyuan Gao
- Yunkang School of Medicine and Health, Nanfang College, Guangzhou, People’s Republic of China
| | - Yuanjun Wang
- Yunkang School of Medicine and Health, Nanfang College, Guangzhou, People’s Republic of China
| | - Zena Huang
- Yunkang School of Medicine and Health, Nanfang College, Guangzhou, People’s Republic of China
| | - Fu Xiong
- Department of Medical Genetics/Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
3
|
Fawaz S, Martin Alonso A, Qiu Y, Ramnath R, Stowell-Connolly H, Gamez M, May C, Down C, Coward RJ, Butler MJ, Welsh GI, Satchell SC, Foster RR. Adiponectin Reduces Glomerular Endothelial Glycocalyx Disruption and Restores Glomerular Barrier Function in a Mouse Model of Type 2 Diabetes. Diabetes 2024; 73:964-976. [PMID: 38530908 DOI: 10.2337/db23-0455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
Adiponectin has vascular anti-inflammatory and protective effects. Although adiponectin protects against the development of albuminuria, historically, the focus has been on podocyte protection within the glomerular filtration barrier (GFB). The first barrier to albumin in the GFB is the endothelial glycocalyx (eGlx), a surface gel-like barrier covering glomerular endothelial cells (GEnCs). In diabetes, eGlx dysfunction occurs before podocyte damage; hence, we hypothesized that adiponectin could protect from eGlx damage to prevent early vascular damage in diabetic kidney disease (DKD). Globular adiponectin (gAd) activated AMPK signaling in human GEnCs through AdipoR1. It significantly reduced eGlx shedding and the tumor necrosis factor-α (TNF-α)-mediated increase in syndecan-4 (SDC4) and MMP2 mRNA expression in GEnCs in vitro. It protected against increased TNF-α mRNA expression in glomeruli isolated from db/db mice and against expression of genes associated with glycocalyx shedding (namely, SDC4, MMP2, and MMP9). In addition, gAd protected against increased glomerular albumin permeability (Ps'alb) in glomeruli isolated from db/db mice when administered intraperitoneally and when applied directly to glomeruli (ex vivo). Ps'alb was inversely correlated with eGlx depth in vivo. In summary, adiponectin restored eGlx depth, which was correlated with improved glomerular barrier function, in diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Sarah Fawaz
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Aldara Martin Alonso
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Yan Qiu
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Raina Ramnath
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Holly Stowell-Connolly
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Monica Gamez
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Carl May
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Colin Down
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Richard J Coward
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Matthew J Butler
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Simon C Satchell
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Rebecca R Foster
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| |
Collapse
|
4
|
Qadri AH, Prajapati J, Faheem I, Bhattacharjee U, Padmanaban HK, Mulukala SKN, Pasupulati AK. Biophysical characterization and insights into the oligomeric nature of CD2-associated protein. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 15:20-33. [PMID: 38765876 PMCID: PMC11101965 DOI: 10.62347/uvsh8436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/27/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Glomerular podocytes are specialized epithelial cells localized to the blood-urine interface of the kidney. Podocyte slit-diaphragm (SD), a size-and-charge-selective junction, is instrumental in blood ultrafiltration and the formation of protein-free urine. The SD consists of macromolecular complexes of several proteins, such as nephrin, podocin, and CD2-associated protein (CD2AP). CD2AP is an adapter protein and is considered to be crucial for the integrity of SD. Mutations in the SD proteins cause nephrotic syndrome (NS), characterized by proteinuria. SD proteins' structural features must be elucidated to understand the mechanism of proteinuria in NS. In this study, we expressed, purified, and biophysically characterized heterologously expressed human CD2AP. METHODS Codon-optimized human CD2AP was expressed in E. coli Rosetta cells. The recombinant protein was induced with 1 mM IPTG and purified by Ni-NTA affinity chromatography. Analytical size-exclusion chromatography, blue native-PAGE, circular dichroism, and fluorescence spectroscopy were performed to decipher the oligomeric nature, secondary structural content, and tertiary packing of CD2AP. RESULTS Our analysis revealed that CD2AP adopts a predominantly disordered secondary structure despite exhibiting moderate tertiary packing, characterized by low helical and β-sheet content. CD2AP readily assembles into homo-oligomers, with octamers and tetramers constituting the primary population. Interestingly, the inherent flexibility of CD2AP's secondary structural elements appears resistant to thermal denaturation. Frameshift mutation (p.K579Efs*7) that leads to loss of the coiled-coil domain promotes aberrant oligomerization of CD2AP through SH3 domains. CONCLUSION We successfully expressed full-length human CD2AP in a heterologous system, wherein the secondary structure of CD2AP is predominantly disordered. CD2AP can form higher-order oligomers, and the significance of these oligomers and the impact of mutations in the context of size-selective permeability of SD needs further investigation.
Collapse
Affiliation(s)
- Abrar H Qadri
- Department of Biochemistry, University of HyderabadHyderabad 500046, India
| | - Jyotsana Prajapati
- Department of Biochemistry, University of HyderabadHyderabad 500046, India
| | - Iqball Faheem
- Department of Microbiology and Cell Biology, Indian Institute of ScienceBangalore 560012, India
| | - Utsa Bhattacharjee
- Department of Biochemistry, University of HyderabadHyderabad 500046, India
| | | | | | - Anil K Pasupulati
- Department of Biochemistry, University of HyderabadHyderabad 500046, India
| |
Collapse
|
5
|
Xia J, Huang Y, Ma M, Liu F, Cao B. Downregulating lncRNA MIAT attenuates apoptosis of podocytes exposed to high glucose. Acta Diabetol 2024; 61:451-460. [PMID: 38072843 DOI: 10.1007/s00592-023-02213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/08/2023] [Indexed: 03/27/2024]
Abstract
AIMS Diabetic nephropathy (DN), a destructive complication of diabetes mellitus (DM), is one of the leading causes of end-stage renal disease (ESRD). This study aimed to investigate the role of long non-coding RNA (lncRNA) MIAT in high-glucose (HG)-induced podocyte injury associated with DN. METHODS Three human kidney podocyte (HKP) cultures were treated with HG to mimic DN. Expression of lncRNA MIAT, podocyte-specific and injury-related proteins, and apoptosis were assessed before and after MIAT knockdown using MIAT shRNAs. RESULTS MIAT expression was upregulated in HKPs in response to glucose stress. HG treatment resulted in a significant increase in the apoptotic rate, Bax level, and levels of injury-related proteins desmin, fibroblast-specific protein 1 (FSP-1), and smooth muscle α-actin (α-SMA), and a significant reduction in Bcl-2 levels and the levels of podocyte-specific proteins synaptopodin and podocin. Transfection of HKPs with shRNAs significantly reduced MIAT levels (p < 0.05) and attenuated apoptosis in HG-medium. Correspondingly, the levels of synaptopodin and podocin were upregulated, and desmin, FSP-1, and α-SMA were reduced (p < 0.05). Western blot analysis also showed that anti-apoptotic active caspase-3 and Bax and proapoptotic Bcl-2 were elevated and decreased, respectively, after MIAT knockdown, suggesting that apoptosis pathways are deactivated after MIAT downregulation. CONCLUSIONS High glucose upregulates MIAT level in HKPs and induces cellular injury. Knockdown of MIAT alleviates the injury likely via deactivating apoptosis pathways.
Collapse
Affiliation(s)
- Jiayi Xia
- Department of Endocrinology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Yan Huang
- Department of Medical Insurance, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Min Ma
- Department of Gynecology, Graduate School of Guizhou, University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Fang Liu
- Department of Coloproctology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China.
| | - Bo Cao
- Department of Coloproctology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China.
| |
Collapse
|
6
|
Żołnierkiewicz O, Rogacka D. Hyperglycemia - A culprit of podocyte pathology in the context of glycogen metabolism. Arch Biochem Biophys 2024; 753:109927. [PMID: 38350532 DOI: 10.1016/j.abb.2024.109927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 02/15/2024]
Abstract
Prolonged disruption in the balance of glucose can result in metabolic disorders. The kidneys play a significant role in regulating blood glucose levels. However, when exposed to chronic hyperglycemia, the kidneys' ability to handle glucose metabolism may be impaired, leading to an accumulation of glycogen. Earlier studies have shown that there can be a significant increase in glucose storage in the form of glycogen in the kidneys in diabetes. Podocytes play a crucial role in maintaining the integrity of filtration barrier. In diabetes, exposure to elevated glucose levels can lead to significant metabolic and structural changes in podocytes, contributing to kidney damage and the development of diabetic kidney disease. The accumulation of glycogen in podocytes is not a well-established phenomenon. However, a recent study has demonstrated the presence of glycogen granules in podocytes. This review delves into the intricate connections between hyperglycemia and glycogen metabolism within the context of the kidney, with special emphasis on podocytes. The aberrant storage of glycogen has the potential to detrimentally impact podocyte functionality and perturb their structural integrity. This review provides a comprehensive analysis of the alterations in cellular signaling pathways that may potentially lead to glycogen overproduction in podocytes.
Collapse
Affiliation(s)
- Olga Żołnierkiewicz
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Dorota Rogacka
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| |
Collapse
|
7
|
Li X, Zhang Y, Xing X, Li M, Liu Y, Xu A, Zhang J. Podocyte injury of diabetic nephropathy: Novel mechanism discovery and therapeutic prospects. Biomed Pharmacother 2023; 168:115670. [PMID: 37837883 DOI: 10.1016/j.biopha.2023.115670] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes mellitus, posing significant challenges in terms of early prevention, clinical diagnosis, and treatment. Consequently, it has emerged as a major contributor to end-stage renal disease. The glomerular filtration barrier, composed of podocytes, endothelial cells, and the glomerular basement membrane, plays a vital role in maintaining renal function. Disruptions in podocyte function, including hypertrophy, shedding, reduced density, and apoptosis, can impair the integrity of the glomerular filtration barrier, resulting in elevated proteinuria, abnormal glomerular filtration rate, and increased creatinine levels. Hence, recent research has increasingly focused on the role of podocyte injury in DN, with a growing emphasis on exploring therapeutic interventions targeting podocyte injury. Studies have revealed that factors such as lipotoxicity, hemodynamic abnormalities, oxidative stress, mitochondrial dysfunction, and impaired autophagy can contribute to podocyte injury. This review aims to summarize the underlying mechanisms of podocyte injury in DN and provide an overview of the current research status regarding experimental drugs targeting podocyte injury in DN. The findings presented herein may offer potential therapeutic targets and strategies for the management of DN associated with podocyte injury.
Collapse
Affiliation(s)
- Xiandeng Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ying Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaodong Xing
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Mi Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ajing Xu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
8
|
Huang M, Yang Y, Chen Y, Li Y, Qin S, Xiao L, Long X, Hu K, Li Y, Ying H, Ding Y. Sweroside attenuates podocyte injury and proteinuria in part by activating Akt/BAD signaling in mice. J Cell Biochem 2023; 124:1749-1763. [PMID: 37796169 DOI: 10.1002/jcb.30484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
In this study, we investigated the effects of sweroside on podocyte injury in diabetic nephropathy (DN) mice and elucidated its molecular mechanisms. We conducted in vivo experiments using a C57BL/6 mice model of DN to explore the effects of sweroside on proteinuria and podocyte injury in DN mice. In in vitro experiments, conditionally immortalized mouse podocytes were treated with high glucose and sweroside, and the protective effects of sweroside on podocyte injury were analyzed. In vitro, Akt/BAD pathways were detected using gene siRNA silencing assays and found to be involved in the protective roles of sweroside in high glucose-mediated podocyte injury. In vivo, sweroside significantly decreased albuminuria in DN mice (p < 0.01). periodic acid-Schiff staining showed that sweroside alleviated the glomerular volume and mesangium expansion in DN mice. Consistently, western blot and reverse transcription-polymerase chain reaction analyses showed that the profibrotic molecule expression in the glomeruli declined in sweroside-treated DN mice. Immunofluorescent results showed that sweroside preserved nephrin and podocin expression, and transmission electron microscopy showed that sweroside attenuated podocyte injury. In DN mice, sweroside decreased podocyte apoptosis, and increased nephrin, podocin expression and decreased desmin and HIF1α expression. These results confirmed that sweroside ameliorated albuminuria, glomerulomegaly, and glomerulosclerosis in these mice. Experiments in vitro revealed that sweroside improved HG-induced podocyte injury and apoptosis. Sweroside stimulated activation of the Akt/BAD pathway and upregulated Bcl-2-associated death promoter (BAD) and p-Akt. Overall, sweroside protected podocytes from injury and prevented the progression of DN, providing a novel strategy for the treatment of DN.
Collapse
Affiliation(s)
- Minjiang Huang
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yang Yang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yuefu Chen
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yang Li
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| | - Sitao Qin
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| | - Lijun Xiao
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| | - Xuewen Long
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| | - Ke Hu
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yuxian Li
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| | - Huiming Ying
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Hunan University of Medicine, Huaihua, China
| | - Yan Ding
- Department of Diagnostics, Hunan University of Medicine, Huaihua, Hunan, China
| |
Collapse
|
9
|
Pal R, Bhadada SK. AGEs accumulation with vascular complications, glycemic control and metabolic syndrome: A narrative review. Bone 2023; 176:116884. [PMID: 37598920 DOI: 10.1016/j.bone.2023.116884] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Multiple pathogenetic mechanisms are involved in the genesis of various microvascular and macrovascular complications of diabetes mellitus. Of all these, advanced glycation end products (AGEs) have been strongly implicated. OBJECTIVES The present narrative review aims to summarize the available literature on the genesis of AGEs and their potential role in the causation of both micro- and macrovascular complications of diabetes mellitus. RESULTS Uncontrolled hyperglycemia triggers the formation of AGEs through non-enzymatic glycation reactions between reducing sugars and proteins, lipids, or nucleic acids. AGEs accumulate in bloodstream and bodily tissues under chronic hyperglycemia. AGEs create irreversible cross-linkages of various intra- and extracellular molecules and activate the receptor for advanced glycation end products (RAGE), which stimulates downstream signaling pathways that generate reactive oxygen species (ROS) and contribute to oxidative stress. Additionally, intracellular glycation of mitochondrial respiratory chain proteins by AGEs contributes to the further generation of ROS, which, in turn, sets a vicious cycle that further promotes the production of endogenous AGEs. Through these pathways, AGEs play a principal role in the pathogenesis of various diabetic complications, including diabetic retinopathy, nephropathy, neuropathy, bone disease, atherosclerosis and non-alcoholic fatty liver disease. Multiple clinical studies and meta-analyses have revealed a positive association between tissue or circulating levels of AGEs and development of various diabetic complications. Besides, exogenous AGEs, primarily those derived from diets, promote insulin resistance, obesity, and metabolic syndrome. CONCLUSIONS AGEs, triggered by chronic hyperglycemia, play a pivotal role in the pathogenesis of various complications of diabetes mellitus.
Collapse
Affiliation(s)
- Rimesh Pal
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Sanjay K Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India.
| |
Collapse
|
10
|
Yang C, Zhang Z, Liu J, Chen P, Li J, Shu H, Chu Y, Li L. Research progress on multiple cell death pathways of podocytes in diabetic kidney disease. Mol Med 2023; 29:135. [PMID: 37828444 PMCID: PMC10571269 DOI: 10.1186/s10020-023-00732-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Diabetic kidney disease (DKD) is the main cause of end-stage renal disease, and its clinical manifestations are progressive proteinuria, decreased glomerular filtration rate, and renal failure. The injury and death of glomerular podocytes are the keys to DKD. Currently, a variety of cell death modes have been identified in podocytes, including apoptosis, autophagy, endoplasmic reticulum (ER) stress, pyroptosis, necroptosis, ferroptosis, mitotic catastrophe, etc. The signaling pathways leading to these cell death processes are interconnected and can be activated simultaneously or in parallel. They are essential for cell survival and death that determine the fate of cells. With the deepening of the research on the mechanism of cell death, more and more researchers have devoted their attention to the underlying pathologic research and the drug therapy research of DKD. In this paper, we discussed the podocyte physiologic role and DKD processes. We also provide an overview of the types and specific mechanisms involved in each type of cell death in DKD, as well as related targeted therapy methods and drugs are reviewed. In the last part we discuss the complexity and potential crosstalk between various modes of cell death, which will help improve the understanding of podocyte death and lay a foundation for new and ideal targeted therapy strategies for DKD treatment in the future.
Collapse
Affiliation(s)
- Can Yang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Jieting Liu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Peijian Chen
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Jialing Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Haiying Shu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China.
| | - Luxin Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China.
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China.
| |
Collapse
|
11
|
Bagang N, Gupta K, Singh G, Kanuri SH, Mehan S. Protease-activated receptors in kidney diseases: A comprehensive review of pathological roles, therapeutic outcomes and challenges. Chem Biol Interact 2023; 377:110470. [PMID: 37011708 DOI: 10.1016/j.cbi.2023.110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Studies have demonstrated that protease-activated receptors (PARs) with four subtypes (PAR1-4) are mainly expressed in the renal epithelial, endothelial, and podocyte cells. Some endogenous and urinary proteases, namely thrombin, trypsin, urokinase, and kallikrein released during diseased conditions, are responsible for activating different subtypes of PARs. Each PAR receptor subtype is involved in kidney disease of distinct aetiology. PAR1 and PAR2 have shown differential therapeutic outcomes in rodent models of type-1 and type-2 diabetic kidney diseases due to the distinct etiological basis of each disease type, however such findings need to be confirmed in other diabetic renal injury models. PAR1 and PAR2 blockers have been observed to abolish drug-induced nephrotoxicity in rodents by suppressing tubular inflammation and fibrosis and preventing mitochondrial dysfunction. Notably, PAR2 inhibition improved autophagy and prevented fibrosis, inflammation, and remodeling in the urethral obstruction model. Only the PAR1/4 subtypes have emerged as a therapeutic target for treating experimentally induced nephrotic syndrome, where their respective antibodies attenuated the podocyte apoptosis induced upon thrombin activation. Strikingly PAR2 and PAR4 subtypes involvement has been tested in sepsis-induced acute kidney injury (AKI) and renal ischemia-reperfusion injury models. Thus, more studies are required to delineate the role of other subtypes in the sepsis-AKI model. Evidence suggests that PARs regulate oxidative, inflammatory stress, immune cell activation, fibrosis, autophagic flux, and apoptosis during kidney diseases.
Collapse
|
12
|
Chang TT, Li SY, Lin LY, Chen C, Chen JW. Macrophage inflammatory protein-1β as a novel therapeutic target for renal protection in diabetic kidney disease. Biomed Pharmacother 2023; 161:114450. [PMID: 36863097 DOI: 10.1016/j.biopha.2023.114450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide and the prevalence of DKD has increased over recent decades. Inflammation is involved in the development and progression of DKD. In this study, we explored the potential role of macrophage inflammatory protein-1β (MIP-1β) in DKD. Clinical non-diabetic subjects and DKD patients with different levels of urine albumin-to-creatinine ratio (ACR) were enrolled in the study. Leprdb/db mice and MIP-1β knockout mice were also used as mouse models for DKD. We found that serum MIP-1β levels were elevated in the DKD patients, especially those with ACRs that were less than or equal to 300, suggesting that MIP-1β is activated in clinical DKD. The administration of anti-MIP-1β antibodies attenuated DKD severity in the Leprdb/db mice, which also showed reduced glomerular hypertrophy and podocyte injury, as well as decreased inflammation and fibrosis, suggesting that MIP-1β plays a role in the development of DKD. The MIP-1β knockout mice showed improved renal function and decreased renal glomerulosclerosis and fibrosis in DKD. Furthermore, podocytes from the MIP-1β knockout mice showed less high glucose-induced inflammation and fibrosis compared to those from wild-type mice. In conclusion, the inhibition or deletion of MIP-1β protected podocytes, modulated renal inflammation, and ameliorated experimental DKD, suggesting that novel anti-MIP-1β strategies could potentially be used to treat DKD.
Collapse
Affiliation(s)
- Ting-Ting Chang
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Szu-Yuan Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Liang-Yu Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jaw-Wen Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Healthcare and Services Center, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
13
|
Zhang Z, Huang Q, Zhao D, Lian F, Li X, Qi W. The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications. Front Endocrinol (Lausanne) 2023; 14:1112363. [PMID: 36824356 PMCID: PMC9941188 DOI: 10.3389/fendo.2023.1112363] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycaemia, with absolute insulin deficiency or insulin resistance as the main cause, and causes damage to various target organs including the heart, kidney and neurovascular. In terms of the pathological and physiological mechanisms of DM, oxidative stress is one of the main mechanisms leading to DM and is an important link between DM and its complications. Oxidative stress is a pathological phenomenon resulting from an imbalance between the production of free radicals and the scavenging of antioxidant systems. The main site of reactive oxygen species (ROS) production is the mitochondria, which are also the main organelles damaged. In a chronic high glucose environment, impaired electron transport chain within the mitochondria leads to the production of ROS, prompts increased proton leakage and altered mitochondrial membrane potential (MMP), which in turn releases cytochrome c (cyt-c), leading to apoptosis. This subsequently leads to a vicious cycle of impaired clearance by the body's antioxidant system, impaired transcription and protein synthesis of mitochondrial DNA (mtDNA), which is responsible for encoding mitochondrial proteins, and impaired DNA repair systems, contributing to mitochondrial dysfunction. This paper reviews the dysfunction of mitochondria in the environment of high glucose induced oxidative stress in the DM model, and looks forward to providing a new treatment plan for oxidative stress based on mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Fengmei Lian
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| | - Wenxiu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Fengmei Lian, ; Xiangyan Li, ; Wenxiu Qi,
| |
Collapse
|
14
|
Nishad R, Mukhi D, Kethavath S, Raviraj S, Paturi ASV, Motrapu M, Kurukuti S, Pasupulati AK. Podocyte derived TNF-α mediates monocyte differentiation and contributes to glomerular injury. FASEB J 2022; 36:e22622. [PMID: 36421039 DOI: 10.1096/fj.202200923r] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022]
Abstract
Diabetes shortens the life expectancy by more than a decade, and the excess mortality in diabetes is correlated with the incidence of kidney disease. Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease. Macrophage accumulation predicts the severity of kidney injury in human biopsies and experimental models of DKD. However, the mechanism underlying macrophage recruitment in diabetes glomeruli is unclear. Elevated plasma growth hormone (GH) levels in type I diabetes and acromegalic individuals impaired glomerular biology. In this study, we examined whether GH-stimulated podocytes contribute to macrophage accumulation. RNA-seq analysis revealed elevated TNF-α signaling in GH-treated human podocytes. Conditioned media from GH-treated podocytes (GH-CM) induced differentiation of monocytes to macrophages. On the other hand, neutralization of GH-CM with the TNF-α antibody diminished GH-CM's action on monocytes. The treatment of mice with GH resulted in increased macrophage recruitment, podocyte injury, and proteinuria. Furthermore, we noticed the activation of TNF-α signaling, macrophage accumulation, and fibrosis in DKD patients' kidney biopsies. Our findings suggest that podocytes could secrete TNF-α and contribute to macrophage migration, resulting in DKD-related renal inflammation. Inhibition of either GH action or TNF-α expression in podocytes could be a novel therapeutic approach for DKD treatment.
Collapse
Affiliation(s)
- Rajkishor Nishad
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Dhanunjay Mukhi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Srinivas Kethavath
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sumathi Raviraj
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Atreya S V Paturi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Manga Motrapu
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sreenivasulu Kurukuti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Anil Kumar Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
15
|
Glomerular Endothelial Cell-Derived miR-200c Impairs Glomerular Homeostasis by Targeting Podocyte VEGF-A. Int J Mol Sci 2022; 23:ijms232315070. [PMID: 36499397 PMCID: PMC9735846 DOI: 10.3390/ijms232315070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Deciphering the pathophysiological mechanisms of primary podocytopathies that can lead to end-stage renal disease and increased mortality is an unmet need. Studying how microRNAs (miRs) interfere with various signaling pathways enables identification of pathomechanisms, novel biomarkers and potential therapeutic options. We investigated the expression of miR-200c in urine from patients with different renal diseases as a potential candidate involved in podocytopathies. The role of miR-200c for the glomerulus and its potential targets were studied in cultured human podocytes, human glomerular endothelial cells and in the zebrafish model. miR-200c was upregulated in urine from patients with minimal change disease, membranous glomerulonephritis and focal segmental glomerulosclerosis and also in transforming growth factor beta (TGF-β) stressed glomerular endothelial cells, but not in podocytes. In zebrafish, miR-200c overexpression caused proteinuria, edema, podocyte foot process effacement and glomerular endotheliosis. Although zinc finger E-Box binding homeobox 1/2 (ZEB1/2), important in epithelial to mesenchymal transition (EMT), are prominent targets of miR-200c, their downregulation did not explain our zebrafish phenotype. We detected decreased vegfaa/bb in zebrafish overexpressing miR-200c and could further prove that miR-200c decreased VEGF-A expression and secretion in cultured human podocytes. We hypothesize that miR-200c is released from glomerular endothelial cells during cell stress and acts in a paracrine, autocrine, as well as context-dependent manner in the glomerulus. MiR-200c can cause glomerular damage most likely due to the reduction of podocyte VEGF-A. In contrast, miR-200c might also influence ZEB expression and therefore EMT, which might be important in other conditions. Therefore, we propose that miR-200c-mediated effects in the glomerulus are context-sensitive.
Collapse
|
16
|
Mengstie MA, Chekol Abebe E, Behaile Teklemariam A, Tilahun Mulu A, Agidew MM, Teshome Azezew M, Zewde EA, Agegnehu Teshome A. Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications. Front Mol Biosci 2022; 9:1002710. [PMID: 36188225 PMCID: PMC9521189 DOI: 10.3389/fmolb.2022.1002710] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/01/2022] [Indexed: 12/22/2022] Open
Abstract
Diabetes is a common metabolic illness characterized by hyperglycemia and is linked to long-term vascular problems that can impair the kidney, eyes, nerves, and blood vessels. By increasing protein glycation and gradually accumulating advanced glycation end products in the tissues, hyperglycemia plays a significant role in the pathogenesis of diabetic complications. Advanced glycation end products are heterogeneous molecules generated from non-enzymatic interactions of sugars with proteins, lipids, or nucleic acids via the glycation process. Protein glycation and the buildup of advanced glycation end products are important in the etiology of diabetes sequelae such as retinopathy, nephropathy, neuropathy, and atherosclerosis. Their contribution to diabetes complications occurs via a receptor-mediated signaling cascade or direct extracellular matrix destruction. According to recent research, the interaction of advanced glycation end products with their transmembrane receptor results in intracellular signaling, gene expression, the release of pro-inflammatory molecules, and the production of free radicals, all of which contribute to the pathology of diabetes complications. The primary aim of this paper was to discuss the chemical reactions and formation of advanced glycation end products, the interaction of advanced glycation end products with their receptor and downstream signaling cascade, and molecular mechanisms triggered by advanced glycation end products in the pathogenesis of both micro and macrovascular complications of diabetes mellitus.
Collapse
Affiliation(s)
- Misganaw Asmamaw Mengstie
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
- *Correspondence: Misganaw Asmamaw Mengstie,
| | - Endeshaw Chekol Abebe
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Awgichew Behaile Teklemariam
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Anemut Tilahun Mulu
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Melaku Mekonnen Agidew
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Muluken Teshome Azezew
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Edgeit Abebe Zewde
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Assefa Agegnehu Teshome
- Department of Anatomy, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
17
|
Hypoxia-Inducible Factors and Diabetic Kidney Disease—How Deep Can We Go? Int J Mol Sci 2022; 23:ijms231810413. [PMID: 36142323 PMCID: PMC9499602 DOI: 10.3390/ijms231810413] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetes is one of the leading causes of chronic kidney disease (CKD), and multiple underlying mechanisms involved in pathogenesis of diabetic nephropathy (DN) have been described. Although various treatments and diagnosis applications are available, DN remains a clinical and economic burden, considering that about 40% of type 2 diabetes patients will develop nephropathy. In the past years, some research found that hypoxia response and hypoxia-inducible factors (HIFs) play critical roles in the pathogenesis of DN. Hypoxia-inducible factors (HIFs) HIF-1, HIF-2, and HIF-3 are the main mediators of metabolic responses to the state of hypoxia, which seems to be the one of the earliest events in the occurrence and progression of diabetic kidney disease (DKD). The abnormal activity of HIFs seems to be of crucial importance in the pathogenesis of diseases, including nephropathies. Studies using transcriptome analysis confirmed by metabolome analysis revealed that HIF stabilizers (HIF-prolyl hydroxylase inhibitors) are novel therapeutic agents used to treat anemia in CKD patients that not only increase endogenous erythropoietin production, but also could act by counteracting the metabolic alterations in incipient diabetic kidney disease and relieve oxidative stress in the renal tissue. In this review, we present the newest data regarding hypoxia response and HIF involvement in the pathogenesis of diabetic nephropathy and new therapeutic insights, starting from improving kidney oxygen homeostasis.
Collapse
|
18
|
Lee J, Yun JS, Ko SH. Advanced Glycation End Products and Their Effect on Vascular Complications in Type 2 Diabetes Mellitus. Nutrients 2022; 14:3086. [PMID: 35956261 PMCID: PMC9370094 DOI: 10.3390/nu14153086] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes is well established as a chronic disease with a high health burden due to mortality or morbidity from the final outcomes of vascular complications. An increased duration of hyperglycemia is associated with abnormal metabolism. Advanced glycation end products (AGEs) are nonenzymatic glycated forms of free amino acids that lead to abnormal crosslinking of extra-cellular and intracellular proteins by disrupting the normal structure. Furthermore, the interaction of AGEs and their receptors induces several pathways by promoting oxidative stress and inflammation. In this review, we discuss the role of AGEs in diabetic vascular complications, especially type 2 DM, based on recent clinical studies.
Collapse
Affiliation(s)
- Jeongmin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03391, Korea;
| | - Jae-Seung Yun
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Korea;
| | - Seung-Hyun Ko
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Korea;
| |
Collapse
|
19
|
Yu X, Jiang N, Li J, Li X, He S. Upregulation of BRD7 protects podocytes against high glucose-induced apoptosis by enhancing Nrf2 in a GSK-3β-dependent manner. Tissue Cell 2022; 76:101813. [PMID: 35550209 DOI: 10.1016/j.tice.2022.101813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 12/23/2022]
Abstract
Bromodomain-containing protein 7 (BRD7) is linked to a variety of pathophysiological conditions. However, it is still unclear whether BRD7 is connected with diabetic nephropathy. This research explored the relevance of BRD7 in diabetic nephropathy using high glucose (HG)-stimulated podocytes in vitro. BRD7 expression in podocytes was decreased after HG stimulation. Podocytes with forced BRD7 expression were protected from HG-induced apoptosis, oxidative stress and inflammation. Further data revealed that forced expression of BRD7 led to enhanced nuclear factor erythroid-2-related factor 2 (Nrf2) activation in HG-stimulated podocytes, associated with the upregulation of glycogen synthase kinase-3β (GSK-3β) phosphorylation. Reactivation of GSK-3β diminished BRD7-elicited Nrf2 activation. In addition, restraining of Nrf2 diminished the BRD7 overexpression-induced beneficial effects on HG-induced podocyte damage. Taken together, these data document that BRD7 defends against HG-induced podocyte damage by enhancing Nrf2 via regulation of GSK-3β. Our work indicates that the BRD7/GSK-3β/Nrf2 axis may play a key role in mediating podocyte injury in diabetic nephropathy.
Collapse
Affiliation(s)
- Xiangyou Yu
- Department of Endocrinology Diabetes, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Ning Jiang
- Taihua Road Community Health Service Center, Xincheng District, Xi'an 710065, China
| | - Jing Li
- Department of Endocrinology Diabetes, Shaanxi Provincial People's Hospital, Xi'an 710068, China.
| | - Xiaofeng Li
- Department of Endocrinology Diabetes, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Shenglin He
- Department of Endocrinology Diabetes, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| |
Collapse
|
20
|
Chung H, Lee SW, Hyun M, Kim SY, Cho HG, Lee ES, Kang JS, Chung CH, Lee EY. Curcumin Blocks High Glucose-Induced Podocyte Injury via RIPK3-Dependent Pathway. Front Cell Dev Biol 2022; 10:800574. [PMID: 35706905 PMCID: PMC9189280 DOI: 10.3389/fcell.2022.800574] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Podocyte loss is well known to play a critical role in the early progression of diabetic nephropathy. A growing number of studies are paying attention to necroptosis, a programmed form of cell necrosis as a mechanism of podocyte loss. Although necroptosis is a recently established concept, the significance of receptor interacting serine/threonine kinase 3 (RIPK3), a gene that encodes for the homonymous enzyme RIPK3 responsible for the progression of necroptosis, is well studied. Curcumin, a natural hydrophobic polyphenol compound responsible for the yellow color of Curcuma longa, has drawn attention due to its antioxidant and anti-inflammatory effects on cells prone to necroptosis. Nonetheless, effects of curcumin on high glucose-induced podocyte necroptosis have not been reported yet. Therefore, this study investigated RIPK3 expression in high glucose-treated podocytes to identify the involvement of necroptosis via the RIPK3 pathway and the effects of curcumin treatment on RIPK3-dependent podocytopathy in a hyperglycemic environment. The study discovered that increased reactive oxygen species (ROS) in renal podocytes induced by high glucose was improved after curcumin treatment. Curcumin treatment also significantly restored the upregulated levels of VEGF, TGF-β, and CCL2 mRNAs and the downregulated level of nephrin mRNA in cultured podocytes exposed to a high glucose environment. High glucose-induced changes in protein expression of TGF-β, nephrin, and CCL2 were considerably reverted to their original levels after curcumin treatment. Increased expression of RIPK3 in high glucose-stimulated podocytes was alleviated by curcumin treatment as well as N-acetyl cysteine (NAC, an antioxidant) or GSK′872 (a RIPK3 inhibitor). Consistent with this, the increased necroptosis-associated molecules, such as RIPK3, pRIPK3, and pMLKL, were also restored by curcumin in high glucose-treated mesangial cells. DCF-DA assay confirmed that such a result was attributed to the reduction of RIPK3 through the antioxidant effect of curcumin. Further observations of DCF-DA-sensitive intracellular ROS in NAC-treated and GSK′872-treated podocyte groups showed a reciprocal regulatory relationship between ROS and RIPK3. The treatment of curcumin and GSK′872 in podocytes incubated with high glucose protected from excessive intracellular superoxide anion production. Taken together, these results indicate that curcumin treatment can protect against high glucose-induced podocyte injuries by suppressing the abnormal expression of ROS and RIPK3. Thus, curcumin might be a potential therapeutic agent for diabetic nephropathy as an inhibitor of RIPK3.
Collapse
Affiliation(s)
- Hyunsoo Chung
- College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Seong-Woo Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Miri Hyun
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - So Young Kim
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - Hyeon Gyu Cho
- College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Eun Soo Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
- Institution of Genetic Cohort, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Jeong Suk Kang
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Choon Hee Chung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
- Institution of Genetic Cohort, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Eun Young Lee
- College of Medicine, Soonchunhyang University, Cheonan, South Korea
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, South Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
- *Correspondence: Eun Young Lee,
| |
Collapse
|
21
|
Gao J, Liang Z, Zhao F, Liu X, Ma N. Triptolide inhibits oxidative stress and inflammation via the microRNA-155-5p/brain-derived neurotrophic factor to reduce podocyte injury in mice with diabetic nephropathy. Bioengineered 2022; 13:12275-12288. [PMID: 35603354 PMCID: PMC9275869 DOI: 10.1080/21655979.2022.2067293] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Diabetic nephropathy (DN) is a complication of diabetes. This study sought to explore the mechanism of triptolide (TP) in podocyte injury in DN. DN mice were induced by high-fat diet&streptozocin and treated with TP. Fasting blood glucose, 24 h urine microalbumin (UMA), the pathological changes of renal tissues, and ultrastructure of renal podocytes were observed. Podocytes (MPC5) were induced by high-glucose (HG) in vitro and treated with TP or microRNA (miR)-155-5p mimics, with Irbesartan as positive control. Reactive oxygen species (ROS) and levels of oxidative stress (OS) and inflammatory factors in MPC5 were detected. The levels of miR-155-5p, podocyte marker protein Nephrin, and inflammatory factors in mice and MPC5 were detected. The targeting relationship between miR-155-5p and brain-derived neurotrophic factor (BDNF) was verified. The expression levels of BDNF were detected. miR-155-5p mimics and overexpressed (oe)-BDNF plasmids were co-transfected into mouse podocytes treated with HG and TP. TP reduced fasting glucose and 24 h UMA of DN mice, alleviated the pathological damage and podocyte injury, up-regulated Nephrin level, and down-regulated miR-155-5p. TP down-regulated the high expression of miR-155-5p in HG-induced MPC5 cells and inhibited HG-induced OS and inflammatory injury, and the improvement effect of TP was better than Irbesartan. Overexpression of miR-155-5p reversed the protective effect of TP on injured mouse podocytes. miR-155-5p targeted BDNF. oe-BDNF reversed the inhibitory effect of oe-miR-155-5p on TP protection on podocyte injury in mice. Overall, TP up-regulated BDNF by inhibiting miR-155-5p, thus inhibiting OS and inflammatory damage and alleviating podocyte injury in DN mice.
Collapse
Affiliation(s)
- Jian Gao
- The First Department of Nephrology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Zheng Liang
- The First Department of Nephrology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Fei Zhao
- The First Department of Nephrology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xiaojing Liu
- The First Department of Nephrology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Ning Ma
- The First Department of Nephrology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
22
|
Jin J, Wang Y, Zheng D, Liang M, He Q. A Novel Identified Circular RNA, mmu_mmu_circRNA_0000309, Involves in Germacrone-Mediated Improvement of Diabetic Nephropathy Through Regulating Ferroptosis by Targeting miR-188-3p/GPX4 Signaling Axis. Antioxid Redox Signal 2022; 36:740-759. [PMID: 34913724 DOI: 10.1089/ars.2021.0063] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aims: Diabetic nephropathy (DN) is characterized by microalbuminuria, mainly associated with pathological and morphological alterations of podocyte. New drug targeting podocyte injury is a promising approach for treating DN. The present study is aimed at developing new drug targeting podocyte injury for treating DN. Results: In this study, germacrone ameliorated kidney damage and inhibited podocyte apoptosis in a DN mouse model. Based on RNA-seq, mmu_mmu_circRNA_0000309, located in host gene vascular endothelial zinc finger 1 (Vezf1), showed a sharp decline in DN mice and a remarkable recovery in germacrone-challenged DN mice. mmu_circRNA_0000309 silence or miR-188-3p mimics abrogated the antiapoptosis and anti-injury effects of germacrone through aggravating mitochondria damage, and elevating reactive oxygen species and ferroptosis-related protein levels. Mechanistically, mmu_circRNA_0000309 competitively sponged miR-188-3p, and subsequently promoted glutathione peroxidase 4 (GPX4) expression, thereby inactivating ferroptosis-dependent mitochondrial damage and podocyte apoptosis. In addition, GPX4 overexpression neutralized mmu_circRNA_0000309 silence-mediated mitochondria damage and ferroptosis in germacrone-exposed MPC5 cells. Innovation: We describe the novel effect and mechanism of germacrone on treating DN, which is linked to ferroptosis for the first time. Conclusion: mmu_circRNA_0000309 silence mediates drug resistance to germacrone in DN mice. mmu_circRNA_0000309 sponges miR-188-3p, and subsequently upregulates GPX4 expression, inactivating ferroptosis-dependent mitochondrial function and podocyte apoptosis. Possibly germacrone-based treatment for DN can be further motivated by regulating mmu_circRNA_0000309/miR-188-3p/GPX4 signaling axis. Antioxid. Redox Signal. 36, 740-759.
Collapse
Affiliation(s)
- Juan Jin
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Yunguang Wang
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Danna Zheng
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Mingzhu Liang
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| |
Collapse
|
23
|
Fungus-Derived 3-Hydroxyterphenyllin and Candidusin A Ameliorate Palmitic Acid-Induced Human Podocyte Injury via Anti-Oxidative and Anti-Apoptotic Mechanisms. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072109. [PMID: 35408508 PMCID: PMC9000303 DOI: 10.3390/molecules27072109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022]
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal disease. An elevated fatty acid plasma concentration leads to podocyte injury and DN progression. This study aimed to identify and characterize cellular mechanisms of natural compounds that inhibit palmitic acid (PA)-induced human podocyte injury. By screening 355 natural compounds using a cell viability assay, 3-hydroxyterphenyllin (3-HT) and candidusin A (CDA), isolated from the marine-derived fungus Aspergillus candidus PSU-AMF169, were found to protect against PA-induced podocyte injury, with half-maximal inhibitory concentrations (IC50) of ~16 and ~18 µM, respectively. Flow cytometry revealed that 3-HT and CDA suppressed PA-induced podocyte apoptosis. Importantly, CDA significantly prevented PA-induced podocyte barrier impairment as determined by 70 kDa dextran flux. Reactive oxygen species (ROS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) direct scavenging assays indicated that both compounds exerted an anti-oxidative effect via direct free radical-scavenging activity. Moreover, 3-HT and CDA upregulated the anti-apoptotic Bcl2 protein. In conclusion, 3-HT and CDA represent fungus-derived bioactive compounds that have a novel protective effect on PA-induced human podocyte apoptosis via mechanisms involving free radical scavenging and Bcl2 upregulation.
Collapse
|
24
|
Modes of podocyte death in diabetic kidney disease: an update. J Nephrol 2022; 35:1571-1584. [PMID: 35201595 DOI: 10.1007/s40620-022-01269-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/01/2022] [Indexed: 02/06/2023]
Abstract
Diabetic kidney disease (DKD) accounts for a large proportion of end-stage renal diseases that require renal replacement therapies including dialysis and transplantation. Therefore, it is critical to understand the occurrence and development of DKD. Podocytes are mainly injured during the development of DKD, ultimately leading to their extensive death and loss. In turn, the injury and death of glomerular podocytes are also the main culprits of DKD. This review introduces the characteristics of podocytes and summarizes the modes of their death in DKD, including apoptosis, autophagy, mitotic catastrophe (MC), anoikis, necroptosis, and pyroptosis. Apoptosis is characterized by nuclear condensation and the formation of apoptotic bodies, and it exerts a different effect from autophagy in mediating DKD-induced podocyte loss. MC mediates a faulty mitotic process while anoikis separates podocytes from the basement membrane. Moreover, pyroptosis activates inflammatory factors to aggravate podocyte injuries whilst necroptosis drives signaling cascades, such as receptor-interacting protein kinases 1 and 3 and mixed lineage kinase domain-like, ultimately promoting the death of podocytes. In conclusion, a thorough knowledge of the modes of podocyte death in DKD can help us understand the development of DKD and lay the foundation for strategies in DKD disease therapy.
Collapse
|
25
|
Wang Y, Feng F, He W, Sun L, He Q, Jin J. miR-188-3p abolishes germacrone-mediated podocyte protection in a mouse model of diabetic nephropathy in type I diabetes through triggering mitochondrial injury. Bioengineered 2022; 13:774-788. [PMID: 34847832 PMCID: PMC8805940 DOI: 10.1080/21655979.2021.2012919] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/27/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial injury-triggered podocyte apoptosis is a major risk factor for diabetic nephropathy (DN). However, the detailed relationship between mitochondrial homeostasis and podocyte apoptosis remains unclear. The present study aimed to explore the role and functional mechanism of germacrone in DN in type I diabetes (type I DN). A mouse model of type I DN was established by injecting streptozocin, and a podocyte injury model was constructed using high glucose (HG) induction. Histopathology was detected by hematoxylin and eosin and periodic acid-Schiff staining. Transmission electron microscopy and flow cytometry were used to evaluate the mitochondrial function. Germacrone simultaneously reduced blood glucose, 24 h proteinuria, and other nephrotic symptoms in a type 1 DN mouse model. Moreover, germacrone protected against mitochondrial damage, limited reactive oxygen species (ROS) accumulation, and restored glutathione peroxidase (GPX) activity and GPX4 protein expression, subsequently preventing podocyte apoptosis. Mechanistically, the increased miR-188-3p expression in type I DN mice was reversed in germacrone-challenged DN mice. HG induced miR-188-3p expression and the miR-188-3p antagonist abolished the HG-mediated increase in ROS. Notably, miR-188-3p was found to have a therapeutic effect against DN by aggravating mitochondrial damage and podocyte apoptosis. Germacrone alleviates DN progression in type I diabetes by limiting podocyte apoptosis, which was partly counteracted by miR-188-3p upregulation. The combination of germacrone and miR-188-3p antagonists is expected to be an effective therapeutic strategy for DN.Abbreviations DN: diabetic nephropathy; Type I DN: DN in Type I diabetes; STZ: streptozocin; ROS: reactive oxygen species; NcRNAs: non-coding RNAs; UTR: untranslated regions; NC: negative control; BUN: blood urea nitrogen; BUA: blood uric acid; Ucr: urine creatinine; Scr: serum creatinine; PAS: Periodic Acid-Schiff; IF: Immunofluorescence; FISH: Fluorescence in situ hybridization; TUG1: taurine upregulated gene 1; GPX: Glutathione Peroxidase; GPX4: glutathione peroxidase 4; EMT: epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Yunguang Wang
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Fangfang Feng
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Wenfang He
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, P.R China
| | - Lifang Sun
- Department of Tuberculosis, Hangzhou Red Cross Hospital, Hangzhou, P.R China
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, P.R China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, P.R China
| | - Juan Jin
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, P.R China
| |
Collapse
|
26
|
Chen J, Zhang Q, Liu D, Liu Z. Exosomes: Advances, development and potential therapeutic strategies in diabetic nephropathy. Metabolism 2021; 122:154834. [PMID: 34217734 DOI: 10.1016/j.metabol.2021.154834] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
Exosomes, a major type of extracellular vesicles (EVs), are nanoscale vesicles excreted by almost all cell types via invagination of the endosomal membrane pathway. Exosomes play a crucial role in the mediation of intercellular communication both in health and disease, which can be ascribed to their capacity to be transported to neighboring or distant cells, thus regulating the biological function of recipient cells through cargos such as DNA, mRNA, proteins and microRNA. Diabetic nephropathy (DN) is a serious microvascular complication associated with diabetes mellitus as well as a significant cause of end-stage renal disease worldwide, which has resulted in a substantial economic burden on individuals and society. However, despite extensive efforts, therapeutic approaches that prevent the progression of DN do not exist, which implies new approaches are required. An increasing number of studies suggest that exosomes are involved in the pathophysiological processes associated with DN, which may potentially provide novel biomarkers and therapeutic targets for DN. Hence, this review summarizes recent advances involving exosome mechanisms in DN and their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jingfang Chen
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, China
| | - Qing Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, China.
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, China.
| |
Collapse
|
27
|
Mulukala SKN, Kambhampati V, Qadri AH, Pasupulati AK. Evolutionary conservation of intrinsically unstructured regions in slit-diaphragm proteins. PLoS One 2021; 16:e0254917. [PMID: 34288970 PMCID: PMC8294545 DOI: 10.1371/journal.pone.0254917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 07/06/2021] [Indexed: 01/19/2023] Open
Abstract
Vertebrate kidneys contribute to homeostasis by regulating electrolyte, acid-base balance, removing toxic metabolites from blood, and preventing protein loss into the urine. Glomerular podocytes constitute the blood-urine barrier, and podocyte slit-diaphragm (SD), a modified tight junction, contributes to the glomerular permselectivity. Nephrin, KIRREL1, podocin, CD2AP, and TRPC6 are crucial members of the SD that interact with each other and contribute to the SD's structural and functional integrity. This study analyzed the distribution of these five essential SD proteins across the organisms for which the genome sequence is available. We found a diverse distribution of nephrin and KIRREL1 ranging from nematodes to higher vertebrates, whereas podocin, CD2AP, and TRPC6 are restricted to the vertebrates. Among invertebrates, nephrin and its orthologs consist of more immunoglobulin-3 domains, whereas in the vertebrates, CD80-like C2-set domains are predominant. In the case of KIRREL1 and its orthologs, more Ig domains were observed in invertebrates than vertebrates. Src Homology-3 (SH3) domain of CD2AP and SPFH domain of podocin are highly conserved among vertebrates. TRPC6 and its orthologs had conserved ankyrin repeats, TRP, and ion transport domains, except Chondrichthyes and Echinodermata, which do not possess the ankyrin repeats. Intrinsically unstructured regions (IURs) are conserved across the SD orthologs, suggesting IURs importance in the protein complexes that constitute the slit-diaphragm. For the first time, a study reports the evolutionary insights of vertebrate SD proteins and their invertebrate orthologs.
Collapse
Affiliation(s)
- Sandeep K N Mulukala
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Vaishnavi Kambhampati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Abrar H Qadri
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Anil K Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
28
|
hsa-miR-199b-3p Prevents the Epithelial-Mesenchymal Transition and Dysfunction of the Renal Tubule by Regulating E-cadherin through Targeting KDM6A in Diabetic Nephropathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8814163. [PMID: 34257820 PMCID: PMC8257373 DOI: 10.1155/2021/8814163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 01/02/2023]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. The association between epithelial-mesenchymal transition (EMT) and fibrosis is quite ascertained, but its link to eventual tubule dysfunction is missing. Here, we show that human microRNA- (hsa-miR-) 199b-3p protects renal tubules from diabetic-induced injury by repressing KDM6A, a histone lysine demethylase regulating E-cadherin expression. Lower E-cadherin expression is related to a higher level of KDM6A, while E-cadherin is promoted upon treatment with the KDM6A inhibitor GSK-J4 in both high glucose- (HG-) induced HK2 cells and the kidneys from streptozotocin- (STZ-) induced type 1 diabetic mice. However, overexpression or RNA silencing of E-cadherin fails to alter KDM6A expression. We also show that the upregulation of KDM6A is associated with the increased methylation level of the E-cadherin promoter. Then, the target prediction results and a dual-luciferase assay show that hsa-miR-199b-3p is a new miRNA that targets KDM6A. Overexpression of hsa-miR-199b-3p increases E-cadherin expression and prevents EMT through repressing KDM6A expression in HG-induced HK2 cells. In contrast, inhibitor-induced hsa-miR-199b-3p knockdown has opposite effects, as it decreases E-cadherin level and worsens EMT, accompanied by increased levels of KDM6A. Besides, Mir199b-knockout mice without mmu-miR-119b-3p expression exhibit more renal tubule dysfunction and more serious kidney tissue damage upon treatment with STZ. These results demonstrate that hsa-miR-199b-3p improves E-cadherin expression and prevents the progression of DN through targeting KDM6A. miR-199b-3p could be a future biomarker or target for the diagnosis or treatment of DN.
Collapse
|
29
|
Cao Y, Yang Z, Chen Y, Jiang S, Wu Z, Ding B, Yang Y, Jin Z, Tang H. An Overview of the Posttranslational Modifications and Related Molecular Mechanisms in Diabetic Nephropathy. Front Cell Dev Biol 2021; 9:630401. [PMID: 34124032 PMCID: PMC8193943 DOI: 10.3389/fcell.2021.630401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/12/2021] [Indexed: 01/14/2023] Open
Abstract
Diabetic nephropathy (DN), a common diabetic microvascular complication, is characterized by its complex pathogenesis, higher risk of mortality, and the lack of effective diagnosis and treatment methods. Many studies focus on the diagnosis and treatment of diabetes mellitus (DM) and have reported that the pathophysiology of DN is very complex, involving many molecules and abnormal cellular activities. Given the respective pivotal roles of NF-κB, Nrf2, and TGF-β in inflammation, oxidative stress, and fibrosis during DN, we first review the effect of posttranslational modifications on these vital molecules in DN. Then, we describe the relationship between these molecules and related abnormal cellular activities in DN. Finally, we discuss some potential directions for DN treatment and diagnosis. The information reviewed here may be significant in the design of further studies to identify valuable therapeutic targets for DN.
Collapse
Affiliation(s)
- Yu Cao
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, China
| | - Zhao Yang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Zhen Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Baoping Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, China
| | - Haifeng Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, China
| |
Collapse
|
30
|
Singh AK, Kolligundla LP, Francis J, Pasupulati AK. Detrimental effects of hypoxia on glomerular podocytes. J Physiol Biochem 2021; 77:193-203. [PMID: 33835424 DOI: 10.1007/s13105-021-00788-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
Hypoxia-inducible factor1 (HIF1) plays a pivotal role in ensuring cells adapt to low-oxygen conditions. Depletion of oxygen, a co-substrate during hydroxylation of prolyl (P402 and P564) residues of HIF1⍺, evades HIF1⍺ ubiquitination and enables its dimerization with HIF1β to mediate global transcriptional response to hypoxia. Though HIF1 is largely considered eliciting a protective role during physiological or pathological hypoxia or ischemia, elevated HIF1 during chronic hypoxia contributes to glomerular diseases' pathology and proteinuria. The glomerulus is responsible for renal permselectivity and excretion of ultra-filtrated urine. Podocytes are the glomerulus' major cell types and are instrumental for glomerular filtration, permselectivity, and glomerular basement membrane maintenance. Podocyte injury is expected to impair the efficiency of glomerular filtration and manifestation of glomerulosclerosis and proteinuria. Accumulated evidence suggests that podocytes are susceptible to various insults during chronic hypoxia, including podocyte EMT, slit-diaphragm dysfunction, foot process effacement, and cytoskeletal derangement due to accumulation of HIF1. This review discusses how hypoxia/HIF1 signaling regulates various features and function of podocytes during exposure to chronic hypoxia or inducing HIF1 by various chemical modulators.
Collapse
Affiliation(s)
- Ashish K Singh
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Lakshmi P Kolligundla
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Justus Francis
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Anil K Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
31
|
Mahwish UN, Pasha M, Heera B, Raju SB, Jahan P. Implication of podocin promoter variant haplotype in south Indian diabetic kidney patients. Meta Gene 2021. [DOI: 10.1016/j.mgene.2020.100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Perilipin 5 ameliorates high-glucose-induced podocyte injury via Akt/GSK-3β/Nrf2-mediated suppression of apoptosis, oxidative stress, and inflammation. Biochem Biophys Res Commun 2021; 544:22-30. [PMID: 33516878 DOI: 10.1016/j.bbrc.2021.01.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
Hyperglycemia-induced podocyte damage contributes to the onset of diabetic nephropathy, a severe complication of diabetes. Perilipin 5 (Plin5) exerts a vital role in numerous pathological conditions via affecting cell apoptosis, oxidative stress, and inflammation. However, whether Plin5 plays a role in regulating podocyte damage of diabetic nephropathy has not been fully determined. This work aimed to explore the role of Plin5 in mediating high glucose (HG)-induced injury of podocytes in vitro. Our results demonstrated that Plin5 expression was markedly decreased in mouse podocytes challenged with HG. Plin5 overexpression markedly suppressed HG-induced apoptosis, reactive oxygen species (ROS) production, and the pro-inflammatory response in podocytes. On the contrary, Plin5 silencing produced the opposite effects. Further mechanistic analysis demonstrated that Plin5 upregulation remarkably increased the levels of phospho-Akt and phospho-glycogen synthase kinase-3β (GSK-3β) in HG-exposed podocytes. Moreover, Plin5 overexpression increased the levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and enhanced the activation of Nrf2 signaling. Akt inhibition markedly blocked Plin5-mediated activation of Nrf2, while GSK-3β inhibition reversed Plin5-silencing-induced suppressive effects on Nrf2 activation. Notably, Nrf2 suppression significantly blocked Plin5-mediated protective effects against HG-induced podocyte injury. In summary, our work indicates a vital role for Plin5 in protecting against HG-induced apoptosis, oxidative stress, and inflammation in podocytes via modulation of Akt/GSK-3β/Nrf2 signaling. This study suggests that Plin5 may participate in modulating podocyte damage in diabetic nephropathy.
Collapse
|
33
|
Piani F, Reinicke T, Borghi C, Tommerdahl KL, Cara-Fuentes G, Johnson RJ, Bjornstad P. Acute Kidney Injury in Pediatric Diabetic Kidney Disease. Front Pediatr 2021; 9:668033. [PMID: 34211943 PMCID: PMC8239177 DOI: 10.3389/fped.2021.668033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/17/2021] [Indexed: 12/29/2022] Open
Abstract
Diabetic kidney disease (DKD) is a common complication of type 1 and 2 diabetes and often presents during adolescence and young adulthood. Given the growing incidence of both type 1 and type 2 diabetes in children and adolescents, DKD represents a significant public health problem. Acute kidney injury (AKI) in youth with diabetes is strongly associated with risk of DKD development. This review will summarize the epidemiology and pathophysiology of AKI in children with diabetes, the relationship between AKI and DKD, and the potential therapeutic interventions. Finally, we will appraise the impact of the recent COVID-19 infection pandemic on AKI in children with diabetes.
Collapse
Affiliation(s)
- Federica Piani
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Section of Pediatric Endocrinology, Department of Pediatrics, Children's Hospital Colorado and University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Medicine and Surgery Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Trenton Reinicke
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Claudio Borghi
- Department of Medicine and Surgery Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Kalie L Tommerdahl
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Section of Pediatric Endocrinology, Department of Pediatrics, Children's Hospital Colorado and University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Gabriel Cara-Fuentes
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Section of Pediatric Nephrology, Department of Pediatrics, Children's Hospital Colorado, Aurora, CO, United States
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Petter Bjornstad
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Section of Pediatric Endocrinology, Department of Pediatrics, Children's Hospital Colorado and University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
34
|
Quan X, Liu H, Ye D, Ding X, Su X. Forsythoside A Alleviates High Glucose-Induced Oxidative Stress and Inflammation in Podocytes by Inactivating MAPK Signaling via MMP12 Inhibition. Diabetes Metab Syndr Obes 2021; 14:1885-1895. [PMID: 33953587 PMCID: PMC8089089 DOI: 10.2147/dmso.s305092] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/31/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Podocyte injury serves an important role during the progression of diabetic nephropathy (DN). The aim of this study was to investigate the effects of forsythoside A (FA) on high glucose (HG)-induced podocyte injury and to identify the possible mechanisms. METHODS MPC-5 podocytes were cultured under HG conditions. After exposure to different doses of FA, cell viability and apoptosis were respectively evaluated with CCK-8 assay and flow cytometry. Then, the levels of oxidative stress-related markers and inflammatory factors were examined by corresponding kits. Western blot analysis was employed to detect the expression of Nox2, Nox4, COX-2, iNOS and matrix metalloproteinases 12 (MMP12). Subsequently, MMP12 was overexpressed to assess whether the effects of FA on HG-stimulated podocyte injury were mediated by MMP12 and MAPK signaling. RESULTS Results indicated that FA dose-dependently elevated cell viability, reduced cell apoptosis in HG-induced MPC-5 cells. Additionally, FA significantly inhibited oxidative stress, which could be certified by decreased content of malondialdehyde (MDA), enhanced activities of superoxide dismutase (SOD) and catalase (CAT), and downregulated expression of Nox2 and Nox4. Moreover, notably reduced levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 were observed in FA-treated MPC-5 cells under HG conditions, accompanied by decreased COX-2 and iNOS expression. Remarkably, FA suppressed MMP12 expression in a dose-dependent manner, and the effects of FA on MPC-5 cells exposed to HG were partially counteracted by MMP12 overexpression. Mechanically, FA inactivated the expression of phospho-ERK (p-ERK), p-p38 and p-JNK, which was restored after MMP12 overexpression. CONCLUSION These findings demonstrate a protective mechanism of FA by inactivating MAPK signaling via MMP12 inhibition in HG-induced podocyte injury, providing a promising therapeutic candidate for the treatment of DN.
Collapse
Affiliation(s)
- Xiaohong Quan
- Experiment & Teaching Center for Basic Medicine, Chifeng University School of Basic Medical Sciences, Chifeng, Inner Mongolia, 024000, People’s Republic of China
- Correspondence: Xiaohong Quan Experiment & Teaching Center for Basic Medicine, Chifeng University School of Basic Medical Sciences, No. 1 Yingbin Road, Chifeng City, Inner Mongolia, 024000, People’s Republic of China Email
| | - Huihui Liu
- Experiment & Teaching Center for Basic Medicine, Chifeng University School of Basic Medical Sciences, Chifeng, Inner Mongolia, 024000, People’s Republic of China
| | - Dongmei Ye
- Core Facility Center for Functional Experiments, CUSBMS, Chifeng University School of Basic Medical Sciences, Chifeng, Inner Mongolia, 024000, People’s Republic of China
| | - Xinling Ding
- Department of Human Anatomy, CUSBMS, Chifeng University School of Basic Medical Sciences, Chifeng, Inner Mongolia, 024000, People’s Republic of China
| | - Xiulan Su
- Clinical Research Center for Medical Sciences, IMMU, Chifeng University School of Basic Medical Sciences, Chifeng, Inner Mongolia, 024000, People’s Republic of China
| |
Collapse
|
35
|
Cui L, Yu M, Cui X. MiR-30c-5p/ROCK2 axis regulates cell proliferation, apoptosis and EMT via the PI3K/AKT signaling pathway in HG-induced HK-2 cells. Open Life Sci 2020; 15:959-970. [PMID: 33817282 PMCID: PMC7874585 DOI: 10.1515/biol-2020-0089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus. Increasing evidence suggests that microRNA-30c-5p (miR-30c-5p) participates in the pathogenesis of DN, but the mechanism has not been clearly understood. Therefore, this study aimed to investigate the biological role of miR-30c-5p in human DN progression in vitro. Compared with the controls, DN tissues and high glucose-induced HK-2 cells had significantly reduced miR-30c-5p levels, while ROCK2 expression was prominently elevated. Additionally, the miR-30c-5p mimic distinctly facilitated cell proliferation and blocked cell apoptosis and epithelial–mesenchymal transition (EMT). However, ROCK2 was a target gene of miR-30c-5p, and the effects of miR-30c-5p mimic on cell proliferation, apoptosis and EMT were reversed by ROCK2 upregulation in vitro. Furthermore, the pathogenesis of DN was regulated by the miR-30c-5p/ROCK2 axis via the PI3K/AKT pathway. MiR-30c-5p regulating cell proliferation, apoptosis and EMT through targeting ROCK2 via the PI3K/AKT pathway provides the novel potential target for clinical treatment of DN.
Collapse
Affiliation(s)
- Lianshun Cui
- Department of Kidney Disease of Internal, Weihai Central Hospital, No. 3, Mishandong Road West, Wendeng District, 264400, Weihai, China
| | - Meiyan Yu
- Department of Kidney Disease of Internal, Weihai Central Hospital, No. 3, Mishandong Road West, Wendeng District, 264400, Weihai, China
| | - Xinglei Cui
- Department of Kidney Disease of Internal, Weihai Central Hospital, No. 3, Mishandong Road West, Wendeng District, 264400, Weihai, China
| |
Collapse
|
36
|
Kang MK, Kim SI, Oh SY, Na W, Kang YH. Tangeretin Ameliorates Glucose-Induced Podocyte Injury through Blocking Epithelial to Mesenchymal Transition Caused by Oxidative Stress and Hypoxia. Int J Mol Sci 2020; 21:ijms21228577. [PMID: 33202982 PMCID: PMC7697471 DOI: 10.3390/ijms21228577] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 01/11/2023] Open
Abstract
Podocyte injury inevitably results in leakage of proteins from the glomerular filter and is vital in the pathogenesis of diabetic nephropathy (DN). The underlying mechanisms of podocyte injury facilitate finding of new therapeutic targets for DN treatment and prevention. Tangeretin is an O-polymethoxylated flavone present in citrus peels with anti-inflammatory and antioxidant properties. This study investigated the renoprotective effects of tangeretin on epithelial-to-mesenchymal transition-mediated podocyte injury and fibrosis through oxidative stress and hypoxia caused by hyperglycemia. Mouse podocytes were incubated in media containing 33 mM glucose in the absence and presence of 1–20 μM tangeretin for up to 6 days. The in vivo animal model employed db/db mice orally administrated with 10 mg/kg tangeretin for 8 weeks. Non-toxic tangeretin inhibited glucose-induced expression of the mesenchymal markers of N-cadherin and α-smooth muscle actin in podocytes. However, the reduced induction of the epithelial markers of E-cadherin and P-cadherin was restored by tangeretin in diabetic podocytes. Further, tangeretin enhanced the expression of the podocyte slit diaphragm proteins of nephrin and podocin down-regulated by glucose stimulation. The transmission electron microscopic images revealed that foot process effacement and loss of podocytes occurred in diabetic mouse glomeruli. However, oral administration of 10 mg/kg tangeretin reduced urine albumin excretion and improved foot process effacement of diabetic podocytes through inhibiting loss of slit junction and adherenes junction proteins. Glucose enhanced ROS production and HIF-1α induction in podocytes, leading to induction of oxidative stress and hypoxia. Similarly, in diabetic glomeruli reactive oxygen species (ROS) production and HIF-1α induction were observed. Furthermore, hypoxia-evoking cobalt chloride induced epithelial-to-mesenchymal transition (EMT) process and loss of slit diaphragm proteins and junction proteins in podocytes, which was inhibited by treating submicromolar tangeretin. Collectively, these results demonstrate that tangeretin inhibited podocyte injury and fibrosis through blocking podocyte EMT caused by glucose-induced oxidative stress and hypoxia.
Collapse
Affiliation(s)
- Min-Kyung Kang
- Correspondence: (M.-K.K.); (Y.-H.K.); Tel.: +82-33-248-2142 (Y.-H.K.)
| | | | | | | | - Young-Hee Kang
- Correspondence: (M.-K.K.); (Y.-H.K.); Tel.: +82-33-248-2142 (Y.-H.K.)
| |
Collapse
|
37
|
Mantzouratou P, Lavecchia AM, Novelli R, Xinaris C. Thyroid Hormone Signalling Alteration in Diabetic Nephropathy and Cardiomyopathy: a "Switch" to the Foetal Gene Programme. Curr Diab Rep 2020; 20:58. [PMID: 32984910 DOI: 10.1007/s11892-020-01344-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE OF THE REVIEW In this study, we will analyse how diabetes induces the reactivation of organs' developmental programmes and growth, discuss how thyroid hormone (TH) signalling orchestrates these processes, and suggest novel strategies for exploiting TH-mediated reparative and regenerative properties. RECENT FINDINGS Diabetes is a global pandemic that poses an enormous threat to human health. The kidney and the heart are among the organs that are the most severely damaged by diabetes over time. They undergo profound metabolic, structural, and functional changes that may be due (at least partially) to a recapitulation of their early developmental programmes. There is growing evidence to suggest that this foetal reprogramming is controlled by the TH/TH receptor alpha 1 (TRα1) axis. We introduce the hypothesis that in diabetes-and probably in other diseases-TH signalling acts in an antagonistic manner: it recapitulates a foetal profile that is necessary to coordinate metabolic and structural adaptations to sustain energy preservation and growth, but in the long term the persistent changes in these pathways are detrimental.
Collapse
Affiliation(s)
- Polyxeni Mantzouratou
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Angelo Michele Lavecchia
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Rubina Novelli
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy
| | - Christodoulos Xinaris
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126, Bergamo, Italy.
- University of Nicosia Medical School, 93 Agiou Nikolaou Street, Engomi, 2408, Nicosia, Cyprus.
| |
Collapse
|
38
|
Sun X, Sun Y, Lin S, Xu Y, Zhao D. Histone deacetylase inhibitor valproic acid attenuates high glucose‑induced endoplasmic reticulum stress and apoptosis in NRK‑52E cells. Mol Med Rep 2020; 22:4041-4047. [PMID: 32901855 DOI: 10.3892/mmr.2020.11496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/15/2020] [Indexed: 11/05/2022] Open
Abstract
Previous studies have demonstrated that valproic acid (VPA), a histone deacetylase inhibitor, alleviates diabetic nephropathy (DN). However, the biological mechanisms underlying this protective effect remains unclear. This study aimed to investigate the effects of histone deacetylase inhibitor VPA on hyperglycemic induction of NRK‑52E cell ERS and apoptosis. Endoplasmic reticulum stress (ERS)‑related apoptosis is involved in DN, and improving ERS may delay the symptoms of DN. Histone deacetylase regulates gene transcription or expression of ERS‑related proteins. The present study established an ERS model by treating the rat renal tubular epithelial cells NRK‑52E with high glucose (HG) and investigated the effects of VPA on the apoptosis of the NRK‑52E cells. HG stimulation significantly increased the protein levels of the ERS‑related proteins including glucose regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), caspase‑12 and phosphorylated (p)‑JNK. VPA treatment further upregulated GRP78 expression and attenuated the levels of ATF4, CHOP, caspase‑12 and p‑JNK. Notably, HG markedly promoted apoptosis of NRK‑52E cells by regulating the protein levels of Bax, cleaved caspase‑3 and Bcl‑2, which was attenuated by simultaneous VPA treatment. Mechanistically, VPA increased the total acetylation levels of histone H4 in NRK‑52E cells and increased the histone H4 acetylation of the GRP78 promoter region. In conclusion, VPA attenuated HG‑induced ERS and apoptosis in NRK‑52E cells, which may be due to the regulation of acetylation levels of ERS‑related proteins. In addition, the present study suggested that HDACIs are promising drugs for treating patients with DN.
Collapse
Affiliation(s)
- Xinyi Sun
- Endocrine Department, Affiliated Hospital of Beihua University, Chuanying, Jilin 132011, P.R. China
| | - Yuman Sun
- Endocrine Department, Affiliated Hospital of Beihua University, Chuanying, Jilin 132011, P.R. China
| | - Sitong Lin
- Endocrine Department, Affiliated Hospital of Beihua University, Chuanying, Jilin 132011, P.R. China
| | - Yan Xu
- Endocrine Department, Affiliated Hospital of Beihua University, Chuanying, Jilin 132011, P.R. China
| | - Dongming Zhao
- Cardiovascular Department, Affiliated Hospital of Beihua University, Chuanying, Jilin 132011, P.R. China
| |
Collapse
|
39
|
He M, Li Y, Wang L, Guo B, Mei W, Zhu B, Zhang J, Ding Y, Meng B, Zhang L, Xiang L, Dong J, Liu M, Xiang L, Xiang G. MYDGF attenuates podocyte injury and proteinuria by activating Akt/BAD signal pathway in mice with diabetic kidney disease. Diabetologia 2020; 63:1916-1931. [PMID: 32588068 DOI: 10.1007/s00125-020-05197-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Myeloid-derived growth factor (MYDGF), mainly secreted by bone marrow-derived cells, has been known to promote glucagon-like peptide-1 production and improve glucose/lipid metabolism in mouse models of diabetes, but little is known about the functions of MYDGF in diabetic kidney disease (DKD). Here, we investigated whether MYDGF can prevent the progression of DKD. METHODS In vivo experiments, both loss- and gain-of-function strategies were used to evaluate the effect of MYDGF on albuminuria and pathological glomerular lesions. We used streptozotocin-treated Mydgf knockout and wild-type mice on high fat diets to induce a model of DKD. Then, albuminuria, glomerular lesions and podocyte injury were evaluated in Mydgf knockout and wild-type DKD mice treated with adeno-associated virus-mediated Mydgf gene transfer. In vitro and ex vivo experiments, the expression of slit diaphragm protein nephrin and podocyte apoptosis were evaluated in conditionally immortalised mouse podocytes and isolated glomeruli from non-diabetic wild-type mice treated with recombinant MYDGF. RESULTS MYDGF deficiency caused more severe podocyte injury in DKD mice, including the disruption of slit diaphragm proteins (nephrin and podocin) and an increase in desmin expression and podocyte apoptosis, and subsequently caused more severe glomerular injury and increased albuminuria by 39.6% compared with those of wild-type DKD mice (p < 0.01). Inversely, MYDGF replenishment attenuated podocyte and glomerular injury in both wild-type and Mydgf knockout DKD mice and then decreased albuminuria by 36.7% in wild-type DKD mice (p < 0.01) and 34.9% in Mydgf knockout DKD mice (p < 0.01). Moreover, recombinant MYDGF preserved nephrin expression and inhibited podocyte apoptosis in vitro and ex vivo. Mechanistically, the renoprotection of MYDGF was attributed to the activation of the Akt/Bcl-2-associated death promoter (BAD) pathway. CONCLUSIONS/INTERPRETATION The study demonstrates that MYDGF protects podocytes from injury and prevents the progression of DKD, providing a novel strategy for the treatment of DKD. Graphical abstract.
Collapse
Affiliation(s)
- Mingjuan He
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
- Department of Endocrinology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yixiang Li
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Li Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Bei Guo
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Wen Mei
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Biao Zhu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Jiajia Zhang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Yan Ding
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Biying Meng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Liming Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Lin Xiang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Jing Dong
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Min Liu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Lingwei Xiang
- ICF, 2635 Century Pkwy NE Unit 1000, Atlanta, GA, 30345, USA.
| | - Guangda Xiang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
40
|
Mabuza LP, Gamede MW, Maikoo S, Booysen IN, Ngubane PS, Khathi A. Amelioration of risk factors associated with diabetic nephropathy in diet-induced pre-diabetic rats by an uracil-derived diimine ruthenium(II) compound. Biomed Pharmacother 2020; 129:110483. [PMID: 32768965 DOI: 10.1016/j.biopha.2020.110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022] Open
Abstract
Diabetic renal injury advances through different stages of structural and functional changes in the glomerulus, therefore treatment during the pre-diabetic state could be used as therapeutic target in the management and prevention of diabetic nephropathy (DN). Once diagnosed, dietary interventions and pharmacological therapy have been recommended to manage DN and pre-diabetic related complications. However, poor patient compliance still results, therefore newer alternative drugs are required. High fat high carbohydrates (HFHC) diet was used to induce pre-diabetes for 20 weeks. After the induction, pre-diabetic rats were randomly allocated to respective treatment groups. Subcutaneous ruthenium(II) Schiff base complex injection (15 mg/kg) was administered to pre-diabetic rats in both the presence and absence of dietary intervention once a day every third day for 12 weeks. The administration of ruthenium(II) complex resulted in reduced blood glucose, aldosterone, fluid intake and urinary output which correlated with a restoration in plasma and urinary electrolytes along with plasma antioxidants concentration. Furthermore, there was a decrease in kidney injury molecule-1 (KIM-1) concentration, albumin excretion rate (AER) albumin creatinine ratio (ACR) and mRNA expression of podocin in urine in ruthenium-treated pre-diabetic rats. Ruthenium(II) Schiff base complex ameliorated renal function while preventing the progression of DN in prediabetic-treated rats.
Collapse
Affiliation(s)
- Lindokuhle Patience Mabuza
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Mlindeli Wilkinson Gamede
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Sanam Maikoo
- School of Chemistry and Physics, College of Engineering and Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| | - Irvin Noel Booysen
- School of Chemistry and Physics, College of Engineering and Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| | - Phikelelani Siphosethu Ngubane
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
41
|
Amaral LSDB, Souza CS, Lima HN, Soares TDJ. Influence of exercise training on diabetic kidney disease: A brief physiological approach. Exp Biol Med (Maywood) 2020; 245:1142-1154. [PMID: 32486850 PMCID: PMC7400720 DOI: 10.1177/1535370220928986] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IMPACT STATEMENT Diabetic kidney disease (DKD) is associated with increased mortality in diabetic patients and has a negative impact on public health. The identification of potential therapies that help the management of DKD can contribute to the improvement of health and quality of life of patients. Thus, this paper is timely and relevant because, in addition to presenting a concise review of the pathogenesis and major pathophysiological mechanisms of DKD, it addresses the most recent findings on the impact of exercise training on this disease. Thus, since non-pharmacological interventions have gained increasing attention in the fight against chronic diseases, this paper appears as an important tool to increase knowledge and stimulate innovative research on the impact of exercise on kidney disease.
Collapse
Affiliation(s)
| | - Cláudia Silva Souza
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo 14049-900, Brazil
| | | | - Telma de Jesus Soares
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia 45029-094, Brazil
| |
Collapse
|
42
|
Structural features and oligomeric nature of human podocin domain. Biochem Biophys Rep 2020; 23:100774. [PMID: 32617419 PMCID: PMC7322680 DOI: 10.1016/j.bbrep.2020.100774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/29/2022] Open
Abstract
Podocytes are crucial cells of the glomerular filtration unit and plays a vital role at the interface of the blood-urine barrier. Podocyte slit-diaphragm is a modified tight junction that facilitates size and charge-dependent permselectivity. Several proteins including podocin, nephrin, CD2AP, and TRPC6 form a macromolecular assembly and constitute the slit-diaphragm. Podocin is an integral membrane protein attached to the inner membrane of the podocyte via a short transmembrane region (101–125). The cytosolic N- and C-terminus help podocin to attain a hook-like structure. Podocin shares 44% homology with stomatin family proteins and similar to the stomatin proteins, podocin was shown to associate into higher-order oligomers at the site of slit-diaphragm. However, the stoichiometry of the homo-oligomers and how it partakes in the macromolecular assemblies with other slit-diaphragm proteins remains elusive. Here we investigated the oligomeric propensity of a truncated podocin construct (residues:126–350). We show that the podocin domain majorly homo-oligomerizes into a 16-mer. Circular dichroism and fluorescence spectroscopy suggest that the 16-mer oligomer has considerable secondary structure and moderate tertiary packing. Cloning, expression, and purification of truncated podocin (residues: 126–350). The truncated podocin predominantly associates into 16mer oligomers. The oligomers though possesses secondary structure lacks tight tertiary packing. The oligomeric ensemble has different dissociation temperatures.
Collapse
Key Words
- CD, Circular dichroism
- CD2AP, CD-2 associated protein
- GFB, Glomerular filtration barrier
- IDRs, Intrinsically disordered regions
- MALS, multi-angle light scattering
- NEPH, Nephrin-like protein
- NPHS1 & 2, Nephrotic syndrome-type I and type II
- NS, Nephrotic syndrome
- Nephrotic syndrome
- Podocin
- Podocyte
- Proteinuria
- SD, slit-diaphragm
- SEC, Size-exclusion chromatography
- SRNS, steroid-resistant NS
- Slit-diaphragm
- TRPC6, Transient receptor potential cation channel subfamily C member 6
- ZO-1, Zonula occludens-1
Collapse
|
43
|
The Role of Chemokines and Chemokine Receptors in Diabetic Nephropathy. Int J Mol Sci 2020; 21:ijms21093172. [PMID: 32365893 PMCID: PMC7246426 DOI: 10.3390/ijms21093172] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Kidney function decline is one of the complications of diabetes mellitus and may be indicated as diabetic nephropathy (DN). DN is a chronic inflammatory disease featuring proteinuria and a decreasing glomerular filtration rate. Despite several therapeutic options being currently available, DN is still the major cause of end-stage renal disease. Accordingly, widespread innovation is needed to improve outcomes in patients with DN. Chemokines and their receptors are critically involved in the inflammatory progression in the development of DN. Although recent studies have shown multiple pathways related to the chemokine system, the specific and direct effects of chemokines and their receptors remain unclear. In this review, we provide an overview of the potential role and mechanism of chemokine systems in DN proposed in recent years. Chemokine system-related mechanisms may provide potential therapeutic targets in DN.
Collapse
|
44
|
Al-Hasani K, Khurana I, Farhat T, Eid A, El-Osta A. Epigenetics of Diabetic Nephropathy: From Biology to Therapeutics. EUROPEAN MEDICAL JOURNAL 2020. [DOI: 10.33590/emj/19-00137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Diabetic nephropathy (DN) is a lethal microvascular complication associated with Type 1 and Type 2 diabetes mellitus, and is the leading single cause of end-stage renal disease. Although genetic influences are important, epigenetic mechanisms have been implicated in several aspects of the disease. The current therapeutic methods to treat DN are limited to slowing disease progression without repair and regeneration of the damaged nephrons. Replacing dying or diseased kidney cells with new nephrons is an attractive strategy. This review considers the genetic and epigenetic control of nephrogenesis, together with the epigenetic mechanisms that accompany kidney development and recent advances in induced reprogramming and kidney cell regeneration in the context of DN.
Collapse
Affiliation(s)
- Keith Al-Hasani
- Department of Diabetes, Epigenetics in Human Health and Disease Laboratory, Monash University, Melbourne, Australia
| | - Ishant Khurana
- Department of Diabetes, Epigenetics in Human Health and Disease Laboratory, Monash University, Melbourne, Australia
| | - Theresa Farhat
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Assaad Eid
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Assam El-Osta
- Department of Diabetes, Epigenetics in Human Health and Disease Laboratory, Monash University, Melbourne, Australia; Department of Clinical Pathology, The University of Melbourne, Victoria, Australia; Faculty of Health, Department of Technology, Biomedical Laboratory Science, University College Copenhagen, Copenhagen, Denmark; Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong
| |
Collapse
|
45
|
Exosomal miRNA-215-5p Derived from Adipose-Derived Stem Cells Attenuates Epithelial-Mesenchymal Transition of Podocytes by Inhibiting ZEB2. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2685305. [PMID: 32149094 PMCID: PMC7057016 DOI: 10.1155/2020/2685305] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/31/2019] [Indexed: 02/06/2023]
Abstract
Background Podocyte migration is actively involved in the process of podocyte loss and proteinuria production, which is closely associated with the development of diabetic nephropathy (DN). Exosomes from adipose-derived stem cells (ADSCs-Exos) effectively inhibit podocyte apoptosis in the treatment of DN. However, how ADSCs-Exos affect the migration of podocytes is obscure. This study is aimed at exploring the regulatory role of ADSCs-Exos on cell migration and the underlying mechanism. Methods ADSCs-Exo was authenticated by transmission electron microscopy (TEM), western blotting, and flow cytometry. Cell viability and migration ability of podocytes were measured by CCK8 and Transwell assays, respectively. Relative expressions of miRNAs and mRNAs were determined by qRT-PCR. The transmitting between PKH26-labeled exosome and podocytes was evaluated by IF assay. Dual luciferase reporter assay was employed to detect the relationship between miR-215-5p and ZEB2. Results The exposure to serum from DN patient (hDN-serum) significantly inhibited cell viability of podocytes, but ADSCs-Exo addition notably blunts cytotoxicity induced by the transient stimulus of hDN-serum. Besides, ADSCs-Exo administration powerfully impeded high glucose- (HG-) induced migration and injury of podocyte. With the podocyte dysfunction, several miRNAs presented a significant decline under the treatment of HG including miR-251-5p, miR-879-5p, miR-3066-5p, and miR-7a-5p, all of which were rescued by the addition of ADSCs-Exo. However, only miR-251-5p was a key determinant in the process of ADSCs-Exo-mediated protective role on podocyte damage. The miR-251-5p inhibitor counteracted the improvement from the ADSCs-Exo preparation on HG-induced proliferation inhibition and migration promotion. Additionally, miR-215-5p mimics alone remarkably reversed HG-induced EMT process of podocyte. Mechanistically, we confirmed that ADSCs-Exos mediated the shuttling of miR-215-5p to podocyte, thereby protecting against HG-induced metastasis, possibly through inhibiting the transcription of ZEB2. Conclusion ADSCs-Exo has the protective effect on HG-evoked EMT progression of podocytes thru a mechanism involving ZEB2. Potentially, the ADSCs-Exo preparation is a useful therapeutic strategy for improving podocyte dysfunction and DN symptoms clinically.
Collapse
|
46
|
Xie L, Zhai R, Chen T, Gao C, Xue R, Wang N, Wang J, Xu Y, Gui D. Panax Notoginseng Ameliorates Podocyte EMT by Targeting the Wnt/β-Catenin Signaling Pathway in STZ-Induced Diabetic Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:527-538. [PMID: 32103895 PMCID: PMC7008200 DOI: 10.2147/dddt.s235491] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/19/2020] [Indexed: 12/28/2022]
Abstract
Introduction Epithelial–mesenchymal transition (EMT) may contribute to podocyte dysfunction in diabetic nephropathy (DN). Aiming to identify novel therapeutic options, we investigated the protective effects of Panax notoginseng (PN) on podocyte EMT in diabetic rats and explored its mechanisms. Methods Diabetes was induced in rats with streptozotocin (STZ) by intraperitoneal injection at 55 mg/kg. Diabetic rats were randomly divided into three groups, namely, diabetic rats, diabetic rats treated with beraprost sodium (BPS) at 0.6 mg/kg/d or PN at 0.4 g/kg/d p.o., for 12 weeks. Urinary albumin/creatinine ratio (ACR), biochemical parameters, renal histopathology, and podocyte morphological changes were evaluated. Protein expression of EMT markers (desmin, α-SMA, and nephrin) as well as components of the Wnt/β-catenin pathway (wnt1, β-catenin, and snail) was detected by immunohistochemistry and Western blot, respectively. Results In diabetic rats, severe hyperglycemia and albuminuria were detected. Moreover, mesangial expansion and podocyte foot process effacement were found markedly increased in diabetic kidneys. Increased protein expression of wnt1, β-catenin, snail, desmin, and α-SMA, as well as decreased protein expression of nephrin was detected in diabetic kidneys. All these abnormalities found in DN rats were partially restored by PN treatment. Conclusion PN ameliorated albuminuria and podocyte EMT in diabetic rats partly through inhibiting Wnt/β-catenin signaling pathway. These findings provide experimental arguments for a novel therapeutic option in DN.
Collapse
Affiliation(s)
- Ling Xie
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, People's Republic of China.,Department of Nephrology, Shanghai Sixth People's Hospital East Campus, Shanghai, People's Republic of China
| | - Ruonan Zhai
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Teng Chen
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Chongting Gao
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Rui Xue
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Jianbo Wang
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
| | - Dingkun Gui
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
47
|
Lee MR, Tapocik JD, Ghareeb M, Schwandt ML, Dias AA, Le AN, Cobbina E, Farinelli LA, Bouhlal S, Farokhnia M, Heilig M, Akhlaghi F, Leggio L. The novel ghrelin receptor inverse agonist PF-5190457 administered with alcohol: preclinical safety experiments and a phase 1b human laboratory study. Mol Psychiatry 2020; 25:461-475. [PMID: 29728704 PMCID: PMC6215751 DOI: 10.1038/s41380-018-0064-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/15/2022]
Abstract
Rodent studies indicate that ghrelin receptor blockade reduces alcohol consumption. However, no ghrelin receptor blockers have been administered to heavy alcohol drinking individuals. Therefore, we evaluated the safety, tolerability, pharmacokinetic (PK), pharmacodynamic (PD) and behavioral effects of a novel ghrelin receptor inverse agonist, PF-5190457, when co-administered with alcohol. We tested the effects of PF-5190457 combined with alcohol on locomotor activity, loss-of-righting reflex (a measure of alcohol sedative actions), and on blood PF-5190457 concentrations in rats. Then, we performed a single-blind, placebo-controlled, within-subject human study with PF-5190457 (placebo/0 mg b.i.d., 50 mg b.i.d., 100 mg b.i.d.). Twelve heavy drinkers during three identical visits completed an alcohol administration session, subjective assessments, and an alcohol cue-reactivity procedure, and gave blood samples for PK/PD testing. In rats, PF-5190457 did not interact with the effects of alcohol on locomotor activity or loss-of-righting reflex. Alcohol did not affect blood PF-5190457 concentrations. In humans, all adverse events were mild or moderate and did not require discontinuation or dose reductions. Drug dose did not alter alcohol concentration or elimination, alcohol-induced stimulation or sedation, or mood during alcohol administration. Potential PD markers of PF-5190457 were acyl-to-total ghrelin ratio and insulin-like growth factor-1. PF-5190457 (100 mg b.i.d.) reduced alcohol craving during the cue-reactivity procedure. This study provides the first translational evidence of safety and tolerability of the ghrelin receptor inverse agonist PF-5190457 when co-administered with alcohol. PK/PD/behavioral findings support continued research of PF-5190457 as a potential pharmacological agent to treat alcohol use disorder.
Collapse
Affiliation(s)
- Mary R Lee
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Jenica D Tapocik
- Section on Molecular Pathophysiology, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Mwlod Ghareeb
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Melanie L Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Alexandra A Dias
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - April N Le
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Enoch Cobbina
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Lisa A Farinelli
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Sofia Bouhlal
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Mehdi Farokhnia
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Markus Heilig
- Section on Molecular Pathophysiology, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA.
- Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA.
| |
Collapse
|
48
|
Ginsenoside Rg1 Alleviates Podocyte EMT Passage by Regulating AKT/GSK3 β/ β-Catenin Pathway by Restoring Autophagic Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1903627. [PMID: 32082395 PMCID: PMC7011395 DOI: 10.1155/2020/1903627] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/30/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022]
Abstract
Background Diabetic nephropathy (DN), a complication of diabetes, is the result of high glucose-induced pathological changes in podocytes, such as epithelial-mesenchymal transition (EMT). Autophagy is an important mechanism of podocyte repair. Ginsenoside Rg1, the active ingredient of ginseng extract, has antifibrotic and proautophagic effects. Therefore, we hypothesized that ginsenoside Rg1 can reverse podocyte EMT via autophagy and alleviate DN. Aim This study aimed to investigate the effect of ginsenoside Rg1 on DN rats and high glucose-induced podocyte EMT by regulating the AKT/GSK3β/β/ Methods Diabetic rats induced by STZ injection were treated with 50 mg/kg ginsenoside Rg1 for 8 weeks, and the renal functional, metabolic, and histopathological indices were evaluated. DN was simulated in vitro by exposing podocytes to high glucose levels and treated with ginsenoside Rg1. The expression of EMT and autophagy-related markers was analyzed in vivo and in vitro by exposing podocytes to high glucose levels and treated with ginsenoside Rg1. The expression of EMT and autophagy-related markers was analyzed Results Ginsenoside Rg1 significantly alleviated renal fibrosis and podocyte EMT in diabetic rats, and podocytes exposed to high glucose levels, which was abolished by the autophagy inhibitor 3-MA. Furthermore, ginsenoside Rg1 regulated the AKT/GSK3 β/β/ Conclusion Ginsenoside Rg1 alleviated podocyte EMT by enhancing AKT/GSK3β/β-catenin pathway-mediated autophagy, indicating its therapeutic potential for DN and other glomerular diseases.β/β/
Collapse
|
49
|
Lehtonen S. SHIPping out diabetes-Metformin, an old friend among new SHIP2 inhibitors. Acta Physiol (Oxf) 2020; 228:e13349. [PMID: 31342643 PMCID: PMC6916339 DOI: 10.1111/apha.13349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
Abstract
SHIP2 (Src homology 2 domain‐containing inositol 5′‐phosphatase 2) belongs to the family of 5′‐phosphatases. It regulates the phosphoinositide 3‐kinase (PI3K)‐mediated insulin signalling cascade by dephosphorylating the 5′‐position of PtdIns(3,4,5)P3 to generate PtdIns(3,4)P2, suppressing the activity of the pathway. SHIP2 mouse models and genetic studies in human propose that increased expression or activity of SHIP2 contributes to the pathogenesis of the metabolic syndrome, hypertension and type 2 diabetes. This has raised great interest to identify SHIP2 inhibitors that could be used to design new treatments for metabolic diseases. This review summarizes the central mechanisms associated with the development of diabetic kidney disease, including the role of insulin resistance, and then moves on to describe the function of SHIP2 as a regulator of metabolism in mouse models. Finally, the identification of SHIP2 inhibitors and their effects on metabolic processes in vitro and in vivo are outlined. One of the newly identified SHIP2 inhibitors is metformin, the first‐line medication prescribed to patients with type 2 diabetes, further boosting the attraction of SHIP2 as a treatment target to ameliorate metabolic disorders.
Collapse
Affiliation(s)
- Sanna Lehtonen
- Department of Pathology and Research Program for Clinical and Molecular Metabolism, Faculty of Medicine University of Helsinki Helsinki Finland
| |
Collapse
|
50
|
Nakuluri K, Nishad R, Mukhi D, Kumar S, Nakka VP, Kolligundla LP, Narne P, Natuva SSK, Phanithi PB, Pasupulati AK. Cerebral ischemia induces TRPC6 via HIF1α/ZEB2 axis in the glomerular podocytes and contributes to proteinuria. Sci Rep 2019; 9:17897. [PMID: 31784544 PMCID: PMC6884642 DOI: 10.1038/s41598-019-52872-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022] Open
Abstract
Podocytes are specialized cells of the glomerulus and key component of the glomerular filtration apparatus (GFA). GFA regulates the permselectivity and ultrafiltration of blood. The mechanism by which the integrity of the GFA is compromised and manifest in proteinuria during ischemic stroke remains enigmatic. We investigated the mechanism of ischemic hypoxia-induced proteinuria in a middle cerebral artery occlusion (MCAO) model. Ischemic hypoxia resulted in the accumulation of HIF1α in the podocytes that resulted in the increased expression of ZEB2 (Zinc finger E-box-binding homeobox 2). ZEB2, in turn, induced TRPC6 (transient receptor potential cation channel, subfamily C, member 6), which has increased selectivity for calcium. Elevated expression of TRPC6 elicited increased calcium influx and aberrant activation of focal adhesion kinase (FAK) in podocytes. FAK activation resulted in the stress fibers reorganization and podocyte foot process effacement. Our study suggests overactive HIF1α/ZEB2 axis during ischemic-hypoxia raises intracellular calcium levels via TRPC6 and consequently altered podocyte structure and function thus contributes to proteinuria.
Collapse
Affiliation(s)
| | - Rajkishor Nishad
- Department of Biochemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Dhanunjay Mukhi
- Department of Biochemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Sireesh Kumar
- Department of Biotechnology & Bioinformatics, University of Hyderabad, Hyderabad, 500046, India
| | - Venkata P Nakka
- Department of Biochemistry, Acharya Nagarjuna University, Guntur, 522510, India
| | | | - Parimala Narne
- Department of Biotechnology & Bioinformatics, University of Hyderabad, Hyderabad, 500046, India
| | | | - Prakash Babu Phanithi
- Department of Biotechnology & Bioinformatics, University of Hyderabad, Hyderabad, 500046, India.
| | - Anil K Pasupulati
- Department of Biochemistry, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|