1
|
Chen G, Chen L, Li X, Mohammadi M. FGF-based drug discovery: advances and challenges. Nat Rev Drug Discov 2025:10.1038/s41573-024-01125-w. [PMID: 39875570 DOI: 10.1038/s41573-024-01125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/30/2025]
Abstract
The fibroblast growth factor (FGF) family comprises 15 paracrine-acting and 3 endocrine-acting polypeptides, which govern a multitude of processes in human development, metabolism and tissue homeostasis. Therapeutic endocrine FGFs have recently advanced in clinical trials, with FGF19 and FGF21-based therapies on the cusp of approval for the treatment of primary sclerosing cholangitis and metabolic syndrome-associated steatohepatitis, respectively. By contrast, while paracrine FGFs were once thought to be promising drug candidates for wound healing, burns, tissue repair and ischaemic ailments based on their potent mitogenic and angiogenic properties, repeated failures in clinical trials have led to the widespread perception that the development of paracrine FGF-based drugs is not feasible. However, the observation that paracrine FGFs can exert FGF hormone-like metabolic activities has restored interest in these FGFs. The recent structural elucidation of the FGF cell surface signalling machinery and the formulation of a new threshold model for FGF signalling specificity have paved the way for therapeutically harnessing paracrine FGFs for the treatment of a range of metabolic diseases.
Collapse
Affiliation(s)
- Gaozhi Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingfeng Chen
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Moosa Mohammadi
- Institute of Cell Growth Factor, Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Snow AJD, Wijesiriwardena T, Lane BJ, Farrell B, Dowdle PC, Katan M, Muench SP, Breeze AL. Cell-free expression and SMA copolymer encapsulation of a functional receptor tyrosine kinase disease variant, FGFR3-TACC3. Sci Rep 2025; 15:2958. [PMID: 39848978 PMCID: PMC11758000 DOI: 10.1038/s41598-025-86194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
Despite their high clinical relevance, obtaining structural and biophysical data on transmembrane proteins has been hindered by challenges involved in their expression and extraction in a homogeneous, functionally-active form. The inherent enzymatic activity of receptor tyrosine kinases (RTKs) presents additional challenges. Oncogenic fusions of RTKs with heterologous partners represent a particularly difficult-to-express protein subtype due to their high flexibility, aggregation propensity and the lack of a known method for extraction within the native lipid environment. One such protein is the fibroblast growth factor receptor 3 fused with transforming acidic coiled-coil-containing protein 3 (FGFR3-TACC3), which has failed to express to sufficient quality or functionality in traditional expression systems. Cell-free protein expression (CFPE) is a burgeoning arm of synthetic biology, enabling the rapid and efficient generation of recombinant proteins. This platform is characterised by utilising an optimised solution of cellular machinery to facilitate protein synthesis in vitro. In doing so, CFPE can act as a surrogate system for a range of proteins that are otherwise difficult to express through traditional host cell-based approaches. Here, functional FGFR3-TACC3 was expressed through a novel cell-free expression system in under 48 h. The resultant protein was reconstituted using SMA copolymers with a specific yield of 300 µg/mL of lysate. Functionally, the protein demonstrated significant kinase domain phosphorylation (t < 0.0001). Currently, there is no published, high-resolution structure of any full-length RTK. These findings form a promising foundation for future research on oncogenic RTKs and the application of cell-free systems for synthesising functional membrane proteins.
Collapse
Affiliation(s)
- Alexander J D Snow
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Tharushi Wijesiriwardena
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Benjamin J Lane
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Brendan Farrell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Polly C Dowdle
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Stephen P Muench
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
3
|
Nguyen AL, Facey COB, Boman BM. The Complexity and Significance of Fibroblast Growth Factor (FGF) Signaling for FGF-Targeted Cancer Therapies. Cancers (Basel) 2024; 17:82. [PMID: 39796710 PMCID: PMC11720651 DOI: 10.3390/cancers17010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Fibroblast growth factors (FGFs) have diverse functions in the regulation of cell proliferation and differentiation in development, tissue maintenance, wound repair, and angiogenesis. The goal of this review paper is to (i) deliberate on the role of FGFs and FGF receptors (FGFRs) in different cancers, (ii) present advances in FGF-targeted cancer therapies, and (iii) explore cell signaling mechanisms that explain how FGF expression becomes dysregulated during cancer development. FGF is often mutated and overexpressed in cancer and the different FGF and FGFR isoforms have unique expression patterns and distinct roles in different cancers. Among the FGF members, the FGF 15/19 subfamily is particularly interesting because of its unique protein structure and role in endocrine function. The abnormal expression of FGFs in different cancer types (breast, colorectal, hepatobiliary, bronchogenic, and others) is examined and correlated with patient prognosis. The classification of FGF ligands based on their mode of action, whether autocrine, paracrine, endocrine, or intracrine, is illustrated, and an analysis of the binding specificity of FGFs to FGFRs is also provided. Moreover, the latest advances in cancer therapeutic strategies involving small molecules, ligand traps, and monoclonal antibody-based FGF inhibitors are presented. Lastly, we discuss how the dysregulation of FGF and FGFR expression affects FGF signaling and its role in cancer development.
Collapse
Affiliation(s)
- Anh L. Nguyen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA
| | - Caroline O. B. Facey
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA
| | - Bruce M. Boman
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
4
|
Edirisinghe O, Ternier G, Alraawi Z, Suresh Kumar TK. Decoding FGF/FGFR Signaling: Insights into Biological Functions and Disease Relevance. Biomolecules 2024; 14:1622. [PMID: 39766329 PMCID: PMC11726770 DOI: 10.3390/biom14121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Fibroblast Growth Factors (FGFs) and their cognate receptors, FGFRs, play pivotal roles in a plethora of biological processes, including cell proliferation, differentiation, tissue repair, and metabolic homeostasis. This review provides a comprehensive overview of FGF-FGFR signaling pathways while highlighting their complex regulatory mechanisms and interconnections with other signaling networks. Further, we briefly discuss the FGFs involvement in developmental, metabolic, and housekeeping functions. By complementing current knowledge and emerging research, this review aims to enhance the understanding of FGF-FGFR-mediated signaling and its implications for health and disease, which will be crucial for therapeutic development against FGF-related pathological conditions.
Collapse
Affiliation(s)
- Oshadi Edirisinghe
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Gaëtane Ternier
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.); (Z.A.)
| | - Zeina Alraawi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.); (Z.A.)
| | - Thallapuranam Krishnaswamy Suresh Kumar
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.); (Z.A.)
| |
Collapse
|
5
|
Hidalgo-Sánchez M, Sánchez-Guardado L, Rodríguez-León J, Francisco-Morcillo J. The role of FGF15/FGF19 in the development of the central nervous system, eyes and inner ears in vertebrates. Tissue Cell 2024; 91:102619. [PMID: 39579736 DOI: 10.1016/j.tice.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Fibroblast growth factor 19 (FGF19), and its rodent ortholog FGF15, is a member of a FGF subfamily directly involved in metabolism, acting in an endocrine way. During embryonic development, FGF15/FGF19 also functions as a paracrine or autocrine factor, regulating key events in a large number of organs. In this sense, the Fgf15/Fgf19 genes control the correct development of the brain, eye, inner ear, heart, pharyngeal pouches, tail bud and limbs, among other organs, as well as muscle growth in adulthood. These growth factors show relevant differences according to molecular structures, signalling pathway and function. Moreover, their expression patterns are highly dynamic at different stages of development, in particular in the central nervous system. The difficulty in understanding the action of these genes increases when comparing their expression patterns and regulatory mechanisms between different groups of vertebrates. The present review will address the expression patterns and functions of the Fgf15/Fgf19 genes at different stages of vertebrate embryonic development, with special attention to the regulation of the early specification, cell differentiation, and morphogenesis of the central nervous system and some sensory organs such as eye and inner ear. The most relevant anatomical aspects related to the structures analysed have also been considered in detail to provide an understandable context for the molecular and cellular studies shown.
Collapse
Affiliation(s)
- Matías Hidalgo-Sánchez
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain.
| | - Luis Sánchez-Guardado
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía Humana, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| |
Collapse
|
6
|
Bai Y, Zhang J, Li J, Liao M, Zhang Y, Xia Y, Wei Z, Dai Y. Silibinin, a commonly used therapeutic agent for non-alcohol fatty liver disease, functions through upregulating intestinal expression of fibroblast growth factor 15/19. Br J Pharmacol 2024; 181:3663-3684. [PMID: 38839561 DOI: 10.1111/bph.16431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/15/2023] [Accepted: 10/16/2023] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND AND PURPOSE Silibinin is used to treat non-alcohol fatty liver disease (NAFLD) despite having rapid liver metabolism. Therefore, we investigated the role of the intestine in silibinin mechanism of action. EXPERIMENTAL APPROACH NAFLD mice model was established by feeding them with a high-fat diet (HFD). Liver pathological were examined using H&E and oil red O staining. Tissue distribution of silibinin was detected by LC-MS/MS. SiRNA was employed for gene silencing and plasmid was used for gene overexpression. ChIP-qPCR assay was performed to detect the levels of histone acetylation. Recombinant adeno-associated virus 9-short hairpin-fibroblast growth factor (FGF)-15 and -farnesoid X receptor (FXR; NR1H4) were used to knockdown expression of FGF-15 and FXR. KEY RESULTS Oral silibinin significantly reversed NAFLD in mice, although liver concentration was insufficient for reduction of lipid accumulation in hepatocytes. Among endogenous factors capable of reversing NAFLD, the expression of Fgf-15 was selectively up-regulated by silibinin in ileum and colon of mice. When intestinal expression of Fgf-15 was knocked down, protection of silibinin against lipid accumulation and injury of livers nearly disappeared. Silibinin could reduce activity of histone deacetylase 2 (HDAC2), enhance histone acetylation in the promoter region of FXR and consequently increase intestinal expression of FGF-15/19. CONCLUSION AND IMPLICATIONS Oral silibinin selectively promotes expression of FGF-15/19 in ileum by enhancing transcription of FXR via reduction of HDAC2 activity, and FGF-15/19 enters into circulation to exert anti-NAFLD action. As the site of action is the intestine this would explain the discrepancy between pharmacodynamics and pharmacokinetics of silibinin.
Collapse
Affiliation(s)
- Yujie Bai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jialin Li
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Minghui Liao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yajing Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yufeng Xia
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
7
|
Guo X, Xu Y, Cui Y, Zhang G, Shi Z, Song X. Fibroblast growth factor 3 contributes to neuropathic pain through Akt/mTOR signaling in mouse primary sensory neurons. Neurotherapeutics 2024; 21:e00383. [PMID: 38955643 PMCID: PMC11579880 DOI: 10.1016/j.neurot.2024.e00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/10/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Neuropathic pain (NP), a severe chronic pain condition, remains a substantial clinical challenge due to its complex pathophysiology and limited effective treatments. An association between the members of the Fibroblast Growth Factors (FGFs), particularly Fgf3, and the development of NP has become evident. In this study, utilizing a mouse model of NP, we observed a time-dependent increase in Fgf3 expression at both mRNA and protein levels within the dorsal root ganglia (DRG). Functional studies revealed that blocking Fgf3 expression mitigated nerve injury induced nociceptive hypersensitivity, suggesting its pivotal role in pain modulation. Moreover, our findings elucidate that Fgf3 contributes to pain hypersensitivity through the activation of the Akt/mTOR signaling in injured DRG neurons. These results not only shed light on the involvement of Fgf3 in nerve injury-induced NP but also highlight its potential as a promising therapeutic target for pain management. This study thereby advances our understanding of the molecular mechanisms underlying NP and opens new avenues for the development of effective treatment strategies.
Collapse
Affiliation(s)
- Xinying Guo
- The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Yingyi Xu
- The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Yanhua Cui
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Gaolong Zhang
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Ziwen Shi
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Xingrong Song
- The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China; Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China.
| |
Collapse
|
8
|
Phan P, Ternier G, Edirisinghe O, Kumar TKS. Exploring endocrine FGFs - structures, functions and biomedical applications. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 15:68-99. [PMID: 39309613 PMCID: PMC11411148 DOI: 10.62347/palk2137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024]
Abstract
The family of fibroblast growth factors (FGFs) consists of 22 members with diverse biological functions in cells, from cellular development to metabolism. The family can be further categorized into three subgroups based on their three modes of action. FGF19, FGF21, and FGF23 are endocrine FGFs that act in a hormone-like/endocrine manner to regulate various metabolic activities. However, all three members of the endocrine family require both FGF receptors (FGFRs) and klotho co-receptors to elicit their functions. α-klotho and β-klotho act as scaffolds to bring endocrine FGFs closer to their receptors (FGFRs) to form active complexes. Numerous novel studies about metabolic FGFs' structures, mechanisms, and physiological insights have been published to further understand the complex molecular interactions and physiological activities of endocrine FGFs. Herein, we aim to review the structures, physiological functions, binding mechanisms to cognate receptors, and novel biomedical applications of endocrine FGFs in recent years.
Collapse
Affiliation(s)
- Phuc Phan
- Department of Chemistry and Biochemistry, Fulbright College of Art and Sciences, University of ArkansasFayetteville, AR 72701, USA
| | - Gaёtane Ternier
- Department of Chemistry and Biochemistry, Fulbright College of Art and Sciences, University of ArkansasFayetteville, AR 72701, USA
| | - Oshadi Edirisinghe
- Cell and Molecular Biology Program, University of ArkansasFayetteville, AR 72701, USA
| | | |
Collapse
|
9
|
Bartmańska M, Wiecek A, Adamczak M. Plasma FGF21 Concentration in Kidney Transplant Patients-Results from Prospective and Cross-Sectional Studies. J Clin Med 2024; 13:4266. [PMID: 39064306 PMCID: PMC11278288 DOI: 10.3390/jcm13144266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: Fibroblast growth factor 21 (FGF21) is a protein hormone involved in physiological conditions in the regulation of energy expenditure and several metabolic processes. The aim of this present study was to analyze the effect of successful kidney transplantations on the plasma FGF21 concentration and to study the factors which may influence plasma FGF21 concentration in patients in long time after kidney transplantation. Methods: This study consisted of two independent parts. The first part was a prospective observation of CKD patients in stage 5 before and then on the 14th and 30th day and 6 months after kidney transplantation. The second part of this study was the cross-sectional study completed in patients at least one year after kidney transplantation and the control group. In CKD patients directly before and during the early period after KTx, plasma FGF21 concentrations were measured four times (immediately before and 14 and 30 days and 6 months after KTx). In patients long time after kidney transplantation and in healthy subjects, plasma FGF21 concentration was measured once. Results: Forty patients with chronic kidney disease (CKD) who were either directly before or within the early period after kidney transplantation (KTx), 184 patients longtime after KTx and 50 healthy subjects were enrolled into this study. In CKD patients at the stage directly before receiving a KTx, the mean plasma FGF21 concentration was significantly higher than in the healthy subjects [1013.0 pg/mL versus 239.5 pg/mL, p < 0.001]. At 14, 30 days, and 6 months after the KTx, a significant decrease of plasma FGF21 was observed, with values of 322.5 pg/mL; 355.0 pg/mL; and 344.0 pg/mL (p < 0.001), respectively]. In patients long time after KTx, a negative correlation was found between the plasma FGF21 concentration and the estimated glomerular filtration rate and a positive correlation was found between the plasma FGF21 concentration and the BMI, the serum concentration of triglycerides, insulin, interleukin-6, CRP, and cystatin C. Conclusions: The plasma FGF21 concentration in patients with end-stage renal disease is higher than in healthy subjects and significantly decreases after a successful KTx. The plasma FGF21 concentration measured by ELISA in patients long time after kidney transplantation seems to be related to the degree of kidney function impairment and their metabolic status. The kidneys appear to be one of the main organs involved in the biodegradation and/or elimination of FGF21.
Collapse
Affiliation(s)
| | | | - Marcin Adamczak
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, 40-027 Katowice, Poland (A.W.)
| |
Collapse
|
10
|
Berezin AE, Berezina TA, Hoppe UC, Lichtenauer M, Berezin AA. Methods to predict heart failure in diabetes patients. Expert Rev Endocrinol Metab 2024; 19:241-256. [PMID: 38622891 DOI: 10.1080/17446651.2024.2342812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is one of the leading causes of cardiovascular disease and powerful predictor for new-onset heart failure (HF). AREAS COVERED We focus on the relevant literature covering evidence of risk stratification based on imaging predictors and circulating biomarkers to optimize approaches to preventing HF in DM patients. EXPERT OPINION Multiple diagnostic algorithms based on echocardiographic parameters of cardiac remodeling including global longitudinal strain/strain rate are likely to be promising approach to justify individuals at higher risk of incident HF. Signature of cardiometabolic status may justify HF risk among T2DM individuals with low levels of natriuretic peptides, which preserve their significance in HF with clinical presentation. However, diagnostic and predictive values of conventional guideline-directed biomarker HF strategy may be non-optimal in patients with obesity and T2DM. Alternative biomarkers affecting cardiac fibrosis, inflammation, myopathy, and adipose tissue dysfunction are plausible tools for improving accuracy natriuretic peptides among T2DM patients at higher HF risk. In summary, risk identification and management of the patients with T2DM with established HF require conventional biomarkers monitoring, while the role of alternative biomarker approach among patients with multiple CV and metabolic risk factors appears to be plausible tool for improving clinical outcomes.
Collapse
Affiliation(s)
- Alexander E Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Tetiana A Berezina
- VitaCenter, Department of Internal Medicine & Nephrology, Zaporozhye, Ukraine
| | - Uta C Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
11
|
Liu S, Ezran C, Wang MFZ, Li Z, Awayan K, Long JZ, De Vlaminck I, Wang S, Epelbaum J, Kuo CS, Terrien J, Krasnow MA, Ferrell JE. An organism-wide atlas of hormonal signaling based on the mouse lemur single-cell transcriptome. Nat Commun 2024; 15:2188. [PMID: 38467625 PMCID: PMC10928088 DOI: 10.1038/s41467-024-46070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Hormones mediate long-range cell communication and play vital roles in physiology, metabolism, and health. Traditionally, endocrinologists have focused on one hormone or organ system at a time. Yet, hormone signaling by its very nature connects cells of different organs and involves crosstalk of different hormones. Here, we leverage the organism-wide single cell transcriptional atlas of a non-human primate, the mouse lemur (Microcebus murinus), to systematically map source and target cells for 84 classes of hormones. This work uncovers previously-uncharacterized sites of hormone regulation, and shows that the hormonal signaling network is densely connected, decentralized, and rich in feedback loops. Evolutionary comparisons of hormonal genes and their expression patterns show that mouse lemur better models human hormonal signaling than mouse, at both the genomic and transcriptomic levels, and reveal primate-specific rewiring of hormone-producing/target cells. This work complements the scale and resolution of classical endocrine studies and sheds light on primate hormone regulation.
Collapse
Affiliation(s)
- Shixuan Liu
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Camille Ezran
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Michael F Z Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Zhengda Li
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kyle Awayan
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford, CA, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Sheng Wang
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Jacques Epelbaum
- Adaptive Mechanisms and Evolution (MECADEV), UMR 7179, National Center for Scientific Research, National Museum of Natural History, Brunoy, France
| | - Christin S Kuo
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jérémy Terrien
- Adaptive Mechanisms and Evolution (MECADEV), UMR 7179, National Center for Scientific Research, National Museum of Natural History, Brunoy, France
| | - Mark A Krasnow
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford, CA, USA.
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Zangerolamo L, Carvalho M, Velloso LA, Barbosa HCL. Endocrine FGFs and their signaling in the brain: Relevance for energy homeostasis. Eur J Pharmacol 2024; 963:176248. [PMID: 38056616 DOI: 10.1016/j.ejphar.2023.176248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Since their discovery in 2000, there has been a continuous expansion of studies investigating the physiology, biochemistry, and pharmacology of endocrine fibroblast growth factors (FGFs). FGF19, FGF21, and FGF23 comprise a subfamily with attributes that distinguish them from typical FGFs, as they can act as hormones and are, therefore, referred to as endocrine FGFs. As they participate in a broad cross-organ endocrine signaling axis, endocrine FGFs are crucial lipidic, glycemic, and energetic metabolism regulators during energy availability fluctuations. They function as powerful metabolic signals in physiological responses induced by metabolic diseases, like type 2 diabetes and obesity. Pharmacologically, FGF19 and FGF21 cause body weight loss and ameliorate glucose homeostasis and energy expenditure in rodents and humans. In contrast, FGF23 expression in mice and humans has been linked with insulin resistance and obesity. Here, we discuss emerging concepts in endocrine FGF signaling in the brain and critically assess their putative role as therapeutic targets for treating metabolic disorders.
Collapse
Affiliation(s)
- Lucas Zangerolamo
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Marina Carvalho
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Helena C L Barbosa
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil.
| |
Collapse
|
13
|
Sun F, Liang P, Wang B, Liu W. The fibroblast growth factor-Klotho axis at molecular level. Open Life Sci 2023; 18:20220655. [PMID: 37941788 PMCID: PMC10628560 DOI: 10.1515/biol-2022-0655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/03/2023] [Accepted: 06/10/2023] [Indexed: 11/10/2023] Open
Abstract
Klotho is a recently discovered protein that has positive effects on all systems of the body, for example, regulating calcium and phosphorus metabolism, protecting nerves, delaying aging and so on. Fibroblast growth factors (FGFs) are a group of polypeptides that function throughout the body by binding with cell surface FGF receptors (FGFRs). Endocrine FGFs require Klotho as a co-receptor for FGFRs. There is increasing evidence that Klotho participates in calcium and phosphorus regulation and metabolic regulation via the FGF-Klotho axis. Moreover, soluble Klotho can function as a separate hormone to regulate homeostasis on various ion channels and carrier channels on the cell surface. This review mainly explains the molecular basis of the membrane signaling mechanism of Klotho.
Collapse
Affiliation(s)
- Fuqiang Sun
- School of Anesthesiology, Weifang Medical University, Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Weifang261053, Shandong, China
| | - Panpan Liang
- School of Basic Medical Sciences, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Bo Wang
- School of Anesthesiology, Weifang Medical University, Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Weifang261053, Shandong, China
| | - Wenbo Liu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang261000, Shandong, China
| |
Collapse
|
14
|
Tokarzewicz A, Ołdak Ł, Młynarczyk G, Klekotka U, Gorodkiewicz E. A New Approach to the Quantification of Fibroblast Growth Factor 23-An Array Surface Plasmon Resonance Imaging Biosensor. Int J Mol Sci 2023; 24:15327. [PMID: 37895007 PMCID: PMC10607372 DOI: 10.3390/ijms242015327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
A new biosensor based on the "surface plasmon resonance imaging (SPRi)" detection technique for the quantification of "fibroblast growth factor 23 (FGF23)" has been developed. FGF23 is mainly produced in bone tissues as a phosphaturic hormone that forms a trimeric complex with "fibroblast growth factor receptor 1 (FGFR1)" and αKlotho upon secretion. FGF23 stimulates phosphate excretion and inhibits the formation of active vitamin D in the kidneys. FGF23 has been shown to play a role in bone carcinogenesis and metastasis. The newly developed method, based on the array SPRi biosensor, was validated-the precision, accuracy, and selectivity were acceptable, and yielded less than ±10% recovery. The rectilinear response of the biosensor ranges from 1 to 75 pg/mL. The limit of detection was 0.033 pg/mL, and the limit of quantification was 0.107 pg/mL. The biosensor was used to determine FGF23 concentrations in the blood plasma of healthy subjects and patients with "clear cell" renal cell carcinoma (ccRCC). The obtained results were compared with those measured through an "enzyme-linked immunosorbent assay (ELISA)". The determined Pearson correlation coefficients were 0.994 and 0.989, demonstrating that the newly developed biosensor can be used as a competitive method for the ELISA.
Collapse
Affiliation(s)
- Anna Tokarzewicz
- Department of Medical Biochemistry, Medical University of Bialystok, A. Mickiewicza 2C St., 15-089 Bialystok, Poland
| | - Łukasz Ołdak
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K St., 15-245 Bialystok, Poland; (Ł.O.); (E.G.)
| | - Grzegorz Młynarczyk
- Department of Urology, Medical University of Bialystok, M. Sklodowskiej-Curie 24A St., 15-276 Bialystok, Poland;
| | - Urszula Klekotka
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K St., 15-245 Bialystok, Poland;
| | - Ewa Gorodkiewicz
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K St., 15-245 Bialystok, Poland; (Ł.O.); (E.G.)
| |
Collapse
|
15
|
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease. Biol Rev Camb Philos Soc 2023; 98:1424-1458. [PMID: 37068798 DOI: 10.1111/brv.12959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master 'clock of age' (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial - specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Little France, Edinburgh, EH16 4SB, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
16
|
Huang C, Ding L, Ji J, Qiao Y, Xia Z, Shi H, Zhang S, Gan W, Zhang A. Expression profiles and potential roles of serum tRNA‑derived fragments in diabetic nephropathy. Exp Ther Med 2023; 26:311. [PMID: 37273759 PMCID: PMC10236146 DOI: 10.3892/etm.2023.12010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/29/2023] [Indexed: 06/06/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most important causes of end-stage renal disease and current treatments are ineffective in preventing its progression. Transfer RNA (tRNA)-derived fragments (tRFs), which are small non-coding fragments derived from tRNA precursors or mature tRNAs, have a critical role in various human diseases. The present study aimed to investigate the expression profile and potential functions of tRFs in DN. High-throughput sequencing technology was employed to detect the differential serum levels of tRFs between DN and diabetes mellitus and to validate the reliability of the sequencing results using reverse transcription-quantitative PCR. Ultimately, six differentially expressed (DE) tRFs were identified (P<0.05; |log2fold change| ≥1), including three upregulated (tRF5-GluCTC, tRF5-AlaCGC and tRF5-ValCAC) and three downregulated tRFs (tRF5-GlyCCC, tRF3-GlyGCC and tRF3-IleAAT). Potential functions and regulatory mechanisms of these DE tRFs were further evaluated using an applied bioinformatics-based analysis. Gene ontology analysis revealed that the DE tRFs are mainly enriched in biological processes, including axon guidance, Rad51 paralog (Rad51)B-Rad51C-Rad51D-X-Ray repair cross-complementing 2 complex, nuclear factor of activated T-cells protein binding and fibroblast growth factor-activated receptor activity. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that they are associated with axon guidance, neurotrophin signaling, mTOR signaling, AMPK signaling and epidermal growth factor receptor family signaling pathways. In conclusion, the present findings indicated that tRFs were DE in DN and may be involved in the regulation of DN pathology through multiple pathways, thereby providing a new perspective for the study of DN therapeutic targets.
Collapse
Affiliation(s)
- Chan Huang
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| | - Ling Ding
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210031, P.R. China
| | - Jialing Ji
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| | - Yunyang Qiao
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| | - Zihuan Xia
- School of Pediatrics, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Huimin Shi
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| | - Shiting Zhang
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210031, P.R. China
| | - Weihua Gan
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| | - Aiqing Zhang
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210031, P.R. China
| |
Collapse
|
17
|
Arboleya L, Braña I, Pardo E, Loredo M, Queiro R. Osteomalacia in Adults: A Practical Insight for Clinicians. J Clin Med 2023; 12:jcm12072714. [PMID: 37048797 PMCID: PMC10094844 DOI: 10.3390/jcm12072714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/26/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
The term osteomalacia (OM) refers to a series of processes characterized by altered mineralization of the skeleton, which can be caused by various disorders of mineral metabolism. OM can be genetically determined or occur due to acquired disorders, among which the nutritional origin is particularly relevant, due to its wide epidemiological extension and its nature as a preventable disease. Among the hereditary diseases associated with OM, the most relevant is X-linked hypophosphatemia (XLH), which manifests in childhood, although its consequences persist into adulthood where it can acquire specific clinical characteristics, and, although rare, there are XLH cases that reach the third or fourth decade of life without a diagnosis. Some forms of OM present very subtle initial manifestations which cause both considerable diagnosis and treatment delay. On occasions, the presence of osteopenia and fragility fractures leads to an erroneous diagnosis of osteoporosis, which may imply the prescription of antiresorptive drugs (i.e., bisphosphonates or denosumab) with catastrophic consequences for OM bone. On the other hand, some radiological features of OM can be confused with those of axial spondyloarthritis and lead to erroneous diagnoses. The current prevalence of OM is not known and is very likely that its incidence is much higher than previously thought. Moreover, OM explains part of the therapeutic failures that occur in patients diagnosed with other bone diseases. Therefore, it is essential that clinicians who treat adult skeletal diseases take into account the considerations provided in this practical review when focusing on the diagnosis and treatment of their patients with bone diseases.
Collapse
Affiliation(s)
- Luis Arboleya
- Rheumatology Division, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Ignacio Braña
- Rheumatology Division, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Estefanía Pardo
- Rheumatology Division, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Marta Loredo
- Rheumatology Division, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Rubén Queiro
- Rheumatology Division, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
- ISPA Translational Immunology Division, Biohealth Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- School of Medicine, Oviedo University, 33011 Oviedo, Spain
| |
Collapse
|
18
|
Fuiten AM, Yoshimoto Y, Shukunami C, Stadler HS. Digits in a dish: An in vitro system to assess the molecular genetics of hand/foot development at single-cell resolution. Front Cell Dev Biol 2023; 11:1135025. [PMID: 36994104 PMCID: PMC10040768 DOI: 10.3389/fcell.2023.1135025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
In vitro models allow for the study of developmental processes outside of the embryo. To gain access to the cells mediating digit and joint development, we identified a unique property of undifferentiated mesenchyme isolated from the distal early autopod to autonomously re-assemble forming multiple autopod structures including: digits, interdigital tissues, joints, muscles and tendons. Single-cell transcriptomic analysis of these developing structures revealed distinct cell clusters that express canonical markers of distal limb development including: Col2a1, Col10a1, and Sp7 (phalanx formation), Thbs2 and Col1a1 (perichondrium), Gdf5, Wnt5a, and Jun (joint interzone), Aldh1a2 and Msx1 (interdigital tissues), Myod1 (muscle progenitors), Prg4 (articular perichondrium/articular cartilage), and Scx and Tnmd (tenocytes/tendons). Analysis of the gene expression patterns for these signature genes indicates that developmental timing and tissue-specific localization were also recapitulated in a manner similar to the initiation and maturation of the developing murine autopod. Finally, the in vitro digit system also recapitulates congenital malformations associated with genetic mutations as in vitro cultures of Hoxa13 mutant mesenchyme produced defects present in Hoxa13 mutant autopods including digit fusions, reduced phalangeal segment numbers, and poor mesenchymal condensation. These findings demonstrate the robustness of the in vitro digit system to recapitulate digit and joint development. As an in vitro model of murine digit and joint development, this innovative system will provide access to the developing limb tissues facilitating studies to discern how digit and articular joint formation is initiated and how undifferentiated mesenchyme is patterned to establish individual digit morphologies. The in vitro digit system also provides a platform to rapidly evaluate treatments aimed at stimulating the repair or regeneration of mammalian digits impacted by congenital malformation, injury, or disease.
Collapse
Affiliation(s)
- Allison M. Fuiten
- Research Center, Shriners Children’s, Portland, OR, United States
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, United States
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - H. Scott Stadler
- Research Center, Shriners Children’s, Portland, OR, United States
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, United States
- *Correspondence: H. Scott Stadler,
| |
Collapse
|
19
|
Pan L, Meng F, Wang W, Wang XH, Shen H, Bao P, Kang J, Kong D. Nintedanib in an elderly non-small-cell lung cancer patient with severe steroid-refractory checkpoint inhibitor-related pneumonitis: A case report and literature review. Front Immunol 2023; 13:1072612. [PMID: 36703957 PMCID: PMC9872202 DOI: 10.3389/fimmu.2022.1072612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Immune checkpoint inhibitors tremendously improve cancer prognosis; however, severe-grade immune-related adverse events may cause premature death. Current recommendations for checkpoint inhibitor-related pneumonitis (CIP) treatment are mainly about immunosuppressive therapy, and anti-fibrotic agents are also needed, especially for patients with poor response to corticosteroids and a longer pneumonitis course. This is because fibrotic changes play an important role in the pathological evolution of CIP. Here, we report a case demonstrating that nintedanib is a promising candidate drug for CIP management or prevention, as it has potent anti-fibrotic efficacy and a safety profile. Moreover, nintedanib could partially inhibit tumor growth in patients with non-small-cell lung cancer, and its efficacy can be improved in combination with other anti-tumor therapies.
Collapse
Affiliation(s)
- Lei Pan
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Fanqi Meng
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China,The First Clinical College, China Medical University, Shenyang, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xu-hao Wang
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China,The First Clinical College, China Medical University, Shenyang, China
| | - Hui Shen
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Pengchen Bao
- The First Clinical College, China Medical University, Shenyang, China
| | - Jian Kang
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Delei Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China,*Correspondence: Delei Kong,
| |
Collapse
|
20
|
Latic N, Erben RG. Interaction of Vitamin D with Peptide Hormones with Emphasis on Parathyroid Hormone, FGF23, and the Renin-Angiotensin-Aldosterone System. Nutrients 2022; 14:nu14235186. [PMID: 36501215 PMCID: PMC9736617 DOI: 10.3390/nu14235186] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The seminal discoveries that parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) are major endocrine regulators of vitamin D metabolism led to a significant improvement in our understanding of the pivotal roles of peptide hormones and small proteohormones in the crosstalk between different organs, regulating vitamin D metabolism. The interaction of vitamin D, FGF23 and PTH in the kidney is essential for maintaining mineral homeostasis. The proteohormone FGF23 is mainly secreted from osteoblasts and osteoclasts in the bone. FGF23 acts on proximal renal tubules to decrease production of the active form of vitamin D (1,25(OH)2D) by downregulating transcription of 1α-hydroxylase (CYP27B1), and by activating transcription of the key enzyme responsible for vitamin D degradation, 24-hydroxylase (CYP24A1). Conversely, the peptide hormone PTH stimulates 1,25(OH)2D renal production by upregulating the expression of 1α-hydroxylase and downregulating that of 24-hydroxylase. The circulating concentration of 1,25(OH)2D is a positive regulator of FGF23 secretion in the bone, and a negative regulator of PTH secretion from the parathyroid gland, forming feedback loops between kidney and bone, and between kidney and parathyroid gland, respectively. In recent years, it has become clear that vitamin D signaling has important functions beyond mineral metabolism. Observation of seasonal variations in blood pressure and the subsequent identification of vitamin D receptor (VDR) and 1α-hydroxylase in non-renal tissues such as cardiomyocytes, endothelial and smooth muscle cells, suggested that vitamin D may play a role in maintaining cardiovascular health. Indeed, observational studies in humans have found an association between vitamin D deficiency and hypertension, left ventricular hypertrophy and heart failure, and experimental studies provided strong evidence for a role of vitamin D signaling in the regulation of cardiovascular function. One of the proposed mechanisms of action of vitamin D is that it functions as a negative regulator of the renin-angiotensin-aldosterone system (RAAS). This finding established a novel link between vitamin D and RAAS that was unexplored until then. During recent years, major progress has been made towards a more complete understanding of the mechanisms by which FGF23, PTH, and RAAS regulate vitamin D metabolism, especially at the genomic level. However, there are still major gaps in our knowledge that need to be filled by future research. The purpose of this review is to highlight our current understanding of the molecular mechanisms underlying the interaction between vitamin D, FGF23, PTH, and RAAS, and to discuss the role of these mechanisms in physiology and pathophysiology.
Collapse
|
21
|
Wen X, Hu G, Xiao X, Zhang X, Zhang Q, Guo H, Li X, Liu Q, Li H. FGF2 positively regulates osteoclastogenesis via activating the ERK-CREB pathway. Arch Biochem Biophys 2022; 727:109348. [PMID: 35835230 DOI: 10.1016/j.abb.2022.109348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/17/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
Fibroblast growth factor 2 (FGF2) plays crucial roles in the growth and development of several tissues. However, its function in bone homeostasis remains controversial. Here, we found that exogenous FGF2 supplementation inhibited the mineralization of bone marrow stromal cells (BMSCs), at least partially, via up-regulating the gene expression of osteoclastogenesis. The FGF receptor (FGFR) allosteric antagonist SSR128129E modestly, whereas the FGFR tyrosine kinase inhibitor AZD4547 significantly antagonized the effects of FGF2. Mechanistically, FGF2 stimulated ERK phosphorylation, and the ERK signaling inhibitor PD325901 strongly blocked FGF2 enhancement of osteoclastogenesis. Moreover, the phosphorylation of CREB was also activated in response to FGF2, thereby potentiating the interaction of p-CREB with the promoter region of Rankl gene. Notably, FGF2-deficient BMSCs exhibited higher mineralization capability and lower osteoclastogenic gene expression. Correspondingly, FGF2-knockout mice showed increased bone mass and attenuated expression of osteoclast-related markers, which were associated with moderate inhibition of the ERK signaling. In conclusion, FGF2 positively regulates osteoclastogenesis via stimulating the ERK-CREB pathway. These findings establish the importance of FGF2 in bone homeostasis, hinting the potential use of FGF2/ERK/CREB specific inhibitors to fight against bone-related disorders, such as osteoporosis.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Geng Hu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Xue Xiao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xinzhi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Qiang Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Hengjun Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xianyao Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Qingxin Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Haifang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
22
|
Liu Y, Chen Q, Li Y, Bi L, He Z, Shao C, Jin L, Peng R, Zhang X. Advances in FGFs for diabetes care applications. Life Sci 2022; 310:121015. [PMID: 36179818 DOI: 10.1016/j.lfs.2022.121015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is an endocrine and metabolic disease caused by a variety of pathogenic factors, including genetic factors, environmental factors and behavior. In recent decades, the number of cases and the prevalence of diabetes have steadily increased, and it has become one of the most threatening diseases to human health in the world. Currently, insulin is the most effective and direct way to control hyperglycemia for diabetes treatment at a low cost. However, hypoglycemia is often a common complication of insulin treatment. Moreover, with the extension of treatment time, insulin resistance, considered the typical adverse symptom, can appear. Therefore, it is urgent to develop new targets and more effective and safer drugs for diabetes treatment to avoid adverse reactions and the insulin tolerance of traditional hypoglycemic drugs. SCOPE OF REVIEW In recent years, it has been found that some fibroblast growth factors (FGFs), including FGF1, FGF19 and FGF21, can safely and effectively reduce hyperglycemia and have the potential to be developed as new drugs for the treatment of diabetes. FGF23 is also closely related to diabetes and its complications, which provides a new approach for regulating blood glucose and solving the problem of insulin tolerance. MAJOR CONCLUSIONS This article reviews the research progress on the physiology and pharmacology of fibroblast growth factor in the treatment of diabetes. We focus on the application of FGFs in diabetes care and prevention.
Collapse
Affiliation(s)
- Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yaoqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhiying He
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Chuxiao Shao
- Department of Hepatopancreatobiliary Surgery, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui 323000, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Xingxing Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
23
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
24
|
Francavilla C, O'Brien CS. Fibroblast growth factor receptor signalling dysregulation and targeting in breast cancer. Open Biol 2022; 12:210373. [PMID: 35193394 PMCID: PMC8864352 DOI: 10.1098/rsob.210373] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023] Open
Abstract
Fibroblast Growth Factor Receptor (FGFR) signalling plays a critical role in breast embryonal development, tissue homeostasis, tumorigenesis and metastasis. FGFR, its numerous FGF ligands and signalling partners are often dysregulated in breast cancer progression and are one of the causes of resistance to treatment in breast cancer. Furthermore, FGFR signalling on epithelial cells is affected by signals from the breast microenvironment, therefore increasing the possibility of breast developmental abnormalities or cancer progression. Increasing our understanding of the multi-layered roles of the complex family of FGFRs, their ligands FGFs and their regulatory partners may offer novel treatment strategies for breast cancer patients, as a single agent or rational co-target, which will be explored in depth in this review.
Collapse
Affiliation(s)
- Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester M13 9PT, UK
- The Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK
| | - Ciara S. O'Brien
- The Christie Hospital NHS Foundation Trust, Wilmslow Road, Manchester M20 2BX, UK
- The Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
25
|
The canonical FGF-FGFR signaling system at the molecular level. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2021-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Extracellular signaling molecules, among them the fibroblast growth factors (FGFs), enable cells to communicate with neighboring cells. Such signaling molecules that receive and transmit a signal require specific tyrosine kinase receptors located at the cell surface (fibroblast growth factor receptors, FGFRs). The binding of a signaling molecule to its specific receptor results in receptor dimerization and conformational changes in the cytoplasmic part of the receptor. The conformational changes lead to trans-autophosphorylation of the tyrosine kinase domains of the receptors and subsequently to induction of several downstream signaling pathways and expression of appropriate genes. The signaling pathways activated by FGFs control and coordinate cell behaviors such as cell division, migration, differentiation, and cell death. FGFs and their transmembrane receptors are widely distributed in different tissues and participate in fundamental processes during embryonic, fetal, and adult human life. The human FGF/FGFR family comprises 22 ligands and 4 high affinity receptors. In addition, FGFs bind to low affinity receptors, heparan sulfate proteoglycans at the cell surface. The availability of appropriate ligand/receptor pair, combined with the co-receptor, initiates signaling. Inappropriate FGF/FGFR signaling can cause skeletal disorders, primarily dwarfism, craniofacial malformation syndromes, mood disorders, metabolic disorders, and Kallman syndrome. In addition, aberrations in FGF/FGFR signaling have already been reported in several types of malignant diseases. Knowledge about the molecular mechanisms of FGF/FGFR activation and signaling is necessary to understand the basis of these diseases.
Collapse
|
26
|
Abstract
Apart from its phosphaturic action, the bone-derived hormone fibroblast growth factor-23 (FGF23) is also an essential regulator of vitamin D metabolism. The main target organ of FGF23 is the kidney, where FGF23 suppresses transcription of the key enzyme in vitamin D hormone (1,25(OH)2D) activation, 1α-hydroxylase, and activates transcription of the key enzyme responsible for vitamin D degradation, 24-hydroxylase, in proximal renal tubules. The circulating concentration of 1,25(OH)2D is a positive regulator of FGF23 secretion in bone, forming a feedback loop between kidney and bone. The importance of FGF23 as regulator of vitamin D metabolism is underscored by the fact that in the absence of FGF23 signaling, the tight control of renal 1α-hydroxylase fails, resulting in overproduction of 1,25(OH)2D in mice and men. During recent years, big strides have been made toward a more complete understanding of the mechanisms underlying the FGF23-mediated regulation of vitamin D metabolism, especially at the genomic level. However, there are still major gaps in our knowledge that need to be filled by future research. Importantly, the intracellular signaling cascades downstream of FGF receptors regulating transcription of 1α-hydroxylase and 24-hydroxylase in proximal renal tubules still remain unresolved. The purpose of this review is to highlight our current understanding of the molecular mechanisms underlying the regulation of vitamin D metabolism by FGF23, and to discuss the role of these mechanisms in physiology and pathophysiology. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nejla Latic
- Department of Biomedical Sciences University of Veterinary Medicine Vienna Austria
| | - Reinhold G Erben
- Department of Biomedical Sciences University of Veterinary Medicine Vienna Austria
| |
Collapse
|
27
|
Alber J, Freisinger P, Föller M. The synthesis of fibroblast growth factor 23 is upregulated by homocysteine in UMR106 osteoblast-like cells. Nutrition 2021; 96:111573. [PMID: 35091320 DOI: 10.1016/j.nut.2021.111573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Fibroblast growth factor 23 (FGF23) controls the production and degradation of biologically active vitamin D, 1,25(OH)2D3, and phosphate reabsorption in the kidney as a hormone synthesized by bone cells. Additional paracrine effects in other organs exist as well. As a biomarker, the FGF23 plasma concentration increases in renal and cardiovascular diseases, and is correlated with outcome. The regulation of FGF23 is incompletely understood and dependent on several factors, including oxidative stress. L-homocysteine is an amino acid produced in methionine metabolism, and can be converted into further metabolites depending on the availability of vitamin B. Hyperhomocysteinemia is a potential cardiovascular risk factor. Our study aimed to explore whether homocysteine impacts FGF23 synthesis. METHODS Experiments were performed in UMR106 osteoblast-like cells. Fgf23 gene expression and FGF23 protein concentration were measured by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Oxidative stress was determined by 2',7'-dichlorofluorescein diacetate fluorescence. RESULTS Homocysteine dose-dependently upregulated Fgf23 gene expression and protein synthesis. Moreover, homocysteine imposed oxidative stress on UMR106 cells. The effect of homocysteine on Fgf23 was abrogated by antioxidant ascorbic acid. CONCLUSIONS Homocysteine is a potent stimulator of FGF23 production, an effect at least in part mediated by oxidative stress. The homocysteine-dependent upregulation of FGF23 presumably contributes to its role as a cardiovascular risk factor.
Collapse
Affiliation(s)
- Jana Alber
- University of Hohenheim, Department of Physiology, Stuttgart, Germany
| | - Peter Freisinger
- Kreiskliniken Reutlingen, Department of Pediatrics, Reutlingen, Germany
| | - Michael Föller
- University of Hohenheim, Department of Physiology, Stuttgart, Germany.
| |
Collapse
|
28
|
Servetto A, Formisano L, Arteaga CL. FGFR signaling and endocrine resistance in breast cancer: Challenges for the clinical development of FGFR inhibitors. Biochim Biophys Acta Rev Cancer 2021; 1876:188595. [PMID: 34303787 PMCID: PMC10537726 DOI: 10.1016/j.bbcan.2021.188595] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/26/2022]
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) have been extensively investigated in solid malignancies, representing an attractive therapeutic target. In breast cancer, especially in estrogen receptor positive (ER+) subtype, FGFR signaling aberrations have been reported to contribute to proliferation, dedifferentiation, metastasis and drug resistance. However, clinical trials evaluating the use of FGFR inhibitors in breast cancer have had disappointing results. The different biological properties of distinct FGFR alterations and lack of established patient selection criteria, in addition to the early use of non-selective inhibitors, are possible reasons of this failure. Herein, we review the current knowledge regarding the role of FGFR signaling in endocrine resistance in breast cancer. We will also summarize the results from the clinical development of FGFR inhibitors in breast cancer, discussing future challenges to identify the correct cohorts of patients to enroll in trials testing FGFR inhibitors.
Collapse
Affiliation(s)
- Alberto Servetto
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America; Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Carlos L Arteaga
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America.
| |
Collapse
|
29
|
Abstract
Fibroblast growth factors (FGFs) are cell-signaling proteins with diverse functions in cell development, repair, and metabolism. The human FGF family consists of 22 structurally related members, which can be classified into three separate groups based on their action of mechanisms, namely: intracrine, paracrine/autocrine, and endocrine FGF subfamilies. FGF19, FGF21, and FGF23 belong to the hormone-like/endocrine FGF subfamily. These endocrine FGFs are mainly associated with the regulation of cell metabolic activities such as homeostasis of lipids, glucose, energy, bile acids, and minerals (phosphate/active vitamin D). Endocrine FGFs function through a unique protein family called klotho. Two members of this family, α-klotho, or β-klotho, act as main cofactors which can scaffold to tether FGF19/21/23 to their receptor(s) (FGFRs) to form an active complex. There are ongoing studies pertaining to the structure and mechanism of these individual ternary complexes. These studies aim to provide potential insights into the physiological and pathophysiological roles and therapeutic strategies for metabolic diseases. Herein, we provide a comprehensive review of the history, structure–function relationship(s), downstream signaling, physiological roles, and future perspectives on endocrine FGFs.
Collapse
|
30
|
Ozaki-Masuzawa Y, Kosaka H, Abiru R, Toda Y, Kawabata K, Nagata M, Hara S, Konishi M, Itoh N, Hosono T, Takenaka A, Seki T. The role of increased FGF21 in VLDL-TAG secretion and thermogenic gene expression in mice under protein malnutrition. Biosci Biotechnol Biochem 2021; 85:1104-1113. [PMID: 33751045 DOI: 10.1093/bbb/zbab030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/13/2021] [Indexed: 11/13/2022]
Abstract
Protein malnutrition promotes hepatic lipid accumulation in growing animals. In these animals, fibroblast growth factor 21 (FGF21) rapidly increases in the liver and circulation and plays a protective role in hepatic lipid accumulation. To investigate the mechanism by which FGF21 protects against liver lipid accumulation under protein malnutrition, we determined whether upregulated FGF21 promotes the thermogenesis or secretion of very-low-density lipoprotein (VLDL)-triacylglycerol (TAG). The results showed that protein malnutrition decreased VLDL-TAG secretion, but the upregulation of FGF21 did not oppose this effect. In addition, protein malnutrition increased expression of the thermogenic gene uncoupling protein 1 in inguinal white adipose and brown adipose tissue in an FGF21-dependent manner. However, surgically removing inguinal white adipose tissue did not affect liver triglyceride levels in protein-malnourished mice. These data suggest that FGF21 stimulates thermogenesis under protein malnutrition, but this is not the causative factor underlying the protective role of FGF21 against liver lipid accumulation.
Collapse
Affiliation(s)
- Yori Ozaki-Masuzawa
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Hiroki Kosaka
- Department of Applied Life Science, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Rino Abiru
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Yumiko Toda
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Kota Kawabata
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Mari Nagata
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Shohei Hara
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Morichika Konishi
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Takashi Hosono
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan.,Department of Applied Life Science, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Asako Takenaka
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Taiichiro Seki
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan.,Department of Applied Life Science, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| |
Collapse
|
31
|
Poźniak M, Zarzycka W, Porębska N, Knapik A, Marczakiewicz-Perera P, Zakrzewska M, Otlewski J, Opaliński Ł. FGF1 Fusions with the Fc Fragment of IgG1 for the Assembly of GFPpolygons-Mediated Multivalent Complexes Recognizing FGFRs. Biomolecules 2021; 11:biom11081088. [PMID: 34439755 PMCID: PMC8392455 DOI: 10.3390/biom11081088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
FGFRs are cell surface receptors that, when activated by specific FGFs ligands, transmit signals through the plasma membrane, regulating key cellular processes such as differentiation, division, motility, metabolism and death. We have recently shown that the modulation of the spatial distribution of FGFR1 at the cell surface constitutes an additional mechanism for fine-tuning cellular signaling. Depending on the multivalent, engineered ligand used, the clustering of FGFR1 into diverse supramolecular complexes enhances the efficiency and modifies the mechanism of receptor endocytosis, alters FGFR1 lifetime and modifies receptor signaling, ultimately determining cell fate. Here, we present a novel approach to generate multivalent FGFR1 ligands. We functionalized FGF1 for controlled oligomerization by developing N- and C-terminal fusions of FGF1 with the Fc fragment of human IgG1 (FGF1-Fc and Fc-FGF1). As oligomerization scaffolds, we employed GFPpolygons, engineered GFP variants capable of well-ordered multivalent display, fused to protein G to ensure binding of Fc fragment. The presented strategy allows efficient assembly of oligomeric FGFR1 ligands with up to twelve receptor binding sites. We show that multivalent FGFR1 ligands are biologically active and trigger receptor clustering on the cell surface. Importantly, the approach described in this study can be easily adapted to oligomerize alternative growth factors to control the activity of other cell surface receptors.
Collapse
|
32
|
Khosravi F, Ahmadvand N, Bellusci S, Sauer H. The Multifunctional Contribution of FGF Signaling to Cardiac Development, Homeostasis, Disease and Repair. Front Cell Dev Biol 2021; 9:672935. [PMID: 34095143 PMCID: PMC8169986 DOI: 10.3389/fcell.2021.672935] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
The current focus on cardiovascular research reflects society’s concerns regarding the alarming incidence of cardiac-related diseases and mortality in the industrialized world and, notably, an urgent need to combat them by more efficient therapies. To pursue these therapeutic approaches, a comprehensive understanding of the mechanism of action for multifunctional fibroblast growth factor (FGF) signaling in the biology of the heart is a matter of high importance. The roles of FGFs in heart development range from outflow tract formation to the proliferation of cardiomyocytes and the formation of heart chambers. In the context of cardiac regeneration, FGFs 1, 2, 9, 16, 19, and 21 mediate adaptive responses including restoration of cardiac contracting rate after myocardial infarction and reduction of myocardial infarct size. However, cardiac complications in human diseases are correlated with pathogenic effects of FGF ligands and/or FGF signaling impairment. FGFs 2 and 23 are involved in maladaptive responses such as cardiac hypertrophic, fibrotic responses and heart failure. Among FGFs with known causative (FGFs 2, 21, and 23) or protective (FGFs 2, 15/19, 16, and 21) roles in cardiac diseases, FGFs 15/19, 21, and 23 display diagnostic potential. The effective role of FGFs on the induction of progenitor stem cells to cardiac cells during development has been employed to boost the limited capacity of postnatal cardiac repair. To renew or replenish damaged cardiomyocytes, FGFs 1, 2, 10, and 16 were tested in (induced-) pluripotent stem cell-based approaches and for stimulation of cell cycle re-entry in adult cardiomyocytes. This review will shed light on the wide range of beneficiary and detrimental actions mediated by FGF ligands and their receptors in the heart, which may open new therapeutic avenues for ameliorating cardiac complications.
Collapse
Affiliation(s)
- Farhad Khosravi
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Negah Ahmadvand
- Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Saverio Bellusci
- Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Heinrich Sauer
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
33
|
Porebska N, Pozniak M, Krzyscik MA, Knapik A, Czyrek A, Kucinska M, Jastrzebski K, Zakrzewska M, Otlewski J, Opalinski L. Dissecting biological activities of fibroblast growth factor receptors by the coiled-coil-mediated oligomerization of FGF1. Int J Biol Macromol 2021; 180:470-483. [PMID: 33745974 DOI: 10.1016/j.ijbiomac.2021.03.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor receptors (FGFRs) are integral membrane proteins involved in various biological processes including proliferation, migration and apoptosis. There are a number of regulatory mechanisms of FGFR signaling, which tightly control the specificity and duration of transmitted signals. The effect of the FGFRs spatial distribution in the plasma membrane on receptor-dependent functions is still largely unknown. We have demonstrated that oligomerization of FGF1 with coiled-coil motifs largely improves FGF1 affinity for FGFRs and heparin. Set of developed FGF1 oligomers evoked prolonged activation of FGFR1 and receptor-downstream signaling pathways, as compared to the wild type FGF1. The majority of obtained oligomeric FGF1 variants showed increased stability, enhanced mitogenic activity and largely improved internalization via FGFR1-dependent endocytosis. Importantly, FGF1 oligomers with the highest oligomeric state exhibited reduced ability to stimulate FGFR-dependent glucose uptake, while at the same time remained hyperactive in the induction of cell proliferation. Our data implicate that oligomerization of FGF1 alters the biological activity of the FGF/GFR1 signaling system. Furthermore, developed FGF1 oligomers, due to improved stability and proliferative potential, can be applied in the regenerative medicine or as drug delivery vehicles in the ADC approach against FGFR1-overproducing cancers.
Collapse
Affiliation(s)
- Natalia Porebska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Marta Pozniak
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Mateusz Adam Krzyscik
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Agata Knapik
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Aleksandra Czyrek
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; Faculty of Biotechnology, Department of Protein Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Marika Kucinska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Kamil Jastrzebski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Malgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Lukasz Opalinski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
34
|
Liu G, Chen T, Ding Z, Wang Y, Wei Y, Wei X. Inhibition of FGF-FGFR and VEGF-VEGFR signalling in cancer treatment. Cell Prolif 2021; 54:e13009. [PMID: 33655556 PMCID: PMC8016646 DOI: 10.1111/cpr.13009] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
The sites of targeted therapy are limited and need to be expanded. The FGF‐FGFR signalling plays pivotal roles in the oncogenic process, and FGF/FGFR inhibitors are a promising method to treat FGFR‐altered tumours. The VEGF‐VEGFR signalling is the most crucial pathway to induce angiogenesis, and inhibiting this cascade has already got success in treating tumours. While both their efficacy and antitumour spectrum are limited, combining FGF/FGFR inhibitors with VEGF/VEGFR inhibitors are an excellent way to optimize the curative effect and expand the antitumour range because their combination can target both tumour cells and the tumour microenvironment. In addition, biomarkers need to be developed to predict the efficacy, and combination with immune checkpoint inhibitors is a promising direction in the future. The article will discuss the FGF‐FGFR signalling pathway, the VEGF‐VEGFR signalling pathway, the rationale of combining these two signalling pathways and recent small‐molecule FGFR/VEGFR inhibitors based on clinical trials.
Collapse
Affiliation(s)
- Guihong Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Chen
- Cardiology Department, Chengdu NO.7 People's Hospital, Chengdu Tumor Hospital, Chengdu, China
| | - Zhenyu Ding
- Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Spann RA, Morrison CD, den Hartigh LJ. The Nuanced Metabolic Functions of Endogenous FGF21 Depend on the Nature of the Stimulus, Tissue Source, and Experimental Model. Front Endocrinol (Lausanne) 2021; 12:802541. [PMID: 35046901 PMCID: PMC8761941 DOI: 10.3389/fendo.2021.802541] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone that is involved in the regulation of lipid, glucose, and energy metabolism. Pharmacological FGF21 administration promotes weight loss and improves insulin sensitivity in rodents, non-human primates, and humans. However, pharmacologic effects of FGF21 likely differ from its physiological effects. Endogenous FGF21 is produced by many cell types, including hepatocytes, white and brown adipocytes, skeletal and cardiac myocytes, and pancreatic beta cells, and acts on a diverse array of effector tissues such as the brain, white and brown adipose tissue, heart, and skeletal muscle. Different receptor expression patterns dictate FGF21 function in these target tissues, with the primary effect to coordinate responses to nutritional stress. Moreover, different nutritional stimuli tend to promote FGF21 expression from different tissues; i.e., fasting induces hepatic-derived FGF21, while feeding promotes white adipocyte-derived FGF21. Target tissue effects of FGF21 also depend on its capacity to enter the systemic circulation, which varies widely from known FGF21 tissue sources in response to various stimuli. Due to its association with obesity and non-alcoholic fatty liver disease, the metabolic effects of endogenously produced FGF21 during the pathogenesis of these conditions are not well known. In this review, we will highlight what is known about endogenous tissue-specific FGF21 expression and organ cross-talk that dictate its diverse physiological functions, with particular attention given to FGF21 responses to nutritional stress. The importance of the particular experimental design, cellular and animal models, and nutritional status in deciphering the diverse metabolic functions of endogenous FGF21 cannot be overstated.
Collapse
Affiliation(s)
- Redin A. Spann
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Christopher D. Morrison
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Laura J. den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
- *Correspondence: Laura J. den Hartigh,
| |
Collapse
|
36
|
Pan J, Parlee SD, Brunel FM, Li P, Lu W, Perez-Tilve D, Liu F, Finan B, Kharitonenkov A, DiMarchi RD. Optimization of Peptide Inhibitors of β-Klotho as Antagonists of Fibroblast Growth Factors 19 and 21. ACS Pharmacol Transl Sci 2020; 3:978-986. [PMID: 33073195 DOI: 10.1021/acsptsci.0c00100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factors 19 and 21 (FGF19 and FGF21) have biological actions that render them promising clinical candidates for treatment of metabolic diseases, particularly dyslipidemia and nonalcoholic steatohepatitis (NASH). These two atypical endocrine FGFs employ an accessory receptor β-klotho (KLB) to signal through classical FGF receptors (FGFRs). FGF19 and FGF21 bind to KLB via their C-terminus, to orient the N-terminus for productive interaction with FGFRs. The C-terminal peptides have been shown to competitively inhibit this biological agonism. We report here an assessment of the structural relationship in the C-terminal sequences of FGF19 and FGF21 that led to the identification of a sustained-acting peptide optimized for pharmacological use. It demonstrates high potency and selectivity to antagonize FGF19 and FGF21 in cells coexpressing FGFRs and KLB. This peptide was also effective in blocking FGF19 and FGF21 mediated downstream gene expression (i.e., Fos and Egr1) in vivo. In DIO mice, this antagonist alters metabolic function as assessed by changes in body weight, food intake, and plasma insulin. Thus, the selective inhibition of KLB could constitute a medicinal approach to treat diseases associated with excess FGF19 or 21 activity and separately serve as an effective tool to promote a deeper assessment of atypical FGF biology.
Collapse
Affiliation(s)
- Jia Pan
- Novo Nordisk Research Center - Indianapolis, Inc., Indianapolis, Indiana 46241, United States.,Novo Nordisk Research Centre China, Novo Nordisk A/S, Beijing 102206, China
| | - Sebastian D Parlee
- Novo Nordisk Research Center - Indianapolis, Inc., Indianapolis, Indiana 46241, United States
| | - Florence M Brunel
- Novo Nordisk Research Center - Indianapolis, Inc., Indianapolis, Indiana 46241, United States
| | - Pengyun Li
- Novo Nordisk Research Center - Indianapolis, Inc., Indianapolis, Indiana 46241, United States
| | - Wei Lu
- Novo Nordisk Research Center - Indianapolis, Inc., Indianapolis, Indiana 46241, United States
| | | | - Fa Liu
- Novo Nordisk Research Center Seattle, Seattle, Washington 98109, United States
| | - Brian Finan
- Novo Nordisk Research Center - Indianapolis, Inc., Indianapolis, Indiana 46241, United States
| | - Alexei Kharitonenkov
- Novo Nordisk Research Center - Indianapolis, Inc., Indianapolis, Indiana 46241, United States.,AK Biotechnologies LLC, Zionsville, Indiana 46077, United States
| | - Richard D DiMarchi
- Novo Nordisk Research Center - Indianapolis, Inc., Indianapolis, Indiana 46241, United States.,Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
37
|
Fibroblast growth factor signalling in osteoarthritis and cartilage repair. Nat Rev Rheumatol 2020; 16:547-564. [PMID: 32807927 DOI: 10.1038/s41584-020-0469-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Regulated fibroblast growth factor (FGF) signalling is a prerequisite for the correct development and homeostasis of articular cartilage, as evidenced by the fact that aberrant FGF signalling contributes to the maldevelopment of joints and to the onset and progression of osteoarthritis. Of the four FGF receptors (FGFRs 1-4), FGFR1 and FGFR3 are strongly implicated in osteoarthritis, and FGFR1 antagonists, as well as agonists of FGFR3, have shown therapeutic efficacy in mouse models of spontaneous and surgically induced osteoarthritis. FGF18, a high affinity ligand for FGFR3, is the only FGF-based drug currently in clinical trials for osteoarthritis. This Review covers the latest advances in our understanding of the molecular mechanisms that regulate FGF signalling during normal joint development and in the pathogenesis of osteoarthritis. Strategies for FGF signalling-based treatment of osteoarthritis and for cartilage repair in animal models and clinical trials are also introduced. An improved understanding of FGF signalling from a structural biology perspective, and of its roles in skeletal development and diseases, could unlock new avenues for discovery of modulators of FGF signalling that can slow or stop the progression of osteoarthritis.
Collapse
|
38
|
Gamrot Z, Adamczyk P, Świętochowska E, Roszkowska-Bjanid D, Gamrot J, Szczepańska M. Fibroblast growth factor 21 (FGF21) in children and adolescents with chronic kidney disease. Physiol Res 2020; 69:451-460. [PMID: 32469231 PMCID: PMC8648314 DOI: 10.33549/physiolres.934307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/12/2020] [Indexed: 12/16/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is one of the members of endocrine arm of FGF family. Its actions as a glucose and lipids metabolism regulator are widely known. Although the mechanism of FGF21 action in kidneys is still under investigation, FGF21 was considered as a marker of early kidney function decline. While many researchers focused on adult subjects in this matter, there are no data regarding children. Therefore, we have investigated the relationship between plasma or urine FGF21 levels and kidney function in a group of 42 pediatric patients with chronic kidney disease (CKD). Anthropometrical parameters and blood pressure were taken, routine biochemical tests were performed. The concentration of FGF21 in serum and urine was determined by enzyme immunoassay. The results revealed significantly higher serum FGF21 concentration among children from CKD group. However, serum FGF21 level was not related to gender, proteinuria, eGFR or renal replacement therapy. Urine FGF21 concentration correlated negatively with albuminuria and positively with eGFR. Documented negative correlation of FGF21 fractional excretion and eGFR is not enough to support the role of FGF21 as a biomarker for predicting kidney disease progression in children and adolescents. Other mechanisms including local kidney FGF21 production or enhanced excretion due to higher extrarenal production may result in higher urine FGF21 concentrations.
Collapse
Affiliation(s)
- Z Gamrot
- Unit of Paediatric Hematology and Oncology, Chorzow City Hospital, Chorzow, Poland; Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland. or
| | | | | | | | | | | |
Collapse
|
39
|
Mosavat M, Omar SZ, Sthanshewar P. Serum FGF-21 and FGF-23 in association with gestational diabetes: a longitudinal case-control study. Horm Mol Biol Clin Investig 2020; 41:hmbci-2019-0060. [PMID: 32167928 DOI: 10.1515/hmbci-2019-0060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
Background Fibroblast growth factors (FGFs); FGF-21 and FGF-23, have been proposed to be associated with metabolic syndrome. However, data on the role of these peptides in gestational diabetes mellitus (GDM) are limited. Therefore, this study was designed to assess the association of serum FGF-21 and FGF-23 with the risk of GDM. Furthermore, we evaluated the circulation of these peptides in pregnancy and post-puerperium. Materials and methods Fifty-three pregnant subjects with GDM and 43 normal glucose tolerance (NGT) pregnant women participated in this study. Serum FGF-21 and FGF-23 were measured during pregnancy and post-puerperium. Results FGF-21 and FGF-23 were low in GDM compared to NGT during pregnancy. There were no significant differences in the level of these peptides post-puerperium. Using logistic regression, FGF-23 [odds ratio (OR) 0.70 (95% confidence interval [CI]: 0.50-0.96)] was inversely associated with GDM, so a 1-μg/mL decrease in FGF-23 levels was associated with a 1.4-fold increased risk of developing GDM and this remained statistically significant after adjustment for confounders [adjusted OR (aOR) 0.70 (95% CI: 0.50-0.98)]. There was no association of FGF-21 with the development of GDM risk. Conclusions Lower FGF-23 concentrations could be involved in the pathophysiology of GDM. FGF-21, even though associated with metabolic risk factors in pregnancy, may not be a fundamental factor in GDM.
Collapse
Affiliation(s)
- Maryam Mosavat
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Siti Zawiah Omar
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Pavai Sthanshewar
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Effects of fasting on the expression pattern of FGFs in different skeletal muscle fibre types and sexes in mice. Biol Sex Differ 2020; 11:9. [PMID: 32156311 PMCID: PMC7063800 DOI: 10.1186/s13293-020-00287-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factors (FGFs) belong to a large family comprising 22 FGF polypeptides that are widely expressed in tissues. Most of the FGFs can be secreted and involved in the regulation of skeletal muscle function and structure. However, the role of fasting on FGF expression pattern in skeletal muscles remains unknown. In this study, we combined bioinformatics analysis and in vivo studies to explore the effect of 24-h fasting on the expression of Fgfs in slow-twitch soleus and fast-twitch tibialis anterior (TA) muscle from male and female C57BL/6 mice. We found that fasting significantly affected the expression of many Fgfs in mouse skeletal muscle. Furthermore, skeletal muscle fibre type and sex also influenced Fgf expression and response to fasting. We observed that in both male and female mice fasting reduced Fgf6 and Fgf11 in the TA muscle rather than the soleus. Moreover, fasting reduced Fgf8 expression in the soleus and TA muscles in female mice rather than in male mice. Fasting also increased Fgf21 expression in female soleus muscle and female and male plasma. Fasting reduced Fgf2 and Fgf18 expression levels without fibre-type and sex-dependent effects in mice. We further found that fasting decreased the expression of an FGF activation marker gene-Flrt2 in the TA muscle but not in the soleus muscle in both male and female mice. This study revealed the expression profile of Fgfs in different skeletal muscle fibre types and different sexes and provides clues to the interaction between the skeletal muscle and other organs, which deserves future investigations.
Collapse
|
41
|
Hill CM, Qualls-Creekmore E, Berthoud HR, Soto P, Yu S, McDougal DH, Münzberg H, Morrison CD. FGF21 and the Physiological Regulation of Macronutrient Preference. Endocrinology 2020; 161:bqaa019. [PMID: 32047920 PMCID: PMC7053867 DOI: 10.1210/endocr/bqaa019] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
The ability to respond to variations in nutritional status depends on regulatory systems that monitor nutrient intake and adaptively alter metabolism and feeding behavior during nutrient restriction. There is ample evidence that the restriction of water, sodium, or energy intake triggers adaptive responses that conserve existing nutrient stores and promote the ingestion of the missing nutrient, and that these homeostatic responses are mediated, at least in part, by nutritionally regulated hormones acting within the brain. This review highlights recent research that suggests that the metabolic hormone fibroblast growth factor 21 (FGF21) acts on the brain to homeostatically alter macronutrient preference. Circulating FGF21 levels are robustly increased by diets that are high in carbohydrate but low in protein, and exogenous FGF21 treatment reduces the consumption of sweet foods and alcohol while alternatively increasing the consumption of protein. In addition, while control mice adaptively shift macronutrient preference and increase protein intake in response to dietary protein restriction, mice that lack either FGF21 or FGF21 signaling in the brain fail to exhibit this homeostatic response. FGF21 therefore mediates a unique physiological niche, coordinating adaptive shifts in macronutrient preference that serve to maintain protein intake in the face of dietary protein restriction.
Collapse
Affiliation(s)
| | | | | | - Paul Soto
- Pennington Biomedical Research Center, Baton Rouge, LA
| | - Sangho Yu
- Pennington Biomedical Research Center, Baton Rouge, LA
| | | | | | | |
Collapse
|
42
|
Lathe R, Singadia S, Jordan C, Riedel G. The interoceptive hippocampus: Mouse brain endocrine receptor expression highlights a dentate gyrus (DG)-cornu ammonis (CA) challenge-sufficiency axis. PLoS One 2020; 15:e0227575. [PMID: 31940330 PMCID: PMC6961916 DOI: 10.1371/journal.pone.0227575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
The primeval function of the mammalian hippocampus (HPC) remains uncertain. Implicated in learning and memory, spatial navigation, and neuropsychological disorders, evolutionary theory suggests that the HPC evolved from a primeval chemosensory epithelium. Deficits in sensing of internal body status ('interoception') in patients with HPC lesions argue that internal sensing may be conserved in higher vertebrates. We studied the expression patterns in mouse brain of 250 endocrine receptors that respond to blood-borne ligands. Key findings are (i) the proportions and levels of endocrine receptor expression in the HPC are significantly higher than in all other comparable brain regions. (ii) Surprisingly, the distribution of endocrine receptor expression within mouse HPC was found to be highly structured: receptors signaling 'challenge' are segregated in dentate gyrus (DG), whereas those signaling 'sufficiency' are principally found in cornu ammonis (CA) regions. Selective expression of endocrine receptors in the HPC argues that interoception remains a core feature of hippocampal function. Further, we report that ligands of DG receptors predominantly inhibit both synaptic potentiation and neurogenesis, whereas CA receptor ligands conversely promote both synaptic potentiation and neurogenesis. These findings suggest that the hippocampus acts as an integrator of body status, extending its role in context-dependent memory encoding from 'where' and 'when' to 'how I feel'. Implications for anxiety and depression are discussed.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, University of Edinburgh Medical School, Little France, Edinburgh, Scotland, United Kingdom
- * E-mail: (RL); (GR)
| | - Sheena Singadia
- Division of Behavioral Neuroscience, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Crispin Jordan
- Division of Biomedical Sciences, University of Edinburgh Medical School, George Square, Edinburgh, Scotland, United Kingdom
| | - Gernot Riedel
- Division of Behavioral Neuroscience, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
- * E-mail: (RL); (GR)
| |
Collapse
|
43
|
Ramanjaneya M, Bensila M, Bettahi I, Jerobin J, Samra TA, Aye MM, Alkasem M, Siveen KS, Sathyapalan T, Skarulis M, Atkin SL, Abou-Samra AB. Dynamic Changes in Circulating Endocrine FGF19 Subfamily and Fetuin-A in Response to Intralipid and Insulin Infusions in Healthy and PCOS Women. Front Endocrinol (Lausanne) 2020; 11:568500. [PMID: 33101202 PMCID: PMC7554576 DOI: 10.3389/fendo.2020.568500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022] Open
Abstract
Background: The fibroblast growth factors (FGF) 19 subfamily, also referred to as endocrine FGFs, includes FGF19, FGF21, and FGF23 are metabolic hormones involved in the regulation of glucose and lipid metabolism. Fetuin-A is a hepatokine involved in the regulation of beta-cell function and insulin resistance. Endocrine FGFs and fetuin-A are dysregulated in metabolic disorders including obesity, type 2 diabetes, non-alcoholic fatty liver disease and polycystic ovary syndrome (PCOS). Our study was designed to examine the response of endocrine FGFs and fetuin-A to an acute intralipid, insulin infusion and exercise in PCOS and healthy women. Subjects and Measurements: Ten healthy and 11 PCOS subjects underwent 5-h saline infusions with a hyperinsulinemic-euglycemic clamp (HIEC) performed during the final 2 h. One week later, intralipid infusions were undertaken with a HIEC performed during the final 2 h. After an 8 week of exercise intervention the saline, intralipid, and HIEC were repeated. Plasma levels of endocrine FGFs and fetuin-A were measured. Results: Baseline fetuin-A was higher in PCOS women but FGF19, FGF21, and FGF23 did not differ and were unaffected by exercise. Insulin administration elevated FGF21 in control and PCOS, suppressed FGF19 in controls, and had no effects on FGF23 and fetuin-A. Intralipid infusion suppressed FGF19 and increased FGF21. Insulin with intralipid synergistically increased FGF21 and did not have effects on lipid-mediated suppression of FGF19 in both groups. Conclusion: Our study provides evidence for insulin and lipid regulation of endocrine FGFs in healthy and PCOS women, suggesting that FGF family members play a role in lipid and glucose metabolism. Clinical Trial Registration: www.isrctn.org, Identifier: ISRCTN42448814.
Collapse
Affiliation(s)
- Manjunath Ramanjaneya
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- *Correspondence: Manjunath Ramanjaneya
| | - Milin Bensila
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ilham Bettahi
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Tareq A. Samra
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Myint Myint Aye
- Department of Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, United Kingdom
| | - Meis Alkasem
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Thozhukat Sathyapalan
- Department of Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, United Kingdom
| | - Monica Skarulis
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
44
|
Smith ER, Holt SG, Hewitson TD. αKlotho-FGF23 interactions and their role in kidney disease: a molecular insight. Cell Mol Life Sci 2019; 76:4705-4724. [PMID: 31350618 PMCID: PMC11105488 DOI: 10.1007/s00018-019-03241-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022]
Abstract
Following the serendipitous discovery of the ageing suppressor, αKlotho (αKl), several decades ago, a growing body of evidence has defined a pivotal role for its various forms in multiple aspects of vertebrate physiology and pathology. The transmembrane form of αKl serves as a co-receptor for the osteocyte-derived mineral regulator, fibroblast growth factor (FGF)23, principally in the renal tubules. However, compelling data also suggest that circulating soluble forms of αKl, derived from the same source, may have independent homeostatic functions either as a hormone, glycan-cleaving enzyme or lectin. Chronic kidney disease (CKD) is of particular interest as disruption of the FGF23-αKl axis is an early and common feature of disease manifesting in markedly deficient αKl expression, but FGF23 excess. Here we critically discuss recent findings in αKl biology that conflict with the view that soluble αKl has substantive functions independent of FGF23 signalling. Although the issue of whether soluble αKl can act without FGF23 has yet to be resolved, we explore the potential significance of these contrary findings in the context of CKD and highlight how this endocrine pathway represents a promising target for novel anti-ageing therapeutics.
Collapse
Affiliation(s)
- Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia.
- Department of Medicine, University of Melbourne, Grattan Street, Parkville, VIC, 3050, Australia.
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Grattan Street, Parkville, VIC, 3050, Australia
| | - Tim D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Grattan Street, Parkville, VIC, 3050, Australia
| |
Collapse
|
45
|
Abstract
Fibroblast growth factor 23 (FGF23), one of the endocrine fibroblast growth factors, is a principal regulator in the maintenance of serum phosphorus concentration. Binding to its cofactor αKlotho and a fibroblast growth factor receptor is essential for its activity. Its regulation and interaction with other factors in the bone-parathyroid-kidney axis is complex. FGF23 reduces serum phosphorus concentration through decreased reabsorption of phosphorus in the kidney and by decreasing 1,25 dihydroxyvitamin D (1,25(OH)2D) concentrations. Various FGF23-mediated disorders of renal phosphate wasting share similar clinical and biochemical features. The most common of these is X-linked hypophosphatemia (XLH). Additional disorders of FGF23 excess include autosomal dominant hypophosphatemic rickets, autosomal recessive hypophosphatemic rickets, fibrous dysplasia, and tumor-induced osteomalacia. Treatment is challenging, requiring careful monitoring and titration of dosages to optimize effectiveness and to balance side effects. Conventional therapy for XLH and other disorders of FGF23-mediated hypophosphatemia involves multiple daily doses of oral phosphate salts and active vitamin D analogs, such as calcitriol or alfacalcidol. Additional treatments may be used to help address side effects of conventional therapy such as thiazides to address hypercalciuria or nephrocalcinosis, and calcimimetics to manage hyperparathyroidism. The recent development and approval of an anti-FGF23 antibody, burosumab, for use in XLH provides a novel treatment option.
Collapse
Affiliation(s)
- Anisha Gohil
- Indiana University School of Medicine, Riley Hospital for Children, Fellow, Endocrinology and Diabetes, 705 Riley Hospital Drive, Room 5960, Indianapolis, IN 46202, USA, E-mail:
| | - Erik A Imel
- Indiana University School of Medicine, Riley Hospital for Children, Associate Professor of Medicine and Pediatrics, 1120 West Michigan Street, CL 459, Indianapolis, IN 46202, USA
| |
Collapse
|
46
|
Bär L, Stournaras C, Lang F, Föller M. Regulation of fibroblast growth factor 23 (FGF23) in health and disease. FEBS Lett 2019; 593:1879-1900. [PMID: 31199502 DOI: 10.1002/1873-3468.13494] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/19/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is mainly produced in the bone and, upon secretion, forms a complex with a FGF receptor and coreceptor αKlotho. FGF23 can exert several endocrine functions, such as inhibiting renal phosphate reabsorption and 1,25-dihydroxyvitamin D3 production. Moreover, it has paracrine activities on several cell types, including neutrophils and hepatocytes. Klotho and Fgf23 deficiencies result in pathologies otherwise encountered in age-associated diseases, mainly as a result of hyperphosphataemia-dependent calcification. FGF23 levels are also perturbed in the plasma of patients with several disorders, including kidney or cardiovascular diseases. Here, we review mechanisms controlling FGF23 production and discuss how FGF23 regulation is perturbed in disease.
Collapse
Affiliation(s)
- Ludmilla Bär
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christos Stournaras
- Institute of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Florian Lang
- Institute of Physiology, University of Tübingen, Germany
| | - Michael Föller
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
47
|
Berezin AE, Berezin AA. Impaired function of fibroblast growth factor 23 / Klotho protein axis in prediabetes and diabetes mellitus: Promising predictor of cardiovascular risk. Diabetes Metab Syndr 2019; 13:2549-2556. [PMID: 31405675 DOI: 10.1016/j.dsx.2019.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
The discovery of clear molecular mechanisms of early cardiac and vascular complications in patients with prediabetes and known diabetes mellitus are core element of stratification at risk with predictive model creation further. Previous clinical studies have shown a pivotal role of impaired signaling axis of fibroblast growth factor 23 (FGF23), FGF23 receptor isoforms and its co-factor Klotho protein in cardiovascular (CV) complications in prediabetes and diabetes. Although there were data received in clinical studies, which confirmed a causative role of altered function of FGF-23/Klotho protein axis in manifestation of CV disease in prediabetes and type 2 diabetes mellitus (T2DM), the target therapy of these diseases directing on improvement of metabolic profiles, systemic and adipokine-relating inflammation by beneficial restoring of dysregulation in FGF-23/Klotho protein axis remain to be not fully clear. The aim of the review was to summarize findings regarding the role of impaired FGF-23/Klotho protein axis in developing CV complications in patients with prediabetes and type 2 diabetes mellitus. It has been elucidated that elevated levels of FGF-23 and deficiency of Klotho protein in peripheral blood are predictors of CV disease and CV outcomes in patients with (pre) diabetes, while predictive values of dynamic changes of the concentrations of these biomarkers require to be elucidated in detail in the future.
Collapse
Affiliation(s)
- Alexander E Berezin
- Internal Medicine Department, State Medical University, Ministry of Health of Ukraine, Zaporozhye, 69035, Ukraine.
| | - Alexander A Berezin
- Internal Medicine Department, Medical Academy of Post-Graduate Education, Ministry of Health of Ukraine, Zaporozhye, 69096, Ukraine
| |
Collapse
|
48
|
Cross-Talk between Fibroblast Growth Factor Receptors and Other Cell Surface Proteins. Cells 2019; 8:cells8050455. [PMID: 31091809 PMCID: PMC6562592 DOI: 10.3390/cells8050455] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) constitute signaling circuits that transmit signals across the plasma membrane, regulating pivotal cellular processes like differentiation, migration, proliferation, and apoptosis. The malfunction of FGFs/FGFRs signaling axis is observed in numerous developmental and metabolic disorders, and in various tumors. The large diversity of FGFs/FGFRs functions is attributed to a great complexity in the regulation of FGFs/FGFRs-dependent signaling cascades. The function of FGFRs is modulated at several levels, including gene expression, alternative splicing, posttranslational modifications, and protein trafficking. One of the emerging ways to adjust FGFRs activity is through formation of complexes with other integral proteins of the cell membrane. These proteins may act as coreceptors, modulating binding of FGFs to FGFRs and defining specificity of elicited cellular response. FGFRs may interact with other cell surface receptors, like G-protein-coupled receptors (GPCRs) or receptor tyrosine kinases (RTKs). The cross-talk between various receptors modulates the strength and specificity of intracellular signaling and cell fate. At the cell surface FGFRs can assemble into large complexes involving various cell adhesion molecules (CAMs). The interplay between FGFRs and CAMs affects cell–cell interaction and motility and is especially important for development of the central nervous system. This review summarizes current stage of knowledge about the regulation of FGFRs by the plasma membrane-embedded partner proteins and highlights the importance of FGFRs-containing membrane complexes in pathological conditions, including cancer.
Collapse
|
49
|
Zhang R, Wu H, Lian Z. Bioinformatics analysis of evolutionary characteristics and biochemical structure of FGF5 Gene in sheep. Gene 2019; 702:123-132. [PMID: 30926307 DOI: 10.1016/j.gene.2019.03.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 01/26/2023]
Abstract
Fibroblast growth factor (FGF) 5 regulates the development and periodicity of hair follicles, which can affect hair traits. Loss-of-function mutations associated with long-hair phenotypes have been described in several mammalian species. Sheep is an important economic animal, however, the evolution characterizations and biological mechanism of oFGF5 (Ovis aries FGF5) gene are still poorly understood. In this study, oFGF5 gene was obtained by resequencing the whole genome of three Dorper sheep and RACE of two Kazakh sheep FGF5. We proposed FGF5 was phylogenetically related to FGF4 family and oFGF5 clearly orthologed to goat FGF5. Six loci were found from the positive selection results of FGF5 and half of them located on signal peptide. The basically similar rates of function-altering substitutions in sheep and goat lineage and the rest of the mammalian lineage of 365 SNPs indicated that the FGF5 gene was quite conservative during evolution. Homology modeling of the oFGF5 suggested that it has a highly conserved FGF superfamily domain containing 10 β-strands. Furthermore, the protein-protein docking analysis revealed that oFGF5 have the potential to form heterodimers with oFGFR1, the predicted interaction interface of FGF5-FGFR1 heterodimer was formed mainly by residues from FGF superfamily domain. Our observations suggested the evolutionary and structural biology features of oFGF5 might be relevant to its function about hair follicle development and modulating hair growth, and we confirmed our speculation by using the FGF5 gene editing sheep produced by CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Rui Zhang
- Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Hongping Wu
- Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Zhengxing Lian
- Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
50
|
Rodelo-Haad C, Santamaria R, Muñoz-Castañeda JR, Pendón-Ruiz de Mier MV, Martin-Malo A, Rodriguez M. FGF23, Biomarker or Target? Toxins (Basel) 2019; 11:E175. [PMID: 30909513 PMCID: PMC6468608 DOI: 10.3390/toxins11030175] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor 23 (FGF23) plays a key role in the complex network between the bones and other organs. Initially, it was thought that FGF23 exclusively regulated phosphate and vitamin D metabolism; however, recent research has demonstrated that an excess of FGF23 has other effects that may be detrimental in some cases. The understanding of the signaling pathways through which FGF23 acts in different organs is crucial to develop strategies aiming to prevent the negative effects associated with high FGF23 levels. FGF23 has been described to have effects on the heart, promoting left ventricular hypertrophy (LVH); the liver, leading to production of inflammatory cytokines; the bones, inhibiting mineralization; and the bone marrow, by reducing the production of erythropoietin (EPO). The identification of FGF23 receptors will play a remarkable role in future research since its selective blockade might reduce the adverse effects of FGF23. Patients with chronic kidney disease (CKD) have very high levels of FGF23 and may be the population suffering from the most adverse FGF23-related effects. The general population, as well as kidney transplant recipients, may also be affected by high FGF23. Whether the association between FGF23 and clinical events is causal or casual remains controversial. The hypothesis that FGF23 could be considered a therapeutic target is gaining relevance and may become a promising field of investigation in the future.
Collapse
Affiliation(s)
- Cristian Rodelo-Haad
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain.
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain.
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| | - Rafael Santamaria
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain.
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain.
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| | - Juan R Muñoz-Castañeda
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain.
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain.
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| | - M Victoria Pendón-Ruiz de Mier
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain.
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain.
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| | - Alejandro Martin-Malo
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain.
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain.
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| | - Mariano Rodriguez
- Nephrology Service, University Hospital Reina Sofia, 14005 Cordoba, Spain.
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/University of Cordoba, 14005 Cordoba, Spain.
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28040 Madrid, Spain.
| |
Collapse
|