1
|
Al-Gailani L, Al-Kaleel A. The Relationship Between Prenatal, Perinatal, and Postnatal Factors and ADHD: The Role of Nutrition, Diet, and Stress. Dev Psychobiol 2024; 66:e70004. [PMID: 39508433 DOI: 10.1002/dev.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
Attention-Deficit Hyperactive Disorder (ADHD) is a neurobehavioral syndrome affecting children aged 6-17 with symptoms manifesting before age 12. ADHD presents heterogeneously and is associated with various psychiatric disorders. The cause remains elusive, but genetic and environmental factors, brain region maturation delays, and neurotransmitter dysregulation are implicated. Effective treatment requires a multi-disciplinary approach, primarily involving pharmacological and behavioral intervention. Stimulants like methylphenidate and amphetamines are first-line medications, but non-stimulants may be considered for some patients. However, stimulants face challenges related to misuse, dependence, and long-term tolerability issues. The etiology of ADHD involved genetic predisposition, environmental influences, and prenatal, perinatal, and postnatal factors. Prenatal causes encompass maternal diet, alcohol consumption, viral infections, and stress. Postnatal factors include head trauma, meningitis, toxin, nutritional deficiencies, as well as iodine deficiency and hypothyroidism. The gut microbiome's role in ADHD is emerging, influencing neurodevelopment through microbiota-gut-brain axis. Understanding these diverse etiological factors is essential for comprehensive ADHD management.
Collapse
Affiliation(s)
- Lubna Al-Gailani
- Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| | - Ali Al-Kaleel
- Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| |
Collapse
|
2
|
García-Juárez M, García-Rodríguez A, Cruz-Carrillo G, Flores-Maldonado O, Becerril-Garcia M, Garza-Ocañas L, Torre-Villalvazo I, Camacho-Morales A. Intermittent Fasting Improves Social Interaction and Decreases Inflammatory Markers in Cortex and Hippocampus. Mol Neurobiol 2024:10.1007/s12035-024-04340-z. [PMID: 39002056 DOI: 10.1007/s12035-024-04340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Autism spectrum disorder (ASD) is a psychiatric condition characterized by reduced social interaction, anxiety, and stereotypic behaviors related to neuroinflammation and microglia activation. We demonstrated that maternal exposure to Western diet (cafeteria diet or CAF) induced microglia activation, systemic proinflammatory profile, and ASD-like behavior in the offspring. Here, we aimed to identify the effect of alternate day fasting (ADF) as a non-pharmacologic strategy to modulate neuroinflammation and ASD-like behavior in the offspring prenatally exposed to CAF diet. We found that ADF increased plasma beta-hydroxybutyrate (BHB) levels in the offspring exposed to control and CAF diets but not in the cortex (Cx) and hippocampus (Hpp). We observed that ADF increased the CD45 + cells in Cx of both groups; In control individuals, ADF promoted accumulation of CD206 + microglia cells in choroid plexus (CP) and increased in CD45 + macrophages cells and lymphocytes in the Cx. Gestational exposure to CAF diet promoted defective sociability in the offspring; ADF improved social interaction and increased microglia CD206 + in the Hpp and microglia complexity in the dentate gyrus. Additionally, ADF led to attenuation of the ER stress markers (Bip/ATF6/p-JNK) in the Cx and Hpp. Finally, biological modeling showed that fasting promotes higher microglia complexity in Cx, which is related to improvement in social interaction, whereas in dentate gyrus sociability is correlated with less microglia complexity. These data suggest a contribution of intermittent fasting as a physiological stimulus capable of modulating microglia phenotype and complexity in the brain, and social interaction in male mice.
Collapse
Affiliation(s)
- Martín García-Juárez
- Facultad de Medicina, Departamento de Bioquímica, Universidad Autónoma de Nuevo León, Madero y Dr. Aguirre Pequeño. Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, Mexico
- Centro de Investigación y Desarrollo en Ciencias de La Salud, Universidad Autónoma de Nuevo León, Unidad de Neurometabolismo, Monterrey, Nuevo León, Mexico
| | - Adamary García-Rodríguez
- Facultad de Medicina, Departamento de Bioquímica, Universidad Autónoma de Nuevo León, Madero y Dr. Aguirre Pequeño. Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, Mexico
- Centro de Investigación y Desarrollo en Ciencias de La Salud, Universidad Autónoma de Nuevo León, Unidad de Neurometabolismo, Monterrey, Nuevo León, Mexico
| | - Gabriela Cruz-Carrillo
- Facultad de Medicina, Departamento de Bioquímica, Universidad Autónoma de Nuevo León, Madero y Dr. Aguirre Pequeño. Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, Mexico
- Centro de Investigación y Desarrollo en Ciencias de La Salud, Universidad Autónoma de Nuevo León, Unidad de Neurometabolismo, Monterrey, Nuevo León, Mexico
| | - Orlando Flores-Maldonado
- Facultad de Medicina, Departamento de Microbiología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Miguel Becerril-Garcia
- Facultad de Medicina, Departamento de Microbiología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Lourdes Garza-Ocañas
- Department of Pharmacology and Toxicology, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Ivan Torre-Villalvazo
- Departamento de Fisiología de La Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), 14080, Mexico City, Mexico
| | - Alberto Camacho-Morales
- Facultad de Medicina, Departamento de Bioquímica, Universidad Autónoma de Nuevo León, Madero y Dr. Aguirre Pequeño. Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, Mexico.
- Centro de Investigación y Desarrollo en Ciencias de La Salud, Universidad Autónoma de Nuevo León, Unidad de Neurometabolismo, Monterrey, Nuevo León, Mexico.
- College of Medicine, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, NL, Mexico.
| |
Collapse
|
3
|
Papadakis S, Thompson JR, Feczko E, Miranda-Dominguez O, Dunn GA, Selby M, Mitchell AJ, Sullivan EL, Fair DA. Perinatal Western-style diet exposure associated with decreased microglial counts throughout the arcuate nucleus of the hypothalamus in Japanese macaques. J Neurophysiol 2024; 131:241-260. [PMID: 38197176 PMCID: PMC11286309 DOI: 10.1152/jn.00213.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
Perinatal exposure to a high-fat, high-sugar Western-style diet (WSD) is associated with altered neural circuitry in the melanocortin system. This association may have an underlying inflammatory component, as consumption of a WSD during pregnancy can lead to an elevated inflammatory environment. Our group previously demonstrated that prenatal WSD exposure was associated with increased markers of inflammation in the placenta and fetal hypothalamus in Japanese macaques. In this follow-up study, we sought to determine whether this heightened inflammatory state persisted into the postnatal period, as prenatal exposure to inflammation has been shown to reprogram offspring immune function and long-term neuroinflammation would present a potential means for prolonged disruptions to microglia-mediated neuronal circuit formation. Neuroinflammation was approximated in 1-yr-old offspring by counting resident microglia and peripherally derived macrophages in the region of the hypothalamus examined in the fetal study, the arcuate nucleus (ARC). Microglia and macrophages were immunofluorescently stained with their shared marker, ionized calcium-binding adapter molecule 1 (Iba1), and quantified in 11 regions along the rostral-caudal axis of the ARC. A mixed-effects model revealed main effects of perinatal diet (P = 0.011) and spatial location (P = 0.003) on Iba1-stained cell count. Perinatal WSD exposure was associated with a slight decrease in the number of Iba1-stained cells, and cells were more densely located in the center of the ARC. These findings suggest that the heightened inflammatory state experienced in utero does not persist postnatally. This inflammatory response trajectory could have important implications for understanding how neurodevelopmental disorders progress.NEW & NOTEWORTHY Prenatal Western-style diet exposure is associated with increased microglial activity in utero. However, we found a potentially neuroprotective reduction in microglia count during early postnatal development. This trajectory could inform the timing of disruptions to microglia-mediated neuronal circuit formation. Additionally, this is the first study in juvenile macaques to characterize the distribution of microglia along the rostral-caudal axis of the arcuate nucleus of the hypothalamus. Nearby neuronal populations may be greater targets during inflammatory insults.
Collapse
Affiliation(s)
- Samantha Papadakis
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, United States
| | - Jacqueline R Thompson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Eric Feczko
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Oscar Miranda-Dominguez
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Geoffrey A Dunn
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Matthew Selby
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - A J Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Elinor L Sullivan
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, United States
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, United States
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Damien A Fair
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Institute of Child Development, College of Education and Human Development, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
4
|
Robles M, Rousseau-Ralliard D, Dubois C, Josse T, Nouveau É, Dahirel M, Wimel L, Couturier-Tarrade A, Chavatte-Palmer P. Obesity during Pregnancy in the Horse: Effect on Term Placental Structure and Gene Expression, as Well as Colostrum and Milk Fatty Acid Concentration. Vet Sci 2023; 10:691. [PMID: 38133242 PMCID: PMC10748288 DOI: 10.3390/vetsci10120691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
In horses, the prevalence of obesity is high and associated with serious metabolic pathologies. Being a broodmare has been identified as a risk factor for obesity. In other species, maternal obesity is known to affect the development of the offspring. This article is a follow-up study of previous work showing that Obese mares (O, n = 10, body condition score > 4.25 at insemination) were more insulin resistant and presented increased systemic inflammation during pregnancy compared to Normal mares (N, n = 14, body condition score < 4 at insemination). Foals born to O mares were more insulin-resistant, presented increased systemic inflammation, and were more affected by osteoarticular lesions. The objective of the present study was to investigate the effect of maternal obesity on placental structure and function, as well as the fatty acid profile in the plasma of mares and foals, colostrum, and milk until 90 days of lactation, which, to our knowledge, has been poorly studied in the horse. Mares from both groups were fed the same diet during pregnancy and lactation. During lactation, mares were housed in pasture. A strong heat wave, followed by a drought, occurred during their 2nd and 3rd months of lactation (summer of 2016 in the Limousin region, France). In the present article, term placental morphometry, structure (stereology), and gene expression (RT-qPCR, genes involved in nutrient transport, growth, and development, as well as vascularization) were studied. Plasma of mares and their foals, as well as colostrum and milk, were sampled at birth, 30 days, and 90 days of lactation. The fatty acid composition of these samples was measured using gas chromatography. No differences between the N and O groups were observed for term placental morphometry, structure, or gene expression. No difference in plasma fatty acid composition was observed between groups in mares. The plasma fatty acid profile of O foals was more pro-inflammatory and indicated an altered placental lipid metabolism between birth and 90 days of age. These results are in line with the increased systemic inflammation and altered glucose metabolism observed until 18 months of age in this group. The colostrum fatty acid profile of O mares was more pro-inflammatory and indicated an increased transfer and/or desaturation of long-chain fatty acids. Moreover, O foals received a colostrum poorer in medium-chain saturated fatty acid, a source of immediate energy for the newborn that can also play a role in immunity and gut microbiota development. Differences in milk fatty acid composition indicated a decreased ability to adapt to heat stress in O mares, which could have further affected the metabolic development of their foals. In conclusion, maternal obesity affected the fatty acid composition of milk, thus also influencing the foal's plasma fatty acid composition and likely participating in the developmental programming observed in growing foals.
Collapse
Affiliation(s)
- Morgane Robles
- BREED, Domaine de Vilvert, Université Paris Saclay, UVSQ, INRAE, 78350 Jouy en Josas, France; (D.R.-R.); (A.C.-T.)
- BREED, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
- Institut Polytechnique Unilasalle, 76130 Mont-Saint-Aignan, France
| | - Delphine Rousseau-Ralliard
- BREED, Domaine de Vilvert, Université Paris Saclay, UVSQ, INRAE, 78350 Jouy en Josas, France; (D.R.-R.); (A.C.-T.)
- BREED, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Cédric Dubois
- Institut Français du Cheval et de l’Equitation, Station Expérimentale de la Valade, 19370 Chamberet, France (L.W.)
| | - Tiphanie Josse
- BREED, Domaine de Vilvert, Université Paris Saclay, UVSQ, INRAE, 78350 Jouy en Josas, France; (D.R.-R.); (A.C.-T.)
- BREED, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Émilie Nouveau
- BREED, Domaine de Vilvert, Université Paris Saclay, UVSQ, INRAE, 78350 Jouy en Josas, France; (D.R.-R.); (A.C.-T.)
- BREED, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Michele Dahirel
- BREED, Domaine de Vilvert, Université Paris Saclay, UVSQ, INRAE, 78350 Jouy en Josas, France; (D.R.-R.); (A.C.-T.)
- BREED, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Laurence Wimel
- Institut Français du Cheval et de l’Equitation, Station Expérimentale de la Valade, 19370 Chamberet, France (L.W.)
| | - Anne Couturier-Tarrade
- BREED, Domaine de Vilvert, Université Paris Saclay, UVSQ, INRAE, 78350 Jouy en Josas, France; (D.R.-R.); (A.C.-T.)
- BREED, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Pascale Chavatte-Palmer
- BREED, Domaine de Vilvert, Université Paris Saclay, UVSQ, INRAE, 78350 Jouy en Josas, France; (D.R.-R.); (A.C.-T.)
- BREED, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| |
Collapse
|
5
|
Amaro A, Sousa D, Sá-Rocha M, Ferreira-Junior MD, Rosendo-Silva D, Saavedra LPJ, Barra C, Monteiro-Alfredo T, Gomes RM, de Freitas Mathias PC, Baptista FI, Matafome P. Postnatal Overfeeding in Rodents Induces a Neurodevelopment Delay and Anxious-like Behaviour Accompanied by Sex- and Brain-Region-Specific Synaptic and Metabolic Changes. Nutrients 2023; 15:3581. [PMID: 37630771 PMCID: PMC10459868 DOI: 10.3390/nu15163581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Nutritional disturbances during the early postnatal period can have long-lasting effects on neurodevelopment and may be related to behavioural changes at adulthood. While such neuronal connection disruption can contribute to social and behaviour alterations, the dysregulation of the neuroendocrine pathways involved in nutrient-sensing balance may also cause such impairments, although the underlying mechanisms are still unclear. We aimed to evaluate sex-specific neurodevelopmental and behavioural changes upon postnatal overfeeding and determine the potential underpinning mechanisms at the central nervous system level, with a focus on the interconnection between synaptic and neuroendocrine molecular alterations. At postnatal day 3 (PND3) litters were culled to three animals (small litter procedure). Neurodevelopmental tests were conducted at infancy, whereas behavioural tests to assess locomotion, anxiety, and memory were performed at adolescence, together with molecular analysis of the hippocampus, hypothalamus, and prefrontal cortex. At infancy, females presented impaired acquisition of an auditory response, eye opening, olfactory discrimination, and vestibular system development, suggesting that female offspring neurodevelopment/maturation was deeply affected. Male offspring presented a transitory delay in locomotor performance., while both offspring had lower upper limb strength. At adolescence, both sexes presented anxious-like behaviour without alterations in short-term memory retention. Both males and females presented lower NPY1R levels in a region-specific manner. Furthermore, both sexes presented synaptic changes in the hippocampus (lower GABAA in females and higher GABAA levels in males), while, in the prefrontal cortex, similar higher GABAA receptor levels were observed. At the hypothalamus, females presented synaptic changes, namely higher vGLUT1 and PSD95 levels. Thus, we demonstrate that postnatal overfeeding modulates offspring behaviour and dysregulates nutrient-sensing mechanisms such as NPY and GABA in a sex- and brain-region-specific manner.
Collapse
Affiliation(s)
- Andreia Amaro
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Diana Sousa
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Mariana Sá-Rocha
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Marcos Divino Ferreira-Junior
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Physiological Sciences, Institute of Biological Sciences, University Federal of Goiás, Goiânia 74690-900, Brazil;
| | - Daniela Rosendo-Silva
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Lucas Paulo Jacinto Saavedra
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa 87020-900, Brazil; (L.P.J.S.); (P.C.d.F.M.)
| | - Cátia Barra
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Internal Medicine Department, University Hospital Center of Coimbra, 3004-561 Coimbra, Portugal
| | - Tamaeh Monteiro-Alfredo
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Rodrigo Mello Gomes
- Department of Physiological Sciences, Institute of Biological Sciences, University Federal of Goiás, Goiânia 74690-900, Brazil;
| | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa 87020-900, Brazil; (L.P.J.S.); (P.C.d.F.M.)
| | - Filipa I. Baptista
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Paulo Matafome
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.A.); (D.S.); (M.S.-R.); (M.D.F.-J.); (D.R.-S.); (C.B.); (F.I.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Coimbra Health School (EsTeSC), Polytechnic University of Coimbra, 3046-854 Coimbra, Portugal
| |
Collapse
|
6
|
Chakraborty N, Gautam A, Muhie S, Miller SA, Meyerhoff J, Sowe B, Jett M, Hammamieh R. Potential roles of polyunsaturated fatty acid-enriched diets in modulating social stress-like features. J Nutr Biochem 2023; 116:109309. [PMID: 36871836 DOI: 10.1016/j.jnutbio.2023.109309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 03/07/2023]
Abstract
Fish oil or its major constituents, namely omega-3 poly-unsaturated fatty acid (n3-PUFA), are popular supplements to improve neurogenesis, neuroprotection, and overall brain functions. Our objective was to probe the implications of fat enriched diet with variable PUFAs supplements in ameliorating social stress (SS). We fed mice on either of the three diet types, namely the n-3 PUFA-enriched diet (ERD, n3:n6= 7:1), a balanced diet (BLD, n3:n6= 1:1) or a standard lab diet (STD, n3:n6= 1:6). With respect to the gross fat contents, the customized special diets, namely ERD and BLD were extreme diet, not reflecting the typical human dietary composition. Aggressor-exposed SS (Agg-E SS) model triggered behavioral deficiencies that lingered for 6 weeks (6w) post-stress in mice on STD. ERD and BLD elevated bodyweights but potentially helped in building the behavioral resilience to SS. STD adversely affected the gene networks of brain transcriptomics associated with the cell mortality, energy homeostasis and neurodevelopment disorder. Diverging from the ERD's influences on these networks, BLD showed potential long-term benefits in combatting Agg-E SS. The gene networks linked to cell mortality and energy homeostasis, and their subfamilies, such as cerebral disorder and obesity remained at the baseline level of Agg-E SS mice on BLD 6w post-stress. Moreover, neurodevelopment disorder network and its subfamilies like behavioral deficits remained inhibited in the cohort fed on BLD 6w post Agg-E SS.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.
| | - Aarti Gautam
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Seid Muhie
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Geneva Foundation, Silver Spring, Maryland, USA
| | - Stacy-Ann Miller
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - James Meyerhoff
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Geneva Foundation, Silver Spring, Maryland, USA
| | - Bintu Sowe
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Geneva Foundation, Silver Spring, Maryland, USA
| | - Marti Jett
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
7
|
Radford-Smith DE, Anthony DC. Mechanisms of Maternal Diet-Induced Obesity Affecting the Offspring Brain and Development of Affective Disorders. Metabolites 2023; 13:455. [PMID: 36984895 PMCID: PMC10053489 DOI: 10.3390/metabo13030455] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Depression and metabolic disease are common disorders that share a bidirectional relationship and continue to increase in prevalence. Maternal diet and maternal behaviour both profoundly influence the developmental trajectory of offspring during the perinatal period. At an epidemiological level, both maternal depression and obesity during pregnancy have been shown to increase the risk of neuropsychiatric disease in the subsequent generation. Considerable progress has been made to understand the mechanisms by which maternal obesity disrupts the developing offspring gut-brain axis, priming offspring for the development of affective disorders. This review outlines such mechanisms in detail, including altered maternal care, the maternal microbiome, inflammation, breast milk composition, and maternal and placental metabolites. Subsequently, offspring may be prone to developing gut-brain interaction disorders with concomitant changes to brain energy metabolism, neurotransmission, and behaviour, alongside gut dysbiosis. The gut microbiome may act as a key modifiable, and therefore treatable, feature of the relationship between maternal obesity and the offspring brain function. Further studies examining the relationship between maternal nutrition, the maternal microbiome and metabolites, and offspring neurodevelopment are warranted to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Daniel E. Radford-Smith
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford OX37JX, UK
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX13TA, UK
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| | - Daniel C. Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| |
Collapse
|
8
|
Dunn GA, Thompson JR, Mitchell AJ, Papadakis S, Selby M, Fair D, Gustafsson HC, Sullivan EL. Perinatal Western-style diet alters serotonergic neurons in the macaque raphe nuclei. Front Neurosci 2023; 16:1067479. [PMID: 36704012 PMCID: PMC9872117 DOI: 10.3389/fnins.2022.1067479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction The neurotransmitter serotonin is a key regulator of neurotransmission, mood, and behavior and is essential in neurodevelopment. Dysfunction in this important neurotransmitter system is connected to behavioral disorders such as depression and anxiety. We have previously shown that the developing serotonin system is sensitive to perinatal exposure to Western-style diet (WSD). Methods To advance our hypothesis that perinatal WSD has a long-term impact on the serotonergic system, we designed a fluorescent immunohistochemistry experiment using antibodies against tryptophan hydroxylase 2 (TPH2) and vesicular glutamate transporter 3 (VGLUT3) to probe protein expression in the raphe subnuclei in 13-month-old Japanese macaques (Macaca fuscata; n = 22). VGLUT3 has been shown to be coexpressed in TPH2+ cells in the dorsal raphe (DR) and median raphe nucleus (MnR) of rodent raphe nuclei and may provide information about the projection site of serotonergic fibers into the forebrain. We also sought to improve scientific understanding of the heterogeneity of the serotonin production center for the central nervous system, the midbrain raphe nuclei. Results In this immunohistochemical study, we provide the most detailed characterization of the developing primate raphe to date. We utilize multi-level modeling (MLM) to simultaneously probe the contribution of WSD, offspring sex, and raphe anatomical location, to raphe neuronal measurements. Our molecular and morphological characterization revealed that the 13-month-old macaque DR is remarkably similar to that of adult macaques and humans. We demonstrate that vesicular glutamate transporter 3 (VGLUT3), which rodent studies have recently shown can distinguish raphe populations with distinct projection targets and behavioral functions, likewise contributes to the heterogeneity of the primate raphe. Discussion This study provides evidence that perinatal WSD has a long-term impact on the density of serotonin-producing neurons, potentially limiting serotonin availability throughout the brain. Due to the critical involvement of serotonin in development and behavior, these findings provide important insight into the mechanisms by which maternal nutrition and metabolic state influence offspring behavioral outcomes. Finally, these findings could inform future research focused on designing therapeutic interventions to optimize neural development and decrease a child's risk of developing a mental health disorder.
Collapse
Affiliation(s)
- Geoffrey A. Dunn
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | | | - A J Mitchell
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States,Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Samantha Papadakis
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States,Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Matthew Selby
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Damien Fair
- Masonic Institute of Child Development, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Hanna C. Gustafsson
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Elinor L. Sullivan
- Department of Human Physiology, University of Oregon, Eugene, OR, United States,Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States,Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States,*Correspondence: Elinor L. Sullivan,
| |
Collapse
|
9
|
Ceasrine AM, Devlin BA, Bolton JL, Green LA, Jo YC, Huynh C, Patrick B, Washington K, Sanchez CL, Joo F, Campos-Salazar AB, Lockshin ER, Kuhn C, Murphy SK, Simmons LA, Bilbo SD. Maternal diet disrupts the placenta-brain axis in a sex-specific manner. Nat Metab 2022; 4:1732-1745. [PMID: 36443520 PMCID: PMC10507630 DOI: 10.1038/s42255-022-00693-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022]
Abstract
High maternal weight is associated with detrimental outcomes in offspring, including increased susceptibility to neurological disorders such as anxiety, depression and communicative disorders. Despite widespread acknowledgement of sex biases in the development of these disorders, few studies have investigated potential sex-biased mechanisms underlying disorder susceptibility. Here, we show that a maternal high-fat diet causes endotoxin accumulation in fetal tissue, and subsequent perinatal inflammation contributes to sex-specific behavioural outcomes in offspring. In male offspring exposed to a maternal high-fat diet, increased macrophage Toll-like receptor 4 signalling results in excess microglial phagocytosis of serotonin (5-HT) neurons in the developing dorsal raphe nucleus, decreasing 5-HT bioavailability in the fetal and adult brains. Bulk sequencing from a large cohort of matched first-trimester human samples reveals sex-specific transcriptome-wide changes in placental and brain tissue in response to maternal triglyceride accumulation (a proxy for dietary fat content). Further, fetal brain 5-HT levels decrease as placental triglycerides increase in male mice and male human samples. These findings uncover a microglia-dependent mechanism through which maternal diet can impact offspring susceptibility for neuropsychiatric disorder development in a sex-specific manner.
Collapse
Affiliation(s)
- Alexis M Ceasrine
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Benjamin A Devlin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Jessica L Bolton
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Lauren A Green
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Young Chan Jo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Carolyn Huynh
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Bailey Patrick
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Kamryn Washington
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Cristina L Sanchez
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Faith Joo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | | | - Elana R Lockshin
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Cynthia Kuhn
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Leigh Ann Simmons
- Department of Human Ecology, Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA, USA
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
- Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
10
|
Maternal Obesity and Gut Microbiota Are Associated with Fetal Brain Development. Nutrients 2022; 14:nu14214515. [PMID: 36364776 PMCID: PMC9654759 DOI: 10.3390/nu14214515] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/28/2022] Open
Abstract
Obesity in pregnancy induces metabolic syndrome, low-grade inflammation, altered endocrine factors, placental function, and the maternal gut microbiome. All these factors impact fetal growth and development, including brain development. The lipid metabolic transporters of the maternal-fetal-placental unit are dysregulated in obesity. Consequently, the transport of essential long-chain PUFAs for fetal brain development is disturbed. The mother’s gut microbiota is vital in maintaining postnatal energy homeostasis and maternal-fetal immune competence. Obesity during pregnancy changes the gut microbiota, affecting fetal brain development. Obesity in pregnancy can induce placental and intrauterine inflammation and thus influence the neurodevelopmental outcomes of the offspring. Several epidemiological studies observed an association between maternal obesity and adverse neurodevelopment. This review discusses the effects of maternal obesity and gut microbiota on fetal neurodevelopment outcomes. In addition, the possible mechanisms of the impacts of obesity and gut microbiota on fetal brain development are discussed.
Collapse
|
11
|
Mitchell AJ, Khambadkone SG, Dunn G, Bagley J, Tamashiro KLK, Fair D, Gustafsson H, Sullivan EL. Maternal Western-style diet reduces social engagement and increases idiosyncratic behavior in Japanese macaque offspring. Brain Behav Immun 2022; 105:109-121. [PMID: 35809877 PMCID: PMC9987715 DOI: 10.1016/j.bbi.2022.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 01/27/2023] Open
Abstract
Recent evidence in humans and animals indicates an association between maternal obesity and offspring behavioral outcomes. In humans, increased maternal body mass index has been linked to an increased risk of children receiving a diagnosis of early-emerging neurodevelopmental disorders such as Attention Deficit/Hyperactivity Disorder (ADHD) and/or Autism Spectrum Disorder (ASD). However, a limited number of preclinical studies have examined associations between maternal Western-Style Diet (mWSD) exposure and offspring social behavior. To our knowledge, this is the first study to investigate relationships between mWSD exposure and social behavior in non-human primates. Since aberrant social behavior is a diagnostic criterion for several neurodevelopmental disorders, the current study focuses on examining the influence of maternal nutrition and metabolic state on offspring social behavior in Japanese macaques (Macaca fuscata). We found that mWSD offspring initiated less affiliative social behaviors as well as proximity to a peer. Using path analysis, we found that the association between mWSD consumption and reduced offspring social engagement was statistically mediated by increased maternal interleukin (IL)-12 during the third trimester of pregnancy. Additionally, mWSD offspring displayed increased idiosyncratic behavior, which was related to alterations in maternal adiposity and leptin in the third trimester. Together, these results suggest that NHP offspring exposed to mWSD exhibit behavioral phenotypes similar to what is described in some early-emerging neurodevelopmental disorders. These results provide evidence that mWSD exposure during gestation may be linked to increased risk of neurodevelopmental disorders and provides targets for prevention and intervention efforts.
Collapse
Affiliation(s)
- A J Mitchell
- Oregon National Primate Research Center, Division of Neuroscience, Beaverton, OR, USA; Oregon Health & Science University, Department of Behavioral Neuroscience, Portland, OR, USA
| | - Seva G Khambadkone
- Johns Hopkins University, School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD, USA
| | - Geoffrey Dunn
- University of Oregon, Department of Human Physiology, Eugene, OR, USA
| | - Jennifer Bagley
- Oregon National Primate Research Center, Division of Neuroscience, Beaverton, OR, USA
| | - Kellie L K Tamashiro
- Johns Hopkins University, School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD, USA
| | - Damien Fair
- University of Minnesota School of Medicine, Masonic Institute of Child Development, Minneapolis, MN, USA
| | - Hanna Gustafsson
- Oregon Health & Science University, Department of Psychiatry, Portland, OR, USA
| | - Elinor L Sullivan
- Oregon National Primate Research Center, Division of Neuroscience, Beaverton, OR, USA; Oregon Health & Science University, Department of Behavioral Neuroscience, Portland, OR, USA; University of Oregon, Department of Human Physiology, Eugene, OR, USA; Oregon Health & Science University, Department of Psychiatry, Portland, OR, USA.
| |
Collapse
|
12
|
Wood EK, Sullivan EL. The Influence of Diet on Metabolism and Health Across the Lifespan in Nonhuman Primates. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 24. [PMID: 35425871 DOI: 10.1016/j.coemr.2022.100336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The macro and micronutrient composition and the overall quantity of the diet are important predictors of physical and psychological health and, as a consequence, behavior. Translational preclinical models are critical to identifying the mechanisms underlying these relationships. Nonhuman primate models are particularly instrumental to this line of research as they exhibit considerable genetic, social, and physiological similarities, as well as similarities in their developmental trajectories to humans. This review aims to discuss recent contributions to the field of diet and metabolism and health using nonhuman primate models. The influence of diet composition on health and physiology across the lifespan will be the primary focus, including recent work examining the impact of maternal diet programming of offspring physiologic and behavioral developmental outcomes.
Collapse
Affiliation(s)
- Elizabeth K Wood
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Elinor L Sullivan
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
- Oregon National Primate Research Center, 505 NW 185 Avenue, Beaverton, OR 97006
| |
Collapse
|
13
|
Amaro A, Baptista FI, Matafome P. Programming of future generations during breastfeeding: The intricate relation between metabolic and neurodevelopment disorders. Life Sci 2022; 298:120526. [DOI: 10.1016/j.lfs.2022.120526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/27/2022]
|
14
|
Mizera J, Pomierny B, Sadakierska-Chudy A, Bystrowska B, Pomierny-Chamiolo L. Disruption of Glutamate Homeostasis in the Brain of Rat Offspring Induced by Prenatal and Early Postnatal Exposure to Maternal High-Sugar Diet. Nutrients 2022; 14:nu14112184. [PMID: 35683984 PMCID: PMC9182612 DOI: 10.3390/nu14112184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
A high-calorie diet has contributed greatly to the prevalence of overweight and obesity worldwide for decades. These conditions also affect pregnant women and have a negative impact on the health of both the woman and the fetus. Numerous studies indicate that an unbalanced maternal diet, rich in sugars and fats, can influence the in utero environment and, therefore, the future health of the child. It has also been shown that prenatal exposure to an unbalanced diet might permanently alter neurotransmission in offspring. In this study, using a rat model, we evaluated the effects of a maternal high-sugar diet on the level of extracellular glutamate and the expression of key transporters crucial for maintaining glutamate homeostasis in offspring. Glutamate concentration was assessed in extracellular fluid samples collected from the medial prefrontal cortex and hippocampus of male and female offspring. Analysis showed significantly increased glutamate levels in both brain structures analyzed, regardless of the sex of the offspring. These changes were accompanied by altered expression of the EAAT1, VGLUT1, and xc− proteins in these brain structures. This animal study further confirms our previous findings that a maternal high-sugar diet has a detrimental effect on the glutamatergic system.
Collapse
Affiliation(s)
- Jozef Mizera
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Bartosz Pomierny
- Department of Biochemical Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (B.P.); (B.B.)
| | - Anna Sadakierska-Chudy
- Department of Genetics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Gustawa Herlinga-Grudzinskiego 1, 30-705 Krakow, Poland;
| | - Beata Bystrowska
- Department of Biochemical Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (B.P.); (B.B.)
| | - Lucyna Pomierny-Chamiolo
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
- Correspondence: ; Tel.: +48-(12)-620-56-30
| |
Collapse
|
15
|
Dunn GA, Mitchell AJ, Selby M, Fair DA, Gustafsson HC, Sullivan EL. Maternal diet and obesity shape offspring central and peripheral inflammatory outcomes in juvenile non-human primates. Brain Behav Immun 2022; 102:224-236. [PMID: 35217175 PMCID: PMC8995380 DOI: 10.1016/j.bbi.2022.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/21/2022] [Accepted: 02/19/2022] [Indexed: 12/30/2022] Open
Abstract
The obesity epidemic affects 40% of adults in the US, with approximately one-third of pregnant women classified as obese. Previous research suggests that children born to obese mothers are at increased risk for a number of health conditions. The mechanisms behind this increased risk are poorly understood. Increased exposure to in-utero inflammation induced by maternal obesity is proposed as an underlying mechanism for neurodevelopmental alterations in offspring. Utilizing a non-human primate model of maternal obesity, we hypothesized that maternal consumption of an obesogenic diet will predict offspring peripheral (e.g., cytokines and chemokines) and central (microglia number) inflammatory outcomes via the diet's effects on maternal adiposity and maternal inflammatory state during the third trimester. We used structural equation modeling to simultaneously examine the complex associations among maternal diet, metabolic state, adiposity, inflammation, and offspring central and peripheral inflammation. Four latent variables were created to capture maternal chemokines and pro-inflammatory cytokines, and offspring cytokine and chemokines. Model results showed that offspring microglia counts in the basolateral amygdala were associated with maternal diet (β = -0.622, p < 0.01), adiposity (β = 0.593, p < 0.01), and length of gestation (β = 0.164, p < 0.05) but not with maternal chemokines (β = 0.135, p = 0.528) or maternal pro-inflammatory cytokines (β = 0.083, p = 0.683). Additionally, we found that juvenile offspring peripheral cytokines (β = -0.389, p < 0.01) and chemokines (β = -0.298, p < 0.05) were associated with a maternal adiposity-induced decrease in maternal circulating chemokines during the third trimester (β = -0.426, p < 0.01). In summary, these data suggest that maternal diet and adiposity appear to directly predict offspring amygdala microglial counts while maternal adiposity influences offspring peripheral inflammatory outcomes via maternal inflammatory state.
Collapse
Affiliation(s)
| | - A J Mitchell
- Oregon Health & Science University, Department of Behavioral Neuroscience, USA; Oregon National Primate Research Center, Department of Neuroscience, USA
| | - Matthew Selby
- University of Oregon, Department of Human Physiology, USA
| | - Damien A Fair
- University of Minnesota School of Medicine, Masonic Institute of Child Development, USA
| | | | - Elinor L Sullivan
- University of Oregon, Department of Human Physiology, USA; Oregon Health & Science University, Department of Behavioral Neuroscience, USA; Oregon National Primate Research Center, Department of Neuroscience, USA; Oregon Health & Science University, Department of Psychiatry, USA.
| |
Collapse
|
16
|
Mitchell AJ, Dunn GA, Sullivan EL. The Influence of Maternal Metabolic State and Nutrition on Offspring Neurobehavioral Development: A Focus on Preclinical Models. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:450-460. [PMID: 34915175 PMCID: PMC9086110 DOI: 10.1016/j.bpsc.2021.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/19/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022]
Abstract
The prevalence of both obesity and neurodevelopmental disorders has increased substantially over the last several decades. Early environmental factors, including maternal nutrition and metabolic state during gestation, influence offspring neurodevelopment. Both human and preclinical models demonstrate a link between poor maternal nutrition, altered metabolic state, and risk of behavioral abnormalities in offspring. This review aims to highlight evidence from the current literature connecting maternal nutrition and the associated metabolic changes with neural and behavioral outcomes in the offspring, as well as identify possible mechanisms underlying these neurodevelopmental outcomes. Owing to the highly correlated nature of poor nutrition and obesity in humans, preclinical animal models are important in distinguishing the unique effects of maternal nutrition and metabolic state on offspring brain development. We use a translational lens to highlight results from preclinical animal models of maternal obesogenic diet related to alterations in behavioral and neurodevelopmental outcomes in offspring. Specifically, we aim to highlight results that resemble behavioral phenotypes described in the diagnostic criteria of neurodevelopmental conditions in humans. Finally, we examine the proinflammatory nature of maternal obesity and consumption of a high-fat diet as a mechanism for neurodevelopmental alterations that may alter offspring behavior later in life. It is important that future studies examine potential therapeutic interventions and prevention strategies to interrupt the transgenerational transmission of the disease. Given the tremendous risk to the next generation, changes need to be made to ensure that all pregnant people have access to nutritious food and are informed about the optimal diet for their developing child.
Collapse
Affiliation(s)
- A J Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon; Department of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon
| | - Geoffrey A Dunn
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Elinor L Sullivan
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon; Department of Psychiatry, Oregon Health & Science University, Portland, Oregon; Department of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon; Department of Human Physiology, University of Oregon, Eugene, Oregon.
| |
Collapse
|
17
|
Francis G, Eller AR. Anthropogenic effects on body size and growth in lab-reared and free-ranging Macaca mulatta. Am J Primatol 2022; 84:e23368. [PMID: 35255167 DOI: 10.1002/ajp.23368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/30/2022] [Accepted: 02/11/2022] [Indexed: 11/08/2022]
Abstract
The impact of anthropogenic pressures upon primates is increasingly prevalent, and yet the phenotypic aspects of these impacts remain understudied. Captive environments can pose unique pressures based on factors like physical activity levels and caloric availability; thus, maturation patterns should vary under differing captive conditions. Here, we evaluate the development and growth of two Macaca mulatta populations (N = 510) with known chronological ages between 9 months and 16 years, under different levels of captive management, to assess the impact of varying anthropogenic environments on primates. To track growth, we scored 13 epiphyseal fusion locales across long bones in a skeletal sample of lab-reared M. mulatta (n = 111), including the right tibia, femur, humerus, ulna, and radius. We employed a three-tier scoring system, consisting of "0" (unfused to diaphysis), "1" (fusing), and "2" (fused). To record body size, we collected five linear measures of these long bones, from the proximal and distal ends, and total lengths. Means and standard deviations were generated to compare samples; t-tests were used to determine significant differences between means. These values were compared to available data on the free-ranging, provisioned M. mulatta population of Cayo Santiago. The free-ranging monkeys (n = 274) were found to exhibit larger linear skeletal lengths (p < 0.05) than lab-reared specimens. Generally, the free-ranging macaques reached fusion at earlier chronological ages and exhibited an extended duration of the fusing growth stage. These observations may reflect the protein-rich diet provided to free-ranging monkeys and conversely, restricted movement and relaxed natural selection experienced by lab-reared monkeys.
Collapse
Affiliation(s)
- George Francis
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, Texas, USA
| | - Andrea R Eller
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| |
Collapse
|
18
|
Clark TD, Reichelt AC, Ghosh-Swaby O, Simpson SJ, Crean AJ. Nutrition, anxiety and hormones. Why sex differences matter in the link between obesity and behavior. Physiol Behav 2022; 247:113713. [DOI: 10.1016/j.physbeh.2022.113713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022]
|
19
|
Monteiro S, Nejad YS, Aucoin M. Perinatal diet and offspring anxiety: A scoping review. Transl Neurosci 2022; 13:275-290. [PMID: 36128579 PMCID: PMC9449687 DOI: 10.1515/tnsci-2022-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022] Open
Abstract
Health behaviors during pregnancy have an impact on the developing offspring. Dietary factors play a role in the development of mental illness: however, less is known about the impact of diet factors during pre-conception, gestation, and lactation on anxiety levels in offspring. This scoping review sought to systematically map the available research involving human and animal subjects to identify nutritional interventions which may have a harmful or protective effect, as well as identify gaps. Studies investigating an association between any perinatal diet pattern or diet constituent and offspring anxiety were included. The number of studies reporting an association with increased or decreased levels of anxiety were counted and presented in figures. A total of 55,914 results were identified as part of a larger scoping review, and 120 articles met the criteria for inclusion. A greater intake of phytochemicals and vitamins were associated with decreased offspring anxiety whereas maternal caloric restriction, protein restriction, reduced omega-3 consumption, and exposure to a high fat diet were associated with higher levels of offspring anxiety. Results were limited by a very large proportion of animal studies. High quality intervention studies involving human subjects are warranted to elucidate the precise dietary factors or constituents that modulate the risk of anxiety in offspring.
Collapse
Affiliation(s)
- Sasha Monteiro
- Department of Research and Clinical Epidemiology, Canadian College of Naturopathic Medicine, 1255 Sheppard Ave E, Toronto, ON, M2K 1E2, Canada
| | - Yousef Sadat Nejad
- Department of Research and Clinical Epidemiology, Canadian College of Naturopathic Medicine, 1255 Sheppard Ave E, Toronto, ON, M2K 1E2, Canada
| | - Monique Aucoin
- Department of Research and Clinical Epidemiology, Canadian College of Naturopathic Medicine, 1255 Sheppard Ave E, Toronto, ON, M2K 1E2, Canada
| |
Collapse
|
20
|
Nash MJ, Dobrinskikh E, Newsom SA, Messaoudi I, Janssen RC, Aagaard KM, McCurdy CE, Gannon M, Kievit P, Friedman JE, Wesolowski SR. Maternal Western diet exposure increases periportal fibrosis beginning in utero in nonhuman primate offspring. JCI Insight 2021; 6:e154093. [PMID: 34935645 PMCID: PMC8783685 DOI: 10.1172/jci.insight.154093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/10/2021] [Indexed: 12/29/2022] Open
Abstract
Maternal obesity affects nearly one-third of pregnancies and is a major risk factor for nonalcoholic fatty liver disease (NAFLD) in adolescent offspring, yet the mechanisms behind NAFLD remain poorly understood. Here, we demonstrate that nonhuman primate fetuses exposed to maternal Western-style diet (WSD) displayed increased fibrillar collagen deposition in the liver periportal region, with increased ACTA2 and TIMP1 staining, indicating localized hepatic stellate cell (HSC) and myofibroblast activation. This collagen deposition pattern persisted in 1-year-old offspring, despite weaning to a control diet (CD). Maternal WSD exposure increased the frequency of DCs and reduced memory CD4+ T cells in fetal liver without affecting systemic or hepatic inflammatory cytokines. Switching obese dams from WSD to CD before conception or supplementation of the WSD with resveratrol decreased fetal hepatic collagen deposition and reduced markers of portal triad fibrosis, oxidative stress, and fetal hypoxemia. These results demonstrate that HSCs and myofibroblasts are sensitive to maternal WSD-associated oxidative stress in the fetal liver, which is accompanied by increased periportal collagen deposition, indicative of early fibrogenesis beginning in utero. Alleviating maternal WSD-driven oxidative stress in the fetal liver holds promise for halting steatosis and fibrosis and preventing developmental programming of NAFLD.
Collapse
Affiliation(s)
- Michael J. Nash
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sean A. Newsom
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Rachel C. Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kjersti M. Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, and Departments of Molecular and Human Genetics and Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Carrie E. McCurdy
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Maureen Gannon
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jacob E. Friedman
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Stephanie R. Wesolowski
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
21
|
MCP-1 Signaling Disrupts Social Behavior by Modulating Brain Volumetric Changes and Microglia Morphology. Mol Neurobiol 2021; 59:932-949. [PMID: 34797523 DOI: 10.1007/s12035-021-02649-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
Autism spectrum disorder (ASD) is a disease characterized by reduced social interaction and stereotypic behaviors and related to macroscopic volumetric changes in cerebellar and somatosensory cortices (SPP). Epidemiological and preclinical models have confirmed that a proinflammatory profile during fetal development increases ASD susceptibility after birth. Here, we aimed to globally identify the effect of maternal exposure to high-energy dense diets, which we refer to as cafeteria diet (CAF) on peripheral and central proinflammatory profiles, microglia reactivity, and volumetric brain changes related to assisting defective social interaction in the mice offspring. We found a sex-dependent effect of maternal exposure to CAF diet or inoculation of the dsARN mimetic Poly (I:C) on peripheral proinflammatory and social interaction in the offspring. Notably, maternal exposure to CAF diet impairs social interaction and favors an increase in anxiety in male but not female offspring. Also, CAF diet exposure or Poly (I:C) inoculation during fetal programming promote peripheral proinflammatory profile in the ASD-diagnosed male but not in females. Selectively, we found a robust accumulation of the monocyte chemoattractant protein-1 (MCP-1) in plasma of ASD-diagnosed males exposed to CAF during fetal development. Biological assessment of MCP-1 signaling in brain confirms that systemic injection of MCP-1-neutralizing antibody reestablished social interaction and blocked anxiety, accompanied by a reduction in cerebellar lobule X (CbX) volume and an increase volume of the primary somatosensory (SSP) cortex in male offspring. These data highlight the contribution of diet-dependent MCP-1 signaling on volumetric brain changes and microglia morphology promoting ASD-like behavior in male mice.
Collapse
|
22
|
Ortiz-Valladares M, Pedraza-Medina R, Pinto-González MF, Muñiz JG, Gonzalez-Perez O, Moy-López NA. Neurobiological approaches of high-fat diet intake in early development and their impact on mood disorders in adulthood: A systematic review. Neurosci Biobehav Rev 2021; 129:218-230. [PMID: 34324919 DOI: 10.1016/j.neubiorev.2021.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/14/2021] [Accepted: 07/25/2021] [Indexed: 01/21/2023]
Abstract
The early stage of development is a vulnerable period for progeny neurodevelopment, altering cytogenetic and correct cerebral functionality. The exposure High-Fat Diet (HFD) is a factor that impacts the future mental health of individuals. This review analyzes possible mechanisms involved in the development of mood disorders in adulthood because of maternal HFD intake during gestation and lactation, considering previously reported findings in the last five years, both in humans and animal models. Maternal HFD could induce alterations in mood regulation, reported as increased stress response, anxiety-like behavior, and depressive-like behavior. These changes were mostly related to HPA axis dysregulations and neuroinflammatory responses. In conclusion, there could be a relationship between HFD consumption during the early stages of life and the development of psychopathologies during adulthood. These findings provide guidelines for the understanding of possible mechanisms involved in mood disorders, however, there is still a need for more human clinical studies that provide evidence to improve the understanding of maternal nutrition and future mental health outcomes in the offspring.
Collapse
Affiliation(s)
| | - Ricardo Pedraza-Medina
- Medical Science Postgraduate Program, School of Medicine, University of Colima, Colima, Mexico
| | | | - Jorge Guzmán Muñiz
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Mexico
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Mexico
| | | |
Collapse
|
23
|
Ramirez JSB, Graham AM, Thompson JR, Zhu JY, Sturgeon D, Bagley JL, Thomas E, Papadakis S, Bah M, Perrone A, Earl E, Miranda-Dominguez O, Feczko E, Fombonne EJ, Amaral DG, Nigg JT, Sullivan EL, Fair DA. Maternal Interleukin-6 Is Associated With Macaque Offspring Amygdala Development and Behavior. Cereb Cortex 2021; 30:1573-1585. [PMID: 31665252 DOI: 10.1093/cercor/bhz188] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022] Open
Abstract
Human and animal cross-sectional studies have shown that maternal levels of the inflammatory cytokine interleukin-6 (IL-6) may compromise brain phenotypes assessed at single time points. However, how maternal IL-6 associates with the trajectory of brain development remains unclear. We investigated whether maternal IL-6 levels during pregnancy relate to offspring amygdala volume development and anxiety-like behavior in Japanese macaques. Magnetic resonance imaging (MRI) was administered to 39 Japanese macaque offspring (Female: 18), providing at least one or more time points at 4, 11, 21, and 36 months of age with a behavioral assessment at 11 months of age. Increased maternal third trimester plasma IL-6 levels were associated with offspring's smaller left amygdala volume at 4 months, but with more rapid amygdala growth from 4 to 36 months. Maternal IL-6 predicted offspring anxiety-like behavior at 11 months, which was mediated by reduced amygdala volumes in the model's intercept (i.e., 4 months). The results increase our understanding of the role of maternal inflammation in the development of neurobehavioral disorders by detailing the associations of a commonly examined inflammatory indicator, IL-6, on amygdala volume growth over time, and anxiety-like behavior.
Collapse
Affiliation(s)
- Julian S B Ramirez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Alice M Graham
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Jacqueline R Thompson
- Divisions of Neuroscience and Cardiometabolic Health, Oregon National Primate Research Center, Beaverton OR, USA
| | - Jennifer Y Zhu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Darrick Sturgeon
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Jennifer L Bagley
- Divisions of Neuroscience and Cardiometabolic Health, Oregon National Primate Research Center, Beaverton OR, USA
| | - Elina Thomas
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Samantha Papadakis
- Neuroscience Graduate Program, Oregon Health & Science University, Portland OR, USA
| | - Muhammed Bah
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Anders Perrone
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Eric Earl
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | | | - Eric Feczko
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA.,Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland OR, USA
| | - Eric J Fombonne
- Department of Psychiatry, Oregon Health & Science University, Portland OR, USA.,Department of Pediatrics, Oregon Health & Science University, Portland OR, USA.,Institute for Development & Disability, Oregon Health & Science University, Portland OR, USA
| | - David G Amaral
- MIND Institute, University of California Davis, Davis CA, USA.,Department of Psychiatry and Behavioral Sciences, and Center for Neuroscience, University of California Davis, Davis CA, USA.,California National Primate Research Center, University of California Davis, Davis CA, USA
| | - Joel T Nigg
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA.,Department of Psychiatry, Oregon Health & Science University, Portland OR, USA
| | - Elinor L Sullivan
- Divisions of Neuroscience and Cardiometabolic Health, Oregon National Primate Research Center, Beaverton OR, USA.,Department of Psychiatry, Oregon Health & Science University, Portland OR, USA.,Department of Human Physiology, University of Oregon, Eugene OR, USA
| | - Damien A Fair
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA.,Neuroscience Graduate Program, Oregon Health & Science University, Portland OR, USA.,Department of Psychiatry, Oregon Health & Science University, Portland OR, USA.,Advance Imaging Research Center, Oregon Health & Science University, Portland OR, USA
| |
Collapse
|
24
|
Diet-induced dysbiosis of the maternal gut microbiome in early life programming of neurodevelopmental disorders. Neurosci Res 2021; 168:3-19. [PMID: 33992660 DOI: 10.1016/j.neures.2021.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
The maternal gut microbiome plays a critical role in fetal and early postnatal development, shaping fundamental processes including immune maturation and brain development, among others. Consequently, it also contributes to fetal programming of health and disease. Over the last decade, epidemiological studies and work in preclinical animal models have begun to uncover a link between dysbiosis of the maternal gut microbiome and neurodevelopmental disorders in offspring. Neurodevelopmental disorders are caused by both genetic and environmental factors, and their interactions; however, clinical heterogeneity, phenotypic variability, and comorbidities make identification of underlying mechanisms difficult. Among environmental factors, exposure to maternal obesity in utero confers a significant increase in risk for neurodevelopmental disorders. Obesogenic diets in humans, non-human primates, and rodents induce functional modifications in maternal gut microbiome composition, which animal studies suggest are causally related to adverse mental health outcomes in offspring. Here, we review evidence linking maternal diet-induced gut dysbiosis to neurodevelopmental disorders and discuss how it could affect pre- and early postnatal brain development. We are hopeful that this burgeoning field of research will revolutionize antenatal care by leading to accessible prophylactic strategies, such as prenatal probiotics, to improve mental health outcomes in children affected by maternal diet-induced obesity.
Collapse
|
25
|
da Silva LO, da Silva Aragão R, Duarte Barros MDL, Nogueira Ferraz-Pereira K, Lins Pinheiro I, Galindo LCM. Maternal exposure to high-fat diet modifies anxiety-like/depression-like behaviors and compounds of Serotonergic System in offspring: A preclinical systematic review. Int J Dev Neurosci 2021; 81:371-385. [PMID: 33788300 DOI: 10.1002/jdn.10110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/08/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022] Open
Abstract
Maternal nutrition affects offspring physiology and behavior including susceptibility to mental health-related states. Perinatal high-fat diet (HFD) consumption has been associated with lower levels of serotonin as well as the development of anxiety-like and depression-like behaviors in offspring. The aim of this systematic review was to investigate the effects of maternal HFD during pregnancy and/or lactation on these behaviors and on some aspects of the serotonergic system. Criteria for eligibility included studies of offspring of rodents and non-human primates exposed to HFD at least during pregnancy and/or lactation, offspring that showed outcomes related to anxiety-like and depression-like behaviors and to the serotonergic system. The searches were realized in the LILACS, Web of Science, Scopus, and PubMed databases. The systematic review protocol was registered on the CAMARADES website. The internal validity was assessed by the SYRCLE risk of bias tool. The Kappa index was used for analyzing agreement among the reviewers. In addition, the PRISMA statement was used to report this systematic review. Sixteen articles were included in this review. Most of which studied HFD prior to mating and during pregnancy and lactation. All studies analyzed outcomes related to emotional behavior; three analyzed outcomes related to serotonin system compounds. Maternal consumption of HFD was found to be associated with an inconsistent pattern of the expression of TPH2 as well as reduced the immunoreactivity of 5-HT in the prefrontal cortex and increased 5-HT1A receptor expression in the dorsal raphe of offspring. An association between an HFD and alterations in emotional behavior was found in most of the studies selected.
Collapse
Affiliation(s)
- Luana Olegário da Silva
- Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil
| | - Raquel da Silva Aragão
- Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil.,Graduate Program in Nutrition, Universidade Federal de Pernambuco, Recife, Brazil.,Physical Education and Sport Sciences Nucleus, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil.,Unity of Studies in Nutrition and Phenotypic Plasticity, Department of Nutrition, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Kelli Nogueira Ferraz-Pereira
- Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil.,Unity of Studies in Nutrition and Phenotypic Plasticity, Department of Nutrition, Universidade Federal de Pernambuco, Recife, Brazil
| | - Isabeli Lins Pinheiro
- Physical Education and Sport Sciences Nucleus, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil.,Unity of Studies in Nutrition and Phenotypic Plasticity, Department of Nutrition, Universidade Federal de Pernambuco, Recife, Brazil
| | - Lígia Cristina Monteiro Galindo
- Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil.,Unity of Studies in Nutrition and Phenotypic Plasticity, Department of Nutrition, Universidade Federal de Pernambuco, Recife, Brazil.,Departament of Anatomy, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
26
|
The impact of maternal obesity on childhood neurodevelopment. J Perinatol 2021; 41:928-939. [PMID: 33249428 DOI: 10.1038/s41372-020-00871-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/10/2020] [Accepted: 11/04/2020] [Indexed: 02/08/2023]
Abstract
There is growing clinical and experimental evidence to suggest that maternal obesity increases children's susceptibility to neurodevelopmental and neuropsychiatric disorders. Given the worldwide obesity epidemic, it is crucial that we acquire a thorough understanding of the available evidence, identify gaps in knowledge, and develop an agenda for intervention. This review synthesizes human and animal studies investigating the association between maternal obesity and offspring brain health. It also highlights key mechanisms underlying these effects, including maternal and fetal inflammation, alterations to the microbiome, epigenetic modifications of neurotrophic genes, and impaired dopaminergic and serotonergic signaling. Lastly, this review highlights several proposed interventions and priorities for future investigation.
Collapse
|
27
|
Davis J, Mire E. Maternal obesity and developmental programming of neuropsychiatric disorders: An inflammatory hypothesis. Brain Neurosci Adv 2021; 5:23982128211003484. [PMID: 33889757 PMCID: PMC8040564 DOI: 10.1177/23982128211003484] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Maternal obesity is associated with the development of a variety of neuropsychiatric disorders; however, the mechanisms behind this association are not fully understood. Comparison between maternal immune activation and maternal obesity reveals similarities in associated impairments and maternal cytokine profile. Here, we present a summary of recent evidence describing how inflammatory processes contribute towards the development of neuropsychiatric disorders in the offspring of obese mothers. This includes discussion on how maternal cytokine levels, fatty acids and placental inflammation may interact with foetal neurodevelopment through changes to microglial behaviour and epigenetic modification. We also propose an exosome-mediated mechanism for the disruption of brain development under maternal obesity and discuss potential intervention strategies.
Collapse
Affiliation(s)
- Jonathan Davis
- Hodge Centre for Neuropsychiatric Immunology, Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Erik Mire
- Hodge Centre for Neuropsychiatric Immunology, Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
28
|
Ye X, Shin BC, Baldauf C, Ganguly A, Ghosh S, Devaskar SU. Developing Brain Glucose Transporters, Serotonin, Serotonin Transporter, and Oxytocin Receptor Expression in Response to Early-Life Hypocaloric and Hypercaloric Dietary, and Air Pollutant Exposures. Dev Neurosci 2021; 43:27-42. [PMID: 33774619 DOI: 10.1159/000514709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Perturbed maternal diet and prenatal exposure to air pollution (AP) affect the fetal brain, predisposing to postnatal neurobehavioral disorders. Glucose transporters (GLUTs) are key in fueling neurotransmission; deficiency of the neuronal isoform GLUT3 culminates in autism spectrum disorders. Along with the different neurotransmitters, serotonin (5-HT) and oxytocin (OXT) are critical for the development of neural connectivity. Serotonin transporter (SERT) modulates synaptic 5-HT levels, while the OXT receptor (OXTR) mediates OXT action. We hypothesized that perturbed brain GLUT1/GLUT3 regulated 5-HT-SERT imbalance, which serves as a contributing factor to postnatal neuropsychiatric phenotypes, with OXT/OXTR providing a counterbalance. Employing maternal diet restriction (intrauterine growth restriction [IUGR]), high-fat (HF) dietary modifications, and prenatal exposure to simulated AP, fetal (E19) murine brain 5-HT was assessed by ELISA with SERT and OXTR being localized by immunohistochemistry and measured by quantitative Western blot analysis. IUGR with lower head weights led to a 48% reduction in male and female fetal brain GLUT3 with no change in GLUT1, when compared to age- and sex-matched controls, with no significant change in OXTR. In addition, a ∼50% (p = 0.005) decrease in 5-HT and SERT concentrations was displayed in fetal IUGR brains. In contrast, despite emergence of microcephaly, exposure to a maternal HF diet or AP caused no significant changes. We conclude that in the IUGR during fetal brain development, reduced GLUT3 is associated with an imbalanced 5-HT-SERT axis. We speculate that these early changes may set the stage for altering the 5HT-SERT neural axis with postnatal emergence of associated neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xin Ye
- Department of Pediatrics, Division of Neonatology & Developmental Biology and the Neonatal Research Center of the UCLA Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Bo-Chul Shin
- Department of Pediatrics, Division of Neonatology & Developmental Biology and the Neonatal Research Center of the UCLA Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Claire Baldauf
- Department of Pediatrics, Division of Neonatology & Developmental Biology and the Neonatal Research Center of the UCLA Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Amit Ganguly
- Department of Pediatrics, Division of Neonatology & Developmental Biology and the Neonatal Research Center of the UCLA Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Shubhamoy Ghosh
- Department of Pediatrics, Division of Neonatology & Developmental Biology and the Neonatal Research Center of the UCLA Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sherin U Devaskar
- Department of Pediatrics, Division of Neonatology & Developmental Biology and the Neonatal Research Center of the UCLA Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
29
|
Subba R, Sandhir R, Singh SP, Mallick BN, Mondal AC. Pathophysiology linking depression and type 2 diabetes: Psychotherapy, physical exercise, and fecal microbiome transplantation as damage control. Eur J Neurosci 2021; 53:2870-2900. [PMID: 33529409 DOI: 10.1111/ejn.15136] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/10/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Diabetes increases the likelihood of developing depression and vice versa. Research on this bidirectional association has somewhat managed to delineate the interplay among implicated physiological processes. Still, further exploration is required in this context. This review addresses the comorbidity by investigating suspected common pathophysiological mechanisms. One such factor is psychological stress which disturbs the hypothalamic-pituitary-adrenal axis causing hormonal imbalance. This includes elevated cortisol levels, a common biomarker of both depression and diabetes. Disrupted insulin signaling drives the hampered neurotransmission of serotonin, dopamine, and norepinephrine. Also, adipokine hormones such as adiponectin, leptin, and resistin and the orexigenic hormone, ghrelin, are involved in both depression and T2DM. This disarray further interferes with physiological processes encompassing sleep, the gut-brain axis, metabolism, and mood stability. Behavioral coping mechanisms, such as unhealthy eating, mediate disturbed glucose homeostasis, and neuroinflammation. This is intricately linked to oxidative stress, redox imbalance, and mitochondrial dysfunction. However, interventions such as psychotherapy, physical exercise, fecal microbiota transplantation, and insulin-sensitizing agents can help to manage the distressing condition. The possibility of glucagon-like peptide 1 possessing a therapeutic role has also been discussed. Nonetheless, there stands an urgent need for unraveling new correlating targets and biological markers for efficient treatment.
Collapse
Affiliation(s)
- Rhea Subba
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajat Sandhir
- Dept. of Biochemistry, Panjab University, Chandigarh, Punjab, India
| | - Surya Pratap Singh
- Dept. of Biochemistry, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | | |
Collapse
|
30
|
Mechanisms Underlying the Cognitive and Behavioural Effects of Maternal Obesity. Nutrients 2021; 13:nu13010240. [PMID: 33467657 PMCID: PMC7829712 DOI: 10.3390/nu13010240] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
The widespread consumption of 'western'-style diets along with sedentary lifestyles has led to a global epidemic of obesity. Epidemiological, clinical and preclinical evidence suggests that maternal obesity, overnutrition and unhealthy dietary patterns programs have lasting adverse effects on the physical and mental health of offspring. We review currently available preclinical and clinical evidence and summarise possible underlying neurobiological mechanisms by which maternal overnutrition may perturb offspring cognitive function, affective state and psychosocial behaviour, with a focus on (1) neuroinflammation; (2) disrupted neuronal circuities and connectivity; and (3) dysregulated brain hormones. We briefly summarise research implicating the gut microbiota in maternal obesity-induced changes to offspring behaviour. In animal models, maternal obesogenic diet consumption disrupts CNS homeostasis in offspring, which is critical for healthy neurodevelopment, by altering hypothalamic and hippocampal development and recruitment of glial cells, which subsequently dysregulates dopaminergic and serotonergic systems. The adverse effects of maternal obesogenic diets are also conferred through changes to hormones including leptin, insulin and oxytocin which interact with these brain regions and neuronal circuits. Furthermore, accumulating evidence suggests that the gut microbiome may directly and indirectly contribute to these maternal diet effects in both human and animal studies. As the specific pathways shaping abnormal behaviour in offspring in the context of maternal obesogenic diet exposure remain unknown, further investigations are needed to address this knowledge gap. Use of animal models permits investigation of changes in neuroinflammation, neurotransmitter activity and hormones across global brain network and sex differences, which could be directly and indirectly modulated by the gut microbiome.
Collapse
|
31
|
Jabri MA, Rtibi K, Sebai H. Chamomile decoction mitigates high fat diet-induced anxiety-like behavior, neuroinflammation and cerebral ROS overload. Nutr Neurosci 2020; 25:1350-1361. [PMID: 33314994 DOI: 10.1080/1028415x.2020.1859727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An abundant literature suggests that obesity-associated with taking a high fat diet is related to an elevated risk of type 2 diabetes and metabolic syndrome. However, metabolic disorders may be involved in the induction of the anxiogenic-like symptoms. The current study was designed to elucidate the mechanisms by which a high fat diet (HFD) can cause several complications in the WISTAR rats (Rattus norvegicus) brain. Oxidative stress and inflammation as well as the putative protection afforded by chamomile decoction extract (CDE) were also studied.The results demonstrated that the increased body and brain weight, acetylcholinesterase and butyrylcholinesterase activities as well as hypercholezterolaemia in response to HFD taking were correlated with anxiogenic-like symptoms. Moreover, HFD feed caused a brain oxidative stress characterized by increased lipoperoxidation, inhibition of antioxidant enzyme activities such as SOD, CAT and GPx, depletion of a non-enzymatic antioxidant such as sulfhydryl groups and GSH. Importantly, the results also show that HFD also provoked a cerebral overload in reactive oxygen species such as OH•, H2O2 and O2∙- as well as brain inflammation assessed by the overproduction of cytokines such as IL-1β and IL-6.Interestingly, all neurobehavioral changes and all the biochemical and molecular disturbances were abolished in HFD-fed rats treated with CDE.Our results provide clear evidence that obesity and depression as well as anxiety are finely correlated and that M. recutita's decoction may prove to be a potential therapeutic agent to mitigate the behavioral disorders, the biochemical alterations and the neuroinflammation associated to the obesity.
Collapse
Affiliation(s)
- Mohamed-Amine Jabri
- Unité de Physiologie Fonctionnelle et Valorisation des Bio-Ressources - Institut Supérieur de Biotechnologie de Béja, Université de Jendouba, Béja, Tunisia
| | - Kaïs Rtibi
- Unité de Physiologie Fonctionnelle et Valorisation des Bio-Ressources - Institut Supérieur de Biotechnologie de Béja, Université de Jendouba, Béja, Tunisia
| | - Hichem Sebai
- Unité de Physiologie Fonctionnelle et Valorisation des Bio-Ressources - Institut Supérieur de Biotechnologie de Béja, Université de Jendouba, Béja, Tunisia
| |
Collapse
|
32
|
Gawlińska K, Gawliński D, Korostyński M, Borczyk M, Frankowska M, Piechota M, Filip M, Przegaliński E. Maternal dietary patterns are associated with susceptibility to a depressive-like phenotype in rat offspring. Dev Cogn Neurosci 2020; 47:100879. [PMID: 33232913 PMCID: PMC7691544 DOI: 10.1016/j.dcn.2020.100879] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 01/03/2023] Open
Abstract
Modified maternal diet influences offspring behavior and the brain transcriptome. Maternal HFD provokes depressive-like behavior in male and female offspring. In utero exposure to HFD leads to transcriptomics alterations within the offspring’s frontal cortex. Maternal HFD changes expression of markers specific to excitatory and inhibitory cortical neurons.
Environmental factors such as maternal diet, determine the pathologies that appear early in life and can persist in adulthood. Maternally modified diets provided through pregnancy and lactation increase the predisposition of offspring to the development of many diseases, including obesity, diabetes, and neurodevelopmental and mental disorders such as depression. Fetal and early postnatal development are sensitive periods in the offspring’s life in which maternal nutrition influences epigenetic modifications, which results in changes in gene expression and affects molecular phenotype. This study aimed to evaluate the impact of maternal modified types of diet, including a high-fat diet (HFD), high-carbohydrate diet (HCD) and mixed diet (MD) during pregnancy and lactation on phenotypic changes in rat offspring with respect to anhedonia, depressive- and anxiety-like behavior, memory impairment, and gene expression profile in the frontal cortex. Behavioral results indicate that maternal HFD provokes depressive-like behavior and molecular findings showed that HFD leads to persistent transcriptomics alterations. Moreover, a HFD significantly influences the expression of neuronal markers specific to excitatory and inhibitory cortical neurons. Collectively, these experiments highlight the complexity of the impact of maternal modified diet during fetal programming. Undoubtedly, maternal HFD affects brain development and our findings suggest that nutrition exerts significant changes in brain function that may be associated with depression.
Collapse
Affiliation(s)
- Kinga Gawlińska
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Dawid Gawliński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Michał Korostyński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Molecular Neuropharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Małgorzata Borczyk
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Molecular Neuropharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Małgorzata Frankowska
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Marcin Piechota
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Molecular Neuropharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Małgorzata Filip
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland.
| | - Edmund Przegaliński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland
| |
Collapse
|
33
|
Fitzgerald E, Hor K, Drake AJ. Maternal influences on fetal brain development: The role of nutrition, infection and stress, and the potential for intergenerational consequences. Early Hum Dev 2020; 150:105190. [PMID: 32948364 PMCID: PMC7481314 DOI: 10.1016/j.earlhumdev.2020.105190] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An optimal early life environment is crucial for ensuring ideal neurodevelopmental outcomes. Brain development consists of a finely tuned series of spatially and temporally constrained events, which may be affected by exposure to a sub-optimal intra-uterine environment. Evidence suggests brain development may be particularly vulnerable to factors such as maternal nutrition, infection and stress during pregnancy. In this review, we discuss how maternal factors such as these can affect brain development and outcome in offspring, and we also identify evidence which suggests that the outcome can, in many cases, be stratified by socio-economic status (SES), with individuals in lower brackets typically having a worse outcome. We consider the relevant epidemiological evidence and draw parallels to mechanisms suggested by preclinical work where appropriate. We also discuss possible transgenerational effects of these maternal factors and the potential mechanisms involved. We conclude that modifiable factors such as maternal nutrition, infection and stress are important contributors to atypical brain development and that SES also likely has a key role.
Collapse
Affiliation(s)
- Eamon Fitzgerald
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Kahyee Hor
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
34
|
Penna E, Pizzella A, Cimmino F, Trinchese G, Cavaliere G, Catapano A, Allocca I, Chun JT, Campanozzi A, Messina G, Precenzano F, Lanzara V, Messina A, Monda V, Monda M, Perrone-Capano C, Mollica MP, Crispino M. Neurodevelopmental Disorders: Effect of High-Fat Diet on Synaptic Plasticity and Mitochondrial Functions. Brain Sci 2020; 10:brainsci10110805. [PMID: 33142719 PMCID: PMC7694125 DOI: 10.3390/brainsci10110805] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) include diverse neuropathologies characterized by abnormal brain development leading to impaired cognition, communication and social skills. A common feature of NDDs is defective synaptic plasticity, but the underlying molecular mechanisms are only partially known. Several studies have indicated that people’s lifestyles such as diet pattern and physical exercise have significant influence on synaptic plasticity of the brain. Indeed, it has been reported that a high-fat diet (HFD, with 30–50% fat content), which leads to systemic low-grade inflammation, has also a detrimental effect on synaptic efficiency. Interestingly, metabolic alterations associated with obesity in pregnant woman may represent a risk factor for NDDs in the offspring. In this review, we have discussed the potential molecular mechanisms linking the HFD-induced metabolic dysfunctions to altered synaptic plasticity underlying NDDs, with a special emphasis on the roles played by synaptic protein synthesis and mitochondrial functions.
Collapse
Affiliation(s)
- Eduardo Penna
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Amelia Pizzella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Gina Cavaliere
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Ivana Allocca
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Angelo Campanozzi
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Francesco Precenzano
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.P.); (V.L.)
| | - Valentina Lanzara
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.P.); (V.L.)
| | - Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.M.); (M.M.)
| | - Vincenzo Monda
- Department of Experimental Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.M.); (M.M.)
| | - Carla Perrone-Capano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, 80131 Naples, Italy
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
- Correspondence: ; Tel.: +39-081-679990; Fax: +39-081-679233
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| |
Collapse
|
35
|
Page KC, Anday EK. Dietary Exposure to Excess Saturated Fat During Early Life Alters Hippocampal Gene Expression and Increases Risk for Behavioral Disorders in Adulthood. Front Neurosci 2020; 14:527258. [PMID: 33013310 PMCID: PMC7516040 DOI: 10.3389/fnins.2020.527258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/21/2020] [Indexed: 02/01/2023] Open
Abstract
Purpose Maternal and postnatal diets result in long-term changes in offspring brain and behavior; however, the key mediators of these developmental changes are not well-defined. In this study, we investigated the impact of maternal and post-weaning high-fat diets on gene expression of key components mediating hippocampal synaptic efficacy. In addition, we evaluated the risk for impaired stress-coping and anxiety-like behaviors in adult offspring exposed to obesogenic diets during early life. Methods Dams were fed a control (C) or high-fat (HF) diet prior to mating, pregnancy, and lactation. Male offspring from control chow and high-fat fed dams were weaned to control chow or HF diets. The forced swim test (FST) and the elevated-plus maze (EPM) were used to detect stress-coping and anxiety-like behavior, respectively. Real-time RT-PCR and ELISA were used to analyze hippocampal expression of genes mediating synaptic function. Results Animals fed a HF diet post-weaning spent more time immobile in the FST. Swimming time was reduced in response to both maternal and post-weaning HF diets. Both maternal and post-weaning HF diets contributed to anxiety-like behavior in animals exposed to the EPM. Maternal and post-weaning HF diets were associated with a significant decrease in mRNA and protein expression for hippocampal GDNF, MAP2, SNAP25, and synaptophysin. Hippocampal mRNA expression of key serotonergic and glutamatergic receptors also exhibited differential responses to maternal and post-weaning HF diets. Hippocampal serotonergic receptor 5HT1A mRNA was reduced in response to both the maternal and post-weaning diet, whereas, 5HT2A receptor mRNA expression was increased in response to the maternal HF diet. The glutamate AMPA receptor subunit, GluA1, mRNA expression was significantly reduced in response to both diets, whereas no change was detected in GluA2 subunit mRNA expression. Conclusion These data demonstrate that the expression of genes mediating synaptic function are differentially affected by maternal and post-weaning high-fat diets. The post-weaning high-fat diet clearly disturbs both behavior and gene expression. In addition, although the transition to control diet at weaning partially compensates for the adverse effects of the maternal HF diet, the negative consequence of the maternal HF diet is exacerbated by continuing the high-fat diet post-weaning. We present evidence to support the claim that these dietary influences increase the risk for anxiety and impaired stress-coping abilities in adulthood.
Collapse
Affiliation(s)
- Kathleen C Page
- Department of Biology, Bucknell University, Lewisburg, PA, United States
| | - Endla K Anday
- College of Medicine, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
36
|
Early life fluoxetine treatment causes long-term lean phenotype in skeletal muscle of rats exposed to maternal lard-based high-fat diet. Biomed Pharmacother 2020; 131:110727. [PMID: 32927255 DOI: 10.1016/j.biopha.2020.110727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/21/2022] Open
Abstract
There is a concern about early life exposure to Selective Serotonin Reuptake Inhibitors (SSRI) in child development and motor system maturation. Little is known, however, about the interaction of environmental factors, such as maternal nutrition, associated with early exposure to SSRI. The increased maternal consumption of high-fat diets is worrisome and affects serotonin system development with repercussions in body phenotype. This study aimed to assess the short- and long-term effects of neonatal fluoxetine treatment on the body and skeletal muscle phenotype of rats exposed to a maternal lard-based high-fat (H) diet during the perinatal period. A maternal lard-based high-fat diet causes reduced birth weight, a short-term reduction in type IIA fibers in the soleus muscle, and in type IIB fibers in the Extensor Digitorum Longus (EDL) muscle, reducing Lactate Dehydrogenase (LDH) activity in both muscles. In the long-term, the soleus showed reduced muscle weight, smaller area and perimeter of muscle fibers, while the EDL muscle showed reduced Citrate Synthase (CS) activity in offspring from the rats on the maternal lard-based high-fat diet. Early-life exposure to fluoxetine reduced body weight and growth and reduced soleus weight and enzymatic activity in young rats. Exposure to neonatal fluoxetine in adult rats caused a decreased body mass index, less food intake, and reduced muscle weight with reduced CS and LDH activity. Neonatal fluoxetine in young rats exposed to a maternal lard-based high-fat diet caused reduced body weight and growth, reduced soleus weight as well as area and perimeter of type I muscle fibers. In adulthood, there was a reduction in food intake, increased proportion of IIA type fibers, reduced area and perimeter of type IIB, and reduction in levels of CS activity in EDL muscle. Neonatal fluoxetine treatment in rats exposed to a maternal lard-based, high-fat diet induces a reduction in muscle weight, an increase in the proportion of oxidative fibers and greater oxidative enzymatic activity in adulthood.
Collapse
|
37
|
Hanswijk SI, Spoelder M, Shan L, Verheij MMM, Muilwijk OG, Li W, Liu C, Kolk SM, Homberg JR. Gestational Factors throughout Fetal Neurodevelopment: The Serotonin Link. Int J Mol Sci 2020; 21:E5850. [PMID: 32824000 PMCID: PMC7461571 DOI: 10.3390/ijms21165850] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
Serotonin (5-HT) is a critical player in brain development and neuropsychiatric disorders. Fetal 5-HT levels can be influenced by several gestational factors, such as maternal genotype, diet, stress, medication, and immune activation. In this review, addressing both human and animal studies, we discuss how these gestational factors affect placental and fetal brain 5-HT levels, leading to changes in brain structure and function and behavior. We conclude that gestational factors are able to interact and thereby amplify or counteract each other's impact on the fetal 5-HT-ergic system. We, therefore, argue that beyond the understanding of how single gestational factors affect 5-HT-ergic brain development and behavior in offspring, it is critical to elucidate the consequences of interacting factors. Moreover, we describe how each gestational factor is able to alter the 5-HT-ergic influence on the thalamocortical- and prefrontal-limbic circuitry and the hypothalamo-pituitary-adrenocortical-axis. These alterations have been associated with risks to develop attention deficit hyperactivity disorder, autism spectrum disorders, depression, and/or anxiety. Consequently, the manipulation of gestational factors may be used to combat pregnancy-related risks for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sabrina I. Hanswijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Marcia Spoelder
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Ling Shan
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands;
| | - Michel M. M. Verheij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Otto G. Muilwijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Weizhuo Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (W.L.); (C.L.)
| | - Chunqing Liu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (W.L.); (C.L.)
| | - Sharon M. Kolk
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 AJ Nijmegen, The Netherlands;
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| |
Collapse
|
38
|
Dias CT, Curi HT, Payolla TB, Lemes SF, Betim Pavan IC, Torsoni MA, Simabuco FM, Lambertucci RH, Mendes da Silva C. Maternal high-fat diet stimulates proinflammatory pathway and increases the expression of Tryptophan Hydroxylase 2 (TPH2) and brain-derived neurotrophic factor (BDNF) in adolescent mice hippocampus. Neurochem Int 2020; 139:104781. [PMID: 32652271 DOI: 10.1016/j.neuint.2020.104781] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/16/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Maternal high-fat diet (HFD) consumption can promote a systemic inflammatory condition that may impair the offspring brain development, damaging memory and learning, when it reaches the hippocampus. This study aims to evaluate maternal HFD effects, during pregnancy and lactation, upon dams/mice offspring nutritional status, protein and gene expression of inflammatory pathway (JNK, pJNK and TNF-α), serotonin system molecules (Tryptophan Hydroxylase 2 (TPH2), key-enzyme of serotonin synthesis, serotonin transporter (SERT); 5-HT1A serotonergic receptor (5-HT1A)) and brain derived neurotrophic factor (BDNF) on recently weaned mice offspring hippocampus. Female Swiss mice were fed a control diet (CD, 11,5% fat) or a HFD (45.0% fat) from pre-mating to lactation. After weaning, the offspring received CD up to 28 post-natal days (PND28). Body weight and visceral adiposity (retroperitoneal and gonadal adipose tissue) of dams and offspring were measured. After euthanasia, the offspring hippocampus was dissected for evaluations of BDNF, inflammatory pathway and serotonergic system molecules protein and gene expression, through the techniques of Western Blotting, RTqPCR and ELISA. Our findings show that, during pregnancy, HFD-dams and HFD-offspring exhibited an increase in body weight gain and visceral adipose tissue compared to control animals. The hippocampus of HFD-offspring showed increased protein expression of TPH2, BDNF, pJNK and increased mRNA levels of TNF-α. However, the TPH2 increase in HFD-offspring did not alter hippocampal serotonin levels quantified through ELISA. Maternal HFD promoted an obesity phenotype in its offspring with increased body weight and visceral adiposity, increased protein and gene expression of the pro-inflammatory proteins pJNK and TNF-α. These changes were accompanied by increased TPH2 and BDNF protein expression. Thus, our findings show that maternal HFD during gestation and lactation increased pJNK and TNF-α expression in their offspring hippocampus indicating a pro-inflammatory state, with increased BDNF expression and alterations in its serotonergic system reflected by increased TPH2 expression.
Collapse
Affiliation(s)
- Clarissa Tavares Dias
- Laboratory of Neuroscience and Nutrition, Department of Biosciences, Federal University of São Paulo/UNIFESP (Campus Baixada Santista), Santos, SP, Brazil
| | - Haidar Tafner Curi
- Laboratory of Neuroscience and Nutrition, Department of Biosciences, Federal University of São Paulo/UNIFESP (Campus Baixada Santista), Santos, SP, Brazil
| | - Tanyara Baliani Payolla
- Laboratory of Metabolism Disorders, Faculty of Applied Sciences, State University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Simone Ferreira Lemes
- Laboratory of Metabolism Disorders, Faculty of Applied Sciences, State University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Marcio Alberto Torsoni
- Laboratory of Metabolism Disorders, Faculty of Applied Sciences, State University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rafael Herling Lambertucci
- Laboratory of Neuroscience and Nutrition, Department of Biosciences, Federal University of São Paulo/UNIFESP (Campus Baixada Santista), Santos, SP, Brazil
| | - Cristiano Mendes da Silva
- Laboratory of Neuroscience and Nutrition, Department of Biosciences, Federal University of São Paulo/UNIFESP (Campus Baixada Santista), Santos, SP, Brazil.
| |
Collapse
|
39
|
Campodonico-Burnett W, Hetrick B, Wesolowski SR, Schenk S, Takahashi DL, Dean TA, Sullivan EL, Kievit P, Gannon M, Aagaard K, Friedman JE, McCurdy CE. Maternal Obesity and Western-Style Diet Impair Fetal and Juvenile Offspring Skeletal Muscle Insulin-Stimulated Glucose Transport in Nonhuman Primates. Diabetes 2020; 69:1389-1400. [PMID: 32354857 PMCID: PMC7306120 DOI: 10.2337/db19-1218] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
Infants born to mothers with obesity have a greater risk for childhood obesity and metabolic diseases; however, the underlying biological mechanisms remain poorly understood. We used a Japanese macaque model to investigate whether maternal obesity combined with a Western-style diet (WSD) impairs offspring muscle insulin action. Adult females were fed a control or WSD prior to and during pregnancy through lactation, and offspring subsequently weaned to a control or WSD. Muscle glucose uptake and signaling were measured ex vivo in fetal (n = 5-8/group) and juvenile (n = 8/group) offspring. In vivo signaling was evaluated after an insulin bolus just prior to weaning (n = 4-5/group). Maternal WSD reduced insulin-stimulated glucose uptake and impaired insulin signaling at the level of Akt phosphorylation in fetal muscle. In juvenile offspring, insulin-stimulated glucose uptake was similarly reduced by both maternal and postweaning WSD and corresponded to modest reductions in insulin-stimulated Akt phosphorylation relative to controls. We conclude that maternal WSD leads to a persistent decrease in offspring muscle insulin-stimulated glucose uptake even in the absence of increased offspring adiposity or markers of systemic insulin resistance. Switching offspring to a healthy diet did not reverse the effects of maternal WSD on muscle insulin action, suggesting earlier interventions may be warranted.
Collapse
Affiliation(s)
- William Campodonico-Burnett
- Department of Human Physiology, University of Oregon, Eugene, OR
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO
| | - Byron Hetrick
- Department of Human Physiology, University of Oregon, Eugene, OR
| | | | - Simon Schenk
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA
| | - Diana L Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health Science University, Beaverton, OR
| | - Tyler A Dean
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health Science University, Beaverton, OR
| | - Elinor L Sullivan
- Department of Human Physiology, University of Oregon, Eugene, OR
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health Science University, Beaverton, OR
- Department of Psychiatry, Oregon Health Science University, Portland, OR
- Department of Behavioral Sciences, Oregon Health Science University, Portland, OR
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health Science University, Beaverton, OR
| | - Maureen Gannon
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Kjersti Aagaard
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR
| |
Collapse
|
40
|
Maejima Y, Yokota S, Horita S, Shimomura K. Early life high-fat diet exposure evokes normal weight obesity. Nutr Metab (Lond) 2020; 17:48. [PMID: 32595758 PMCID: PMC7315480 DOI: 10.1186/s12986-020-00464-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is becoming one of the most severe global health problems. However, risk of developing normal weight obesity, where an individual has a high percentage of body fat despite a normal body mass index, is gaining attention since such individuals also develop systemic inflammation and metabolic dysregulation. In this study, juvenile (3-week-old) and adult (8-week-old) rats were fed a high fat diet (HFD) for 9 weeks and compared them with normal chow diet (NCD) fed rats. The HFD fed adult group showed increase in energy intake, body weight (BW), total fat, visceral fat and subcutaneous fat compared with an age-matched NCD group. In addition, the percentage of muscle mass to BW in the adult HFD group was significantly lower compared with the NCD group. When HFD feeding was started from the juvenile stage, there were almost no differences in energy intake and BW between the HFD and NCD groups. However, the juvenile HFD group showed a 1.7-fold increase in total fat, visceral fat and subcutaneous fat compared with their age-matched NCD group. The percentage of muscle mass to BW was significantly lower in the juvenile HFD group compared with the NCD group. In addition, increased plasma insulin levels and decreased insulin sensitivity was observed only in juvenile HFD group, but not in adult HFD group. These results suggest that HFD feeding in growth period induces insulin resistance and normal weight obesity. Here we show a method for generating a normal weight obesity model, as well as raising the alarm for developing normal weight obesity when children are exposed to high-fat meals.
Collapse
Affiliation(s)
- Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima, 960-1295 Japan
| | - Shoko Yokota
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima, 960-1295 Japan
| | - Shoichiro Horita
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima, 960-1295 Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima, 960-1295 Japan
| |
Collapse
|
41
|
Relationship of prenatal maternal obesity and diabetes to offspring neurodevelopmental and psychiatric disorders: a narrative review. Int J Obes (Lond) 2020; 44:1981-2000. [PMID: 32494038 PMCID: PMC7508672 DOI: 10.1038/s41366-020-0609-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 04/20/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Abstract
Obesity and diabetes is a worldwide public health problem among women of reproductive age. This narrative review highlights recent epidemiological studies regarding associations of maternal obesity and diabetes with neurodevelopmental and psychiatric disorders in offspring, and provides an overview of plausible underlying mechanisms and challenges for future human studies. A comprehensive search strategy selected terms that corresponded to the domains of interest (maternal obesity, different types of diabetes, offspring cognitive functions and neuropsychiatric disorders). The databases searched for articles published between January 2010 and April 2019 were PubMed, Web of Science and CINAHL. Evidence from epidemiological studies strongly suggests that maternal pre-pregnancy obesity is associated with increased risks for autism spectrum disorder, attention-deficit hyperactivity disorder and cognitive dysfunction with modest effect sizes, and that maternal diabetes is associated with the risk of the former two disorders. The influence of maternal obesity on other psychiatric disorders is less well studied, but there are reports of associations with increased risks for offspring depression, anxiety, schizophrenia and eating disorders, at modest effect sizes. It remains unclear whether these associations are due to intrauterine mechanisms or explained by confounding family-based sociodemographic, lifestyle and genetic factors. The plausible underlying mechanisms have been explored primarily in animal models, and are yet to be further investigated in human studies.
Collapse
|
42
|
Huber HF, Jenkins SL, Li C, Nathanielsz PW. Strength of nonhuman primate studies of developmental programming: review of sample sizes, challenges, and steps for future work. J Dev Orig Health Dis 2020; 11:297-306. [PMID: 31566171 PMCID: PMC7103515 DOI: 10.1017/s2040174419000539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nonhuman primate (NHP) studies are crucial to biomedical research. NHPs are the species most similar to humans in lifespan, body size, and hormonal profiles. Planning research requires statistical power evaluation, which is difficult to perform when lacking directly relevant preliminary data. This is especially true for NHP developmental programming studies, which are scarce. We review the sample sizes reported, challenges, areas needing further work, and goals of NHP maternal nutritional programming studies. The literature search included 27 keywords, for example, maternal obesity, intrauterine growth restriction, maternal high-fat diet, and maternal nutrient reduction. Only fetal and postnatal offspring studies involving tissue collection or imaging were included. Twenty-eight studies investigated maternal over-nutrition and 33 under-nutrition; 23 involved macaques and 38 baboons. Analysis by sex was performed in 19; minimum group size ranged from 1 to 8 (mean 4.7 ± 0.52, median 4, mode 3) and maximum group size from 3 to 16 (8.3 ± 0.93, 8, 8). Sexes were pooled in 42 studies; minimum group size ranged from 2 to 16 (mean 5.3 ± 0.35, median 6, mode 6) and maximum group size from 4 to 26 (10.2 ± 0.92, 8, 8). A typical study with sex-based analyses had group size minimum 4 and maximum 8 per sex. Among studies with sexes pooled, minimum group size averaged 6 and maximum 8. All studies reported some significant differences between groups. Therefore, studies with group sizes 3-8 can detect significance between groups. To address deficiencies in the literature, goals include increasing age range, more frequently considering sex as a biological variable, expanding topics, replicating studies, exploring intergenerational effects, and examining interventions.
Collapse
Affiliation(s)
- Hillary F. Huber
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Susan L. Jenkins
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Peter W. Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
43
|
Khambadkone SG, Cordner ZA, Tamashiro KLK. Maternal stressors and the developmental origins of neuropsychiatric risk. Front Neuroendocrinol 2020; 57:100834. [PMID: 32084515 PMCID: PMC7243665 DOI: 10.1016/j.yfrne.2020.100834] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/23/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
The maternal environment during pregnancy is critical for fetal development and perinatal perturbations can prime offspring disease risk. Here, we briefly review evidence linking two well-characterized maternal stressors - psychosocial stress and infection - to increased neuropsychiatric risk in offspring. In the current climate of increasing obesity and globalization of the Western-style diet, maternal overnutrition emerges as a pressing public health concern. We focus our attention on recent epidemiological and animal model evidence showing that, like psychosocial stress and infection, maternal overnutrition can also increase offspring neuropsychiatric risk. Using lessons learned from the psychosocial stress and infection literature, we discuss how altered maternal and placental physiology in the setting of overnutrition may contribute to abnormal fetal development and resulting neuropsychiatric outcomes. A better understanding of converging pathophysiological pathways shared between stressors may enable development of interventions against neuropsychiatric illnesses that may be beneficial across stressors.
Collapse
Affiliation(s)
- Seva G Khambadkone
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular & Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zachary A Cordner
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kellie L K Tamashiro
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular & Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
44
|
Gustafsson HC, Holton KF, Anderson AN, Nousen EK, Sullivan CA, Loftis JM, Nigg JT, Sullivan EL. Increased Maternal Prenatal Adiposity, Inflammation, and Lower Omega-3 Fatty Acid Levels Influence Child Negative Affect. Front Neurosci 2019; 13:1035. [PMID: 31632234 PMCID: PMC6779776 DOI: 10.3389/fnins.2019.01035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/12/2019] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Increased maternal adiposity during pregnancy is associated with offspring risk for psychiatric disorders. Inflammation secondary to adiposity is believed to be an important mechanism through which this effect occurs. Although increased adiposity introduces risk, not all children of overweight mothers develop these problems. Gestational factors that modify this risk are not well-understood. If maternal increased adiposity exerts its effects on offspring outcomes by increasing inflammation in the gestational environment, then anti-inflammatory inputs such as omega-3 fatty acids may be one protective factor. The goal of this study was to investigate whether maternal pre-pregnancy body mass index (BMI) and omega-3 fatty acid levels independently and/or interactively predicted offspring infant negative affect, an early life marker of risk for psychopathology. METHODS Data came from a prospective study of women recruited during pregnancy and their 6 month old infants (N = 62; 40% female). Maternal pre-pregnancy BMI was pulled from medical charts and third trimester omega-3 fatty acid concentrations were assessed in plasma. Child negative affect was assessed using observer- and maternal-ratings at 6 months of age. Maternal inflammation was indexed by third trimester plasma levels of interleukin-6, tumor necrosis factor-alpha, and monocyte chemoattractant protein-1. RESULTS Maternal pre-pregnancy BMI was associated with increased infant negative affect whereas eicosapentaenoic acid was associated with less infant negative affect. Maternal omega-3 fatty acid levels moderated the effect of BMI on infant negative affect, such that omega-3 fatty acids buffered children against the negative consequences of increased adiposity. Supporting the role of maternal inflammation in these associations, maternal BMI and omega-3 fatty acid levels interacted to predict maternal third trimester inflammation. Further, maternal inflammation was associated with increased infant negative affect. CONCLUSION Results suggest that omega-3 supplementation during pregnancy may protect against offspring behavioral risk associated with increased maternal adiposity.
Collapse
Affiliation(s)
- Hanna C. Gustafsson
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, United States
| | - Kathleen F. Holton
- Department of Health Studies, Center for Behavioral Neuroscience, American University, Washington, DC, United States
| | - Ashley N. Anderson
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, United States
| | - Elizabeth K. Nousen
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, United States
| | - Ceri A. Sullivan
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, United States
| | - Jennifer M. Loftis
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Joel T. Nigg
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, United States
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Elinor L. Sullivan
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, United States
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| |
Collapse
|
45
|
Renner S, Martins AS, Streckel E, Braun-Reichhart C, Backman M, Prehn C, Klymiuk N, Bähr A, Blutke A, Landbrecht-Schessl C, Wünsch A, Kessler B, Kurome M, Hinrichs A, Koopmans SJ, Krebs S, Kemter E, Rathkolb B, Nagashima H, Blum H, Ritzmann M, Wanke R, Aigner B, Adamski J, Hrabě de Angelis M, Wolf E. Mild maternal hyperglycemia in INS C93S transgenic pigs causes impaired glucose tolerance and metabolic alterations in neonatal offspring. Dis Model Mech 2019; 12:dmm.039156. [PMID: 31308048 PMCID: PMC6737953 DOI: 10.1242/dmm.039156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022] Open
Abstract
Alongside the obesity epidemic, the prevalence of maternal diabetes is rising worldwide, and adverse effects on fetal development and metabolic disturbances in the offspring's later life have been described. To clarify whether metabolic programming effects are due to mild maternal hyperglycemia without confounding obesity, we investigated wild-type offspring of INSC93S transgenic pigs, which are a novel genetically modified large-animal model expressing mutant insulin (INS) C93S in pancreatic β-cells. This mutation results in impaired glucose tolerance, mild fasting hyperglycemia and insulin resistance during late pregnancy. Compared with offspring from wild-type sows, piglets from hyperglycemic mothers showed impaired glucose tolerance and insulin resistance (homeostatic model assessment of insulin resistance: +3-fold in males; +4.4-fold in females) prior to colostrum uptake. Targeted metabolomics in the fasting and insulin-stimulated state revealed distinct alterations in the plasma metabolic profile of piglets from hyperglycemic mothers. They showed increased levels of acylcarnitines, gluconeogenic precursors such as alanine, phospholipids (in particular lyso-phosphatidylcholines) and α-aminoadipic acid, a potential biomarker for type 2 diabetes. These observations indicate that mild gestational hyperglycemia can cause impaired glucose tolerance, insulin resistance and associated metabolic alterations in neonatal offspring of a large-animal model born at a developmental maturation status comparable to human babies. Editor's choice: Mild maternal hyperglycemia causes impaired glucose tolerance and metabolic alterations in wild-type neonatal offspring of INSC93S transgenic pigs, a novel large animal model for mutant INS gene-induced diabetes of youth (MIDY).
Collapse
Affiliation(s)
- Simone Renner
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, 81377 Munich, Germany .,German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | | | - Elisabeth Streckel
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, 81377 Munich, Germany
| | - Christina Braun-Reichhart
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, 81377 Munich, Germany
| | - Mattias Backman
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Cornelia Prehn
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Nikolai Klymiuk
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, 81377 Munich, Germany
| | - Andrea Bähr
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, 81377 Munich, Germany
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | - Annegret Wünsch
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, 81377 Munich, Germany
| | - Barbara Kessler
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, 81377 Munich, Germany
| | - Mayuko Kurome
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, 81377 Munich, Germany
| | - Arne Hinrichs
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, 81377 Munich, Germany
| | - Sietse-Jan Koopmans
- Wageningen UR Livestock Research, de Elst 1 and CARUS Animal Facilities, Wageningen University, 6708 WD Wageningen, The Netherlands
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, 81377 Munich, Germany.,German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Birgit Rathkolb
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, 81377 Munich, Germany.,German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.,German Mouse Clinic (GMC), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki 214-8571, Japan
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Mathias Ritzmann
- Clinic for Swine, Center for Clinical Veterinary Medicine, LMU Munich, 85764 Oberschleißheim, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany
| | - Bernhard Aigner
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, 81377 Munich, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596 Singapore.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, 85764 Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.,German Mouse Clinic (GMC), Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, 85764 Neuherberg, Germany.,Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, 81377 Munich, Germany.,German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.,Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
46
|
Menting MD, van de Beek C, Mintjens S, Wever KE, Korosi A, Ozanne SE, Limpens J, Roseboom TJ, Hooijmans C, Painter RC. The link between maternal obesity and offspring neurobehavior: A systematic review of animal experiments. Neurosci Biobehav Rev 2019; 98:107-121. [DOI: 10.1016/j.neubiorev.2018.12.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023]
|
47
|
Xu W, Yu J, Jiang Z, Yan W, Li S, Luo Y, Xu J. The impact of subchronic low-dose exposure to nonylphenol on depression-like behaviors in high-sucrose and high-fat diet induced rats. Toxicology 2019; 414:27-34. [DOI: 10.1016/j.tox.2019.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/21/2018] [Accepted: 01/05/2019] [Indexed: 01/23/2023]
|
48
|
Friedman JE. Developmental Programming of Obesity and Diabetes in Mouse, Monkey, and Man in 2018: Where Are We Headed? Diabetes 2018; 67:2137-2151. [PMID: 30348820 PMCID: PMC6198344 DOI: 10.2337/dbi17-0011] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Abstract
Childhood obesity and its comorbidities continue to accelerate across the globe. Two-thirds of pregnant women are obese/overweight, as are 20% of preschoolers. Gestational diabetes mellitus (GDM) is escalating, affecting up to 1 in 5 pregnant women. The field of developmental origins of health and disease has begun to move beyond associations to potential causal mechanisms for developmental programming. Evidence across species compellingly demonstrates that maternal obesity, diabetes, and Western-style diets create a long-lasting signature on multiple systems, including infant stem cells, the early immune system, and gut microbiota. Such exposures accelerate adipogenesis, disrupt mitochondrial metabolism, and impair energy sensing, affecting neurodevelopment, liver, pancreas, and skeletal muscle. Attempts to prevent developmental programming have met with very limited success. A challenging level of complexity is involved in how the host genome, metabolome, and microbiome throughout pregnancy and lactation increase the offspring's risk of metabolic diseases across the life span. Considerable gaps in knowledge include the timing of exposure(s) and permanence or plasticity of the response, encompassing effects from both maternal and paternal dysmetabolism. Basic, translational, and human intervention studies targeting pathways that connect diet, microbiota, and metabolism in mothers with obesity/GDM and their infants are a critical unmet need and present new challenges for disease prevention in the next generation.
Collapse
Affiliation(s)
- Jacob E Friedman
- Section of Neonatology, Department of Pediatrics; Department of Biochemistry & Molecular Genetics; Division of Endocrinology, Metabolism & Diabetes, Department of Medicine; and Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
49
|
Wesolowski SR, Mulligan CM, Janssen RC, Baker PR, Bergman BC, D'Alessandro A, Nemkov T, Maclean KN, Jiang H, Dean TA, Takahashi DL, Kievit P, McCurdy CE, Aagaard KM, Friedman JE. Switching obese mothers to a healthy diet improves fetal hypoxemia, hepatic metabolites, and lipotoxicity in non-human primates. Mol Metab 2018; 18:25-41. [PMID: 30337225 PMCID: PMC6308036 DOI: 10.1016/j.molmet.2018.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/12/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) risk begins in utero in offspring of obese mothers. A critical unmet need in this field is to understand the pathways and biomarkers underlying fetal hepatic lipotoxicity and whether maternal dietary intervention during pregnancy is an effective countermeasure. Methods We utilized a well-established non-human primate model of chronic, maternal, Western-style diet induced obesity (OB-WSD) compared with mothers on a healthy control diet (CON) or a subset of OB-WSD mothers switched to the CON diet (diet reversal; OB-DR) prior to and for the duration of the next pregnancy. Fetuses were studied in the early 3rd trimester. Results Fetuses from OB-WSD mothers had higher circulating triglycerides (TGs) and lower arterial oxygenation suggesting hypoxemia, compared with fetuses from CON and OB-DR mothers. Hepatic TG content, oxidative stress (TBARs), and de novo lipogenic genes were increased in fetuses from OB-WSD compared with CON mothers. Fetuses from OB-DR mothers had lower lipogenic gene expression and TBARs yet persistently higher TGs. Metabolomic profiling of fetal liver and serum (umbilical artery) revealed distinct separation of CON and OB-WSD groups, and an intermediate phenotype in fetuses from OB-DR mothers. Pathway analysis identified decreased tricarboxylic acid cycle intermediates, increased amino acid (AA) metabolism and byproducts, and increased gluconeogenesis, suggesting an increased reliance on AA metabolism to meet energy needs in the liver of fetuses from OB-WSD mothers. Components in collagen synthesis, including serum protein 5-hydroxylysine and hepatic lysine and proline, were positively correlated with hepatic TGs and TBARs, suggesting early signs of fibrosis in livers from the OB-WSD group. Importantly, hepatic gluconeogenic and arginine related intermediates and serum levels of lactate, pyruvate, several AAs, and nucleotide intermediates were normalized in the OB-DR group. However, hepatic levels of CDP-choline and total ceramide levels remained high in fetuses from OB-DR mothers. Conclusions Our data provide new metabolic evidence that, in addition to fetal hepatic steatosis, maternal WSD creates fetal hypoxemia and increases utilization of AAs for energy production and early activation of gluconeogenic pathways in the fetal liver. When combined with hyperlipidemia and limited antioxidant activity, the fetus suffers from hepatic oxidative stress and altered intracellular metabolism which can be improved with maternal diet intervention. Our data reinforce the concept that multiple “first hits” occur in the fetus prior to development of obesity and demonstrate new biomarkers with potential clinical implications for monitoring NAFLD risk in offspring. Maternal WSD increases fetal hypoxemia and utilization of AAs for gluconeogenesis. Maternal WSD increases fetal oxidative stress and precursors to liver fibrosis. Carnosine and l-proline uniquely correlated with fetal TG and oxidative stress. Fetal TGs were correlated with fetal arterial oxygen saturation. Diet reversal in obese WSD mothers prevents fetal hypoxemia and oxidative stress.
Collapse
Affiliation(s)
| | | | | | - Peter R Baker
- Department of Pediatrics, Section of Genetics and Metabolism, USA
| | - Bryan C Bergman
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, USA
| | - Angelo D'Alessandro
- Department of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Travis Nemkov
- Department of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | | | - Hua Jiang
- Department of Pediatrics, Section of Genetics and Metabolism, USA
| | - Tyler A Dean
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Diana L Takahashi
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Paul Kievit
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, USA
| | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jacob E Friedman
- Department of Pediatrics, Section of Neonatology, USA; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, USA; Department of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
50
|
Winther G, Elfving B, Müller HK, Lund S, Wegener G. Maternal High-fat Diet Programs Offspring Emotional Behavior in Adulthood. Neuroscience 2018; 388:87-101. [DOI: 10.1016/j.neuroscience.2018.07.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/01/2018] [Accepted: 07/06/2018] [Indexed: 01/28/2023]
|