1
|
Bunyakitcharoen A, Taychaworaditsakul W, Sireeratawong S, Chansakaow S. Anti-Hyperglycemic Effects of Thai Herbal Medicines. PLANTS (BASEL, SWITZERLAND) 2024; 13:2862. [PMID: 39458809 PMCID: PMC11511234 DOI: 10.3390/plants13202862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
This study aims to investigate selected medicinal plants' anti-oxidative and antihyperglycemic activities to develop an effective remedy for lowering blood glucose levels and/or reducing diabetes complications. Thai medicinal plants, reported to have blood sugar-lowering effects, were selected for the study: Coccinia grandis, Gymnema inodorum, Gynostemma pentaphyllum, Hibiscus sabdariffa, Momordica charantia, Morus alba, and Zingiber officinale. Each species was extracted by Soxhlet's extraction using ethanol as solvent. The ethanolic crude extract of each species was then evaluated for its phytochemicals, anti-oxidant, and antihyperglycemic activities. The results showed that the extract of Z. officinale gave the highest values of total phenolic and total flavonoid content (167.95 mg gallic acid equivalents (GAE)/g and 81.70 mg CE/g, respectively). Anti-oxidant activity was determined using DPPH and ABTS radical scavenging activity. Among the ethanolic extracts, Z. officinale exhibited the highest anti-oxidant activity with IC50 values of 19.16 and 8.53 µg/mL, respectively. The antihyperglycemic activity was assessed using α-glucosidase inhibitory and glucose consumption activities. M. alba and G. pentaphyllum demonstrated the highest α-glucosidase inhibitory activity among the ethanolic extracts, with IC50 values of 134.40 and 329.97 µg/mL, respectively. Z. officinale and H. sabdariffa showed the highest percentage of glucose consumption activity in induced insulin-resistant HepG2 cells at a concentration of 50 µg/mL with 145.16 and 107.03%, respectively. The results from α-glucosidase inhibitory and glucose consumption activities were developed as an effective antihyperglycemic remedy. Among the remedies tested, the R1 remedy exhibited the highest potential for reducing blood glucose levels, with an IC50 value of 122.10 µg/mL. Therefore, the R1 remedy should be further studied for its effects on animals.
Collapse
Affiliation(s)
- Athit Bunyakitcharoen
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | | | - Seewaboon Sireeratawong
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sunee Chansakaow
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
2
|
Khan I, Kamal A, Akhtar S. Diabetes Driven Oncogenesis and Anticancer Potential of Repurposed Antidiabetic Drug: A Systemic Review. Cell Biochem Biophys 2024; 82:1907-1929. [PMID: 38954353 DOI: 10.1007/s12013-024-01387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Diabetes and cancer are two prevalent disorders, pose significant public health challenges and contribute substantially to global mortality rates, with solely 10 million reported cancer-related deaths in 2020. This review explores the pathological association between diabetes and diverse cancer progressions, examining molecular mechanisms and potential therapeutic intersections. From altered metabolic landscapes to dysregulated signaling pathways, the intricate links are delineated, offering a comprehensive understanding of diabetes as a modulator of tumorigenesis. Cancer cells develop drug resistance through mechanisms like enhanced drug efflux, genetic mutations, and altered drug metabolism, allowing them to survive despite chemotherapeutic agent. Glucose emerges as a pivotal player in diabetes progression, and serving as a crucial energy source for cancer cells, supporting their biosynthetic needs and adaptation to diverse microenvironments. Glycation, a non-enzymatic process that produces advanced glycation end products (AGEs), has been linked to the etiology of cancer and has been shown in a number of tumor forms, such as leiomyosarcomas, adenocarcinomas, and squamous cell carcinomas. Furthermore, in aggressive and metastatic breast cancer, the receptor for AGEs (RAGE) is increased, which may increase the malignancy of the tumor. Reprogramming glucose metabolism manifests as hallmark cancer features, including accelerated cell proliferation, angiogenesis, metastasis, and evasion of apoptosis. This manuscript encapsulates the dual narrative of diabetes as a driver of cancer progression and the potential of repurposed antidiabetic drugs as formidable countermeasures. The amalgamation of mechanistic understanding and clinical trial outcomes establishes a robust foundation for further translational research and therapeutic advancements in the dynamic intersection of diabetes and cancer.
Collapse
Affiliation(s)
- Iqra Khan
- Department of Bioengineering, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Aisha Kamal
- Department of Bioengineering, Integral University, Lucknow, 226026, Uttar Pradesh, India.
| | - Salman Akhtar
- Department of Bioengineering, Integral University, Lucknow, 226026, Uttar Pradesh, India
| |
Collapse
|
3
|
Vidal CM, Alva-Ornelas JA, Chen NZ, Senapati P, Tomsic J, Robles VM, Resto C, Sanchez N, Sanchez A, Hyslop T, Emwas N, Aljaber D, Bachelder N, Martinez E, Ann D, Jones V, Winn RA, Miele L, Ochoa AC, Dietze EC, Natarajan R, Schones D, Seewaldt VL. Insulin Resistance in Women Correlates with Chromatin Histone Lysine Acetylation, Inflammatory Signaling, and Accelerated Aging. Cancers (Basel) 2024; 16:2735. [PMID: 39123463 PMCID: PMC11311683 DOI: 10.3390/cancers16152735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Epigenetic changes link medical, social, and environmental factors with cardiovascular and kidney disease and, more recently, with cancer. The mechanistic link between metabolic health and epigenetic changes is only starting to be investigated. In our in vitro and in vivo studies, we performed a broad analysis of the link between hyperinsulinemia and chromatin acetylation; our top "hit" was chromatin opening at H3K9ac. METHODS Building on our published preclinical studies, here, we performed a detailed analysis of the link between insulin resistance, chromatin acetylation, and inflammation using an initial test set of 28 women and validation sets of 245, 22, and 53 women. RESULTS ChIP-seq identified chromatin acetylation and opening at the genes coding for TNFα and IL6 in insulin-resistant women. Pathway analysis identified inflammatory response genes, NFκB/TNFα-signaling, reactome cytokine signaling, innate immunity, and senescence. Consistent with this finding, flow cytometry identified increased senescent circulating peripheral T-cells. DNA methylation analysis identified evidence of accelerated aging in insulin-resistant vs. metabolically healthy women. CONCLUSIONS This study shows that insulin-resistant women have increased chromatin acetylation/opening, inflammation, and, perhaps, accelerated aging. Given the role that inflammation plays in cancer initiation and progression, these studies provide a potential mechanistic link between insulin resistance and cancer.
Collapse
Affiliation(s)
- Christina M. Vidal
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (C.M.V.); (J.A.A.-O.); (P.S.); (J.T.); (V.M.R.); (C.R.); (N.S.); (A.S.); (N.E.); (D.A.); (D.A.); (V.J.); (E.C.D.)
| | - Jackelyn A. Alva-Ornelas
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (C.M.V.); (J.A.A.-O.); (P.S.); (J.T.); (V.M.R.); (C.R.); (N.S.); (A.S.); (N.E.); (D.A.); (D.A.); (V.J.); (E.C.D.)
| | - Nancy Zhuo Chen
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Duarte, Duarte, CA 91010, USA; (N.Z.C.); (N.B.); (R.N.)
| | - Parijat Senapati
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (C.M.V.); (J.A.A.-O.); (P.S.); (J.T.); (V.M.R.); (C.R.); (N.S.); (A.S.); (N.E.); (D.A.); (D.A.); (V.J.); (E.C.D.)
| | - Jerneja Tomsic
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (C.M.V.); (J.A.A.-O.); (P.S.); (J.T.); (V.M.R.); (C.R.); (N.S.); (A.S.); (N.E.); (D.A.); (D.A.); (V.J.); (E.C.D.)
| | - Vanessa Myriam Robles
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (C.M.V.); (J.A.A.-O.); (P.S.); (J.T.); (V.M.R.); (C.R.); (N.S.); (A.S.); (N.E.); (D.A.); (D.A.); (V.J.); (E.C.D.)
| | - Cristal Resto
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (C.M.V.); (J.A.A.-O.); (P.S.); (J.T.); (V.M.R.); (C.R.); (N.S.); (A.S.); (N.E.); (D.A.); (D.A.); (V.J.); (E.C.D.)
| | - Nancy Sanchez
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (C.M.V.); (J.A.A.-O.); (P.S.); (J.T.); (V.M.R.); (C.R.); (N.S.); (A.S.); (N.E.); (D.A.); (D.A.); (V.J.); (E.C.D.)
| | - Angelica Sanchez
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (C.M.V.); (J.A.A.-O.); (P.S.); (J.T.); (V.M.R.); (C.R.); (N.S.); (A.S.); (N.E.); (D.A.); (D.A.); (V.J.); (E.C.D.)
| | - Terry Hyslop
- Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA;
| | - Nour Emwas
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (C.M.V.); (J.A.A.-O.); (P.S.); (J.T.); (V.M.R.); (C.R.); (N.S.); (A.S.); (N.E.); (D.A.); (D.A.); (V.J.); (E.C.D.)
| | - Dana Aljaber
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (C.M.V.); (J.A.A.-O.); (P.S.); (J.T.); (V.M.R.); (C.R.); (N.S.); (A.S.); (N.E.); (D.A.); (D.A.); (V.J.); (E.C.D.)
| | - Nick Bachelder
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Duarte, Duarte, CA 91010, USA; (N.Z.C.); (N.B.); (R.N.)
| | - Ernest Martinez
- Department of Biochemistry, University of California at Riverside, Riverside, CA 92521, USA;
| | - David Ann
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (C.M.V.); (J.A.A.-O.); (P.S.); (J.T.); (V.M.R.); (C.R.); (N.S.); (A.S.); (N.E.); (D.A.); (D.A.); (V.J.); (E.C.D.)
| | - Veronica Jones
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (C.M.V.); (J.A.A.-O.); (P.S.); (J.T.); (V.M.R.); (C.R.); (N.S.); (A.S.); (N.E.); (D.A.); (D.A.); (V.J.); (E.C.D.)
| | - Robert A. Winn
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Lucio Miele
- School of Medicine, Louisiana State University, New Orleans, LA 70112, USA; (L.M.); (A.C.O.)
| | - Augusto C. Ochoa
- School of Medicine, Louisiana State University, New Orleans, LA 70112, USA; (L.M.); (A.C.O.)
| | - Eric C. Dietze
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (C.M.V.); (J.A.A.-O.); (P.S.); (J.T.); (V.M.R.); (C.R.); (N.S.); (A.S.); (N.E.); (D.A.); (D.A.); (V.J.); (E.C.D.)
| | - Rama Natarajan
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Duarte, Duarte, CA 91010, USA; (N.Z.C.); (N.B.); (R.N.)
| | - Dustin Schones
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Duarte, Duarte, CA 91010, USA; (N.Z.C.); (N.B.); (R.N.)
| | - Victoria L. Seewaldt
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (C.M.V.); (J.A.A.-O.); (P.S.); (J.T.); (V.M.R.); (C.R.); (N.S.); (A.S.); (N.E.); (D.A.); (D.A.); (V.J.); (E.C.D.)
| |
Collapse
|
4
|
Kakkat S, Suman P, Turbat- Herrera EA, Singh S, Chakroborty D, Sarkar C. Exploring the multifaceted role of obesity in breast cancer progression. Front Cell Dev Biol 2024; 12:1408844. [PMID: 39040042 PMCID: PMC11260727 DOI: 10.3389/fcell.2024.1408844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Obesity is a multifaceted metabolic disorder characterized by excessive accumulation of adipose tissue. It is a well-established risk factor for the development and progression of breast cancer. Adipose tissue, which was once regarded solely as a passive energy storage depot, is now acknowledged as an active endocrine organ producing a plethora of bioactive molecules known as adipokines that contribute to the elevation of proinflammatory cytokines and estrogen production due to enhanced aromatase activity. In the context of breast cancer, the crosstalk between adipocytes and cancer cells within the adipose microenvironment exerts profound effects on tumor initiation, progression, and therapeutic resistance. Moreover, adipocytes can engage in direct interactions with breast cancer cells through physical contact and paracrine signaling, thereby facilitating cancer cell survival and invasion. This review endeavors to summarize the current understanding of the intricate interplay between adipocyte-associated factors and breast cancer progression. Furthermore, by discussing the different aspects of breast cancer that can be adversely affected by obesity, this review aims to shed light on potential avenues for new and novel therapeutic interventions.
Collapse
Affiliation(s)
- Sooraj Kakkat
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Prabhat Suman
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Elba A. Turbat- Herrera
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Seema Singh
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| | - Debanjan Chakroborty
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| | - Chandrani Sarkar
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
5
|
Marlin S, Goepp M, Desiderio A, Rougé S, Aldekwer S, Le Guennec D, Goncalves-Mendes N, Talvas J, Farges MC, Rossary A. Long-Term High-Fat Diet Limits the Protective Effect of Spontaneous Physical Activity on Mammary Carcinogenesis. Int J Mol Sci 2024; 25:6221. [PMID: 38892407 PMCID: PMC11172547 DOI: 10.3390/ijms25116221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Breast cancer is influenced by factors such as diet, a sedentary lifestyle, obesity, and postmenopausal status, which are all linked to prolonged hormonal and inflammatory exposure. Physical activity offers protection against breast cancer by modulating hormones, immune responses, and oxidative defenses. This study aimed to assess how a prolonged high-fat diet (HFD) affects the effectiveness of physical activity in preventing and managing mammary tumorigenesis. Ovariectomised C57BL/6 mice were provided with an enriched environment to induce spontaneous physical activity while being fed HFD. After 44 days (short-term, ST HFD) or 88 days (long-term, LT HFD), syngenic EO771 cells were implanted into mammary glands, and tumour growth was monitored until sacrifice. Despite similar physical activity and food intake, the LT HFD group exhibited higher visceral adipose tissue mass and reduced skeletal muscle mass. In the tumour microenvironment, the LT HFD group showed decreased NK cells and TCD8+ cells, with a trend toward increased T regulatory cells, leading to a collapse of the T8/Treg ratio. Additionally, the LT HFD group displayed decreased tumour triglyceride content and altered enzyme activities indicative of oxidative stress. Prolonged exposure to HFD was associated with tumour growth despite elevated physical activity, promoting a tolerogenic tumour microenvironment. Future studies should explore inter-organ exchanges between tumour and tissues.
Collapse
MESH Headings
- Animals
- Diet, High-Fat/adverse effects
- Female
- Mice
- Mice, Inbred C57BL
- Physical Conditioning, Animal
- Tumor Microenvironment
- Oxidative Stress
- Carcinogenesis
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/prevention & control
- Cell Line, Tumor
- Mammary Neoplasms, Animal/pathology
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/prevention & control
- Intra-Abdominal Fat/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
Collapse
Affiliation(s)
- Sébastien Marlin
- UNH—Unité de Nutrition Humaine, CRNH-Auvergne, Université Clermont-Auvergne, INRAe, F-63000 Clermont-Ferrand, France; (S.M.); (A.D.); (S.R.); (S.A.); (D.L.G.); (N.G.-M.); (J.T.)
| | - Marie Goepp
- Resolution Therapeutics, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Adrien Desiderio
- UNH—Unité de Nutrition Humaine, CRNH-Auvergne, Université Clermont-Auvergne, INRAe, F-63000 Clermont-Ferrand, France; (S.M.); (A.D.); (S.R.); (S.A.); (D.L.G.); (N.G.-M.); (J.T.)
| | - Stéphanie Rougé
- UNH—Unité de Nutrition Humaine, CRNH-Auvergne, Université Clermont-Auvergne, INRAe, F-63000 Clermont-Ferrand, France; (S.M.); (A.D.); (S.R.); (S.A.); (D.L.G.); (N.G.-M.); (J.T.)
| | - Sahar Aldekwer
- UNH—Unité de Nutrition Humaine, CRNH-Auvergne, Université Clermont-Auvergne, INRAe, F-63000 Clermont-Ferrand, France; (S.M.); (A.D.); (S.R.); (S.A.); (D.L.G.); (N.G.-M.); (J.T.)
| | - Delphine Le Guennec
- UNH—Unité de Nutrition Humaine, CRNH-Auvergne, Université Clermont-Auvergne, INRAe, F-63000 Clermont-Ferrand, France; (S.M.); (A.D.); (S.R.); (S.A.); (D.L.G.); (N.G.-M.); (J.T.)
| | - Nicolas Goncalves-Mendes
- UNH—Unité de Nutrition Humaine, CRNH-Auvergne, Université Clermont-Auvergne, INRAe, F-63000 Clermont-Ferrand, France; (S.M.); (A.D.); (S.R.); (S.A.); (D.L.G.); (N.G.-M.); (J.T.)
| | - Jérémie Talvas
- UNH—Unité de Nutrition Humaine, CRNH-Auvergne, Université Clermont-Auvergne, INRAe, F-63000 Clermont-Ferrand, France; (S.M.); (A.D.); (S.R.); (S.A.); (D.L.G.); (N.G.-M.); (J.T.)
| | - Marie-Chantal Farges
- UNH—Unité de Nutrition Humaine, CRNH-Auvergne, Université Clermont-Auvergne, INRAe, F-63000 Clermont-Ferrand, France; (S.M.); (A.D.); (S.R.); (S.A.); (D.L.G.); (N.G.-M.); (J.T.)
| | - Adrien Rossary
- UNH—Unité de Nutrition Humaine, CRNH-Auvergne, Université Clermont-Auvergne, INRAe, F-63000 Clermont-Ferrand, France; (S.M.); (A.D.); (S.R.); (S.A.); (D.L.G.); (N.G.-M.); (J.T.)
| |
Collapse
|
6
|
Abiola JO, Oluyemi AA, Idowu OT, Oyinloye OM, Ubah CS, Owolabi OV, Somade OT, Onikanni SA, Ajiboye BO, Osunsanmi FO, Nash O, Omotuyi OI, Oyinloye BE. Potential Role of Phytochemicals as Glucagon-like Peptide 1 Receptor (GLP-1R) Agonists in the Treatment of Diabetes Mellitus. Pharmaceuticals (Basel) 2024; 17:736. [PMID: 38931402 PMCID: PMC11206448 DOI: 10.3390/ph17060736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, there is no known cure for diabetes. Different pharmaceutical therapies have been approved for the management of type 2 diabetes mellitus (T2DM), some are in clinical trials and they have been classified according to their route or mechanism of action. Insulin types, sulfonylureas, biguanides, alpha-glucosidase inhibitors, thiazolidinediones, meglitinides, sodium-glucose cotransporter type 2 inhibitors, and incretin-dependent therapies (glucagon-like peptide-1 receptor agonists: GLP-1R, and dipeptidyl peptidase 4 inhibitors: DPP-4). Although some of the currently available drugs are effective in the management of T2DM, the side effects resulting from prolonged use of these drugs remain a serious challenge. GLP-1R agonists are currently the preferred medications to include when oral metformin alone is insufficient to manage T2DM. Medicinal plants now play prominent roles in the management of various diseases globally because they are readily available and affordable as well as having limited and transient side effects. Recently, studies have reported the ability of phytochemicals to activate glucagon-like peptide-1 receptor (GLP-1R), acting as an agonist just like the GLP-1R agonist with beneficial effects in the management of T2DM. Consequently, we propose that careful exploration of phytochemicals for the development of novel therapeutic candidates as GLP-1R agonists will be a welcome breakthrough in the management of T2DM and the co-morbidities associated with T2DM.
Collapse
Affiliation(s)
- Julianah Ore Abiola
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja 09004, Nigeria
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Ayoola Abidemi Oluyemi
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Olajumoke Tolulope Idowu
- Industrial Chemistry Unit, Department of Chemical Sciences, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Oluwatoyin Mary Oyinloye
- Department of Mathematics, Science and Technology Education, Faculty of Education, University of Zululand, Kwadlangezwa 3886, South Africa
| | - Chukwudi Sunday Ubah
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA 19121, USA
| | - Olutunmise Victoria Owolabi
- Medical Biochemistry Unit, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Oluwatobi T. Somade
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta 111101, Nigeria
| | - Sunday Amos Onikanni
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Basiru Olaitan Ajiboye
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti 371104, Nigeria
| | - Foluso Oluwagbemiga Osunsanmi
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa 3886, South Africa
| | - Oyekanmi Nash
- Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja 09004, Nigeria
| | - Olaposi Idowu Omotuyi
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
- Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Babatunji Emmanuel Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa 3886, South Africa
| |
Collapse
|
7
|
Dastsooz H, Anselmi F, Lauria A, Cicconetti C, Proserpio V, Mohammadisoleimani E, Firoozi Z, Mansoori Y, Haghi-Aminjan H, Caizzi L, Oliviero S. Involvement of N4BP2L1, PLEKHA4, and BEGAIN genes in breast cancer and muscle cell development. Front Cell Dev Biol 2024; 12:1295403. [PMID: 38859961 PMCID: PMC11163233 DOI: 10.3389/fcell.2024.1295403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 04/22/2024] [Indexed: 06/12/2024] Open
Abstract
Patients with breast cancer show altered expression of genes within the pectoralis major skeletal muscle cells of the breast. Through analyses of The Cancer Genome Atlas (TCGA)-breast cancer (BRCA), we identified three previously uncharacterized putative novel tumor suppressor genes expressed in normal muscle cells, whose expression was downregulated in breast tumors. We found that NEDD4 binding protein 2-like 1 (N4BP2L1), pleckstrin homology domain-containing family A member 4 (PLEKHA4), and brain-enriched guanylate kinase-associated protein (BEGAIN) that are normally highly expressed in breast myoepithelial cells and smooth muscle cells were significantly downregulated in breast tumor tissues of a cohort of 50 patients with this cancer. Our data revealed that the low expression of PLEKHA4 in patients with menopause below 50 years correlated with a higher risk of breast cancer. Moreover, we identified N4BP2L1 and BEGAIN as potential biomarkers of HER2-positive breast cancer. Furthermore, low BEGAIN expression in breast cancer patients with blood fat, heart problems, and diabetes correlated with a higher risk of this cancer. In addition, protein and RNA expression analysis of TCGA-BRCA revealed N4BP2L1 as a promising diagnostic protein biomarker in breast cancer. In addition, the in silico data of scRNA-seq showed high expression of these genes in several cell types of normal breast tissue, including breast myoepithelial cells and smooth muscle cells. Thus, our results suggest their possible tumor-suppressive function in breast cancer and muscle development.
Collapse
Affiliation(s)
- Hassan Dastsooz
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- IIGM-Italian Institute for Genomic Medicine, IRCCS, Candiolo, TO, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo Cancer (IT), Torino, Italy
| | - Francesca Anselmi
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Andrea Lauria
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Chiara Cicconetti
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Valentina Proserpio
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | | - Zahra Firoozi
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Yaser Mansoori
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Livia Caizzi
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- IIGM-Italian Institute for Genomic Medicine, IRCCS, Candiolo, TO, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo Cancer (IT), Torino, Italy
| |
Collapse
|
8
|
Dong J, Kong L, Wang S, Xia M, Zhang Y, Wu J, Yang F, Zuo S, Wei J. Oncolytic adenovirus encoding apolipoprotein A1 suppresses metastasis of triple-negative breast cancer in mice. J Exp Clin Cancer Res 2024; 43:102. [PMID: 38566092 PMCID: PMC10988920 DOI: 10.1186/s13046-024-03011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Dysregulation of cholesterol metabolism is associated with the metastasis of triple-negative breast cancer (TNBC). Apolipoprotein A1 (ApoA1) is widely recognized for its pivotal role in regulating cholesterol efflux and maintaining cellular cholesterol homeostasis. However, further exploration is needed to determine whether it inhibits TNBC metastasis by affecting cholesterol metabolism. Additionally, it is necessary to investigate whether ApoA1-based oncolytic virus therapy can be used to treat TNBC. METHODS In vitro experiments and mouse breast cancer models were utilized to evaluate the molecular mechanism of ApoA1 in regulating cholesterol efflux and inhibiting breast cancer progression and metastasis. The gene encoding ApoA1 was inserted into the adenovirus genome to construct a recombinant adenovirus (ADV-ApoA1). Subsequently, the efficacy of ADV-ApoA1 in inhibiting the growth and metastasis of TNBC was evaluated in several mouse models, including orthotopic breast cancer, spontaneous breast cancer, and human xenografts. In addition, a comprehensive safety assessment of Syrian hamsters and rhesus monkeys injected with oncolytic adenovirus was conducted. RESULTS This study found that dysregulation of cholesterol homeostasis is critical for the progression and metastasis of TNBC. In a mouse orthotopic model of TNBC, a high-cholesterol diet promoted lung and liver metastasis, which was associated with keratin 14 (KRT14), a protein responsible for TNBC metastasis. Furthermore, studies have shown that ApoA1, a cholesterol reverse transporter, inhibits TNBC metastasis by regulating the cholesterol/IKBKB/FOXO3a/KRT14 axis. Moreover, ADV-ApoA1 was found to promote cholesterol efflux, inhibit tumor growth, reduce lung metastasis, and prolonged the survival of mice with TNBC. Importantly, high doses of ADV-ApoA1 administered intravenously and subcutaneously were well tolerated in rhesus monkeys and Syrian hamsters. CONCLUSIONS This study provides a promising oncolytic virus treatment strategy for TNBC based on targeting dysregulated cholesterol metabolism. It also establishes a basis for subsequent clinical trials of ADV-ApoA1 in the treatment of TNBC.
Collapse
Affiliation(s)
- Jie Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, P.R. China
| | - Lingkai Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, P.R. China
| | - Shiqun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, P.R. China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Mao Xia
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, P.R. China
| | - Yenan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, P.R. China
| | - Jingyi Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, P.R. China
| | - Fuming Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, P.R. China.
| | - Shuguang Zuo
- Liuzhou Key Laboratory of Molecular Diagnosis, Guangxi Key Laboratory of Molecular Diagnosis and Application, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, Guangxi, China.
| | - Jiwu Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, P.R. China.
| |
Collapse
|
9
|
Szablewski L. Changes in Cells Associated with Insulin Resistance. Int J Mol Sci 2024; 25:2397. [PMID: 38397072 PMCID: PMC10889819 DOI: 10.3390/ijms25042397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Insulin is a polypeptide hormone synthesized and secreted by pancreatic β-cells. It plays an important role as a metabolic hormone. Insulin influences the metabolism of glucose, regulating plasma glucose levels and stimulating glucose storage in organs such as the liver, muscles and adipose tissue. It is involved in fat metabolism, increasing the storage of triglycerides and decreasing lipolysis. Ketone body metabolism also depends on insulin action, as insulin reduces ketone body concentrations and influences protein metabolism. It increases nitrogen retention, facilitates the transport of amino acids into cells and increases the synthesis of proteins. Insulin also inhibits protein breakdown and is involved in cellular growth and proliferation. On the other hand, defects in the intracellular signaling pathways of insulin may cause several disturbances in human metabolism, resulting in several chronic diseases. Insulin resistance, also known as impaired insulin sensitivity, is due to the decreased reaction of insulin signaling for glucose levels, seen when glucose use in response to an adequate concentration of insulin is impaired. Insulin resistance may cause, for example, increased plasma insulin levels. That state, called hyperinsulinemia, impairs metabolic processes and is observed in patients with type 2 diabetes mellitus and obesity. Hyperinsulinemia may increase the risk of initiation, progression and metastasis of several cancers and may cause poor cancer outcomes. Insulin resistance is a health problem worldwide; therefore, mechanisms of insulin resistance, causes and types of insulin resistance and strategies against insulin resistance are described in this review. Attention is also paid to factors that are associated with the development of insulin resistance, the main and characteristic symptoms of particular syndromes, plus other aspects of severe insulin resistance. This review mainly focuses on the description and analysis of changes in cells due to insulin resistance.
Collapse
Affiliation(s)
- Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego Str. 5, 02-004 Warsaw, Poland
| |
Collapse
|
10
|
Letellier N, Yang JA, Alismail S, Nukavarapu N, Hartman SJ, Rock CL, Sears DD, Jankowska MM, Benmarhnia T. Exploring the impact of environmental exposure changes on metabolic biomarkers: A 6-month GPS-GIS study among women with overweight or obesity. ENVIRONMENTAL RESEARCH 2024; 243:117881. [PMID: 38070847 DOI: 10.1016/j.envres.2023.117881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Little is known about the impact of environmental exposure change on metabolic biomarkers associated with cancer risk. Furthermore, this limited epidemiological evidence on metabolic biomarkers focused on residential exposure, without considering the activity space which can be done by modelling dynamic exposures. In this longitudinal study, we aimed to investigate the impact of environmental exposures change on metabolic biomarkers using GPS-GIS based measurements. METHODS Among two weight loss interventions, the Reach for Health and the MENU studies, which included ∼460 women at risk of breast cancer or breast cancer survivors residing in Southern California, three metabolic biomarkers (insulin resistance, fasting glucose, and C-reactive protein) were assessed. Dynamic GPS-GIS based exposure to green spaces, recreation, walkability, NO2, and PM2.5 were calculated at baseline and 6 months follow-up using time-weighted spatial averaging. Generalized estimating equations models were used to examine the relationship between changes in environmental exposures and biomarker levels over time. RESULTS Overall, six-month environmental exposure change was not associated with metabolic biomarkers change. Stratified analyses by level of environmental exposures at baseline revealed that reduced NO2 and PM2.5 exposure was associated with reduced fasting glucose concentration among women living in a healthier environment at baseline (β -0.010, 95%CI -0.025, 0.005; β -0.019, 95%CI -0.034, -0.003, respectively). Women living in poor environmental conditions at baseline and exposed to greener environments had decreased C-reactive protein concentrations (β -1.001, 95%CI -1.888, -0.131). CONCLUSIONS The impact of environmental exposure changes on metabolic biomarkers over time may be modified by baseline exposure conditions.
Collapse
Affiliation(s)
| | - Jiue-An Yang
- Population Sciences, Beckman Research Institute, City of Hope, 1500 E Duarte Rd, Duarte, CA, 91010, USA
| | - Sarah Alismail
- Population Sciences, Beckman Research Institute, City of Hope, 1500 E Duarte Rd, Duarte, CA, 91010, USA
| | - Nivedita Nukavarapu
- Population Sciences, Beckman Research Institute, City of Hope, 1500 E Duarte Rd, Duarte, CA, 91010, USA
| | - Sheri J Hartman
- Herbert Wertheim School of Public Health & Human Longevity Science, UC San Diego, USA
| | - Cheryl L Rock
- Department of Family Medicine, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Dorothy D Sears
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Marta M Jankowska
- Population Sciences, Beckman Research Institute, City of Hope, 1500 E Duarte Rd, Duarte, CA, 91010, USA
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, UC San Diego, USA; Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes, France
| |
Collapse
|
11
|
Szablewski L. Insulin Resistance: The Increased Risk of Cancers. Curr Oncol 2024; 31:998-1027. [PMID: 38392069 PMCID: PMC10888119 DOI: 10.3390/curroncol31020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
Insulin resistance, also known as impaired insulin sensitivity, is the result of a decreased reaction of insulin signaling to blood glucose levels. This state is observed when muscle cells, adipose tissue, and liver cells, improperly respond to a particular concentration of insulin. Insulin resistance and related increased plasma insulin levels (hyperinsulinemia) may cause metabolic impairments, which are pathological states observed in obesity and type 2 diabetes mellitus. Observations of cancer patients confirm that hyperinsulinemia is a major factor influencing obesity, type 2 diabetes, and cancer. Obesity and diabetes have been reported as risks of the initiation, progression, and metastasis of several cancers. However, both of the aforementioned pathologies may independently and additionally increase the cancer risk. The state of metabolic disorders observed in cancer patients is associated with poor outcomes of cancer treatment. For example, patients suffering from metabolic disorders have higher cancer recurrence rates and their overall survival is reduced. In these associations between insulin resistance and cancer risk, an overview of the various pathogenic mechanisms that play a role in the development of cancer is discussed.
Collapse
Affiliation(s)
- Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego 5 Str., 02-004 Warsaw, Poland
| |
Collapse
|
12
|
Garczorz W, Kosowska A, Francuz T. Antidiabetic Drugs in Breast Cancer Patients. Cancers (Basel) 2024; 16:299. [PMID: 38254789 PMCID: PMC10813754 DOI: 10.3390/cancers16020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Diabetes is one of the leading chronic conditions worldwide, and breast cancer is the most prevalent cancer in women worldwide. The linkage between diabetes and its ability to increase the risk of breast cancer should always be analyzed in patients. This review focuses on the impact of antihyperglycemic therapy in breast cancer patients. Patients with diabetes have a higher risk of developing cancer than the general population. Moreover, diabetes patients have a higher incidence and mortality of breast cancer. In this review, we describe the influence of antidiabetic drugs from insulin and metformin to the current and emerging therapies, incretins and SGLT-2 inhibitors, on breast cancer prognosis. We also emphasize the role of obesity and the metastasis process in breast cancer patients who are treated with antidiabetic drugs.
Collapse
Affiliation(s)
- Wojciech Garczorz
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-055 Katowice, Poland; (A.K.); (T.F.)
| | | | | |
Collapse
|
13
|
Esmaeili F, Abolhasani M, Zabihi-Mahmoudabadi H, Seyyed Ebrahimi SS, Emamgholipour S, Paknejad M. Metabolically healthy/unhealthy obesity and breast cancer: A possible role of plasma-derived extracellular vesicles on the cancerous behavior of triple-negative breast cancer. Biochem Biophys Res Commun 2024; 690:149242. [PMID: 37992524 DOI: 10.1016/j.bbrc.2023.149242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
PURPOSE Obesity has known detrimental effects on breast cancer (BC) development and progression. However, it's essential to consider the obesity phenotype based on metabolic health. This study aims to evaluate the impact of circulating extracellular vesicles (EVs) from women with metabolically healthy or unhealthy normal weight, overweight, and obesity on MDA-MB-231 cell migration, invasion, and apoptosis. METHODS Plasma EVs were isolated from different obesity phenotypes in women. EVs were characterized and EVs uptake by MDA-MB-231 cells was assessed. MDA-MB-231 cell lines were treated with EVs obtained from various studied groups, and migration, invasion, MMP-2 and MMP-9 activity, Bax and Bcl-2 mRNA expression, p-53 and Thr55 p-p53 protein expression, and apoptosis were assessed. RESULTS EVs from obese individuals, regardless of phenotype, increased invasion and MMP-2 activity compared to healthy normal-weight EVs. Normal-weight EVs led to higher invasion under unhealthy conditions. BC cell migration was enhanced by EVs from healthy obese individuals compared to healthy normal-weight EVs. EVs from unhealthy obese women exhibited significantly lower p53/p-p53 levels and reduced apoptosis compared to healthy obese groups. CONCLUSION It appears that EVs from both normal-weight women with unhealthy conditions and those with obesity or overweight, irrespective of metabolic status, worsened the cancerous behavior of TNBC cells. Therefore, considering metabolic health, in addition to BMI, is crucial for understanding obesity-related disorders.
Collapse
Affiliation(s)
- Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Abolhasani
- Cardiac Primary Prevention Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cardiovascular Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Zabihi-Mahmoudabadi
- Department of General Surgery, School of Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shadi Sadat Seyyed Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maliheh Paknejad
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Winz C, Zong WX, Suh N. Endocrine-disrupting compounds and metabolomic reprogramming in breast cancer. J Biochem Mol Toxicol 2023; 37:e23506. [PMID: 37598318 PMCID: PMC10840637 DOI: 10.1002/jbt.23506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Endocrine-disrupting chemicals pose a growing threat to human health through their increasing presence in the environment and their potential interactions with the mammalian endocrine systems. Due to their structural similarity to hormones like estrogen, these chemicals can interfere with endocrine signaling, leading to many deleterious effects. Exposure to estrogenic endocrine-disrupting compounds (EDC) is a suggested risk factor for the development of breast cancer, one of the most frequently diagnosed cancers in women. However, the mechanisms through which EDCs contribute to breast cancer development remain elusive. To rapidly proliferate, cancer cells undertake distinct metabolic programs to utilize existing nutrients in the tumor microenvironment and synthesize macromolecules de novo. EDCs are known to dysregulate cell signaling pathways related to cellular metabolism, which may be an important mechanism through which they exert their cancer-promoting effects. These altered pathways can be studied via metabolomic analysis, a new advancement in -omics technologies that can interrogate molecular pathways that favor cancer development and progression. This review will summarize recent discoveries regarding EDCs and the metabolic reprogramming that they may induce to facilitate the development of breast cancer.
Collapse
Affiliation(s)
- Cassandra Winz
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Pharmacology and Toxicology, Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
15
|
Andò S, Simões BM. Editorial: Adipokines and hormone-dependent cancers. Front Endocrinol (Lausanne) 2023; 14:1340171. [PMID: 38107522 PMCID: PMC10722399 DOI: 10.3389/fendo.2023.1340171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023] Open
Affiliation(s)
- Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- Centro Sanitario, University of Calabria, Rende, Italy
| | - Bruno M. Simões
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
16
|
Ma L, Liu A, Gao J, Zhao H. The prognostic impact of body mass index on female breast cancer patients in underdeveloped regions of northern China differs by menopause status and tumor molecular subtype. Open Life Sci 2023; 18:20220748. [PMID: 37941781 PMCID: PMC10628583 DOI: 10.1515/biol-2022-0748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 11/10/2023] Open
Abstract
There is growing evidence that higher body mass index (BMI) is associated with lower survival in breast cancer patients. The aim of this study was to investigate whether there is an association between body mass index (BMI) at breast cancer diagnosis and breast cancer prognosis and whether this association is dependent on menopausal status and tumor subtype in a less developed population in northern China. We collected 1,225 patients with primary invasive cancer in stage I-IIIC for retrospective analysis from October 2010 to December 2020. We used Kaplan-Meier and Cox regression analyses and estimated the relationship between baseline BMI and breast cancer-specific survival (BCSS). Next, we further evaluated whether the effect of BMI on breast cancer prognosis differed by menopausal status and tumor subtype. We found that death rate and prognosis were worse for patients with BMI ≥ 24, more than four positive lymph nodes, and triple negative status. Interestingly, BMI played a different prognostic role depending on tumor subtype and menopausal status. For premenopausal women, patients with BMI ≥ 24 had significantly lower BCSS compared to those with BMI < 24 in human epidermal growth factor receptor 2 (HER2) overexpression (HR: 4.305, p = 0.004) and triple negative subtypes (HR: 1.775, p = 0.048). By contrast, there was no association between BMI ≥ 24 and higher death regardless of tumor subtype in post-menopausal patients (p > 0.05). BMI influences breast cancer outcome depending on tumor subtype and menopause. BMI ≥ 24 might be a risk factor for BCSS, particularly in premenopausal women with HER2 overexpression or triple negative subtype. In contrast, BMI ≥ 24 was not associated with higher death regardless of tumor subtype in post-menopausal patients.
Collapse
Affiliation(s)
- Lijun Ma
- Department of Breast Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030002, China
| | - Ailan Liu
- Department of Clinical Laboratory, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jinnan Gao
- Department of Breast Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030002, China
| | - Haoliang Zhao
- Department of General Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
17
|
Dhiman D, Kumar A, Shukla S. Association of preoperative serum adipokines, insulin, and sex steroid hormones with breast cancer risk in the Indian women. Indian J Cancer 2023; 60:548-555. [PMID: 38206077 DOI: 10.4103/ijc.ijc_727_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/17/2021] [Indexed: 01/12/2024]
Abstract
BACKGROUND Obesity-related factors such as adipokines, insulin, insulin-like growth factors, and sex steroid hormones have been reported to be involved in breast carcinogenesis. Studies across the world suggest an important, but still controversial, role of obesity in breast cancer risk. This study aims to evaluate the association of obesity-related factors such as adipokines, insulin, insulin resistance, and sex steroid hormones with breast cancer risk in the Indian population. MATERIALS AND METHODS Anthropometric and biochemical measurements were taken in 60 newly diagnosed and histologically confirmed breast cancer patients and 50 healthy controls. Preoperative serum levels of adiponectin, leptin, insulin, estrogen, and testosterone were measured using ELISA (enzyme-linked immunosorbent assay). The data were analyzed and compared. RESULTS The mean serum total cholesterol (T.CHOL) and leptin levels were significantly higher ( P = 0.047), whereas testosterone levels were significantly lower in patients than in controls. Waist circumference (WC) and leptin levels showed a significant positive association with breast cancer risk. Association of serum leptin levels with breast cancer risk persisted after adjusting for age, body mass index (BMI), and WC parameters (odds ratio [ OR ] = 1.042, P = 0.03). Leptin levels positively correlated with WC and triglycerides (TG), whereas insulin and insulin resistance positively correlated with BMI, WC, TG, and T.CHOL ( P < 0.05). Among the tumor characteristics, serum adiponectin showed a positive correlation with lymph node involvement, whereas serum estradiol levels were positively correlated with ER (estrogen receptor) and PR (progesterone receptor) status. CONCLUSION Together, our study supports the association of obesity (WC) with breast cancer risk and also suggests the potential role of leptin as a biomarker for breast cancer risk, independent of obesity.
Collapse
Affiliation(s)
- Deepshikha Dhiman
- Lady Hardinge Medical College, New Delhi, India
- Dr. Y.S. Parmar Govt. Medical College, Nahan, Himachal Pradesh, India
| | - Ashish Kumar
- Institute of Biotechnology, HiLIFE, University of Helsinki, Finland
| | | |
Collapse
|
18
|
Kumar S, Senapati S, Bhattacharya N, Bhattacharya A, Maurya SK, Husain H, Bhatti JS, Pandey AK. Mechanism and recent updates on insulin-related disorders. World J Clin Cases 2023; 11:5840-5856. [PMID: 37727490 PMCID: PMC10506040 DOI: 10.12998/wjcc.v11.i25.5840] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
Insulin, a small protein with 51 amino acids synthesized by pancreatic β-cells, is crucial to sustain glucose homeostasis at biochemical and molecular levels. Numerous metabolic dysfunctions are related to insulin-mediated altered glucose homeostasis. One of the significant pathophysiological conditions linked to the insulin associated disorder is diabetes mellitus (DM) (type 1, type 2, and gestational). Insulin resistance (IR) is one of the major underlying causes of metabolic disorders despite its association with several physiological conditions. Metabolic syndrome (MS) is another pathophysiological condition that is associated with IR, hypertension, and obesity. Further, several other pathophysiological disorders/diseases are associated with the insulin malfunctioning, which include polycystic ovary syndrome, neuronal disorders, and cancer. Insulinomas are an uncommon type of pancreatic β-cell-derived neuroendocrine tumor that makes up 2% of all pancreatic neoplasms. Literature revealed that different biochemical events, molecular signaling pathways, microRNAs, and microbiota act as connecting links between insulin disorder and associated pathophysiology such as DM, insuloma, neurological disorder, MS, and cancer. In this review, we focus on the insulin-related disorders and the underlying mechanisms associated with the pathophysiology.
Collapse
Affiliation(s)
- Shashank Kumar
- Department of Biochemistry, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Sabyasachi Senapati
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Neetu Bhattacharya
- Department of Zoology, Dyal Singh College, University of Delhi, New Delhi 110003, India
| | - Amit Bhattacharya
- Department of Zoology, Ramjas College, University of Delhi, New Delhi 110007, India
| | | | - Hadiya Husain
- Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Abhay Kumar Pandey
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, India
| |
Collapse
|
19
|
Bhandari R, Armenian SH, McCormack S, Natarajan R, Mostoufi-Moab S. Diabetes in childhood cancer survivors: emerging concepts in pathophysiology and future directions. Front Med (Lausanne) 2023; 10:1206071. [PMID: 37675136 PMCID: PMC10478711 DOI: 10.3389/fmed.2023.1206071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023] Open
Abstract
With advancements in cancer treatment and supportive care, there is a growing population of childhood cancer survivors who experience a substantial burden of comorbidities related to having received cancer treatment at a young age. Despite an overall reduction in the incidence of most chronic health conditions in childhood cancer survivors over the past several decades, the cumulative incidence of certain late effects, in particular diabetes mellitus (DM), has increased. The implications are significant, because DM is a key risk factor for cardiovascular disease, a leading cause of premature death in childhood cancer survivors. The underlying pathophysiology of DM in cancer survivors is multifactorial. DM develops at younger ages in survivors compared to controls, which may reflect an "accelerated aging" phenotype in these individuals. The treatment-related exposures (i.e., chemotherapy, radiation) that increase risk for DM in childhood cancer survivors may be more than additive with established DM risk factors (e.g., older age, obesity, race, and ethnicity). Emerging research also points to parallels in cellular processes implicated in aging- and cancer treatment-related DM. Still, there remains marked inter-individual variability regarding risk of DM that is not explained by demographic and therapeutic risk factors alone. Recent studies have highlighted the role of germline genetic risk factors and epigenetic modifications that are associated with risk of DM in both the general and oncology populations. This review summarizes our current understanding of recognized risk factors for DM in childhood cancer survivors to help inform targeted approaches for disease screening, prevention, and treatment. Furthermore, it highlights the existing scientific gaps in understanding the relative contributions of individual therapeutic exposures and the mechanisms by which they exert their effects that uniquely predispose this population to DM following cancer treatment.
Collapse
Affiliation(s)
- Rusha Bhandari
- Department of Pediatrics, City of Hope, Duarte, CA, United States
- Department of Population Sciences, City of Hope, Duarte, CA, United States
| | - Saro H. Armenian
- Department of Pediatrics, City of Hope, Duarte, CA, United States
- Department of Population Sciences, City of Hope, Duarte, CA, United States
| | - Shana McCormack
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, United States
| | - Sogol Mostoufi-Moab
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
20
|
Le TKC, Dao XD, Nguyen DV, Luu DH, Bui TMH, Le TH, Nguyen HT, Le TN, Hosaka T, Nguyen TTT. Insulin signaling and its application. Front Endocrinol (Lausanne) 2023; 14:1226655. [PMID: 37664840 PMCID: PMC10469844 DOI: 10.3389/fendo.2023.1226655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/19/2023] [Indexed: 09/05/2023] Open
Abstract
The discovery of insulin in 1921 introduced a new branch of research into insulin activity and insulin resistance. Many discoveries in this field have been applied to diagnosing and treating diseases related to insulin resistance. In this mini-review, the authors attempt to synthesize the updated discoveries to unravel the related mechanisms and inform the development of novel applications. Firstly, we depict the insulin signaling pathway to explain the physiology of insulin action starting at the receptor sites of insulin and downstream the signaling of the insulin signaling pathway. Based on this, the next part will analyze the mechanisms of insulin resistance with two major provenances: the defects caused by receptors and the defects due to extra-receptor causes, but in this study, we focus on post-receptor causes. Finally, we discuss the recent applications including the diseases related to insulin resistance (obesity, cardiovascular disease, Alzheimer's disease, and cancer) and the potential treatment of those based on insulin resistance mechanisms.
Collapse
Affiliation(s)
- Thi Kim Chung Le
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Xuan Dat Dao
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Dang Vung Nguyen
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Duc Huy Luu
- Department of Biopharmaceuticals, Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thi Minh Hanh Bui
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Thi Huong Le
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Huu Thang Nguyen
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Tran Ngoan Le
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Toshio Hosaka
- Department of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Thi Thu Thao Nguyen
- School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| |
Collapse
|
21
|
LeVee A, Mortimer J. The Challenges of Treating Patients with Breast Cancer and Obesity. Cancers (Basel) 2023; 15:2526. [PMID: 37173991 PMCID: PMC10177120 DOI: 10.3390/cancers15092526] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity is defined as a body mass index (BMI) of 30 kg/m2 or more and is associated with worse outcomes in patients with breast cancer, resulting in an increased incidence of breast cancer, recurrence, and death. The incidence of obesity is increasing, with almost half of all individuals in the United States classified as obese. Patients with obesity present with unique pharmacokinetics and physiology and are at increased risk of developing diabetes mellitus and cardiovascular disease, which leads to specific challenges when treating these patients. The aim of this review is to summarize the impact of obesity on the efficacy and toxicity of systemic therapies used for breast cancer patients, describe the molecular mechanisms through which obesity can affect systemic therapies, outline the existing American Society of Clinical Oncology (ASCO) guidelines for treating patients with cancer and obesity, and highlight additional clinical considerations for treating patients with obesity and breast cancer. We conclude that further research on the biological mechanisms underlying the obesity-breast cancer link may offer new treatment strategies, and clinicals trials that focus on the treatment and outcomes of patients with obesity and all stages of breast cancer are needed to inform future treatment guidelines.
Collapse
Affiliation(s)
- Alexis LeVee
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | | |
Collapse
|
22
|
Zhong W, Wang X, Wang Y, Sun G, Zhang J, Li Z. Obesity and endocrine-related cancer: The important role of IGF-1. Front Endocrinol (Lausanne) 2023; 14:1093257. [PMID: 36755926 PMCID: PMC9899991 DOI: 10.3389/fendo.2023.1093257] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Obesity is increasingly becoming a global epidemic of concern and is considered a risk factor for several endocrine-related cancers. Moreover, obesity is associated with cancer development and poor prognosis. As a metabolic abnormality, obesity leads to a series of changes in insulin, IGF-1, sex hormones, IGFBPs, and adipokines. Among these factors, IGF-1 plays an important role in obesity-related endocrine cancers. This review describes the role of obesity in endocrine-related cancers, such as prostate cancer, breast cancer and pancreatic cancer, focusing on the mechanism of IGF-1 and the crosstalk with estrogen and adipokines. In addition, this review briefly introduces the current status of IGF-1R inhibitors in clinical practice and shows the prospect of IGF-1R inhibitors in combination with other anticancer drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhuo Li
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
23
|
El-attar AA, Ibrahim OM, Alhassanin SA, Essa ES, Mostafa TM. Effect of metformin as an adjuvant therapy to letrozole on estradiol and other biomarkers involved in the pathogenesis of breast cancer in overweight and obese postmenopausal women: a pilot study. Eur J Clin Pharmacol 2023; 79:299-309. [PMID: 36562831 PMCID: PMC9879830 DOI: 10.1007/s00228-022-03444-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Metformin may provide a therapeutic benefit in different types of malignancy. PURPOSE We aimed at evaluating the effect of metformin as an adjuvant therapy to letrozole on estradiol and other biomarkers involved in the pathogenesis of breast cancer in overweight and obese postmenopausal women. METHODS Seventy-five postmenopausal stages II-III breast cancer female patients were assessed for eligibility in an open-labeled parallel pilot study. Forty-five patients met the inclusion criteria and were assigned into three arms: the lean arm (n = 15) women who received letrozole 2.5 mg/day, the control arm (n = 15) overweight/obese women who received letrozole 2.5 mg/day, and the metformin arm (n = 15) overweight/obese women who received letrozole 2.5 mg/day plus metformin (2000 ± 500 mg/day). The intervention duration was 6 months. Blood samples were obtained at baseline and 6 months after intervention for the measurement of serum estradiol, leptin, osteocalcin levels, fasting blood glucose concentration, and serum insulin. RESULTS After the intervention and as compared to the control arm, the metformin arm showed a significantly lower ratio to the baseline (significant reduction) for estradiol (p = 0.0433), leptin (p < 0.0001), fasting blood glucose (p = 0.0128), insulin (p = 0.0360), osteocalcin serum levels (p < 0.0001), and the homeostatic model assessment of insulin resistance "HOMA-IR" value (p = 0.0145). There was a non-significant variation in the lactate ratio to the baseline among the three study arms (p = 0.5298). CONCLUSION Metformin may exert anti-cancer activity by decreasing the circulating estradiol, leptin, and insulin. Metformin might represent a safe and promising adjuvant therapy to letrozole in overweight/obese postmenopausal women with breast cancer. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05053841/Registered September 23, 2021 - Retrospectively.
Collapse
Affiliation(s)
- Aya Ahmed El-attar
- grid.412258.80000 0000 9477 7793Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Osama Mohamed Ibrahim
- grid.412258.80000 0000 9477 7793Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Suzan Ahmed Alhassanin
- grid.411775.10000 0004 0621 4712Department of Oncology and Nuclear Medicine, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Enas Said Essa
- grid.411775.10000 0004 0621 4712Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Tarek Mohamed Mostafa
- grid.412258.80000 0000 9477 7793Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| |
Collapse
|
24
|
Romanos-Nanclares A, Tabung FK, Willett WC, Rosner B, Holmes MD, Chen WY, Tamimi RM, Eliassen AH. Insulinemic potential of diet and risk of total and subtypes of breast cancer among US females. Am J Clin Nutr 2022; 116:1530-1539. [PMID: 36178066 PMCID: PMC9761760 DOI: 10.1093/ajcn/nqac284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Insulin resistance and hyperinsulinemia play important roles in the progression of multiple chronic disease and conditions. Diet modulates insulin response; however, evidence is limited regarding whether diets with higher insulinemic potential increase the risk of invasive breast cancer. OBJECTIVES We aimed to prospectively evaluate the association between a food-based empirical dietary index for hyperinsulinemia (EDIH) and the incidence of invasive breast cancer. METHODS We prospectively followed 76,686 women from the Nurses' Health Study (NHS; 1984-2016) and 93,287 women from the Nurses' Health Study II (NHSII; 1991-2017). Diet was assessed by food-frequency questionnaires every 4 y. The insulinemic potential of diet was evaluated using the previously established EDIH based on circulating C-peptide concentrations. Higher scores indicate higher insulinemic potential of the diet. Covariates included reproductive, hormonal, and anthropometric factors (height and BMI at age 18 y); race; socioeconomic status; total alcohol intake; total caloric intake; and physical activity. RESULTS During 4,216,106 person-years of follow-up, we documented 10,602 breast cancer cases (6689 NHS, 3913 NHSII). In the pooled multivariable-adjusted analyses, women in the highest, compared with the lowest, EDIH quintile (Q) were at higher breast cancer risk (HRQ5 vs. Q1 = 1.15; 95% CI: 1.07, 1.24; P-trend < 0.01). Although heterogeneity by estrogen receptor (ER) status was nonsignificant, the strongest association between EDIH and breast cancer was observed for ER-negative tumors (HRQ5 vs. Q1 = 1.21; 95% CI: 1.00, 1.46; P-trend = 0.02). Among tumor molecular subtypes, the strongest associations were observed for human epidermal growth factor receptor 2 (HER2)-enriched tumors (HRQ5 vs. Q1 = 1.62; 95% CI: 1.01, 2.61; P-trend = 0.02). CONCLUSIONS A dietary pattern contributing to hyperinsulinemia and insulin resistance was associated with greater breast cancer risk, especially ER-negative and HER2-enriched tumors. Our findings suggest that dietary modifications to reduce insulinemic potential may reduce the risk of breast cancer.
Collapse
Affiliation(s)
- Andrea Romanos-Nanclares
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Fred K Tabung
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center—Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Walter C Willett
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bernard Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michelle D Holmes
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Wendy Y Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rulla M Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
25
|
Kopp W. Pathogenesis of (smoking-related) non-communicable diseases-Evidence for a common underlying pathophysiological pattern. Front Physiol 2022; 13:1037750. [PMID: 36589440 PMCID: PMC9798240 DOI: 10.3389/fphys.2022.1037750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Non-communicable diseases, like diabetes, cardiovascular diseases, cancer, stroke, chronic obstructive pulmonary disease, osteoporosis, arthritis, Alzheimer's disease and other more are a leading cause of death in almost all countries. Lifestyle factors, especially poor diet and tobacco consumption, are considered to be the most important influencing factors in the development of these diseases. The Western diet has been shown to cause a significant distortion of normal physiology, characterized by dysregulation of the sympathetic nervous system, renin-angiotensin aldosterone system, and immune system, as well as disruption of physiological insulin and oxidant/antioxidant homeostasis, all of which play critical roles in the development of these diseases. This paper addresses the question of whether the development of smoking-related non-communicable diseases follows the same pathophysiological pattern. The evidence presented shows that exposure to cigarette smoke and/or nicotine causes the same complex dysregulation of physiology as described above, it further shows that the factors involved are strongly interrelated, and that all of these factors play a key role in the development of a broad spectrum of smoking-related diseases. Since not all smokers develop one or more of these diseases, it is proposed that this disruption of normal physiological balance represents a kind of pathogenetic "basic toolkit" for the potential development of a range of non-communicable diseases, and that the decision of whether and what disease will develop in an individual is determined by other, individual factors ("determinants"), such as the genome, epigenome, exposome, microbiome, and others. The common pathophysiological pattern underlying these diseases may provide an explanation for the often poorly understood links between non-communicable diseases and disease comorbidities. The proposed pathophysiological process offers new insights into the development of non-communicable diseases and may influence the direction of future research in both prevention and therapy.
Collapse
|
26
|
Liu Q, Guan C, Liu C, Li H, Wu J, Sun C. Targeting hypoxia-inducible factor-1alpha: A new strategy for triple-negative breast cancer therapy. Biomed Pharmacother 2022; 156:113861. [DOI: 10.1016/j.biopha.2022.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/02/2022] Open
|
27
|
Kim J, Hong Y, Baek S, Lee KP, Ahn S. The synergistic effect of physical activity and nutrition to improve the quality of life in breast cancer patients: a systemic review. Phys Act Nutr 2022; 26:22-31. [PMID: 36775648 PMCID: PMC9925113 DOI: 10.20463/pan.2022.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Medical recommendations for balanced control of exercise, physical activity, and nutritional intake after breast cancer diagnosis remain unclear. Therefore, this review aims to summarize effective exercise methods and dietary opinions by reviewing clinical trial results. METHODS We systematically reviewed studies that evaluated 1) the relationship between exercise methods and quality of life improvement in patients with breast cancer and 2) the recommendations for physical activity, exercise, nutrition, and potential ways to improve life after breast cancer. To conduct this literature review, we searched the PubMed database for articles published until October 1, 2022, using the terms "physical activity OR exercise," "breast cancer," and "nutrition." After a primary review of the retrieved articles, we included clinical trials in this systematic review. RESULTS We hypothesized that physical activity improves the quality of life after the onset of breast cancer, suggesting that a balanced approach to aerobic exercise and resistance exercise increases the efficacy of anticancer treatment. From a nutritional point of view, it is recommended that both physical activity and diet management are necessary for patients with breast cancer. CONCLUSION Customized exercise and diet can help with weight loss, the reduction of cancer-induced fatigue, the regulation of hormonal changes, the reduction of inflammatory factors, and the improvement of mental health and vitality. Understanding the integrated mechanisms of physical activity and nutritional balance will improve the quality of life of patients with breast cancer. Therefore, it is necessary to continuously advance exercise programs and develop an alimentary balance control program.
Collapse
Affiliation(s)
- Jisu Kim
- Department of Sports Medicine and Science Graduate School of Konkuk University, Republic of Korea,Physical Activity & Performance Institute, Konkuk University, Republic of Korea
| | - Yoogyung Hong
- Research and Development Center, UMUST R&D Corporation, Seoul 05029, Republic of Korea
| | - Suji Baek
- Research and Development Center, UMUST R&D Corporation, Seoul 05029, Republic of Korea
| | - Kang Pa Lee
- Research and Development Center, UMUST R&D Corporation, Seoul 05029, Republic of Korea,Corresponding author : Kang Pa Lee Research and Development Center, UMUST R&D Corporation, Seoul 05029, Republic of Korea. Tel: +82-10-9288-2744 E-mail:
| | - Sanghyun Ahn
- Department of Anatomy, College of Korean Medicine, Semyung University, Chungbuk, Republic of Korea,Corresponding author : Kang Pa Lee Research and Development Center, UMUST R&D Corporation, Seoul 05029, Republic of Korea. Tel: +82-10-9288-2744 E-mail:
| |
Collapse
|
28
|
Breast cancer classification along with feature prioritization using machine learning algorithms. HEALTH AND TECHNOLOGY 2022. [DOI: 10.1007/s12553-022-00710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Cancer Prevention Prioritized at AACR Annual Meeting and a New Working Group. Cancer Prev Res (Phila) 2022; 15:475-479. [DOI: 10.1158/1940-6207.capr-22-0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
Abstract
Scientific advances in the late 19th century set the stage for progress in understanding and treating cancer, a disease that was previously considered almost hopeless. One hundred years later, cancer prevention is becoming an increasingly important focus for oncology research. New tools and ideas bring to the field some extremely promising molecular, organizational, social, and political approaches, which were a focus of the American Association for Cancer Research 2022 Annual Meeting and of the newly launched AACR Cancer Prevention Working Group (CPWG). We are moving toward precision prevention, better tools for early detection and for risk assessment, the use of a Precancer Atlas, unveiling of new biomarkers. Besides improving lifestyle, by avoiding risk factors such as tobacco use, excessive UV exposure, infectious agents, as well as poor dietary habits, lack of exercise, overweight, and obesity, many other factors can impact cancer risk, which is a warning to consider a multifaceted molecular but also social approach. Gender, ethnicity, geographic, and economic lines are associated with disparities in prevention, which we want to overcome. Here we summarize some challenges and priorities in cancer prevention emerging from the work of AACR and CPWG.
Collapse
|
30
|
Hossain FM, Danos DM, Fu Q, Wang X, Scribner RA, Chu ST, Horswell RL, Price-Haywood EG, Collins-Burow BM, Wu XC, Ochoa AC, Miele L. Association of Obesity and Diabetes With the Incidence of Breast Cancer in Louisiana. Am J Prev Med 2022; 63:S83-S92. [PMID: 35725146 PMCID: PMC9973383 DOI: 10.1016/j.amepre.2022.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Breast cancer is a heterogeneous disease, consisting of multiple molecular subtypes. Obesity has been associated with an increased risk for postmenopausal breast cancer, but few studies have examined breast cancer subtypes separately. Obesity is often complicated by type 2 diabetes, but the possible association of diabetes with specific breast cancer subtypes remains poorly understood. METHODS In this retrospective case-control study, Louisiana Tumor Registry records of primary invasive breast cancer diagnosed in 2010-2015 were linked to electronic health records in the Louisiana Public Health Institute's Research Action for Health Network. Controls were selected from Research Action for Health Network and matched to cases by age and race. Conditional logistic regression was used to identify metabolic risk factors. Data analysis was conducted in 2020‒2021. RESULTS There was a significant association between diabetes and breast cancer for Luminal A, Triple-Negative Breast Cancer, and human epidermal growth factor 2‒positive subtypes. In multiple logistic regression, including both obesity status and diabetes as independent risk factors, Luminal A breast cancer was also associated with overweight status. Diabetes was associated with increased risk for Luminal A and Triple-Negative Breast Cancer in subgroup analyses, including women aged ≥50 years, Black women, and White women. CONCLUSIONS Although research has identified obesity and diabetes as risk factors for breast cancer, these results underscore that comorbid risk is complex and may differ by molecular subtype. There was a significant association between diabetes and the incidence of Luminal A, Triple-Negative Breast Cancer, and human epidermal growth factor 2‒positive breast cancer in Louisiana.
Collapse
Affiliation(s)
- Fokhrul M Hossain
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana; Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Denise M Danos
- Department of Behavioral & Community Health Sciences (BCHS), School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Qiufan Fu
- Department of Biostatistics, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Xinnan Wang
- Department of Biostatistics, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Richard A Scribner
- Department of Epidemiology, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - San T Chu
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - Ronald L Horswell
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | | | - Bridgette M Collins-Burow
- Hematology/Oncology, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Xiao-Cheng Wu
- Department of Epidemiology, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana; Louisiana Tumor Registry, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Augusto C Ochoa
- Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana; Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Lucio Miele
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana; Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana.
| |
Collapse
|
31
|
Potential Pro-Tumorigenic Effect of Bisphenol A in Breast Cancer via Altering the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14123021. [PMID: 35740686 PMCID: PMC9221131 DOI: 10.3390/cancers14123021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Bisphenol A (BPA) is primarily used to produce polycarbonate plastics, such as water bottles. Exposure to BPA has been shown to increase the growth of breast cancer cells that depend on estrogen for growth due to its ability to mimic estrogen. More recent studies have suggested that BPA also affects the cellular and non-cellular components that compose tumor microenvironments (TMEs), namely the environment around a tumor, thereby potentially promoting breast cancer growth via altering the TME. The TME plays an essential role in cancer development and promotion. Therefore, it is crucial to understand the effect of BPA on breast TMEs to assess its role in the risk of breast cancer adequately. This review examines the potential effects of BPA on immune cells, fibroblasts, extracellular matrices, and adipocytes to highlight their roles in mediating the carcinogenic effect of BPA, and thereby proposes considerations for the risk assessment of BPA exposure. Abstract BPA, a chemical used in the preparation of polycarbonate plastics, is an endocrine disruptor. Exposure to BPA has been suggested to be a risk factor for breast cancer because of its potential to induce estrogen receptor signaling in breast cancer cells. More recently, it has been recognized that BPA also binds to the G protein-coupled estrogen receptor and other nuclear receptors, in addition to estrogen receptors, and acts on immune cells, adipocytes, and fibroblasts, potentially modulating the TME. The TME significantly impacts the behavior of cancer cells. Therefore, understanding how BPA affects stromal components in breast cancer is imperative to adequately assess the association between exposure to BPA and the risk of breast cancer. This review examines the effects of BPA on stromal components of tumors to highlight their potential role in the carcinogenic effect of BPA. As a result, I propose considerations for the risk assessment of BPA exposure and studies needed to improve understanding of the TME-mediated, breast cancer-promoting effect of BPA.
Collapse
|
32
|
In Silico Analysis of Ion Channels and Their Correlation with Epithelial to Mesenchymal Transition in Breast Cancer. Cancers (Basel) 2022; 14:cancers14061444. [PMID: 35326596 PMCID: PMC8946083 DOI: 10.3390/cancers14061444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Breast cancer involves changes in the healthy cells of the breast resulting in rapid and abnormal division of cells that later spread to other parts of the body through the process of metastasis, which involves epithelial mesenchymal transition (EMT). Ion channels play a significant role in the switch from epithelial to mesenchymal transition through their contributions to cellular motility, cell volume regulation and cell cycle progression. Comprehensive computational analyses were performed to understand the role of ion channels in tumor/metastatic samples of breast cancer and their correlation with EMT. Abstract Uncontrolled growth of breast cells due to altered gene expression is a key feature of breast cancer. Alterations in the expression of ion channels lead to variations in cellular activities, thus contributing to attributes of cancer hallmarks. Changes in the expression levels of ion channels were observed as a consequence of EMT. Additionally, ion channels were reported in the activation of EMT and maintenance of a mesenchymal phenotype. Here, to identify altered ion channels in breast cancer patients, differential gene expression and weighted gene co-expression network analyses were performed using transcriptomic data. Protein–protein interactions network analysis was carried out to determine the ion channels interacting with hub EMT-related genes in breast cancer. Thirty-two ion channels were found interacting with twenty-six hub EMT-related genes. The identified ion channels were further correlated with EMT scores, indicating mesenchymal phenotype. Further, the pathway map was generated to represent a snapshot of deregulated cellular processes by altered ion channels and EMT-related genes. Kaplan–Meier five-year survival analysis and Cox regressions indicated the expression of CACNA1B, ANO6, TRPV3, VDAC1 and VDAC2 to be potentially associated with poor survival. Deregulated ion channels correlate with EMT-related genes and have a crucial role in breast cancer-associated tumorigenesis. Most likely, they are potential candidates for the determination of prognosis in patients with breast cancer.
Collapse
|
33
|
Fung AA, Hoang K, Zha H, Chen D, Zhang W, Shi L. Imaging Sub-Cellular Methionine and Insulin Interplay in Triple Negative Breast Cancer Lipid Droplet Metabolism. Front Oncol 2022; 12:858017. [PMID: 35359364 PMCID: PMC8960266 DOI: 10.3389/fonc.2022.858017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a particularly aggressive cancer subtype that is difficult to diagnose due to its discriminating epidemiology and obscure metabolome. For the first time, 3D spatial and chemometric analyses uncover the unique lipid metabolome of TNBC under the tandem modulation of two key metabolites - insulin and methionine - using non-invasive optical techniques. By conjugating heavy water (D2O) probed Raman scattering with label-free two-photon fluorescence (TPF) microscopy, we observed altered de novo lipogenesis, 3D lipid droplet morphology, and lipid peroxidation under various methionine and insulin concentrations. Quantitative interrogation of both spatial and chemometric lipid metabolism under tandem metabolite modulation confirms significant interaction of insulin and methionine, which may prove to be critical therapeutic targets, and proposes a powerful optical imaging platform with subcellular resolution for metabolic and cancer research.
Collapse
Affiliation(s)
- Anthony A Fung
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Khang Hoang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Honghao Zha
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Derek Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Wenxu Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Lingyan Shi
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
34
|
Ding J, Li X, Ge J, Gong Y, Zhou Y, Xiao J, Yang Q, Chen J, Mao M. Survival Risk Analysis of Small Cell Lung Cancer Patients with Pre-Existing Type 2 Diabetes Mellitus: A Single-Center Retrospective Cohort Study. Cancer Manag Res 2022; 14:1313-1322. [PMID: 35386185 PMCID: PMC8979423 DOI: 10.2147/cmar.s340334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/10/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose We aimed to investigate the clinicopathological characteristics and survival risk factors in small cell lung cancer (SCLC) patients with preexisting type 2 diabetes mellitus (preDM). Patients and Methods All patients with SCLC admitted to our hospital between January 2013 and August 2018 were followed up until August 2020 and retrospectively analyzed. Clinical characteristics of SCLC patients with and without preDM were extracted. Cox proportional hazards models were conducted to identify potential independent prognostic factors. Results Of 628 eligible individuals, 88 individuals had preDM. preDM was independently significantly associated with distant metastasis in all SCLC patients (p =0.016, OR=1.80, 95% CI 1.11–2.91), while preDM did not affect the outcome of SCLC patients (p=0.803, HR=1.04, 95% CI 0.79–1.36) by multivariate analysis. In the preDM group, the median overall survival (OS) was shorter in the insulin group than in the non insulin group (13.93 months versus 21.77 months, p=0.024). Multivariate analysis identified that insulin treatment was an independent unfavorable factor associated with OS (p =0.009, HR=2.10, 95% CI 1.19–3.64). In addition, poorer performance status (PS) and liver metastasis were also independent unfavorable prognostic factors (all p<0.01), while thoracic therapy significantly improved OS and decreased mortality risk in diabetic patients with SCLC (p<0.05). Conclusion preDM may promote distant metastasis of SCLC while it is insulin therapy and not preDM which adversely affects the prognosis of SCLC patients. These findings indicate that enhancing blood glucose control and reducing insulin analog use may be essential to the improvement of the long-term survival of the diabetic population with SCLC.
Collapse
Affiliation(s)
- Jing Ding
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People’s Republic of China
| | - Xudong Li
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People’s Republic of China
| | - Jun Ge
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People’s Republic of China
| | - Yuanqian Gong
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People’s Republic of China
| | - Ya Zhou
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People’s Republic of China
| | - Juan Xiao
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People’s Republic of China
| | - Qin Yang
- Department of Oncology, Bazhong Central Hospital, Bazhong, Sichuan, People’s Republic of China
| | - Jing Chen
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People’s Republic of China
| | - Mian Mao
- Department of Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People’s Republic of China
- Correspondence: Mian Mao, Tel/Fax +86-28-85420311, Email
| |
Collapse
|
35
|
Metformin and Breast Cancer: Where Are We Now? Int J Mol Sci 2022; 23:ijms23052705. [PMID: 35269852 PMCID: PMC8910543 DOI: 10.3390/ijms23052705] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the most prevalent cancer and the leading cause of cancer-related death among women worldwide. Type 2 diabetes–associated metabolic traits such as hyperglycemia, hyperinsulinemia, inflammation, oxidative stress, and obesity are well-known risk factors for breast cancer. The insulin sensitizer metformin, one of the most prescribed oral antidiabetic drugs, has been suggested to function as an antitumoral agent, based on epidemiological and retrospective clinical data as well as preclinical studies showing an antiproliferative effect in cultured breast cancer cells and animal models. These benefits provided a strong rationale to study the effects of metformin in routine clinical care of breast cancer patients. However, the initial enthusiasm was tempered after disappointing results in randomized controlled trials, particularly in the metastatic setting. Here, we revisit the current state of the art of metformin mechanisms of action, critically review past and current metformin-based clinical trials, and briefly discuss future perspectives on how to incorporate metformin into the oncologist’s armamentarium for the prevention and treatment of breast cancer.
Collapse
|
36
|
Kandasamy T, Sen P, Ghosh S. Multi-targeted drug repurposing approach for breast cancer via integrated functional network analysis. Mol Inform 2022; 41:e2100300. [PMID: 35195941 DOI: 10.1002/minf.202100300] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/22/2022] [Indexed: 11/07/2022]
Abstract
The present study focuses on the interconnected functional network of altered metabolism and EMT (epithelial to mesenchymal transition) signaling in breast cancer. We have interlinked the metabolic and EMT signaling circuits and selected Insulin receptor (IR), Integrin beta 1 (ITGB1), and CD36 as target proteins based on network analysis. Extensive computational approaches discerned the potential drug molecules from the library of 1293 FDA-approved drugs to block all three target proteins. Using molecular docking, molecular dynamics simulation, and MMPBSA binding free energy studies, Capmatinib, Ponatinib, Naldemedine, and Pimozide were identified as potential repurposed drugs to block the function of all three target proteins. Among in silico selected candidate drugs, Pimozide, a known anti-psychotic drug, was further validated using in-vitro studies for its anti-cell proliferative potential on breast cancer cell lines (namely, MCF7, MDAMB231 and MDAMB468). The inhibitory concentration (IC50) values of MCF7, MDAMB231 and MDAMB468 was found to be 16.26 µM, 20.82 µM and 13.10 µM, respectively. The effect of Pimozide on EMT-induced MDAMB231 and MDAMB468 cells was evident from their IC50 values of 7.85 µM and 6.83 µM, respectively. The potent anti-cancer property of Pimozide has opened up avenues for drug repurposing towards 'multi-targeted therapy' in EMT dynamics.
Collapse
Affiliation(s)
- Thirukumaran Kandasamy
- Indian Institute of Technology Guwahati Department of Biosciences and Bioengineering, INDIA
| | - Plaboni Sen
- Indian Institute of Technology Guwahati Department of Biosciences and Bioengineering, INDIA
| | - Siddhartha Ghosh
- Indian Institute of Technology Guwahati Department of Biosciences and Bioengineering, INDIA
| |
Collapse
|
37
|
Brantley KD, Zeleznik OA, Rosner B, Tamimi RM, Avila-Pacheco J, Clish CB, Eliassen AH. Plasma Metabolomics and Breast Cancer Risk Over 20 Years of Follow-up Among Postmenopausal Women in the Nurses' Health Study. Cancer Epidemiol Biomarkers Prev 2022; 31:839-850. [DOI: 10.1158/1055-9965.epi-21-1023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/08/2021] [Accepted: 01/10/2022] [Indexed: 12/09/2022] Open
|
38
|
Long T, Liu K, Long J, Li J, Cheng L. Dietary glycemic index, glycemic load and cancer risk: a meta-analysis of prospective cohort studies. Eur J Nutr 2022; 61:2115-2127. [PMID: 35034169 DOI: 10.1007/s00394-022-02797-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE There is considerable inconsistency in results regarding the association of dietary glycemic index (GI) and glycemic load (GL) with cancer risk. We therefore conducted this systematic review and dose-response meta-analysis of prospective cohort studies to evaluate the relationship between dietary GI/GL and cancer risk. METHODS We searched PubMed and Web of Science for prospective cohort studies of dietary GI/GL in relation to risks of all types of cancer up to 31 March 2021. We used a random-effect model to calculate summary relative risks (RR) and 95% confidence intervals (CI). The certainty of evidence was assessed by the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach. This study was registered at PROSPERO (CRD42020215338). RESULTS Overall, 55 cohorts were included in the meta-analysis. We assessed the relationship between dietary GI or GL and risks of 23 cancer types, including hormone-related cancers, cancers from digestive system, respiratory system, urinary system and other cancer sites. High GI diet increased overall risk of cancer with low certainty of evidence (highest vs lowest categories, n = 3, RR 1.04, 95% CI 1.01-1.07). For site-specific cancers, high GI diet increased risks of lung cancer (highest vs lowest categories, n = 5, RR 1.08, 95% CI 1.01-1.18) and breast cancer (highest vs lowest categories, n = 14, RR 1.05, 95% CI 1.01-1.09), especially for postmenopausal breast cancer (highest vs lowest categories, n = 10, RR 1.06, 95% CI 1.00-1.13), all with low certainty of evidence. Additionally, dietary GI was positively related to risk of bladder cancer with low certainty of evidence (highest vs lowest categories, n = 3, RR 1.23, 95% CI 1.09-1.40), as well as negatively related to ovarian cancer risk with very low certainty of evidence (highest vs lowest categories, n = 4, RR 0.83, 95% CI 0.69-1.00) and lymphoma risk with low certainty of evidence (highest vs lowest categories, n = 2, RR 0.84, 95% CI 0.72-0.98). Besides, we found an inverse association of dietary GL with lung cancer risk with low certainty of evidence (highest vs lowest categories, n = 5, RR 0.87, 95% CI 0.80-0.94). CONCLUSION High dietary GI increased overall cancer risk with low certainty of evidence. For site-specific cancers, high GI diet increased the risks of breast cancer with low certainty of evidence and lung cancer with low certainty of evidence. Dietary GL was inversely associated with lung cancer risk with low certainty of evidence.
Collapse
Affiliation(s)
- Tingting Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Ke Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Jieyi Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.
| |
Collapse
|
39
|
Silva C, Andrade N, Guimarães JT, Cardoso E, Meireles C, Pinto V, Paiva J, Martel F. The pro-proliferative effect of insulin in human breast epithelial DMBA-transformed and non-transformed cell lines is PI3K-, mTOR- and GLUT1-dependent. Cell Biochem Funct 2022; 40:127-137. [PMID: 35014047 DOI: 10.1002/cbf.3681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/03/2021] [Indexed: 11/06/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is linked to an increased risk of breast cancer. We aimed to investigate how T2DM-associated characteristics (high levels of glucose, insulin, leptin, inflammatory mediators and oxidative stress) influence breast cancer carcinogenesis, in DMBA-treated (MCF-12ADMBA ) and non-treated breast epithelial (MCF-12A) cell lines. Insulin (50 nM) promotes cell proliferation, 3 H-DG uptake and lactic acid production in both cell lines. The stimulatory effects of insulin upon cell proliferation and 3 H-DG uptake were hampered by rapamycin, LY294001 and BAY-876, in both cell lines. In conclusion, hyperinsulinemia, one important characteristic of T2DM, contributes to the initiation of breast cancer by a PI3K- and mTOR-dependent mechanism involving increased GLUT1-mediated glucose uptake. SIGNIFICANCE: The pro-proliferative effect of insulin in human breast epithelial DMBA-transformed and non-transformed cell lines is PI3K-, mTOR- and GLUT1-dependent.
Collapse
Affiliation(s)
- Cláudia Silva
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Nelson Andrade
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - João Tiago Guimarães
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Clinical Pathology, São João Hospital Centre, Porto, Portugal.,Institute of Public Health, University of Porto, Porto, Portugal
| | - Emília Cardoso
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Catarina Meireles
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Vanessa Pinto
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,iLoF, Intelligent Lab on Fiber, Limited, Oxford, UK
| | - Joana Paiva
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,iLoF, Intelligent Lab on Fiber, Limited, Oxford, UK.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
40
|
Seewaldt VL, Bernstein L. The perils of generalization: Rethinking breast cancer screening guidelines for young women of color. Cancer 2021; 127:4359-4361. [PMID: 34427914 PMCID: PMC8578311 DOI: 10.1002/cncr.33840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/29/2022]
Abstract
Women-of-Color are more likely to be diagnosed with breast cancer under the age of 40 and more likely to die (vs. non-Hispanic Whites). These finding support the concern that the United States Preventive Services Task Force breast cancer adversely impacts Women-of-Color.
Collapse
Affiliation(s)
- Victoria L. Seewaldt
- Department of Population Science, Beckman Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010
| | - Leslie Bernstein
- Department of Population Science, Beckman Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010
| |
Collapse
|
41
|
Shi Z, Liu J, Wang F, Li Y. Integrated analysis of Solute carrier family-2 members reveals SLC2A4 as an independent favorable prognostic biomarker for breast cancer. Channels (Austin) 2021; 15:555-568. [PMID: 34488531 PMCID: PMC8425726 DOI: 10.1080/19336950.2021.1973788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Most of Solute carrier family-2 (SLC2) members play a key role of facilitative transporters, and glucose transporter (GLUT) proteins encoded by SLC2s can transport hexoses or polyols. However, the function and mechanism of SLC2s remain unclear in human cancers. Here, we explored the dysregulated expression, prognostic values, epigenetic, genetic alterations, and biomolecular network of SLC2s in human cancers. According to the data from public-omicsrepository, SLC2A4 (GLUT4) was found to be significantly downregulated in most cancers, and higher messenger RNA (mRNA) expression of SLC2A4 significantly associated with better prognosis of breast cancer (BRCA) patients. Moreover, DNA hypermethylation in the promoter of SLC2A4 may affect the regulation of its mRNA expression, and SLC2A4 was strongly correlated with pathways, including the translocation of SLC2A4 to the plasma membrane and PID INSULIN PATHWAY. In conclusion, these results provide insight into SLC2s in human cancers and suggest that SLC2A4 could be an unfavorable prognostic biomarker for the survival of BRCA patients.
Collapse
Affiliation(s)
- Zhenyu Shi
- Department of Predictive Medicine,Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, HenanUniversity,Kaifeng,China
| | - Jiahao Liu
- Department of Predictive Medicine,Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, HenanUniversity,Kaifeng,China
| | - Fei Wang
- Department of Predictive Medicine,Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, HenanUniversity,Kaifeng,China
| | - Yongqiang Li
- Department of Predictive Medicine,Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, HenanUniversity,Kaifeng,China
| |
Collapse
|
42
|
WISER Survivor Trial: Combined Effect of Exercise and Weight Loss Interventions on Insulin and Insulin Resistance in Breast Cancer Survivors. Nutrients 2021; 13:nu13093108. [PMID: 34578984 PMCID: PMC8469124 DOI: 10.3390/nu13093108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity-associated breast cancer recurrence is mechanistically linked with elevated insulin levels and insulin resistance. Exercise and weight loss are associated with decreased breast cancer recurrence, which may be mediated through reduced insulin levels and improved insulin sensitivity. This is a secondary analysis of the WISER Survivor clinical trial examining the relative effect of exercise, weight loss and combined exercise and weight loss interventions on insulin and insulin resistance. The weight loss and combined intervention groups showed significant reductions in levels of: insulin, C-peptide, homeostatic model assessment 2 (HOMA2) insulin resistance (IR), and HOMA2 beta-cell function (β) compared to the control group. Independent of intervention group, weight loss of ≥10% was associated with decreased levels of insulin, C-peptide, and HOMA2-IR compared to 0–5% weight loss. Further, the combination of exercise and weight loss was particularly important for breast cancer survivors with clinically abnormal levels of C-peptide.
Collapse
|
43
|
León-González AJ, Jiménez-Vacas JM, Fuentes-Fayos AC, Sarmento-Cabral A, Herrera-Martínez AD, Gahete MD, Luque RM. Role of metformin and other metabolic drugs in the prevention and therapy of endocrine-related cancers. Curr Opin Pharmacol 2021; 60:17-26. [PMID: 34311387 DOI: 10.1016/j.coph.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome is associated with chronic diseases, including type 2 diabetes, cardiovascular diseases, and cancer. This review summarizes the current evidence on the antitumor effects of some relevant drugs currently used to manage metabolic-related pathologies (i.e. insulin and its analogs, metformin, statins, etc.) in endocrine-related cancers including breast cancer, prostate cancer, pituitary cancer, ovarian cancer, and neuroendocrine neoplasms. Although current evidence does not provide a clear antitumor role of several of these drugs, metformin seems to be a promising chemopreventive and adjuvant agent in cancer management, modulating tumor cell metabolism and microenvironment, through both AMP-activated protein kinase-dependent and -independent mechanisms. Moreover, its combination with statins might represent a promising therapeutic strategy to tackle the progression of endocrine-related tumors. However, further studies are needed to endorse the clinical relevance of these drugs as adjuvants for cancer chemotherapy.
Collapse
Affiliation(s)
- Antonio J León-González
- Maimonides Institute of Biomedical Research of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain; Reina Sofia University Hospital, 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition, 14004 Cordoba, Spain; Department of Pharmacology, School of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Institute of Biomedical Research of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain; Reina Sofia University Hospital, 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition, 14004 Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Institute of Biomedical Research of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain; Reina Sofia University Hospital, 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition, 14004 Cordoba, Spain
| | - Andre Sarmento-Cabral
- Maimonides Institute of Biomedical Research of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain; Reina Sofia University Hospital, 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition, 14004 Cordoba, Spain
| | - Aura D Herrera-Martínez
- Maimonides Institute of Biomedical Research of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital, 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition, 14004 Cordoba, Spain; Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute of Biomedical Research of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain; Reina Sofia University Hospital, 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition, 14004 Cordoba, Spain
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Cordoba, 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain; Reina Sofia University Hospital, 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition, 14004 Cordoba, Spain.
| |
Collapse
|
44
|
Obesity and Androgen Receptor Signaling: Associations and Potential Crosstalk in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13092218. [PMID: 34066328 PMCID: PMC8125357 DOI: 10.3390/cancers13092218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity is an increasing health challenge and is recognized as a breast cancer risk factor. Although obesity-related breast cancer mechanisms are not fully understood, this association has been linked to impaired hormone secretion by the dysfunctional obese adipose tissue (hyperplasic and hypertrophic adipocytes). Among these hormones, altered production of androgens and adipokines is observed, and both, are independently associated with breast cancer development. In this review, we describe and comment on the relationships reported between these factors and breast cancer, focusing on the biological associations that have helped to unveil the mechanisms by which signaling from androgens and adipokines modifies the behavior of mammary epithelial cells. Furthermore, we discuss the potential crosstalk between the two most abundant adipokines produced by the adipose tissue (adiponectin and leptin) and the androgen receptor, an emerging marker in breast cancer. The identification and understanding of interactions among adipokines and the androgen receptor in cancer cells are necessary to guide the development of new therapeutic approaches in order to prevent and cure obesity and breast cancer.
Collapse
|
45
|
Gomes SL, Bobby Z, Ganesan P, Saroja K, Parameswari G R. Metabolic syndrome and its related biochemical derangements in breast cancer patients who received neoadjuvant chemotherapy: A study from a tertiary care oncology centre from Puducherry, South India. Diabetes Metab Syndr 2021; 15:975-980. [PMID: 33962149 DOI: 10.1016/j.dsx.2021.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIMS Comparison of the existence of metabolic syndrome, its components and their related biochemical complications between newly diagnosed and treated breast cancer patients. METHODS Forty newly diagnosed untreated breast cancer patients and forty breast cancer patients who had received 7 cycles of neoadjuvant chemotherapy were recruited as group 1 and group 2 respectively. Height, weight, blood pressure, hormonal status, and tumor size were noted. The fasting blood glucose and lipid profile were estimated in AU 5811 Beckman coulter Clinical chemistry analyzer. Fasting insulin was estimated using Beckman Coulter access immunoassay system (UnicelDxI600). HbA1c assay was carried out in HPLC based ion exchange chromatography (Tosoh automated glycohemoglobin analyzer G8. Homeostasis Model Assessment 2-IR (HOMA 2-IR), HOMA-% B and HOMA-% S were calculated using an online calculator HOMA CALCULATOR [Oxford University]. Serum hsCRP and MDA were estimated by ELISA. FRAP assay was carried out manually to measure antioxidant status. RESULTS The existence of metabolic syndrome as well as type 2 diabetes was higher in the treated group when compared to the untreated patients. However, there were no significant differences in the indices of glucose homeostasis, low grade inflammation, oxidative stress and individual components of metabolic syndrome between the two groups. The triple negative patients were more prone to develop metabolic syndrome when compared to the triple positive patients. CONCLUSION Suitable therapeutic approaches may be planned out to address the metabolic syndrome and its related complications among breast cancer patients especially during the course of treatment.
Collapse
|
46
|
Frankhauser DE, Jovanovic‐Talisman T, Lai L, Yee LD, Wang LV, Mahabal A, Geradts J, Rockne RC, Tomsic J, Jones V, Sistrunk C, Miranda‐Carboni G, Dietze EC, Erhunmwunsee L, Hyslop T, Seewaldt VL. Spatiotemporal strategies to identify aggressive biology in precancerous breast biopsies. WIREs Mech Dis 2021; 13:e1506. [PMID: 33001587 PMCID: PMC8544796 DOI: 10.1002/wsbm.1506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 01/12/2023]
Abstract
Over 90% of breast cancer is cured; yet there remain highly aggressive breast cancers that develop rapidly and are extremely difficult to treat, much less prevent. Breast cancers that rapidly develop between breast image screening are called "interval cancers." The efforts of our team focus on identifying multiscale integrated strategies to identify biologically aggressive precancerous breast lesions. Our goal is to identify spatiotemporal changes that occur prior to development of interval breast cancers. To accomplish this requires integration of new technology. Our team has the ability to perform single cell in situ transcriptional profiling, noncontrast biological imaging, mathematical analysis, and nanoscale evaluation of receptor organization and signaling. These technological innovations allow us to start to identify multidimensional spatial and temporal relationships that drive the transition from biologically aggressive precancer to biologically aggressive interval breast cancer. This article is categorized under: Cancer > Computational Models Cancer > Molecular and Cellular Physiology Cancer > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- David E. Frankhauser
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | | | - Lily Lai
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Lisa D. Yee
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Lihong V. Wang
- Department of Medical EngineeringCalifornia Institute of TechnologyPasadena, CaliforniaUSA
| | - Ashish Mahabal
- Center for Data Driven DiscoveryCalifornia Institute of TechnologyPasadena, CaliforniaUSA
| | - Joseph Geradts
- Department of PathologyDuke UniversityDurhamNorth CarolinaUSA
| | - Russell C. Rockne
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Jerneja Tomsic
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Veronica Jones
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Christopher Sistrunk
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | | | - Eric C. Dietze
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Loretta Erhunmwunsee
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Terry Hyslop
- Department of BiostatisticsDuke UniversityDurhamNorth CarolinaUSA
| | - Victoria L. Seewaldt
- Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| |
Collapse
|
47
|
Rocca A, Cortesi P, Cortesi L, Gianni L, Matteucci F, Fantini L, Maestri A, Giunchi DC, Cavanna L, Ciani R, Falcini F, Bagni A, Meldoli E, Dall’Agata M, Volpi R, Andreis D, Nanni O, Curcio A, Lucchi L, Amadori D, Fedeli A. Phase II study of liposomal doxorubicin, docetaxel and trastuzumab in combination with metformin as neoadjuvant therapy for HER2-positive breast cancer. Ther Adv Med Oncol 2021; 13:1758835920985632. [PMID: 33613693 PMCID: PMC7876584 DOI: 10.1177/1758835920985632] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/11/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The aim of this study was to improve activity over single human epidermal growth factor receptor 2 (HER2)-blockade sequential neaodjuvant regimens for HER2-positive breast cancer, by exploiting the concomitant administration of trastuzumab, taxane and anthracycline, while restraining cardiac toxicity with use of liposomal doxorubicin, and by adding metformin, based on preliminary evidence of antitumor activity. PATIENTS AND METHODS This multi-center, single-arm, two-stage phase II trial, assessed the safety and the activity of a new treatment regimen for HER2-positive, early or locally advanced breast cancer. Patients received six 21-day cycles of non-pegylated liposomal doxorubicin, 50 mg/m2 intravenously (i.v.) on day 1, docetaxel, 30 mg/m2 i.v. on days 2 and 9, trastuzumab, 2 mg/kg/week i.v. on days 2, 9, and 16 (with 4 mg/kg loading dose), in association with metformin 1000 mg orally twice daily. The primary endpoint was the rate of pathological complete response (pCR) in the breast and axilla (ypT0/is ypN0). A subgroup of patients performed a 3-deoxy-3-18F-fluorothymidine positron emission tomography (FLT-PET) at baseline and after one cycle. RESULTS Among 47 evaluable patients, there were 18 pCR [38.3%, 95% confidence interval (CI) 24.5-53.6%]. A negative estrogen-receptor status, high Ki67, and histological grade 3 were related with pCR, although only grade reached statistical significance. FLT-PET maximum standardized uptake value after one cycle was inversely related to pCR in the breast (odds ratio 0.29, 95% CI 0.06-1.30, p = 0.11). Toxicity included grade 3-4 neutropenia in 70% and febrile neutropenia in 4% of patients, grade 1-2 nausea/vomiting in 60%/38%, and grade 3 in 4%/2%, respectively, grade 1-2 diarrhea in 72%, and grade 3 in 6%. There were two cases of reversible grade 2 left-ventricular ejection-fraction decrease, and one case of sharp troponin-T increase. CONCLUSIONS The concomitant administration of trastuzumab, liposomal doxorubicin, docetaxel, and metformin is safe and shows good activity, but does not appear to improve activity over conventional sequential regimens.
Collapse
Affiliation(s)
- Andrea Rocca
- Department of Clinical and Experimental Oncology and Hematology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Maroncelli 40, Meldola 47014, Italy
| | - Pietro Cortesi
- Department of Clinical and Experimental Oncology and Hematology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Laura Cortesi
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Lorenzo Gianni
- Department of Medical Oncology, Infermi Hospital, Rimini, Italy
| | - Federica Matteucci
- Nuclear Medicine Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Lorenzo Fantini
- Nuclear Medicine Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Antonio Maestri
- Department of Medical Oncology, Santa Maria della Scaletta Hospital, Imola, Italy
| | - Donata Casadei Giunchi
- Department of Clinical and Experimental Oncology and Hematology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Luigi Cavanna
- Department of Onco-Hematology, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Rosa Ciani
- Cancer Prevention Unit, Azienda Usl della Romagna, Forlì, Italy
| | - Fabio Falcini
- Cancer Prevention Unit, Azienda Usl della Romagna, Forlì, Italy Romagna Cancer Registry, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Antonella Bagni
- Breast Diagnostic Unit, Maurizio Bufalini Hospital, Cesena, Italy
| | - Elena Meldoli
- Breast Diagnostic Unit, Maurizio Bufalini Hospital, Cesena, Italy
| | - Monia Dall’Agata
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Roberta Volpi
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Daniele Andreis
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Oriana Nanni
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Annalisa Curcio
- Breast Surgery Unit, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Leonardo Lucchi
- Breast Surgery Unit, Maurizio Bufalini Hospital, Forlì, Italy
| | - Dino Amadori
- Department of Clinical and Experimental Oncology and Hematology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Anna Fedeli
- Department of Clinical and Experimental Oncology and Hematology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
48
|
Biello F, Platini F, D’Avanzo F, Cattrini C, Mennitto A, Genestroni S, Martini V, Marzullo P, Aimaretti G, Gennari A. Insulin/IGF Axis in Breast Cancer: Clinical Evidence and Translational Insights. Biomolecules 2021; 11:biom11010125. [PMID: 33477996 PMCID: PMC7835955 DOI: 10.3390/biom11010125] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Breast cancer (BC) is the most common neoplasm in women. Many clinical and preclinical studies investigated the possible relationship between host metabolism and BC. Significant differences among BC subtypes have been reported for glucose metabolism. Insulin can promote tumorigenesis through a direct effect on epithelial tissues or indirectly by affecting the levels of other modulators, such as the insulin-like growth factor (IGF) family of receptors, sex hormones, and adipokines. The potential anti-cancer activity of metformin is based on two principal effects: first, its capacity for lowering circulating insulin levels with indirect endocrine effects that may impact on tumor cell proliferation; second, its direct influence on many pro-cancer signaling pathways that are key drivers of BC aggressiveness. Methods: In the present review, the interaction between BC, host metabolism, and patients’ prognosis has been reviewed across available literature evidence. Conclusions: Obesity, metabolic syndrome, and insulin resistance are all involved in BC growth and could have a relevant impact on prognosis. All these factors act through a pro-inflammatory state, mediated by cytokines originated in fat tissue, and seem to be related to a higher risk of BC development and worse prognosis.
Collapse
Affiliation(s)
- Federica Biello
- Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy; (P.M.); (G.A.); (A.G.)
- Correspondence:
| | - Francesca Platini
- Division of Oncology, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (F.P.); (F.D.); (C.C.); (A.M.); (S.G.); (V.M.)
| | - Francesca D’Avanzo
- Division of Oncology, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (F.P.); (F.D.); (C.C.); (A.M.); (S.G.); (V.M.)
| | - Carlo Cattrini
- Division of Oncology, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (F.P.); (F.D.); (C.C.); (A.M.); (S.G.); (V.M.)
| | - Alessia Mennitto
- Division of Oncology, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (F.P.); (F.D.); (C.C.); (A.M.); (S.G.); (V.M.)
| | - Silvia Genestroni
- Division of Oncology, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (F.P.); (F.D.); (C.C.); (A.M.); (S.G.); (V.M.)
| | - Veronica Martini
- Division of Oncology, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (F.P.); (F.D.); (C.C.); (A.M.); (S.G.); (V.M.)
- Lab of Immuno-Oncology, CAAD, Center of Autoimmune and Allergic Disease, University of Eastern Piedmont, 28100 Novara, Italy
| | - Paolo Marzullo
- Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy; (P.M.); (G.A.); (A.G.)
- Division of General Medicine, IRCCS Istituto Auxologico Italiano, Ospedale S. Giuseppe, 28921 Piancavallo-Verbania, Italy
| | - Gianluca Aimaretti
- Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy; (P.M.); (G.A.); (A.G.)
| | - Alessandra Gennari
- Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy; (P.M.); (G.A.); (A.G.)
| |
Collapse
|
49
|
Vella V, De Francesco EM, Lappano R, Muoio MG, Manzella L, Maggiolini M, Belfiore A. Microenvironmental Determinants of Breast Cancer Metastasis: Focus on the Crucial Interplay Between Estrogen and Insulin/Insulin-Like Growth Factor Signaling. Front Cell Dev Biol 2020; 8:608412. [PMID: 33364239 PMCID: PMC7753049 DOI: 10.3389/fcell.2020.608412] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
The development and progression of the great majority of breast cancers (BCs) are mainly dependent on the biological action elicited by estrogens through the classical estrogen receptor (ER), as well as the alternate receptor named G-protein–coupled estrogen receptor (GPER). In addition to estrogens, other hormones and growth factors, including the insulin and insulin-like growth factor system (IIGFs), play a role in BC. IIGFs cooperates with estrogen signaling to generate a multilevel cross-communication that ultimately facilitates the transition toward aggressive and life-threatening BC phenotypes. In this regard, the majority of BC deaths are correlated with the formation of metastatic lesions at distant sites. A thorough scrutiny of the biological and biochemical events orchestrating metastasis formation and dissemination has shown that virtually all cell types within the tumor microenvironment work closely with BC cells to seed cancerous units at distant sites. By establishing an intricate scheme of paracrine interactions that lead to the expression of genes involved in metastasis initiation, progression, and virulence, the cross-talk between BC cells and the surrounding microenvironmental components does dictate tumor fate and patients’ prognosis. Following (i) a description of the main microenvironmental events prompting BC metastases and (ii) a concise overview of estrogen and the IIGFs signaling and their major regulatory functions in BC, here we provide a comprehensive analysis of the most recent findings on the role of these transduction pathways toward metastatic dissemination. In particular, we focused our attention on the main microenvironmental targets of the estrogen-IIGFs interplay, and we recapitulated relevant molecular nodes that orientate shared biological responses fostering the metastatic program. On the basis of available studies, we propose that a functional cross-talk between estrogens and IIGFs, by affecting the BC microenvironment, may contribute to the metastatic process and may be regarded as a novel target for combination therapies aimed at preventing the metastatic evolution.
Collapse
Affiliation(s)
- Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria Grazia Muoio
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy.,Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Livia Manzella
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico Vittorio Emanuele, Catania, Italy.,Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| |
Collapse
|
50
|
Oliverio A, Bruno E, Colombo M, Paradiso A, Tommasi S, Daniele A, Terribile DA, Magno S, Guarino D, Manoukian S, Peissel B, Radice P, Pasanisi P. BRCA1/2 Variants and Metabolic Factors: Results From a Cohort of Italian Female Carriers. Cancers (Basel) 2020; 12:E3584. [PMID: 33266155 PMCID: PMC7761428 DOI: 10.3390/cancers12123584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 11/26/2022] Open
Abstract
Women carriers of pathogenic variants (mutations) in the BRCA1/2 genes face a high lifetime risk of developing breast cancer (BC) and/or ovarian cancer (OC). However, metabolic factors may influence BRCA penetrance. We studied the association of metabolic factors with BRCA1/2 variants and the risk effect of metabolic exposures in relation to the position of the mutations within the BRCA1/2. Overall, 438 women carriers of BRCA1/2 mutations, aged 18-70, with or without a previous diagnosis of BC/OC and without metastases, who joined our randomized dietary trial, were included in the study. The pathogenic variants were divided, according to their predicted effect, into loss of function (LOF) and nonsynonymous variants. The association between metabolic exposures and variants were analyzed by a logistic regression model. LOF variant carriers showed higher levels of metabolic parameters compared to carriers of nonsynonymous variants. LOF variant carriers had significantly higher levels of plasma glucose and serum insulin than nonsynonymous variant carriers (p = 0.03 and p < 0.001, respectively). This study suggests that higher insulin levels are significantly associated with LOF variants. Further investigations are required to explore the association of metabolic factors with LOF variants and the mechanisms by which these factors may affect BRCA-related cancer risk.
Collapse
Affiliation(s)
- Andreina Oliverio
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy; (A.O.); (E.B.); (P.P.)
| | - Eleonora Bruno
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy; (A.O.); (E.B.); (P.P.)
| | - Mara Colombo
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy;
| | - Angelo Paradiso
- Experimental Oncology, Center for Study of Heredo-Familial Tumors, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, 70124 Bari, Italy; (A.P.); (A.D.)
| | - Stefania Tommasi
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, 70124 Bari, Italy;
| | - Antonella Daniele
- Experimental Oncology, Center for Study of Heredo-Familial Tumors, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, 70124 Bari, Italy; (A.P.); (A.D.)
| | - Daniela Andreina Terribile
- Università Cattolica S. Cuore, 00168 Rome, Italy; (D.A.T.); (D.G.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Stefano Magno
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | | | - Siranoush Manoukian
- Unit of Medical Genetics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy; (S.M.); (B.P.)
| | - Bernard Peissel
- Unit of Medical Genetics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy; (S.M.); (B.P.)
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy;
| | - Patrizia Pasanisi
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy; (A.O.); (E.B.); (P.P.)
| |
Collapse
|