1
|
Zhao Y, Chen Z, Dong R, Liu Y, Zhang Y, Guo Y, Yu M, Li X, Wang J. Multiomics analysis reveals the potential mechanism of high-fat diet in dextran sulfate sodium-induced colitis mice model. Food Sci Nutr 2024; 12:8309-8323. [PMID: 39479684 PMCID: PMC11521715 DOI: 10.1002/fsn3.4426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 11/02/2024] Open
Abstract
A high-fat diet (HFD) is recognized as an important contributor to inflammatory bowel disease (IBD). However, the precise underlying mechanism of HFD on IBD remains elusive. This study aimed to investigate the potential mechanism by which HFD affects IBD using 16S rRNA-sequencing and RNA-seq technology. Results indicated that HFD-treated mice exhibited notable alternations in the structure and composition of the gut microbiota, with some of these alternations being associated with the pathogenesis of IBD. Analysis of the colon transcriptome revealed 11 hub genes and 7 hub pathways among control, DSS-induced colitis, and HFD + DSS-treated groups. Further analysis explores the relationship between the hub pathways and genes, as well as the hub genes and gut microbiota. Overall, the findings indicate that the impact of HFD on DSS-induced colitis may be linked to intestinal dysbiosis and specific genes such as Abca8b, Ace2, Apoa1, Apoa4, Apoc3, Aspa, Dpp4, Maob, Slc34a2, Slc7a9, and Trpm6. These results provide valuable insights for determining potential therapeutic targets for addressing HFD-induced IBD.
Collapse
Affiliation(s)
- Yuyang Zhao
- Department of GastroenterologyChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| | - Zhimin Chen
- Department of PharmacologyCollege of Basic Medical Sciences, Jilin UniversityChangchunJilinChina
| | - Ruiyi Dong
- College of Physical Education, Hunan Normal UniversityChangshaChina
| | - Yufan Liu
- Department of PharmacologyCollege of Basic Medical Sciences, Jilin UniversityChangchunJilinChina
| | - Yixin Zhang
- Department of PharmacologyCollege of Basic Medical Sciences, Jilin UniversityChangchunJilinChina
| | - Yan Guo
- Department of PharmacologyCollege of Basic Medical Sciences, Jilin UniversityChangchunJilinChina
| | - Meiyi Yu
- Department of PharmacologyCollege of Basic Medical Sciences, Jilin UniversityChangchunJilinChina
| | - Xiang Li
- Department of PharmacologyCollege of Basic Medical Sciences, Jilin UniversityChangchunJilinChina
| | - Jiangbin Wang
- Department of GastroenterologyChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
2
|
Zhang C, Feng L, Wu P, Liu Y, Jin X, Ren H, Li H, Wu F, Zhou X, Jiang W. Establishing the link between D-mannose and juvenile grass carp ( Ctenopharyngodon idella): Improved growth and intestinal structure associated with endoplasmic reticulum stress, mitophagy, and apical junctional complexes. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:450-463. [PMID: 39315328 PMCID: PMC11417208 DOI: 10.1016/j.aninu.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/21/2024] [Accepted: 05/06/2024] [Indexed: 09/25/2024]
Abstract
D-mannose, essential for protein glycosylation, has been reported to have immunomodulatory effects and to maintain intestinal flora homeostasis. In addition to evaluating growth performance, we examined the impact of D-mannose on the structure of epithelial cells and apical junction complexes in the animal intestine. All 1800 grass carp (16.20 ± 0.01 g) were randomly divided into six treatments with six replicates of 50 fish each and fed with six different levels of D-mannose (0.52, 1.75, 3.02, 4.28, 5.50 and 6.78 g/kg diet) for 70 d. The study revealed that D-mannose increased feed intake (P < 0.001) but did not affect the percent weight gain (PWG), special growth rate, and feed conversion ratio (P > 0.05). D-mannose supplementation at 1.75 g/kg increased crude protein content in fish and lipid production value (P < 0.05). D-mannose supplementation at 4.28 g/kg increased intestinal length, intestinal weight and fold height of grass carp compared to the control group (P < 0.05). This improvement may be attributed to the phosphomannose isomerase (PMI)-mediated enhancement of glycolysis. This study found that D-mannose supplementation at 4.28 or 3.02 g/kg reduced serum diamine oxidase activity or D-lactate content (P < 0.05) and improved cellular and intercellular structures for the first time. The improvement of cellular redox homeostasis involves alleviating endoplasmic reticulum (ER) stress through the inositol-requiring enzyme 1 (IRE1), RNA-dependent protein kinase-like ER kinase (PERK), and activating transcription factor 6 (ATF6) signaling pathways. The alleviation of ER stress may be linked to the phosphomannomutase (PMM)-mediated enhancement of protein glycosylation. In addition, ubiquitin-dependent [PTEN-induced putative kinase 1 (PINK1)/Parkin] and ubiquitin-independent [BCL2-interacting protein 3-like (BNIP3L), BCL2-interacting protein 3 (BNIP3), and FUN14 domain containing 1 (FUNDC1)] mitophagy may play a role in maintaining cellular redox homeostasis. The enhancement of intercellular structures includes enhancing tight junction and adherent junction structures, which may be closely associated with the small Rho GTPase protein (RhoA)/the Rho-associated protein kinase (ROCK) signaling pathway. In conclusion, D-mannose improved intestinal cellular redox homeostasis associated with ER stress and mitophagy pathways, and enhanced intercellular structures related to tight junctions and adherent junctions. Furthermore, quadratic regression analysis of the PWG and intestinal reactive oxygen species content indicated that the optimal addition level of D-mannose for juvenile grass carp was 4.61 and 4.59 g/kg, respectively.
Collapse
Affiliation(s)
- Chong Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Xiaowan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongmei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hua Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Fali Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu 611130, China
| |
Collapse
|
3
|
Senthil Kumar KJ, Gokila Vani M, Dakpa G, Wang SY. Dietary limonene promotes gastrointestinal barrier function via upregulating tight/adherens junction proteins through cannabinoid receptor type-1 antagonistic mechanism and alters cellular metabolism in intestinal epithelial cells. Biofactors 2024. [PMID: 39143845 DOI: 10.1002/biof.2106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/25/2024] [Indexed: 08/16/2024]
Abstract
Limonene, a dietary monocyclic monoterpene commonly found in citrus fruits and various aromatic plants, has garnered increasing interest as a gastrointestinal protectant. This study aimed to assess the effects of limonene on intestinal epithelial barrier function and investigate the involvement of cannabinoid receptor type-1 (CB1R) in vitro. Additionally, the study focused on examining the metabolomic changes induced by limonene in the intestinal epithelial cells (Caco-2). Initial analysis of transepithelial electrical resistance (TEER) revealed that both l-limonene and d-limonene, isomers of limonene, led to a dose- and time-dependent increase in TEER in normal cells and those inflamed by pro-inflammatory cytokines mixture (CytoMix). Furthermore, both types of limonene reduced CytoMix-induced paracellular permeability, as demonstrated by a decrease in Lucifer yellow flux. Moreover, d-limonene and l-limonene treatment increased the expression of tight junction molecules (TJs) such as occludin, claudin-1, and ZO-1, at both the transcriptional and translational levels. d-Limonene upregulates E-cadherin, a molecule involved in adherens junctions (AJs). Mechanistic investigations demonstrated that d-limonene and l-limonene treatment significantly inhibited CB1R at the protein, while the mRNA level remained unchanged. Notably, the inhibitory effect of d-limonene on CB1R was remarkably similar to that of pharmacological CB1R antagonists, such as rimonabant and ORG27569. d-limonene also alters Caco-2 cell metabolites. A substantial reduction in β-glucose and 2-succinamate was detected, suggesting limonene may impact intestinal epithelial cells' glucose uptake and glutamate metabolism. These findings suggest that d-limonene's CB1R antagonistic property could effectively aid in the recovery of intestinal barrier damage, marking it a promising gastrointestinal protectant.
Collapse
Affiliation(s)
- K J Senthil Kumar
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Center for General Education, National Chung Hsing University, Taichung, Taiwan
| | - M Gokila Vani
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - Gyaltsen Dakpa
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Special Crop and Metabolome Discipline Cluster, Academy of Circle Economy, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
4
|
AlMarzooqi SK, Almarzooqi F, Sadida HQ, Jerobin J, Ahmed I, Abou-Samra AB, Fakhro KA, Dhawan P, Bhat AA, Al-Shabeeb Akil AS. Deciphering the complex interplay of obesity, epithelial barrier dysfunction, and tight junction remodeling: Unraveling potential therapeutic avenues. Obes Rev 2024; 25:e13766. [PMID: 38745386 DOI: 10.1111/obr.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/11/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Obesity stands as a formidable global health challenge, predisposing individuals to a plethora of chronic illnesses such as cardiovascular disease, diabetes, and cancer. A confluence of genetic polymorphisms, suboptimal dietary choices, and sedentary lifestyles significantly contribute to the elevated incidence of obesity. This multifaceted health issue profoundly disrupts homeostatic equilibrium at both organismal and cellular levels, with marked alterations in gut permeability as a salient consequence. The intricate mechanisms underlying these alterations have yet to be fully elucidated. Still, evidence suggests that heightened inflammatory cytokine levels and the remodeling of tight junction (TJ) proteins, particularly claudins, play a pivotal role in the manifestation of epithelial barrier dysfunction in obesity. Strategic targeting of proteins implicated in these pathways and metabolites such as short-chain fatty acids presents a promising intervention for restoring barrier functionality among individuals with obesity. Nonetheless, recognizing the heterogeneity among affected individuals is paramount; personalized medical interventions or dietary regimens tailored to specific genetic backgrounds and allergy profiles may prove indispensable. This comprehensive review delves into the nexus of obesity, tight junction remodeling, and barrier dysfunction, offering a critical appraisal of potential therapeutic interventions.
Collapse
Affiliation(s)
- Sara K AlMarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Fajr Almarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ikhlak Ahmed
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| |
Collapse
|
5
|
Kim S, Seo SU, Kweon MN. Gut microbiota-derived metabolites tune host homeostasis fate. Semin Immunopathol 2024; 46:2. [PMID: 38990345 PMCID: PMC11239740 DOI: 10.1007/s00281-024-01012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/15/2024] [Indexed: 07/12/2024]
Abstract
The gut microbiota, housing trillions of microorganisms within the gastrointestinal tract, has emerged as a critical regulator of host health and homeostasis. Through complex metabolic interactions, these microorganisms produce a diverse range of metabolites that substantially impact various physiological processes within the host. This review aims to delve into the intricate relationships of gut microbiota-derived metabolites and their influence on the host homeostasis. We will explore how these metabolites affect crucial aspects of host physiology, including metabolism, mucosal integrity, and communication among gut tissues. Moreover, we will spotlight the potential therapeutic applications of targeting these metabolites to restore and sustain host equilibrium. Understanding the intricate interplay between gut microbiota and their metabolites is crucial for developing innovative strategies to promote wellbeing and improve outcomes of chronic diseases.
Collapse
Affiliation(s)
- Seungil Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine / Asan Medical Center, Seoul, Republic of Korea
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine / Asan Medical Center, Seoul, Republic of Korea.
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Massier L, Musat N, Stumvoll M, Tremaroli V, Chakaroun R, Kovacs P. Tissue-resident bacteria in metabolic diseases: emerging evidence and challenges. Nat Metab 2024; 6:1209-1224. [PMID: 38898236 DOI: 10.1038/s42255-024-01065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Although the impact of the gut microbiome on health and disease is well established, there is controversy regarding the presence of microorganisms such as bacteria and their products in organs and tissues. However, recent contamination-aware findings of tissue-resident microbial signatures provide accumulating evidence in support of bacterial translocation in cardiometabolic disease. The latter provides a distinct paradigm for the link between microbial colonizers of mucosal surfaces and host metabolism. In this Perspective, we re-evaluate the concept of tissue-resident bacteria including their role in metabolic low-grade tissue and systemic inflammation. We examine the limitations and challenges associated with studying low bacterial biomass samples and propose experimental and analytical strategies to overcome these issues. Our Perspective aims to encourage further investigation of the mechanisms linking tissue-resident bacteria to host metabolism and their potentially actionable health implications for prevention and treatment.
Collapse
Affiliation(s)
- Lucas Massier
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Niculina Musat
- Aarhus University, Department of Biology, Section for Microbiology, Århus, Denmark
| | - Michael Stumvoll
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
7
|
Sun A, Yang H, Li T, Luo J, Zhou L, Chen R, Han L, Lin Y. Molecular mechanisms, targets and clinical potential of berberine in regulating metabolism: a review focussing on databases and molecular docking studies. Front Pharmacol 2024; 15:1368950. [PMID: 38957396 PMCID: PMC11217548 DOI: 10.3389/fphar.2024.1368950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Background: Metabolic imbalance is the common basis of many diseases. As natural isoquinoline alkaloid, berberine (BBR) has shown great promise in regulating glucose and lipids metabolism and treating metabolic disorders. However, the related mechanism still lacks systematic research. Aim: To discuss the role of BBR in the whole body's systemic metabolic regulation and further explore its therapeutic potential and targets. Method: Based on animal and cell experiments, the mechanism of BBR regulating systemic metabolic processes is reviewed. Potential metabolism-related targets were summarized using Therapeutic Target Database (TTD), DrugBank, GeneCards, and cutting-edge literature. Molecular modeling was applied to explore BBR binding to the potential targets. Results: BBR regulates the whole-body metabolic response including digestive, circulatory, immune, endocrine, and motor systems through adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), sirtuin (SIRT)1/forkhead box O (FOXO)1/sterol regulatory element-binding protein (SREBP)2, nuclear factor erythroid 2-related factor (Nrf) 2/heme oxygenase (HO)-1, and other signaling pathways. Through these reactions, BBR exerts hypoglycemic, lipid-regulating, anti-inflammatory, anti-oxidation, and immune regulation. Molecular docking results showed that BBR could regulate metabolism targeting FOXO3, Nrf2, NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione peroxidase (Gpx) 4 and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA). Evaluating the target clinical effects, we found that BBR has the therapeutic potential of anti-aging, anti-cancer, relieving kidney disease, regulating the nervous system, and alleviating other chronic diseases. Conclusion: This review elucidates the interaction between potential targets and small molecular metabolites by exploring the mechanism of BBR regulating metabolism. That will help pharmacologists to identify new promising metabolites interacting with these targets.
Collapse
Affiliation(s)
- Aru Sun
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haoyu Yang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Li
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinli Luo
- China Traditional Chinese Medicine Holdings Co. Limited, Guangdong e-fong Pharmaceutical Co., Ltd., Foshan, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Zhou
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Chen
- College of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Lin Han
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiqun Lin
- Department of Endocrinology, Guang’anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Sharma K, Sharma A, Bhatnagar P. Combined effect of polystyrene nanoplastic and di-n-butyl phthalate on testicular health of male Swiss albino mice: analysis of sperm-related parameters and potential toxic effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23680-23696. [PMID: 38427170 DOI: 10.1007/s11356-024-32697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Plastics, especially polystyrene nanoplastic particles (PSNPs), are known for their durability and absorption properties, allowing them to interact with environmental pollutants such as di-n-butyl phthalate (DBP). Previous research has highlighted the potential of these particles as carriers for various pollutants, emphasizing the need to understand their environmental impact comprehensively. This study focuses on the subchronic exposure of male Swiss albino mice to PSNP and DBP, aiming to investigate their reproductive toxicity between these pollutants in mammalian models. The primary objective of this study is to examine the reproductive toxicity resulting from simultaneous exposure to PSNP and DBP in male Swiss albino mice. The study aims to analyze sperm parameters, measure antioxidant enzyme activity, and conduct histopathological and morphometric examinations of the testis. By investigating the individual and combined effects of PSNP and DBP, the study seeks to gain insights into their impact on the reproductive profile of male mice, emphasizing potential synergistic interactions between these environmental pollutants. Male Swiss albino mice were subjected to subchronic exposure (60 days) of PSNP (0.2 mg/m, 50 nm size) and DBP (900 mg/kg bw), both individually and in combination. Various parameters, including sperm parameters, antioxidant enzyme activity, histopathological changes, and morphometric characteristics of the testis, were evaluated. The Johnsen scoring system and histomorphometric parameters were employed for a comprehensive assessment of spermatogenesis and testicular structure. The study revealed non-lethal effects within the tested doses of PSNP and DBP alone and in combination, showing reductions in body weight gain and testis weight compared to the control. Individual exposures and the combination group exhibited adverse effects on sperm parameters, with the combination exposure demonstrating more severe outcomes. Structural abnormalities, including vascular congestion, Leydig cell hyperplasia, and the extensive congestion in tunica albuginea along with both ST and Leydig cell damage, were observed in the testis, underscoring the reproductive toxicity potential of PSNP and DBP. The Johnsen scoring system and histomorphometric parameters confirmed these findings, providing interconnected results aligning with observed structural abnormalities. The study concludes that simultaneous exposure to PSNP and DBP induces reproductive toxicity in male Swiss albino mice. The combination of these environmental pollutants leads to more severe disruptions in sperm parameters, testicular structure, and antioxidant defense mechanisms compared to individual exposures. The findings emphasize the importance of understanding the interactive mechanisms between different environmental pollutants and their collective impact on male reproductive health. The use of the Johnsen scoring system and histomorphometric parameters provides a comprehensive evaluation of spermatogenesis and testicular structure, contributing valuable insights to the field of environmental toxicology.
Collapse
Affiliation(s)
- Kirti Sharma
- Department of Zoology, IIS (Deemed to Be University), Jaipur, Rajasthan, India
| | - Anju Sharma
- Department of Zoology, IIS (Deemed to Be University), Jaipur, Rajasthan, India.
| | - Pradeep Bhatnagar
- Department of Zoology, IIS (Deemed to Be University), Jaipur, Rajasthan, India
| |
Collapse
|
9
|
Kushkevych I, Martínková K, Mráková L, Giudici F, Baldi S, Novak D, Gajdács M, Vítězová M, Dordevic D, Amedei A, Rittmann SKMR. Comparison of microbial communities and the profile of sulfate-reducing bacteria in patients with ulcerative colitis and their association with bowel diseases: a pilot study. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:79-89. [PMID: 38486888 PMCID: PMC10939707 DOI: 10.15698/mic2024.03.817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/17/2024]
Abstract
Considerable evidence has accumulated regarding the molecular relationship between gut microbiota (GM) composition and the onset (clinical presentation and prognosis of ulcerative colitis (UC)). In addition, it is well documented that short-chain fatty acid (SCFA)-producing bacteria may play a fundamental role in maintaining an anti-inflammatory intestinal homeostasis, but sulfate- and sulfite reducing bacteria may be responsible for the production of toxic metabolites, such as hydrogen sulfide and acetate. Hence, the present study aimed to assess the GM composition - focusing on sulfate-reducing bacteria (SRB) - in patients with severe, severe-active and moderate UC. Each one of the six enrolled patients provided two stool samples in the following way: one sample was cultivated in a modified SRB-medium before 16S rRNA sequencing and the other was not cultivated. Comparative phylogenetic analysis was conducted on each sample. Percentage of detected gut microbial genera showed considerable variation based on the patients' disease severity and cultivation in the SRB medium. In detail, samples without cultivation from patients with moderate UC showed a high abundance of the genera Bacteroides, Bifidobacterium and Ruminococcus, but after SRB cultivation, the dominant genera were Bacteroides, Klebsiella and Bilophila. On the other hand, before SRB cultivation, the main represented genera in patients with severe UC were Escherichia-Shigella, Proteus, Methanothermobacter and Methanobacterium. However, after incubation in the SRB medium Bacteroides, Proteus, Alistipes and Lachnoclostridium were predominant. Information regarding GM compositional changes in UC patients may aid the development of novel therapeutic strategies (e.g., probiotic preparations containing specific bacterial strains) to counteract the mechanisms of virulence of harmful bacteria and the subsequent inflammatory response that is closely related to the pathogenesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Kristýna Martínková
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Lenka Mráková
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Francesco Giudici
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - David Novak
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6720 Szeged, Hungary
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Dani Dordevic
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Simon K.-M. R. Rittmann
- Department of Functional and Evolutionary Ecology, Archaea Physiology & Biotechnology Group, Universität Wien, 1030 Wien, Austria
| |
Collapse
|
10
|
Carvalho LRRA, Boeder AM, Shimari M, Kleschyov AL, Esberg A, Johansson I, Weitzberg E, Lundberg JO, Carlstrom M. Antibacterial mouthwash alters gut microbiome, reducing nutrient absorption and fat accumulation in Western diet-fed mice. Sci Rep 2024; 14:4025. [PMID: 38369624 PMCID: PMC10874955 DOI: 10.1038/s41598-024-54068-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/08/2024] [Indexed: 02/20/2024] Open
Abstract
Prolonged use of antibacterial mouthwash is linked to an increased risk of systemic disease. We aimed to investigate if disturbing the oral microbiota would impact the lower gut microbiome with functional effects in diet-induced obesity. Mice were exposed to oral chlorhexidine and fed a Western diet (WD). Food intake and weight gain were monitored, and metabolic function, blood pressure, and microbiota were analyzed. Chlorhexidine reduced the number of viable bacteria in the mouth and lowered species richness in the gut but with proportional enrichment of some bacteria linked to metabolic pathways. In mice fed a Western diet, chlorhexidine reduced weight gain, body fat, steatosis, and plasma insulin without changing caloric intake, while increasing colon triglycerides and proteins, suggesting reduced absorption of these nutrients. The mechanisms behind these effects as well as the link between the oral microbiome and small intestinal function need to be pinpointed. While the short-term effects of chlorhexidine in this model appear beneficial, potential long-term disruptions in the oral and gut microbiota and possible malabsorption should be considered.
Collapse
Affiliation(s)
| | - Ariela M Boeder
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, 5B, 17165, Solna, Stockholm, Sweden
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Miho Shimari
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, 5B, 17165, Solna, Stockholm, Sweden
| | - Andrei L Kleschyov
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, 5B, 17165, Solna, Stockholm, Sweden
| | - Anders Esberg
- Department of Odontology, Umeå University, Umeå, Sweden
| | | | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, 5B, 17165, Solna, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska Hospital, Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, 5B, 17165, Solna, Stockholm, Sweden.
| | - Mattias Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, 5B, 17165, Solna, Stockholm, Sweden.
| |
Collapse
|
11
|
Garcia-Morena D, Fernandez-Cantos MV, Escalera SL, Lok J, Iannone V, Cancellieri P, Maathuis W, Panagiotou G, Aranzamendi C, Aidy SE, Kolehmainen M, El-Nezami H, Wellejus A, Kuipers OP. In Vitro Influence of Specific Bacteroidales Strains on Gut and Liver Health Related to Metabolic Dysfunction-Associated Fatty Liver Disease. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10219-1. [PMID: 38319537 DOI: 10.1007/s12602-024-10219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has become a major health risk and a serious worldwide issue. MAFLD typically arises from aberrant lipid metabolism, insulin resistance, oxidative stress, and inflammation. However, subjacent causes are multifactorial. The gut has been proposed as a major factor in health and disease, and over the last decade, bacterial strains with potentially beneficial effects on the host have been identified. In vitro cell models have been commonly used as an early step before in vivo drug assessment and can confer complementary advantages in gut and liver health research. In this study, several selected strains of the order Bacteroidales were used in a three-cell line in vitro analysis (HT-29, Caco-2, and HepG2 cell lines) to investigate their potential as new-generation probiotics and microbiota therapeutics. Antimicrobial activity, a potentially useful trait, was studied, and the results showed that Bacteroidales can be a source of either wide- or narrow-spectrum antimicrobials targeting other closely related strains. Moreover, Bacteroides sp. 4_1_36 induced a significant decrease in gut permeability, as evidenced by the high TEER values in the Caco-2 monolayer assay, as well as a reduction in free fatty acid accumulation and improved fatty acid clearance in a steatosis HepG2 model. These results suggest that Bacteroidales may spearhead the next generation of probiotics to prevent or diminish MAFLD.
Collapse
Affiliation(s)
- Diego Garcia-Morena
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Maria Victoria Fernandez-Cantos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Silvia Lopez Escalera
- Chr. Hansen A/S, Bøge Allé 10-12, 2970, Hørsholm, Denmark
- Friedrich-Schiller Universität Jena, Fakultät für Biowissenschaften, 18K, 07743, Bachstraβe, Germany
| | - Johnson Lok
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200, Kuopio, Finland
| | - Valeria Iannone
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200, Kuopio, Finland
| | - Pierluca Cancellieri
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Willem Maathuis
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745, Jena, Germany
- Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
- Faculty of Biological Sciences, Friedrich Schiller University, 07745, Jena, Germany
| | - Carmen Aranzamendi
- Groningen Biomolecular Sciences and Biotechnology Institute, Host-Microbe Metabolic Interactions, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Sahar El Aidy
- Groningen Biomolecular Sciences and Biotechnology Institute, Host-Microbe Metabolic Interactions, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Marjukka Kolehmainen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200, Kuopio, Finland
| | - Hani El-Nezami
- Molecular and Cell Biology Division, School of Biological Sciences, University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| | - Anja Wellejus
- Chr. Hansen A/S, Bøge Allé 10-12, 2970, Hørsholm, Denmark
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
12
|
Ni H, Liu M, Cao M, Zhang L, Zhao Y, Yi L, Li Y, Liu L, Wang P, Du Q, Zhou H, Dong Y. Sinomenine regulates the cholinergic anti-inflammatory pathway to inhibit TLR4/NF-κB pathway and protect the homeostasis in brain and gut in scopolamine-induced Alzheimer's disease mice. Biomed Pharmacother 2024; 171:116190. [PMID: 38278026 DOI: 10.1016/j.biopha.2024.116190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Sinomenine (SIN), an alkaloid extracted from the Chinese herbal medicine Sinomenium acutum, has great potential in anti-inflammatory, immune regulation, analgesic and sedative, and is already a clinical drug for the treatment of rheumatoid arthritis in China. Our previous studies show SIN inhibits inflammation by regulating ɑ7nAChR, a key receptor of cholinergic anti-inflammatory pathway (CAP), which plays an important role in regulating peripheral and central nervous system inflammation. Growing evidence supports the cholinergic dysregulation and inflammatory responses play the key role in the pathogenesis of AD. The intervention effects of SIN on AD by regulating CAP and homeostasis in brain and gut were analyzed for the first time in the present study using scopolamine-induced AD model mice. Behavioral tests were used to assess the cognitive performance. The neurons loss, cholinergic function, inflammation responses, biological barrier function in the mouse brain and intestinal tissues were evaluated through a variety of techniques, and the gut microbiota was detected using 16SrRNA sequencing. The results showed that SIN significantly inhibited the cognitive decline, dysregulation of cholinergic system, peripheral and central inflammation, biological barrier damage as well as intestinal flora disturbance caused by SCOP in mice. More importantly, SIN effectively regulated CAP to suppress the activation of TLR4/NF-κB and protect the homeostasis in brain and gut to alleviate cognitive impairment.
Collapse
Affiliation(s)
- Haojie Ni
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Muqiu Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Mindie Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Lingyu Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yijing Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Lang Yi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yanwu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Peixun Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Qun Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Yan Dong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| |
Collapse
|
13
|
Barbero Mazzucca C, Cappellano G, Chiocchetti A. Nutrition, Immunity and Aging: Current Scenario and Future Perspectives in Neurodegenerative Diseases. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:573-587. [PMID: 37138438 DOI: 10.2174/1871527322666230502123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/17/2023] [Accepted: 02/14/2023] [Indexed: 05/05/2023]
Abstract
Aging is a gradual decline of physiological function and tissue homeostasis and, in many instances, is related to increased (neuro)-degeneration, together with inflammation, becoming one of the most important risks for developing neurodegenerative diseases. Certain individual nutrients or foods in combination may counteract aging and associated neurodegenerative diseases by promoting a balance between the pro- and anti-inflammatory responses. Thus, nutrition could represent a powerful modulator of this fine balance, other than a modifiable risk factor to contrast inflammaging. This narrative review explores from a broad perspective the impact of nutrition on the hallmarks of aging and inflammation in Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic Lateral Sclerosis Syndrome (ALS), starting from nutrients up to single foods and complex dietary patterns.
Collapse
Affiliation(s)
- Camilla Barbero Mazzucca
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
14
|
Donath S, Seidler AE, Mundin K, Wenzel J, Scholz J, Gentemann L, Kalies J, Faix J, Ngezahayo A, Bleich A, Heisterkamp A, Buettner M, Kalies S. Epithelial restitution in 3D - Revealing biomechanical and physiochemical dynamics in intestinal organoids via fs laser nanosurgery. iScience 2023; 26:108139. [PMID: 37867948 PMCID: PMC10585398 DOI: 10.1016/j.isci.2023.108139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023] Open
Abstract
Intestinal organoids represent a three-dimensional cell culture system mimicking the mammalian intestine. The application of single-cell ablation for defined wounding via a femtosecond laser system within the crypt base allowed us to study cell dynamics during epithelial restitution. Neighboring cells formed a contractile actin ring encircling the damaged cell, changed the cellular aspect ratio, and immediately closed the barrier. Using traction force microscopy, we observed major forces at the ablation site and additional forces on the crypt sides. Inhibitors of the actomyosin-based mobility of the cells led to the failure of restoring the barrier. Close to the ablation site, high-frequency calcium flickering and propagation of calcium waves occured that synchronized with the contraction of the epithelial layer. We observed an increased signal and nuclear translocation of YAP-1. In conclusion, our approach enabled, for the first time, to unveil the intricacies of epithelial restitution beyond in vivo models by employing precise laser-induced damage in colonoids.
Collapse
Affiliation(s)
- Sören Donath
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Anna Elisabeth Seidler
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Karlina Mundin
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Johannes Wenzel
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Jonas Scholz
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Lara Gentemann
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
| | - Julia Kalies
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Anaclet Ngezahayo
- Institute of Biophysics, Leibniz University Hannover, 30167 Hannover, Germany
| | - André Bleich
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Manuela Buettner
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Stefan Kalies
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
| |
Collapse
|
15
|
D'Antongiovanni V, Segnani C, Ippolito C, Antonioli L, Colucci R, Fornai M, Bernardini N, Pellegrini C. Pathological Remodeling of the Gut Barrier as a Prodromal Event of High-Fat Diet-Induced Obesity. J Transl Med 2023; 103:100194. [PMID: 37290605 DOI: 10.1016/j.labinv.2023.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
Intestinal barrier alterations represent a primum movens in obesity and related intestinal dysfunctions. However, whether gut barrier remodeling represents prodromal events in obesity before weight gain, metabolic alterations, and systemic inflammation remains unclear. Herein, we examined morphologic changes in the gut barrier in a mouse model of high-fat diet (HFD) since the earliest phases of diet assumption. C57BL/6J mice were fed with standard diet (SD) or HFD for 1, 2, 4, or 8 weeks. Remodeling of intestinal epithelial barrier, inflammatory infiltrate, and collagen deposition in the colonic wall was assessed by histochemistry and immunofluorescence analysis. Obese mice displayed increased body and epididymal fat weight along with increased plasma resistin, IL-1β, and IL-6 levels after 8 weeks of HFD. Starting from 1 week of HFD, mice displayed (1) a decreased claudin-1 expression in lining epithelial cells, (2) an altered mucus in goblet cells, (3) an increase in proliferating epithelial cells in colonic crypts, (4) eosinophil infiltration along with an increase in vascular P-selectin, and (5) deposition of collagen fibers. HFD intake is associated with morphologic changes in the large bowel at mucosal and submucosal levels. In particular, the main changes include alterations in the mucous layer and intestinal epithelial barrier integrity and activation of mucosal defense-enhanced fibrotic deposition. These changes represent early events occurring before the development of obesity condition that could contribute to compromising the intestinal mucosal barrier and functions, opening the way for systemic dissemination.
Collapse
Affiliation(s)
- Vanessa D'Antongiovanni
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cristina Segnani
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health," University of Pisa, Pisa, Italy.
| | - Carolina Pellegrini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
Sun J, Germain A, Kaglan G, Servant F, Lelouvier B, Federici M, Fernandez-Real JM, Sala DT, Neagoe RM, Bouloumié A, Burcelin R. The visceral adipose tissue bacterial microbiota provides a signature of obesity based on inferred metagenomic functions. Int J Obes (Lond) 2023; 47:1008-1022. [PMID: 37488221 DOI: 10.1038/s41366-023-01341-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Metabolic inflammation mediated obesity requires bacterial molecules to trigger immune and adipose cells leading to inflammation and adipose depot development. In addition to the well-established gut microbiota dysbiosis, a leaky gut has been identified in patients with obesity and animal models, characterized by the presence of a tissue microbiota in the adipose fat pads. METHODS To determine its potential role, we sequenced the bacterial 16 S rRNA genes in the visceral adipose depot of patients with obesity. Taking great care (surgical, biochemical, and bioinformatic) to avoid environmental contaminants. We performed statistical discriminant analyses to identify specific signatures and constructed network of interactions between variables. RESULTS The data showed that a specific 16SrRNA gene signature was composed of numerous bacterial families discriminating between lean versus patients with obesity and people with severe obesity. The main discriminant families were Burkholderiaceae, Yearsiniaceae, and Xanthomonadaceae, all of which were gram-negative. Interestingly, the Morganellaceae were totally absent from people without obesity while preponderant in all in patients with obesity. To generate hypotheses regarding their potential role, we inferred metabolic pathways from the 16SrRNA gene signatures. We identified several pathways associated with adenosyl-cobalamine previously described to be linked with adipose tissue development. We further identified chorismate biosynthesis, which is involved in aromatic amino-acid metabolism and could play a role in fat pad development. This innovative approach generates novel hypotheses regarding the gut to adipose tissue axis. CONCLUSIONS This innovative approach generates novel hypotheses regarding the gut to adipose tissue axis in obesity and notably the potential role of tissue microbiota.
Collapse
Affiliation(s)
- Jiuwen Sun
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), F-31432, Toulouse Cedex 4, France
| | - Alberic Germain
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), F-31432, Toulouse Cedex 4, France
| | - Gracia Kaglan
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), F-31432, Toulouse Cedex 4, France
| | | | | | - Massimo Federici
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - José Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, University Hospital of Girona 'Dr Josep Trueta'; Institut d'Investigacio Biomedica de Girona IdibGi; and CIBER Fisiopatologia de la Obesidad y Nutricion, Girona, Spain
| | - Daniela Tatiana Sala
- University of Medicine Pharmacy, Science and Technology "George Emil Palade" Tîrgu Mures, Second Department of Surgery, Emergency Mureş County Hospital, Târgu Mureș, Romania
| | - Radu Mircea Neagoe
- University of Medicine Pharmacy, Science and Technology "George Emil Palade" Tîrgu Mures, Second Department of Surgery, Emergency Mureş County Hospital, Târgu Mureș, Romania
| | - Anne Bouloumié
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), F-31432, Toulouse Cedex 4, France
| | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), F-31432, Toulouse Cedex 4, France.
| |
Collapse
|
17
|
Tang H, Li H, Li D, Peng J, Zhang X, Yang W. The Gut Microbiota of Pregnant Rats Alleviates Fetal Growth Restriction by Inhibiting the TLR9/MyD88 Pathway. J Microbiol Biotechnol 2023; 33:1213-1227. [PMID: 37416999 PMCID: PMC10580896 DOI: 10.4014/jmb.2304.04020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 07/08/2023]
Abstract
Fetal growth restriction (FGR) is a prevalent obstetric condition. This study aimed to investigate the role of Toll-like receptor 9 (TLR9) in regulating the inflammatory response and gut microbiota structure in FGR. An FGR animal model was established in rats, and ODN1668 and hydroxychloroquine (HCQ) were administered. Changes in gut microbiota structure were assessed using 16S rRNA sequencing, and fecal microbiota transplantation (FMT) was conducted. HTR-8/Svneo cells were treated with ODN1668 and HCQ to evaluate cell growth. Histopathological analysis was performed, and relative factor levels were measured. The results showed that FGR rats exhibited elevated levels of TLR9 and myeloid differentiating primary response gene 88 (MyD88). In vitro experiments demonstrated that TLR9 inhibited trophoblast cell proliferation and invasion. TLR9 upregulated lipopolysaccharide (LPS), LPS-binding protein (LBP), interleukin (IL)-1β and tumor necrosis factor (TNF)-α while downregulating IL-10. TLR9 activated the TARF3-TBK1-IRF3 signaling pathway. In vivo experiments showed HCQ reduced inflammation in FGR rats, and the relative cytokine expression followed a similar trend to that observed in vitro. TLR9 stimulated neutrophil activation. HCQ in FGR rats resulted in changes in the abundance of Eubacterium_coprostanoligenes_group at the family level and the abundance of Eubacterium_coprostanoligenes_group and Bacteroides at the genus level. TLR9 and associated inflammatory factors were correlated with Bacteroides, Prevotella, Streptococcus, and Prevotellaceae_Ga6A1_group. FMT from FGR rats interfered with the therapeutic effects of HCQ. In conclusion, our findings suggest that TLR9 regulates the inflammatory response and gut microbiota structure in FGR, providing new insights into the pathogenesis of FGR and suggesting potential therapeutic interventions.
Collapse
Affiliation(s)
- Hui Tang
- Department of Maternal and Child Health, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, 416 Chengnan Dong Lu, Yuhua District, 410007, Changsha, Hunan, P.R. China
| | - Hanmei Li
- Department of Maternal and Child Health, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, 416 Chengnan Dong Lu, Yuhua District, 410007, Changsha, Hunan, P.R. China
| | - Dan Li
- Department of Maternal and Child Health, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, 416 Chengnan Dong Lu, Yuhua District, 410007, Changsha, Hunan, P.R. China
| | - Jing Peng
- Department of Maternal and Child Health, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, 416 Chengnan Dong Lu, Yuhua District, 410007, Changsha, Hunan, P.R. China
| | - Xian Zhang
- Department of Maternal and Child Health, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, 416 Chengnan Dong Lu, Yuhua District, 410007, Changsha, Hunan, P.R. China
| | - Weitao Yang
- Department of Maternal and Child Health, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, 416 Chengnan Dong Lu, Yuhua District, 410007, Changsha, Hunan, P.R. China
| |
Collapse
|
18
|
Rosendo-Silva D, Viana S, Carvalho E, Reis F, Matafome P. Are gut dysbiosis, barrier disruption, and endotoxemia related to adipose tissue dysfunction in metabolic disorders? Overview of the mechanisms involved. Intern Emerg Med 2023; 18:1287-1302. [PMID: 37014495 PMCID: PMC10412677 DOI: 10.1007/s11739-023-03262-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/11/2023] [Indexed: 04/05/2023]
Abstract
Recently, compelling evidence points to dysbiosis and disruption of the epithelial intestinal barrier as major players in the pathophysiology of metabolic disorders, such as obesity. Upon the intestinal barrier disruption, components from bacterial metabolism and bacteria itself can reach peripheral tissues through circulation. This has been associated with the low-grade inflammation that characterizes obesity and other metabolic diseases. While circulating bacterial DNA has been postulated as a common feature of obesity and even type 2 diabetes, almost no focus has been given to the existence and effects of bacteria in peripheral tissues, namely the adipose tissue. As a symbiont population, it is expected that gut microbiota modulate the immunometabolism of the host, thus influencing energy balance mechanisms and inflammation. Gut inflammatory signals cause direct deleterious inflammatory responses in adipose tissue and may also affect key gut neuroendocrine mechanisms governing nutrient sensing and energy balance, like incretins and ghrelin, which play a role in the gut-brain-adipose tissue axis. Thus, it is of major importance to disclose how gut microbiota and derived signals modulate neuroendocrine and inflammatory pathways, which contribute to the dysfunction of adipose tissue and to the metabolic sequelae of obesity and related disorders. This review summarizes the current knowledge regarding these topics and identifies new perspectives in this field of research, highlighting new pathways toward the reduction of the inflammatory burden of metabolic diseases.
Collapse
Affiliation(s)
- Daniela Rosendo-Silva
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Sofia Viana
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Eugénia Carvalho
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Center of Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paulo Matafome
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal.
- Faculty of Medicine, Pole III of University of Coimbra, Subunit 1, 1st floor, Azinhaga de Santa Comba, Celas, 3000-354, Coimbra, Portugal.
| |
Collapse
|
19
|
YAMASAKI M, MIYAMOTO Y, OGAWA K, NISHIYAMA K, TSEND-AYUSH C, LI Y, MATSUSAKI T, NAKANO T, TAKESHITA M, ARIMA Y. Lactiplantibacillus plantarum 06CC2 upregulates intestinal ZO-1 protein and bile acid metabolism in Balb/c mice fed high-fat diet. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 43:13-22. [PMID: 38188659 PMCID: PMC10767321 DOI: 10.12938/bmfh.2023-002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/11/2023] [Indexed: 01/09/2024]
Abstract
The effects of Lactiplantibacillus plantarum 06CC2 (LP06CC2), which was isolated from a Mongolian dairy product, on lipid metabolism and intestinal tight junction-related proteins in Balb/c mice fed a high-fat diet (HFD) were evaluated. The mice were fed the HFD for eight weeks, and the plasma and hepatic lipid parameters, as well as the intestinal tight junction-related factors, were evaluated. LP06CC2 slightly reduced the adipose tissue mass. Further, it dose-dependently decreased plasma total cholesterol (TC). The HFD tended to increase the plasma level of endotoxin and suppressed intestinal ZO-1 expression, whereas a low LP06CC2 dose increased ZO-1 expression and tended to reduce the plasma lipopolysaccharide level. Furthermore, a low LP06CC2 dose facilitated a moderate accumulation of Lactobacillales, a significant decrease in Clostridium cluster IV, and an increase in Clostridium cluster XVIII. The results obtained from analyzing the bile acids (BAs) in feces and cecum contents exhibited a decreasing trend for secondary and conjugated BAs in the low LP06CC2-dose group. Moreover, a high LP06CC2 dose caused excess accumulation of Lactobacillales and failed to increase intestinal ZO-1 and occludin expression, while the fecal butyrate level increased dose dependently in the LP06CC2-fed mice. Finally, an appropriate LP06CC2 dose protected the intestinal barrier function from the HFD and modulated BA metabolism.
Collapse
Affiliation(s)
- Masao YAMASAKI
- Graduate School of Agriculture, University of Miyazaki, 1-1
Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Yuko MIYAMOTO
- Graduate School of Agriculture, University of Miyazaki, 1-1
Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Kenjirou OGAWA
- Organization for Promotion of Tenure Track, University of
Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Kazuo NISHIYAMA
- Graduate School of Agriculture, University of Miyazaki, 1-1
Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Chuluunbat TSEND-AYUSH
- School of Industrial Technology, Mongolian University of
Science and Technology, P.O. Box-46/520, Baga Toiruu, Sukhbaatar district, Ulaanbaatar-46,
Mongolia
| | - Yiran LI
- Research and Development Division, Minami Nihon Rakuno Kyodo
Co., Ltd., 5282 Takagi, Miyakonojo, Miyazaki 885-0003, Japan
| | - Tatsuya MATSUSAKI
- Research and Development Division, Minami Nihon Rakuno Kyodo
Co., Ltd., 5282 Takagi, Miyakonojo, Miyazaki 885-0003, Japan
| | - Tomoki NAKANO
- Research and Development Division, Minami Nihon Rakuno Kyodo
Co., Ltd., 5282 Takagi, Miyakonojo, Miyazaki 885-0003, Japan
| | - Masahiko TAKESHITA
- Research and Development Division, Minami Nihon Rakuno Kyodo
Co., Ltd., 5282 Takagi, Miyakonojo, Miyazaki 885-0003, Japan
| | - Yuo ARIMA
- Research and Development Division, Minami Nihon Rakuno Kyodo
Co., Ltd., 5282 Takagi, Miyakonojo, Miyazaki 885-0003, Japan
| |
Collapse
|
20
|
Dietary Supplement, Containing the Dry Extract of Curcumin, Emblica and Cassia, Counteracts Intestinal Inflammation and Enteric Dysmotility Associated with Obesity. Metabolites 2023; 13:metabo13030410. [PMID: 36984850 PMCID: PMC10058382 DOI: 10.3390/metabo13030410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Intestinal epithelial barrier (IEB) impairment and enteric inflammation are involved in the onset of obesity and gut-related dysmotility. Dietary supplementation with natural plant extracts represents a useful strategy for the management of body weight gain and systemic inflammation associated with obesity. Here, we evaluate the efficacy of a food supplement containing the dry extract of Curcumin, Emblica and Cassia in counteracting enteric inflammation and motor abnormalities in a mouse model of obesity, induced by a high-fat diet (HFD). Male C57BL/6 mice, fed with standard diet (SD) or HFD, were treated with a natural mixture (Curcumin, Emblica and Cassia). After 8 weeks, body weight, BMI, liver and spleen weight, along with metabolic parameters and colonic motor activity were evaluated. Additionally, plasma LBP, fecal calprotectin, colonic levels of MPO and IL-1β, as well as the expression of occludin, TLR-4, MYD88 and NF-κB were investigated. Plant-based food supplement administration (1) counteracted the increase in body weight, BMI and metabolic parameters, along with a reduction in spleen and liver weight; (2) showed strengthening effects on the IEB integrity; and (3) reduced enteric inflammation and oxidative stress, as well as ameliorated the colonic contractile dysfunctions. Natural mixture administration reduced intestinal inflammation and counteracted the intestinal motor dysfunction associated with obesity.
Collapse
|
21
|
Kawaguchi S, Sakuraba H, Kikuchi H, Matsuki K, Hayashi Y, Ding J, Tanaka Y, Seya K, Matsumiya T, Hiraga H, Fukuda S, Sasaki K, Imaizumi T. Polygonum tinctorium leaf extract ameliorates high-fat diet-induced intestinal epithelial damage in mice. Exp Ther Med 2023; 25:112. [PMID: 36793327 PMCID: PMC9922942 DOI: 10.3892/etm.2023.11811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Dietary fat strongly influences the intestinal mucosal barrier, which protects against invading pathogenic bacteria. A high-fat diet (HFD) compromises the integrity of epithelial tight junctions (TJs) and reduces mucin production, leading to intestinal barrier disruption and metabolic endotoxemia. It has been shown that the active constituents of indigo plants can protect against intestinal inflammation; however, their protective role in HFD-induced intestinal epithelial damage remains unknown. The present study aimed to investigate the effects of Polygonum tinctorium leaf extract (indigo Ex) on HFD-induced intestinal damage in mice. Male C57BL6/J mice were fed a HFD and injected intraperitoneally with either indigo Ex or phosphate-buffered saline (PBS) for 4 weeks. The expression levels of TJ proteins, zonula occludens-1 and Claudin-1, were analyzed by immunofluorescence staining and western blotting. The colon mRNA expression levels of tumor necrosis factor-α, interleukin (IL)-12p40, IL-10 and IL-22 were measured by reverse transcription-quantitative PCR. The results revealed that indigo Ex administration attenuated the HFD-induced shortening of the colon. Colon crypt length was shown to be significantly greater in the indigo Ex-treated group mice compared with that in the PBS-treated group mice. Moreover, indigo Ex administration increased the number of goblet cells, and ameliorated the redistribution of TJ proteins. Notably, indigo Ex significantly increased the colon mRNA expression levels of IL-10. Indigo Ex displayed little effect on the gut microbial composition of HFD-fed mice. Taken together, these results suggested that indigo Ex may protect against HFD-induced epithelial damage. The leaves of indigo plants contain promising natural therapeutic compounds that could be used to treat obesity-associated intestinal damage and metabolic inflammation.
Collapse
Affiliation(s)
- Shogo Kawaguchi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan,Correspondence to: Dr Shogo Kawaguchi, Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Hirotake Sakuraba
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Hidezumi Kikuchi
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Kota Matsuki
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Yudai Hayashi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Jiangli Ding
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Yusuke Tanaka
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan,Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Kazuhiko Seya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Tomoh Matsumiya
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Science, Hirosaki, Aomori 036-8564, Japan
| | - Hiroto Hiraga
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Kenroh Sasaki
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
22
|
Yang Y, Yu J, Huo J, Yan Y. Sesamolin Attenuates Kidney Injury, Intestinal Barrier Dysfunction, and Gut Microbiota Imbalance in High-Fat and High-Fructose Diet-Fed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1562-1576. [PMID: 36630317 DOI: 10.1021/acs.jafc.2c07084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This study investigated the effects of sesamolin on kidney injury, intestinal barrier dysfunction, and gut microbiota imbalance in high-fat and high-fructose (HF-HF) diet-fed mice and explored the underlying correlations among them. The results indicated that sesamolin suppressed metabolic disorders and increased renal function parameters. Histological evaluation showed that sesamolin mitigated renal epithelial cell degeneration and brush border damage. Meanwhile, sesamolin inhibited the endotoxin-mediated induction of the Toll-like receptor 4-related IKKα/NF-κB p65 pathway activation. Additionally, sesamolin mitigated intestinal barrier dysfunction and improved the composition of gut microbiota. The correlation results further indicated that changes in the dominant phyla, including Firmicutes, Deferribacterota, Desulfobacterota, and Bacteroidota, were more highly correlated with a reduction in endotoxemia and metabolic disorders, as well as decreases in intestinal proinflammatory response and related renal risk biomarkers. The results of this study suggest that sesamolin attenuates kidney injuries, which might be associated with its effects on the reduction of endotoxemia and related metabolic disorders through the restoration of the intestinal barrier and the modulation of gut microbiota. Thus, sesamolin may be a potential dietary supplement for protection against obesity-associated kidney injury.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Yu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Jiayao Huo
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
23
|
Health-Promoting Potential of Millet: A Review. SEPARATIONS 2023. [DOI: 10.3390/separations10020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Being a key source of animal food, millet production has been sharply increasing over the last few years in order to cope with the dietary requirements of the ever-increasing world population. It is a splendid source of essential nutrients such as protein, carbohydrates, fat, minerals, vitamins, and also some other bioactive compounds that eventually help through multiple biological activities, including antioxidant, anti-hyperglycemic, anti-cholesterol, anti-hypertensive, anthropometric effects and regulation of gut microbiota composition. These bioactive compounds, nutrients, and functions of cereal grains can be affected by processing techniques such as decortication, soaking, malting, milling, fermentation, etc. This study discusses the nutritional and functional properties of millet-incorporated foods and their impact on health, based on around 150 articles between 2015 and 2022 from the Web of Science, Google Scholar, Food and Agriculture Organization of the United Nations (FAO), Breeding Bid Survey (BBS), and FoodData Central (USDA) databases. Analyzing literature reviews, it is evident that the incorporation of millet and its constituents into foodstuffs could be useful against undernourishment and several other health diseases. Additionally, this review provides crucial information about the beneficial features of millet, which can serve as a benchmark of guidelines for industry, consumers, researchers, and nutritionists.
Collapse
|
24
|
Panebianco C, Villani A, Potenza A, Favaro E, Finocchiaro C, Perri F, Pazienza V. Targeting Gut Microbiota in Cancer Cachexia: Towards New Treatment Options. Int J Mol Sci 2023; 24:ijms24031849. [PMID: 36768173 PMCID: PMC9916111 DOI: 10.3390/ijms24031849] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Cancer cachexia is a complex multifactorial syndrome whose hallmarks are weight loss due to the wasting of muscle tissue with or without the loss of adipose tissue, anorexia, systemic inflammation, and multi-organ metabolic alterations, which negatively impact patients' response to anticancer treatments, quality of life, and overall survival. Despite its clinical relevance, cancer cachexia often remains an underestimated complication due to the lack of rigorous diagnostic and therapeutic pathways. A number of studies have shown alterations in gut microbiota diversity and composition in association with cancer cachexia markers and symptoms, thus supporting a central role for dysbiosis in the pathogenesis of this syndrome. Different tools of microbiota manipulation, including probiotics, prebiotics, synbiotics, and fecal microbiota transplantation, have been investigated, demonstrating encouraging improvements in cachexia outcomes. Albeit pioneering, these studies pave the way for future research with the aim of exploring the role of gut microbiota in cancer cachexia more deeply and setting up effective microbiota-targeting interventions to be translated into clinical practice.
Collapse
Affiliation(s)
- Concetta Panebianco
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, Hospital, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, Italy
| | - Annacandida Villani
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, Hospital, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, Italy
| | - Adele Potenza
- Dietetic and Clinical Nutrition Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, Italy
| | - Enrica Favaro
- Department of Medical Science, University of Turin, 10124 Turin, Italy
| | - Concetta Finocchiaro
- Department of Clinical Nutrition, Città della Salute e della Scienza, 10126 Turin, Italy
| | - Francesco Perri
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, Hospital, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, Italy
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, Hospital, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, Italy
- Correspondence:
| |
Collapse
|
25
|
Jahani-Sherafat S, Taghavi H, Asri N, Rezaei Tavirani M, Razzaghi Z, Rostami-Nejad M. The effectiveness of photobiomodulation therapy in modulation the gut microbiome dysbiosis related diseases. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2023; 16:386-393. [PMID: 38313351 PMCID: PMC10835098 DOI: 10.22037/ghfbb.v16i4.2687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/08/2023] [Indexed: 02/06/2024]
Abstract
Maintaining a healthy balance between commensal, and pathogenic bacteria within the gut microbiota is crucial for ensuring the overall health, and well-being of the host. In fact, by affecting innate, and adaptive immune responses, the gut microbiome plays a key role in maintaining intestinal homeostasis and barrier integrity. Dysbiosis is the loss of beneficial microorganisms and the growth of potentially hazardous microorganisms in a microbial community, which has been linked to numerous diseases. As the primary inducer of circadian rhythm, light can influence the human intestinal microbiome. Photobiomodulation therapy (PBMT), which is the use of red (630-700 nm), and near-infrared light (700 and 1200 nm), can stimulate healing, relieve pain, and reduce inflammation, and affect the circadian rhythm and gut microbiome beneficially. Our focus in this paper is on the effects of PBMT on gut microbiota, to provide an overview of how it can help control gut microbiota dysbiosis-related disorders.
Collapse
Affiliation(s)
- Somayeh Jahani-Sherafat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hooman Taghavi
- Student Research Committee, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Zhang Y, Zhu X, Yu X, Novák P, Gui Q, Yin K. Enhancing intestinal barrier efficiency: A novel metabolic diseases therapy. Front Nutr 2023; 10:1120168. [PMID: 36937361 PMCID: PMC10018175 DOI: 10.3389/fnut.2023.1120168] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Physiologically, the intestinal barrier plays a crucial role in homeostasis and nutrient absorption and prevents pathogenic entry, harmful metabolites, and endotoxin absorption. Recent advances have highlighted the association between severely damaged intestinal barriers and diabetes, obesity, fatty liver, and cardiovascular diseases. Evidence indicates that an abated intestinal barrier leads to endotoxemia associated with systemic inflammation, insulin resistance, diabetes, and lipid accumulation, accelerating obesity and fatty liver diseases. Nonetheless, the specific mechanism of intestinal barrier damage and the effective improvement of the intestinal barrier remain to be explored. Here, we discuss the crosstalk between changes in the intestinal barrier and metabolic disease. This paper also highlights how to improve the gut barrier from the perspective of natural medicine, gut microbiota remodeling, lifestyle interventions, and bariatric surgery. Finally, potential challenges and prospects for the regulation of the gut barrier-metabolic disease axis are discussed, which may provide theoretical guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yaoyuan Zhang
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiao Zhu
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Xinyuan Yu
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Petr Novák
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Qingjun Gui
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Qingjun Gui, ; Kai Yin,
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Qingjun Gui, ; Kai Yin,
| |
Collapse
|
27
|
Jendraszak M, Gałęcka M, Kotwicka M, Schwiertz A, Regdos A, Pazgrat-Patan M, Andrusiewicz M. Impact of Biometric Patient Data, Probiotic Supplementation, and Selected Gut Microorganisms on Calprotectin, Zonulin, and sIgA Concentrations in the Stool of Adults Aged 18-74 Years. Biomolecules 2022; 12:biom12121781. [PMID: 36551209 PMCID: PMC9775524 DOI: 10.3390/biom12121781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Alterations to the intestinal barrier may be involved in the pathogenesis of various chronic diseases. The diagnosis of mucosal barrier disruption has become a new therapeutic target for disease prevention. The aim of this study was to determine whether various patient demographic and biometric data, often not included in diagnostic analyses, may affect calprotectin, zonulin, and sIgA biomarker values. Stool markers' levels in 160 samples were measured colorimetrically. The analysis of twenty key bacteria (15 genera and 5 species) was carried out on the basis of diagnostic tests, including cultures and molecular tests. The concentrations of selected markers were within reference ranges for most patients. The sIgA level was significantly lower in participants declaring probiotics supplementation (p = 0.0464). We did not observe differences in gastrointestinal discomfort in participants. We found significant differences in the sIgA level between the 29-55 years and >55 years age-related intervals groups (p = 0.0191), together with a significant decreasing trend (p = 0.0337) in age-dependent sIgA concentration. We observed complex interdependencies and relationships between their microbiota and the analyzed biomarkers. For correct clinical application, standardized values of calprotectin and sIgA should be determined, especially in elderly patients. We observed a correlation between the composition of the gut community and biomarker levels, although it requires further in-depth analysis.
Collapse
Affiliation(s)
- Magdalena Jendraszak
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland
- Correspondence: (M.J.); (M.A.)
| | | | - Małgorzata Kotwicka
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland
| | | | | | | | - Mirosław Andrusiewicz
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland
- Correspondence: (M.J.); (M.A.)
| |
Collapse
|
28
|
Islam T, Albracht-Schulte K, Ramalingam L, Schlabritz-Lutsevich N, Park OH, Zabet-Moghaddam M, Kalupahana NS, Moustaid-Moussa N. Anti-inflammatory mechanisms of polyphenols in adipose tissue: role of gut microbiota, intestinal barrier integrity and zinc homeostasis. J Nutr Biochem 2022; 115:109242. [PMID: 36442715 DOI: 10.1016/j.jnutbio.2022.109242] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/18/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022]
Abstract
Obesity is associated with an imbalance of micro-and macro-nutrients, gut dysbiosis, and a "leaky" gut phenomenon. Polyphenols, such as curcumin, resveratrol, and anthocyanins may alleviate the systemic effects of obesity, potentially by improving gut microbiota, intestinal barrier integrity (IBI), and zinc homeostasis. The essential micronutrient zinc plays a crucial role in the regulation of enzymatic processes, including inflammation, maintenance of the microbial ecology, and intestinal barrier integrity. In this review, we focus on IBI- which prevents intestinal lipopolysaccharide (LPS) leakage - as a critical player in polyphenol-mediated protective effects against obesity-associated white adipose tissue (WAT) inflammation. This occurs through mechanisms that block the movement of the bacterial endotoxin LPS across the gut barrier. Available research suggests that polyphenols reduce WAT and systemic inflammation via crosstalk with inflammatory NF-κB, the mammalian target of rapamycin (mTOR) signaling and zinc homeostasis.
Collapse
Affiliation(s)
- Tariful Islam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Kembra Albracht-Schulte
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Natalia Schlabritz-Lutsevich
- Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Advanced Fertility Center, Odessa, Texas, USA
| | - Oak-Hee Park
- Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; College of Human Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Masoud Zabet-Moghaddam
- Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Center for Biotechnology and Genomics, Texas Tech University, Lubbock, Texas, USA
| | - Nishan S Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Department of Physiology, University of Peradeniya, Peradeniya, Sri Lanka
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA.
| |
Collapse
|
29
|
Gan L, Wang J, Guo Y. Polysaccharides influence human health via microbiota-dependent and -independent pathways. Front Nutr 2022; 9:1030063. [PMID: 36438731 PMCID: PMC9682087 DOI: 10.3389/fnut.2022.1030063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
Polysaccharides are the most diverse molecules and can be extracted from abundant edible materials. Increasing research has been conducted to clarify the structure and composition of polysaccharides obtained from different materials and their effects on human health. Humans can only directly assimilate very limited polysaccharides, most of which are conveyed to the distal gut and fermented by intestinal microbiota. Therefore, the main mechanism underlying the bioactive effects of polysaccharides on human health involves the interaction between polysaccharides and microbiota. Recently, interest in the role of polysaccharides in gut health, obesity, and related disorders has increased due to the wide range of valuable biological activities of polysaccharides. The known roles include mechanisms that are microbiota-dependent and involve microbiota-derived metabolites and mechanisms that are microbiota-independent. In this review, we discuss the role of polysaccharides in gut health and metabolic diseases and the underlying mechanisms. The findings in this review provide information on functional polysaccharides in edible materials and facilitate dietary recommendations for people with health issues. To uncover the effects of polysaccharides on human health, more clinical trials should be conducted to confirm the therapeutic effects on gut and metabolic disease. Greater attention should be directed toward polysaccharide extraction from by-products or metabolites derived from food processing that are unsuitable for direct consumption, rather than extracting them from edible materials. In this review, we advanced the understanding of the structure and composition of polysaccharides, the mutualistic role of gut microbes, the metabolites from microbiota-fermenting polysaccharides, and the subsequent outcomes in human health and disease. The findings provide insight into the proper application of polysaccharides in improving human health.
Collapse
Affiliation(s)
- Liping Gan
- School of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Jinrong Wang
- School of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
The Microbial Ecology of Liver Abscesses in Cattle. Vet Clin North Am Food Anim Pract 2022; 38:367-381. [DOI: 10.1016/j.cvfa.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
31
|
Kolesnikova IM, Gaponov AM, Roumiantsev SA, Karbyshev MS, Grigoryeva TV, Makarov VV, Yudin SM, Borisenko OV, Shestopalov AV. Relationship between Blood Microbiome and Neurotrophin Levels in Different Metabolic Types of Obesity. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Jung F, Staltner R, Baumann A, Burger K, Halilbasic E, Hellerbrand C, Bergheim I. A Xanthohumol-Rich Hop Extract Diminishes Endotoxin-Induced Activation of TLR4 Signaling in Human Peripheral Blood Mononuclear Cells: A Study in Healthy Women. Int J Mol Sci 2022; 23:ijms232012702. [PMID: 36293555 PMCID: PMC9603845 DOI: 10.3390/ijms232012702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
Infections with Gram-negative bacteria are still among the leading causes of infection-related deaths. Several studies suggest that the chalcone xanthohumol (XN) found in hop (Humulus lupulus) possesses anti-inflammatory effects. In a single-blinded, placebo controlled randomized cross-over design study we assessed if the oral intake of a single low dose of 0.125 mg of a XN derived through a XN-rich hop extract (75% XN) affects lipopolysaccharide (LPS)-induced immune responses in peripheral blood mononuclear cells (PBMCs) ex vivo in normal weight healthy women (n = 9) (clinicaltrials.gov: NCT04847193) and determined associated molecular mechanisms. LPS-stimulation of PBMCs isolated from participants 1 h after the intake of the placebo for 2 h resulted in a significant induction of pro-inflammatory cytokine release which was significantly attenuated when participants had consumed XN. The XN-dependent attenuation of proinflammatory cytokine release was less pronounced 6 h after the LPS stimulation while the release of sCD14 was significantly reduced at this timepoint. The LPS-dependent activation of hTLR4 transfected HEK293 cells was significantly and dose-dependently suppressed by the XN-rich hop extract which was attenuated when cells were co-challenged with sCD14. Taken together, our results suggest even a one-time intake of low doses of XN consumed in a XN-rich hop extract can suppress LPS-dependent stimulation of PBMCs and that this is related to the interaction of the hop compound with the CD14/TLR4 signaling cascade.
Collapse
Affiliation(s)
- Finn Jung
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek Platz 2, 1090 Vienna, Austria
| | - Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek Platz 2, 1090 Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek Platz 2, 1090 Vienna, Austria
| | - Katharina Burger
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek Platz 2, 1090 Vienna, Austria
| | - Emina Halilbasic
- Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander University Erlangen, 91054 Erlangen, Germany
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek Platz 2, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-4277-54981
| |
Collapse
|
33
|
Jobe M, Agbla SC, Todorcevic M, Darboe B, Danso E, de Barros JPP, Lagrost L, Karpe F, Prentice AM. Possible mediators of metabolic endotoxemia in women with obesity and women with obesity-diabetes in The Gambia. Int J Obes (Lond) 2022; 46:1892-1900. [PMID: 35933445 PMCID: PMC9492538 DOI: 10.1038/s41366-022-01193-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
AIMS/HYPOTHESIS Translocation of bacterial debris from the gut causes metabolic endotoxemia (ME) that results in insulin resistance, and may be on the causal pathway to obesity-related type 2 diabetes. To guide interventions against ME we tested two hypothesised mechanisms for lipopolysaccharide (LPS) ingress: a leaky gut and chylomicron-associated transfer following a high-fat meal. METHODS In lean women (n = 48; fat mass index (FMI) 9.6 kg/m2), women with obesity (n = 62; FMI 23.6 kg/m2) and women with obesity-diabetes (n = 38; FMI 24.9 kg/m2) we used the lactulose-mannitol dual-sugar permeability test (LM ratio) to assess gut integrity. Markers of ME (LPS, EndoCAb IgG and IgM, IL-6, CD14 and lipoprotein binding protein) were assessed at baseline, 2 h and 5 h after a standardised 49 g fat-containing mixed meal. mRNA expression of markers of inflammation, macrophage activation and lipid metabolism were measured in peri-umbilical adipose tissue (AT) biopsies. RESULTS The LM ratio did not differ between groups. LPS levels were 57% higher in the obesity-diabetes group (P < 0.001), but, contrary to the chylomicron transfer hypothesis, levels significantly declined following the high-fat challenge. EndoCAb IgM was markedly lower in women with obesity and women with obesity-diabetes. mRNA levels of inflammatory markers in adipose tissue were consistent with the prior concept that fat soluble LPS in AT attracts and activates macrophages. CONCLUSIONS/INTERPRETATION Raised levels of LPS and IL-6 in women with obesity-diabetes and evidence of macrophage activation in adipose tissue support the concept of metabolic endotoxemia-mediated inflammation, but we found no evidence for abnormal gut permeability or chylomicron-associated post-prandial translocation of LPS. Instead, the markedly lower EndoCAb IgM levels indicate a failure in sequestration and detoxification.
Collapse
Affiliation(s)
- Modou Jobe
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia.
| | - Schadrac C Agbla
- Department of Health Data Sciences, University of Liverpool, Liverpool, UK
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Bakary Darboe
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Ebrima Danso
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | | | - Laurent Lagrost
- Plateforme de Lipidomique-uBourgogne, INSERM UMR1231/LabEx LipSTIC, Dijon, France
- University Hospital of Dijon, Dijon, France
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Oxford, UK
- NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford, UK
| | - Andrew M Prentice
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| |
Collapse
|
34
|
Li DK, Chaudhari SN, Lee Y, Sojoodi M, Adhikari AA, Zukerberg L, Shroff S, Barrett SC, Tanabe K, Chung RT, Devlin AS. Inhibition of microbial deconjugation of micellar bile acids protects against intestinal permeability and liver injury. SCIENCE ADVANCES 2022; 8:eabo2794. [PMID: 36026454 PMCID: PMC9417178 DOI: 10.1126/sciadv.abo2794] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Altered host-microbe interactions and increased intestinal permeability have been implicated in disease pathogenesis. However, the mechanisms by which intestinal microbes affect epithelial barrier integrity remain unclear. Here, we investigate the impact of bacterial metabolism of host-produced bile acid (BA) metabolites on epithelial barrier integrity. We observe that rats fed a choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD) exhibit reduced intestinal abundance of host-produced conjugated BAs at early time points, coinciding with increased gut permeability. We show that in vitro, conjugated BAs protect gut epithelial monolayers from damage caused by bacterially produced unconjugated BAs through micelle formation. We then demonstrate that inhibition of bacterial BA deconjugation with a small-molecule inhibitor prevents the development of pathologic intestinal permeability and hepatic inflammation in CDAHFD-fed rats. Our study identifies a signaling-independent, physicochemical mechanism for conjugated BA-mediated protection of epithelial barrier function and suggests that rational manipulation of microbial BA metabolism could be leveraged to regulate gut barrier integrity.
Collapse
Affiliation(s)
- Darrick K. Li
- Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Snehal N. Chaudhari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yoojin Lee
- Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mozhdeh Sojoodi
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Arijit A. Adhikari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Lawrence Zukerberg
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Stuti Shroff
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen Cole Barrett
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kenneth Tanabe
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Raymond T. Chung
- Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - A. Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Clerbaux LA, Albertini MC, Amigó N, Beronius A, Bezemer GFG, Coecke S, Daskalopoulos EP, del Giudice G, Greco D, Grenga L, Mantovani A, Muñoz A, Omeragic E, Parissis N, Petrillo M, Saarimäki LA, Soares H, Sullivan K, Landesmann B. Factors Modulating COVID-19: A Mechanistic Understanding Based on the Adverse Outcome Pathway Framework. J Clin Med 2022; 11:4464. [PMID: 35956081 PMCID: PMC9369763 DOI: 10.3390/jcm11154464] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
Addressing factors modulating COVID-19 is crucial since abundant clinical evidence shows that outcomes are markedly heterogeneous between patients. This requires identifying the factors and understanding how they mechanistically influence COVID-19. Here, we describe how eleven selected factors (age, sex, genetic factors, lipid disorders, heart failure, gut dysbiosis, diet, vitamin D deficiency, air pollution and exposure to chemicals) influence COVID-19 by applying the Adverse Outcome Pathway (AOP), which is well-established in regulatory toxicology. This framework aims to model the sequence of events leading to an adverse health outcome. Several linear AOPs depicting pathways from the binding of the virus to ACE2 up to clinical outcomes observed in COVID-19 have been developed and integrated into a network offering a unique overview of the mechanisms underlying the disease. As SARS-CoV-2 infectibility and ACE2 activity are the major starting points and inflammatory response is central in the development of COVID-19, we evaluated how those eleven intrinsic and extrinsic factors modulate those processes impacting clinical outcomes. Applying this AOP-aligned approach enables the identification of current knowledge gaps orientating for further research and allows to propose biomarkers to identify of high-risk patients. This approach also facilitates expertise synergy from different disciplines to address public health issues.
Collapse
Affiliation(s)
- Laure-Alix Clerbaux
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | | | - Núria Amigó
- Biosfer Teslab SL., 43204 Reus, Spain;
- Department of Basic Medical Sciences, Universitat Rovira i Virgili (URV), 23204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Anna Beronius
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Gillina F. G. Bezemer
- Impact Station, 1223 JR Hilversum, The Netherlands;
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Evangelos P. Daskalopoulos
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Giusy del Giudice
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland; (G.d.G.); (D.G.); (L.A.S.)
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland; (G.d.G.); (D.G.); (L.A.S.)
| | - Lucia Grenga
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-30200 Bagnols-sur-Ceze, France;
| | - Alberto Mantovani
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Amalia Muñoz
- European Commission, Joint Research Centre (JRC), 2440 Geel, Belgium;
| | - Elma Omeragic
- Faculty of Pharmacy, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Nikolaos Parissis
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Mauro Petrillo
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Laura A. Saarimäki
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland; (G.d.G.); (D.G.); (L.A.S.)
| | - Helena Soares
- Laboratory of Immunobiology and Pathogenesis, Chronic Diseases Research Centre, Faculdade de Ciências Médicas Medical School, University of Lisbon, 1649-004 Lisbon, Portugal;
| | - Kristie Sullivan
- Physicians Committee for Responsible Medicine, Washington, DC 20016, USA;
| | - Brigitte Landesmann
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| |
Collapse
|
36
|
She Y, Wang K, Makarowski A, Mangat R, Tsai S, Willing BP, Proctor SD, Richard C. Effect of High-Fat and Low-Fat Dairy Products on Cardiometabolic Risk Factors and Immune Function in a Low Birthweight Swine Model of Diet-Induced Insulin Resistance. Front Nutr 2022; 9:923120. [PMID: 35782930 PMCID: PMC9247580 DOI: 10.3389/fnut.2022.923120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 01/24/2023] Open
Abstract
Although dairy intake has been shown to have a neutral or some beneficial effect on major cardiometabolic risk factors, the impact of dairy, and especially dairy fat, on immune function remains to be investigated. To understand the effect of consuming dairy fat on cardiometabolic risk factors and immune function, we used an established low birthweight (LBW) swine model of diet-induced insulin resistance to compare high-fat and low-fat dairy products to a control high-fat diet (CHF). LBW piglets were randomized to consume one of the 3 experimental HF diets: (1) CHF, (2) CHF diet supplemented with 3 servings/day of high-fat dairy (HFDairy) and (3) CHF diet supplemented with 3 servings/day of low-fat dairy (LFDairy). As comparison groups, normal birthweight (NBW) piglets were fed a CHF (NBW-CHF) or standard pig grower diet (NBW-Chow). A total of 35 pigs completed the study and were fed for a total of 7 weeks, including 1 week of CHF transition diet. At 12 weeks of age, piglets were euthanized. Fasting blood and tissue samples were collected. Ex vivo cytokine production by peripheral blood mononuclear cells (PBMCs) stimulated with pokeweed (PWM), phytohemagglutinin (PHA) and phorbol myristate acetate-ionomycin (PMA-I) were assessed. As expected, LBW-CHF piglets showed early signs of insulin resistance (HOMA-IR, P model = 0.08). Feeding high-fat dairy products improved fasting plasma glucose concentrations more than low-fat dairy compared to LBW-CHF (P < 0.05). Irrespective of fat content, dairy consumption had neutral effect on fasting lipid profile. We have also observed lower production of IL-2 after PWM and PHA stimulation as well as lower production of TNF-α and IFN-γ after PWM stimulation in LBW-CHF than in NBW-Chow (all, P < 0.05), suggesting impaired T cell and antigen presenting cell function. While feeding high-fat dairy had minimal effect on immune function, feeding low-fat dairy significantly improved the production of IL-2, TNF-α and IFN-γ after PWM stimulation, IL-2 and IFN-γ after PHA stimulation as well as TNF-α after PMA-I stimulation compared to LBW-CHF (all, P < 0.05). These data provide novel insights into the role of dairy consumption in counteracting some obesity-related cardiometabolic and immune perturbations.
Collapse
Affiliation(s)
- Yongbo She
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Kun Wang
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Alexander Makarowski
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Rabban Mangat
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Benjamin P. Willing
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Spencer D. Proctor
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Caroline Richard
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
37
|
Ortiz-Alvarez L, Xu H, Di X, Kohler I, Osuna-Prieto FJ, Acosta FM, Vilchez-Vargas R, Link A, Plaza-Díaz J, van der Stelt M, Hankemeier T, Clemente-Postigo M, Tinahones FJ, Gil A, Rensen PCN, Ruiz JR, Martinez-Tellez B. Plasma Levels of Endocannabinoids and Their Analogues Are Related to Specific Fecal Bacterial Genera in Young Adults: Role in Gut Barrier Integrity. Nutrients 2022; 14:2143. [PMID: 35631284 PMCID: PMC9143287 DOI: 10.3390/nu14102143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To investigate the association of plasma levels of endocannabinoids with fecal microbiota. METHODS Plasma levels of endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), as well as their eleven analogues, and arachidonic acid (AA), were measured using liquid chromatography-tandem mass spectrometry in 92 young adults. DNA extracted from stool samples was analyzed using 16S rRNA gene sequencing. Lipopolysaccharide levels were measured in plasma samples. RESULTS Plasma levels of endocannabinoids and their analogues were not related to beta or alpha diversity indexes. Plasma levels of AEA and related N-acylethanolamines correlated positively with the relative abundance of Faecalibacterium genus (all rho ≥ 0.26, p ≤ 0.012) and Akkermansia genus (all rho ≥ 0.22, p ≤ 0.036), and negatively with the relative abundance of Bilophila genus (all rho ≤ -0.23, p ≤ 0.031). Moreover, plasma levels of 2-AG and other acylglycerols correlated positively with the relative abundance of Parasutterella (all rho ≥ 0.24, p ≤ 0.020) and Odoribacter genera (all rho ≥ 0.27, p ≤ 0.011), and negatively with the relative abundance of Prevotella genus (all rho ≤ -0.24, p ≤ 0.023). In participants with high lipopolysaccharide values, the plasma levels of AEA and related N-acylethanolamines, as well as AA and 2-AG, were negatively correlated with plasma levels of lipopolysaccharide (all rho ≤ -0.24, p ≤ 0.020). CONCLUSION Plasma levels of endocannabinoids and their analogues are correlated to specific fecal bacterial genera involved in maintaining gut barrier integrity in young adults. This suggests that plasma levels of endocannabinoids and their analogues may play a role in the gut barrier integrity in young adults.
Collapse
Affiliation(s)
- Lourdes Ortiz-Alvarez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain; (L.O.-A.); (H.X.); (F.J.O.-P.); (F.M.A.); (B.M.-T.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (J.P.-D.); (A.G.)
| | - Huiwen Xu
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain; (L.O.-A.); (H.X.); (F.J.O.-P.); (F.M.A.); (B.M.-T.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (J.P.-D.); (A.G.)
| | - Xinyu Di
- Leiden Academic Centre for Drug Research, Division of Systems Biomedicine and Pharmacology, Leiden University, 2300 Leiden, The Netherlands;
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands;
- Center for Analytical Sciences Amsterdam, 1098 Amsterdam, The Netherlands
| | - Francisco J. Osuna-Prieto
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain; (L.O.-A.); (H.X.); (F.J.O.-P.); (F.M.A.); (B.M.-T.)
- Center for Biomedical Research, Department of Analytical Chemistry, Institute of Nutrition and Food Technology, University of Granada, 18071 Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Health Sciences Technology Park, 18071 Granada, Spain
| | - Francisco M. Acosta
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain; (L.O.-A.); (H.X.); (F.J.O.-P.); (F.M.A.); (B.M.-T.)
- Turku PET Centre, University of Turku, 20014 Turku, Finland
- Turku PET Centre, Turku University Hospital, 20521 Turku, Finland
- InFLAMES Research Flagship Centre, University of Turku, 20014 Turku, Finland
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany; (R.V.-V.); (A.L.)
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany; (R.V.-V.); (A.L.)
| | - Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (J.P.-D.); (A.G.)
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2300 Leiden, The Netherlands;
| | - Thomas Hankemeier
- Leiden Academic Centre for Drug Research (LACDR), Department of Systems Biomedicine and Pharmacology, Leiden University, 2300 Leiden, The Netherlands;
| | - Mercedes Clemente-Postigo
- Department of Cell Biology, Physiology and Immunology, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain;
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29016 Malaga, Spain;
- Centro de Investigación Biomédica En Red (CIBER), Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Malaga, Spain
| | - Francisco J. Tinahones
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29016 Malaga, Spain;
- Centro de Investigación Biomédica En Red (CIBER), Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Malaga, Spain
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (J.P.-D.); (A.G.)
- Centro de Investigación Biomédica En Red (CIBER), Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Malaga, Spain
- Biomedical Research Center, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Parque Tecnológico Ciencias de la Salud, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria, 18014 Granada, Spain
| | - Patrick C. N. Rensen
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 Leiden, The Netherlands;
| | - Jonatan R. Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain; (L.O.-A.); (H.X.); (F.J.O.-P.); (F.M.A.); (B.M.-T.)
- Instituto de Investigación Biosanitaria, 18014 Granada, Spain
- Department of Physical and Sports Education, School of Sports Science, University of Granada, 18071 Granada, Spain
| | - Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain; (L.O.-A.); (H.X.); (F.J.O.-P.); (F.M.A.); (B.M.-T.)
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2300 Leiden, The Netherlands;
- CERNEP Research Center, Department of Education, Faculty of Education Sciences and SPORT Research Group (CTS-1024), University of Almería, 04120 Almeria, Spain
| |
Collapse
|
38
|
Exploring the multifactorial aspects of Gut Microbiome in Parkinson's Disease. Folia Microbiol (Praha) 2022; 67:693-706. [PMID: 35583791 PMCID: PMC9526693 DOI: 10.1007/s12223-022-00977-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/02/2022] [Indexed: 02/06/2023]
Abstract
Advanced research in health science has broadened our view in approaching and understanding the pathophysiology of diseases and has also revolutionised diagnosis and treatment. Ever since the establishment of Braak’s hypothesis in the propagation of alpha-synuclein from the distant olfactory and enteric nervous system towards the brain in Parkinson’s Disease (PD), studies have explored and revealed the involvement of altered gut microbiota in PD. This review recapitulates the gut microbiome associated with PD severity, duration, motor and non-motor symptoms, and antiparkinsonian treatment from recent literature. Gut microbial signatures in PD are potential predictors of the disease and are speculated to be used in early diagnosis and treatment. In brief, the review also emphasises on implications of the prebiotic, probiotic, faecal microbiota transplantation, and dietary interventions as alternative treatments in modulating the disease symptoms in PD.
Collapse
|
39
|
Srivastava RK, Lutz B, Ruiz de Azua I. The Microbiome and Gut Endocannabinoid System in the Regulation of Stress Responses and Metabolism. Front Cell Neurosci 2022; 16:867267. [PMID: 35634468 PMCID: PMC9130962 DOI: 10.3389/fncel.2022.867267] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
The endocannabinoid system, with its receptors and ligands, is present in the gut epithelium and enteroendocrine cells, and is able to modulate brain functions, both indirectly through circulating gut-derived factors and directly through the vagus nerve, finally acting on the brain’s mechanisms regarding metabolism and behavior. The gut endocannabinoid system also regulates gut motility, permeability, and inflammatory responses. Furthermore, microbiota composition has been shown to influence the activity of the endocannabinoid system. This review examines the interaction between microbiota, intestinal endocannabinoid system, metabolism, and stress responses. We hypothesize that the crosstalk between microbiota and intestinal endocannabinoid system has a prominent role in stress-induced changes in the gut-brain axis affecting metabolic and mental health. Inter-individual differences are commonly observed in stress responses, but mechanisms underlying resilience and vulnerability to stress are far from understood. Both gut microbiota and the endocannabinoid system have been implicated in stress resilience. We also discuss interventions targeting the microbiota and the endocannabinoid system to mitigate metabolic and stress-related disorders.
Collapse
Affiliation(s)
- Raj Kamal Srivastava
- Department of Zoology, Indira Gandhi National Tribal University, Anuppur, India
- *Correspondence: Raj Kamal Srivastava,
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Inigo Ruiz de Azua
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Inigo Ruiz de Azua,
| |
Collapse
|
40
|
Gupta B, Rai R, Oertel M, Raeman R. Intestinal Barrier Dysfunction in Fatty Liver Disease: Roles of Microbiota, Mucosal Immune System, and Bile Acids. Semin Liver Dis 2022; 42:122-137. [PMID: 35738255 PMCID: PMC9307091 DOI: 10.1055/s-0042-1748037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of progressive liver diseases ranging from simple steatosis to steatohepatitis and fibrosis. Globally, NAFLD is the leading cause of morbidity and mortality associated with chronic liver disease, and NAFLD patients are at a higher risk of developing cirrhosis and hepatocellular carcinoma. While there is a consensus that inflammation plays a key role in promoting NAFLD progression, the underlying mechanisms are not well understood. Recent clinical and experimental evidence suggest that increased hepatic translocation of gut microbial antigens, secondary to diet-induced impairment of the intestinal barrier may be important in driving hepatic inflammation in NAFLD. Here, we briefly review various endogenous and exogenous factors influencing the intestinal barrier and present recent advances in our understanding of cellular and molecular mechanisms underlying intestinal barrier dysfunction in NAFLD.
Collapse
Affiliation(s)
- Biki Gupta
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ravi Rai
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Oertel
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Reben Raeman
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
41
|
Jin S, Wetzel D, Schirmer M. Deciphering mechanisms and implications of bacterial translocation in human health and disease. Curr Opin Microbiol 2022; 67:102147. [PMID: 35461008 DOI: 10.1016/j.mib.2022.102147] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022]
Abstract
Significant increases in potential microbial translocation, especially along the oral-gut axis, have been identified in many immune-related and inflammatory diseases, such as inflammatory bowel disease, colorectal cancer, rheumatoid arthritis, and liver cirrhosis, for which we currently have no cure or long-term treatment options. Recent advances in computational and experimental omics approaches now enable strain tracking, functional profiling, and strain isolation in unprecedented detail, which has the potential to elucidate the causes and consequences of microbial translocation. In this review, we discuss current evidence for the detection of bacterial translocation, examine different translocation axes with a primary focus on the oral-gut axis, and outline currently known translocation mechanisms and how they adversely affect the host in disease. Finally, we conclude with an overview of state-of-the-art computational and experimental tools for strain tracking and highlight the required next steps to elucidate the role of bacterial translocation in human health.
Collapse
Affiliation(s)
- Shen Jin
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Daniela Wetzel
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Melanie Schirmer
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
42
|
Riedel S, Pheiffer C, Johnson R, Louw J, Muller CJF. Intestinal Barrier Function and Immune Homeostasis Are Missing Links in Obesity and Type 2 Diabetes Development. Front Endocrinol (Lausanne) 2022; 12:833544. [PMID: 35145486 PMCID: PMC8821109 DOI: 10.3389/fendo.2021.833544] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Noncommunicable diseases, such as type 2 diabetes (T2D), place a burden on healthcare systems worldwide. The rising prevalence of obesity, a major risk factor for T2D, is mainly attributed to the adoption of Westernized diets and lifestyle, which cause metabolic dysfunction and insulin resistance. Moreover, diet may also induce changes in the microbiota composition, thereby affecting intestinal immunity. The critical role of intestinal immunity and intestinal barrier function in the development of T2D is increasingly acknowledged, however, limited studies have investigated the link between intestinal function and metabolic disease. In this review, studies reporting specific roles of the intestinal immune system and intestinal epithelial cells (IECs) in metabolic disease are highlighted. Innate chemokine signaling, eosinophils, immunoglobulin A (IgA), T helper (Th) 17 cells and their cytokines were associated with obesity and/or dysregulated glucose homeostasis. Intestinal epithelial cells (IECs) emerged as critical modulators of obesity and glucose homeostasis through their effect on lipopolysaccharide (LPS) signaling and decontamination. Furthermore, IECs create a link between microbial metabolites and whole-body metabolic function. Future in depth studies of the intestinal immune system and IECs may provide new opportunities and targets to develop treatments and prevention strategies for obesity and T2D.
Collapse
Affiliation(s)
- Sylvia Riedel
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
- Department of Obstetrics and Gynaecology, University of Pretoria, Pretoria, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Christo J. F. Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| |
Collapse
|
43
|
Jensen SK, Pærregaard SI, Brandum EP, Jørgensen AS, Hjortø GM, Jensen BAH. OUP accepted manuscript. Gastroenterol Rep (Oxf) 2022; 10:goac008. [PMID: 35291443 PMCID: PMC8915887 DOI: 10.1093/gastro/goac008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/07/2022] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Organismal survival depends on a well-balanced immune system and maintenance of host–microbe mutualism. The fine-tuned relationship between the gut microbiota and host immunity is constantly challenged by opportunistic bacteria testing the integrity of gastrointestinal (GI) barrier defenses. Barrier dysfunction reduces immunological tolerance towards otherwise innocuous microbes; it is a process that may instigate chronic inflammation. Paradoxically, sustained inflammation further diminishes barrier function, enabling bacterial translocation to extra-intestinal tissues. Once translocated, these bacteria stimulate systemic inflammation, thereby compromising organ function. While genetic risk alleles associate with barrier dysfunction, environmental stressors are key triggers of GI inflammation and associated breakdown in immune tolerance towards resident gut microbes. As dietary components dictate substrate availability, they also orchestrate microbiota composition and function, including migratory and pro-inflammatory potential, thus holding the capacity to fuel both GI and extra-intestinal inflammation. Additionally, Western diet consumption may weaken barrier defenses via curbed Paneth cell function and diminished host-defense peptide secretion. This review focuses on intervenable niches of host–microbe interactions and mucosal immunity with the ambition to provide a framework of plausible strategies to improve barrier function and regain tolerance in the inflamed mucosa via nutritional intervention.
Collapse
Affiliation(s)
- Sune K Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simone I Pærregaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emma P Brandum
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid S Jørgensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gertrud M Hjortø
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin A H Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Corresponding author. Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Build. 22.5.39, Copenhagen N 2200, Denmark. Tel: +45-35330188;
| |
Collapse
|
44
|
Wang YF, Wang S, Xu HY, Liu LJ. Commentary: Intestinal barrier function and immune homeostasis are missing links in obesity and type 2 diabetes development. Front Endocrinol (Lausanne) 2022; 13:939703. [PMID: 36034429 PMCID: PMC9399428 DOI: 10.3389/fendo.2022.939703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yi-feng Wang
- Department of Critical Care Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Song Wang
- Department of Critical Care Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Hong-yang Xu
- Department of Critical Care Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Hong-yang Xu, ; Li-jun Liu,
| | - Li-jun Liu
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Hong-yang Xu, ; Li-jun Liu,
| |
Collapse
|
45
|
Pyrroloquinoline-Quinone Is More Than an Antioxidant: A Vitamin-like Accessory Factor Important in Health and Disease Prevention. Biomolecules 2021; 11:biom11101441. [PMID: 34680074 PMCID: PMC8533503 DOI: 10.3390/biom11101441] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Pyrroloquinoline quinone (PQQ) is associated with biological processes such as mitochondriogenesis, reproduction, growth, and aging. In addition, PQQ attenuates clinically relevant dysfunctions (e.g., those associated with ischemia, inflammation and lipotoxicity). PQQ is novel among biofactors that are not currently accepted as vitamins or conditional vitamins. For example, the absence of PQQ in diets produces a response like a vitamin-related deficiency with recovery upon PQQ repletion in a dose-dependent manner. Moreover, potential health benefits, such as improved metabolic flexibility and immuno-and neuroprotection, are associated with PQQ supplementation. Here, we address PQQ's role as an enzymatic cofactor or accessory factor and highlight mechanisms underlying PQQ's actions. We review both large scale and targeted datasets demonstrating that a neonatal or perinatal PQQ deficiency reduces mitochondria content and mitochondrial-related gene expression. Data are reviewed that suggest PQQ's modulation of lactate acid and perhaps other dehydrogenases enhance NAD+-dependent sirtuin activity, along with the sirtuin targets, such as PGC-1α, NRF-1, NRF-2 and TFAM; thus, mediating mitochondrial functions. Taken together, current observations suggest vitamin-like PQQ has strong potential as a potent therapeutic nutraceutical.
Collapse
|
46
|
Wang Y, Zhou Y, Fu J. Advances in antiobesity mechanisms of capsaicin. Curr Opin Pharmacol 2021; 61:1-5. [PMID: 34537583 DOI: 10.1016/j.coph.2021.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
Obesity is a global epidemic that affects the lives and health of millions of people. The prevention and treatment of obesity have become a significant public health challenge worldwide. Numerous studies showed that the gut microbiota is associated with the development of obesity, and the regulatory mechanisms mediating the relationship between gut microbiota and obesity have become an intense research area. Capsaicin is a vanilla amide alkaloid that is an active ingredient in pepper. Much research demonstrated the antiobesity activity of capsaicin. This article reviews recent research on the antiobesity mechanisms of capsaicin involving alterations of the gut microbial composition, reduction of intestinal permeability, and regulation of the microbiome-gut-brain axis. This summary will establish a basis for further developing capsaicin as an ingredient in medications and health products.
Collapse
Affiliation(s)
- Yuanwei Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China.
| | - Yahan Zhou
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Jia Fu
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
47
|
Hyun CK. Molecular and Pathophysiological Links between Metabolic Disorders and Inflammatory Bowel Diseases. Int J Mol Sci 2021; 22:ijms22179139. [PMID: 34502047 PMCID: PMC8430512 DOI: 10.3390/ijms22179139] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023] Open
Abstract
Despite considerable epidemiological evidence indicating comorbidity between metabolic disorders, such as obesity, type 2 diabetes, and non-alcoholic fatty liver disease, and inflammatory bowel diseases (IBD), such as Crohn’s disease and ulcerative colitis, as well as common pathophysiological features shared by these two categories of diseases, the relationship between their pathogenesis at molecular levels are not well described. Intestinal barrier dysfunction is a characteristic pathological feature of IBD, which also plays causal roles in the pathogenesis of chronic inflammatory metabolic disorders. Increased intestinal permeability is associated with a pro-inflammatory response of the intestinal immune system, possibly leading to the development of both diseases. In addition, dysregulated interactions between the gut microbiota and the host immunity have been found to contribute to immune-mediated disorders including the two diseases. In connection with disrupted gut microbial composition, alterations in gut microbiota-derived metabolites have also been shown to be closely related to the pathogeneses of both diseases. Focusing on these prominent pathophysiological features observed in both metabolic disorders and IBD, this review highlights and summarizes the molecular risk factors that may link between the pathogeneses of the two diseases, which is aimed at providing a comprehensive understanding of molecular mechanisms underlying their comorbidity.
Collapse
Affiliation(s)
- Chang-Kee Hyun
- School of Life Science, Handong Global University, Pohang 37554, Gyungbuk, Korea
| |
Collapse
|
48
|
Bacillus subtilis-Based Probiotic Improves Skeletal Health and Immunity in Broiler Chickens Exposed to Heat Stress. Animals (Basel) 2021; 11:ani11061494. [PMID: 34064126 PMCID: PMC8224346 DOI: 10.3390/ani11061494] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary High ambient temperature is a major environmental stressor affecting the physiological and behavioral status of animals, increasing stress susceptibility and immunosuppression, and consequently increasing intestinal permeability (leaky gut) and related neuroinflammation. Probiotics, as well as prebiotics and synbiotics, have been used to prevent or decrease stress-associated detrimental effects on physiological and behavioral homeostasis in humans and various animals. The current data indicate that a dietary probiotic supplement, Bacillus subtilis, reduces heat stress-induced abnormal behaviors and negative effects on skeletal health in broilers through a variety of cellular responses, regulating the functioning of the microbiota–gut–brain axis and/or microbiota-modulated immunity during bone remodeling under thermoneutral and heat-stressed conditions. Abstract The elevation of ambient temperature beyond the thermoneutral zone leads to heat stress, which is a growing health and welfare issue for homeothermic animals aiming to maintain relatively constant reproducibility and survivability. Particularly, global warming over the past decades has resulted in more hot days with more intense, frequent, and long-lasting heat waves, resulting in a global surge in animals suffering from heat stress. Heat stress causes pathophysiological changes in animals, increasing stress sensitivity and immunosuppression, consequently leading to increased intestinal permeability (leaky gut) and related neuroinflammation. Probiotics, as well as prebiotics and synbiotics, have been used to prevent or reduce stress-induced negative effects on physiological and behavioral homeostasis in humans and various animals. The current data indicate dietary supplementation with a Bacillus subtilis-based probiotic has similar functions in poultry. This review highlights the recent findings on the effects of the probiotic Bacillus subtilis on skeletal health of broiler chickens exposed to heat stress. It provides insights to aid in the development of practical strategies for improving health and performance in poultry.
Collapse
|
49
|
Suslov AV, Chairkina E, Shepetovskaya MD, Suslova IS, Khotina VA, Kirichenko TV, Postnov AY. The Neuroimmune Role of Intestinal Microbiota in the Pathogenesis of Cardiovascular Disease. J Clin Med 2021; 10:1995. [PMID: 34066528 PMCID: PMC8124579 DOI: 10.3390/jcm10091995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, a bidirectional relationship between the gut microbiota and the nervous system, which is considered as microbiota-gut-brain axis, is being actively studied. This axis is believed to be a key mechanism in the formation of somatovisceral functions in the human body. The gut microbiota determines the level of activation of the hypothalamic-pituitary system. In particular, the intestinal microbiota is an important source of neuroimmune mediators in the pathogenesis of cardiovascular disease. This review reflects the current state of publications in PubMed and Scopus databases until December 2020 on the mechanisms of formation and participation of neuroimmune mediators associated with gut microbiota in the development of cardiovascular disease.
Collapse
Affiliation(s)
- Andrey V. Suslov
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, 8-2 Trubetskaya Str., 119992 Moscow, Russia; (A.V.S.); (E.C.); (M.D.S.)
| | - Elizaveta Chairkina
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, 8-2 Trubetskaya Str., 119992 Moscow, Russia; (A.V.S.); (E.C.); (M.D.S.)
| | - Maria D. Shepetovskaya
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, 8-2 Trubetskaya Str., 119992 Moscow, Russia; (A.V.S.); (E.C.); (M.D.S.)
| | - Irina S. Suslova
- Central State Medical Academy of the Administrative Department of the President of the Russian Federation, 19-1A Marshal Timoshenko Str., 121359 Moscow, Russia;
| | - Victoria A. Khotina
- Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (A.Y.P.)
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Str., 125315 Moscow, Russia
| | - Tatiana V. Kirichenko
- Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (A.Y.P.)
- National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
| | - Anton Y. Postnov
- Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (A.Y.P.)
- National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
| |
Collapse
|