1
|
Wu W, Shao M, Qi J, Jin G, Zhang R, Yao Y, Jiang C. Integrating genetic analysis of germplasm wealth for enhanced selection and improvement in olive (Olea europaea L.): insights from leaves. PLANT CELL REPORTS 2024; 43:247. [PMID: 39347829 DOI: 10.1007/s00299-024-03323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
KEY MESSAGE High-throughput next-generation sequencing of 161 olive germplas. 33 samples were selected as core olive germplasm and Fingerprints were constructed. After GWAS analysis of olive leaf shape, 14 candidate genes were localized. Olive (Olea europaea L.) has been introduced to China since the 1960s. After a prolonged period of variation and domestication, there is a lack of comprehensive research on its genetics. The olive oil directly extracted from Olea europaea L. is recognized as 'liquid gold', nevertheless, people constantly overlook the valuable wealth of olive leaves. High-throughput next-generation sequencing was performed on 161 olive germplasm to analyze the kinship, genetic structure and diversity of olives, and the core germplasm of olives were selected and fingerprints were constructed. Meanwhile, Genome-wide association analysis (GWAS) was performed to locate the gene for regulating olive leaf shape. Herein, the results parsed that most of the Chinese olive germplasm was more closely related to the Italian germplasm. A wealth of hybridized germplasm possessed high genetic diversity and had the potential to be used as superior parental material for olive germplasm. A total of 33 samples were selected and characterized as core germplasm of olive and Fingerprints were also constructed. A total of 14 candidate genes were localized after GWAS analysis of four olive leaf shape phenotypes, including leaf shape, leaf curvature shape, leaf tip and leaf base shape. Collectively, this study revealed the genetic basis of olives in China and also succeeded in constructing the core germplasm that stands for the genetic diversity of olives, which can contribute to the scientific and effective collection and preservation of olive germplasm resources, and provide a scientific basis for the in-depth excavation and utilization of genes regulating olive leaf shape.
Collapse
Affiliation(s)
- Wenjun Wu
- Gansu Research Academy of Forestry Science and Technology, Lanzhou, Gansu Province, 730020, People's Republic of China
| | - Miao Shao
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Jianli Qi
- Gansu Research Academy of Forestry Science and Technology, Lanzhou, Gansu Province, 730020, People's Republic of China
| | - Gaoming Jin
- Gansu Research Academy of Forestry Science and Technology, Lanzhou, Gansu Province, 730020, People's Republic of China
| | - Rong Zhang
- Gansu Research Academy of Forestry Science and Technology, Lanzhou, Gansu Province, 730020, People's Republic of China
| | - Yufang Yao
- Gansu Research Academy of Forestry Science and Technology, Lanzhou, Gansu Province, 730020, People's Republic of China
| | - Chengying Jiang
- Gansu Research Academy of Forestry Science and Technology, Lanzhou, Gansu Province, 730020, People's Republic of China.
| |
Collapse
|
2
|
Sebastião F, Vaz DC, Pires CL, Cruz PF, Moreno MJ, Brito RMM, Cotrim L, Oliveira N, Costa A, Fonseca A, Rodrigues M, Ispolnov K, Bernardino R, Vieira J. Nutrient-efficient catfish-based aquaponics for producing lamb's lettuce at two light intensities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6541-6552. [PMID: 38520251 DOI: 10.1002/jsfa.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Aquaponic systems are sustainable processes of managing water and nutrients for food production. An innovate nutrient-efficient catfish-based (Clarias gariepinus) aquaponics system was implemented for producing two cultivars of two leafy vegetables largely consumed worldwide: lamb's lettuce (Valerianella locusta var. Favor and Valerianella locusta var. de Hollande) and arugula (Eruca vesicaria var. sativa and Eruca sativa). Different growing treatments (4 × 2 factorial design) were applied to plants of each cultivar, grown at two light intensities (120 and 400 μmol m-2 s-1). During growth, several morphological characteristics (root length, plant height, leaf number, foliage diameter and biggest leaf length) were measured. At harvest, plants were weighed and examined qualitatively in terms of greenness and health status. Additionally, leaf extracts were obtained and used to determine total phenolic contents, antioxidant capacities, and levels of cytotoxicity to Caco-2 intestinal model cells. RESULTS After a 5-week growth period, both lamb's lettuce cultivars presented high levels of greenness and health status, at both light intensities, particularly the var. de Hollande that also showed higher average performance in terms of plant morphology. In turn, arugula cultivars showed lower levels of greenness and health status, especially the cultivar E. vesicaria var. sativa submitted to direct sunlight during growth. In addition, plant specimens submitted to higher levels of light intensity showed higher contents in antioxidants/polyphenols. Cultivars with a higher content in antioxidants/polyphenols led to higher Caco-2 cell viability. CONCLUSION For successful industrial implementation of the aquaponics technology, different and optimized acclimatizing conditions must be applied to different plant species and cultivars. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Fernando Sebastião
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Daniela C Vaz
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- Coimbra Chemistry Center, Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, Coimbra, Portugal
- School of Health Sciences, Polytechnic of Leiria, Leiria, Portugal
| | - Cristiana L Pires
- Coimbra Chemistry Center, Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Pedro F Cruz
- Coimbra Chemistry Center, Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Maria João Moreno
- Coimbra Chemistry Center, Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Rui M M Brito
- Coimbra Chemistry Center, Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Luis Cotrim
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Nelson Oliveira
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Ana Costa
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
| | - André Fonseca
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Maria Rodrigues
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Kirill Ispolnov
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Raul Bernardino
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- School of Tourism and Marine Technology, Polytechnic of Leiria, Peniche, Portugal
| | - Judite Vieira
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| |
Collapse
|
3
|
Mu Y, He K, Shi P, Wang L, Deng L, Shi Z, Liu M, Niklas KJ. Comparison between computer recognition and manual measurement methods for the estimation of leaf area. ANNALS OF BOTANY 2024; 134:501-510. [PMID: 38832532 PMCID: PMC11341664 DOI: 10.1093/aob/mcae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND AND AIMS Leaf area (A) is a crucial indicator of the photosynthetic capacity of plants. The Montgomery equation (ME), which hypothesizes that A is proportional to the product of leaf length (L) and width (W), is a valid tool for non-destructively measuring A for many broadleaved plants. At present, the methods used to compute L and W for the ME can be broadly divided into two kinds: using computer recognition and measuring manually. However, the potential difference in the prediction accuracy using either method has not been thoroughly examined in previous studies. METHODS In the present study, we measured 540 Alangium chinense leaves, 489 Liquidambar formosana leaves and 215 Liriodendron × sinoamericanum leaves, utilizing computer recognition and manual measurement methods to determine L and W. The ME was used to fit the data determined by the two methods, and the goodness of fits were compared. The prediction errors of A were analysed by examining the correlations with two leaf symmetry indices (areal ratio of the left side to the right side, and standardized index for bilateral asymmetry), as well as the leaf shape complexity index (the leaf dissection index). KEY RESULTS The results indicate that there is a neglectable difference in the estimation of A between the two methods. This further validates that the ME is an effective method for estimating A in broadleaved tree species, including those with lobes. Additionally, leaf shape complexity significantly influenced the estimation of A. CONCLUSIONS These results show that the use of computer recognition and manual measurement in the field are both effective and feasible, although the influence of leaf shape complexity should be considered when applying the ME to estimate A in the future.
Collapse
Affiliation(s)
- Youying Mu
- College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Ke He
- Architectural Design and Research Institute, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518000, China
| | - Peijian Shi
- College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Lin Wang
- Department of Applied Mathematics, College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Linli Deng
- Department of Applied Mathematics, College of Science, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Zhuyue Shi
- College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Mengdi Liu
- College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Karl J Niklas
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Horiguchi G, Oyama R, Akabane T, Suzuki N, Katoh E, Mizokami Y, Noguchi K, Hirotsu N. Cooperation of an external carbonic anhydrase and HCO3- transporter supports underwater photosynthesis in submerged leaves of the amphibious plant Hygrophila difformis. ANNALS OF BOTANY 2024; 133:287-304. [PMID: 37832038 PMCID: PMC11005787 DOI: 10.1093/aob/mcad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND AND AIMS HCO3- can be a major carbon resource for photosynthesis in underwater environments. Here we investigate the underlying mechanism of uptake and membrane transport of HCO3- in submerged leaves of Hygrophila difformis, a heterophyllous amphibious plant. To characterize these mechanisms, we evaluated the sensitivity of underwater photosynthesis to an external carbonic anhydrase (CA) inhibitor and an anion exchanger protein inhibitor, and we attempted to identify components of the mechanism of HCO3- utilization. METHODS We evaluated the effects of the external CA inhibitor and anion exchanger protein inhibitor on the NaHCO3 response of photosynthetic O2 evolution in submerged leaves of H. difformis. Furthermore, we performed a comparative transcriptomic analysis between terrestrial and submerged leaves. KEY RESULTS Photosynthesis in the submerged leaves was decreased by both the external CA inhibitor and anion exchanger protein inhibitor, but no additive effect was observed. Among upregulated genes in submerged leaves, two α-CAs, Hdα-CA1 and Hdα-CA2, and one β-carbonic anhydrase, Hdβ-CA1, were detected. Based on their putative amino acid sequences, the α-CAs are predicted to be localized in the apoplastic region. Recombinant Hdα-CA1 and Hdβ-CA1 showed dominant CO2 hydration activity over HCO3- dehydration activity. CONCLUSIONS We propose that the use of HCO3- for photosynthesis in submerged leaves of H. difformis is driven by the cooperation between an external CA, Hdα-CA1, and an unidentified HCO3- transporter.
Collapse
Affiliation(s)
- Genki Horiguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
- Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Ryoma Oyama
- Faculty of Life Sciences, Toyo University, Itakura, Gunma, Japan
| | - Tatsuki Akabane
- Graduate School of Life Sciences, Toyo University, Itakura, Gunma, Japan
| | - Nobuhiro Suzuki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Etsuko Katoh
- Faculty of Food and Nutritional Sciences Life Sciences, Toyo University, Itakura, Gunma, Japan
| | - Yusuke Mizokami
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Naoki Hirotsu
- Faculty of Life Sciences, Toyo University, Itakura, Gunma, Japan
- Graduate School of Life Sciences, Toyo University, Itakura, Gunma, Japan
| |
Collapse
|
5
|
de la Paz Pollicelli M, Márquez F, Idaszkin YL. Towards a comprehensive understanding of zinc tolerance in Limonium brasiliense as a useful tool for environmental remediation and monitoring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25299-25311. [PMID: 38468000 DOI: 10.1007/s11356-024-32811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Abstract
Heavy metal pollution is a serious environmental problem worldwide, creating the necessity to find eco-friendly strategies for monitoring and remediating environments. This study aimed to evaluate morphological, physiological, and biochemical responses as indicative of Zn tolerance in Limonium brasiliense and to determine the ability of this halophyte to accumulate different concentrations of Zn (0, 100, and 200 μM) in hydroponic conditions. The leaf shape at high Zn concentration showed enlarged petioles and lanceolate blades, whereas the leaf size was reduced. Water content, chlorophyll fluorescence parameters, and pigment content decreased with Zn addition. Of the antioxidant activities, only APx increased 75% compared to the control by Zn stress. Zn concentration was higher in aerial structures than in roots (BAC> 1 and TF> 1), suggesting that L. brasiliense could function as an accumulator of Zn. Its great ability to resist metal stress and its strong capacity to protect itself against high Zn concentration postulate it as a good phytoremediation of environments enriched with Zn. The study emphasizes using leaf morphology as an early biomonitoring tool for detecting Zn pollution, providing more evidence of their potential use as a biomarker for evaluating and assessing ecosystem health in biomonitoring programs.
Collapse
Affiliation(s)
- María de la Paz Pollicelli
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC-CONICET), Boulevard Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina
- Universidad Nacional de la Patagonia San Juan Bosco, Boulevard Brown 3051, U9120ACD, Puerto Madryn, Chubut, Argentina
| | - Federico Márquez
- Universidad Nacional de la Patagonia San Juan Bosco, Boulevard Brown 3051, U9120ACD, Puerto Madryn, Chubut, Argentina
- Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Boulevard Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina
| | - Yanina L Idaszkin
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC-CONICET), Boulevard Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina.
- Universidad Nacional de la Patagonia San Juan Bosco, Boulevard Brown 3051, U9120ACD, Puerto Madryn, Chubut, Argentina.
| |
Collapse
|
6
|
Bai X, Chen Z, Chen M, Zeng B, Li X, Tu P, Hu B. Morphological, Anatomical, and Physiological Characteristics of Heteroblastic Acacia melanoxylon Grown under Weak Light. PLANTS (BASEL, SWITZERLAND) 2024; 13:870. [PMID: 38592868 PMCID: PMC10974800 DOI: 10.3390/plants13060870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Acacia melanoxylon is a fast-growing macrophanerophyte with strong adaptability whose leaf enables heteromorphic development. Light is one of the essential environmental factors that induces the development of the heteroblastic leaf of A. melanoxylon, but its mechanism is unclear. In this study, the seedlings of A. melanoxylon clones were treated with weak light (shading net with 40% of regular light transmittance) and normal light (control) conditions for 90 d and a follow-up observation. The results show that the seedlings' growth and biomass accumulation were inhibited under weak light. After 60 days of treatment, phyllodes were raised under the control condition while the remaining compound was raised under weak light. The balance of root, stem, and leaf biomass changed to 15:11:74 under weak light, while it was 40:15:45 under control conditions. After comparing the anatomical structures of the compound leaves and phyllode, they were shown to have their own strategies for staying hydrated, while phyllodes were more able to control water loss and adapt to intense light. The compound leaves exhibited elevated levels of K, Cu, Ca, and Mg, increased antioxidant enzyme activity and proline content, and higher concentrations of chlorophyll a, carotenoids, ABA, CTK, and GA. However, they displayed a relatively limited photosynthetic capacity. Phyllodes exhibited higher levels of Fe, cellulose, lignin, IAA content, and high photosynthetic capacity with a higher maximum net photosynthetic rate, light compensation point, dark respiration rate, and water use efficiency. The comparative analysis of compound leaves and phyllodes provides a basis for understanding the diverse survival strategies that heteroblastic plants employ to adapt to environmental changes.
Collapse
Affiliation(s)
- Xiaogang Bai
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhaoli Chen
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Mengjiao Chen
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Bingshan Zeng
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Xiangyang Li
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Panfeng Tu
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Bing Hu
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| |
Collapse
|
7
|
Uller T, Milocco L, Isanta-Navarro J, Cornwallis CK, Feiner N. Twenty years on from Developmental Plasticity and Evolution: middle-range theories and how to test them. J Exp Biol 2024; 227:jeb246375. [PMID: 38449333 DOI: 10.1242/jeb.246375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
In Developmental Plasticity and Evolution, Mary-Jane West-Eberhard argued that the developmental mechanisms that enable organisms to respond to their environment are fundamental causes of adaptation and diversification. Twenty years after publication of this book, this once so highly controversial claim appears to have been assimilated by a wealth of studies on 'plasticity-led' evolution. However, we suggest that the role of development in explanations for adaptive evolution remains underappreciated in this body of work. By combining concepts of evolvability from evolutionary developmental biology and quantitative genetics, we outline a framework that is more appropriate to identify developmental causes of adaptive evolution. This framework demonstrates how experimental and comparative developmental biology and physiology can be leveraged to put the role of plasticity in evolution to the test.
Collapse
Affiliation(s)
- Tobias Uller
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | | | | | | | | |
Collapse
|
8
|
Cox AJF, González-Caro S, Meir P, Hartley IP, Restrepo Z, Villegas JC, Sanchez A, Mercado LM. Variable thermal plasticity of leaf functional traits in Andean tropical montane forests. PLANT, CELL & ENVIRONMENT 2024; 47:731-750. [PMID: 38047584 DOI: 10.1111/pce.14778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Tropical montane forests (TMFs) are biodiversity hotspots and provide vital ecosystem services, but they are disproportionately vulnerable to climate warming. In the Andes, cold-affiliated species from high elevations are being displaced at the hot end of their thermal distributions by warm-affiliated species migrating upwards from lower elevations, leading to compositional shifts. Leaf functional traits are strong indicators of plant performance and at the community level have been shown to vary along elevation gradients, reflecting plant adaptations to different environmental niches. However, the plastic response of such traits to relatively rapid temperature change in Andean TMF species remains unknown. We used three common garden plantations within a thermosequence in the Colombian Andes to investigate the warming and cooling responses of key leaf functional traits in eight cold- and warm-affiliated species with variable thermal niches. Cold-affiliated species shifted their foliar nutrient concentrations when exposed to warming, while all other traits did not significantly change; contrastingly, warm-affiliated species were able to adjust structural, nutrient and water-use efficiency traits from acquisitive to conservative strategies in response to cooling. Our findings suggest that cold-affiliated species will struggle to acclimate functional traits to warming, conferring warm-affiliated species a competitive advantage under climate change.
Collapse
Affiliation(s)
- Andrew J F Cox
- Department of Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Sebastián González-Caro
- Department of Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Patrick Meir
- School of Geosciences, University of Edinburgh, Edinburgh, UK
- Division of Plant Sciences, Research, The Australian National University, Canberra, Australia
| | - Iain P Hartley
- Department of Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Zorayda Restrepo
- Grupo de Investigación en Ecología Aplicada, Universidad de Antioquia, Medellín, Colombia
- Grupo de Servicios Ecositémicos y Cambio Climático, Corporación, Medellín, Colombia
| | - Juan C Villegas
- Grupo de Investigación en Ecología Aplicada, Universidad de Antioquia, Medellín, Colombia
| | - Adriana Sanchez
- Programa de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Lina M Mercado
- Department of Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
- UK Centre for Ecology & Hydrology, Crowmarsh-Gifford, Wallingford, UK
| |
Collapse
|
9
|
Casavecchia S, Giannelli F, Giovannotti M, Trucchi E, Carducci F, Quattrini G, Lucchetti L, Barucca M, Canapa A, Biscotti MA, Aquilanti L, Pesaresi S. Morphological and Genomic Differences in the Italian Populations of Onopordum tauricum Willd.-A New Source of Vegetable Rennet. PLANTS (BASEL, SWITZERLAND) 2024; 13:654. [PMID: 38475500 DOI: 10.3390/plants13050654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Onopordum tauricum Willd., a species distributed in Eastern Europe, has been the subject of various research endeavors aimed at assessing its suitability for extracting vegetable rennet for use in the production of local cheeses as a substitute for animal-derived rennet. In Italy, the species has an extremely fragmented and localized distribution in six locations scattered across the central-northern Apennines and some areas of southern Italy. In this study, both the morphology and genetic diversity of the six known Italian populations were investigated to detect putative ecotypes. To this end, 33 morphological traits were considered for morphometric measurements, while genetic analysis was conducted on the entire genome using the ddRAD-Seq method. Both analyses revealed significant differences among the Apennine populations (SOL, COL, and VIS) and those from southern Italy (ROT, PES, and LEC). Specifically, the southern Italian populations appear to deviate significantly in some characteristics from the typical form of the species. Therefore, its attribution to O. tauricum is currently uncertain, and further genetic and morphological analyses are underway to ascertain its systematic placement within the genus Onopordum.
Collapse
Affiliation(s)
- Simona Casavecchia
- Department of Agriculture, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Francesco Giannelli
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Massimo Giovannotti
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Federica Carducci
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Giacomo Quattrini
- Department of Agriculture, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Lara Lucchetti
- Department of Agriculture, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Marco Barucca
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Adriana Canapa
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Maria Assunta Biscotti
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Lucia Aquilanti
- Department of Agriculture, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Simone Pesaresi
- Department of Agriculture, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
10
|
Kang JN, Lee SM, Choi JW, Lee SS, Kim CK. First Contiguous Genome Assembly of Japanese Lady Bell ( Adenophora triphylla) and Insights into Development of Different Leaf Types. Genes (Basel) 2023; 15:58. [PMID: 38254948 PMCID: PMC10815912 DOI: 10.3390/genes15010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Adenophora triphylla is an important medicinal and food plant found in East Asia. This plant is rich in secondary metabolites such as triterpenoid saponin, and its leaves can develop into different types, such as round and linear, depending on the origin of germination even within the same species. Despite this, few studies have comprehensively characterized the development processes of different leaf types and triterpenoid saponin pathways in this plant. Herein, we provide the first report of a high-quality genome assembly of A. triphylla based on a combination of Oxford Nanopore Technologies and Illumina sequencing methods. Its genome size was estimated to be 2.6 Gb, and the assembled genome finalized as 2.48 Gb, containing 57,729 protein-coding genes. Genome completeness was assessed as 95.6% using the Benchmarking Universal Single-Copy Orthologs score. The evolutionary divergence of A. triphylla was investigated using the genomes of five plant species, including two other species in the Campanulaceae family. The species A. triphylla diverged approximately 51-118 million years ago from the other four plants, and 579 expanded/contracted gene families were clustered in the Gene Ontology terms. The expansion of the β-amyrin synthase (bAS) gene, a key enzyme in the triterpenoid saponin pathway, was identified in the A. triphylla genome. Furthermore, transcriptome analysis of the two leaf types revealed differences in the activity of starch, sucrose, unsaturated fatty acid pathways, and oxidoreductase enzymes. The heat and endoplasmic reticulum pathways related to plant stress were active in the development of round type leaf, while an enhancement of pyrimidine metabolism related to cell development was confirmed in the development of the linear type leaf. This study provides insight into the evolution of bAS genes and the development of different leaf types in A. triphylla.
Collapse
Affiliation(s)
- Ji-Nam Kang
- Genomics Division, National Institute of Agricultural Sciences, Jeonju 54874, Republic of Korea; (J.-N.K.); (S.-M.L.)
| | - Si-Myung Lee
- Genomics Division, National Institute of Agricultural Sciences, Jeonju 54874, Republic of Korea; (J.-N.K.); (S.-M.L.)
| | - Ji-Weon Choi
- Postharvest Technology Division, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea;
| | - Seung-Sik Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea;
- Department of Radiation Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, Jeonju 54874, Republic of Korea; (J.-N.K.); (S.-M.L.)
| |
Collapse
|
11
|
Rumyantseva NI, Valieva AI, Kostyukova YA, Ageeva MV. The Effect of Leaf Plasticity on the Isolation of Apoplastic Fluid from Leaves of Tartary Buckwheat Plants Grown In Vivo and In Vitro. PLANTS (BASEL, SWITZERLAND) 2023; 12:4048. [PMID: 38068682 PMCID: PMC10707844 DOI: 10.3390/plants12234048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 10/19/2024]
Abstract
Vacuum infiltration-centrifugation (VIC) is the most reproducible technique for the isolation of apoplast washing fluid (AWF) from leaves, but its effectiveness depends on the infiltration-centrifugation conditions and the anatomical and physiological peculiarities of leaves. This study aimed to elaborate an optimal procedure for AWF isolation from the leaves of Tartary buckwheat grown in in vivo and in vitro conditions and reveal the leaf anatomical and physiological traits that could contribute to the effectiveness of AWF isolation. Here, it was demonstrated that leaves of buckwheat plants grown in vitro could be easier infiltrated, were less sensitive to higher forces of centrifugation (900× g and 1500× g), and produced more AWF yield and apoplastic protein content than in vivo leaves at the same forces of centrifugation (600× g and 900× g). The extensive study of the morphological, anatomical, and ultrastructural characteristics of buckwheat leaves grown in different conditions revealed that in vitro leaves exhibited significant plasticity in a number of interconnected morphological, anatomical, and physiological features, generally driven by high RH and low lighting; some of them, such as the reduced thickness and increased permeability of the cuticle of the epidermal cells, large intercellular spaces, increase in the size of stomata and in the area of stomatal pores, higher stomata index, drop in density, and area of calcium oxalate druses, are beneficial to the effectiveness of VIC. The size of stomata pores, which were almost twice as large in in vitro leaves as those in in vivo ones, was the main factor contributing to the isolation of AWF free of chlorophyll contamination. The opening of stomata pores by artificially created humid conditions reduced damage to the in vivo leaves and improved the VIC of them. For Fagopyrum species, this is the first study to develop a VIC technique for AWF isolation from leaves.
Collapse
Affiliation(s)
- Natalya I. Rumyantseva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, Kazan 420111, Russia; (A.I.V.); (Y.A.K.); (M.V.A.)
- Department of Botany and Plant Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlyovskaya 18, Kazan 420008, Russia
| | - Alfia I. Valieva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, Kazan 420111, Russia; (A.I.V.); (Y.A.K.); (M.V.A.)
| | - Yulia A. Kostyukova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, Kazan 420111, Russia; (A.I.V.); (Y.A.K.); (M.V.A.)
| | - Marina V. Ageeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, Kazan 420111, Russia; (A.I.V.); (Y.A.K.); (M.V.A.)
| |
Collapse
|
12
|
Yu X, Ji R, Li M, Xia X, Yin W, Liu C. Geographical variation in functional traits of leaves of Caryopteris mongholica and the role of climate. BMC PLANT BIOLOGY 2023; 23:394. [PMID: 37580656 PMCID: PMC10426221 DOI: 10.1186/s12870-023-04410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Quantifying intra-specific variation in leaf functional traits along environmental gradients is important for understanding species' responses to climate change. In this study, we assessed the degree of among and within populations variation in leaf functional traits and explored leaf response to geographic and climate change using Caryopteris mongholica as material, which has a wide range of distribution environments. RESULTS We selected 40 natural populations of C. mongholica, measured 8 leaf functional traits, analyzed the extent of trait variation among and within populations, and developed geographic and climatic models to explain trait variation between populations. Our results showed that the variation in leaf functional traits of C. mongholica was primarily lower within populations compared to among populations. Specifically, the leaf area (LA) exhibited higher variability both among and within populations, whereas leaf carbon content (LC) exhibited lower variation within populations but greater variation among populations. We observed a specific covariation pattern among traits and a strong linkage between morphological, economic, and mechanical traits. Increasing minimum temperature, precipitation of month, and seasonal precipitation differences all limited the growth and development of C. mongholica. However, it was observed that an increase in mean annual precipitation positively influenced the morphological development of its leaf. CONCLUSIONS These results demonstrate the response of intra-specific trait variation to the environment and provide valuable insights into the adaptation of intra-specific leaf functional traits under changing climatic conditions.
Collapse
Affiliation(s)
- Xiao Yu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ruoxuan Ji
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Mingming Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Weilun Yin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chao Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
13
|
Ogrodowicz P, Mikołajczak K, Kempa M, Mokrzycka M, Krajewski P, Kuczyńska A. Genome-wide association study of agronomical and root-related traits in spring barley collection grown under field conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1077631. [PMID: 36760640 PMCID: PMC9902773 DOI: 10.3389/fpls.2023.1077631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
The root system is a key component for plant survival and productivity. In particular, under stress conditions, developing plants with a better root architecture can ensure productivity. The objectives of this study were to investigate the phenotypic variation of selected root- and yield-related traits in a diverse panel of spring barley genotypes. By performing a genome-wide association study (GWAS), we identified several associations underlying the variations occurring in root- and yield-related traits in response to natural variations in soil moisture. Here, we report the results of the GWAS based on both individual single-nucleotide polymorphism markers and linkage disequilibrium (LD) blocks of markers for 11 phenotypic traits related to plant morphology, grain quality, and root system in a group of spring barley accessions grown under field conditions. We also evaluated the root structure of these accessions by using a nondestructive method based on electrical capacitance. The results showed the importance of two LD-based blocks on chromosomes 2H and 7H in the expression of root architecture and yield-related traits. Our results revealed the importance of the region on the short arm of chromosome 2H in the expression of root- and yield-related traits. This study emphasized the pleiotropic effect of this region with respect to heading time and other important agronomic traits, including root architecture. Furthermore, this investigation provides new insights into the roles played by root traits in the yield performance of barley plants grown under natural conditions with daily variations in soil moisture content.
Collapse
|
14
|
Li L, Jin Z, Huang R, Zhou J, Song F, Yao L, Li P, Lu W, Xiao L, Quan M, Zhang D, Du Q. Leaf physiology variations are modulated by natural variations that underlie stomatal morphology in Populus. PLANT, CELL & ENVIRONMENT 2023; 46:150-170. [PMID: 36285358 DOI: 10.1111/pce.14471] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/16/2023]
Abstract
Stomata are essential for photosynthesis and abiotic stress tolerance. Here, we used multiomics approaches to dissect the genetic architecture and adaptive mechanisms that underlie stomatal morphology in Populus tomentosa juvenile natural population (303 accessions). We detected 46 candidate genes and 15 epistatic gene-pairs, associated with 5 stomatal morphologies and 18 leaf development and photosynthesis traits, through genome-wide association studies. Expression quantitative trait locus mapping revealed that stomata-associated gene loci were significantly associated with the expression of leaf-related genes; selective sweep analysis uncovered significant differentiation in the allele frequencies of genes that underlie stomatal variations. An allelic regulatory network operating under drought stress and adequate precipitation conditions, with three key regulators (DUF538, TRA2 and AbFH2) and eight interacting genes, was identified that might regulate leaf physiology via modulation of stomatal shape and density. Validation of candidate gene variations in drought-tolerant and F1 hybrid populations of P. tomentosa showed that the DUF538, TRA2 and AbFH2 loci cause functional stabilisation of spatiotemporal regulatory, whose favourable alleles can be faithfully transmitted to offspring. This study provides insights concerning leaf physiology and stress tolerance via the regulation of stomatal determination in perennial plants.
Collapse
Affiliation(s)
- Lianzheng Li
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Zhuoying Jin
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Rui Huang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Jiaxuan Zhou
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Fangyuan Song
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Liangchen Yao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Peng Li
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Wenjie Lu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Liang Xiao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Mingyang Quan
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Deqiang Zhang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Qingzhang Du
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| |
Collapse
|
15
|
Rooney R, Ishii HR, Cavaleri MA. Intra‐crown variation of leaf mass per area of
Fagus crenata
is driven by light acclimation of leaf thickness and hydraulic acclimation of leaf density. Ecol Res 2022. [DOI: 10.1111/1440-1703.12361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rebecca Rooney
- College of Forest Resources and Environmental Science Michigan Technological University Houghton Michigan USA
- Department of Biology University of Minnesota Duluth Duluth Minnesota USA
| | - H. Roaki Ishii
- Graduate School of Agricultural Science Kobe University Kobe Japan
| | - Molly A. Cavaleri
- College of Forest Resources and Environmental Science Michigan Technological University Houghton Michigan USA
| |
Collapse
|
16
|
Using synthetic biology to improve photosynthesis for sustainable food production. J Biotechnol 2022; 359:1-14. [PMID: 36126804 DOI: 10.1016/j.jbiotec.2022.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
Photosynthesis is responsible for the primary productivity and maintenance of life on Earth, boosting biological activity and contributing to the maintenance of the environment. In the past, traditional crop improvement was considered sufficient to meet food demands, but the growing demand for food coupled with climate change has modified this scenario over the past decades. However, advances in this area have not focused on photosynthesis per se but rather on fixed carbon partitioning. In short, other approaches must be used to meet an increasing agricultural demand. Thus, several paths may be followed, from modifications in leaf shape and canopy architecture, improving metabolic pathways related to CO2 fixation, the inclusion of metabolic mechanisms from other species, and improvements in energy uptake by plants. Given the recognized importance of photosynthesis, as the basis of the primary productivity on Earth, we here present an overview of the latest advances in attempts to improve plant photosynthetic performance. We focused on points considered key to the enhancement of photosynthesis, including leaf shape development, RuBisCO reengineering, Calvin-Benson cycle optimization, light use efficiency, the introduction of the C4 cycle in C3 plants and the inclusion of other CO2 concentrating mechanisms (CCMs). We further provide compelling evidence that there is still room for further improvements. Finally, we conclude this review by presenting future perspectives and possible new directions on this subject.
Collapse
|
17
|
Zareei E, Zaare-Nahandi F, Oustan S, Hajilou J, Dadpour M. Insight into the role of magnetic nutrient solution on leaf morphology and biochemical attributes of Rasha grapevine (Vitis vinifera L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:290-301. [PMID: 35728421 DOI: 10.1016/j.plaphy.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The growth, development, and morphology of plants are extremely affected by many internal and external factors. In this regard, plant nourishing solutions take the most impact. Nowadays, the magnetization of nutrient solutions has been recommended as a promising eco-friendly approach for improving the growth and development of plants. This study was designed to explore the potential of magnetic nutrient solutions in altering morphometric characteristics as well as some physiological and nutritional attributes of Rasha grapevines. Magnetic treatments included magnetized nutrient solution (MagS) and pre-magnetized water completed with nutrients (MagW + S) at magnetic field intensities (0.1 and 0.2 T). According to the results, the most considerable changes in leaf shape and size as well as fresh and dry weights were observed in the plants treated with MagS at 0.2 T. Also, MagS 0.2 had a significant effect on increasing photosynthetic pigments, content of total soluble carbohydrates and protein, and activity of antioxidant enzymes. The content of TNK, K, P, Fe, and Cu was considerably amplified by MagW + S 0.2. Overall, the magnetic solutions had favorable influences on physiological, nutritional state, and leaf morphology of grapevines possibly through alerting water and solution properties, mineral solubility, and phytohormones signalling.
Collapse
Affiliation(s)
- Elnaz Zareei
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Fariborz Zaare-Nahandi
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Shahin Oustan
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Jafar Hajilou
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mohammadreza Dadpour
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
18
|
Clauw P, Kerdaffrec E, Gunis J, Reichardt-Gomez I, Nizhynska V, Koemeda S, Jez J, Nordborg M. Locally adaptive temperature response of vegetative growth in Arabidopsis thaliana. eLife 2022; 11:e77913. [PMID: 35904422 PMCID: PMC9337855 DOI: 10.7554/elife.77913] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/13/2022] [Indexed: 02/06/2023] Open
Abstract
We investigated early vegetative growth of natural Arabidopsis thaliana accessions in cold, nonfreezing temperatures, similar to temperatures these plants naturally encounter in fall at northern latitudes. We found that accessions from northern latitudes produced larger seedlings than accessions from southern latitudes, partly as a result of larger seed size. However, their subsequent vegetative growth when exposed to colder temperatures was slower. The difference was too large to be explained by random population differentiation, and is thus suggestive of local adaptation, a notion that is further supported by substantial transcriptome and metabolome changes in northern accessions. We hypothesize that the reduced growth of northern accessions is an adaptive response and a consequence of reallocating resources toward cold acclimation and winter survival.
Collapse
Affiliation(s)
- Pieter Clauw
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| | - Envel Kerdaffrec
- Department of Biology, University of FribourgFribourgSwitzerland
| | - Joanna Gunis
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| | | | - Viktoria Nizhynska
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| | - Stefanie Koemeda
- Plant Sciences Facility, Vienna BioCenter Core Facilities GmbHViennaAustria
| | - Jakub Jez
- Plant Sciences Facility, Vienna BioCenter Core Facilities GmbHViennaAustria
| | - Magnus Nordborg
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| |
Collapse
|
19
|
Faralli M, Cristofolini F, Cristofori A, Ferretti M, Gottardini E. Leaf trait plasticity and site-specific environmental variability modulate the severity of visible foliar ozone symptoms in Viburnum lantana. PLoS One 2022; 17:e0270520. [PMID: 35881634 PMCID: PMC9321413 DOI: 10.1371/journal.pone.0270520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/10/2022] [Indexed: 11/19/2022] Open
Abstract
The assessment of Visible Foliar Symptoms (VFS) is commonly adopted by forest monitoring programs to evaluate ozone impact on vegetation. The occurrence of ozone VFS may differ among individuals of the same species at the same site, and within leaves of the same individual. The aim of this study was to identify site and plant characteristics as well as functional leaf traits associated with the occurrence and severity of VFS in Viburnum lantana (an ozone-sensitive species) and at the scale of an individual site. V. lantana plants growing at one site of the ViburNeT monitoring network (Trentino, North Italy) experiencing high ozone levels were surveyed in relation to 1) sun exposure, 2) shading effect from neighbor vegetation, 3) plant height and 4) presence and severity of VFS. Leaves from three different sections of each plant were subjected to a phenotypic characterization of leaf area, dry weight, specific leaf area (SLA), chlorophyll content (ChlSPAD), percentage of VFS, and adaxial and abaxial trichome density (Tr). We showed that plants at high irradiation levels had significantly lower SLA (p<0.05), higher Tr (p<0.01) and greater ChlSPAD (p<0.01) when compared to shaded and/or west- and north-exposed plants, thus indicating a strong influence of site-specific characteristics on leaf trait plasticity. Similar differences were observed for taller vs. shorter plants and apical vs. basal branches (p<0.05). Ozone-induced VFS at leaf level were associated with lower SLA (p<0.001) and higher Tr in the abaxial leaf surface (p<0.05). Both leaf traits showed significant differences also within the south and east exposed plant category, thus suggesting the increase in leaf thickness and Tr as a potential adaptive strategy under multiple stress conditions. Our results provide evidence of a strong relationship between VFS, leaf traits and site-specific variables, offering new insights for interpreting data on the impact of ozone on vegetation.
Collapse
Affiliation(s)
- Michele Faralli
- Center Agriculture Food Environment (C3A), University of Trento, San Michele all’Adige, Italy
- * E-mail: (MF); (EG)
| | - Fabiana Cristofolini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, Trento, Italy
| | - Antonella Cristofori
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, Trento, Italy
| | - Marco Ferretti
- Swiss Federal Institute for Forest Snow and Landscape Research, Birmensdorf, ZH, Switzerland
| | - Elena Gottardini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, Trento, Italy
- * E-mail: (MF); (EG)
| |
Collapse
|
20
|
Mekonnen TW, Gerrano AS, Mbuma NW, Labuschagne MT. Breeding of Vegetable Cowpea for Nutrition and Climate Resilience in Sub-Saharan Africa: Progress, Opportunities, and Challenges. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11121583. [PMID: 35736733 PMCID: PMC9230997 DOI: 10.3390/plants11121583] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 05/08/2023]
Abstract
Currently, the world population is increasing, and humanity is facing food and nutritional scarcity. Climate change and variability are a major threat to global food and nutritional security, reducing crop productivity in the tropical and subtropical regions of the globe. Cowpea has the potential to make a significant contribution to global food and nutritional security. In addition, it can be part of a sustainable food system, being a genetic resource for future crop improvement, contributing to resilience and improving agricultural sustainability under climate change conditions. In malnutrition prone regions of sub-Saharan Africa (SSA) countries, cowpea has become a strategic dryland legume crop for addressing food insecurity and malnutrition. Therefore, this review aims to assess the contribution of cowpea to SSA countries as a climate-resilient crop and the existing production challenges and perspectives. Cowpea leaves and immature pods are rich in diverse nutrients, with high levels of protein, vitamins, macro and micronutrients, minerals, fiber, and carbohydrates compared to its grain. In addition, cowpea is truly a multifunctional crop for maintaining good health and for reducing non-communicable human diseases. However, as a leafy vegetable, cowpea has not been researched and promoted sufficiently because it has not been promoted as a food security crop due to its low yield potential, susceptibility to biotic and abiotic stresses, quality assurance issues, policy regulation, and cultural beliefs (it is considered a livestock feed). The development of superior cowpea as a leafy vegetable can be approached in different ways, such as conventional breeding and gene stacking, speed breeding, mutation breeding, space breeding, demand-led breeding, a pan-omics approach, and local government policies. The successful breeding of cowpea genotypes that are high-yielding with a good nutritional value as well as having resistance to biotics and tolerant to abiotic stress could also be used to address food security and malnutrition-related challenges in sub-Saharan Africa.
Collapse
Affiliation(s)
- Tesfaye Walle Mekonnen
- Department of Plant Sciences, University of the Free State, Bloemfontein 9301, South Africa; (N.W.M.); (M.T.L.)
- Correspondence: ; Tel.: +27-796540514
| | - Abe Shegro Gerrano
- Agricultural Research Council-Vegetable, Industrial and Medicinal Plants, Pretoria 0001, South Africa;
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa
| | - Ntombokulunga Wedy Mbuma
- Department of Plant Sciences, University of the Free State, Bloemfontein 9301, South Africa; (N.W.M.); (M.T.L.)
| | - Maryke Tine Labuschagne
- Department of Plant Sciences, University of the Free State, Bloemfontein 9301, South Africa; (N.W.M.); (M.T.L.)
| |
Collapse
|
21
|
Tie D, Guo Y, Zhu C, Quan J, Liu S, Zhou Z, Chai Y, Yue M, Liu X. Parental UV-B radiation regulates the habitat selection of clonal Duchesnea indica in heterogeneous light environments. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:600-612. [PMID: 35272763 DOI: 10.1071/fp21253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Habitat selection behaviour is an effective strategy adopted by clonal plants in heterogeneous understorey light environments, and it is likely regulated by the parental environment's ultraviolet-B radiation levels (UV-B) due to the photomorphogenesis of UV-B and maternal effects. Here, parental ramets of Duchesnea indica were treated with two UV-B radiation levels [high (UV5 group) and low (UV10 group)], newborn offspring were grown under a heterogeneous light environment (ambient light vs shade habitat), and the growth and DNA methylation variations of parents and offspring were analysed. The results showed that parental UV-B affected not only the growth of the parent but also the offspring. The offspring of different UV-B-radiated parents showed different performances. Although these offspring all displayed a tendency to escape from light environments, such as entering shade habitats earlier, and allocating more biomass under shade (33.06% of control, 42.28% of UV5 and 72.73% of UV10), these were particularly obvious in offspring of the high UV-B parent. Improvements in epigenetic diversity (4.77 of control vs 4.83 of UV10) and total DNA methylation levels (25.94% of control vs 27.15% of UV10) and the inhibition of shade avoidance syndrome (denser growth with shorter stolons and internodes) were only observed in offspring of high UV-B parents. This difference was related to the eustress and stress effects of low and high UV-B, respectively. Overall, the behaviour of D. indica under heterogeneous light conditions was regulated by the parental UV-B exposure. Moreover, certain performance improvements helped offspring pre-regulate growth to cope with future environments and were probably associated with the effects of maternal DNA methylation variations in UV-B-radiated parents.
Collapse
Affiliation(s)
- Dan Tie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China; and Linyou Branch of Baoji Tobacco Company, Linyou County, Baoji, China
| | - Yuehan Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Chunrui Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Jiaxin Quan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Shiqiang Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Zhe Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Yongfu Chai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Xiao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| |
Collapse
|
22
|
Nakayama H, Koga H, Long Y, Hamant O, Ferjani A. Looking beyond the gene network - metabolic and mechanical cell drivers of leaf morphogenesis. J Cell Sci 2022; 135:275072. [PMID: 35438169 DOI: 10.1242/jcs.259611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The above-ground organs in plants display a rich diversity, yet they grow to characteristic sizes and shapes. Organ morphogenesis progresses through a sequence of key events, which are robustly executed spatiotemporally as an emerging property of intrinsic molecular networks while adapting to various environmental cues. This Review focuses on the multiscale control of leaf morphogenesis. Beyond the list of known genetic determinants underlying leaf growth and shape, we focus instead on the emerging novel mechanisms of metabolic and biomechanical regulations that coordinate plant cell growth non-cell-autonomously. This reveals how metabolism and mechanics are not solely passive outcomes of genetic regulation but play instructive roles in leaf morphogenesis. Such an integrative view also extends to fluctuating environmental cues and evolutionary adaptation. This synthesis calls for a more balanced view on morphogenesis, where shapes are considered from the standpoints of geometry, genetics, energy and mechanics, and as emerging properties of the cellular expression of these different properties.
Collapse
Affiliation(s)
- Hokuto Nakayama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Hiroyuki Koga
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Yuchen Long
- Department of Biological Sciences, The National University of Singapore, Singapore 117543, Singapore
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69007 Lyon, France
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, 184-8501 Tokyo, Japan
| |
Collapse
|
23
|
Ashra H, Nair S. Review: Trait plasticity during plant-insect interactions: From molecular mechanisms to impact on community dynamics. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111188. [PMID: 35193737 DOI: 10.1016/j.plantsci.2022.111188] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Phenotypic plasticity, prevalent in all domains of life, enables organisms to cope with unpredictable or novel changes in their growing environment. Plants represent an interesting example of phenotypic plasticity which also directly represents and affects the dynamics of biological interactions occurring in a community. Insects, which interact with plants, manifest phenotypic plasticity in their developmental, physiological, morphological or behavioral traits in response to the various host plant defenses induced upon herbivory. However, plant-insect interactions are generally more complex and multidimensional because of their dynamic association with their respective microbiomes and macrobiomes. Moreover, these associations can alter plant and insect responses towards each other by modulating the degree of phenotypic plasticity in their various traits and studying them will provide insights into how plants and insects reciprocally affect each other's evolutionary trajectory. Further, we explore the consequences of phenotypic plasticity on relationships and interactions between plants and insects and its impact on their development, evolution, speciation and ecological organization. This overview, obtained after exploring and comparing data obtained from several inter-disciplinary studies, reveals how genetic and molecular mechanisms, underlying plasticity in traits, impact species interactions at the community level and also identifies mechanisms that could be exploited in breeding programs.
Collapse
Affiliation(s)
- Himani Ashra
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Suresh Nair
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India.
| |
Collapse
|
24
|
Population Variability of Almond-Leaved Willow (Salix triandra L.) Based on the Leaf Morphometry: Isolation by Distance and Environment Explain Phenotypic Diversity. FORESTS 2022. [DOI: 10.3390/f13030420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Almond-leaved willow (Salix triandra L., Salicaceae) is a dioecious shrub, rarely a small tree that grows under various environmental conditions. We examined the population structure of 12 populations of almond-leaved willow using nine leaf morphological traits and specific leaf area. Populations were selected from a range of habitats, from continental to the sub-Mediterranean zone, to examine the influence of environmental conditions (climate and altitude) and geographic distance on leaf variability. Significant differences were confirmed among all populations for all traits, with significant correlations between geographic location of populations and morphological traits, and between environmental conditions and morphological traits. Large-leaved populations were found in continental and sub-Mediterranean climates, while small-leaved populations were found in higher elevations and smaller karstic rivers. In addition, populations from floodplains showed greater variability than populations from the karstic habitats, indicating a positive influence of lowland habitats and possible underlying differences in gene pool size. In conclusion, we found that environmental conditions and geographical distances in addition to genetic drift, are the main influences on the variability in almond-leaved willow, with the species showing a high level of plasticity and adaptation to local environmental conditions.
Collapse
|
25
|
Hu Y, Zhang H, Qian Q, Lin G, Wang J, Sun J, Li Y, Jang JC, Li W. The Potential Roles of Unique Leaf Structure for the Adaptation of Rheum tanguticum Maxim. ex Balf. in Qinghai-Tibetan Plateau. PLANTS (BASEL, SWITZERLAND) 2022; 11:512. [PMID: 35214845 PMCID: PMC8875413 DOI: 10.3390/plants11040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Leaves are essential plant organs with numerous variations in shape and size. The leaf size is generally smaller in plants that thrive in areas of higher elevation and lower annual mean temperature. The Qinghai-Tibetan Plateau is situated at an altitude of >4000 m with relatively low annual average temperatures. Most plant species found on the Qinghai-Tibetan Plateau have small leaves, with Rheum tanguticum Maxim. ex Balf. being an exception. Here, we show that the large leaves of R. tanguticum with a unique three-dimensional (3D) shape are potentially an ideal solution for thermoregulation with little energy consumption. With the increase in age, the shape of R. tanguticum leaves changed from a small oval plane to a large palmatipartite 3D shape. Therefore, R. tanguticum is a highly heteroblastic species. The leaf shape change during the transition from the juvenile to the adult phase of the development in R. tanguticum is a striking example of the manifestation of plant phenotypic plasticity. The temperature variation in different parts of the leaf was a distinct character of leaves of over-5-year-old plants. The temperature of single-plane leaves under strong solar radiation could accumulate heat rapidly and resulted in temperatures much higher than the ambient temperature. However, leaves of over-5-year-old plants could lower leaf temperature by avoiding direct exposure to solar radiation and promoting local airflow to prevent serious tissue damage by sunburn. Furthermore, the net photosynthesis rate was correlated with the heterogeneity of the leaf surface temperature. Our results demonstrate that the robust 3D shape of the leaf is a strategy that R. tanguticum has developed evolutionarily to adapt to the strong solar radiation and low temperature on the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Yanping Hu
- Qinghai Provincial Key Laboratory of Qinghai–Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (Y.H.); (H.Z.); (Q.Q.); (J.W.); (J.S.)
| | - Huixuan Zhang
- Qinghai Provincial Key Laboratory of Qinghai–Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (Y.H.); (H.Z.); (Q.Q.); (J.W.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Qian
- Qinghai Provincial Key Laboratory of Qinghai–Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (Y.H.); (H.Z.); (Q.Q.); (J.W.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gonghua Lin
- School of Life Sciences, Jinggangshan University, Ji’an 343009, China;
| | - Jun Wang
- Qinghai Provincial Key Laboratory of Qinghai–Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (Y.H.); (H.Z.); (Q.Q.); (J.W.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai–Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (Y.H.); (H.Z.); (Q.Q.); (J.W.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Li
- Qinghai Provincial Key Laboratory of Qinghai–Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (Y.H.); (H.Z.); (Q.Q.); (J.W.); (J.S.)
| | - Jyan-Chyun Jang
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA
| | - Wenjing Li
- Scientific Research and Popularization Base of Qinghai–Tibet Plateau Biology, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|
26
|
Vidaković A, Šatović Z, Tumpa K, Idžojtić M, Liber Z, Pintar V, Radunić M, Runjić TN, Runjić M, Rošin J, Gaunt D, Poljak I. Phenotypic Variation in European Wild Pear (Pyrus pyraster (L.) Burgsd.) Populations in the North-Western Part of the Balkan Peninsula. PLANTS 2022; 11:plants11030335. [PMID: 35161316 PMCID: PMC8837925 DOI: 10.3390/plants11030335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/03/2022]
Abstract
Leaves play a central role in plant fitness, allowing efficient light capture, gas exchange and thermoregulation, ensuring optimal growing conditions for the plant. Phenotypic variability in leaf shape and size has been linked to environmental heterogeneity and habitat characteristics. Therefore, the study of foliar morphology in plant populations can help us to identify the environmental factors that may have influenced the process of species diversification. In this study, we used European wild pear (Pyrus pyraster (L.) Burgsd., Rosaceae) as a model species to investigate the phenotypic variability of leaves under different environmental conditions. Using leaf morphometric data from 19 natural populations from the north-western part of the Balkan Peninsula, a high level of variability among and within populations were found. Leaf traits related to leaf size were more variable compared to leaf shape traits, with both influenced by geographic and environmental factors. Consequently, patterns of isolation by environment (IBE) and distance (IBD) were identified, with IBE showing a stronger influence on leaf variability. Multivariate statistical analysis revealed that European wild pear populations from the north-western part of the Balkan Peninsula can be divided into two morphological clusters, consistent with their geographical distance and environmental conditions. Our results confirm a high level of phenotypic variability in European wild pear populations, providing additional data on this poorly studied species, emphasizing phenotypic plasticity as a major driver in the adaptation of this noble hardwood species to rapid climate change.
Collapse
Affiliation(s)
- Antonio Vidaković
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (K.T.); (M.I.); (D.G.)
| | - Zlatko Šatović
- Department for Seed Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, HR-10000 Zagreb, Croatia;
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, HR-10000 Zagreb, Croatia; (Z.L.); (M.R.)
| | - Katarina Tumpa
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (K.T.); (M.I.); (D.G.)
| | - Marilena Idžojtić
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (K.T.); (M.I.); (D.G.)
| | - Zlatko Liber
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, HR-10000 Zagreb, Croatia; (Z.L.); (M.R.)
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10000 Zagreb, Croatia
| | - Valentino Pintar
- Ministry of Economy and Sustainable Development, Institute for Environment and Nature, Nature Sector, Radnička cesta 80, HR-10000 Zagreb, Croatia;
| | - Mira Radunić
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, HR-10000 Zagreb, Croatia; (Z.L.); (M.R.)
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia; (T.N.R.); (M.R.); (J.R.)
| | - Tonka Ninčević Runjić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia; (T.N.R.); (M.R.); (J.R.)
| | - Marko Runjić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia; (T.N.R.); (M.R.); (J.R.)
| | - Jakša Rošin
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia; (T.N.R.); (M.R.); (J.R.)
| | - Daniel Gaunt
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (K.T.); (M.I.); (D.G.)
| | - Igor Poljak
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (K.T.); (M.I.); (D.G.)
- Correspondence: ; Tel.: +385-1-2352547
| |
Collapse
|
27
|
Patterns of leaf morphological variation in Quercus frainetto Ten. growing on different soil types in Serbia. ARCH BIOL SCI 2022. [DOI: 10.2298/abs220405018j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Leaf morphology is at a certain level defined by the ways in which plants adapt to different habitats, especially in large trees. In this study, morphological variations in leaf size and shape of the Hungarian oak (Quercus frainetto Ten.) growing on different soil types (lithic leptosol, vertisol, cambisol) were investigated in the central part of Serbia (Sumadija). The information on soil type was obtained using a digitalized soil map of the Republic of Serbia, while leaf traits were characterized by geometric morphometric methods. Landmark analysis and leaf measurements showed significant differences among the analyzed groups, with individuals growing on nutrient-poor, shallow soils having smaller leaves with greater lobation. The observed differences suggest that the levels of soil productivity influence variations in leaf patterns. More studies on a larger sample size and along a broader spatial scale are needed to fully understand the differences in the patterns of leaf morphological variation in Q. frainetto.
Collapse
|
28
|
Ezhova TA. Paradoxes of Plant Epigenetics. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421060047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Plants have a unique ability to adapt ontogenesis to changing environmental conditions and the influence of stress factors. This ability is based on the existence of two specific features of epigenetic regulation in plants, which seem to be mutually exclusive at first glance. On the one hand, plants are capable of partial epigenetic reprogramming of the genome, which can lead to adaptation of physiology and metabolism to changed environmental conditions as well as to changes in ontogenesis programs. On the other hand, plants can show amazing stability of epigenetic modifications and the ability to transmit them to vegetative and sexual generations. The combination of these inextricably linked epigenetic features not only ensures survival in the conditions of a sessile lifestyle but also underlies a surprisingly wide morphological diversity of plants, which can lead to the appearance of morphs within one population and the existence of interpopulation morphological differences. The review discusses the molecular genetic mechanisms that cause a paradoxical combination of the stability and lability properties of epigenetic modifications and underlie the polyvariance of ontogenesis. We also consider the existing approaches for studying the role of epigenetic regulation in the manifestation of polyvariance of ontogenesis and discuss their limitations and prospects.
Collapse
|
29
|
Zhang M, Lu N, Zhu T, Yang G, Qu G, Shi C, Fei Y, Liu B, Ma W, Wang J. A Bivariate Mapping Model Identifies Major Covariation QTLs for Biomass Allocation Between Leaf and Stem Growth of Catalpa bungei. Front Genet 2021; 12:758209. [PMID: 34868235 PMCID: PMC8637733 DOI: 10.3389/fgene.2021.758209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Biomass allocation plays a critical role in plant morphological formation and phenotypic plasticity, which greatly impact plant adaptability and competitiveness. While empirical studies on plant biomass allocation have focused on molecular biology and ecology approaches, detailed insight into the genetic basis of biomass allocation between leaf and stem growth is still lacking. Herein, we constructed a bivariate mapping model to identify covariation QTLs governing carbon (C) allocation between the leaves and stem as well as the covariation of traits within and between organs in a full-sib mapping population of C. bungei. A total of 123 covQTLs were detected for 23 trait pairs, including six leaf traits (leaf length, width, area, perimeter, length/width ratio and petiole length) and five stem traits (height, diameter at breast height, wood density, stemwood volume and stemwood biomass). The candidate genes were further identified in tissue-specific gene expression data, which provided insights into the genetic architecture underlying C allocation for traits or organs. The key QTLs related to growth and biomass allocation, which included UVH1, CLPT2, GAD/SPL, COG1 and MTERF4, were characterised and verified via gene function annotation and expression profiling. The integration of a bivariate Quantitative trait locus mapping model and gene expression profiling will enable the elucidation of genetic architecture underlying biomass allocation and covariation growth, in turn providing a theoretical basis for forest molecular marker-assisted breeding with specific C allocation strategies for adaptation to heterogeneous environments.
Collapse
Affiliation(s)
- Miaomiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Tianqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Guijuan Yang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Chaozhong Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yue Fei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Bingyang Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
30
|
Carvalho LC, Gonçalves EF, Marques da Silva J, Costa JM. Potential Phenotyping Methodologies to Assess Inter- and Intravarietal Variability and to Select Grapevine Genotypes Tolerant to Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:718202. [PMID: 34764964 PMCID: PMC8575754 DOI: 10.3389/fpls.2021.718202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/28/2021] [Indexed: 06/12/2023]
Abstract
Plant phenotyping is an emerging science that combines multiple methodologies and protocols to measure plant traits (e.g., growth, morphology, architecture, function, and composition) at multiple scales of organization. Manual phenotyping remains as a major bottleneck to the advance of plant and crop breeding. Such constraint fostered the development of high throughput plant phenotyping (HTPP), which is largely based on imaging approaches and automatized data retrieval and processing. Field phenotyping still poses major challenges and the progress of HTPP for field conditions can be relevant to support selection and breeding of grapevine. The aim of this review is to discuss potential and current methods to improve field phenotyping of grapevine to support characterization of inter- and intravarietal diversity. Vitis vinifera has a large genetic diversity that needs characterization, and the availability of methods to support selection of plant material (polyclonal or clonal) able to withstand abiotic stress is paramount. Besides being time consuming, complex and expensive, field experiments are also affected by heterogeneous and uncontrolled climate and soil conditions, mostly due to the large areas of the trials and to the high number of traits to be observed in a number of individuals ranging from hundreds to thousands. Therefore, adequate field experimental design and data gathering methodologies are crucial to obtain reliable data. Some of the major challenges posed to grapevine selection programs for tolerance to water and heat stress are described herein. Useful traits for selection and related field phenotyping methodologies are described and their adequacy for large scale screening is discussed.
Collapse
Affiliation(s)
- Luísa C. Carvalho
- LEAF – Linking Landscape, Environment, Agriculture and Food – Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Elsa F. Gonçalves
- LEAF – Linking Landscape, Environment, Agriculture and Food – Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Jorge Marques da Silva
- BioISI – Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, Lisboa, Portugal
| | - J. Miguel Costa
- LEAF – Linking Landscape, Environment, Agriculture and Food – Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
31
|
Łaszczyca P, Nakonieczny M, Kędziorski A, Babczyńska A, Wiesner M. Towards understanding Cameraria ohridella (Lepidoptera: Gracillariidae) development: effects of microhabitat variability in naturally growing horse-chestnut tree canopy. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:1647-1658. [PMID: 33880644 PMCID: PMC8437867 DOI: 10.1007/s00484-021-02119-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Dwelling intensity of horse-chestnut miner (Cameraria ohridella) larvae in various leaves insolation and temperature was measured to determine whether this pest's development follows a predictable pattern or depends more on local microenvironment conditions. Mines growing on leaves of mature host plants (Aesculus hippocastanum L.) in their natural conditions were photographed for two consecutive generations of the pest and in two separated vegetation periods. Apart from meteorological data obtained from the nearest station, the temperature of intact and mined parts of sun-exposed and shaded leaf blades was measured at various daytimes throughout the experiment. Obtained sets of digital data were analysed and combined to model mine area growth as a function of degree-days sum by adopting of Verhulst logistic equation. We showed the predictive potential of our model based on experimental data, and it may be useful in the scheduling of pest control measures in natural conditions. Our analyses also revealed that despite significant differences in microenvironment conditions depending on mines' insolation, the horse-chestnut miner larvae could partially compensate for them and complete their development at similar endpoints expressed as the cumulative sum of degree-days. We conclude that computer-aided analysis of photographic documentation of leaf-miner larval growth followed by mathematical modelling offers a noninvasive, reliable, and inexpensive alternative for monitoring local leaf-miners populations.
Collapse
Affiliation(s)
- Piotr Łaszczyca
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Animal Physiology and Ecotoxicology Team, University of Silesia in Katowice, PL 40-007, Katowice, Bankowa 9, Poland
| | - Mirosław Nakonieczny
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Animal Physiology and Ecotoxicology Team, University of Silesia in Katowice, PL 40-007, Katowice, Bankowa 9, Poland.
| | - Andrzej Kędziorski
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Animal Physiology and Ecotoxicology Team, University of Silesia in Katowice, PL 40-007, Katowice, Bankowa 9, Poland
| | - Agnieszka Babczyńska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Animal Physiology and Ecotoxicology Team, University of Silesia in Katowice, PL 40-007, Katowice, Bankowa 9, Poland
| | - Marta Wiesner
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Animal Physiology and Ecotoxicology Team, University of Silesia in Katowice, PL 40-007, Katowice, Bankowa 9, Poland
- Główny Instytut Górnictwa (GIG), 40-166, Katowice, plac Gwarków 1, Poland
| |
Collapse
|
32
|
Patterns of Leaf Morphological Traits of Beech (Fagus sylvatica L.) along an Altitudinal Gradient. FORESTS 2021. [DOI: 10.3390/f12101297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Broadleaved tree species in mountainous populations usually demonstrate high levels of diversity in leaf morphology among individuals, as a response to a variety of environmental conditions associated with changes in altitude. We investigated the parameters shaping leaf morphological diversity in 80 beech individuals (Fagus sylvatica L.), in light and shade leaves, growing along an elevational gradient and under different habitat types on Mt. Paggeo in northeastern Greece. A clear altitudinal pattern was observed in the morphological leaf traits expressing lamina size and shape; with increasing altitude, trees had leaves with smaller laminas, less elongated outlines, and fewer pairs of secondary veins. However, this altitudinal trend in leaf morphology was varied in different habitat types. Furthermore, the shade leaves and light leaves showed differences in their altitudinal trend. Traits expressing lamina shape in shade leaves were more related to altitude, while leaf size appeared to be more influenced by habitat type. While the altitudinal trend in leaf morphology has been well documented for numerous broadleaved tree species, in a small spatial scale, different patterns emerged across different habitat types. This morphological variability among trees growing in a mountainous population indicates a high potential for adaptation to environmental extremes.
Collapse
|
33
|
Moreno JE. Shade avoidance syndrome in 4D: illuminating a role for transcriptional repression of protein biogenesis genes. PLANT PHYSIOLOGY 2021; 186:1375-1377. [PMID: 34624113 PMCID: PMC8260121 DOI: 10.1093/plphys/kiab212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Javier Edgardo Moreno
- Instituto de Agrobiotecnología del Litoral (UNL-Conicet), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| |
Collapse
|
34
|
Romanowski A, Furniss JJ, Hussain E, Halliday KJ. Phytochrome regulates cellular response plasticity and the basic molecular machinery of leaf development. PLANT PHYSIOLOGY 2021; 186:1220-1239. [PMID: 33693822 PMCID: PMC8195529 DOI: 10.1093/plphys/kiab112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/18/2021] [Indexed: 05/04/2023]
Abstract
Plants are plastic organisms that optimize growth in response to a changing environment. This adaptive capability is regulated by external cues, including light, which provides vital information about the habitat. Phytochrome photoreceptors detect far-red light, indicative of nearby vegetation, and elicit the adaptive shade-avoidance syndrome (SAS), which is critical for plant survival. Plants exhibiting SAS are typically more elongated, with distinctive, small, narrow leaf blades. By applying SAS-inducing end-of-day far-red (EoD FR) treatments at different times during Arabidopsis (Arabidopsis thaliana) leaf 3 development, we have shown that SAS restricts leaf blade size through two distinct cellular strategies. Early SAS induction limits cell division, while later exposure limits cell expansion. This flexible strategy enables phytochromes to maintain control of leaf size through the proliferative and expansion phases of leaf growth. mRNAseq time course data, accessible through a community resource, coupled to a bioinformatics pipeline, identified pathways that underlie these dramatic changes in leaf growth. Phytochrome regulates a suite of major development pathways that control cell division, expansion, and cell fate. Further, phytochromes control cell proliferation through synchronous regulation of the cell cycle, DNA replication, DNA repair, and cytokinesis, and play an important role in sustaining ribosome biogenesis and translation throughout leaf development.
Collapse
Affiliation(s)
- Andrés Romanowski
- Halliday Lab, Institute of Molecular Plant Sciences (IMPS), King’s Buildings, University of Edinburgh, Edinburgh, UK
- Comparative Genomics of Plant Development, Fundación Instituto Leloir (FIL), Instituto de Investigaciones Bioquímicas Buenos Aires (IIBBA) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - James J Furniss
- Halliday Lab, Institute of Molecular Plant Sciences (IMPS), King’s Buildings, University of Edinburgh, Edinburgh, UK
| | - Ejaz Hussain
- Halliday Lab, Institute of Molecular Plant Sciences (IMPS), King’s Buildings, University of Edinburgh, Edinburgh, UK
| | - Karen J Halliday
- Halliday Lab, Institute of Molecular Plant Sciences (IMPS), King’s Buildings, University of Edinburgh, Edinburgh, UK
- Author for communication:
| |
Collapse
|
35
|
Mahmood S, Afzal B, Perveen S, Wahid A, Azeem M, Iqbal N. He-Ne Laser Seed Treatment Improves the Nutraceutical Metabolic Pool of Sunflowers and Provides Better Tolerance Against Water Deficit. FRONTIERS IN PLANT SCIENCE 2021; 12:579429. [PMID: 34079562 PMCID: PMC8165324 DOI: 10.3389/fpls.2021.579429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Water-scarce areas are continually increasing worldwide. This factor reduces the quantity and quality of crops produced in affected areas. Physical seed treatments are considered economical and ecofriendly solutions for such problems. It was hypothesized that a moderately drought-tolerant crop grown from seeds treated with a He-Ne laser utilizes water-limited conditions better than plants grown from untreated seeds. A field study was conducted, growing a moderately drought tolerant crop (sunflower) with supportive seed treatment (He-Ne laser treatment at 300 mJ) for 0, 1, 2, and 3 min. Thirty-day-old plants were subjected to two irrigation conditions: 100% (normal) and 50% (water stress). Harvesting was done at flowering (60-day-old plants) at full maturity. The sunflowers maintained growth and yield under water limitation with a reduced achene number. At 50%, irrigation, there was a reduction in chlorophyll a, a+b and a/b; catalase activity; soluble sugars; and anthocyanin, alongside elevated proline. The improved chlorophyll a, a+b and a/b; metabolisable energy; nutritional value; and yield in the plants grown from He-Ne-laser-treated seeds support our hypothesis. Seeds with 2-min exposure to a He-Ne laser performed best regarding leaf area; leaf number; leaf biomass; chlorophyll a, a+b and a/b; per cent oil yield; 50-achene weight; achene weight per plant; carotenoid content; and total soluble phenolic compound content. Thereafter, the leaves from the best performing level of treatment (2 min) were subjected to high-performance-liquid-chromatography-based phenolic profiling and gas-chromatography-based fatty acid profiling of the oil yield. The He-Ne laser treatment led to the accumulation of nutraceutical phenolic compounds and improved the unsaturated-to-saturated fatty acid ratio of the oil. In conclusion, 2-min He-Ne laser seed treatment could be the best strategy to improve the yield and nutritional value of sunflowers grown in water-limited areas.
Collapse
Affiliation(s)
- Saqib Mahmood
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Beenish Afzal
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Shagufta Perveen
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Abdul Wahid
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Azeem
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Naeem Iqbal
- Department of Botany, Government College University, Faisalabad, Pakistan
| |
Collapse
|
36
|
Pantazopoulou CK, Bongers FJ, Pierik R. Reducing shade avoidance can improve Arabidopsis canopy performance against competitors. PLANT, CELL & ENVIRONMENT 2021; 44:1130-1141. [PMID: 33034378 PMCID: PMC8048483 DOI: 10.1111/pce.13905] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 05/15/2023]
Abstract
Plants that grow in high density communities activate shade avoidance responses to consolidate light capture by individuals. Although this is an evolutionary successful strategy, it may not enhance performance of the community as a whole. Resources are invested in shade responses at the expense of other organs and light penetration through the canopy is increased, allowing invading competitors to grow better. Here we investigate if suppression of shade avoidance responses would enhance group performance of a monoculture community that is invaded by a competitor. Using different Arabidopsis genotypes, we show that suppression of shade-induced upward leaf movement in the pif7 mutant increases the pif7 communal performance against invaders as compared to a wild-type canopy. The invaders were more severely suppressed and the community grew larger as compared to wild type. Using computational modelling, we show that leaf angle variations indeed strongly affect light penetration and growth of competitors that invade the canopy. Our data thus show that modifying specific shade avoidance aspects can improve plant community performance. These insights may help to suppress weeds in crop stands.
Collapse
Affiliation(s)
| | - Franca J. Bongers
- Plant Ecophysiology, Dept. of BiologyUtrecht UniversityUtrechtThe Netherlands
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of Botany, Chinese Academy of SciencesBeijingChina
| | - Ronald Pierik
- Plant Ecophysiology, Dept. of BiologyUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
37
|
Mechanisms of the Morphological Plasticity Induced by Phytohormones and the Environment in Plants. Int J Mol Sci 2021; 22:ijms22020765. [PMID: 33466729 PMCID: PMC7828791 DOI: 10.3390/ijms22020765] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/05/2023] Open
Abstract
Plants adapt to environmental changes by regulating their development and growth. As an important interface between plants and their environment, leaf morphogenesis varies between species, populations, or even shows plasticity within individuals. Leaf growth is dependent on many environmental factors, such as light, temperature, and submergence. Phytohormones play key functions in leaf development and can act as molecular regulatory elements in response to environmental signals. In this review, we discuss the current knowledge on the effects of different environmental factors and phytohormone pathways on morphological plasticity and intend to summarize the advances in leaf development. In addition, we detail the molecular mechanisms of heterophylly, the representative of leaf plasticity, providing novel insights into phytohormones and the environmental adaptation in plants.
Collapse
|
38
|
Radersma R, Noble DWA, Uller T. Plasticity leaves a phenotypic signature during local adaptation. Evol Lett 2020; 4:360-370. [PMID: 32774884 PMCID: PMC7403707 DOI: 10.1002/evl3.185] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/22/2020] [Indexed: 12/31/2022] Open
Abstract
Phenotypic responses to a novel or extreme environment are initially plastic, only later to be followed by genetic change. Whether or not environmentally induced phenotypes are sufficiently recurrent and fit to leave a signature in adaptive evolution is debated. Here, we analyze multivariate data from 34 plant reciprocal transplant studies to test: (1) if plasticity is an adaptive source of developmental bias that makes locally adapted populations resemble the environmentally induced phenotypes of ancestors; and (2) if plasticity, standing phenotypic variation and genetic divergence align during local adaptation. Phenotypic variation increased marginally in foreign environments but, as predicted, the direction of ancestral plasticity was generally well aligned with the phenotypic difference between locally adapted populations, making plasticity appear to "take the lead" in adaptive evolution. Plastic responses were sometimes more extreme than the phenotypes of locally adapted plants, which can give the impression that plasticity and evolutionary adaptation oppose each other; however, environmentally induced and locally adapted phenotypes were rarely misaligned. Adaptive fine‐tuning of phenotypes—genetic accommodation—did not fall along the main axis of standing phenotypic variation or the direction of plasticity, and local adaptation did not consistently modify the direction or magnitude of plasticity. These results suggest that plasticity is a persistent source of developmental bias that shapes how plant populations adapt to environmental change, even when plasticity does not constrain how populations respond to selection.
Collapse
Affiliation(s)
- Reinder Radersma
- Department of Biology Lund University Lund Sweden.,Biometris Wageningen University & Research Wageningen The Netherlands
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology The Australian National University Canberra ACT Australia
| | - Tobias Uller
- Department of Biology Lund University Lund Sweden
| |
Collapse
|
39
|
Reut MS, Płachno BJ. Unusual developmental morphology and anatomy of vegetative organs in Utricularia dichotoma-leaf, shoot and root dynamics. PROTOPLASMA 2020; 257:371-390. [PMID: 31659470 PMCID: PMC7039851 DOI: 10.1007/s00709-019-01443-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/19/2019] [Indexed: 05/05/2023]
Abstract
The terrestrial carnivorous species Utricularia dichotoma is known for a great phenotypic plasticity and unusual vegetative organs. Our investigation on 22 sources/populations revealed that after initiation of a leaf and two bladders on a stolon, a bud was formed in the proximal axil of the leaf, developing into a rosette with up to seven organs. The first two primordia of the bud grew into almost every possible combination of organs, but often into two anchor stolons. The patterns were generally not population specific. The interchangeability of organs increased with increasing rank in the succession of organs on stolon nodes. A high potential of switching developmental programs may be successful in a fluctuating environment. In this respect, we were able to show that bladders developed from anchor stolons experimentally when raising the water table. Anatomical structures were simple, lacunate and largely homogenous throughout all organs. They showed similarities with many hydrophytes, reflecting the plant's adaptation to (temporarily) submerged conditions. The principal component analysis was used in the context of dynamic morphology to illustrate correlations between organ types in the morphospace of U. dichotoma, revealing an organ specific patchwork of developmental processes for typical leaves and shoots, and less pronounced for a typical root. The concept and methods we applied may prove beneficial for future studies on the evolution of Lentibulariaceae, and on developmental morphology and genetics of unusual structures in plants.
Collapse
Affiliation(s)
- Markus S Reut
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, 9 Gronostajowa St, 30-387, Cracow, Poland.
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, 9 Gronostajowa St, 30-387, Cracow, Poland
| |
Collapse
|
40
|
Testone G, Baldoni E, Iannelli MA, Nicolodi C, Di Giacomo E, Pietrini F, Mele G, Giannino D, Frugis G. Transcription Factor Networks in Leaves of Cichorium endivia: New Insights into the Relationship Between Photosynthesis and Leaf Development. PLANTS (BASEL, SWITZERLAND) 2019; 8:E531. [PMID: 31766484 PMCID: PMC6963412 DOI: 10.3390/plants8120531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/18/2022]
Abstract
Cichorium endivia is a leafy crop closely related to Lactuca sativa that comprises two major botanical varieties characterized by a high degree of intraspecific morphological variation: var. latifolium with broad leaves (escarole) and var. crispum with narrow crisp curly leaves (endive). To investigate the relationship between leaf morphology and photosynthetic activity, escaroles and endives were used as a crop model due to the striking morphological diversity of their leaves. We constructed a leaf database for transcription factors (TFs) and photosynthesis-related genes from a refined C. endivia transcriptome and used RNA-seq transcriptomic data from leaves of four commercial endive and escarole cultivars to explore transcription factor regulatory networks. Cluster and gene co-expression network (GCN) analyses identified two main anticorrelated modules that control photosynthesis. Analysis of the GCN network topological properties identified known and novel hub genes controlling photosynthesis, and candidate developmental genes at the boundaries between shape and function. Differential expression analysis between broad and curly leaves suggested three novel TFs putatively involved in leaf shape diversity. Physiological analysis of the photosynthesis properties and gene expression studies on broad and curly leaves provided new insights into the relationship between leaf shape and function.
Collapse
Affiliation(s)
- Giulio Testone
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Elena Baldoni
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Consiglio Nazionale delle Ricerche (CNR), Via Bassini 15, 20133 Milano, Italy
| | - Maria Adelaide Iannelli
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Chiara Nicolodi
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Elisabetta Di Giacomo
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Fabrizio Pietrini
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km 29,300, 00015 Monterotondo Scalo (Roma), Italy;
| | - Giovanni Mele
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Donato Giannino
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015 Monterotondo Scalo (Roma), Italy; (G.T.); (E.B.); (M.A.I.); (C.N.); (E.D.G.); (G.M.); (D.G.)
| |
Collapse
|