1
|
Moles MW, Erdlei H, Menzel L, Massaro M, Fiori A, Bunse M, Schrimpf M, Gerlach K, Gudipati V, Reiser J, Mathavan K, Goodrich JP, Huppa JB, Krönke J, Valamehr B, Höpken UE, Rehm A. CXCR4 has a dual role in improving the efficacy of BCMA-redirected CAR-NK cells in multiple myeloma. Front Immunol 2024; 15:1383136. [PMID: 38979422 PMCID: PMC11228140 DOI: 10.3389/fimmu.2024.1383136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Multiple myeloma (MM) is a plasma cell disease with a preferential bone marrow (BM) tropism. Enforced expression of tissue-specific chemokine receptors has been shown to successfully guide adoptively-transferred CAR NK cells towards the malignant milieu in solid cancers, but also to BM-resident AML and MM. For redirection towards BM-associated chemokine CXCL12, we armored BCMA CAR-NK-92 as well as primary NK cells with ectopic expression of either wildtype CXCR4 or a gain-of-function mutant CXCR4R334X. Our data showed that BCMA CAR-NK-92 and -primary NK cells equipped with CXCR4 gained an improved ability to migrate towards CXCL12 in vitro. Beyond its classical role coordinating chemotaxis, CXCR4 has been shown to participate in T cell co-stimulation, which prompted us to examine the functionality of CXCR4-cotransduced BCMA-CAR NK cells. Ectopic CXCR4 expression enhanced the cytotoxic capacity of BCMA CAR-NK cells, as evidenced by the ability to eliminate BCMA-expressing target cell lines and primary MM cells in vitro and through accelerated cytolytic granule release. We show that CXCR4 co-modification prolonged BCMA CAR surface deposition, augmented ZAP-70 recruitment following CAR-engagement, and accelerated distal signal transduction kinetics. BCMA CAR sensitivity towards antigen was enhanced by virtue of an enhanced ZAP-70 recruitment to the immunological synapse, revealing an increased propensity of CARs to become triggered upon CXCR4 overexpression. Unexpectedly, co-stimulation via CXCR4 occurred in the absence of CXCL12 ligand-stimulation. Collectively, our findings imply that co-modification of CAR-NK cells with tissue-relevant chemokine receptors affect adoptive NK cell therapy beyond improved trafficking and retention within tumor sites.
Collapse
MESH Headings
- Multiple Myeloma/immunology
- Multiple Myeloma/therapy
- Humans
- Receptors, CXCR4/metabolism
- Receptors, CXCR4/genetics
- B-Cell Maturation Antigen/immunology
- B-Cell Maturation Antigen/metabolism
- B-Cell Maturation Antigen/genetics
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Immunotherapy, Adoptive/methods
- Chemokine CXCL12/metabolism
- Cell Line, Tumor
- Cytotoxicity, Immunologic
Collapse
Affiliation(s)
- Michael W Moles
- Translational Tumorimmunology, Max Delbrück Center, Berlin, Germany
| | - Henry Erdlei
- Translational Tumorimmunology, Max Delbrück Center, Berlin, Germany
| | - Lutz Menzel
- Translational Tumorimmunology, Max Delbrück Center, Berlin, Germany
| | - Marialucia Massaro
- Microenvironmental Regulation in Autoimmunity and Cancer, Max Delbrück Center, Berlin, Germany
| | - Agnese Fiori
- Translational Tumorimmunology, Max Delbrück Center, Berlin, Germany
| | - Mario Bunse
- Microenvironmental Regulation in Autoimmunity and Cancer, Max Delbrück Center, Berlin, Germany
| | - Moritz Schrimpf
- Translational Tumorimmunology, Max Delbrück Center, Berlin, Germany
| | - Kerstin Gerlach
- Translational Tumorimmunology, Max Delbrück Center, Berlin, Germany
| | - Venugopal Gudipati
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | - John Reiser
- Fate Therapeutics, San Diego, CA, United States
| | | | | | - Johannes B Huppa
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | - Jan Krönke
- Department of Hematology, Oncology and Tumorimmunology, Charité-University Medicine Berlin, Berlin, Germany
| | | | - Uta E Höpken
- Microenvironmental Regulation in Autoimmunity and Cancer, Max Delbrück Center, Berlin, Germany
| | - Armin Rehm
- Translational Tumorimmunology, Max Delbrück Center, Berlin, Germany
| |
Collapse
|
2
|
Kim HH, Shim YR, Kim HN, Yang K, Ryu T, Kim K, Choi SE, Kim MJ, Woo C, Chung KPS, Hong SH, Shin H, Suh JM, Jung Y, Hwang GS, Kim W, Kim SH, Eun HS, Seong JK, Jeong WI. xCT-mediated glutamate excretion in white adipocytes stimulates interferon-γ production by natural killer cells in obesity. Cell Rep 2023; 42:112636. [PMID: 37310859 DOI: 10.1016/j.celrep.2023.112636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023] Open
Abstract
Obesity-mediated hypoxic stress underlies inflammation, including interferon (IFN)-γ production by natural killer (NK) cells in white adipose tissue. However, the effects of obesity on NK cell IFN-γ production remain obscure. Here, we show that hypoxia promotes xCT-mediated glutamate excretion and C-X-C motif chemokine ligand 12 (CXCL12) expression in white adipocytes, resulting in CXCR4+ NK cell recruitment. Interestingly, this spatial proximity between adipocytes and NK cells induces IFN-γ production in NK cells by stimulating metabotropic glutamate receptor 5 (mGluR5). IFN-γ then triggers inflammatory activation of macrophages and augments xCT and CXCL12 expression in adipocytes, forming a bidirectional pathway. Genetic or pharmacological inhibition of xCT, mGluR5, or IFN-γ receptor in adipocytes or NK cells alleviates obesity-related metabolic disorders in mice. Consistently, patients with obesity showed elevated levels of glutamate/mGluR5 and CXCL12/CXCR4 axes, suggesting that a bidirectional pathway between adipocytes and NK cells could be a viable therapeutic target in obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Hee-Hoon Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Life Science Research Institute, KAIST, Daejeon 34141, Republic of Korea
| | - Young-Ri Shim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Life Science Research Institute, KAIST, Daejeon 34141, Republic of Korea
| | - Ha Neul Kim
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Keungmo Yang
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Tom Ryu
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Kyurae Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Sung Eun Choi
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Min Jeong Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Chaerin Woo
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Katherine Po Sin Chung
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Song Hwa Hong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hyemi Shin
- Life Science Research Institute, KAIST, Daejeon 34141, Republic of Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Youngae Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Seok-Hwan Kim
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyuk Soo Eun
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center (KMPC) and BK21 Program for Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
3
|
Moscvin M, Evans B, Bianchi G. Dissecting molecular mechanisms of immune microenvironment dysfunction in multiple myeloma and precursor conditions. JOURNAL OF CANCER METASTASIS AND TREATMENT 2023; 9:17. [PMID: 38213954 PMCID: PMC10783205 DOI: 10.20517/2394-4722.2022.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Multiple myeloma (MM) is a disease of clonally differentiated plasma cells. MM is almost always preceded by precursor conditions, monoclonal gammopathy of unknown significance (MGUS), and smoldering MM (SMM) through largely unknown molecular events. Genetic alterations of the malignant plasma cells play a critical role in patient clinical outcomes. Del(17p), t(4;14), and additional chromosomal alterations such as del(1p32), gain(1q) and MYC translocations are involved in active MM evolution. Interestingly, these genetic alterations appear strikingly similar in transformed plasma cell (PC) clones from MGUS, SMM, and MM stages. Recent studies show that effectors of the innate and adaptive immune response show marked dysfunction and skewing towards a tolerant environment that favors disease progression. The MM myeloid compartment is characterized by myeloid-derived suppressor cells (MDSCs), dendritic cells as well as M2-like phenotype macrophages that promote immune evasion. Major deregulations are found in the lymphoid compartment as well, with skewing towards immune tolerant Th17 and Treg and inhibition of CD8+ cytotoxic and CD4+ activated effector T cells. In summary, this review will provide an overview of the complex cross-talk between MM plasma cells and immune cells in the microenvironment and the molecular mechanisms promoting progression from precursor states to full-blown myeloma.
Collapse
Affiliation(s)
- Maria Moscvin
- Department of Medicine, Division of Hematology, Brigham and Womens Hospital, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Benjamin Evans
- Department of Medicine, Division of Hematology, Brigham and Womens Hospital, Boston, MA 02115, USA
| | - Giada Bianchi
- Department of Medicine, Division of Hematology, Brigham and Womens Hospital, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Marie JC, Bonnelye E. Effects of Estrogens on Osteoimmunology: A Role in Bone Metastasis. Front Immunol 2022; 13:899104. [PMID: 35677054 PMCID: PMC9168268 DOI: 10.3389/fimmu.2022.899104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 12/02/2022] Open
Abstract
Bone loss associated with estrogen deficiency indicates a fundamental role of these hormones in skeletal growth and bone remodeling. In the last decades, growing recent evidence demonstrated that estrogens can also affect the immune compartment of the bone. In this review, we summarize the impacts of estrogens on bone immune cells and their consequences on bone homeostasis, metastasis settlement into the bone and tumor progression. We also addressed the role of an orphan nuclear receptor ERRalpha (“Estrogen-receptor Related Receptor alpha”) on macrophages and T lymphocytes, and as an immunomodulator in bone metastases. Hence, this review links estrogens to bone immune cells in osteo-oncology.
Collapse
Affiliation(s)
- Julien C Marie
- Cancer Research Center of Lyon (CRCL), Tumor Escape Resistance Immunity Department, INSERM-1052, CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| | - Edith Bonnelye
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-UMR1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| |
Collapse
|
5
|
CCL22 mutations drive natural killer cell lymphoproliferative disease by deregulating microenvironmental crosstalk. Nat Genet 2022; 54:637-648. [PMID: 35513723 PMCID: PMC9117519 DOI: 10.1038/s41588-022-01059-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/21/2022] [Indexed: 01/14/2023]
Abstract
Chronic lymphoproliferative disorder of natural killer cells (CLPD-NK) is characterized by clonal expansion of natural killer (NK) cells where the underlying genetic mechanisms are incompletely understood. In the present study, we report somatic mutations in the chemokine gene CCL22 as the hallmark of a distinct subset of CLPD-NK. CCL22 mutations were enriched at highly conserved residues, mutually exclusive of STAT3 mutations and associated with gene expression programs that resembled normal CD16dim/CD56bright NK cells. Mechanistically, the mutations resulted in ligand-biased chemokine receptor signaling, with decreased internalization of the G-protein-coupled receptor (GPCR) for CCL22, CCR4, via impaired β-arrestin recruitment. This resulted in increased cell chemotaxis in vitro, bidirectional crosstalk with the hematopoietic microenvironment and enhanced NK cell proliferation in vivo in transgenic human IL-15 mice. Somatic CCL22 mutations illustrate a unique mechanism of tumor formation in which gain-of-function chemokine mutations promote tumorigenesis by biased GPCR signaling and dysregulation of microenvironmental crosstalk.
Collapse
|
6
|
Venglar O, Bago JR, Motais B, Hajek R, Jelinek T. Natural Killer Cells in the Malignant Niche of Multiple Myeloma. Front Immunol 2022; 12:816499. [PMID: 35087536 PMCID: PMC8787055 DOI: 10.3389/fimmu.2021.816499] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells represent a subset of CD3- CD7+ CD56+/dim lymphocytes with cytotoxic and suppressor activity against virus-infected cells and cancer cells. The overall potential of NK cells has brought them to the spotlight of targeted immunotherapy in solid and hematological malignancies, including multiple myeloma (MM). Nonetheless, NK cells are subjected to a variety of cancer defense mechanisms, leading to impaired maturation, chemotaxis, target recognition, and killing. This review aims to summarize the available and most current knowledge about cancer-related impairment of NK cell function occurring in MM.
Collapse
Affiliation(s)
- Ondrej Venglar
- Faculty of Science, University of Ostrava, Ostrava, Czechia.,Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Julio Rodriguez Bago
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Benjamin Motais
- Faculty of Science, University of Ostrava, Ostrava, Czechia.,Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Roman Hajek
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Tomas Jelinek
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| |
Collapse
|
7
|
Holstein SA, Bahlis N, Bergsagel PL, Bhutani M, Bolli N, Brownstein C, Demolis P, Foureau D, Gay F, Ghobrial IM, Gormley N, Hillengass J, Kaiser M, Maus MV, Melenhorst JJ, Merz M, Dwyer MO, Paiva B, Pasquini MC, Shah N, Wong SW, Usmani SZ, McCarthy PL. The 2020 BMT CTN Myeloma Intergroup Workshop on Immune Profiling and Minimal Residual Disease Testing in Multiple Myeloma. Transplant Cell Ther 2021; 27:807-816. [PMID: 34107340 PMCID: PMC8478786 DOI: 10.1016/j.jtct.2021.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 01/17/2023]
Abstract
The fifth annual Blood and Marrow Transplant Clinical Trials Network Myeloma Intergroup Workshop on Immune Profiling and Minimal Residual Disease Testing in Multiple Myeloma was conducted as one of the American Society of Hematology Annual Meeting Scientific Workshops on Thursday December 3, 2020. This workshop focused on four main topics: (1) integrating minimal residual disease into clinical trial design and practice; (2) the molecular and immunobiology of disease evolution and progression in myeloma; (3) adaptation of next-generation sequencing, next-generation flow cytometry, and cytometry by time of flight techniques; and (4) chimeric antigen receptor T-cell and other cellular therapies for myeloma. In this report, we provide a summary of the workshop presentations and discuss future directions in the field.
Collapse
Affiliation(s)
| | - Nizar Bahlis
- University of Calgary, Arnie Charbonneau Cancer Research Institute, Calgary, Alberta, Canada
| | | | | | - Niccolo Bolli
- Department of Oncology and Hemato-Oncology, University of Milan, and Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | - Francesca Gay
- University of Torino, Divisione di Ematologia 1, Myeloma Unit, Azienda Ospedaliera Citta della Salute e della Scienza, Torino, Italy
| | - Irene M Ghobrial
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nicole Gormley
- U.S. Food and Drug Administration, Silver Spring, Maryland
| | | | - Martin Kaiser
- Institute of Cancer Research, London, United Kingdom
| | | | | | - Maximilian Merz
- Roswell Park Comprehensive Cancer Center, Buffalo, New York; Department of Medicine II, University Clinic Leipzig, Germany
| | | | - Bruno Paiva
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369, Pamplona, Spain
| | | | - Nina Shah
- University of California San Francisco, San Francisco, California
| | - Sandy W Wong
- University of California San Francisco, San Francisco, California
| | | | | |
Collapse
|
8
|
RNA-Seq Analysis Reveals CCR5 as a Key Target for CRISPR Gene Editing to Regulate In Vivo NK Cell Trafficking. Cancers (Basel) 2021; 13:cancers13040872. [PMID: 33669611 PMCID: PMC7922167 DOI: 10.3390/cancers13040872] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Adoptive immunotherapy utilizing ex vivo expanded natural killer (NK) cells is being explored in the clinical and preclinical settings to treat hematological tumors. Previous work has shown that a large fraction of ex vivo expanded NK cells traffic into the liver following i.v. infusion. In this manuscript, Levy et al. show that ex vivo expansion of NK cells alters the mRNA transcription and surface expression of several chemokine receptors. The observed shift in chemotactic receptor expression may compromise the homing of infused cells into sites where hematological tumors reside, such as bone marrow, lymph nodes, and peripheral blood, by promoting preferential trafficking into liver tissue. Here we demonstrate clustered regularly interspaced short palindromic repeats (CRISPR) gene abrogation of C-C chemokine receptor type 5 (CCR5) as a novel strategy that reduces the trafficking of adoptively transferred ex vivo expanded NK cells into liver tissue and increases NK cell presence in the circulation. Abstract A growing number of natural killer (NK) cell-based immunotherapy trials utilize ex vivo expansion to grow and activate allogenic and autologous NK cells prior to administration to patients with malignancies. Recent data in both murine and macaque models have shown that adoptively infused ex vivo expanded NK cells have extensive trafficking into liver tissue, with relatively low levels of homing to other sites where tumors often reside, such as the bone marrow or lymph nodes. Here, we evaluated gene and surface expression of molecules involved in cellular chemotaxis in freshly isolated human NK cells compared with NK cells expanded ex vivo using two different feeder cells lines: Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines (LCLs) or K562 cells with membrane-bound (mb) 4-1BB ligand and interleukin (IL)-21. Expanded NK cells had altered expression in a number of genes that encode chemotactic ligands and chemotactic receptors that impact chemoattraction and chemotaxis. Most notably, we observed drastic downregulation of C-X-C chemokine receptor type 4 (CXCR4) and upregulation of C-C chemokine receptor type 5 (CCR5) transcription and phenotypic expression. clustered regularly interspaced short palindromic repeats (CRISPR) gene editing of CCR5 in expanded NK cells reduced cell trafficking into liver tissue and increased NK cell presence in the circulation following infusion into immunodeficient mice. The findings reported here show that ex vivo expansion alters multiple factors that govern NK cell homing and define a novel approach using CRISPR gene editing that reduces sequestration of NK cells by the liver.
Collapse
|
9
|
Riggan L, Shah S, O’Sullivan TE. Arrested development: suppression of NK cell function in the tumor microenvironment. Clin Transl Immunology 2021; 10:e1238. [PMID: 33456775 PMCID: PMC7797224 DOI: 10.1002/cti2.1238] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells are cytotoxic innate lymphocytes that protect against viral infection and tumor metastasis. Despite their inherent ability to kill a broad range of virally infected, stressed and transformed cells, low numbers of dysfunctional NK cells are often observed in many advanced solid human cancers. Here, we review the potential mechanisms that influence suboptimal mature NK cell recruitment and function in the tumor microenvironment (TME) of solid tumors. We further highlight current immunotherapy approaches aimed to circumvent NK cell dysfunction and discuss next-generation strategies to enhance adoptive NK cell therapy through targeting intrinsic and extrinsic checkpoints the regulate NK cell functionality in the TME. Understanding the mechanisms that drive NK cell dysfunction in the TME will lead to novel immunotherapeutic approaches in the fight against cancer.
Collapse
Affiliation(s)
- Luke Riggan
- Department of Microbiology, Immunology, and Molecular GeneticsDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Molecular Biology InstituteUniversity of CaliforniaLos AngelesCAUSA
| | - Siya Shah
- Department of Microbiology, Immunology, and Molecular GeneticsDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - Timothy E O’Sullivan
- Department of Microbiology, Immunology, and Molecular GeneticsDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- Molecular Biology InstituteUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
10
|
Russo E, Santoni A, Bernardini G. Tumor inhibition or tumor promotion? The duplicity of CXCR3 in cancer. J Leukoc Biol 2020; 108:673-685. [PMID: 32745326 DOI: 10.1002/jlb.5mr0320-205r] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/23/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor tissue includes cancer cells and normal stromal cells such as vascular endothelial cells, connective tissue cells (cancer associated fibroblast, mesenchymal stem cell), and immune cells (tumor-infiltrating lymphocytes or TIL, dendritic cells, eosinophils, basophils, mast cells, tumor-associated macrophages or TAM, myeloid-derived suppressor cells or MDSC). Anti-tumor activity is mainly mediated by infiltration of NK cells, Th1 and CD8+ T cells, and correlates with expression of NK cell and T cell attracting chemokines. Nevertheless, cancer cells hijack tissue homeostasis through secretion of cytokines and chemokines that mediate not only the induction of an inflamed status that supports cancer cell survival and growth, but also the recruitment and/or activation of immune suppressive cells. CXCL9, CXCL10, and CXCL11 are known for their tumor-inhibiting properties, but their overexpression in several hematologic and solid tumors correlates with disease severity, suggesting a role in tumor promotion. The dichotomous nature of CXCR3 ligands activity mainly depends on several molecular mechanisms induced by cancer cells themselves able to divert immune responses and to alter the whole local environment. A deep understanding of the nature of such phenomenon may provide a rationale to build up a CXCR3/ligand axis targeting strategy. In this review, we will discuss the role of CXCR3 in cancer progression and in regulation of anti-tumor immune response and immunotherapy.
Collapse
Affiliation(s)
- Eleonora Russo
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur-Italia, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur-Italia, Rome, Italy.,IRCCS, Neuromed, Pozzilli, Isernia, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur-Italia, Rome, Italy
| |
Collapse
|
11
|
Pereira BI, De Maeyer RPH, Covre LP, Nehar-Belaid D, Lanna A, Ward S, Marches R, Chambers ES, Gomes DCO, Riddell NE, Maini MK, Teixeira VH, Janes SM, Gilroy DW, Larbi A, Mabbott NA, Ucar D, Kuchel GA, Henson SM, Strid J, Lee JH, Banchereau J, Akbar AN. Sestrins induce natural killer function in senescent-like CD8 + T cells. Nat Immunol 2020; 21:684-694. [PMID: 32231301 PMCID: PMC10249464 DOI: 10.1038/s41590-020-0643-3] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/26/2020] [Indexed: 12/29/2022]
Abstract
Aging is associated with remodeling of the immune system to enable the maintenance of life-long immunity. In the CD8+ T cell compartment, aging results in the expansion of highly differentiated cells that exhibit characteristics of cellular senescence. Here we found that CD27-CD28-CD8+ T cells lost the signaling activity of the T cell antigen receptor (TCR) and expressed a protein complex containing the agonistic natural killer (NK) receptor NKG2D and the NK adaptor molecule DAP12, which promoted cytotoxicity against cells that expressed NKG2D ligands. Immunoprecipitation and imaging cytometry indicated that the NKG2D-DAP12 complex was associated with sestrin 2. The genetic inhibition of sestrin 2 resulted in decreased expression of NKG2D and DAP12 and restored TCR signaling in senescent-like CD27-CD28-CD8+ T cells. Therefore, during aging, sestrins induce the reprogramming of non-proliferative senescent-like CD27-CD28-CD8+ T cells to acquire a broad-spectrum, innate-like killing activity.
Collapse
Affiliation(s)
- Branca I Pereira
- Division of Infection and Immunity, University College London, London, UK
| | - Roel P H De Maeyer
- Division of Infection and Immunity, University College London, London, UK
| | - Luciana P Covre
- Division of Infection and Immunity, University College London, London, UK
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | | | - Alessio Lanna
- Division of Infection and Immunity, University College London, London, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sophie Ward
- Department of Medicine, Imperial College London, London, UK
| | - Radu Marches
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Emma S Chambers
- Division of Infection and Immunity, University College London, London, UK
| | - Daniel C O Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Natalie E Riddell
- Division of Infection and Immunity, University College London, London, UK
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London, UK
| | - Vitor H Teixeira
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Samuel M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Derek W Gilroy
- Division of Medicine, University College London, London, UK
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Neil A Mabbott
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - George A Kuchel
- University of Connecticut Center on Aging, University of Connecticut, Farmington, CT, USA
| | - Sian M Henson
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jessica Strid
- Department of Medicine, Imperial College London, London, UK
| | - Jun H Lee
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Arne N Akbar
- Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
12
|
Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma. ACTA ACUST UNITED AC 2020; 1:493-506. [PMID: 33409501 DOI: 10.1038/s43018-020-0053-3] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Precursor states of Multiple Myeloma (MM) and its native tumor microenvironment need in-depth molecular characterization to better stratify and treat patients at risk. Using single-cell RNA sequencing of bone marrow cells from precursor stages, MGUS and smoldering myeloma (SMM), to full-blown MM alongside healthy donors, we demonstrate early immune changes during patient progression. We find NK cell abundance is frequently increased in early stages, and associated with altered chemokine receptor expression. As early as SMM, we show loss of GrK+ memory cytotoxic T-cells, and show their critical role in MM immunosurveillance in mouse models. Finally, we report MHC class II dysregulation in CD14+ monocytes, which results in T cell suppression in vitro. These results provide a comprehensive map of immune changes at play over the evolution of pre-malignant MM, which will help develop strategies for immune-based patient stratification.
Collapse
|
13
|
Zhou H, Xie X, Jiang B, Ke C. NKp46+ lamina propria natural killer cells undergo metabolic reprogramming in a mouse experimental colitis model. Inflamm Res 2020; 69:401-414. [PMID: 32040657 DOI: 10.1007/s00011-020-01324-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/18/2020] [Accepted: 02/04/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Both innate and adaptive immune system play important roles in the onset and progression of inflammatory bowel diseases (IBDs). However, the significance of natural killer (NK) cells for IBDs remains unclear. To understand the biology of colonic lamina propria natural killer (LPNK) cells in IBDs, we characterized LPNK cell metabolism in a murine acute colitis model. METHODS C57BL/6J mice were fed with 3% dextran sulfate sodium to establish the acute colitis model. Colonic LPNK cells were isolated from mice through flow cytometry. The expression of metabolic genes in LPNK cells was analyzed by transcriptome sequencing and quantitative RT-PCR. Glucose uptake, Seahorse assay, and ATP assay were conducted to assess the metabolic status of LPNK cells. Phos-flow assay was performed to evaluate cell signaling pathways in LPNK cells. In vitro stimulation and cytotoxicity assay were conducted to measure the function of LPNK cells. RESULTS In acute colitis, LPNK cells upregulated the expression of genes related to glycolysis and oxidative phosphorylation (oxphos), and enhanced glucose uptake capability. Intracellular ATP production, glycolysis and oxphos in LPNK cells were also promoted in acute colitis. mTORC1 signaling was essential for the metabolic reprogramming in LPNK cells in acute colitis. Although LPNK cells of diseased mice exhibited equivalent cytokine profile to normal LPNK cells upon stimulation with phorbol ester or IL-2, LPNK cells of diseased mice were more cytotoxic to target cells than normal LPNK cells. CONCLUSIONS LPNK cells undergo metabolic reprogramming which might be a response to upcoming microbial infection in acute colitis.
Collapse
Affiliation(s)
- Hongjian Zhou
- Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Hubei Province, 241 Pengliuyang Road, Wuchang District, Wuhan, 430060, China
| | - Xingwang Xie
- Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Hubei Province, 241 Pengliuyang Road, Wuchang District, Wuhan, 430060, China
| | - Bin Jiang
- Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Hubei Province, 241 Pengliuyang Road, Wuchang District, Wuhan, 430060, China
| | - Chao Ke
- Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Hubei Province, 241 Pengliuyang Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
14
|
Hipolito J, Peretz-Soroka H, Zhang M, Yang K, Karimi-Abdolrezaee S, Lin F, Kung SK. A New Microfluidic Platform for Studying Natural Killer Cell and Dendritic Cell Interactions. MICROMACHINES 2019; 10:mi10120851. [PMID: 31817408 PMCID: PMC6952968 DOI: 10.3390/mi10120851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/30/2022]
Abstract
The importance of the bi-directional natural killer–dendritic cell crosstalk in coordinating anti-tumour and anti-microbial responses in vivo has been well established. However, physical parameters associated with natural killer–dendritic cell interactions have not been fully elucidated. We have previously used a simple “Y” shaped microfluidic device to study natural killer cell-migratory responses toward chemical gradients from a conditioned medium of dendritic cells. There are, however, limitations of the Y-shaped microfluidic devices that could not support higher throughput analyses and studies of cell–cell interactions. Here, we report two novel microfluidic devices (D3-Chip, T2-Chip) we applied in advanced studies of natural killer-cell migrations and their interactions with dendritic cells in vitro. The D3-Chip is an improved version of the previously published Y-shaped device that supports high-throughput analyses and docking of the cells of interest in the migration assay before they are exposed to a chemical gradient. The T2-Chip is created to support analyses of natural killer–dendritic cell cell–cell interactions without the requirement of promoting a natural killer cell to migrate long distances to find a loaded dendritic cell in the device. Using these two microfluidic platforms, we observe quantitative differences in the abilities of the immature and lipopolysaccharide-activated mature dendritic cells to interact with activated natural killer cells. The contact time between the activated natural killer cells and immature dendritic cells is significantly longer than that of the mature dendritic cells. There is a significantly higher frequency of an immature dendritic cell coming into contact with multiple natural killer cells and/or making multiple simultaneous contacts with multiple natural killer cells. To contrast, an activated natural killer cell has a significantly higher frequency of coming into contact with the mature dendritic cells than immature dendritic cells. Collectively, these differences in natural killer–dendritic cell interactions may underlie the differential maturation of immature dendritic cells by activated natural killer cells. Further applications of these microfluidic devices in studying natural killer–dendritic cell crosstalk under defined microenvironments shall enrich our understanding of the functional regulations of natural killer cells and dendritic cells in the natural killer–dendritic cell crosstalk.
Collapse
Affiliation(s)
- Jolly Hipolito
- Department of Immunology, University of Manitoba, 417 Apotex Centre, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada; (J.H.); (M.Z.)
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (H.P.-S.); (K.Y.)
| | - Hagit Peretz-Soroka
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (H.P.-S.); (K.Y.)
| | - Manli Zhang
- Department of Immunology, University of Manitoba, 417 Apotex Centre, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada; (J.H.); (M.Z.)
| | - Ke Yang
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (H.P.-S.); (K.Y.)
| | | | - Francis Lin
- Department of Immunology, University of Manitoba, 417 Apotex Centre, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada; (J.H.); (M.Z.)
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (H.P.-S.); (K.Y.)
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence: (F.L.); (S.K.P.K.); Tel.: +1-204-474-9895 (F.L.); +1-204-480-1301 (S.K.P.K.)
| | - Sam K.P. Kung
- Department of Immunology, University of Manitoba, 417 Apotex Centre, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada; (J.H.); (M.Z.)
- Correspondence: (F.L.); (S.K.P.K.); Tel.: +1-204-474-9895 (F.L.); +1-204-480-1301 (S.K.P.K.)
| |
Collapse
|
15
|
Bonanni V, Antonangeli F, Santoni A, Bernardini G. Targeting of CXCR3 improves anti-myeloma efficacy of adoptively transferred activated natural killer cells. J Immunother Cancer 2019; 7:290. [PMID: 31699153 PMCID: PMC6839099 DOI: 10.1186/s40425-019-0751-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/20/2019] [Indexed: 11/30/2022] Open
Abstract
Background The peculiar multiple myeloma microenvironment, characterized by up-regulated levels of several inflammatory chemokines, including the CXCR3 receptor ligands CXCL9 and CXCL10, limits NK cell positioning into the bone marrow by interfering with CXCR4 function. It is still unclear if the consequent reduced influx of transferred cells into the tumor represents a potential limiting factor for the success of NK cell-based adoptive therapy. We hypothesize that inhibition of CXCR3 function on NK cells will result in increased tumor clearance, due to higher NK cell bone marrow infiltration. Methods Since different activation protocols differently affect expression and function of homing receptors, we analyzed the bone marrow homing properties and anti-tumor efficacy of NK cells stimulated in vitro with two independent protocols. NK cells were purified from wild-type or Cxcr3−/− mice and incubated with IL-15 alone or with a combination of IL-12, IL-15, IL-18 (IL-12/15/18). Alternatively, CXCR3 function was neutralized in vivo using a specific blocking antibody. NK cell functional behavior and tumor growth were analyzed in bone marrow samples by FACS analysis. Results Both activation protocols promoted degranulation and IFN-γ production by donor NK cells infiltrating the bone marrow of tumor-bearing mice, although IL-15 promoted a faster but more transient acquisition of functional capacities. In addition, IL-15-activated cells accumulated more in the bone marrow in a short time but showed lower persistence in vivo. Targeting of CXCR3 increased the bone marrow homing capacity of IL-15 but not IL12/15/18 activated NK cells. This effect correlated with a superior and durable myeloma clearance capacity of transferred cells in vivo. Conclusions Our results demonstrate that in vitro activation affects NK cell anti-myeloma activity in vivo by regulating their BM infiltration. Furthermore, we provided direct evidence that CXCR3 restrains NK cell anti-tumor capacity in vivo according to the activation protocol used, and that the effects of NK cell-based adoptive immunotherapy for multiple myeloma can be improved by increasing their bone marrow homing through CXCR3 inhibition.
Collapse
Affiliation(s)
- Valentina Bonanni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161, Rome, Italy
| | - Fabrizio Antonangeli
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161, Rome, Italy.,IRCCS, Neuromed, Pozzilli, 86077, Isernia, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161, Rome, Italy. .,IRCCS, Neuromed, Pozzilli, 86077, Isernia, Italy.
| |
Collapse
|
16
|
Sanz-Ortega L, Rojas JM, Portilla Y, Pérez-Yagüe S, Barber DF. Magnetic Nanoparticles Attached to the NK Cell Surface for Tumor Targeting in Adoptive Transfer Therapies Does Not Affect Cellular Effector Functions. Front Immunol 2019; 10:2073. [PMID: 31543880 PMCID: PMC6728794 DOI: 10.3389/fimmu.2019.02073] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/16/2019] [Indexed: 02/05/2023] Open
Abstract
Adoptive cell transfer therapy is currently one of the most promising approaches for cancer treatment. This therapy has some limitations, however, such as the dispersion of in vivo-administered cells, causing only a small proportion to reach the tumor. Nanotechnological approaches could offer a solution for this drawback, as they can increase cell retention and accumulation in a region of interest. In particular, strategies employing magnetic nanoparticles (MNPs) to improve targeting of adoptively transferred T or NK cells have been explored in mice. In vivo magnetic retention is reported using the human NK cell line NK-92MI transfected with MNPs. Primary NK cells are nonetheless highly resistant to transfection, and thus we explore in here the possibility of attaching the MNPs to the NK cell surface to overcome this issue, and examine whether this association would affect NK effector functions. We assessed the attachment of MNPs coated with different polymers to the NK cell surface, and found that APS-MNP attached more efficiently to the NK-92MI cell surface. In association with MNPs, these cells preserved their main functions, exhibiting a continued capacity to degranulate, conjugate with and lyse target cells, produce IFN-γ, and respond to chemotactic signals. MNP-loaded NK-92MI cells were also retained in an in vitro capillary flow system by applying an EMF. A similar analysis was carried out in primary NK cells, isolated from mice, and expanded in vitro. These primary murine NK cells also maintained their functionality intact after MNP treatment and were successfully retained in vitro. This work therefore provides further support for using MNPs in combination with EMFs to favor specific retention of functional NK cells in a region of interest, which may prove beneficial to adoptive cell-therapy protocols.
Collapse
Affiliation(s)
- Laura Sanz-Ortega
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - José M Rojas
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Yadileiny Portilla
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Sonia Pérez-Yagüe
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Domingo F Barber
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| |
Collapse
|
17
|
Ren X, Alamri A, Hipolito J, Lin F, Kung SKP. Applications of microfluidic devices in advancing NK-cell migration studies. Methods Enzymol 2019; 631:357-370. [PMID: 31948557 DOI: 10.1016/bs.mie.2019.05.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding how NK cells interact with tumor cells under specific microenvironment will be informative in development of NK-cell based immunotherapy. Applications of microfluidic devices in in vitro studies of NK-cell migrations offer unique opportunities to examine NK-cell migrations at single-cell under controlled cellular microenvironments. Novel devices can be created and engineered to present precise configuration that mimics cellular microenvironments for cell migration studies. We established previously the first application of a simple Y-shaped device for imaging and analysis of the abilities of the immature and mature DC to regulate murine IL-2 activated NK cell migrations. Here we reported the application of our recent technical development of a novel microfluidic device, which is also called the triple docking device (i.e., D3-Chip), for the studies of NK-cell migrations in NK-4T1 breast cancer cell interactions in vitro. Key features of this microfluidic device are its pump-free gradient generation, and the three-parallel units design that supports easy setup and parallel comparison of multiple experimental conditions. The cell docking structure enables the prealignment of all NK cells at the same "start" position before their exposures to the test conditions. As a result, quantification of cell displacement toward a chemical gradient can be quantified by enumeration of the number of cells migrated out of the docking structure and their displacements. Such microfluidic devices can be further modified in future to mimic the complex in vivo microenvironments to support more advanced investigations of NK-cell migratory responses in vitro.
Collapse
Affiliation(s)
- Xiaoou Ren
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada; Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Abdulaziz Alamri
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Jolly Hipolito
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada; Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB, Canada.
| | - Sam K P Kung
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
18
|
Manickam C, Shah SV, Nohara J, Ferrari G, Reeves RK. Monkeying Around: Using Non-human Primate Models to Study NK Cell Biology in HIV Infections. Front Immunol 2019; 10:1124. [PMID: 31191520 PMCID: PMC6540610 DOI: 10.3389/fimmu.2019.01124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/03/2019] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are the major innate effectors primed to eliminate virus-infected and tumor or neoplastic cells. Recent studies also suggest nuances in phenotypic and functional characteristics among NK cell subsets may further permit execution of regulatory and adaptive roles. Animal models, particularly non-human primate (NHP) models, are critical for characterizing NK cell biology in disease and under homeostatic conditions. In HIV infection, NK cells mediate multiple antiviral functions via upregulation of activating receptors, inflammatory cytokine secretion, and antibody dependent cell cytotoxicity through antibody Fc-FcR interaction and others. However, HIV infection can also reciprocally modulate NK cells directly or indirectly, leading to impaired/ineffective NK cell responses. In this review, we will describe multiple aspects of NK cell biology in HIV/SIV infections and their association with viral control and disease progression, and how NHP models were critical in detailing each finding. Further, we will discuss the effect of NK cell depletion in SIV-infected NHP and the characteristics of newly described memory NK cells in NHP models and different mouse strains. Overall, we propose that the role of NK cells in controlling viral infections remains incompletely understood and that NHP models are indispensable in order to efficiently address these deficits.
Collapse
Affiliation(s)
- Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Spandan V. Shah
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Junsuke Nohara
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - R. Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA, United States
| |
Collapse
|
19
|
Novel Immunoregulatory Functions of IL-18, an Accomplice of TGF-β1. Cancers (Basel) 2019; 11:cancers11010075. [PMID: 30641867 PMCID: PMC6356463 DOI: 10.3390/cancers11010075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 12/17/2022] Open
Abstract
TGF-β1 is a pleiotropic factor exerting a strong regulatory role in several cell types, including immune cells. In NK cells it profoundly alters the surface expression of crucial activating and chemokine receptors. To understand which soluble signals might better contrast these effects, we cultured human NK cells in the presence of TGF-β1 and different innate and adaptive cytokines, generally referred as “immunostimulatory”. These included IL-2, IL-15, IL-21, IL-27, and IL-18. Unexpectedly, IL-18 strengthened rather than contrasting important TGF-β1-mediated functions. In particular, IL-18 further reduced the expression of CX3CR1 and NKp30, leading to the virtual abrogation of the triggering capability of this activating receptor. Moreover, IL-18 further increased the expression of CXCR4. The IL-18-mediated additive effect on NKp30 and CXCR4 expression involved transcriptional regulation and activation of MEK/ERK and/or p38MAPK. A proteomic approach quantified both surface and intracellular proteins significantly modified in cytokine-treated NK cells, thus giving global information on the biological processes involving TGF-β1 and IL-18. Our data support the concept that IL-18 may have a different behavior depending on the type of soluble factors characterizing the microenvironment. In a TGF-β1 rich milieu such as tumors, it may contribute to the impairment of both NK cells recruitment and killing capability.
Collapse
|
20
|
Roato I, Vitale M. The Uncovered Role of Immune Cells and NK Cells in the Regulation of Bone Metastasis. Front Endocrinol (Lausanne) 2019; 10:145. [PMID: 30930851 PMCID: PMC6423901 DOI: 10.3389/fendo.2019.00145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/18/2019] [Indexed: 12/17/2022] Open
Abstract
Bone is one of the main metastatic sites of solid tumors like breast, lung, and prostate cancer. Disseminated tumor cells (DTCs) and cancer stem cells (CSCs) represent the main target to counteract bone metastatization. These cells often localize in bone marrow (BM) at level of pre-metastatic niche: they can remain dormant for years or directly grow and create bone lesion, according to the different stimulations received in BM. The immune system in bone marrow is dampened and represents an appealing site for DTCs/CSCs. NK cells have an important role in controlling tumor progression, but their involvement in bone metastasis formation is an interesting and not fully investigated issue. Indeed, whether NK cells can interfere with CSC formation, kill them at the site of primary tumor, during circulation or in the pre-metastic niche needs to be elucidated. This review focuses on different aspects that regulate DTC/CSC life in bone and how NK cells potentially control bone metastasis formation.
Collapse
Affiliation(s)
- Ilaria Roato
- Center for Research and Medical Studies (CeRMS), A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
- *Correspondence: Ilaria Roato
| | - Massimo Vitale
- UOC Immunologia, IRCCS Ospedale Policlinico San Martino Genova, Genoa, Italy
| |
Collapse
|
21
|
Eckert F, Schilbach K, Klumpp L, Bardoscia L, Sezgin EC, Schwab M, Zips D, Huber SM. Potential Role of CXCR4 Targeting in the Context of Radiotherapy and Immunotherapy of Cancer. Front Immunol 2018; 9:3018. [PMID: 30622535 PMCID: PMC6308162 DOI: 10.3389/fimmu.2018.03018] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/06/2018] [Indexed: 12/28/2022] Open
Abstract
Cancer immunotherapy has been established as standard of care in different tumor entities. After the first reports on synergistic effects with radiotherapy and the induction of abscopal effects-tumor shrinkage outside the irradiated volume attributed to immunological effects of radiotherapy-several treatment combinations have been evaluated. Different immunotherapy strategies (e.g., immune checkpoint inhibition, vaccination, cytokine based therapies) have been combined with local tumor irradiation in preclinical models. Clinical trials are ongoing in different cancer entities with a broad range of immunotherapeutics and radiation schedules. SDF-1 (CXCL12)/CXCR4 signaling has been described to play a major role in tumor biology, especially in hypoxia adaptation, metastasis and migration. Local tumor irradiation is a known inducer of SDF-1 expression and release. CXCR4 also plays a major role in immunological processes. CXCR4 antagonists have been approved for the use of hematopoietic stem cell mobilization from the bone marrow. In addition, several groups reported an influence of the SDF-1/CXCR4 axis on intratumoral immune cell subsets and anti-tumor immune response. The aim of this review is to merge the knowledge on the role of SDF-1/CXCR4 in tumor biology, radiotherapy and immunotherapy of cancer and in combinatorial approaches.
Collapse
Affiliation(s)
- Franziska Eckert
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Karin Schilbach
- Department of General Pediatrics/Pediatric Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Lukas Klumpp
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany.,Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Lilia Bardoscia
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany.,Department of Radiation Oncology, University of Brescia, Brescia, Italy
| | - Efe Cumhur Sezgin
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University Hospital and University Tuebingen, Tuebingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
22
|
Mihanfar A, Nejabati HR, Fattahi A, Latifi Z, Pezeshkian M, Afrasiabi A, Safaie N, Jodati AR, Nouri M. The role of sphingosine 1 phosphate in coronary artery disease and ischemia reperfusion injury. J Cell Physiol 2018; 234:2083-2094. [PMID: 30341893 DOI: 10.1002/jcp.27353] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Abstract
Coronary artery disease (CAD) is a common cause of morbidity and mortality worldwide. Atherosclerotic plaques, as a hallmark of CAD, cause chronic narrowing of coronary arteries over time and could also result in acute myocardial infarction (AMI). The standard treatments for ameliorating AMI are reperfusion strategies, which paradoxically result in ischemic reperfusion (I/R) injury. Sphingosine 1 phosphate (S1P), as a potent lysophospholipid, plays an important role in various organs, including immune and cardiovascular systems. In addition, high-density lipoprotein, as a negative predictor of atherosclerosis and CAD, is a major carrier of S1P in blood circulation. S1P mediates its effects through binding to specific G protein-coupled receptors, and its signaling contributes to a variety of responses, including cardiac inflammation, dysfunction, and I/R injury protection. In this review, we will focus on the role of S1P in CAD and I/R injury as a potential therapeutic target.
Collapse
Affiliation(s)
- Aynaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamid Reza Nejabati
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Latifi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Pezeshkian
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Afrasiabi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Reza Jodati
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Castriconi R, Carrega P, Dondero A, Bellora F, Casu B, Regis S, Ferlazzo G, Bottino C. Molecular Mechanisms Directing Migration and Retention of Natural Killer Cells in Human Tissues. Front Immunol 2018; 9:2324. [PMID: 30364222 PMCID: PMC6193061 DOI: 10.3389/fimmu.2018.02324] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/18/2018] [Indexed: 12/29/2022] Open
Abstract
A large body of data shows that Natural Killer (NK) cells are immune effectors exerting a potent cytolytic activity against tumors and virus infected cells. The discovery and characterization of several inhibitory and activating receptors unveiled most of the mechanisms allowing NK cells to spare healthy cells while selectively attacking abnormal tissues. Nevertheless, the mechanisms ruling NK cell subset recirculation among the different compartments of human body have only lately started to be investigated. This is particularly true for pathological settings such as tumors or infected tissues but also for para-physiological condition like pregnant human uterine mucosa. It is becoming evident that the microenvironment associated to a particular clinical condition can deeply influence the migratory capabilities of NK cells. In this review we describe the main mechanisms and stimuli known to regulate the expression of chemokine receptors and other molecules involved in NK cell homing to either normal or pathological/inflamed tissues, including tumors or organs such as lung and liver. We will also discuss the role played by the chemokine/chemokine receptor axes in the orchestration of physiological events such as NK cell differentiation, lymphoid organ retention/egress and recruitment to decidua during pregnancy.
Collapse
Affiliation(s)
- Roberta Castriconi
- Dipartimento di Medicina Sperimentale, University of Genova, Genova, Italy.,Centro di Eccellenza per la Ricerca Biomedica, University of Genova, Genova, Italy
| | - Paolo Carrega
- Dipartimento di Patologia Umana, University of Messina, Messina, Italy
| | - Alessandra Dondero
- Dipartimento di Medicina Sperimentale, University of Genova, Genova, Italy
| | - Francesca Bellora
- Dipartimento di Medicina Sperimentale, University of Genova, Genova, Italy
| | - Beatrice Casu
- Dipartimento di Medicina Sperimentale, University of Genova, Genova, Italy
| | - Stefano Regis
- Istituto di ricovero e cura a carattere scientifico (IRCCS) Giannina Gaslini, Genova, Italy
| | - Guido Ferlazzo
- Dipartimento di Patologia Umana, University of Messina, Messina, Italy
| | - Cristina Bottino
- Dipartimento di Medicina Sperimentale, University of Genova, Genova, Italy.,Istituto di ricovero e cura a carattere scientifico (IRCCS) Giannina Gaslini, Genova, Italy
| |
Collapse
|
24
|
Fionda C, Stabile H, Molfetta R, Soriani A, Bernardini G, Zingoni A, Gismondi A, Paolini R, Cippitelli M, Santoni A. Translating the anti-myeloma activity of Natural Killer cells into clinical application. Cancer Treat Rev 2018; 70:255-264. [PMID: 30326421 DOI: 10.1016/j.ctrv.2018.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 01/10/2023]
Abstract
Natural Killer cells (NK) are innate effector cells with a critical role in immunosurveillance against different kinds of cancer cells, including Multiple Myeloma (MM). However, the number and/or function of these lymphocytes are strongly reduced during MM progression and in advanced clinical stages. A better understanding of the mechanisms controlling both MM and NK cell biology have greatly contributed to develop novel and combined therapeutic strategies in the treatment of this incurable hematologic malignancy. These include approaches to reverse the immunosuppressive MM microenvironment or potentiate the natural or antibody-dependent cellular cytotoxicity (ADCC) of NK cells. Moreover, chemotherapeutic drugs or specific monoclonal antibodies (mAbs) can render cancer cells more susceptible to NK cell-mediated recognition and lysis; direct enhancement of NK cell function can be obtained by means of immunomodulatory drugs, cytokines and blocking mAbs targeting NK cell inhibitory receptors. Finally, adoptive transfer of ex-vivo expanded and genetically manipulated NK cells is also a promising therapeutic tool for MM. Here, we review current knowledge on complex mechanisms affecting NK cell activity during MM progression. We also discuss recent advances on innovative approaches aimed at boosting the functions of these cytotoxic innate lymphocytes. In particular, we focus our attention on recent preclinical and clinical studies addressing the therapeutic potential of different NK cell-based strategies for the management of MM.
Collapse
Affiliation(s)
- Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.
| | - Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; IRCCS NEUROMED, Pozzilli (IS), Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; IRCCS NEUROMED, Pozzilli (IS), Italy
| |
Collapse
|
25
|
Yamamoto Y, Miyazato K, Takahashi K, Yoshimura N, Tahara H, Hayakawa Y. Lung-resident natural killer cells control pulmonary tumor growth in mice. Cancer Sci 2018; 109:2670-2676. [PMID: 29927042 PMCID: PMC6125475 DOI: 10.1111/cas.13703] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence indicates the importance of natural killer (NK) cells in controlling tumor growth and metastasis. NK cell subsets display diversities in their function and tissue distribution and Mac-1hi CD27lo NK cells are the predominant population of lung-resident NK cells. Although the lung is a major organ where primary tumor develops and cancer cells metastasize, there is no clear evidence whether circulating NK cells and/or tissue-resident NK cells control tumor growth in the lung. In the present study, we examined an antitumor function of lung-resident NK cells to control pulmonary tumor growth. In an orthotopic lung tumor model, NK cells controlled pulmonary tumor growth, and mature circulating NK cell subsets were increased in tumor-bearing lungs through a C-X-C motif chemokine receptor 3 (CXCR3)-dependent mechanism. Although such increase in migratory NK cell subsets can be blocked by anti-CXCR3 treatment, there was no difference in pulmonary tumor growth in anti-CXCR3-treated mice compared with control mice. In addition to pulmonary tumor growth, lung-resident NK cells, but not migratory NK cells, play a dominant role in controlling metastatic growth of cancer cells in lung. These results strongly indicate an importance of lung-resident NK cells for controlling pulmonary tumor growth.
Collapse
Affiliation(s)
- Yutaka Yamamoto
- Division of Pathogenic BiochemistryDepartment of BioscienceInstitute of Natural MedicineUniversity of ToyamaToyamaJapan
- Department of Thoracic and Cardiovascular SurgeryDepartment of MedicineUniversity of ToyamaToyamaJapan
| | - Kiho Miyazato
- Division of Pathogenic BiochemistryDepartment of BioscienceInstitute of Natural MedicineUniversity of ToyamaToyamaJapan
| | - Kei Takahashi
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Naoki Yoshimura
- Department of Thoracic and Cardiovascular SurgeryDepartment of MedicineUniversity of ToyamaToyamaJapan
| | - Hideaki Tahara
- Department of Surgery and BioengineeringInstitute of Medical Sciencethe University of TokyoTokyoJapan
| | - Yoshihiro Hayakawa
- Division of Pathogenic BiochemistryDepartment of BioscienceInstitute of Natural MedicineUniversity of ToyamaToyamaJapan
| |
Collapse
|
26
|
Dominguez-Villar M, Raddassi K, Danielsen AC, Guarnaccia J, Hafler DA. Fingolimod modulates T cell phenotype and regulatory T cell plasticity in vivo. J Autoimmun 2018; 96:40-49. [PMID: 30122421 DOI: 10.1016/j.jaut.2018.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022]
Abstract
Fingolimod is an approved therapeutic option for patients with relapsing-remitting multiple sclerosis that primarily functions by sequestering T cells in lymph nodes inhibiting their egress to the central nervous system. However, recent data suggests that Fingolimod may also directly affect the immune cell function. Here we examined the in vivo effects of Fingolimod in modulating the phenotype and function of T cell and Foxp3 regulatory T cell populations in patients with multiple sclerosis under Fingolimod treatment. Besides decreasing the cell numbers in peripheral blood and sera levels of pro-inflammatory cytokines, Fingolimod inhibited the expression of Th1 and Th17 cytokines on CD4+ T cells and increased the expression of exhaustion markers. Furthermore, treatment increased the frequency of regulatory T cells in blood and inhibited the Th1-like phenotype that is characteristic of patients with multiple sclerosis, augmenting the expression of markers associated with increased suppressive function. Overall, our data suggest that Fingolimod performs other important immunomodulatory functions besides altering T cell migratory capacities, with consequences for other autoimmune pathologies characterized by excessive Th1/Th17 responses and Th1-like regulatory T cell effector phenotypes.
Collapse
Affiliation(s)
| | - Khadir Raddassi
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | | | - Joseph Guarnaccia
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
27
|
Abel AM, Tiwari AA, Gerbec ZJ, Siebert JR, Yang C, Schloemer NJ, Dixon KJ, Thakar MS, Malarkannan S. IQ Domain-Containing GTPase-Activating Protein 1 Regulates Cytoskeletal Reorganization and Facilitates NKG2D-Mediated Mechanistic Target of Rapamycin Complex 1 Activation and Cytokine Gene Translation in Natural Killer Cells. Front Immunol 2018; 9:1168. [PMID: 29892299 PMCID: PMC5985319 DOI: 10.3389/fimmu.2018.01168] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/09/2018] [Indexed: 12/25/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play essential roles in mediating antitumor immunity. NK cells respond to various inflammatory stimuli including cytokines and stress-induced cellular ligands which activate germline-encoded activation receptors (NKRs), such as NKG2D. The signaling molecules activated downstream of NKRs are well defined; however, the mechanisms that regulate these pathways are not fully understood. IQ domain-containing GTPase-activating protein 1 (IQGAP1) is a ubiquitously expressed scaffold protein. It regulates diverse cellular signaling programs in various physiological contexts, including immune cell activation and function. Therefore, we sought to investigate the role of IQGAP1 in NK cells. Development and maturation of NK cells from mice lacking IQGAP1 (Iqgap1-/- ) were mostly intact; however, the absolute number of splenic NK cells was significantly reduced. Phenotypic and functional characterization revealed a significant reduction in the egression of NK cells from the bone marrow of Iqagp1-/- mice altering their peripheral homeostasis. Lack of IQGAP1 resulted in reduced NK cell motility and their ability to mediate antitumor immunity in vivo. Activation of Iqgap1-/- NK cells via NKRs, including NKG2D, resulted in significantly reduced levels of inflammatory cytokines compared with wild-type (WT). This reduction in Iqgap1-/- NK cells is neither due to an impaired membrane proximal signaling nor a defect in gene transcription. The levels of Ifng transcripts were comparable between WT and Iqgap1-/- , suggesting that IQGAP1-dependent regulation of cytokine production is regulated by a post-transcriptional mechanism. To this end, Iqgap1-/- NK cells failed to fully induce S6 phosphorylation and showed significantly reduced protein translation following NKG2D-mediated activation, revealing a previously undefined regulatory function of IQGAP1 via the mechanistic target of rapamycin complex 1. Together, these results implicate IQGAP1 as an essential scaffold for NK cell homeostasis and function and provide novel mechanistic insights to the post-transcriptional regulation of inflammatory cytokine production.
Collapse
Affiliation(s)
- Alex M Abel
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Aradhana A Tiwari
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Zachary J Gerbec
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Jason R Siebert
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Chao Yang
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Nathan J Schloemer
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kate J Dixon
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Subramaniam Malarkannan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
28
|
Soriani A, Stabile H, Gismondi A, Santoni A, Bernardini G. Chemokine regulation of innate lymphoid cell tissue distribution and function. Cytokine Growth Factor Rev 2018; 42:47-55. [PMID: 29472011 DOI: 10.1016/j.cytogfr.2018.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 12/14/2022]
Abstract
Three groups of innate lymphoid cells (ILCs) can be defined based on transcription factor requirements, cytokine production profiles, and roles in immunity. Given their strategic anatomical location into barrier tissues and the ability to rapidly produce cytokines and to cross-talk with other immune and non-immune cells, ILCs play fundamental functions in tissue homeostasis and regulation of immune responses. Several members of the chemokine family influence ILC tissue localization in the correct microenvironment by regulating their release from the bone marrow as well as their homing and retention in the tissues. In this review, we discuss the recent advances on how chemokine regulation of ILC tissue-positioning and functional interaction with other cells play essential roles in tissue-specific regulation of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome, 00161-Rome, Italy
| | - Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome, 00161-Rome, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Sapienza University of Rome, 00161-Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur -Italia, 00161-Rome, Italy; IRCCS, Neuromed, Pozzilli, 86077 IS, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur -Italia, 00161-Rome, Italy; IRCCS, Neuromed, Pozzilli, 86077 IS, Italy.
| |
Collapse
|
29
|
Bernardini G, Benigni G, Scrivo R, Valesini G, Santoni A. The Multifunctional Role of the Chemokine System in Arthritogenic Processes. Curr Rheumatol Rep 2017; 19:11. [PMID: 28265846 DOI: 10.1007/s11926-017-0635-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW The involvement of chemokines and their receptors in the genesis and perpetuation of rheumatoid arthritis, spondyloarthritis, and osteoarthritis has been clearly recognized for a long time. Nevertheless, the complexity of their contribution to these diseases is now becoming evident and this review focuses on published evidence on their mechanism of action. RECENT FINDINGS Studies performed on patients and in vivo models have identified a number of chemokine-mediated pathways involved in various aspects of arthritogenic processes. Chemokines promote leukocyte infiltration and activation, angiogenesis, osteoclast differentiation, and synoviocyte proliferation and activation and participate to the generation of pain by regulating the release of neurotransmitters. A number of chemokines are expressed in a timely controlled fashion in the joint during arthropathies, regulating all the aspects of inflammation as well as the equilibrium between damage and repair and between relief and pain. Thus, the targeting of specific chemokine/chemokine receptor interactions is considered a promising tool for therapeutic intervention.
Collapse
Affiliation(s)
- Giovanni Bernardini
- Dipartimento di Medicina Molecolare, Sapienza Universita' di Roma, 00161, Rome, Italy
- IRCCS Neuromed, 86077, Pozzilli, IS, Italy
| | - Giorgia Benigni
- Innate Immunity Unit, Institut Pasteur, Paris, 75015, France
| | - Rossana Scrivo
- Dipartimento di Medicina Interna e Specialità Mediche, Reumatologia, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Roma, Italy
| | - Guido Valesini
- Dipartimento di Medicina Interna e Specialità Mediche, Reumatologia, Sapienza Università di Roma, Viale del Policlinico 155, 00161, Roma, Italy.
| | - Angela Santoni
- Dipartimento di Medicina Molecolare, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Universita' di Roma, Viale Regina Elena 291, 00161, Roma, Italy.
- IRCCS Neuromed, 86077, Pozzilli, IS, Italy.
| |
Collapse
|
30
|
Regis S, Caliendo F, Dondero A, Casu B, Romano F, Loiacono F, Moretta A, Bottino C, Castriconi R. TGF-β1 Downregulates the Expression of CX 3CR1 by Inducing miR-27a-5p in Primary Human NK Cells. Front Immunol 2017; 8:868. [PMID: 28791023 PMCID: PMC5524732 DOI: 10.3389/fimmu.2017.00868] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
Activity of human natural killer (NK) cells against cancer cells is deeply suppressed by TGF-β1, an immunomodulatory cytokine that is released and activated in the tumor microenvironment. Moreover, our previous data showed that TGF-β1 modifies the chemokine receptor repertoire of NK cells. In particular, it decreases the expression of CX3CR1 that drives these effectors toward peripheral tissues, including tumor sites. To identify possible mechanisms mediating chemokine receptors modulation, we analyzed the microRNA profile of TGF-β1-treated primary NK cells. The analysis pointed out miR-27a-5p as a possible modulator of CX3CR1. We demonstrated the functional interaction of miR-27a-5p with the 3′ untranslated region (3′UTR) of CX3CR1 mRNA by two different experimental approaches: by the use of a luciferase assay based on a reporter construct containing the CX3CR1 3′UTR and by transfection of primary NK cells with a miR-27a-5p inhibitor. We also showed that the TGF-β1-mediated increase of miR-27a-5p expression is a consequence of miR-23a-27a-24-2 cluster induction. Moreover, we demonstrated that miR-27a-5p downregulates the surface expression of CX3CR1. Finally, we showed that neuroblastoma cells induced in resting NK cells a downregulation of the CX3CR1 expression that was paralleled by a significant increase of miR-27a-5p expression. Therefore, the present study highlights miR-27a-5p as a pivotal TGF-β1-induced regulator of CX3CR1 expression.
Collapse
Affiliation(s)
- Stefano Regis
- Dipartimento di Ricerca e Diagnostica, Istituto Giannina Gaslini, Genova, Italy
| | - Fabio Caliendo
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | - Alessandra Dondero
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | - Beatrice Casu
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | - Filomena Romano
- Dipartimento di Ricerca e Diagnostica, Istituto Giannina Gaslini, Genova, Italy
| | - Fabrizio Loiacono
- Dipartimento delle Terapie Oncologiche Integrate, Ospedale Policlinico San Martino IRCCS, Genova, Italy
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy.,Centro di Eccellenza per la Ricerca Biomedica, Genova, Italy
| | - Cristina Bottino
- Dipartimento di Ricerca e Diagnostica, Istituto Giannina Gaslini, Genova, Italy.,Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | - Roberta Castriconi
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy.,Centro di Eccellenza per la Ricerca Biomedica, Genova, Italy
| |
Collapse
|
31
|
Sciumè G, Le MT, Gadina M. HiJAKing Innate Lymphoid Cells? Front Immunol 2017; 8:438. [PMID: 28450869 PMCID: PMC5390009 DOI: 10.3389/fimmu.2017.00438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/29/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Roma, Italy
| | - Mimi T Le
- Translational Immunology Section, Office of Science Technology (OST), NIAMS, NIH, Bethesda, MD, USA
| | - Massimo Gadina
- Translational Immunology Section, Office of Science Technology (OST), NIAMS, NIH, Bethesda, MD, USA
| |
Collapse
|
32
|
Stabile H, Fionda C, Gismondi A, Santoni A. Role of Distinct Natural Killer Cell Subsets in Anticancer Response. Front Immunol 2017; 8:293. [PMID: 28360915 PMCID: PMC5352654 DOI: 10.3389/fimmu.2017.00293] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells, the prototypic member of innate lymphoid cells, are important effectors of anticancer immune response. These cells can survey and control tumor initiation due to their capability to recognize and kill malignant cells and to regulate the adaptive immune response via cytokines and chemokines release. However, several studies have shown that tumor-infiltrating NK cells associated with advanced disease can have profound functional defects and display protumor activity. This evidence indicates that NK cell behavior undergoes crucial alterations during cancer progression. Moreover, a further level of complexity is due to the extensive heterogeneity and plasticity of these lymphocytes, implying that different NK cell subsets, endowed with specific phenotypic and functional features, may be involved and play distinct roles in the tumor context. Accordingly, many studies reported the enrichment of selective NK cell subsets within tumor tissue, whereas the underlying mechanisms are not fully elucidated. A malignant microenvironment can significantly impact NK cell activity, by recruiting specific subpopulations and/or influencing their developmental programming or the acquisition of a mature phenotype; in particular, neoplastic, stroma and immune cells, or tumor-derived factors take part in these processes. In this review, we will summarize and discuss the recently acquired knowledge on the possible contribution of distinct NK cell subsets in the control and/or progression of solid and hematological malignancies. Moreover, we will address emerging evidence regarding the role of different components of tumor microenvironment on shaping NK cell response.
Collapse
Affiliation(s)
- Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome , Rome , Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome , Rome , Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; Italian Institute of Technology, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
33
|
Zhou X, Zhao R, Schwarz K, Mangeat M, Schwarz EC, Hamed M, Bogeski I, Helms V, Rieger H, Qu B. Bystander cells enhance NK cytotoxic efficiency by reducing search time. Sci Rep 2017; 7:44357. [PMID: 28287155 PMCID: PMC5347013 DOI: 10.1038/srep44357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 02/10/2017] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cells play a central role during innate immune responses by eliminating pathogen-infected or tumorigenic cells. In the microenvironment, NK cells encounter not only target cells but also other cell types including non-target bystander cells. The impact of bystander cells on NK killing efficiency is, however, still elusive. In this study we show that the presence of bystander cells, such as P815, monocytes or HUVEC, enhances NK killing efficiency. With bystander cells present, the velocity and persistence of NK cells were increased, whereas the degranulation of lytic granules remained unchanged. Bystander cell-derived H2O2 was found to mediate the acceleration of NK cell migration. Using mathematical diffusion models, we confirm that local acceleration of NK cells in the vicinity of bystander cells reduces their search time to locate target cells. In addition, we found that integrin β chains (β1, β2 and β7) on NK cells are required for bystander-enhanced NK migration persistence. In conclusion, we show that acceleration of NK cell migration in the vicinity of H2O2-producing bystander cells reduces target cell search time and enhances NK killing efficiency.
Collapse
Affiliation(s)
- Xiao Zhou
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Renping Zhao
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Karsten Schwarz
- Department of Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Matthieu Mangeat
- Department of Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Eva C. Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Mohamed Hamed
- Center for Bioinformatics, Saarland University, 66041 Saarbrücken, Germany
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, 18057 Rostock, Germany
| | - Ivan Bogeski
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, 66041 Saarbrücken, Germany
| | - Heiko Rieger
- Department of Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
34
|
Benigni G, Dimitrova P, Antonangeli F, Sanseviero E, Milanova V, Blom A, van Lent P, Morrone S, Santoni A, Bernardini G. CXCR3/CXCL10 Axis Regulates Neutrophil-NK Cell Cross-Talk Determining the Severity of Experimental Osteoarthritis. THE JOURNAL OF IMMUNOLOGY 2017; 198:2115-2124. [PMID: 28108560 DOI: 10.4049/jimmunol.1601359] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/21/2016] [Indexed: 01/15/2023]
Abstract
Several immune cell populations are involved in cartilage damage, bone erosion, and resorption processes during osteoarthritis. The purpose of this study was to investigate the role of NK cells in the pathogenesis of experimental osteoarthritis and whether and how neutrophils can regulate their synovial localization in the disease. Experimental osteoarthritis was elicited by intra-articular injection of collagenase in wild type and Cxcr3-/- 8-wk old mice. To follow osteoarthritis progression, cartilage damage, synovial thickening, and osteophyte formation were measured histologically. To characterize the inflammatory cells involved in osteoarthritis, synovial fluid was collected early after disease induction, and the cellular and cytokine content were quantified by flow cytometry and ELISA, respectively. We found that NK cells and neutrophils are among the first cells that accumulate in the synovium during osteoarthritis, both exerting a pathogenic role. Moreover, we uncovered a crucial role of the CXCL10/CXCR3 axis, with CXCL10 increasing in synovial fluids after injury and Cxcr3-/- mice being protected from disease development. Finally, in vivo depletion experiments showed that neutrophils are involved in an NK cell increase in the synovium, possibly by expressing CXCL10 in inflamed joints. Thus, neutrophils and NK cells act as important disease-promoting immune cells in experimental osteoarthritis and their functional interaction is promoted by the CXCL10/CXCR3 axis.
Collapse
Affiliation(s)
- Giorgia Benigni
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Petya Dimitrova
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Fabrizio Antonangeli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Emilio Sanseviero
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Viktoriya Milanova
- Department of Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Arjen Blom
- Department of Rheumatology, Radboud University Medical Center, Nijmegen 86525, the Netherlands
| | - Peter van Lent
- Department of Rheumatology, Radboud University Medical Center, Nijmegen 86525, the Netherlands
| | - Stefania Morrone
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Angela Santoni
- Laboratory of Immunology and Molecular Immunopathology Institute Pasteur Italy-Cenci Bolognetti Foundation, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; and .,Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, Pozzilli, 86077 Isernia, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, Pozzilli, 86077 Isernia, Italy
| |
Collapse
|
35
|
Poggi A, Giuliani M. Mesenchymal Stromal Cells Can Regulate the Immune Response in the Tumor Microenvironment. Vaccines (Basel) 2016; 4:E41. [PMID: 27834810 PMCID: PMC5192361 DOI: 10.3390/vaccines4040041] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/01/2016] [Accepted: 10/31/2016] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment is a good target for therapy in solid tumors and hematological malignancies. Indeed, solid tumor cells' growth and expansion can influence neighboring cells' behavior, leading to a modulation of mesenchymal stromal cell (MSC) activities and remodeling of extracellular matrix components. This leads to an altered microenvironment, where reparative mechanisms, in the presence of sub-acute inflammation, are not able to reconstitute healthy tissue. Carcinoma cells can undergo epithelial mesenchymal transition (EMT), a key step to generate metastasis; these mesenchymal-like cells display the functional behavior of MSC. Furthermore, MSC can support the survival and growth of leukemic cells within bone marrow participating in the leukemic cell niche. Notably, MSC can inhibit the anti-tumor immune response through either carcinoma-associated fibroblasts or bone marrow stromal cells. Experimental data have indicated their relevance in regulating cytolytic effector lymphocytes of the innate and adaptive arms of the immune system. Herein, we will discuss some of the evidence in hematological malignancies and solid tumors. In particular, we will focus our attention on the means by which it is conceivable to inhibit MSC-mediated immune suppression and trigger anti-tumor innate immunity.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS AOU San Martino IST, 16132 Genoa, Italy.
| | - Massimo Giuliani
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health, Luxembourg City L-1526, Luxembourg.
| |
Collapse
|
36
|
Bernardini G, Antonangeli F, Bonanni V, Santoni A. Dysregulation of Chemokine/Chemokine Receptor Axes and NK Cell Tissue Localization during Diseases. Front Immunol 2016; 7:402. [PMID: 27766097 PMCID: PMC5052267 DOI: 10.3389/fimmu.2016.00402] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/21/2016] [Indexed: 01/06/2023] Open
Abstract
Chemokines are small chemotactic molecules that play key roles in physiological and pathological conditions. Upon signaling via their specific receptors, chemokines regulate tissue mobilization and trafficking of a wide array of immune cells, including natural killer (NK) cells. Current research is focused on analyzing changes in chemokine/chemokine receptor expression during various diseases to interfere with pathological trafficking of cells or to recruit selected cell types to specific tissues. NK cells are a heterogeneous lymphocyte population comprising several subsets endowed with distinct functional properties and mainly representing distinct stages of a linear development process. Because of their different functional potential, the type of subset that accumulates in a tissue drives the final outcome of NK cell-regulated immune response, leading to either protection or pathology. Correspondingly, chemokine receptors, including CXCR4, CXCR3, and CX3CR1, are differentially expressed by NK cell subsets, and their expression levels can be modulated during NK cell activation. At first, this review will summarize the current knowledge on the contribution of chemokines to the localization and generation of NK cell subsets in homeostasis. How an inappropriate chemotactic response can lead to pathology and how chemokine targeting can therapeutically affect tissue recruitment/localization of distinct NK cell subsets will also be discussed.
Collapse
Affiliation(s)
- Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University, Rome, Italy; IRCCS NEUROMED - Mediterranean Neurological Institute, Isernia, Italy
| | | | - Valentina Bonanni
- Department of Molecular Medicine, Sapienza University , Rome , Italy
| | - Angela Santoni
- IRCCS NEUROMED - Mediterranean Neurological Institute, Isernia, Italy; Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
37
|
Dogra P, Miller-Kittrell M, Pitt E, Jackson JW, Masi T, Copeland C, Wu S, Miller WE, Sparer T. A little cooperation helps murine cytomegalovirus (MCMV) go a long way: MCMV co-infection rescues a chemokine salivary gland defect. J Gen Virol 2016; 97:2957-2972. [PMID: 27638684 DOI: 10.1099/jgv.0.000603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cytomegaloviruses (CMVs) produce chemokines (vCXCLs) that have both sequence and functional homology to host chemokines. Assessment of vCXCL-1's role in CMV infection is limited to in vitro and in silico analysis due to CMVs species specificity. In this study, we used the murine CMV (MCMV) mouse model to evaluate the function of vCXCL-1 in vivo. Recombinant MCMVs expressing chimpanzee CMV vCXCL-1 (vCXCL-1CCMV) or host chemokine, mCXCL1, underwent primary dissemination to the popliteal lymph node, spleen and lung similar to the parental MCMV. However, neither of the recombinants expressing chemokines was recovered from the salivary gland (SG) at any time post-infection although viral DNA was detected. This implies that the virus does not grow in the SG or the overexpressed chemokine induces an immune response that leads to suppressed growth. Pointing to immune suppression of virus replication, recombinant viruses were isolated from the SG following infection of immune-ablated mice [i.e. SCID (severe combined immunodeficiency), NSG (non-obese diabetic SCID gamma) or cyclophosphamide treated]. Depletion of neutrophils or NK cells does not rescue the recovery of chemokine-expressing recombinants in the SG. Surprisingly we found that co-infection of parental virus and chemokine-expressing virus leads to the recovery of the recombinants in the SG. We suggest that parental virus reduces the levels of chemokine expression leading to a decrease in inflammatory monocytes and subsequent SG growth. Therefore, aberrant expression of the chemokines induces cells of the innate and adaptive immune system that curtail the growth and dissemination of the recombinants in the SG.
Collapse
Affiliation(s)
- Pranay Dogra
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Mindy Miller-Kittrell
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Elisabeth Pitt
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Joseph W Jackson
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Tom Masi
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Courtney Copeland
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Shuen Wu
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | - William E Miller
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | - Tim Sparer
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| |
Collapse
|
38
|
Sphingolipids as Mediators in the Crosstalk between Microbiota and Intestinal Cells: Implications for Inflammatory Bowel Disease. Mediators Inflamm 2016; 2016:9890141. [PMID: 27656050 PMCID: PMC5021499 DOI: 10.1155/2016/9890141] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/10/2016] [Accepted: 07/14/2016] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel disease (IBD) describes different illnesses characterized by chronic inflammation of the gastrointestinal tract. Although the pathogenic mechanisms leading to IBD are poorly understood, immune system disturbances likely underlie its development. Sphingolipids (SLs) have been identified as important players and promising therapeutic targets to control inflammation in IBD. Interestingly, it seems that microorganisms of the normal gut microbiota and probiotics are involved in sphingolipid function. However, there is a great need to investigate the role of SLs as intermediates in the crosstalk between intestinal immunity and microorganisms. This review focuses on recent investigations that describe some mechanisms involved in the regulation of cytokine profiles by SLs. We also describe the importance of gut microbiota in providing signaling molecules that favor the communication between resident bacteria and intestinal cells. This, in turn, modulates the immune response in the bowel and likely in other peripheral organs. The potential of SLs and gut microbiota as targets or therapeutic agents for IBD is also discussed.
Collapse
|
39
|
Ali AK, Oh JS, Vivier E, Busslinger M, Lee SH. NK Cell-Specific Gata3 Ablation Identifies the Maturation Program Required for Bone Marrow Exit and Control of Proliferation. THE JOURNAL OF IMMUNOLOGY 2016; 196:1753-67. [PMID: 26773150 DOI: 10.4049/jimmunol.1501593] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/07/2015] [Indexed: 12/19/2022]
Abstract
NK cells are innate lymphocytes capable of eliciting an innate immune response to pathogens. NK cells develop and become mature in the bone marrow (BM) before they migrate out to peripheral organs. Although the developmental program leading to mature NK cells has been studied in the context of several transcription factors, the stage-specific role of GATA3 in NK cell development has been incompletely understood. Using NKp46-Cre-Gata3(fl/fl) mice in which Gata3 deficiency was induced as early as the immature stage of NK cell differentiation, we demonstrated that GATA3 is required for the NK cell maturation beyond the CD27 single-positive stage and is indispensable for the maintenance of liver-resident NK cells. The frequencies of NK cells from NKp46-Cre-Gata3(fl/fl) mice were found higher in the BM but lower in peripheral organs compared with control littermates, indicating that GATA3 controls the maturation program required for BM egress. Despite the defect in maturation, upon murine CMV infection, NK cells from NKp46-Cre-Gata3(fl/fl) mice expanded vigorously, achieving NK cell frequencies surpassing those in controls and therefore provided comparable protection. The heightened proliferation of NK cells from NKp46-Cre-Gata3(fl/fl) mice was cell intrinsic and associated with enhanced upregulation of CD25 expression. Taken together, our results demonstrate that GATA3 is a critical regulator for NK cell terminal maturation and egress out of the BM and that immature NK cells present in the periphery of NKp46-Cre-Gata3(fl/fl) mice can rapidly expand and provide a reservoir of NK cells capable of mounting an efficient cytotoxic response upon virus infection.
Collapse
Affiliation(s)
- Alaa Kassim Ali
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Jun Seok Oh
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, INSERM, U1104, CNRS UMR7280, 13288 Marseille, France; Immunologie, Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille, 13385 Marseille, France; and
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna 1030, Austria
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada;
| |
Collapse
|
40
|
Mehling M, Burgener AV, Brinkmann V, Bantug GR, Dimeloe S, Hoenger G, Kappos L, Hess C. Tissue Distribution Dynamics of Human NK Cells Inferred from Peripheral Blood Depletion Kinetics after Sphingosine-1-Phosphate Receptor Blockade. Scand J Immunol 2015; 82:460-6. [DOI: 10.1111/sji.12347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/29/2015] [Indexed: 01/02/2023]
Affiliation(s)
- M. Mehling
- Immunobiology Laboratory/Department of Biomedicine and Medical Outpatient Division; University Hospital Basel; Basel Switzerland
- Department of Neurology; University Hospital Basel; Basel Switzerland
| | - A.-V. Burgener
- Immunobiology Laboratory/Department of Biomedicine and Medical Outpatient Division; University Hospital Basel; Basel Switzerland
| | - V. Brinkmann
- Department of Autoimmunity, Transplantation & Inflammation; Novartis Institutes for BioMedical Research; Basel Switzerland
| | - G. R. Bantug
- Immunobiology Laboratory/Department of Biomedicine and Medical Outpatient Division; University Hospital Basel; Basel Switzerland
| | - S. Dimeloe
- Immunobiology Laboratory/Department of Biomedicine and Medical Outpatient Division; University Hospital Basel; Basel Switzerland
| | - G. Hoenger
- Immunobiology Laboratory/Department of Biomedicine and Medical Outpatient Division; University Hospital Basel; Basel Switzerland
| | - L. Kappos
- Department of Neurology; University Hospital Basel; Basel Switzerland
| | - C. Hess
- Immunobiology Laboratory/Department of Biomedicine and Medical Outpatient Division; University Hospital Basel; Basel Switzerland
| |
Collapse
|
41
|
Battella S, Cox MC, Santoni A, Palmieri G. Natural killer (NK) cells and anti-tumor therapeutic mAb: unexplored interactions. J Leukoc Biol 2015; 99:87-96. [PMID: 26136506 DOI: 10.1189/jlb.5vmr0415-141r] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/16/2015] [Indexed: 12/11/2022] Open
Abstract
Tumor-targeting mAb are widely used in the treatment of a variety of solid and hematopoietic tumors and represent the first immunotherapeutic approach successfully arrived to the clinic. Nevertheless, the role of distinct immune mechanisms in contributing to their therapeutic efficacy is not completely understood and may vary depending on tumor- or antigen/antibody-dependent characteristics. Availability of next-generation, engineered, tumor-targeting mAb, optimized in their capability to recruit selected immune effectors, re-enforces the need for a deeper understanding of the mechanisms underlying anti-tumor mAb functionality. NK cells participate with a major role to innate anti-tumor responses, by exerting cytotoxic activity and producing a vast array of cytokines. As the CD16 (low-affinity FcγRIIIA)-activating receptor is expressed on the majority of NK cells, its effector functions can be ideally recruited against therapeutic mAb-opsonized tumor cells. The exact role of NK cells in determining therapeutic efficacy of tumor-targeting mAb is still unclear and much sought after. This knowledge will be instrumental to design innovative combination schemes with newly validated immunomodulatory agents. We will summarize what is known about the role of NK cells in therapeutic anti-tumor mAb therapy, with particular emphasis on RTX chimeric anti-CD20 mAb, the first one used in clinical practice for treating B cell malignancies.
Collapse
Affiliation(s)
- Simone Battella
- Departments of *Experimental Medicine and Molecular Medicine, Hematology Unit, Sant'Andrea Hospital, and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Maria Christina Cox
- Departments of *Experimental Medicine and Molecular Medicine, Hematology Unit, Sant'Andrea Hospital, and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Angela Santoni
- Departments of *Experimental Medicine and Molecular Medicine, Hematology Unit, Sant'Andrea Hospital, and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Gabriella Palmieri
- Departments of *Experimental Medicine and Molecular Medicine, Hematology Unit, Sant'Andrea Hospital, and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
42
|
Shehata HM, Hoebe K, Chougnet CA. The aged nonhematopoietic environment impairs natural killer cell maturation and function. Aging Cell 2015; 14:191-9. [PMID: 25677698 PMCID: PMC4364831 DOI: 10.1111/acel.12303] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2014] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells are critical in eliminating tumors and viral infections, both of which occur at a high incidence in the elderly. Previous studies showed that aged NK cells are less cytotoxic and exhibit impaired maturation compared to young NK cells. We evaluated whether extrinsic or intrinsic factors were responsible for the impaired maturation and function of NK cells in aging and whether impaired maturation correlated with functional hyporesponsiveness. We confirmed that aged mice have a significant decrease in the frequency of mature NK cells in all lymphoid organs. Impaired NK cell maturation in aged mice correlated with a reduced capacity to eliminate allogeneic and B16 tumor targets in vivo. This could be explained by impaired degranulation, particularly by mature NK cells of aged mice. Consistent with impaired aged NK cell maturation, expression of T-bet and Eomes, which regulate NK cell functional maturation, was significantly decreased in aged bone marrow (BM) NK cells. Mixed BM chimeras revealed that the nonhematopoietic environment was a key determinant of NK cell maturation and T-bet and Eomes expression. In mixed BM chimeras, NK cells derived from both young or aged BM cells adopted an ‘aged’ phenotype in an aged host, that is, were hyporesponsive to stimuli in vitro, while adopting a ‘young’ phenotype following transfer in young hosts. Overall, our data suggest that the aged nonhematopoietic environment is responsible for the impaired maturation and function of NK cells. Defining these nonhematopoietic factors could have important implications for improving NK cell function in the elderly.
Collapse
Affiliation(s)
- Hesham M. Shehata
- Division of Immunobiology Department of Pediatrics Cincinnati Children's Hospital Medical Center and the University of Cincinnati Cincinnati OH 45229 USA
| | - Kasper Hoebe
- Division of Immunobiology Department of Pediatrics Cincinnati Children's Hospital Medical Center and the University of Cincinnati Cincinnati OH 45229 USA
| | - Claire A. Chougnet
- Division of Immunobiology Department of Pediatrics Cincinnati Children's Hospital Medical Center and the University of Cincinnati Cincinnati OH 45229 USA
| |
Collapse
|
43
|
Kumar A, Saba JD. Regulation of Immune Cell Migration by Sphingosine-1-Phosphate. CELLULAR AND MOLECULAR BIOLOGY (OMICS) 2015; 61:121. [PMID: 30294722 PMCID: PMC6169313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sphingosine-1-phosphate [S1P] is a potent bioactive sphingolipid molecule. In response to a stimulus, S1P is produced intracellularly by the action of two sphingosine kinases, and then it is exported to the extracellular environment or acts as an intracellular second messenger. S1P binds to its cognate G-protein coupled receptors, which are known as S1P receptors. There are five S1P receptors that have been identified in vertebrates. By activating S1P receptors, S1P controls a variety of physiological and pathological processes including cell migration, angiogenesis, vascular maturation, inflammation, and invasion, metastasis, and chemoresistance in cancer. S1P has emerged as a critical regulator of leukocyte migration and plays a central role in lymphocyte egress from the thymus and secondary lymphoid organs. In the current review article, we summarize the current understanding of the emigration of lymphocytes and other leukocytes from bone marrow, thymus and secondary lymphoid organs to the circulation, as well as the clinical implications of modulating the activity of the major S1P receptor, S1PR1.
Collapse
Affiliation(s)
- A. Kumar
- Department of Biochemistry, All India Institute of Medical Sciences [AIIMS], Saket Nagar, Bhopal 462 020, India
| | - JD. Saba
- Children’s Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, California 94609, USA
| |
Collapse
|
44
|
Mahmood S, Nandagopal S, Sow I, Lin F, Kung SKP. Microfluidic-based, live-cell analysis allows assessment of NK-cell migration in response to crosstalk with dendritic cells. Eur J Immunol 2014; 44:2737-48. [DOI: 10.1002/eji.201344244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 05/02/2014] [Accepted: 06/13/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Sajid Mahmood
- Department of Immunology; University of Manitoba; Winnipeg MB Canada
| | - Saravanan Nandagopal
- Department of Immunology; University of Manitoba; Winnipeg MB Canada
- Department of Physics and Astronomy; University of Manitoba; Winnipeg MB Canada
- Department of Biosystems Engineering; University of Manitoba; Winnipeg MB Canada
| | - Ibrahim Sow
- Department of Immunology; University of Manitoba; Winnipeg MB Canada
| | - Francis Lin
- Department of Immunology; University of Manitoba; Winnipeg MB Canada
- Department of Physics and Astronomy; University of Manitoba; Winnipeg MB Canada
- Department of Biosystems Engineering; University of Manitoba; Winnipeg MB Canada
| | - Sam K. P. Kung
- Department of Immunology; University of Manitoba; Winnipeg MB Canada
| |
Collapse
|
45
|
Yamin R, Kaynan NS, Glasner A, Vitenshtein A, Tsukerman P, Bauman Y, Ophir Y, Elias S, Bar-On Y, Gur C, Mandelboim O. The viral KSHV chemokine vMIP-II inhibits the migration of Naive and activated human NK cells by antagonizing two distinct chemokine receptors. PLoS Pathog 2013; 9:e1003568. [PMID: 23966863 PMCID: PMC3744409 DOI: 10.1371/journal.ppat.1003568] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/05/2013] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells are innate immune cells able to rapidly kill virus-infected and tumor cells. Two NK cell populations are found in the blood; the majority (90%) expresses the CD16 receptor and also express the CD56 protein in intermediate levels (CD56Dim CD16Pos) while the remaining 10% are CD16 negative and express CD56 in high levels (CD56Bright CD16Neg). NK cells also reside in some tissues and traffic to various infected organs through the usage of different chemokines and chemokine receptors. Kaposi's sarcoma-associated herpesvirus (KSHV) is a human virus that has developed numerous sophisticated and versatile strategies to escape the attack of immune cells such as NK cells. Here, we investigate whether the KSHV derived cytokine (vIL-6) and chemokines (vMIP-I, vMIP-II, vMIP-III) affect NK cell activity. Using transwell migration assays, KSHV infected cells, as well as fusion and recombinant proteins, we show that out of the four cytokine/chemokines encoded by KSHV, vMIP-II is the only one that binds to the majority of NK cells, affecting their migration. We demonstrate that vMIP-II binds to two different receptors, CX3CR1 and CCR5, expressed by naïve CD56Dim CD16Pos NK cells and activated NK cells, respectively. Furthermore, we show that the binding of vMIP-II to CX3CR1 and CCR5 blocks the binding of the natural ligands of these receptors, Fractalkine (Fck) and RANTES, respectively. Finally, we show that vMIP-II inhibits the migration of naïve and activated NK cells towards Fck and RANTES. Thus, we present here a novel mechanism in which KSHV uses a unique protein that antagonizes the activity of two distinct chemokine receptors to inhibit the migration of naïve and activated NK cells. NK cells belong to the innate immune system, able to rapidly kill tumors and various pathogens. They reside in the blood and in various tissues and traffic to different infected organs through the usage of different chemokines and chemokine receptors. KSHV is a master of immune evasion, and around a quarter of the KSHV encoded genes are dedicated to interfere with immune cell recognition. Here, we investigate the role played by the KSHV derived cytokine and chemokines (vIL-6, vMIP-I, vMIP-II, vMIP-III) in modulating NK cell activity. We show that vMIP-II binds and inhibits the activity of two different receptors, CX3CR1 and CCR5, expressed by naïve NK cells and by activated NK cells, respectively. Thus, we demonstrate here a novel mechanism in which KSHV uses a unique protein that antagonizes the activity of two distinct chemokine receptors to inhibit the migration of naïve and activated NK cells.
Collapse
MESH Headings
- Anti-HIV Agents/pharmacology
- CCR5 Receptor Antagonists
- CX3C Chemokine Receptor 1
- Cell Movement/drug effects
- Cells, Cultured
- Chemokine CCL5/metabolism
- Chemokine CX3CL1/metabolism
- Chemokines/pharmacology
- Cytokines/genetics
- Cytokines/metabolism
- Herpesvirus 8, Human/chemistry
- Humans
- Immunoblotting
- Interleukin-6
- Killer Cells, Natural/cytology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/metabolism
- Polymerase Chain Reaction
- Receptors, CCR5/genetics
- Receptors, CCR5/metabolism
- Receptors, Chemokine/antagonists & inhibitors
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
Collapse
Affiliation(s)
- Rachel Yamin
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Noa S. Kaynan
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ariella Glasner
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Alon Vitenshtein
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Pinchas Tsukerman
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Yoav Bauman
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Yael Ophir
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Shlomo Elias
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Yotam Bar-On
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Chamutal Gur
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
- * E-mail:
| |
Collapse
|