1
|
Hsiung KC, Chiang HJ, Reinig S, Shih SR. Vaccine Strategies Against RNA Viruses: Current Advances and Future Directions. Vaccines (Basel) 2024; 12:1345. [PMID: 39772007 PMCID: PMC11679499 DOI: 10.3390/vaccines12121345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
The development of vaccines against RNA viruses has undergone a rapid evolution in recent years, particularly driven by the COVID-19 pandemic. This review examines the key roles that RNA viruses, with their high mutation rates and zoonotic potential, play in fostering vaccine innovation. We also discuss both traditional and modern vaccine platforms and the impact of new technologies, such as artificial intelligence, on optimizing immunization strategies. This review evaluates various vaccine platforms, ranging from traditional approaches (inactivated and live-attenuated vaccines) to modern technologies (subunit vaccines, viral and bacterial vectors, nucleic acid vaccines such as mRNA and DNA, and phage-like particle vaccines). To illustrate these platforms' practical applications, we present case studies of vaccines developed for RNA viruses such as SARS-CoV-2, influenza, Zika, and dengue. Additionally, we assess the role of artificial intelligence in predicting viral mutations and enhancing vaccine design. The case studies underscore the successful application of RNA-based vaccines, particularly in the fight against COVID-19, which has saved millions of lives. Current clinical trials for influenza, Zika, and dengue vaccines continue to show promise, highlighting the growing efficacy and adaptability of these platforms. Furthermore, artificial intelligence is driving improvements in vaccine candidate optimization and providing predictive models for viral evolution, enhancing our ability to respond to future outbreaks. Advances in vaccine technology, such as the success of mRNA vaccines against SARS-CoV-2, highlight the potential of nucleic acid platforms in combating RNA viruses. Ongoing trials for influenza, Zika, and dengue demonstrate platform adaptability, while artificial intelligence enhances vaccine design by predicting viral mutations. Integrating these innovations with the One Health approach, which unites human, animal, and environmental health, is essential for strengthening global preparedness against future RNA virus threats.
Collapse
Affiliation(s)
- Kuei-Ching Hsiung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
| | - Huan-Jung Chiang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Sebastian Reinig
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Medical Biotechnology & Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food & Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science & Technology, Taoyuan 33303, Taiwan
| |
Collapse
|
2
|
Jagadisan B, Dhawan A. Adeno-associated viral vector gene therapy: Challenges for the paediatric hepatologist. J Pediatr Gastroenterol Nutr 2024; 79:485-494. [PMID: 39073133 DOI: 10.1002/jpn3.12326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/09/2024] [Accepted: 06/22/2024] [Indexed: 07/30/2024]
Abstract
Hepatoxicity associated with recombinant adeno-associated virus gene therapy is being increasingly encountered by hepatologists in tertiary and quaternary referral units due to the recent increase of these therapies for neuromuscular and haematological disorders. The challenges in managing the condition stem from a lack of good-quality evidence on the appropriate protocols for immunosuppressants due to lack of representative animal models. There is a need for protocols for diagnosing and treating hepatotoxicity and this possible with further research to understand the problem and its management. The review also highlights the importance of a multidisciplinary team in managing hepatotoxicity and recommends further research to better identify at-risk individuals, define the extent of the problem and assess the long-term effects of liver injury and immunosuppressants.
Collapse
Affiliation(s)
- Barath Jagadisan
- Paediatric Liver GI and Nutrition Centre and Mowat Labs, King's College Hospital, London, UK
| | - Anil Dhawan
- Paediatric Liver GI and Nutrition Centre and Mowat Labs, King's College Hospital, London, UK
| |
Collapse
|
3
|
Qin X, Yu Q, Li X, Jiang W, Shi X, Hou W, Zhang D, Cai Z, Bi H, Fan W, Ding Y, Yang Y, Dong B, Chen L, Huo D, Wang C, Zhou Y, Pei D, Ye M, Liang C. Methodological Validation of Sedimentation Velocity Analytical Ultracentrifugation Method for Adeno-Associated Virus and Collaborative Calibration of System Suitability Substance. Hum Gene Ther 2024; 35:401-411. [PMID: 38717948 DOI: 10.1089/hum.2023.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
Currently, adeno-associated virus (AAV) is one of the primary gene delivery vectors in gene therapy, facilitating long-term in vivo gene expression. Despite being imperative, it is incredibly challenging to precisely assess AAV particle distribution according to the sedimentation coefficient and identify impurities related to capsid structures. This study performed the systematic methodological validation of quantifying the AAV empty and full capsid ratio. This includes specificity, accuracy, precision, linearity, and parameter variables involving the sedimentation velocity analytical ultracentrifugation (SV-AUC) method. Specifically, SV-AUC differentiated among the empty, partial, full, and high sedimentation coefficient substance (HSCS) AAV particles while evaluating their sedimentation heterogeneity. The intermediate precision analysis of HE (high percentage of empty capsid) and HF (high percentage of full capsid) samples revealed that the specific species percentage, such as empty or full, was more significant than 50%. Moreover, the relative standard deviation (RSD) could be within 5%. Even for empty or partially less than 15%, the RSD could be within 10%. The accuracy recovery rates of empty capsid were between 103.9% and 108.7% across three different mixtures. When the measured percentage of specific species was more significant than 14%, the recovery rate was between 77.9% and 106.6%. Linearity analysis revealed an excellent linear correlation between the empty, partial, and full in the HE samples. The AAV samples with as low as 7.4 × 1011 cp/mL AAV could be accurately quantified with SV-AUC. The parameter variable analyses revealed that variations in cell alignment significantly affected the overall results. Still, the detection wavelength of 235 nm slightly influenced the empty, partial, and full percentages. Minor detection wavelength changes showed no impact on the sedimentation coefficient of these species. However, the temperature affected the measured sedimentation coefficient. These results validated the SV-AUC method to quantify AAV. This study provides solutions to AAV empty and full capsid ratio quantification challenges and the subsequent basis for calibrating the AAV empty capsid system suitability substance. Because of the AAV structure and potential variability complexity in detection, we jointly calibrated empty capsid system suitability substance with three laboratories to accurately detect the quantitative AAV empty and full capsid ratio. The empty capsid system suitability substance could be used as an external reference to measure the performance of the instrument. The results could be compared with multiple QC (quality control) laboratories based on the AAV vector and calibration accuracy. This is crucial for AUC to be used for QC release and promote gene therapy research worldwide.
Collapse
Affiliation(s)
- Xi Qin
- National Institutes for Food and Drug Control, Beijing, China
| | - Qikun Yu
- Beckman Coulter, Inc., Shanghai, Republic of China
| | - Xiang Li
- National Institutes for Food and Drug Control, Beijing, China
| | - Wei Jiang
- Belief BioMed Inc., Shanghai, Republic of China
| | - Xinchang Shi
- National Institutes for Food and Drug Control, Beijing, China
| | - Wenxiu Hou
- Belief BioMed Inc., Shanghai, Republic of China
| | - Da Zhang
- Skyline Therapeutics (Shanghai) Co., Ltd., Shanghai, Republic of China
| | | | - Hua Bi
- National Institutes for Food and Drug Control, Beijing, China
| | - Wenhong Fan
- National Institutes for Food and Drug Control, Beijing, China
| | - Youxue Ding
- National Institutes for Food and Drug Control, Beijing, China
| | - Yichen Yang
- Beckman Coulter, Inc., Shanghai, Republic of China
| | - Biao Dong
- Sichuan Real & Best Biotech Co., Ltd., Chengdu, Republic of China
| | - Long Chen
- Wuhan Neurophth Biotechnology Limited Company, Wuhan, Republic of China
| | - Dehua Huo
- Beckman Coulter, Inc., Shanghai, Republic of China
| | - Cong Wang
- Beckman Coulter, Inc., Shanghai, Republic of China
| | - Yong Zhou
- National Institutes for Food and Drug Control, Beijing, China
| | - Dening Pei
- National Institutes for Food and Drug Control, Beijing, China
| | - Miao Ye
- Beckman Coulter, Inc., Shanghai, Republic of China
| | - Chenggang Liang
- National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
4
|
Singh K, Bhushan B, Kumar S, Singh S, Macadangdang RR, Pandey E, Varma AK, Kumar S. Precision Genome Editing Techniques in Gene Therapy: Current State and Future Prospects. Curr Gene Ther 2024; 24:377-394. [PMID: 38258771 DOI: 10.2174/0115665232279528240115075352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Precision genome editing is a rapidly evolving field in gene therapy, allowing for the precise modification of genetic material. The CRISPR and Cas systems, particularly the CRISPRCas9 system, have revolutionized genetic research and therapeutic development by enabling precise changes like single-nucleotide substitutions, insertions, and deletions. This technology has the potential to correct disease-causing mutations at their source, allowing for the treatment of various genetic diseases. Programmable nucleases like CRISPR-Cas9, transcription activator-like effector nucleases (TALENs), and zinc finger nucleases (ZFNs) can be used to restore normal gene function, paving the way for novel therapeutic interventions. However, challenges, such as off-target effects, unintended modifications, and ethical concerns surrounding germline editing, require careful consideration and mitigation strategies. Researchers are exploring innovative solutions, such as enhanced nucleases, refined delivery methods, and improved bioinformatics tools for predicting and minimizing off-target effects. The prospects of precision genome editing in gene therapy are promising, with continued research and innovation expected to refine existing techniques and uncover new therapeutic applications.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Bharat Bhushan
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Sunil Kumar
- Department of Pharmacology, P.K. University, Thanra, Karera, Shivpuri, Madhya Pradesh, India
| | - Supriya Singh
- Department of Pharmaceutics, Babu Banarasi Das Northern India Institute of Technology, Faizabaad road, Lucknow, Uttar Pradesh, India
| | | | - Ekta Pandey
- Department of Chemistry, Bundelkhand Institute of Engineering and Technology, Jhansi, Uttar Pradesh, India
| | - Ajit Kumar Varma
- Department of Pharmaceutics, Rama University, Kanpur, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| |
Collapse
|
5
|
Sharma R. Innovative Genoceuticals in Human Gene Therapy Solutions: Challenges and Safe Clinical Trials of Orphan Gene Therapy Products. Curr Gene Ther 2024; 24:46-72. [PMID: 37702177 DOI: 10.2174/1566523223666230911120922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 09/14/2023]
Abstract
The success of gene therapy attempts is controversial and inconclusive. Currently, it is popular among the public, the scientific community, and manufacturers of Gene Therapy Medical Products. In the absence of any remedy or treatment options available for untreatable inborn metabolic orphan or genetic diseases, cancer, or brain diseases, gene therapy treatment by genoceuticals and T-cells for gene editing and recovery remains the preferred choice as the last hope. A new concept of "Genoceutical Gene Therapy" by using orphan 'nucleic acid-based therapy' aims to introduce scientific principles of treating acquired tissue damage and rare diseases. These Orphan Genoceuticals provide new scope for the 'genodrug' development and evaluation of genoceuticals and gene products for ideal 'gene therapy' use in humans with marketing authorization application (MAA). This perspective study focuses on the quality control, safety, and efficacy requirements of using 'nucleic acid-based and human cell-based new gene therapy' genoceutical products to set scientific advice on genoceutical-based 'orphan genodrug' design for clinical trials as per Western and European guidelines. The ethical Western FDA and European EMA guidelines suggest stringent legal and technical requirements on genoceutical medical products or orphan genodrug use for other countries to frame their own guidelines. The introduction section proposes lessknown 'orphan drug-like' properties of modified RNA/DNA, human cell origin gene therapy medical products, and their transgene products. The clinical trial section explores the genoceutical sources, FDA/EMA approvals for genoceutical efficacy criteria with challenges, and ethical guidelines relating to gene therapy of specific rare metabolic, cancer and neurological diseases. The safety evaluation of approved genoceuticals or orphan drugs is highlighted with basic principles and 'genovigilance' requirements (to observe any adverse effects, side effects, developed signs/symptoms) to establish their therapeutic use. Current European Union and Food and Drug Administration guidelines continuously administer fast-track regulatory legal framework from time to time, and they monitor the success of gene therapy medical product efficacy and safety. Moreover, new ethical guidelines on 'orphan drug-like genoceuticals' are updated for biodistribution of the vector, genokinetics studies of the transgene product, requirements for efficacy studies in industries for market authorization, and clinical safety endpoints with their specific concerns in clinical trials or public use.
Collapse
Affiliation(s)
- Rakesh Sharma
- Surgery NMR Lab, Plastic Surgery Research, Massachusetts General Hospital, Boston, MA 02114, USA
- CCSU, Government Medical College, Saharanpur, 247232 India
| |
Collapse
|
6
|
Kang YM, Kim YJ, Kim K. Significance of traditional herbal medicine for dyslipidemia. Am J Transl Res 2023; 15:5373-5388. [PMID: 37692941 PMCID: PMC10492084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/13/2023] [Indexed: 09/12/2023]
Abstract
Dyslipidemia is a multifactorial disorder that is a causative factor and risk factor for cardiovascular disease. The incidence of dyslipidemia is expected to increase because of the presence of comorbidities. Although several lipid-lowering drugs have been developed and approved, they are not completely effective and are associated with side effects. Traditional herbal medicine (THM) represents an alternative and complementary approach for managing dyslipidemia because of its low toxicity and beneficial effects, such as anti-inflammatory and antioxidant effects. This review focuses on our current understanding of the antidyslipidemic effect of THMs and discusses the associated regulatory mechanisms. The current findings indicate that THM may lead to the development of novel therapeutic regimens for dyslipidemia.
Collapse
Affiliation(s)
- Yun-Mi Kang
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM)Daegu 41062, Republic of Korea
| | - Yeon-Ji Kim
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM)Daegu 41062, Republic of Korea
| | - Kyungho Kim
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM)Daegu 41062, Republic of Korea
- Korean Convergence Medical Science Major, KIOM School, University of Science and Technology (UST)Daejeon 34054, Republic of Korea
| |
Collapse
|
7
|
Jagadisan B, Dhawan A. Multidisciplinary approach for gene therapy-related hepatotoxicity. J Thromb Haemost 2023; 21:1998-1999. [PMID: 37330267 DOI: 10.1016/j.jtha.2023.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Affiliation(s)
- Barath Jagadisan
- Pediatric Liver Gastroenterology and Nutrition Centre and Mowat Labs, King's College Hospital NHS Foundation Trust, London, UK
| | - Anil Dhawan
- Pediatric Liver Gastroenterology and Nutrition Centre and Mowat Labs, King's College Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
8
|
Masri S, Carré L, Jaulin N, Vandamme C, Couzinié C, Guy-Duché A, Dupont JB, Pereira A, Charpentier E, David L, Gernoux G, Guilbaud M, Adjali O. Transcriptomic Analysis Reveals the Inability of Recombinant AAV8 to Activate Human Monocyte-Derived Dendritic Cells. Int J Mol Sci 2023; 24:10447. [PMID: 37445621 DOI: 10.3390/ijms241310447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Recombinant Adeno-Associated Virus (rAAV) is considered as one of the most successful and widely used viral vectors for in vivo gene therapy. However, host immune responses to the vector and/or the transgene product remain a major hurdle to successful AAV gene transfer. In contrast to antivector adaptive immunity, the initiation of the innate immunity towards rAAV is still poorly understood but is directly dependent on the interaction between the viral vector and innate immune cells. Here, we used a quantitative transcriptomic-based approach to determine the activation of inflammatory and anti-viral pathways after rAAV8-based infection of monocyte-derived dendritic cells (moDCs) obtained from 12 healthy human donors. We have shown that rAAV8 particles are efficiently internalized, but that this uptake does not induce any detectable transcriptomic change in moDCs in contrast to an adenoviral infection, which upregulates anti-viral pathways. These findings suggest an immunologically favorable profile for rAAV8 serotype with regard to in vitro activation of moDC model. Transcriptomic analysis of rAAV-infected innate immune cells is a powerful method to determine the ability of the viral vector to be seen by these sensor cells, which remains of great importance to better understand the immunogenicity of rAAV vectors and to design immune-stealth products.
Collapse
Affiliation(s)
- Samer Masri
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR 1089, F-44200 Nantes, France
| | - Laure Carré
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR 1089, F-44200 Nantes, France
| | - Nicolas Jaulin
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR 1089, F-44200 Nantes, France
| | - Céline Vandamme
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR 1089, F-44200 Nantes, France
| | - Célia Couzinié
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR 1089, F-44200 Nantes, France
| | - Aurélien Guy-Duché
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR 1089, F-44200 Nantes, France
| | - Jean-Baptiste Dupont
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR 1089, F-44200 Nantes, France
| | - Allwyn Pereira
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR 1089, F-44200 Nantes, France
| | - Eric Charpentier
- Nantes Université, CHU Nantes, CNRS, INSERM, SFR Santé, UMS 3556, UMS016, F-44000 Nantes, France
| | - Laurent David
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, F-44000 Nantes, France
| | - Gwladys Gernoux
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR 1089, F-44200 Nantes, France
| | - Mickaël Guilbaud
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR 1089, F-44200 Nantes, France
| | - Oumeya Adjali
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR 1089, F-44200 Nantes, France
| |
Collapse
|
9
|
Arjomandnejad M, Dasgupta I, Flotte TR, Keeler AM. Immunogenicity of Recombinant Adeno-Associated Virus (AAV) Vectors for Gene Transfer. BioDrugs 2023; 37:311-329. [PMID: 36862289 PMCID: PMC9979149 DOI: 10.1007/s40259-023-00585-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/03/2023]
Abstract
Recombinant adeno-associated viruses (AAVs) have emerged as promising gene delivery vehicles resulting in three US Food and Drug Administration (FDA) and one European Medicines Agency (EMA)-approved AAV-based gene therapies. Despite being a leading platform for therapeutic gene transfer in several clinical trials, host immune responses against the AAV vector and transgene have hampered their widespread application. Multiple factors, including vector design, dose, and route of administration, contribute to the overall immunogenicity of AAVs. The immune responses against the AAV capsid and transgene involve an initial innate sensing. The innate immune response subsequently triggers an adaptive immune response to elicit a robust and specific response against the AAV vector. AAV gene therapy clinical trials and preclinical studies provide important information about the immune-mediated toxicities associated with AAV, yet studies suggest preclinical models fail to precisely predict the outcome of gene delivery in humans. This review discusses the contribution of the innate and adaptive immune response against AAVs, highlighting the challenges and potential strategies to mitigate these responses, thereby enhancing the therapeutic potential of AAV gene therapy.
Collapse
Affiliation(s)
- Motahareh Arjomandnejad
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA
| | - Ishani Dasgupta
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA
| | - Terence R Flotte
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Allison M Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA.
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
10
|
Gorovits B, Azadeh M, Buchlis G, Fiscella M, Harrison T, Havert M, Janetzki S, Jawa V, Long B, Mahnke YD, McDermott A, Milton M, Nelson R, Vettermann C, Wu B. Evaluation of Cellular Immune Response to Adeno-Associated Virus-Based Gene Therapy. AAPS J 2023; 25:47. [PMID: 37101079 PMCID: PMC10132926 DOI: 10.1208/s12248-023-00814-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
The number of approved or investigational late phase viral vector gene therapies (GTx) has been rapidly growing. The adeno-associated virus vector (AAV) technology continues to be the most used GTx platform of choice. The presence of pre-existing anti-AAV immunity has been firmly established and is broadly viewed as a potential deterrent for successful AAV transduction with a possibility of negative impact on clinical efficacy and a connection to adverse events. Recommendations for the evaluation of humoral, including neutralizing and total antibody based, anti-AAV immune response have been presented elsewhere. This manuscript aims to cover considerations related to the assessment of anti-AAV cellular immune response, including review of correlations between humoral and cellular responses, potential value of cellular immunogenicity assessment, and commonly used analytical methodologies and parameters critical for monitoring assay performance. This manuscript was authored by a group of scientists involved in GTx development who represent several pharma and contract research organizations. It is our intent to provide recommendations and guidance to the industry sponsors, academic laboratories, and regulatory agencies working on AAV-based GTx viral vector modalities with the goal of achieving a more consistent approach to anti-AAV cellular immune response assessment.
Collapse
Affiliation(s)
| | - Mitra Azadeh
- Ultragenyx Pharmaceutical Inc, Novato, California, USA
| | - George Buchlis
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Mike Havert
- Gene Therapy Partners, San Diego, California, USA
| | | | - Vibha Jawa
- Bristol Myers Squibb Pharmaceutical, Princeton, New Jersey, USA
| | - Brian Long
- BioMarin Pharmaceutical Inc, Novato, California, USA
| | | | - Andrew McDermott
- Labcorp Early Development Laboratories Inc, Indianapolis, Indiana, USA
| | - Mark Milton
- Lake Boon Pharmaceutical Consulting LLC, Hudson, New York, USA
| | | | | | - Bonnie Wu
- Janssen Pharmaceuticals, Raritan, New Jersey, USA
| |
Collapse
|
11
|
Jagadisan B, Dhawan A. Multidisciplinary approach and reactive immunosuppression for gene therapy related hepatotoxicity. J Hepatol 2023:S0168-8278(23)00197-6. [PMID: 36996939 DOI: 10.1016/j.jhep.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023]
Affiliation(s)
- Barath Jagadisan
- Pediatric Liver GI and Nutrition Centre and Mowat Labs, King's College Hospital NHS Foundation Trust, London.
| | - Anil Dhawan
- Pediatric Liver GI and Nutrition Centre and Mowat Labs, King's College Hospital NHS Foundation Trust, London.
| |
Collapse
|
12
|
Ewaisha R, Anderson KS. Immunogenicity of CRISPR therapeutics-Critical considerations for clinical translation. Front Bioeng Biotechnol 2023; 11:1138596. [PMID: 36873375 PMCID: PMC9978118 DOI: 10.3389/fbioe.2023.1138596] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
CRISPR offers new hope for many patients and promises to transform the way we think of future therapies. Ensuring safety of CRISPR therapeutics is a top priority for clinical translation and specific recommendations have been recently released by the FDA. Rapid progress in the preclinical and clinical development of CRISPR therapeutics leverages years of experience with gene therapy successes and failures. Adverse events due to immunogenicity have been a major setback that has impacted the field of gene therapy. As several in vivo CRISPR clinical trials make progress, the challenge of immunogenicity remains a significant roadblock to the clinical availability and utility of CRISPR therapeutics. In this review, we examine what is currently known about the immunogenicity of CRISPR therapeutics and discuss several considerations to mitigate immunogenicity for the design of safe and clinically translatable CRISPR therapeutics.
Collapse
Affiliation(s)
- Radwa Ewaisha
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Microbiology and Immunology, School of Pharmacy, Newgiza University, Newgiza, Egypt
| | - Karen S. Anderson
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
13
|
Earley J, Piletska E, Ronzitti G, Piletsky S. Evading and overcoming AAV neutralization in gene therapy. Trends Biotechnol 2022; 41:836-845. [PMID: 36503641 DOI: 10.1016/j.tibtech.2022.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022]
Abstract
Adeno-associated virus (AAV)-derived viral vectors are a promising platform for the delivery of curative, life-changing therapies to a huge number of patients with monogenic disorders. There are currently over 250 clinical trials ongoing worldwide. However, for these therapies to benefit as many patients as possible, techniques must be developed to treat those with pre-existing immunity and to potentially allow re-administration of a dose in the future, should efficacy wane over time. This review discusses the current state and prospects of technologies to evade and overcome these immune responses and allow successful treatment of the greatest number of patients possible.
Collapse
|
14
|
Colon-Moran W, Baer A, Lamture G, Stapleton JT, Fischer JW, Bhattarai N. A short hepatitis C virus NS5A peptide expression by AAV vector modulates human T cell activation and reduces vector immunogenicity. Gene Ther 2022; 29:616-623. [PMID: 34759330 PMCID: PMC9091046 DOI: 10.1038/s41434-021-00302-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/09/2023]
Abstract
Viral vector-mediated gene therapies have the potential to treat many human diseases; however, host immune responses against the vector and/or the transgene pose a safety risk to the patients and can negatively impact product efficacy. Thus, novel strategies to reduce vector immunogenicity are critical for the advancement of these therapies. T cell activation (TCA) is required for the development of immune responses during gene therapy. We hypothesized that modulation of TCA by incorporating a novel viral immunomodulatory factor into a viral vector may reduce unwanted TCA and immune responses during gene therapy. To test this hypothesis, we identified an immunomodulatory domain of the hepatitis C virus (HCV) NS protein 5A (NS5A) protein and studied the effect of viral vectors expressing NS5A peptide on TCA. Lentiviral vector-mediated expression of a short 20-mer peptide derived from the NS5A protein in human T cells was sufficient to inhibit TCA. Synthetic 20-mer NS5A peptide also inhibited TCA in primary human T cells. Mechanistically, the NS5A protein interacted with Lck and inhibited proximal TCR signaling. Importantly, NS5A peptide expression did not cause global T cell signaling dysfunction as distal T cell signaling was not inhibited. Finally, recombinant adeno-associated virus (AAV) vector expressing the 20-mer NS5A peptide reduced both the recall antigen and the TCR-mediated activation of human T cells and did not cause global T cell signaling dysfunction. Together, these data suggest that expression of a 20-mer NS5A peptide by an AAV vector may reduce unwanted TCA and may contribute to lower vector immunogenicity during gene therapy.
Collapse
Affiliation(s)
- Winston Colon-Moran
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Alan Baer
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Gauri Lamture
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
- Adicet Bio, Inc., Menlo Park, CA, USA
| | - Jack T Stapleton
- Research Service, Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA
- Departments of Internal Medicine and Microbiology, University of Iowa, Iowa City, IA, USA
| | - Joseph W Fischer
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
- AstraZeneca, Gaithersburg, MD, USA
| | - Nirjal Bhattarai
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
15
|
Li X, Wei X, Lin J, Ou L. A versatile toolkit for overcoming AAV immunity. Front Immunol 2022; 13:991832. [PMID: 36119036 PMCID: PMC9479010 DOI: 10.3389/fimmu.2022.991832] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Recombinant adeno-associated virus (AAV) is a promising delivery vehicle for in vivo gene therapy and has been widely used in >200 clinical trials globally. There are already several approved gene therapy products, e.g., Luxturna and Zolgensma, highlighting the remarkable potential of AAV delivery. In the past, AAV has been seen as a relatively non-immunogenic vector associated with low risk of toxicity. However, an increasing number of recent studies indicate that immune responses against AAV and transgene products could be the bottleneck of AAV gene therapy. In clinical studies, pre-existing antibodies against AAV capsids exclude many patients from receiving the treatment as there is high prevalence of antibodies among humans. Moreover, immune response could lead to loss of efficacy over time and severe toxicity, manifested as liver enzyme elevations, kidney injury, and thrombocytopenia, resulting in deaths of non-human primates and patients. Therefore, extensive efforts have been attempted to address these issues, including capsid engineering, plasmapheresis, IgG proteases, CpG depletion, empty capsid decoy, exosome encapsulation, capsid variant switch, induction of regulatory T cells, and immunosuppressants. This review will discuss these methods in detail and highlight important milestones along the way.
Collapse
Affiliation(s)
- Xuefeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaoli Wei
- Guangzhou Dezheng Biotechnology Co., Ltd., Guangzhou, China
| | - Jinduan Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Li Ou
- Genemagic Biosciences, Philadelphia, PA, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Li Ou,
| |
Collapse
|
16
|
Yang TY, Braun M, Lembke W, McBlane F, Kamerud J, DeWall S, Tarcsa E, Fang X, Hofer L, Kavita U, Upreti VV, Gupta S, Loo L, Johnson AJ, Chandode RK, Stubenrauch KG, Vinzing M, Xia CQ, Jawa V. Immunogenicity assessment of AAV-based gene therapies: An IQ consortium industry white paper. Mol Ther Methods Clin Dev 2022; 26:471-494. [PMID: 36092368 PMCID: PMC9418752 DOI: 10.1016/j.omtm.2022.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immunogenicity has imposed a challenge to efficacy and safety evaluation of adeno-associated virus (AAV) vector-based gene therapies. Mild to severe adverse events observed in clinical development have been implicated with host immune responses against AAV gene therapies, resulting in comprehensive evaluation of immunogenicity during nonclinical and clinical studies mandated by health authorities. Immunogenicity of AAV gene therapies is complex due to the number of risk factors associated with product components and pre-existing immunity in human subjects. Different clinical mitigation strategies have been employed to alleviate treatment-induced or -boosted immunogenicity in order to achieve desired efficacy, reduce toxicity, or treat more patients who are seropositive to AAV vectors. In this review, the immunogenicity risk assessment, manifestation of immunogenicity and its impact in nonclinical and clinical studies, and various clinical mitigation strategies are summarized. Last, we present bioanalytical strategies, methodologies, and assay validation applied to appropriately monitor immunogenicity in AAV gene therapy-treated subjects.
Collapse
|
17
|
Cholesterol Lowering Biotechnological Strategies: From Monoclonal Antibodies to Antisense Therapies. A Pre-Clinical Perspective Review. Cardiovasc Drugs Ther 2022; 37:585-598. [PMID: 35022949 DOI: 10.1007/s10557-021-07293-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
In recent years, the increase in available genetic information and a better understanding of the genetic bases of dyslipidemias has led to the identification of potential new avenues for therapies. Additionally, the development of new technologies has presented the key for developing novel therapeutic strategies targeting not only proteins (e.g., the monoclonal antibodies and vaccines) but also the transcripts (from antisense oligonucleotides (ASOs) to small interfering RNAs) or the genomic sequence (gene therapies). These pharmacological advances have led to successful therapeutic improvements, particularly in the cardiovascular arena because we are now able to treat rare, genetically driven, and previously untreatable conditions (e.g, familial hypertriglyceridemia or hyperchylomicronemia). In this review, the pre-clinical pharmacological development of the major biotechnological cholesterol lowering advances were discussed, describing facts, gaps, potential future steps forward, and therapeutic opportunities.
Collapse
|
18
|
Keeler AM. Immune Responses to Adeno-Associated Virus-Mediated CRISPR Therapy. Hum Gene Ther 2021; 32:1430-1432. [PMID: 34935453 DOI: 10.1089/hum.2021.29193.amk] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Allison M Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.,Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.,NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
19
|
Arjomandnejad M, Sylvia K, Blackwood M, Nixon T, Tang Q, Muhuri M, Gruntman AM, Gao G, Flotte TR, Keeler AM. Modulating immune responses to AAV by expanded polyclonal T-regs and capsid specific chimeric antigen receptor T-regulatory cells. Mol Ther Methods Clin Dev 2021; 23:490-506. [PMID: 34853797 PMCID: PMC8605179 DOI: 10.1016/j.omtm.2021.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/13/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
Immune responses to adeno-associated virus (AAV) capsids limit the therapeutic potential of AAV gene therapy. Herein, we model clinical immune responses by generating AAV capsid-specific chimeric antigen receptor (AAV-CAR) T cells. We then modulate immune responses to AAV capsid with AAV-CAR regulatory T cells (Tregs). AAV-CAR Tregs in vitro display phenotypical Treg surface marker expression, and functional suppression of effector T cell proliferation and cytotoxicity. In mouse models, AAV-CAR Tregs mediated continued transgene expression from an immunogenic capsid, despite antibody responses, produced immunosuppressive cytokines, and decreased tissue inflammation. AAV-CAR Tregs are also able to bystander suppress immune responses to immunogenic transgenes similarly mediating continued transgene expression, producing immunosuppressive cytokines, and reducing tissue infiltration. Taken together, AAV-CAR T cells and AAV-CAR Tregs are directed and powerful immunosuppressive tools to model and modulate immune responses to AAV capsids and transgenes in the local environment.
Collapse
Affiliation(s)
- Motahareh Arjomandnejad
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Katelyn Sylvia
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Meghan Blackwood
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Thomas Nixon
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Qiushi Tang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Manish Muhuri
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Alisha M Gruntman
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, Grafton, MA 01536, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Terence R Flotte
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Allison M Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
20
|
Bougioukli S, Chateau M, Morales H, Vakhshori V, Sugiyama O, Oakes D, Longjohn D, Cannon P, Lieberman JR. Limited potential of AAV-mediated gene therapy in transducing human mesenchymal stem cells for bone repair applications. Gene Ther 2021; 28:729-739. [PMID: 32807899 DOI: 10.1038/s41434-020-0182-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/01/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
Adeno-associated viral vectors (AAV) are unique in their ability to transduce a variety of both dividing and nondividing cells, with significantly lower risk of random genomic integration and with no known pathogenicity in humans, but their role in ex vivo regional gene therapy for bone repair has not been definitively established. The goal of this study was to test the ability of AAV vectors carrying the cDNA for BMP-2 to transduce human mesenchymal stem cells (MSCs), produce BMP-2, and induce osteogenesis in vitro as compared with lentiviral gene therapy with a two-step transcriptional amplification system lentiviral vector (LV-TSTA). To this end, we created two AAV vectors (serotypes 2 and 6) expressing the target transgene; eGFP or BMP-2. Transduction of human MSCs isolated from bone marrow (BMSCs) or adipose tissue (ASCs) with AAV2-eGFP and AAV6-eGFP led to low transduction efficiency (BMSCs: 3.57% and 8.82%, respectively, ASCs: 6.17 and 20.2%, respectively) and mean fluorescence intensity as seen with FACS analysis 7 days following transduction, even at MOIs as high as 106. In contrast, strong eGFP expression was detectable in all of the cell types post transduction with LV-TSTA-eGFP. Transduction with BMP-2 producing vectors led to minimal BMP-2 production in AAV-transduced cells 2 and 7 days following transduction. In addition, transduction of ASCs and BMSCs with AAV2-BMP-2 and AAV6-BMP-2 did not enhance their osteogenic potential as seen with an alizarin red assay. In contrast, the LV-TSTA-BMP-2-transduced cells were characterized by an abundant BMP-2 production and induction of the osteogenic phenotype in vitro (p < 0.001 vs. AAV2 and 6). Our results demonstrate that the AAV2 and AAV6 vectors cannot induce a significant transgene expression in human BMSCs and ASCs, even at MOIs as high as 106. The LV-TSTA vector is significantly superior in transducing human MSCs; thus this vector would be preferable when developing an ex vivo regional gene therapy strategy for clinical use in orthopedic surgery applications.
Collapse
Affiliation(s)
- Sofia Bougioukli
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Morgan Chateau
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Heidy Morales
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Venus Vakhshori
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Osamu Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel Oakes
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Donald Longjohn
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paula Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jay R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Rapti K, Grimm D. Adeno-Associated Viruses (AAV) and Host Immunity - A Race Between the Hare and the Hedgehog. Front Immunol 2021; 12:753467. [PMID: 34777364 PMCID: PMC8586419 DOI: 10.3389/fimmu.2021.753467] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated viruses (AAV) have emerged as the lead vector in clinical trials and form the basis for several approved gene therapies for human diseases, mainly owing to their ability to sustain robust and long-term in vivo transgene expression, their amenability to genetic engineering of cargo and capsid, as well as their moderate toxicity and immunogenicity. Still, recent reports of fatalities in a clinical trial for a neuromuscular disease, although linked to an exceptionally high vector dose, have raised new caution about the safety of recombinant AAVs. Moreover, concerns linger about the presence of pre-existing anti-AAV antibodies in the human population, which precludes a significant percentage of patients from receiving, and benefitting from, AAV gene therapies. These concerns are exacerbated by observations of cellular immune responses and other adverse events, including detrimental off-target transgene expression in dorsal root ganglia. Here, we provide an update on our knowledge of the immunological and molecular race between AAV (the “hedgehog”) and its human host (the “hare”), together with a compendium of state-of-the-art technologies which provide an advantage to AAV and which, thus, promise safer and more broadly applicable AAV gene therapies in the future.
Collapse
Affiliation(s)
- Kleopatra Rapti
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.,BioQuant Center, BQ0030, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.,BioQuant Center, BQ0030, University of Heidelberg, Heidelberg, Germany.,German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF) and German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Erkrankungen (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
22
|
Macdonald J, Marx J, Büning H. Capsid-Engineering for Central Nervous System-Directed Gene Therapy with Adeno-Associated Virus Vectors. Hum Gene Ther 2021; 32:1096-1119. [PMID: 34662226 DOI: 10.1089/hum.2021.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Closing the gap in knowledge on the cause of neurodegenerative disorders is paving the way toward innovative treatment strategies, among which gene therapy has emerged as a top candidate. Both conventional gene therapy and genome editing approaches are being developed, and a great number of human clinical trials are ongoing. Already 2 years ago, the first gene therapy for a neurodegenerative disease, spinal muscular atrophy type 1 (SMA1), obtained market approval. To realize such innovative strategies, gene therapy delivery tools are key assets. Here, we focus on recombinant adeno-associated virus (AAV) vectors and report on strategies to improve first-generation vectors. Current efforts focus on the viral capsid to modify the host-vector interaction aiming at increasing the efficacy of target cell transduction, at simplifying vector administration, and at reducing the risk of vector dose-related side effects.
Collapse
Affiliation(s)
- Josephine Macdonald
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Jennifer Marx
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
23
|
Patton KS, Harrison MT, Long BR, Lau K, Holcomb J, Owen R, Kasprzyk T, Janetzki S, Zoog SJ, Vettermann C. Monitoring cell-mediated immune responses in AAV gene therapy clinical trials using a validated IFN-γ ELISpot method. Mol Ther Methods Clin Dev 2021; 22:183-195. [PMID: 34485604 PMCID: PMC8399379 DOI: 10.1016/j.omtm.2021.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 05/19/2021] [Indexed: 12/19/2022]
Abstract
Adeno-associated virus (AAV)-based gene therapies have recently shown promise as a novel treatment for hereditary diseases. Due to the viral origin of the vector capsid, however, cellular immune response may be elicited that could eliminate transduced target cells. To monitor cellular immune responses in clinical trials, we optimized and bioanalytically validated a sensitive, robust, and reliable interferon-γ (IFN-γ) enzyme-linked immunospot (ELISpot) assay. For method performance validation, human peripheral blood mononuclear cells (PBMCs) were stimulated with peptides derived from AAV5 capsid proteins and the encoded transgene product, human blood clotting factor VIII (FVIII), in addition to positive controls, such as peptides from the 65-kDa phosphoprotein of cytomegalovirus. We statistically assessed the limit of detection and confirmatory cutpoint, evaluated precision and linearity, and confirmed specificity using HIV peptides. Robustness parameter ranges and sample stability periods were established. The validated IFN-γ ELISpot assay was then implemented in an AAV5-FVIII gene therapy clinical trial. Cellular immune responses against the AAV5 capsid were observed in most participants as soon as 2 weeks following dose administration; only limited responses against the transgene product were detected. These data underscore the value of using validated methods for monitoring cellular immunity in AAV gene therapy trials.
Collapse
Affiliation(s)
- Kathryn S. Patton
- Bioanalytical Sciences, BioMarin Pharmaceutical, 791 Lincoln Avenue, San Rafael, CA 94901, USA
| | - M. Travis Harrison
- Immunology, Precision for Medicine, 2686 Middlefield Road, Redwood City, CA 94063, USA
| | - Brian R. Long
- Bioanalytical Sciences, BioMarin Pharmaceutical, 791 Lincoln Avenue, San Rafael, CA 94901, USA
| | - Kelly Lau
- Bioanalytical Sciences, BioMarin Pharmaceutical, 791 Lincoln Avenue, San Rafael, CA 94901, USA
| | - Jennifer Holcomb
- Bioanalytical Sciences, BioMarin Pharmaceutical, 791 Lincoln Avenue, San Rafael, CA 94901, USA
| | - Rachel Owen
- Immunology, Precision for Medicine, 2686 Middlefield Road, Redwood City, CA 94063, USA
| | - Theresa Kasprzyk
- Bioanalytical Sciences, BioMarin Pharmaceutical, 791 Lincoln Avenue, San Rafael, CA 94901, USA
| | - Sylvia Janetzki
- ZellNet Consulting, 555 North Avenue, Suite 25-S, Fort Lee, NJ 07024, USA
| | - Stephen J. Zoog
- Bioanalytical Sciences, BioMarin Pharmaceutical, 791 Lincoln Avenue, San Rafael, CA 94901, USA
| | - Christian Vettermann
- Bioanalytical Sciences, BioMarin Pharmaceutical, 791 Lincoln Avenue, San Rafael, CA 94901, USA
| |
Collapse
|
24
|
Chan YK, Wang SK, Chu CJ, Copland DA, Letizia AJ, Costa Verdera H, Chiang JJ, Sethi M, Wang MK, Neidermyer WJ, Chan Y, Lim ET, Graveline AR, Sanchez M, Boyd RF, Vihtelic TS, Inciong RGCO, Slain JM, Alphonse PJ, Xue Y, Robinson-McCarthy LR, Tam JM, Jabbar MH, Sahu B, Adeniran JF, Muhuri M, Tai PWL, Xie J, Krause TB, Vernet A, Pezone M, Xiao R, Liu T, Wang W, Kaplan HJ, Gao G, Dick AD, Mingozzi F, McCall MA, Cepko CL, Church GM. Engineering adeno-associated viral vectors to evade innate immune and inflammatory responses. Sci Transl Med 2021; 13:13/580/eabd3438. [PMID: 33568518 DOI: 10.1126/scitranslmed.abd3438] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Nucleic acids are used in many therapeutic modalities, including gene therapy, but their ability to trigger host immune responses in vivo can lead to decreased safety and efficacy. In the case of adeno-associated viral (AAV) vectors, studies have shown that the genome of the vector activates Toll-like receptor 9 (TLR9), a pattern recognition receptor that senses foreign DNA. Here, we engineered AAV vectors to be intrinsically less immunogenic by incorporating short DNA oligonucleotides that antagonize TLR9 activation directly into the vector genome. The engineered vectors elicited markedly reduced innate immune and T cell responses and enhanced gene expression in clinically relevant mouse and pig models across different tissues, including liver, muscle, and retina. Subretinal administration of higher-dose AAV in pigs resulted in photoreceptor pathology with microglia and T cell infiltration. These adverse findings were avoided in the contralateral eyes of the same animals that were injected with the engineered vectors. However, intravitreal injection of higher-dose AAV in macaques, a more immunogenic route of administration, showed that the engineered vector delayed but did not prevent clinical uveitis, suggesting that other immune factors in addition to TLR9 may contribute to intraocular inflammation in this model. Our results demonstrate that linking specific immunomodulatory noncoding sequences to much longer therapeutic nucleic acids can "cloak" the vector from inducing unwanted immune responses in multiple, but not all, models. This "coupled immunomodulation" strategy may widen the therapeutic window for AAV therapies as well as other DNA-based gene transfer methods.
Collapse
Affiliation(s)
- Ying Kai Chan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA. .,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Ally Therapeutics, Cambridge, MA 02139, USA
| | - Sean K Wang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Colin J Chu
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Alexander J Letizia
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Helena Costa Verdera
- Inserm U974, Sorbonne Universite, Paris 75651, France.,Inserm S951 and Genethon, Evry 91000, France
| | - Jessica J Chiang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Ally Therapeutics, Cambridge, MA 02139, USA
| | - Meher Sethi
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Ally Therapeutics, Cambridge, MA 02139, USA
| | - May K Wang
- Ally Therapeutics, Cambridge, MA 02139, USA
| | | | - Yingleong Chan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Elaine T Lim
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda R Graveline
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Melinda Sanchez
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ryan F Boyd
- Ophthalmology, Charles River Laboratories, Mattawan, MI 49071, USA
| | | | | | - Jared M Slain
- Statistics and Data Science, Charles River Laboratories, Mattawan, MI 49071, USA
| | - Priscilla J Alphonse
- Inserm U974, Sorbonne Universite, Paris 75651, France.,Inserm S951 and Genethon, Evry 91000, France
| | - Yunlu Xue
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lindsey R Robinson-McCarthy
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jenny M Tam
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Maha H Jabbar
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Bhubanananda Sahu
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Janelle F Adeniran
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Manish Muhuri
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01655, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01655, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01655, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Tyler B Krause
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andyna Vernet
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Matthew Pezone
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ru Xiao
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA 02115, USA.,Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Tina Liu
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Ally Therapeutics, Cambridge, MA 02139, USA
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA.,Ocular Sciences LLC, St. Louis, MO 63112, USA.,Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01655, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol BS8 1TD, UK.,Institute of Ophthalmology and the National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital and University College London, London EC1V 9EL, UK
| | - Federico Mingozzi
- Inserm U974, Sorbonne Universite, Paris 75651, France.,Inserm S951 and Genethon, Evry 91000, France
| | - Maureen A McCall
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA.,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | - Constance L Cepko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - George M Church
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA. .,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
25
|
Hokello J, Sharma AL, Tyagi M. An Update on the HIV DNA Vaccine Strategy. Vaccines (Basel) 2021; 9:vaccines9060605. [PMID: 34198789 PMCID: PMC8226902 DOI: 10.3390/vaccines9060605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 01/24/2023] Open
Abstract
In 2020, the global prevalence of human immunodeficiency virus (HIV) infection was estimated to be 38 million, and a total of 690,000 people died from acquired immunodeficiency syndrome (AIDS)–related complications. Notably, around 12.6 million people living with HIIV/AIDS did not have access to life-saving treatment. The advent of the highly active antiretroviral therapy (HAART) in the mid-1990s remarkably enhanced the life expectancy of people living with HIV/AIDS as a result of improved immune functions. However, HAART has several drawbacks, especially when it is not used properly, including a high risk for the development of drug resistance, as well as undesirable side effects such as lipodystrophy and endocrine dysfunctions, which result in HAART intolerability. HAART is also not curative. Furthermore, new HIV infections continue to occur globally at a high rate, with an estimated 1.7 million new infections occurring in 2018 alone. Therefore, there is still an urgent need for an affordable, effective, and readily available preventive vaccine against HIV/AIDS. Despite this urgent need, however, progress toward an effective HIV vaccine has been modest over the last four decades. Reasons for this slow progress are mainly associated with the unique aspects of HIV itself and its ability to rapidly mutate, targeting immune cells and escape host immune responses. Several approaches to an HIV vaccine have been undertaken. However, this review will mainly discuss progress made, including the pre-clinical and clinical trials involving vector-based HIV DNA vaccines and the use of integrating lentiviral vectors in HIV vaccine development. We concluded by recommending particularly the use of integrase-defective lentiviral vectors, owing to their safety profiles, as one of the promising vectors in HIV DNA vaccine strategies both for prophylactic and therapeutic HIV vaccines.
Collapse
Affiliation(s)
- Joseph Hokello
- Department of Microbiology and Immunology, Faculty of Biomedical Sciences, Kampala International University-Western Campus, P.O. Box 71, Bushenyi 0256, Uganda;
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA;
- Correspondence:
| |
Collapse
|
26
|
Kulkarni JA, Witzigmann D, Thomson SB, Chen S, Leavitt BR, Cullis PR, van der Meel R. The current landscape of nucleic acid therapeutics. NATURE NANOTECHNOLOGY 2021; 16:630-643. [PMID: 34059811 DOI: 10.1038/s41565-021-00898-0] [Citation(s) in RCA: 686] [Impact Index Per Article: 171.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 03/11/2021] [Indexed: 05/20/2023]
Abstract
The increasing number of approved nucleic acid therapeutics demonstrates the potential to treat diseases by targeting their genetic blueprints in vivo. Conventional treatments generally induce therapeutic effects that are transient because they target proteins rather than underlying causes. In contrast, nucleic acid therapeutics can achieve long-lasting or even curative effects via gene inhibition, addition, replacement or editing. Their clinical translation, however, depends on delivery technologies that improve stability, facilitate internalization and increase target affinity. Here, we review four platform technologies that have enabled the clinical translation of nucleic acid therapeutics: antisense oligonucleotides, ligand-modified small interfering RNA conjugates, lipid nanoparticles and adeno-associated virus vectors. For each platform, we discuss the current state-of-the-art clinical approaches, explain the rationale behind its development, highlight technological aspects that facilitated clinical translation and provide an example of a clinically relevant genetic drug. In addition, we discuss how these technologies enable the development of cutting-edge genetic drugs, such as tissue-specific nucleic acid bioconjugates, messenger RNA and gene-editing therapeutics.
Collapse
Affiliation(s)
- Jayesh A Kulkarni
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- NanoMedicines Innovation Network, Vancouver, British Columbia, Canada
- NanoVation Therapeutics, Vancouver, British Columbia, Canada
| | - Dominik Witzigmann
- NanoMedicines Innovation Network, Vancouver, British Columbia, Canada
- NanoVation Therapeutics, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah B Thomson
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sam Chen
- Integrated Nanotherapeutics, Vancouver, British Columbia, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pieter R Cullis
- NanoMedicines Innovation Network, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
27
|
Schaly S, Ghebretatios M, Prakash S. Baculoviruses in Gene Therapy and Personalized Medicine. Biologics 2021; 15:115-132. [PMID: 33953541 PMCID: PMC8088983 DOI: 10.2147/btt.s292692] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/22/2021] [Indexed: 12/18/2022]
Abstract
This review will outline the role of baculoviruses in gene therapy and future potential in personalized medicine. Baculoviruses are a safe, non-toxic, non-integrative vector with a large cloning capacity. Baculoviruses are also a highly adaptable, low-cost vector with a broad tissue and host tropism due to their ability to infect both quiescent and proliferating cells. Moreover, they only replicate in insect cells, not mammalian cells, improving their biosafety. The beneficial properties of baculoviruses make it an attractive option for gene delivery. The use of baculoviruses in gene therapy has advanced significantly, contributing to vaccine production, anti-cancer therapies and regenerative medicine. Currently, baculoviruses are primarily used for recombinant protein production and vaccines. This review will also discuss methods to optimize baculoviruses protein production and mammalian cell entry, limitations and potential for gene therapy and personalized medicine. Limitations such as transient gene expression, complement activation and virus fragility are discussed in details as they can be overcome through further genetic modifications and other methods. This review concludes that baculoviruses are an excllent candidate for gene therapy, personalized medicine and other biotherapeutic applications.
Collapse
Affiliation(s)
- Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Merry Ghebretatios
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| |
Collapse
|
28
|
Chu WS, Ng J. Immunomodulation in Administration of rAAV: Preclinical and Clinical Adjuvant Pharmacotherapies. Front Immunol 2021; 12:658038. [PMID: 33868303 PMCID: PMC8049138 DOI: 10.3389/fimmu.2021.658038] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 12/26/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) has attracted a significant research focus for delivering genetic therapies to target cells. This non-enveloped virus has been trialed in many clinical-stage therapeutic strategies but important obstacle in clinical translation is the activation of both innate and adaptive immune response to the protein capsid, vector genome and transgene product. In addition, the normal population has pre-existing neutralizing antibodies against wild-type AAV, and cross-reactivity is observed between different rAAV serotypes. While extent of response can be influenced by dosing, administration route and target organ(s), these pose concerns over reduction or complete loss of efficacy, options for re-administration, and other unwanted immunological sequalae such as local tissue damage. To reduce said immunological risks, patients are excluded if they harbor anti-AAV antibodies or have received gene therapy previously. Studies have incorporated immunomodulating or suppressive regimens to block cellular and humoral immune responses such as systemic corticosteroids pre- and post-administration of Luxturna® and Zolgensma®, the two rAAV products with licensed regulatory approval in Europe and the United States. In this review, we will introduce the current pharmacological strategies to immunosuppress or immunomodulate the host immune response to rAAV gene therapy.
Collapse
Affiliation(s)
- Wing Sum Chu
- Pharmacy Department, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Joanne Ng
- Gene Transfer Technology Group, Department of Maternal and Fetal Medicine, EGA Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
29
|
Brayshaw LL, Martinez-Fleites C, Athanasopoulos T, Southgate T, Jespers L, Herring C. The role of small molecules in cell and gene therapy. RSC Med Chem 2021; 12:330-352. [PMID: 34046619 PMCID: PMC8130622 DOI: 10.1039/d0md00221f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/25/2020] [Indexed: 01/22/2023] Open
Abstract
Cell and gene therapies have achieved impressive results in the treatment of rare genetic diseases using gene corrected stem cells and haematological cancers using chimeric antigen receptor T cells. However, these two fields face significant challenges such as demonstrating long-term efficacy and safety, and achieving cost-effective, scalable manufacturing processes. The use of small molecules is a key approach to overcome these barriers and can benefit cell and gene therapies at multiple stages of their lifecycle. For example, small molecules can be used to optimise viral vector production during manufacturing or used in the clinic to enhance the resistance of T cell therapies to the immunosuppressive tumour microenvironment. Here, we review current uses of small molecules in cell and gene therapy and highlight opportunities for medicinal chemists to further consolidate the success of cell and gene therapies.
Collapse
Affiliation(s)
- Lewis L Brayshaw
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Carlos Martinez-Fleites
- Protein Degradation Group, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Takis Athanasopoulos
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Thomas Southgate
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Laurent Jespers
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Christopher Herring
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| |
Collapse
|
30
|
Piguet F, de Saint Denis T, Audouard E, Beccaria K, André A, Wurtz G, Schatz R, Alves S, Sevin C, Zerah M, Cartier N. The Challenge of Gene Therapy for Neurological Diseases: Strategies and Tools to Achieve Efficient Delivery to the Central Nervous System. Hum Gene Ther 2021; 32:349-374. [PMID: 33167739 DOI: 10.1089/hum.2020.105] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
For more than 10 years, gene therapy for neurological diseases has experienced intensive research growth and more recently therapeutic interventions for multiple indications. Beneficial results in several phase 1/2 clinical studies, together with improved vector technology have advanced gene therapy for the central nervous system (CNS) in a new era of development. Although most initial strategies have focused on orphan genetic diseases, such as lysosomal storage diseases, more complex and widespread conditions like Alzheimer's disease, Parkinson's disease, epilepsy, or chronic pain are increasingly targeted for gene therapy. Increasing numbers of applications and patients to be treated will require improvement and simplification of gene therapy protocols to make them accessible to the largest number of affected people. Although vectors and manufacturing are a major field of academic research and industrial development, there is a growing need to improve, standardize, and simplify delivery methods. Delivery is the major issue for CNS therapies in general, and particularly for gene therapy. The blood-brain barrier restricts the passage of vectors; strategies to bypass this obstacle are a central focus of research. In this study, we present the different ways that can be used to deliver gene therapy products to the CNS. We focus on results obtained in large animals that have allowed the transfer of protocols to human patients and have resulted in the generation of clinical data. We discuss the different routes of administration, their advantages, and their limitations. We describe techniques, equipment, and protocols and how they should be selected for safe delivery and improved efficiency for the next generation of gene therapy trials for CNS diseases.
Collapse
Affiliation(s)
- Françoise Piguet
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France
| | - Timothée de Saint Denis
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France.,APHP, Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, APHP Centre. Université de Paris, Paris, France
| | - Emilie Audouard
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France
| | - Kevin Beccaria
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France.,APHP, Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, APHP Centre. Université de Paris, Paris, France
| | - Arthur André
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France.,APHP, Department of Neurosurgery, Hôpitaux Universitaires La Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Guillaume Wurtz
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France
| | - Raphael Schatz
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France
| | - Sandro Alves
- BrainVectis-Askbio France, iPeps Paris Brain Institute, Paris, France
| | - Caroline Sevin
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France.,BrainVectis-Askbio France, iPeps Paris Brain Institute, Paris, France.,APHP, Department of Neurology, Hopital le Kremlin Bicetre, Paris, France
| | - Michel Zerah
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France.,APHP, Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, APHP Centre. Université de Paris, Paris, France
| | - Nathalie Cartier
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
31
|
Lennon MJ, Rigney G, Raymont V, Sachdev P. Genetic Therapies for Alzheimer's Disease: A Scoping Review. J Alzheimers Dis 2021; 84:491-504. [PMID: 34569966 DOI: 10.3233/jad-215145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Effective, disease modifying therapies for Alzheimer's disease (AD) remain a quandary, following a panoply of expensive failures in human clinical trials. Given the stagnation in therapeutics, alternative approaches are needed. Recent successes of genetic therapies in other neurodegenerative diseases may highlight the way forward. This scoping review explores suggested targets of genetic therapy in AD, with a focus on vector-based approaches in pre-clinical and clinical trials. Putative targets of genetic therapies tested in pre-clinical trials include amyloid pathway intermediates and enzymes modulation, tau protein downregulation, APOE4 downregulation and APOE2 upregulation, neurotrophin expression (nerve growth factor (NGF) and brain-derived neurotrophic factor), and inflammatory cytokine alteration, among several other approaches. There have been three completed human clinical trials for genetic therapy in AD patients, all of which upregulated NGF in AD patients, showing some mixed evidence of benefit. Several impediments remain to be surpassed before genetic therapies can be successfully applied to AD, including the challenge of delivering monogenic genetic therapies for complex polygenic disorders, risks in the dominant delivery method (intracranial injection), stability of genetic therapies in vivo, poor translatability of pre-clinical AD models, and the expense of genetic therapy production. Genetic therapies represent an exciting opportunity within the world of AD therapeutics, but clinical applications likely remain a long term, rather than short term, possibility.
Collapse
Affiliation(s)
- Matthew J Lennon
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Grant Rigney
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Perminder Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| |
Collapse
|
32
|
ACE2: from protection of liver disease to propagation of COVID-19. Clin Sci (Lond) 2020; 134:3137-3158. [PMID: 33284956 DOI: 10.1042/cs20201268] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 01/08/2023]
Abstract
Twenty years ago, the discovery of angiotensin-converting enzyme 2 (ACE2) was an important breakthrough dramatically enhancing our understanding of the renin-angiotensin system (RAS). The classical RAS is driven by its key enzyme ACE and is pivotal in the regulation of blood pressure and fluid homeostasis. More recently, it has been recognised that the protective RAS regulated by ACE2 counterbalances many of the deleterious effects of the classical RAS. Studies in murine models demonstrated that manipulating the protective RAS can dramatically alter many diseases including liver disease. Liver-specific overexpression of ACE2 in mice with liver fibrosis has proved to be highly effective in antagonising liver injury and fibrosis progression. Importantly, despite its highly protective role in disease pathogenesis, ACE2 is hijacked by SARS-CoV-2 as a cellular receptor to gain entry to alveolar epithelial cells, causing COVID-19, a severe respiratory disease in humans. COVID-19 is frequently life-threatening especially in elderly or people with other medical conditions. As an unprecedented number of COVID-19 patients have been affected globally, there is an urgent need to discover novel therapeutics targeting the interaction between the SARS-CoV-2 spike protein and ACE2. Understanding the role of ACE2 in physiology, pathobiology and as a cellular receptor for SARS-CoV-2 infection provides insight into potential new therapeutic strategies aiming to prevent SARS-CoV-2 infection related tissue injury. This review outlines the role of the RAS with a strong focus on ACE2-driven protective RAS in liver disease and provides therapeutic approaches to develop strategies to prevent SARS-CoV-2 infection in humans.
Collapse
|
33
|
O’Flaherty R, Bergin A, Flampouri E, Mota LM, Obaidi I, Quigley A, Xie Y, Butler M. Mammalian cell culture for production of recombinant proteins: A review of the critical steps in their biomanufacturing. Biotechnol Adv 2020; 43:107552. [DOI: 10.1016/j.biotechadv.2020.107552] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/28/2022]
|
34
|
Fernandez-Garcia L, Pacios O, González-Bardanca M, Blasco L, Bleriot I, Ambroa A, López M, Bou G, Tomás M. Viral Related Tools against SARS-CoV-2. Viruses 2020; 12:E1172. [PMID: 33081350 PMCID: PMC7589879 DOI: 10.3390/v12101172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
At the end of 2019, a new disease appeared and spread all over the world, the COVID-19, produced by the coronavirus SARS-CoV-2. As a consequence of this worldwide health crisis, the scientific community began to redirect their knowledge and resources to fight against it. Here we summarize the recent research on viruses employed as therapy and diagnostic of COVID-19: (i) viral-vector vaccines both in clinical trials and pre-clinical phases; (ii) the use of bacteriophages to find antibodies specific to this virus and some studies of how to use the bacteriophages themselves as a treatment against viral diseases; and finally, (iii) the use of CRISPR-Cas technology both to obtain a fast precise diagnose of the patient and also the possible use of this technology as a cure.
Collapse
Affiliation(s)
- Laura Fernandez-Garcia
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Olga Pacios
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Mónica González-Bardanca
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Lucia Blasco
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Inés Bleriot
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - Antón Ambroa
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - María López
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
| | - German Bou
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
- Spanish Network for the Research in Infectious Diseases (REIPI), 41071 Sevilla, Spain
| | - Maria Tomás
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; (L.F.-G.); (O.P.); (M.G.-B.); (L.B.); (I.B.); (A.A.); (M.L.); (G.B.)
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain
- Spanish Network for the Research in Infectious Diseases (REIPI), 41071 Sevilla, Spain
| |
Collapse
|
35
|
Abstract
Mosaicism refers to the occurrence of two or more genomes in an individual derived from a single zygote. Germline mosaicism is a mutation that is limited to the gonads and can be transmitted to offspring. Somatic mosaicism is a postzygotic mutation that occurs in the soma, and it may occur at any developmental stage or in adult tissues. Mosaic variation may be classified in six ways: (a) germline or somatic origin, (b) class of DNA mutation (ranging in scale from single base pairs to multiple chromosomes), (c) developmental context, (d) body location(s), (e) functional consequence (including deleterious, neutral, or advantageous), and (f) additional sources of mosaicism, including mitochondrial heteroplasmy, exogenous DNA sources such as vectors, and epigenetic changes such as imprinting and X-chromosome inactivation. Technological advances, including single-cell and other next-generation sequencing, have facilitated improved sensitivity and specificity to detect mosaicism in a variety of biological contexts.
Collapse
Affiliation(s)
- Jeremy Thorpe
- Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland 21205, USA; , .,Program in Biochemistry, Cellular, and Molecular Biology, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA;
| | - Ikeoluwa A Osei-Owusu
- Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland 21205, USA; , .,Program in Human Genetics, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA;
| | | | - Rossella Tupler
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.,Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Jonathan Pevsner
- Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland 21205, USA; , .,Program in Biochemistry, Cellular, and Molecular Biology, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA; .,Program in Human Genetics, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA; .,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
36
|
Ille AM, Kishel E, Bodea R, Ille A, Lamont H, Amico-Ruvio S. Protein LY6E as a candidate for mediating transport of adeno-associated virus across the human blood-brain barrier. J Neurovirol 2020; 26:769-778. [PMID: 32839948 DOI: 10.1007/s13365-020-00890-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 07/14/2020] [Accepted: 08/04/2020] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) is a major obstacle for the treatment of central nervous system (CNS) disorders. Significant progress has been made in developing adeno-associated virus (AAV) variants with increased ability to cross the BBB in mice. However, these variants are not efficacious in non-human primates. Herein, we employed various bioinformatic techniques to identify lymphocyte antigen-6E (LY6E) as a candidate for mediating transport of AAV across the human BBB based on the previously determined mechanism of transport in mice. Our results provide insight into future discovery and optimization of AAV variants for CNS gene delivery in humans.
Collapse
Affiliation(s)
- Alexander M Ille
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ, 07103, USA.,STEM Biomedical, Kitchener, ON, N2M 3B9, Canada
| | - Eric Kishel
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Raoul Bodea
- STEM Biomedical, Kitchener, ON, N2M 3B9, Canada
| | - Anetta Ille
- STEM Biomedical, Kitchener, ON, N2M 3B9, Canada
| | - Hannah Lamont
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ, 07103, USA
| | | |
Collapse
|
37
|
Meier AF, Fraefel C, Seyffert M. The Interplay between Adeno-Associated Virus and its Helper Viruses. Viruses 2020; 12:E662. [PMID: 32575422 PMCID: PMC7354565 DOI: 10.3390/v12060662] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
The adeno-associated virus (AAV) is a small, nonpathogenic parvovirus, which depends on helper factors to replicate. Those helper factors can be provided by coinfecting helper viruses such as adenoviruses, herpesviruses, or papillomaviruses. We review the basic biology of AAV and its most-studied helper viruses, adenovirus type 5 (AdV5) and herpes simplex virus type 1 (HSV-1). We further outline the direct and indirect interactions of AAV with those and additional helper viruses.
Collapse
Affiliation(s)
| | | | - Michael Seyffert
- Institute of Virology, University of Zurich, CH-8057 Zurich, Switzerland; (A.F.M.); (C.F.)
| |
Collapse
|
38
|
Costa Verdera H, Kuranda K, Mingozzi F. AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer. Mol Ther 2020; 28:723-746. [PMID: 31972133 PMCID: PMC7054726 DOI: 10.1016/j.ymthe.2019.12.010] [Citation(s) in RCA: 405] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022] Open
Abstract
Gene therapy with adeno-associated virus (AAV) vectors has demonstrated safety and long-term efficacy in a number of trials across target organs, including eye, liver, skeletal muscle, and the central nervous system. Since the initial evidence that AAV vectors can elicit capsid T cell responses in humans, which can affect the duration of transgene expression, much progress has been made in understanding and modulating AAV vector immunogenicity. It is now well established that exposure to wild-type AAV results in priming of the immune system against the virus, with development of both humoral and T cell immunity. Aside from the neutralizing effect of antibodies, the impact of pre-existing immunity to AAV on gene transfer is still poorly understood. Herein, we review data emerging from clinical trials across a broad range of gene therapy applications. Common features of immune responses to AAV can be found, suggesting, for example, that vector immunogenicity is dose-dependent, and that innate immunity plays an important role in the outcome of gene transfer. A range of host-specific factors are also likely to be important, and a comprehensive understanding of the mechanisms driving AAV vector immunogenicity in humans will be key to unlocking the full potential of in vivo gene therapy.
Collapse
Affiliation(s)
- Helena Costa Verdera
- Genethon and INSERM U951, 91000 Evry, France; Sorbonne Université and INSERM U974, 75013 Paris, France
| | | | - Federico Mingozzi
- Genethon and INSERM U951, 91000 Evry, France; Spark Therapeutics, Philadelphia, PA 19104, USA.
| |
Collapse
|
39
|
Abstract
Baculoviruses are arthropod-specific, enveloped viruses with circular, supercoiled double-stranded deoxyribonucleic acid genomes. While many viruses are studied to seek solutions for their adverse impact on human, veterinary, and plant health, the study of baculoviruses was stimulated initially by their potential utility to control insect pests. Later, the utility of baculovirus as gene expression vectors was evidenced leading to numerous applications. Several strategies are employed to obtain recombinant viruses that express large quantities of heterologous proteins. A major step forward was the development of bacmid technology (the construction of bacterial artificial chromosomes containing the genome of the baculovirus) which allows the manipulation of the baculovirus genome in bacteria. With this technology, foreign genes can be introduced into the bacmid by homologous and site-directed recombination or by transposition. Baculoviruses have been used to explore fundamental questions in molecular biology such as the nature of programmed cell-death. Moreover, the ability of baculoviruses to transduce mammalian cells led to the consideration of their use as gene-therapy and vaccine vectors. Strategies for genetic engineering of baculoviruses have been developed to meet the requirements of new application areas. Display of foreign proteins on the surface of virions or in nucleocapsid structures, the assembly of expressed proteins to form virus-like particles or protein complexes have been explored and validated as vaccines. The aim of this chapter is to update the areas of application of the baculoviruses in protein expression, alternative vaccine designs and gene therapy of infectious diseases and genetic disorders. Finally, we review the baculovirus-derived products on the market and in the pipeline for biomedical and veterinary use.
Collapse
|
40
|
Xiang Z, Kurupati RK, Li Y, Kuranda K, Zhou X, Mingozzi F, High KA, Ertl HCJ. The Effect of CpG Sequences on Capsid-Specific CD8 + T Cell Responses to AAV Vector Gene Transfer. Mol Ther 2019; 28:771-783. [PMID: 31839483 DOI: 10.1016/j.ymthe.2019.11.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022] Open
Abstract
Transfer of genes by adeno-associated virus (AAV) vectors is benefiting patients with particular genetic defects. Challenges remain by rejection of AAV-transduced cells, which may be caused by CD8+ T lymphocytes directed to AAV capsid antigens. Reducing the number of CpG motifs from the genome of AAV vectors reduces expansion of naive T cells directed against an epitope within the capsid. In contrast, AAV capsid-specific memory CD8+ T cells respond more vigorously to AAV vectors lacking CpG motifs than to those with CpG motifs presumably reflecting dampening of T cell expansion by cytokines from the innate immune system. Depending on the purification method, AAV vector preparations can contain substantial amounts of empty AAV particles that failed to package the genome. Others have used empty particles as decoys to AAV-neutralizing antibodies. We tested if empty AAV vectors given alone or mixed with genome-containing AAV vectors induce proliferation of naive or memory CD8+ T cells directed to an antigen within an AAV capsid. Naive CD8+ T cells failed to respond to empty AAV vectors, which in contrast induced expansion of AAV-specific memory CD8+ T cells.
Collapse
Affiliation(s)
| | | | - Yan Li
- Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
41
|
Shahryari A, Saghaeian Jazi M, Mohammadi S, Razavi Nikoo H, Nazari Z, Hosseini ES, Burtscher I, Mowla SJ, Lickert H. Development and Clinical Translation of Approved Gene Therapy Products for Genetic Disorders. Front Genet 2019; 10:868. [PMID: 31608113 PMCID: PMC6773888 DOI: 10.3389/fgene.2019.00868] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 08/20/2019] [Indexed: 02/05/2023] Open
Abstract
The field of gene therapy is striving more than ever to define a path to the clinic and the market. Twenty gene therapy products have already been approved and over two thousand human gene therapy clinical trials have been reported worldwide. These advances raise great hope to treat devastating rare and inherited diseases as well as incurable illnesses. Understanding of the precise pathomechanisms of diseases as well as the development of efficient and specific gene targeting and delivery tools are revolutionizing the global market. Currently, human cancers and monogenic disorders are indications number one. The elevated prevalence of genetic disorders and cancers, clear gene manipulation guidelines and increasing financial support for gene therapy in clinical trials are major trends. Gene therapy is presently starting to become commercially profitable as a number of gene and cell-based gene therapy products have entered the market and the clinic. This article reviews the history and development of twenty approved human gene and cell-based gene therapy products that have been approved up-to-now in clinic and markets of mainly North America, Europe and Asia.
Collapse
Affiliation(s)
- Alireza Shahryari
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marie Saghaeian Jazi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saeed Mohammadi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hadi Razavi Nikoo
- Infectious Disease Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Nazari
- Department of Biology, School of Basic Sciences, Golestan University, Gorgan, Iran
| | - Elaheh Sadat Hosseini
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
42
|
Kassner U, Hollstein T, Grenkowitz T, Wühle-Demuth M, Salewsky B, Demuth I, Dippel M, Steinhagen-Thiessen E. Gene Therapy in Lipoprotein Lipase Deficiency: Case Report on the First Patient Treated with Alipogene Tiparvovec Under Daily Practice Conditions. Hum Gene Ther 2019; 29:520-527. [PMID: 29641318 DOI: 10.1089/hum.2018.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One-year results are reported of the first lipoprotein lipase deficiency (LPLD) patient treated with alipogene tiparvovec, which is indicated for the treatment of patients with genetically confirmed LPLD suffering from acute and recurrent pancreatitis attacks (PAs) despite dietary restrictions and expressing >5% of lipoprotein lipase (LPL) mass compared to a healthy control. During clinical development, alipogene tiparvovec has shown improvement of chylomicron metabolism and reduction of pancreatitis incidence up to 5.8 years post treatment. A 43-year-old female presented with severe hypertriglyceridemia (median triglyceride [TG] value of 3,465 mg/dL) and a history of 37 PAs within the last 25 years, despite treatment with fibrates, omega 3 fatty acids, and-since 2012-twice-weekly lipid apheresis. LPLD was confirmed by identification of two different pathogenic variants in the LPL gene located on separate alleles and therefore constituting a compound heterozygous state. With a detectable LPL mass level of 55.1 ng/mL, the patient was eligible for alipogene tiparvovec treatment, and in September 2015, she receved 40 injections (1 × 1012 genome copies/kg) in the muscles of her upper legs under epidural anesthesia and immunosuppressive therapy. Alipogene tiparvovec was well tolerated: no injection site or systemic reactions were observed. Median TG values decreased by 52%, dropping to 997 mg/dL at month 3 and increasing thereafter. Within the first 18 months post treatment, the patient discontinued plasmapheresis and had no abdominal pain or PAs. In March 2017, the patient suffered from a PA due to diet violation. Within the first 12 months post treatment, overall quality of life improved, and no change in humoral or cellular immune response against LPL or AAV-1 was observed. In conclusion, alipogene tiparvovec was well tolerated, with a satisfactory response to treatment. Long-term effects on the recurrence of pancreatitis continue to be monitored.
Collapse
Affiliation(s)
- Ursula Kassner
- 1 Lipid Clinic at the Interdisciplinary Metabolism Center, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Tim Hollstein
- 1 Lipid Clinic at the Interdisciplinary Metabolism Center, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Thomas Grenkowitz
- 1 Lipid Clinic at the Interdisciplinary Metabolism Center, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Marion Wühle-Demuth
- 1 Lipid Clinic at the Interdisciplinary Metabolism Center, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Bastian Salewsky
- 1 Lipid Clinic at the Interdisciplinary Metabolism Center, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Ilja Demuth
- 1 Lipid Clinic at the Interdisciplinary Metabolism Center, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | | | | |
Collapse
|
43
|
Sapre AA, Yong G, Yeh YS, Ruff LE, Plaut JS, Sayar Z, Agarwal A, Martinez J, Nguyen TN, Liu YT, Messmer BT, Esener SC, Fischer JM. Silica cloaking of adenovirus enhances gene delivery while reducing immunogenicity. J Control Release 2019; 297:48-59. [DOI: 10.1016/j.jconrel.2019.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
|
44
|
Helper-dependent adenovirus-mediated gene transfer of a secreted LDL receptor/transferrin chimeric protein reduces aortic atherosclerosis in LDL receptor-deficient mice. Gene Ther 2019; 26:121-130. [PMID: 30700805 DOI: 10.1038/s41434-019-0061-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/02/2018] [Accepted: 11/23/2018] [Indexed: 01/05/2023]
Abstract
Familial hypercholesterolemia (FH) is a genetic hyperlipidemia characterized by elevated concentrations of plasma LDL cholesterol. Statins are not always effective for the treatment of FH patients; unresponsive patients have poor prognosis and rely on LDL apheresis. In the past, we developed safe and effective gene therapy strategies for the expression of anti-atherogenic proteins using PEGylated helper-dependent adenoviral (HD-Ad) vectors. We recently developed a HD-Ad vector for the expression of the soluble form of the extracellular portion of the human LDL receptor (LDLR) fused with a rabbit transferrin dimer (LDLR-TF). We evaluated the efficacy of the LDLR-TF chimeric protein in CHOLDLA7, a cell line lacking LDLR expression, restoring the ability to uptake LDL. Subsequently, we administered intravenously 1 × 10E13 vp/kg of this vector in LDLR-deficient mice and observed amelioration of lipid profile and reduction of aortic atherosclerosis. Finally, we studied LDL distribution after HD-Ad vector-mediated expression of LDLR-TF in LDLR-deficient mice and found LDL accumulation in liver, and in heart and intestine. These results support the possibility of lowering LDL-C levels and reducing aortic atherosclerosis using a secreted therapeutic transgene; the present strategy potentially can be modified and adapted to non-systemic gene transfer with expression of the secreted chimeric protein in muscle or other tissues. Intramuscular or local administration strategies could improve the safety profile of this strategy and facilitate applicability.
Collapse
|
45
|
Rajapaksha IG, Angus PW, Herath CB. Current therapies and novel approaches for biliary diseases. World J Gastrointest Pathophysiol 2019; 10:1-10. [PMID: 30622832 PMCID: PMC6318481 DOI: 10.4291/wjgp.v10.i1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/30/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic liver diseases that inevitably lead to hepatic fibrosis, cirrhosis and/or hepatocellular carcinoma have become a major cause of illness and death worldwide. Among them, cholangiopathies or cholestatic liver diseases comprise a large group of conditions in which injury is primarily focused on the biliary system. These include congenital diseases (such as biliary atresia and cystic fibrosis), acquired diseases (such as primary sclerosing cholangitis and primary biliary cirrhosis), and those that arise from secondary damage to the biliary tree from obstruction, cholangitis or ischaemia. These conditions are associated with a specific pattern of chronic liver injury centered on damaged bile ducts that drive the development of peribiliary fibrosis and, ultimately, biliary cirrhosis and liver failure. For most, there is no established medical therapy and, hence, these diseases remain one of the most important indications for liver transplantation. As a result, there is a major need to develop new therapies that can prevent the development of chronic biliary injury and fibrosis. This mini-review briefly discusses the pathophysiology of liver fibrosis and its progression to cirrhosis. We make a special emphasis on biliary fibrosis and current therapeutic options, such as angiotensin converting enzyme-2 (known as ACE2) over-expression in the diseased liver as a novel potential therapy to treat this condition.
Collapse
Affiliation(s)
- Indu G Rajapaksha
- Department of Medicine, The University of Melbourne, Melbourne, VIC 3084, Australia
| | - Peter W Angus
- Department of Gastroenterology and Hepatology, Austin Health, Melbourne, VIC 3084, Australia
| | - Chandana B Herath
- Department of Medicine, The University of Melbourne, Melbourne, VIC 3084, Australia
| |
Collapse
|
46
|
Falkenhagen A, Joshi S. Genetic Strategies for HIV Treatment and Prevention. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:514-533. [PMID: 30388625 PMCID: PMC6205348 DOI: 10.1016/j.omtn.2018.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 08/28/2018] [Accepted: 09/02/2018] [Indexed: 01/02/2023]
Abstract
Conventional HIV gene therapy approaches are based on engineering HIV target cells that are non-permissive to viral replication. However, expansion of gene-modified HIV target cells has been limited in patients. Alternative genetic strategies focus on generating gene-modified producer cells that secrete antiviral proteins (AVPs). The secreted AVPs interfere with HIV entry, and, therefore, they extend the protection against infection to unmodified HIV target cells. Since any cell type can potentially secrete AVPs, hematopoietic and non-hematopoietic cell lineages can function as producer cells. Secretion of AVPs from non-hematopoietic cells opens the possibility of using a genetic approach for HIV prevention. Another strategy aims at modifying cytotoxic T cells to selectively target and eliminate infected cells. This review provides an overview of the different genetic approaches for HIV treatment and prevention.
Collapse
Affiliation(s)
- Alexander Falkenhagen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sadhna Joshi
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
47
|
Vitale F, Giliberto L, Ruiz S, Steslow K, Marambaud P, d'Abramo C. Anti-tau conformational scFv MC1 antibody efficiently reduces pathological tau species in adult JNPL3 mice. Acta Neuropathol Commun 2018; 6:82. [PMID: 30134961 PMCID: PMC6103963 DOI: 10.1186/s40478-018-0585-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/13/2018] [Indexed: 01/07/2023] Open
Abstract
Tau, the main component of the neurofibrillary tangles (NFTs), is an attractive target for immunotherapy in Alzheimer's disease (AD) and other tauopathies. MC1/Alz50 are currently the only antibodies targeting a disease-specific conformational modification of tau. Passive immunization experiments using intra-peritoneal injections have previously shown that MC1 is effective at reducing tau pathology in the forebrain of tau transgenic JNPL3 mice. In order to reach a long-term and sustained brain delivery, and avoid multiple injection protocols, we tested the efficacy of the single-chain variable fragment of MC1 (scFv-MC1) to reduce tau pathology in the same animal model, with focus on brain regional differences. ScFv-MC1 was cloned into an AAV delivery system and was directly injected into the hippocampus of adult JNPL3 mice. Specific promoters were employed to selectively target neurons or astrocytes for scFv-MC1 expression. ScFv-MC1 was able to decrease soluble, oligomeric and insoluble tau species, in our model. The effect was evident in the cortex, hippocampus and hindbrain. The astrocytic machinery appeared more efficient than the neuronal, with significant reduction of pathology in areas distant from the site of injection. To our knowledge, this is the first evidence that an anti-tau conformational scFv antibody, delivered directly into the mouse adult brain, is able to reduce pathological tau, providing further insight into the nature of immunotherapy strategies.
Collapse
Affiliation(s)
- Francesca Vitale
- Litwin-Zucker Center for Research in Alzheimer's Disease, The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Luca Giliberto
- Litwin-Zucker Center for Research in Alzheimer's Disease, The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Santiago Ruiz
- Litwin-Zucker Center for Research in Alzheimer's Disease, The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Kristen Steslow
- Litwin-Zucker Center for Research in Alzheimer's Disease, The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Philippe Marambaud
- Litwin-Zucker Center for Research in Alzheimer's Disease, The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Cristina d'Abramo
- Litwin-Zucker Center for Research in Alzheimer's Disease, The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
48
|
Herpes Simplex Virus Vectors for Gene Transfer to the Central Nervous System. Diseases 2018; 6:diseases6030074. [PMID: 30110885 PMCID: PMC6164475 DOI: 10.3390/diseases6030074] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases (NDs) have a profound impact on human health worldwide and their incidence is predicted to increase as the population ages. ND severely limits the quality of life and leads to early death. Aside from treatments that may reduce symptoms, NDs are almost completely without means of therapeutic intervention. The genetic and biochemical basis of many NDs is beginning to emerge although most have complex etiologies for which common themes remain poorly resolved. Largely relying on progress in vector design, gene therapy is gaining increasing support as a strategy for genetic treatment of diseases. Here we describe recent developments in the engineering of highly defective herpes simplex virus (HSV) vectors suitable for transfer and long-term expression of large and/or multiple therapeutic genes in brain neurons in the complete absence of viral gene expression. These advanced vector platforms are safe, non-inflammatory, and persist in the nerve cell nucleus for life. In the near term, it is likely that HSV can be used to treat certain NDs that have a well-defined genetic cause. As further information on disease etiology becomes available, these vectors may take on an expanded role in ND therapies, including gene editing and repair.
Collapse
|
49
|
Dong QC, Chen HM, Jin X. [A review of gene therapy for Duchenne muscular dystrophy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:691-696. [PMID: 30111482 PMCID: PMC7389749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/04/2018] [Indexed: 08/01/2024]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive hereditary disease caused by mutations in the DMD gene that encodes dystrophin. It is characterized by progressive muscle weakness and degeneration of skeletal muscle and myocardium due to the absence of dystrophin. The disease often occurs at the age of 2-5 years, and most children may die of heart failure or respiratory insufficiency at the age of around 20 years. At present, supportive therapy is often used in clinical practice to improve symptoms, but this cannot improve the outcome of this disease. The development of gene therapy brings new hope to the cure of this disease. This article summarizes gene replacement therapy for DMD, including the research advances in DMD gene transduction technology mediated by adeno-associated virus, utrophin protein upregulation technology, and clustered regularly interspaced short palindromic repeat gene editing technology, and reviews the recommendations to solve the issues of adeno-associated viral load, long-term effective expression of transgenic products, and utrophin protein expression, in order to provide a reference for further research.
Collapse
Affiliation(s)
- Qi-Chao Dong
- Medical School of Shaoxing University, Shaoxing, Zhejiang 312000, China.
| | | | | |
Collapse
|
50
|
Dong QC, Chen HM, Jin X. [A review of gene therapy for Duchenne muscular dystrophy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:691-696. [PMID: 30111482 PMCID: PMC7389749 DOI: 10.7499/j.issn.1008-8830.2018.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive hereditary disease caused by mutations in the DMD gene that encodes dystrophin. It is characterized by progressive muscle weakness and degeneration of skeletal muscle and myocardium due to the absence of dystrophin. The disease often occurs at the age of 2-5 years, and most children may die of heart failure or respiratory insufficiency at the age of around 20 years. At present, supportive therapy is often used in clinical practice to improve symptoms, but this cannot improve the outcome of this disease. The development of gene therapy brings new hope to the cure of this disease. This article summarizes gene replacement therapy for DMD, including the research advances in DMD gene transduction technology mediated by adeno-associated virus, utrophin protein upregulation technology, and clustered regularly interspaced short palindromic repeat gene editing technology, and reviews the recommendations to solve the issues of adeno-associated viral load, long-term effective expression of transgenic products, and utrophin protein expression, in order to provide a reference for further research.
Collapse
Affiliation(s)
- Qi-Chao Dong
- Medical School of Shaoxing University, Shaoxing, Zhejiang 312000, China.
| | | | | |
Collapse
|