1
|
Yang J, Liu Z, Hu X, Zhang X, Huang Y, Chen Y, Chen C, Shang R, Tang Y, Hu W, Wang J, Shen HM, Hu J, He W. Skin-Resident γδ T Cells Mediate Potent and Selective Antitumor Cytotoxicity through Directed Chemotactic Migration and Mobilization of Cytotoxic Granules. J Invest Dermatol 2024:S0022-202X(24)02949-X. [PMID: 39571888 DOI: 10.1016/j.jid.2024.10.607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/15/2024] [Accepted: 10/03/2024] [Indexed: 12/25/2024]
Abstract
Dendritic epidermal T cells (DETCs) are a unique subset of γδ T cells that reside predominantly in mouse epidermis; yet, their antitumor functions remain enigmatic. In this study, we report that DETCs mediate potent and exquisitely selective cytotoxicity against diverse tumor types while sparing healthy cells. In vitro, DETCs induced apoptosis in melanoma, hepatoma, colon carcinoma, and lymphoma lines in a dose- and time-dependent manner that required direct cell-cell contact. In vivo, adoptive DETC transfer significantly suppressed melanoma growth and metastasis while prolonging survival. Mechanistically, DETCs upregulated perforin/granzyme B expression upon tumor recognition, and inhibition of this pathway ablated cytotoxicity. DETCs selectively homed to and formed intimate contacts with tumor cells in vivo through directed chemotaxis and aggregation. Tumor engagement triggered proinflammatory DETC activation while dampening immunosuppressive factors in the microenvironment. Notably, mTOR signaling coupled tumor recognition to DETC trafficking, cytotoxicity, and inflammatory programs because rapamycin treatment impaired effector functions and therapeutic efficacy. Collectively, these findings establish DETCs as multidimensional antitumor effectors and provide insights for harnessing their unique biology for cancer immunotherapy.
Collapse
Affiliation(s)
- Jiacai Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Tissue Damage Repair and Regeneration, Chongqing, China
| | - Zhihui Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Tissue Damage Repair and Regeneration, Chongqing, China
| | - Xiaohong Hu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Tissue Damage Repair and Regeneration, Chongqing, China
| | - Xiaorong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Tissue Damage Repair and Regeneration, Chongqing, China
| | - Yong Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Tissue Damage Repair and Regeneration, Chongqing, China
| | - Yunxia Chen
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Tissue Damage Repair and Regeneration, Chongqing, China
| | - Cheng Chen
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ruoyu Shang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuanyang Tang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wengang Hu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jue Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Tissue Damage Repair and Regeneration, Chongqing, China.
| |
Collapse
|
2
|
Chen J, Ji C, Liu S, Wang J, Wang C, Pan J, Qiao J, Liang Y, Cai M, Ma J. Transforming growth factor-β (TGF-β) signaling pathway-related genes in predicting the prognosis of colon cancer and guiding immunotherapy. CANCER PATHOGENESIS AND THERAPY 2024; 2:299-313. [PMID: 39371100 PMCID: PMC11447362 DOI: 10.1016/j.cpt.2023.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 10/08/2024]
Abstract
Background Colon cancer is a malignant tumor with high malignancy and a low survival rate whose heterogeneity limits systemic immunotherapy. Transforming growth factor-β (TGF-β) signaling pathway-related genes are associated with multiple tumors, but their role in prognosis prediction and tumor microenvironment (TME) regulation in colon cancer is poorly understood. Using bioinformatics, this study aimed to construct a risk prediction signature for colon cancer, which may provide a means for developing new effective treatment strategies. Methods Using consensus clustering, patients in The Cancer Genome Atlas (TCGA) with colon adenocarcinoma were classified into several subtypes based on the expression of TGF-β signaling pathway-related genes, and differences in survival, molecular, and immunological TME characteristics and drug sensitivity were examined in each subtype. Ten genes that make up a TGF-β-related predictive signature were found by least absolute shrinkage and selector operation (LASSO) regression using colon cancer data from the TCGA database and confirmed using a Gene Expression Omnibus (GEO) dataset. A nomogram incorporating risk scores and clinicopathologic factors was developed to stratify the prognosis of patients with colon cancer for accurate clinical diagnosis and therapy. Results Two TGF-β subtypes were identified, with the TGF-β-high subtype being associated with a poorer prognosis and superior sensitivity to immunotherapy. Mutation analyses showed a high incidence of gene mutations in the TGF-β-high subtype. After completing signature construction, patients with colon cancer were categorized into high- and low-risk subgroups based on the median risk score of the TGF-β-related predictive signature. The risk score exhibited superior predictive performance relative to age, gender, and stage, as evidenced by its AUC of 0.686. Patients in the high-risk subgroup had higher levels of immunosuppressive cell infiltration and immune checkpoints in the TME, suggesting that these patients had better responses to immunotherapy. Conclusions Patients with colon cancer were divided into two subtypes with different survival and immune characteristics using consensus clustering analysis based on TGF-β signaling pathway-related genes. The constructed risk prediction signature may show promise as a biomarker for evaluating the prognosis of colon cancer, with potential utility for screening individuals for immunotherapy.
Collapse
Affiliation(s)
- Jie Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chao Ji
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Silin Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jin Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Che Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jue Pan
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jinyu Qiao
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yu Liang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Mengjiao Cai
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jinlu Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
3
|
Mehdikhani F, Bahar A, Bashi M, Mohammadlou M, Yousefi B. From immunomodulation to therapeutic prospects: Unveiling the biology of butyrophilins in cancer. Cell Biochem Funct 2024; 42:e4081. [PMID: 38934382 DOI: 10.1002/cbf.4081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Butyrophilin (BTN) proteins are a type of membrane protein that belongs to the Ig superfamily. They exhibit a high degree of structural similarity to molecules in the B7 family. They fulfill a complex function in regulating immune responses, including immunomodulatory roles, as they influence γδ T cells. The biology of BTN molecules indicates that they are capable of inhibiting the immune system's ability to detect antigens within tumors. A dynamic association between BTN molecules and cellular surfaces is also recognized in specific contexts, influencing their biology. Notably, the dynamism of BTN3A1 is associated with the immunosuppression of T cells or the activation of Vγ9Vδ2 T cells. Cancer immunotherapy relies heavily on T cells to modulate immune function within the intricate interaction of the tumor microenvironment (TME). A significant interaction between the TME and antitumor immunity involves the presence of BTN, which should be taken into account when developing immunotherapy. This review explores potential therapeutic applications of BTN molecules, based on the current understanding of their biology.
Collapse
Affiliation(s)
- Fatemeh Mehdikhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysa Bahar
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Bashi
- Cancer Research Center, Semnan University of Medical, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Mohammadlou
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
4
|
Wang Y, Tsukamoto Y, Hori M, Iha H. Disulfidptosis: A Novel Prognostic Criterion and Potential Treatment Strategy for Diffuse Large B-Cell Lymphoma (DLBCL). Int J Mol Sci 2024; 25:7156. [PMID: 39000261 PMCID: PMC11241771 DOI: 10.3390/ijms25137156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Diffuse Large B-cell Lymphoma (DLBCL), with its intrinsic genetic and epigenetic heterogeneity, exhibits significantly variable clinical outcomes among patients treated with the current standard regimen. Disulfidptosis, a novel form of regulatory cell death triggered by disulfide stress, is characterized by the collapse of cytoskeleton proteins and F-actin due to intracellular accumulation of disulfides. We investigated the expression variations of disulfidptosis-related genes (DRGs) in DLBCL using two publicly available gene expression datasets. The initial analysis of DRGs in DLBCL (GSE12453) revealed differences in gene expression patterns between various normal B cells and DLBCL. Subsequent analysis (GSE31312) identified DRGs strongly associated with prognostic outcomes, revealing eight characteristic DRGs (CAPZB, DSTN, GYS1, IQGAP1, MYH9, NDUFA11, NDUFS1, OXSM). Based on these DRGs, DLBCL patients were stratified into three groups, indicating that (1) DRGs can predict prognosis, and (2) DRGs can help identify novel therapeutic candidates. This study underscores the significant role of DRGs in various biological processes within DLBCL. Assessing the risk scores of individual DRGs allows for more precise stratification of prognosis and treatment strategies for DLBCL patients, thereby enhancing the effectiveness of clinical practice.
Collapse
Affiliation(s)
- Yu Wang
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu 879-5593, Japan;
| | - Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu 879-5593, Japan;
| | - Mitsuo Hori
- Department of Hematology, Ibaraki Prefectural Central Hospital, Kasama 309-1703, Japan;
| | - Hidekatsu Iha
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu 879-5593, Japan;
- Division of Pathophysiology, The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu 879-5503, Japan
| |
Collapse
|
5
|
Wei XY, Tan YQ, Zhou G. γδ T cells in oral diseases. Inflamm Res 2024; 73:867-876. [PMID: 38563967 DOI: 10.1007/s00011-024-01870-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVE γδ T cells are a distinct subset of unconventional T cells, which link innate and adaptive immunity by secreting cytokines and interacting with other immune cells, thereby modulating immune responses. As the first line of host defense, γδ T cells are essential for mucosal homeostasis and immune surveillance. When abnormally activated or impaired, γδ T cells can contribute to pathogenic processes. Accumulating evidence has revealed substantial impacts of γδ T cells on the pathogenesis of cancers, infections, and immune-inflammatory diseases. γδ T cells exhibit dual roles in cancers, promoting or inhibiting tumor growth, depending on their phenotypes and the clinical stage of cancers. During infections, γδ T cells exert high cytotoxic activity in infectious diseases, which is essential for combating bacterial and viral infections by recognizing foreign antigens and activating other immune cells. γδ T cells are also implicated in the onset and progression of immune-inflammatory diseases. However, the specific involvement and underlying mechanisms of γδ T cells in oral diseases have not been systematically discussed. METHODS We conducted a systematic literature review using the PubMed/MEDLINE databases to identify and analyze relevant literature on the roles of γδ T cells in oral diseases. RESULTS The literature review revealed that γδ T cells play a pivotal role in maintaining oral mucosal homeostasis and are involved in the pathogenesis of oral cancers, periodontal diseases, graft-versus-host disease (GVHD), oral lichen planus (OLP), and oral candidiasis. γδ T cells mainly influence various pathophysiological processes, such as anti-tumor activity, eradication of infection, and immune response regulation. CONCLUSION This review focuses on the involvement of γδ T cells in oral diseases, with a particular emphasis on the main functions and underlying mechanisms by which γδ T cells influence the pathogenesis and progression of these conditions. This review underscores the potential of γδ T cells as therapeutic targets in managing oral health issues.
Collapse
Affiliation(s)
- Xin-Yi Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ya-Qin Tan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Gang Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Yin KL, Chu KJ, Li M, Duan YX, Yu YX, Kang MQ, Fu D, Liao R. Immune Regulatory Networks and Therapy of γδ T Cells in Liver Cancer: Recent Trends and Advancements. J Clin Transl Hepatol 2024; 12:287-297. [PMID: 38426194 PMCID: PMC10899867 DOI: 10.14218/jcth.2023.00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024] Open
Abstract
The roles of γδ T cells in liver cancer, especially in the potential function of immunotherapy due to their direct cytotoxic effects on tumor cells and secretion of important cytokines and chemokines, have aroused research interest. This review briefly describes the basic characteristics of γδ T cells, focusing on their diverse effects on liver cancer. In particular, different subtypes of γδ T cells have diverse or even opposite effects on liver cancer. We provide a detailed description of the immune regulatory network of γδ T cells in liver cancer from two aspects: immune components and nonimmune components. The interactions between various components in this immune regulatory network are dynamic and pluralistic, ultimately determining the biological effects of γδ T cells in liver cancer. We also integrate the current knowledge of γδ T-cell immunotherapy for liver cancer treatment, emphasizing the potential of these cells in liver cancer immunotherapy.
Collapse
Affiliation(s)
- Kun-Li Yin
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai-Jian Chu
- Biliary Surgical Department I, the Eastern Hepatobiliary Surgical Hospital, Naval Medical University, Shanghai, China
| | - Ming Li
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu-Xin Duan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan-Xi Yu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mei-Qing Kang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Da Fu
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rui Liao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Revesz IA, Joyce P, Ebert LM, Prestidge CA. Effective γδ T-cell clinical therapies: current limitations and future perspectives for cancer immunotherapy. Clin Transl Immunology 2024; 13:e1492. [PMID: 38375329 PMCID: PMC10875631 DOI: 10.1002/cti2.1492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
γδ T cells are a unique subset of T lymphocytes, exhibiting features of both innate and adaptive immune cells and are involved with cancer immunosurveillance. They present an attractive alternative to conventional T cell-based immunotherapy due, in large part, to their lack of major histocompatibility (MHC) restriction and ability to secrete high levels of cytokines with well-known anti-tumour functions. To date, clinical trials using γδ T cell-based immunotherapy for a range of haematological and solid cancers have yielded limited success compared with in vitro studies. This inability to translate the efficacy of γδ T-cell therapies from preclinical to clinical trials is attributed to a combination of several factors, e.g. γδ T-cell agonists that are commonly used to stimulate populations of these cells have limited cellular uptake yet rely on intracellular mechanisms; administered γδ T cells display low levels of tumour-infiltration; and there is a gap in the understanding of γδ T-cell inhibitory receptors. This review explores the discrepancy between γδ T-cell clinical and preclinical performance and offers viable avenues to overcome these obstacles. Using more direct γδ T-cell agonists, encapsulating these agonists into lipid nanocarriers to improve their pharmacokinetic and pharmacodynamic profiles and the use of combination therapies to overcome checkpoint inhibition and T-cell exhaustion are ways to bridge the gap between preclinical and clinical success. Given the ability to overcome these limitations, the development of a more targeted γδ T-cell agonist-checkpoint blockade combination therapy has the potential for success in clinical trials which has to date remained elusive.
Collapse
Affiliation(s)
- Isabella A Revesz
- Clinical Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Paul Joyce
- Clinical Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Lisa M Ebert
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Cancer Clinical Trials UnitRoyal Adelaide HospitalAdelaideSAAustralia
- School of MedicineThe University of AdelaideAdelaideSAAustralia
| | - Clive A Prestidge
- Clinical Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| |
Collapse
|
8
|
Nascimento-Gonçalves E, Seixas F, Palmeira C, Martins G, Fonseca C, Duarte JA, Faustino-Rocha AI, Colaço B, Pires MJ, Neuparth MJ, Moreira-Gonçalves D, Fardilha M, Henriques MC, Patrício D, Pelech S, Ferreira R, Oliveira PA. Lifelong exercise training promotes the remodelling of the immune system and prostate signalome in a rat model of prostate carcinogenesis. GeroScience 2024; 46:817-840. [PMID: 37171559 PMCID: PMC10828357 DOI: 10.1007/s11357-023-00806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
This work aimed to understand how lifelong exercise training promotes the remodelling of the immune system and prostate signalome in a rat model of PCa. Fifty-five male Wistar rats were divided into four groups: control sedentary, control exercised, induced PCa sedentary and induced PCa exercised. Exercised animals were trained in a treadmill for 53 weeks. Pca induction consisted on the sequential administration of flutamide, N-methyl-N-nitrosourea and testosterone propionate implants. Serum concentrations of C-reactive protein (CRP) and tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) were not different among groups. Peripheral levels of γδ T cells were higher in Pca exercised group than in the PCa sedentary group (p < 0.05). Exercise training also induced Oestrogen Receptor (ESR1) upregulation and Mitogen-activated Protein Kinase 13 (MAPK13) downregulation, changed the content of the phosphorylated (at Ser-104) form of this receptor (coded by the gene ESR1) and seemed to increase Erα phosphorylation and activity in exercised PCa rats when compared with sedentary PCa rats. Our data highlight the exercise-induced remodelling of peripheral lymphocyte subpopulations and lymphocyte infiltration in prostate tissue. Moreover, exercise training promotes the remodelling prostate signalome in this rat model of prostate carcinogenesis.
Collapse
Affiliation(s)
- Elisabete Nascimento-Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801, Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro (UA), 3810-193, Aveiro, Portugal
| | - Fernanda Seixas
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Science - AL4AnimalS, UTAD, 5000-801, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro, 5000-801, Vila Real, Portugal
| | - Carlos Palmeira
- Clinical Pathology Department, Portuguese Institute of Oncology of Porto, 4200-072, Porto, Portugal
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-072, Porto, Portugal
- School of Health Science Fernando Pessoa and FP-i3iD, 4200-253, Porto, Portugal
| | - Gabriela Martins
- Clinical Pathology Department, Portuguese Institute of Oncology of Porto, 4200-072, Porto, Portugal
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Carolina Fonseca
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801, Vila Real, Portugal
| | - José Alberto Duarte
- CIAFEL, Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, 4200-450, Porto, Portugal
| | - Ana I Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801, Vila Real, Portugal
- Department of Zootechnics, School of Sciences and Technology, University of Évora, 7004-516, Évora, Portugal
- Comprehensive Health Research Centre, 7004-516, Évora, Portugal
| | - Bruno Colaço
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Science - AL4AnimalS, UTAD, 5000-801, Vila Real, Portugal
- Department of Zootechnics, University of Trás-Os-Montes and Alto Douro, 5000-801, Vila Real, Portugal
| | - Maria João Pires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro, 5000-801, Vila Real, Portugal
| | - Maria João Neuparth
- Research Center in Physical Activity, Health and Leisure (CIAFEL)-Faculty of Sports-University of Porto (FADEUP), Portugal and Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116, Gandra, Portugal
| | - Daniel Moreira-Gonçalves
- Research Center in Physical Activity, Health and Leisure (CIAFEL)-Faculty of Sports-University of Porto (FADEUP), Portugal and Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Magda C Henriques
- Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Daniela Patrício
- Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Steven Pelech
- Department of Medicine, University of British Columbia, Vancouver, B.C, Canada
- Kinexus Bioinformatics Corporation, Suite 1 - 8755 Ash Street, Vancouver, BC, V6P 6T3, Canada
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal.
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801, Vila Real, Portugal.
- Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro, 5000-801, Vila Real, Portugal.
- Clinical Academic Center of Trás-Os-Montes and Alto Douro, University of Trás-Os-Montes and Alto Douro, 5000-801, Vila Real, Portugal.
- University of Trás-os-Montes and Alto Douro, Quinta dos Prados, 5001-801, Vila Real, Portugal.
| |
Collapse
|
9
|
Choi H, Kim TG, Jeun SS, Ahn S. Human gamma-delta (γδ) T cell therapy for glioblastoma: A novel alternative to overcome challenges of adoptive immune cell therapy. Cancer Lett 2023; 571:216335. [PMID: 37544475 DOI: 10.1016/j.canlet.2023.216335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/01/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Glioblastoma is the most common brain malignancy with devastating prognosis. Numerous clinical trials using various target therapeutic agents have failed and recent clinical trials using check point inhibitors also failed to provide survival benefits for glioblastoma patients. Adoptive T cell transfer is suggested as a novel therapeutic approach that has exhibited promise in preliminary clinical studies. However, the clinical outcomes are inconsistent, and there are several limitations of current adoptive T cell transfer strategies for glioblastoma treatment. As an alternative cell therapy, gamma-delta (γδ) T cells have been recently introduced for several cancers including glioblastoma. Since the leading role of γδ T cells is immune surveillance by recognizing a broad range of ligands including stress molecules, phosphoantigens, or lipid antigens, recent studies have suggested the potential benefits of γδ T cell transfer against glioblastomas. However, γδ T cells, as a small subset (1-5%) of T cells in human peripheral blood, are relatively unknown compared to conventional alpha-beta (αβ) T cells. In this context, our study introduced γδ T cells as an alternative and novel option to overcome several challenges regarding immune cell therapy in glioblastoma treatment. We described the unique characteristics and advantages of γδ T cells compared to conventional αβ T cells and summarize several recent preclinical studies using human gamma-delta T cell therapy for glioblastomas. Finally, we suggested future direction of human γδ T cell therapy for glioblastomas.
Collapse
Affiliation(s)
- Haeyoun Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Rebpulic of Korea; Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Rebpulic of Korea; Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Shireman JM, Gonugunta N, Zhao L, Pattnaik A, Distler E, Her S, Wang X, Das R, Galipeau J, Dey M. GM-CSF and IL-7 fusion cytokine engineered tumor vaccine generates long-term Th-17 memory cells and increases overall survival in aged syngeneic mouse models of glioblastoma. Aging Cell 2023; 22:e13864. [PMID: 37165998 PMCID: PMC10352573 DOI: 10.1111/acel.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023] Open
Abstract
Age-related immune dysfunctions, such as decreased T-cell output, are closely related to pathologies like cancers and lack of vaccine efficacy among the elderly. Engineered fusokine, GIFT-7, a fusion of interleukin 7 (IL-7) and GM-CSF, can reverse aging-related lymphoid organ atrophy. We generated a GIFT-7 fusokine tumor vaccine and employed it in aged syngeneic mouse models of glioblastoma and found that peripheral vaccination with GIFT-7TVax resulted in thymic regeneration and generated durable long-term antitumor immunity specifically in aged mice. Global cytokine analysis showed increased pro-inflammatory cytokines including IL-1β in the vaccinated group that resulted in hyperactivation of dendritic cells. In addition, GIFT-7 vaccination resulted in increased T-cell trafficking to the brain and robust Th-17 long-term effector memory T-cell formation. TCR-seq analysis showed increased productive frequency among detected rearrangements within the vaccinated group. Overall, our data demonstrate that aging immune system can be therapeutically augmented to generate lasting antitumor immunity.
Collapse
Affiliation(s)
- Jack M. Shireman
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Nikita Gonugunta
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Lei Zhao
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Akshita Pattnaik
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Emily Distler
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Skyler Her
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Xiaohu Wang
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Rahul Das
- Department of Medicine, Division of Hematology and OncologyUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Jaques Galipeau
- Department of Medicine, Division of Hematology and OncologyUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| | - Mahua Dey
- Department of NeurosurgeryUniversity of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center,MadisonWisconsinUSA
| |
Collapse
|
11
|
Ruf B, Greten TF, Korangy F. Innate lymphoid cells and innate-like T cells in cancer - at the crossroads of innate and adaptive immunity. Nat Rev Cancer 2023; 23:351-371. [PMID: 37081117 DOI: 10.1038/s41568-023-00562-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/22/2023]
Abstract
Immunotherapies targeting conventional T cells have revolutionized systemic treatment for many cancers, yet only a subset of patients benefit from these approaches. A better understanding of the complex immune microenvironment of tumours is needed to design the next generation of immunotherapeutics. Innate lymphoid cells (ILCs) and innate-like T cells (ILTCs) are abundant, tissue-resident lymphocytes that have recently been shown to have critical roles in many types of cancers. ILCs and ILTCs rapidly respond to changes in their surrounding environment and act as the first responders to bridge innate and adaptive immunity. This places ILCs and ILTCs as pivotal orchestrators of the final antitumour immune response. In this Review, we outline hallmarks of ILCs and ILTCs and discuss their emerging role in antitumour immunity, as well as the pathophysiological adaptations leading to their pro-tumorigenic function. We explore the pleiotropic, in parts redundant and sometimes opposing, mechanisms that underlie the delicate interplay between the different subsets of ILCs and ILTCs. Finally, we highlight their role in amplifying and complementing conventional T cell functions and summarize immunotherapeutic strategies for targeting ILCs and ILTCs in cancer.
Collapse
Affiliation(s)
- Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Chen Y, Du J, Liu Y, Luo Z, Guo L, Xu J, Jia L, Liu Y. γδT cells in oral tissue immune surveillance and pathology. Front Immunol 2023; 13:1050030. [PMID: 36703983 PMCID: PMC9871479 DOI: 10.3389/fimmu.2022.1050030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
The oral mucosa's immune system is composed of tissue-resident and specifically recruited leukocytes that could effectively tolerate a wide range of microbial and mechanical assaults. Shortly after CD4+ helper T cells (TH17 cells) that produce interleukin 17 (IL-17) were identified, it was discovered that γδT cells could also induce substantial levels of this pro-inflammatory cytokine. In the past decades, it has become clear that due to a complicated thymic program of development, γδT cells frequently serve as the primary sources of IL-17 in numerous models of inflammatory diseases while also assisting in the maintenance of tissue homeostasis in the skin and intestine. But it wasn't until recently that we took thorough insight into the complex features of γδT cells in the oral mucosa. Most gingival intraepithelial γδT cells reside in the junctional epithelium adjacent to the dental biofilm, suggesting their potential role in regulating oral microbiota. However, inconsistent results have been published in this regard. Similarly, recent findings showed contradictory data about the role of γδT lymphocytes in experimental periodontitis based on different models. In addition, conflicting findings were presented in terms of alveolar bone physiology and pathology underlying the oral mucosa. This review provided an overview of current knowledge and viewpoints regarding the complex roles played by oral-resident γδT cells in host-microbiota interactions, gingivitis and periodontitis, bone physiology and pathology.
Collapse
Affiliation(s)
- Yilong Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, School of Stomatology, Capital Medical University, Beijing, China,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, School of Stomatology, Capital Medical University, Beijing, China,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, School of Stomatology, Capital Medical University, Beijing, China,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhenhua Luo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, School of Stomatology, Capital Medical University, Beijing, China,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, School of Stomatology, Capital Medical University, Beijing, China,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Lu Jia
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, School of Stomatology, Capital Medical University, Beijing, China,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China,*Correspondence: Lu Jia, ; Yi Liu,
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, School of Stomatology, Capital Medical University, Beijing, China,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China,*Correspondence: Lu Jia, ; Yi Liu,
| |
Collapse
|
13
|
Assy L, Khalil SM, Attia M, Salem ML. IL-12 conditioning of peripheral blood mononuclear cells from breast cancer patients promotes the zoledronate-induced expansion of γδ T cells in vitro and enhances their cytotoxic activity and cytokine production. Int Immunopharmacol 2023; 114:109402. [PMID: 36481526 DOI: 10.1016/j.intimp.2022.109402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND In a series of our preclinical studies, we have reported that conditioning of α/β CD8+ T cells in vitro with interleukin-12 (IL-12) during their expansion improves their homing phenotype and anti-tumor cytolytic function upon their adoptive transfer in vivo. Vγ9+Vδ2+ T cells can also be expanded in vitro with amino bisphosphonates such as zoledronate (ZOL) for the purpose of adoptive therapy. AIM We aimed in this study to use IL-12 to enhance the expansion and cytotoxic functions of ZOL-expanded Vγ9+Vδ2+T cells. MATERIALS AND METHODS Peripheral blood mononuclear cells (PBMCs) were separated from healthy donors and stage II breast cancer patients. PBMCs (1 × 106 cells/mL) were cultured and treated with ZOL/IL2, ZOL/IL2/IL12, or IL2/IL12. Cultured cells were harvested on days 7 and 14 of culture and their numbers, phenotype, and cytolytic activity were assessed. The levels of pro- and inflammatory cytokines/chemokines in the plasma and supernatants of the cultured cells were analyzed by Luminex. RESULTS In healthy subjects, the addition of IL-12 to ZOL/IL2-stimulated PBMCs increased the expansion and the cytotoxic activity of Vγ9+Vδ2+ T cells on days 7 and 14 of culture. The latter was measured by the expression level of the cytolytic molecules granzyme B (GZB) and perforin (PER). Of note, αβ CD8 + T cells were also activated under the same condition but with a lesser extent addition of IL-12 to ZOL/IL2-stimulated PBMCs from cancer patients also induced similar effects but were lower than in control subjects. Interestingly, ZOL/IL2/IL12-treated PBMCs showed higher levels of cytokines/chemokines, in particular, CCL, CCL4, GM-CSF, IL-1rα; IL-12, IL-13, TNF, and IFNγ measured on days 7 and 14. CONCLUSION The addition of IL12 at the start of the expansion protocol can enhance the activity of γδ T cells which might be mediated in part by the activation of αβ T cells.
Collapse
Affiliation(s)
- Lobna Assy
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta, University, Egypt
| | - Sohaila M Khalil
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta, University, Egypt
| | - Mohamed Attia
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed L Salem
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta, University, Egypt.
| |
Collapse
|
14
|
Yu ED, Wang E, Garrigan E, Sutherland A, Khalil N, Kearns K, Pham J, Schulten V, Peters B, Frazier A, Sette A, da Silva Antunes R. Ex vivo assays show human gamma-delta T cells specific for common allergens are Th1-polarized in allergic donors. CELL REPORTS METHODS 2022; 2:100350. [PMID: 36590684 PMCID: PMC9795325 DOI: 10.1016/j.crmeth.2022.100350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/15/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022]
Abstract
Gamma-delta (γδ) T cells contribute to the pathology of many immune-related diseases; however, no ex vivo assays to study their activities are currently available. Here, we established a methodology to characterize human allergen-reactive γδ T cells in peripheral blood using an activation-induced marker assay targeting upregulated 4-1BB and CD69 expression. Broad and reproducible ex vivo allergen-reactive γδ T cell responses were detected in donors sensitized to mouse, cockroach, house dust mite, and timothy grass, but the response did not differ from that in non-allergic participants. The reactivity to 4 different allergen extracts was readily detected in 54.2%-100% of allergic subjects in a donor- and allergen-specific pattern and was abrogated by T cell receptor (TCR) blocking. Analysis of CD40L upregulation and intracellular cytokine staining revealed a T helper type 1 (Th1)-polarized response against mouse and cockroach extract stimulation. These results support the existence of allergen-reactive γδ T cells and their potential use in rebalancing dysregulated Th2 responses in allergic diseases.
Collapse
Affiliation(s)
- Esther Dawen Yu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Eric Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Emily Garrigan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Aaron Sutherland
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Natalie Khalil
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Kendall Kearns
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - John Pham
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Veronique Schulten
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| |
Collapse
|
15
|
Zheng J, Qiu D, Jiang X, Zhao Y, Zhao H, Wu X, Chen J, Lai J, Zhang W, Li X, Li Y, Wu X, Jin Z. Increased PD-1 +Foxp3 + γδ T cells associate with poor overall survival for patients with acute myeloid leukemia. Front Oncol 2022; 12:1007565. [PMID: 36591503 PMCID: PMC9799959 DOI: 10.3389/fonc.2022.1007565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Problems γδ T cells are essential for anti-leukemia function in immunotherapy, however, γδ T cells have different functional subsets, including regulatory cell subsets expressing the Foxp3. Whether they are correlated with immune-checkpoint mediated T cell immune dysfunction remains unknown in patients with acute myeloid leukemia (AML). Methods In this study, we used RNA-seq data from 167 patients in TCGA dataset to analyze the correlation between PD-1 and FOXP3 genes and these two genes' association with the prognosis of AML patients. The expression proportion of Foxp3+/PD-1+ cells in γδ T cells and two subgroups Vδ1 and Vδ2 T cells were performed by flow cytometry. The expression level of FOXP3 and PD-1 genes in γδ T cells were sorted from peripheral blood by MACS magnetic cell sorting technique were analyzed by quantitative real-time PCR. Results We found that PD-1 gene was positively correlated with FOXP3 gene and highly co-expressed PD-1 and FOXP3 genes were associated with poor overall survival (OS) from TCGA database. Then, we detected a skewed distribution of γδ T cells with increased Vδ1 and decreased Vδ2 T cell subsets in AML. Moreover, significantly higher percentages of PD-1+ γδ, Foxp3+ γδ, and PD-1+Foxp3+ γδ T cells were detected in de novo AML patients compared with healthy individuals. More importantly, AML patients containing higher PD-1+Foxp3+ γδ T cells had lower OS, which might be a potential therapeutic target for leukemia immunotherapy. Conclusion A significant increase in the PD-1+Foxp3+ γδ T cell subset in AML was associated with poor clinical outcome, which provides predictive value for the study of AML patients.
Collapse
Affiliation(s)
- Jiamian Zheng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Dan Qiu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China,Department of Traditional Chinese Medicine, Heyuan People’s Hospital, Heyuan, China
| | - Xuan Jiang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yun Zhao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Haotian Zhao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaofang Wu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Jie Chen
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jing Lai
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wenbin Zhang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xutong Li
- Department of Oncology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China,*Correspondence: Yangqiu Li, ; Xiuli Wu, ; Zhenyi Jin,
| | - Xiuli Wu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China,*Correspondence: Yangqiu Li, ; Xiuli Wu, ; Zhenyi Jin,
| | - Zhenyi Jin
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China,Department of Pathology, School of Medicine, Jinan University, Guangzhou, China,*Correspondence: Yangqiu Li, ; Xiuli Wu, ; Zhenyi Jin,
| |
Collapse
|
16
|
Al-Kadhimi Z, Callahan M, Fehniger T, Cole KE, Vose J, Hinrichs S. Enrichment of innate immune cells from PBMC followed by triple cytokine activation for adoptive immunotherapy. Int Immunopharmacol 2022; 113:109387. [DOI: 10.1016/j.intimp.2022.109387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
|
17
|
Human Vδ2 T Cells and Their Versatility for Immunotherapeutic Approaches. Cells 2022; 11:cells11223572. [PMID: 36429001 PMCID: PMC9688761 DOI: 10.3390/cells11223572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Gamma/delta (γδ) T cells are innate-like immune effectors that are a critical component linking innate and adaptive immune responses. They are recognized for their contribution to tumor surveillance and fight against infectious diseases. γδ T cells are excellent candidates for cellular immunotherapy due to their unique properties to recognize and destroy tumors or infected cells. They do not depend on the recognition of a single antigen but rather a broad-spectrum of diverse ligands through expression of various cytotoxic receptors. In this manuscript, we review major characteristics of the most abundant circulating γδ subpopulation, Vδ2 T cells, their immunotherapeutic potential, recent advances in expansion protocols, their preclinical and clinical applications for several infectious diseases and malignancies, and how additional modulation could enhance their therapeutic potential.
Collapse
|
18
|
Identification of Tumor Microenvironment Scoring Scheme Based on Bioinformatics Analysis of Immune Cell Infiltration Pattern of Ovarian Cancer. JOURNAL OF ONCOLOGY 2022; 2022:7745675. [PMID: 36081665 PMCID: PMC9448528 DOI: 10.1155/2022/7745675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
Abstract
Background Tumor microenvironment (TME) is the crucial mediator of tumor progression, and the TME model based on immune cell infiltration to characterize ovarian cancer is considered to be a promising strategy. Methods Sample data of three ovarian cancer cohorts were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The scores of 22 kinds of immune cells were calculated based on CIBERSORT, and the TME clusters (TMECs) of ovarian cancer was determined by ConsensusClusterPlus. Genomic subtype was identified by non-negative matrix factorization (NMF). A TME scoring scheme was constructed using k-means algorithm and principal component analysis (PCA) to quantify the TME infiltration pattern of individuals. Results Four TME subtypes of ovarian cancer samples were defined: TMEC1, TMEC2, TMEC3, and TMEC4. There were also significant differences in overall survival (OS) among the four TMEC, and the OS of TMEC3 was the longest. The difference analysis of TMEC3 and the other three TMECs respectively identified the DEGs and took the intersection, and 585 DEGs were obtained. Two genomic subtypes were identified by NMF based on the expression of 585 genes, which were called GeneC1 and GeneC2. The TME scoring scheme constructed by k-means and PCA algorithm was used to calculate the TME score of ovarian cancer in TCGA. High-TME score was significantly correlated with shorter survival time, older age, lower immunoactivated molecules, and immune checkpoint gene expression. Conclusions This study highlighted the complexity and diversity of TME infiltration patterns in ovarian cancer and constructed a set of TME scoring scheme to reveal TME infiltration patterns and provided new insights into the landscape of TME.
Collapse
|
19
|
Gaballa A, Arruda LCM, Uhlin M. Gamma delta T-cell reconstitution after allogeneic HCT: A platform for cell therapy. Front Immunol 2022; 13:971709. [PMID: 36105821 PMCID: PMC9465162 DOI: 10.3389/fimmu.2022.971709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Allogeneic Hematopoietic stem cell transplantation (allo-HCT) is a curative platform for several hematological diseases. Despite its therapeutic benefits, the profound immunodeficiency associated with the transplant procedure remains a major challenge that renders patients vulnerable to several complications. Today, It is well established that a rapid and efficient immune reconstitution, particularly of the T cell compartment is pivotal to both a short-term and a long-term favorable outcome. T cells expressing a TCR heterodimer comprised of gamma (γ) and delta (δ) chains have received particular attention in allo-HCT setting, as a large body of evidence has indicated that γδ T cells can exert favorable potent anti-tumor effects without inducing severe graft versus host disease (GVHD). However, despite their potential role in allo-HCT, studies investigating their detailed reconstitution in patients after allo-HCT are scarce. In this review we aim to shed lights on the current literature and understanding of γδ T cell reconstitution kinetics as well as the different transplant-related factors that may influence γδ reconstitution in allo-HCT. Furthermore, we will present data from available reports supporting a role of γδ cells and their subsets in patient outcome. Finally, we discuss the current and future strategies to develop γδ cell-based therapies to exploit the full immunotherapeutic potential of γδ cells in HCT setting.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Chemistry, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Lucas C. M. Arruda
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Sanz M, Mann BT, Chitrakar A, Soriano-Sarabia N. Defying convention in the time of COVID-19: Insights into the role of γδ T cells. Front Immunol 2022; 13:819574. [PMID: 36032159 PMCID: PMC9403327 DOI: 10.3389/fimmu.2022.819574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is a complex disease which immune response can be more or less potent. In severe cases, patients might experience a cytokine storm that compromises their vital functions and impedes clearance of the infection. Gamma delta (γδ) T lymphocytes have a critical role initiating innate immunity and shaping adaptive immune responses, and they are recognized for their contribution to tumor surveillance, fighting infectious diseases, and autoimmunity. γδ T cells exist as both circulating T lymphocytes and as resident cells in different mucosal tissues, including the lungs and their critical role in other respiratory viral infections has been demonstrated. In the context of SARS-CoV-2 infection, γδ T cell responses are understudied. This review summarizes the findings on the antiviral role of γδ T cells in COVID-19, providing insight into how they may contribute to the control of infection in the mild/moderate clinical outcome.
Collapse
|
21
|
Stem Cells in the Tumor Immune Microenvironment -Part of the Cure or Part of the Disease? Ontogeny and Dichotomy of Stem and Immune Cells has Led to better Understanding. Stem Cell Rev Rep 2022; 18:2549-2565. [PMID: 35841518 DOI: 10.1007/s12015-022-10428-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
Stem cells are at the basis of tissue homeostasis, hematopoiesis and various regenerative processes. Epigenetic changes in their somatically imprinted genes, prolonged exposure to mutagens/carcinogens or alteration of their niche can lead to the development of an enabling environment for tumor growth and progression. The involvement of stem cells in both health and disease becomes even more compelling with ontogeny as embryonic and extraembryonic stem cells which persist into adulthood in well established and specific niche may have distinct implications in tumorigenesis. Immune surveillance plays an important role in this interplay since the response of immune cells toward the oncogenic process can range from reactivity to placidity and even complicity, being orchestrated by intercellular molecular dialogues with the other key players of the tumor microenvironment. With the current understanding that every developing and adult tissue contains inherent stem and progenitor cells, in this manuscript we review the most relevant interactions carried out between the stem cells, tumor cells and immune cells in a bottom-up incursion through the tumor microenvironment beginning from the perivascular niche and going through the tumoral parenchyma and the related stroma. With the exploitation of various factors that influence the behavior of immune effectors toward stem cells and other resting cells in their niche, new therapeutic strategies to tackle the polarization of immune effectors toward a more immunogenic phenotype may arise.
Collapse
|
22
|
Chan KF, Duarte JDG, Ostrouska S, Behren A. γδ T Cells in the Tumor Microenvironment-Interactions With Other Immune Cells. Front Immunol 2022; 13:894315. [PMID: 35880177 PMCID: PMC9307934 DOI: 10.3389/fimmu.2022.894315] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/15/2022] [Indexed: 01/02/2023] Open
Abstract
A growing number of studies have shown that γδ T cells play a pivotal role in mediating the clearance of tumors and pathogen-infected cells with their potent cytotoxic, cytolytic, and unique immune-modulating functions. Unlike the more abundant αβ T cells, γδ T cells can recognize a broad range of tumors and infected cells without the requirement of antigen presentation via major histocompatibility complex (MHC) molecules. Our group has recently demonstrated parts of the mechanisms of T-cell receptor (TCR)-dependent activation of Vγ9Vδ2+ T cells by tumors following the presentation of phosphoantigens, intermediates of the mevalonate pathway. This process is mediated through the B7 immunoglobulin family-like butyrophilin 2A1 (BTN2A1) and BTN3A1 complexes. Such recognition results in activation, a robust immunosurveillance process, and elicits rapid γδ T-cell immune responses. These include targeted cell killing, and the ability to produce copious quantities of cytokines and chemokines to exert immune-modulating properties and to interact with other immune cells. This immune cell network includes αβ T cells, B cells, dendritic cells, macrophages, monocytes, natural killer cells, and neutrophils, hence heavily influencing the outcome of immune responses. This key role in orchestrating immune cells and their natural tropism for tumor microenvironment makes γδ T cells an attractive target for cancer immunotherapy. Here, we review the current understanding of these important interactions and highlight the implications of the crosstalk between γδ T cells and other immune cells in the context of anti-tumor immunity.
Collapse
Affiliation(s)
- Kok Fei Chan
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Jessica Da Gama Duarte
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Simone Ostrouska
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
23
|
Belghali MY, El Moumou L, Hazime R, Brahimi M, El Marrakchi M, Belaid HA, Benali SA, Khouchani M, Ba-M'hamed S, Admou B. Phenotypic characterization of human peripheral γδT-Cell subsets in glioblastoma. Microbiol Immunol 2022; 66:465-476. [PMID: 35718749 DOI: 10.1111/1348-0421.13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The anti-tumoral contribution of γδT cells depends on their activation and differentiation into effectors. This depends on different molecules and membrane receptors, which conditions their physiology. We aimed to determine the phenotypic characteristics of γδT cells in glioblastoma (GBM) according to five layers of membrane receptors. METHODS Among ten GBM cases initially enrolled, five of them who had been confirmed by pathological examination and ten healthy controls underwent phenotyping of peripheral γδT cells by flow cytometry, using the following staining: αβTCR, γδTCR, CD3, CD4, CD8, CD16, CD25, CD27, CD28, CD45, CD45RA, CD56, NKG2D, CD272(BTLA) and CD279(PD-1). RESULTS Compared to controls, our results showed no significant change in the number of γδT cells. However, we noted a decrease of double-negative (CD4- CD8- ) Tγδ cells and an increase of naive γδT cells, a lack of CD25 expression, a decrease of the expression of CD279 and a remarkable, but not significant increase in the expression of the CD27 and CD28 costimulation markers. Among γδT cell subsets, the number of Vδ2 decreased in GBM and showed no significant difference in the expression of CD16, CD56 and NKG2D. In contrast, the number of Vδ1 increased in GBM with overexpression of CD16, CD56 and NKG2D. CONCLUSION Our results showed that γδT cells are prone to adopt a pro-inflammatory profile in the GBM's context, which suggests that they might be a potential tool to consider in T cell-based immunotherapy in GBM. However, this requires additional investigation on larger sample size. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Moulay Yassine Belghali
- Group of morphology and biology of cancers. Faculty of medicine and pharmacy, Cadi Ayyad University, Marrakech, Morocco.,Laboratory of Pharmacology, neurobiology, anthropology and environment, Cadi Ayyad University, Marrakech, Morocco.,Laboratory of Immunology, Center of Clinical Research, University Hospital Mohammed VI, Marrakech, Morocco
| | | | - Raja Hazime
- Laboratory of Immunology, Center of Clinical Research, University Hospital Mohammed VI, Marrakech, Morocco
| | - Maroua Brahimi
- Laboratory of pathology, Mohammed V Hospital, Safi, Morocco
| | - Malak El Marrakchi
- Neurosurgery Department, Mohammed VI University Hospital Center, Cadi Ayyad University, Marrakech, Morocco
| | - Hasna Ait Belaid
- Group of morphology and biology of cancers. Faculty of medicine and pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Said Ait Benali
- Neurosurgery Department, Mohammed VI University Hospital Center, Cadi Ayyad University, Marrakech, Morocco
| | - Mouna Khouchani
- Group of morphology and biology of cancers. Faculty of medicine and pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Saadia Ba-M'hamed
- Laboratory of Pharmacology, neurobiology, anthropology and environment, Cadi Ayyad University, Marrakech, Morocco
| | - Brahim Admou
- Laboratory of Immunology, Center of Clinical Research, University Hospital Mohammed VI, Marrakech, Morocco.,Bioscience Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
24
|
Pei Y, Xiang Z, Wen K, Tu CR, Wang X, Zhang Y, Mu X, Liu Y, Tu W. CD137 Costimulation Enhances the Antitumor Activity of Vγ9Vδ2-T Cells in IL-10-Mediated Immunosuppressive Tumor Microenvironment. Front Immunol 2022; 13:872122. [PMID: 35784354 PMCID: PMC9247142 DOI: 10.3389/fimmu.2022.872122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Although γδ-T cell-based tumor immunotherapy using phosphoantigens to boost γδ-T cell immunity has shown success in some cancer patients, the clinical application is limited due to the rapid exhaustion of Vγ9Vδ2-T cells caused by repetitive stimulation from phosphoantigens and the profoundly immunosuppressive tumor microenvironment (TME). In this study, using a cell culture medium containing human and viral interleukin-10 (hIL-10 and vIL-10) secreted from EBV-transformed lymphoblastoid B cell lines (EBV-LCL) to mimic the immunosuppressive TEM, we found that the antitumor activity of Vγ9Vδ2-T cells was highly suppressed by endogenous hIL-10 and vIL-10 within the TME. CD137 costimulation could provide an anti-exhaustion signal to mitigate the suppressive effects of IL-10 in TME by suppressing IL-10R1 expression on Vγ9Vδ2-T cells. CD137 costimulation also improved the compromised antitumor activity of Vγ9Vδ2-T cells in TME with high levels of IL-10 in Rag2-/- γc-/- mice. In humanized mice, CD137 costimulation boosted the therapeutic effects of aminobisphosphonate pamidronate against EBV-induced lymphoma. Our study offers a novel approach to overcoming the obstacle of the hIL-10 and vIL-10-mediated immunosuppressive microenvironment by costimulating CD137 and enhancing the efficacy of γδ-T cell-based tumor therapy.
Collapse
Affiliation(s)
- Yujun Pei
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Zheng Xiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kun Wen
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chloe Ran Tu
- Computational and Systems Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xiwei Wang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yanmei Zhang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaofeng Mu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yinping Liu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Wenwei Tu,
| |
Collapse
|
25
|
Song D, Wei Y, Hu Y, Sun Y, Liu M, Ren Q, Hu Z, Guo Q, Wang Y, Zhou Y. Identification of immunophenotypes in esophageal squamous cell carcinoma based on immune gene sets. Clin Transl Oncol 2022; 24:1100-1114. [PMID: 35098447 DOI: 10.1007/s12094-021-02749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with high heterogeneity. Research on molecular mechanisms involved in the process of tumor origination and progression is extremely limited to investigating mechanisms of molecular typing for ESCC. METHODS After comprehensively analyzing the gene expression profiles in The Cancer Genome Atlas and Gene Expression Omnibus databases, we identified four immunotypes of ESCC (referred to as C1-C4) based on the gene sets of 28 immune cell subpopulations. The discrepancies in prognostic value, clinical features, drug sensitivity, and tumor components between the immunotypes were individually analyzed. RESULTS The ranking of immune infiltration is C1 > C4 > C3 > C2. These subtypes are characterized by high and low expression of immune checkpoint proteins, enrichment and insufficiency of immune-related pathways, and differential distribution of immune cell subgroups. Poorer survival was observed in the C1 subtype, which we hypothesized could be caused by an immunosuppressive cell population. Fortunately, C1's susceptibility to anti-PD-1 therapy offers hope for patients with poor prognosis in advanced stages. On the other hand, C4 is sensitive to docetaxel, which may offer novel treatment strategies for ESCC in the future. It is worth noting that immunophenotyping is tightly bound to the abundance of stromal components and stem cells, which could explain the tumor immune escape to some extent. Ultimately, determination of hub genes based on the C1 subtypes provides a reference for the discovery of immunotarget drugs against ESCC. CONCLUSION The identification of immunophenotypes in our study provides new therapeutic strategies for patients with ESCC.
Collapse
Affiliation(s)
- Danlei Song
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Yongjian Wei
- The First Department of Hepatobiliary and Pancreatic Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Yuping Hu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Hospital of Reproductive Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yueting Sun
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Min Liu
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Qian Ren
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Zenan Hu
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Qinghong Guo
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Yuping Wang
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Yongning Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
26
|
Li J, Sun L, Chen Y, Zhu J, Shen J, Wang J, Gu Y, Zhang G, Wang M, Shi T, Chen W. Gastric cancer-derived exosomal miR-135b-5p impairs the function of Vγ9Vδ2 T cells by targeting specificity protein 1. Cancer Immunol Immunother 2022; 71:311-325. [PMID: 34159436 DOI: 10.1007/s00262-021-02991-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 06/16/2021] [Indexed: 12/24/2022]
Abstract
Recent studies have shown that tumor-derived exosomes participate in the communication between tumor cells and their microenvironment and mediate malignant biological behaviors including immune escape. In this study, we found that gastric cancer (GC) cell-derived exosomes could be effectively uptaken by Vγ9Vδ2 T cells, decrease the cell viability of Vγ9Vδ2 T cells, induce apoptosis, and reduce the production of cytotoxic cytokines IFN-γ and TNF-α. Furthermore, we demonstrated that exosomal miR-135b-5p was delivered into Vγ9Vδ2 T cells. Exosomal miR-135b-5p impaired the function of Vγ9Vδ2 T cells by targeting specificity protein 1 (SP1). More importantly, blocking the SP1 function by Plicamycin, an SP1 inhibitor, abolished the effect of stable miR-135b-5p knockdown GC cell-derived exosomes on Vγ9Vδ2 T cell function. Collectively, our results suggest that GC cell-derived exosomes impair the function of Vγ9Vδ2 T cells via miR-135b-5p/SP1 pathway, and targeting exosomal miR-135b-5p/SP1 axis may improve the efficiency of GC immunotherapy based on Vγ9Vδ2 T cells.
Collapse
Affiliation(s)
- Juntao Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Linqing Sun
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Yanjun Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Jinghan Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Jin Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China
| | - Yanzheng Gu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Mingyuan Wang
- Suzhou Red Cross Blood Center, 355 Shizi Road, Suzhou, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China.
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China.
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China.
- Jiangsu Province, 708 Renmin Road, Suzhou, 215100, China.
| | - Weichang Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China.
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.
- Jiangsu Province, 50 Donghuan Road, Suzhou, 215100, China.
| |
Collapse
|
27
|
Wang C, Zhang Y, Gao WQ. The evolving role of immune cells in prostate cancer. Cancer Lett 2022; 525:9-21. [PMID: 34715253 DOI: 10.1016/j.canlet.2021.10.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022]
Abstract
Prostate cancer is the most commonly diagnosed cancer and the second leading cause of cancer-related death among men in western countries. Androgen deprivation therapy (ADT) is considered the standard therapy for recurrent prostate cancer; however, this therapy may lead to ADT resistance and tumor progression, which seems to be regulated by epithelial-mesenchymal transition (EMT) and/or neuroendocrine differentiation (NED). In addition, recent data suggested the involvement of either adaptive or innate infiltrated immune cells in the initiation, progression, metastasis, and treatment of prostate cancer. In this review, we outlined the characteristics and roles of these immune cells in the initiation, progression, metastasis, and treatments of prostate cancer. We also summarized the current therapeutic strategies in targeting immune cells of the prostate tumor microenvironment.
Collapse
Affiliation(s)
- Chao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Yan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| |
Collapse
|
28
|
Schönefeldt S, Wais T, Herling M, Mustjoki S, Bekiaris V, Moriggl R, Neubauer HA. The Diverse Roles of γδ T Cells in Cancer: From Rapid Immunity to Aggressive Lymphoma. Cancers (Basel) 2021; 13:6212. [PMID: 34944832 PMCID: PMC8699114 DOI: 10.3390/cancers13246212] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
γδ T cells are unique players in shaping immune responses, lying at the intersection between innate and adaptive immunity. Unlike conventional αβ T cells, γδ T cells largely populate non-lymphoid peripheral tissues, demonstrating tissue specificity, and they respond to ligands in an MHC-independent manner. γδ T cells display rapid activation and effector functions, with a capacity for cytotoxic anti-tumour responses and production of inflammatory cytokines such as IFN-γ or IL-17. Their rapid cytotoxic nature makes them attractive cells for use in anti-cancer immunotherapies. However, upon transformation, γδ T cells can give rise to highly aggressive lymphomas. These rare malignancies often display poor patient survival, and no curative therapies exist. In this review, we discuss the diverse roles of γδ T cells in immune surveillance and response, with a particular focus on cancer immunity. We summarise the intriguing dichotomy between pro- and anti-tumour functions of γδ T cells in solid and haematological cancers, highlighting the key subsets involved. Finally, we discuss potential drivers of γδ T-cell transformation, summarising the main γδ T-cell lymphoma/leukaemia entities, their clinical features, recent advances in mapping their molecular and genomic landscapes, current treatment strategies and potential future targeting options.
Collapse
Affiliation(s)
- Susann Schönefeldt
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| | - Tamara Wais
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| | - Marco Herling
- Department of Hematology, Cellular Therapy and Hemostaseology, University of Leipzig, 04103 Leipzig, Germany;
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland;
- iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Vasileios Bekiaris
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| |
Collapse
|
29
|
Girard P, Sosa Cuevas E, Ponsard B, Mouret S, Gil H, Col E, De Fraipont F, Sturm N, Charles J, Manches O, Chaperot L, Aspord C. Dysfunctional BTN3A together with deregulated immune checkpoints and type I/II IFN dictate defective interplay between pDCs and γδ T cells in melanoma patients, which impacts clinical outcomes. Clin Transl Immunology 2021; 10:e1329. [PMID: 34786191 PMCID: PMC8577077 DOI: 10.1002/cti2.1329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/22/2021] [Accepted: 07/29/2021] [Indexed: 01/01/2023] Open
Abstract
Objectives pDCs and γδ T cells emerge as potent immune players participating in the pathophysiology of cancers, yet still remaining enigmatic while harbouring a promising potential for clinical translations. Despite strategic and closed missions, crosstalk between pDCs and γδ T cells has not been deciphered yet in cancers, especially in melanoma where the long‐term control of the tumor still remains a challenge. Methods This prompted us to explore the interplay between pDCs and γδ T cells in the context of melanoma, investigating the reciprocal features of pDCs or γδ T cells, the underlying molecular mechanisms and its impact on clinical outcomes. Results TLRL‐activated pDCs from the blood and tumor infiltrate of melanoma patients displayed an impaired ability to activate, to modulate immune checkpoints and trigger the functionality of γδ T cells. Conversely, γδ T cells from the blood or tumor infiltrate of melanoma patients activated by PAg were defective in triggering pDCs’ activation and modulation of immune checkpoints, and failed to elicit the functionality of pDCs. Reversion of the dysfunctional cross‐talks could be achieved by specific cytokine administration and immune checkpoint targeting. Strikingly, we revealed an increased expression of BTN3A on circulating and tumor‐infiltrating pDCs and γδ T cells from melanoma patients, but stressed out the potential impairment of this molecule. Conclusion Our study uncovered that melanoma hijacked the bidirectional interplay between pDCs and γδ T cells to escape from immune control, and revealed BTN3A dysfunction. Such understanding will help harness and synergise the power of these potent immune cells to design new therapeutic approaches exploiting their antitumor potential while counteracting their skewing by tumors to improve patient outcomes.
Collapse
Affiliation(s)
- Pauline Girard
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Benedicte Ponsard
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Stephane Mouret
- Dermatology Clinic Grenoble University Hospital Grenoble France
| | - Hugo Gil
- Pathology Department Institut de Biologie et Pathologie CHU Grenoble Alpes Grenoble France
| | - Edwige Col
- Pathology Department Institut de Biologie et Pathologie CHU Grenoble Alpes Grenoble France
| | - Florence De Fraipont
- Medical Unit of Molecular Genetic (Hereditary Diseases and Oncology) Grenoble University Hospital Grenoble France
| | - Nathalie Sturm
- Pathology Department Institut de Biologie et Pathologie CHU Grenoble Alpes Grenoble France
| | - Julie Charles
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Dermatology Clinic Grenoble University Hospital Grenoble France
| | - Olivier Manches
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Laurence Chaperot
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| |
Collapse
|
30
|
Wei J, Fang D, Zhou W. CCR2 and PTPRC are regulators of tumor microenvironment and potential prognostic biomarkers of lung adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1419. [PMID: 34733971 PMCID: PMC8506762 DOI: 10.21037/atm-21-3301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022]
Abstract
Background Tumor microenvironment (TME) plays an essential role in lung adenocarcinoma (LUAD) development and metastasis. With the development of TME research, it has been proved that differences in tumor-infiltrating immune cells (TICs) and gene expression profile are related to the prognosis of cancer. The aim of our study was to identify key genes affecting immune state in TME of LUAD. Methods The RNA-seq data and clinical characteristics of 594 LUAD patients were downloaded from the TCGA database. ImmuneScore, StromalScore and ESTIMATEScore of each LUAD sample were calculated using ESTIMATE algorithm. Based on the median of different scores, LUAD samples were divided into high and low score groups. Differentially expressed genes (DEGs) between groups were obtained, and univariate Cox regression analysis and protein-protein interaction (PPI) network were used to screen the shared DEGs generating in the intersection analysis. Finally, the CIBORSORT algorithm was performed to calculate the relative contents of TICs for each LUAD sample, and the correlation analysis between TICs and key genes was used to determine the influence of key genes to the TME. Results In the presented study, we found that three different scores were positively correlated with the prognosis of LUAD patients, and correlation analysis showed the different scores were closely related to tumor progression and metastasis. After performing the intersection analysis, a total of 585 up-regulated and 107 down-regulated DEGs between the high and low score groups were obtained, all of which were enriched in immune-related functions. Having used univariate COX regression analysis and PPI network, the key genes, CCR2 and PTPRC, affecting the immune status of TME and the prognosis of LUAD were acquired. Analysis based on the CIBERSORT algorithm suggested that CCR2 and PTPRC were correlated with a variety of TICs, and closely related to the clinical characteristics of the LUAD patients. Conclusions Our research showed that CCR2 and PTPRC may be potential prognostic markers in LUAD, which may affect the function of γδT cells and other immune cells by participating in the regulation of TME immune state.
Collapse
Affiliation(s)
- Jie Wei
- Department of Hematology, Baise People's Hospital, Baise, China
| | - Dalang Fang
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Weijie Zhou
- Department of Clinical Laboratory, Baise Peopl's Hospital, Baise, China
| |
Collapse
|
31
|
Toffoli EC, Sheikhi A, Lameris R, King LA, van Vliet A, Walcheck B, Verheul HMW, Spanholtz J, Tuynman J, de Gruijl TD, van der Vliet HJ. Enhancement of NK Cell Antitumor Effector Functions Using a Bispecific Single Domain Antibody Targeting CD16 and the Epidermal Growth Factor Receptor. Cancers (Basel) 2021; 13:cancers13215446. [PMID: 34771609 PMCID: PMC8582566 DOI: 10.3390/cancers13215446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Strategies to enhance the preferential accumulation and activation of Natural Killer (NK) cells in the tumor microenvironment can be expected to increase the efficacy of NK cell-based cancer immunotherapy. In this study, we report that a bispecific single domain antibody (VHH) that targets CD16 (FcRγIII) on NK cells and the epidermal growth factor receptor (EGFR) on tumor cells can be used to target and enhance cytolysis of cancer cells. The bispecific VHH enhanced NK cell activation and cytotoxicity in an EGFR- and CD16-dependent and KRAS-independent manner. Moreover, the bispecific VHH induced stronger activity of cancer patient-derived NK cells and resulted in tumor control in a co-culture of metastatic colorectal cancer cells and either autologous peripheral blood mononuclear cells or allogeneic CD16+ NK cells. We believe that this novel approach could represent a valid therapeutic strategy either alone or in combination with other NK cell-based therapies. Abstract The ability to kill tumor cells while maintaining an acceptable safety profile makes Natural Killer (NK) cells promising assets for cancer therapy. Strategies to enhance the preferential accumulation and activation of NK cells in the tumor microenvironment can be expected to increase the efficacy of NK cell-based therapies. In this study, we show binding of a novel bispecific single domain antibody (VHH) to both CD16 (FcRγIII) on NK cells and the epidermal growth factor receptor (EGFR) on tumor cells of epithelial origin. The bispecific VHH triggered CD16- and EGFR-dependent activation of NK cells and subsequent lysis of tumor cells, regardless of the KRAS mutational status of the tumor. Enhancement of NK cell activation by the bispecific VHH was also observed when NK cells of colorectal cancer (CRC) patients were co-cultured with EGFR expressing tumor cells. Finally, higher levels of cytotoxicity were found against patient-derived metastatic CRC cells in the presence of the bispecific VHH and autologous peripheral blood mononuclear cells or allogeneic CD16 expressing NK cells. The anticancer activity of CD16-EGFR bispecific VHHs reported here merits further exploration to assess its potential therapeutic activity either alone or in combination with adoptive NK cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Elisa C. Toffoli
- Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (R.L.); (L.A.K.); (T.D.d.G.)
| | - Abdolkarim Sheikhi
- Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (R.L.); (L.A.K.); (T.D.d.G.)
- School of Medicine, Dezful University of Medical Sciences, Department of Immunology, Dezful 64616-43993, Iran
| | - Roeland Lameris
- Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (R.L.); (L.A.K.); (T.D.d.G.)
| | - Lisa A. King
- Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (R.L.); (L.A.K.); (T.D.d.G.)
| | - Amanda van Vliet
- Glycostem Therapeutics, 5349 AB Oss, The Netherlands; (A.v.V.); (J.S.)
| | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Henk M. W. Verheul
- Radboud Institute for Health Sciences, Department of Medical Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Jan Spanholtz
- Glycostem Therapeutics, 5349 AB Oss, The Netherlands; (A.v.V.); (J.S.)
| | - Jurriaan Tuynman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, 1081 HV Amsterdam, The Netherlands;
| | - Tanja D. de Gruijl
- Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (R.L.); (L.A.K.); (T.D.d.G.)
| | - Hans J. van der Vliet
- Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (R.L.); (L.A.K.); (T.D.d.G.)
- Lava Therapeutics, 3584 CM Utrecht, The Netherlands
- Correspondence:
| |
Collapse
|
32
|
Investigating Optimal Chemotherapy Options for Osteosarcoma Patients through a Mathematical Model. Cells 2021; 10:cells10082009. [PMID: 34440778 PMCID: PMC8394778 DOI: 10.3390/cells10082009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Osteosarcoma is a rare type of cancer with poor prognoses. However, to the best of our knowledge, there are no mathematical models that study the impact of chemotherapy treatments on the osteosarcoma microenvironment. In this study, we developed a data driven mathematical model to analyze the dynamics of the important players in three groups of osteosarcoma tumors with distinct immune patterns in the presence of the most common chemotherapy drugs. The results indicate that the treatments’ start times and optimal dosages depend on the unique growth rate of the tumor, which implies the necessity of personalized medicine. Furthermore, the developed model can be extended by others to build models that can recommend individual-specific optimal dosages. Abstract Since all tumors are unique, they may respond differently to the same treatments. Therefore, it is necessary to study their characteristics individually to find their best treatment options. We built a mathematical model for the interactions between the most common chemotherapy drugs and the osteosarcoma microenvironments of three clusters of tumors with unique immune profiles. We then investigated the effects of chemotherapy with different treatment regimens and various treatment start times on the behaviors of immune and cancer cells in each cluster. Saliently, we suggest the optimal drug dosages for the tumors in each cluster. The results show that abundances of dendritic cells and HMGB1 increase when drugs are given and decrease when drugs are absent. Populations of helper T cells, cytotoxic cells, and IFN-γ grow, and populations of cancer cells and other immune cells shrink during treatment. According to the model, the MAP regimen does a good job at killing cancer, and is more effective than doxorubicin and cisplatin combined or methotrexate alone. The results also indicate that it is important to consider the tumor’s unique growth rate when deciding the treatment details, as fast growing tumors need early treatment start times and high dosages.
Collapse
|
33
|
Otaibi AA, Sherwani S, Alshammari EM, Al-Zahrani SA, Khan WA, Dhahi Alsukaibi AK, Dwivedi S, Khan SN, Khan MWA. Combinational therapeutics to combat cancer. Bioinformation 2021; 17:673-679. [PMID: 35283582 PMCID: PMC8882074 DOI: 10.6026/97320630017673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/23/2022] Open
Abstract
Mono-therapeutics is rarely effective as a treatment option, which limits the survival of patients in advanced grade aggressive cancers. Combinational therapeutics (multiple drugs for multiple targets) to combat cancer is gaining momentum in recent years. Hence, it is of interest to document known data for combinational therapeutics in cancer treatment. An amalgamation of therapeutic agents enhances the efficacy and potency of the therapy. Combinational therapy can potentially target multiple pathways that are necessary for the cancer cells to proliferate, and/or target molecules, which may help cancer to become more aggressive and metastasize. In this review, we discuss combinational therapeutics, which include human γδ T cells in combinations with biologically active anti-cancer molecules, which synergistically may produce promising combinational therapeutics.
Collapse
Affiliation(s)
- Ahmed Al Otaibi
- Department of Chemistry, College of Sciences, University of Hail, Hail-2440, Saudi Arabia
| | - Subuhi Sherwani
- Department of Biology, College of Sciences, University of Hail, Hail-2440, Saudi Arabia
| | | | - Salma Ahmed Al-Zahrani
- Department of Chemistry, College of Sciences, University of Hail, Hail-2440, Saudi Arabia
| | - Wahid Ali Khan
- Department of Clinical Biochemistry,College of Medicine, King Khalid University, Abha-62529, Saudi Arabia
| | | | - Sourabh Dwivedi
- Department of Applied Physics, Aligarh Muslim University, Aligarh-202002, U.P., India
| | - Shahper Nazeer Khan
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh-202002, U.P, India
| | - Mohd Wajid Ali Khan
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Hail, Hail-2440, Saudi Arabia
| |
Collapse
|
34
|
Otaibi AA, Sherwani S, Al-Zahrani SA, Alshammari EM, Khan WA, Alsukaibi AKD, Khan SN, Khan MWA. Biologically Active α-Amino Amide Analogs and γδ T Cells-A Unique Anticancer Approach for Leukemia. Front Oncol 2021; 11:706586. [PMID: 34322393 PMCID: PMC8311656 DOI: 10.3389/fonc.2021.706586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/16/2021] [Indexed: 12/29/2022] Open
Abstract
Advanced stage cancers are aggressive and difficult to treat with mono-therapeutics, substantially decreasing patient survival rates. Hence, there is an urgent need to develop unique therapeutic approaches to treat cancer with superior potency and efficacy. This study investigates a new approach to develop a potent combinational therapy to treat advanced stage leukemia. Biologically active α-amino amide analogs (RS)-N-(2-(cyclohexylamino)-2-oxo-1-phenylethyl)-N-phenylpropiolamide (α-AAA-A) and (RS)-N-(2-(cyclohexylamino)-2-oxo-1-phenylethyl)-N-phenylbut2-enamide (α-AAA-B) were synthesized using linear Ugi multicomponent reaction. Cytotoxicities and IC50 values of α-AAA-A and α-AAA-B against leukemia cancer cell lines (HL-60 and K562) were analyzed though MTT assay. Cytotoxic assay analyzed percent killing of leukemia cell lines due to the effect of γδ T cells alone or in combination with α-AAA-A or α-AAA-B. Synthesized biologically active molecule α-AAA-A exhibited increased cytotoxicity of HL-60 (54%) and K562 (44%) compared with α-AAA-B (44% and 36% respectively). Similarly, α-AAA-A showed low IC50 values for HL-60 (1.61 ± 0.11 μM) and K562 (3.01 ± 0.14 μM) compared to α-AAA-B (3.12 ± 0.15 μM and 6.21 ± 0.17 μM respectively). Additive effect of amide analogs and γδ T cells showed significantly high leukemia cancer cell killing as compared to γδ T cells alone. A unique combinational therapy with γδ T cells and biologically active anti-cancer molecules (α-AAA-A/B), concomitantly may be a promising cancer therapy.
Collapse
Affiliation(s)
- Ahmed Al Otaibi
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Subuhi Sherwani
- Department of Biology, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | | | | | - Wahid Ali Khan
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | | | - Shahper Nazeer Khan
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, India
| | - Mohd Wajid Ali Khan
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
| |
Collapse
|
35
|
Giri S, Lal G. Differentiation and functional plasticity of gamma-delta (γδ) T cells under homeostatic and disease conditions. Mol Immunol 2021; 136:138-149. [PMID: 34146759 DOI: 10.1016/j.molimm.2021.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/29/2021] [Accepted: 06/09/2021] [Indexed: 12/27/2022]
Abstract
Gamma-delta (γδ) T cells are a heterogeneous population of immune cells, which constitute <5% of total T cells in mice lymphoid tissue and human peripheral blood. However, they comprise a higher proportion of T cells in the epithelial and mucosal barrier, where they perform immune functions, help in tissue repair, and maintaining homeostasis. These tissues resident γδ T cells possess properties of innate and adaptive immune cells which enables them to perform a variety of functions during homeostasis and disease. Emerging data suggest the involvement of γδ T cells during transplant rejection and survival. Interestingly, several functions of γδ T cells can be modulated through their interaction with other immune cells. This review provides an overview of development, differentiation plasticity into regulatory and effector phenotypes of γδ T cells during homeostasis and various diseases.
Collapse
Affiliation(s)
- Shilpi Giri
- National Centre for Cell Science, NCCS Complex, SP Pune University Campus, Ganeshkhind, Pune, MH-411007, India
| | - Girdhari Lal
- National Centre for Cell Science, NCCS Complex, SP Pune University Campus, Ganeshkhind, Pune, MH-411007, India.
| |
Collapse
|
36
|
Silva PB, Michelin MA, Jammal MP, Murta EFC. Immunological Characteristics between αβ TDC and γδ TDC Cells in the Spleen of Breast Cancer-Induced Mice. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2021; 43:368-373. [PMID: 34077988 PMCID: PMC10302725 DOI: 10.1055/s-0041-1730286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE To evaluate the antitumoral role of γδ TDC cells and αβ TDC cells in an experimental model of breast cancer. METHODS Thirty female Balb/c mice were divided into 2 groups: control group (n = 15) and induced-4T1 group (n = 15), in which the mice received 2 × 105 4T1 mammary tumor cell line. Following the 28-day experimental period, immune cells were collected from the spleen and analyzed by flow cytometry for comparison of αβ TDC (TCRαβ+ CD11c+MHCII+) and γδ TDC (TCRγδ+CD11c+MHCII+) cells regarding surface markers (CD4+ and C8+) and cytokines (IFN-γ, TNF-α, IL-12 and IL-17). RESULTS A total of 26.53% of γδ TDC - control group (p < 0.0001) - the proportion of αβ TDC was lower in splenic cells than γδ TDC; however, these 2 cell types were reduced in tumor conditions (p < 0.0001), and the proportion of IFN-γ, TNF-α, IL-12 and IL-17 cytokines produced by γδ TDC was higher than those produced by αβ TDC, but it decreased under conditions of tumor-related immune system response (p < 0.0001). CONCLUSION Healthy mice engrafted with malignant cells 4T1 breast tumor presented TDC with γδ TCR repertoire. These cells express cytotoxic molecules of lymphocytes T, producing anti-tumor proinflammatory cytokines.
Collapse
Affiliation(s)
- Polyana Barbosa Silva
- Reseach Institute of Oncology, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Márcia Antoniazi Michelin
- Reseach Institute of Oncology, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil.,Discipline of Immunology, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Millena Prata Jammal
- Reseach Institute of Oncology, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil.,Department of Gynecology and Obstetrics, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Eddie Fernando Cândido Murta
- Reseach Institute of Oncology, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil.,Department of Gynecology and Obstetrics, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
37
|
Gaballa A, Alagrafi F, Uhlin M, Stikvoort A. Revisiting the Role of γδ T Cells in Anti-CMV Immune Response after Transplantation. Viruses 2021; 13:v13061031. [PMID: 34072610 PMCID: PMC8228273 DOI: 10.3390/v13061031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 01/15/2023] Open
Abstract
Gamma delta (γδ) T cells form an unconventional subset of T lymphocytes that express a T cell receptor (TCR) consisting of γ and δ chains. Unlike conventional αβ T cells, γδ T cells share the immune signature of both the innate and the adaptive immunity. These features allow γδ T cells to act in front-line defense against infections and tumors, rendering them an attractive target for immunotherapy. The role of γδ T cells in the immune response to cytomegalovirus (CMV) has been the focus of intense research for several years, particularly in the context of transplantation, as CMV reactivation remains a major cause of transplant-related morbidity and mortality. Therefore, a better understanding of the mechanisms that underlie CMV immune responses could enable the design of novel γδ T cell-based therapeutic approaches. In this regard, the advent of next-generation sequencing (NGS) and single-cell TCR sequencing have allowed in-depth characterization of CMV-induced TCR repertoire changes. In this review, we try to shed light on recent findings addressing the adaptive role of γδ T cells in CMV immunosurveillance and revisit CMV-induced TCR reshaping in the era of NGS. Finally, we will demonstrate the favorable and unfavorable effects of CMV reactive γδ T cells post-transplantation.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden; (F.A.); (M.U.); (A.S.)
- Department of Biochemistry and Molecular Biology, National Liver Institute, Menoufia University, Shebin Elkom 51132, Egypt
- Correspondence: ; Tel.: +46-858-580-000
| | - Faisal Alagrafi
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden; (F.A.); (M.U.); (A.S.)
- National Center for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden; (F.A.); (M.U.); (A.S.)
- Department of Applied Physics, Science for Life Laboratory, Royal Institute of Technology, 141 52 Stockholm, Sweden
- Department of Immunology and Transfusion Medicine, Karolinska University Hospital, 141 52 Stockholm, Sweden
| | - Arwen Stikvoort
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden; (F.A.); (M.U.); (A.S.)
| |
Collapse
|
38
|
Le T, Su S, Kirshtein A, Shahriyari L. Data-Driven Mathematical Model of Osteosarcoma. Cancers (Basel) 2021; 13:cancers13102367. [PMID: 34068946 PMCID: PMC8156666 DOI: 10.3390/cancers13102367] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
As the immune system has a significant role in tumor progression, in this paper, we develop a data-driven mathematical model to study the interactions between immune cells and the osteosarcoma microenvironment. Osteosarcoma tumors are divided into three clusters based on their relative abundance of immune cells as estimated from their gene expression profiles. We then analyze the tumor progression and effects of the immune system on cancer growth in each cluster. Cluster 3, which had approximately the same number of naive and M2 macrophages, had the slowest tumor growth, and cluster 2, with the highest population of naive macrophages, had the highest cancer population at the steady states. We also found that the fastest growth of cancer occurred when the anti-tumor immune cells and cytokines, including dendritic cells, helper T cells, cytotoxic cells, and IFN-γ, switched from increasing to decreasing, while the dynamics of regulatory T cells switched from decreasing to increasing. Importantly, the most impactful immune parameters on the number of cancer and total cells were the activation and decay rates of the macrophages and regulatory T cells for all clusters. This work presents the first osteosarcoma progression model, which can be later extended to investigate the effectiveness of various osteosarcoma treatments.
Collapse
Affiliation(s)
- Trang Le
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA; (T.L.); (S.S.)
| | - Sumeyye Su
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA; (T.L.); (S.S.)
| | - Arkadz Kirshtein
- Department of Mathematics, Tufts University, Medford, MA 02155, USA;
| | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA; (T.L.); (S.S.)
- Correspondence:
| |
Collapse
|
39
|
Caron J, Ridgley LA, Bodman-Smith M. How to Train Your Dragon: Harnessing Gamma Delta T Cells Antiviral Functions and Trained Immunity in a Pandemic Era. Front Immunol 2021; 12:666983. [PMID: 33854516 PMCID: PMC8039298 DOI: 10.3389/fimmu.2021.666983] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of viruses with pandemic potential such as the SARS-CoV-2 coronavirus causing COVID-19 poses a global health challenge. There is remarkable progress in vaccine technology in response to this threat, but their design often overlooks the innate arm of immunity. Gamma Delta (γδ) T cells are a subset of T cells with unique features that gives them a key role in the innate immune response to a variety of homeostatic alterations, from cancer to microbial infections. In the context of viral infection, a growing body of evidence shows that γδ T cells are particularly equipped for early virus detection, which triggers their subsequent activation, expansion and the fast deployment of antiviral functions such as direct cytotoxic pathways, secretion of cytokines, recruitment and activation of other immune cells and mobilization of a trained immunity memory program. As such, γδ T cells represent an attractive target to stimulate for a rapid and effective resolution of viral infections. Here, we review the known aspects of γδ T cells that make them crucial component of the immune response to viruses, and the ways that their antiviral potential can be harnessed to prevent or treat viral infection.
Collapse
Affiliation(s)
- Jonathan Caron
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| | - Laura Alice Ridgley
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| | - Mark Bodman-Smith
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
40
|
Schick J, Ritchie RP, Restini C. Breast Cancer Therapeutics and Biomarkers: Past, Present, and Future Approaches. Breast Cancer (Auckl) 2021; 15:1178223421995854. [PMID: 33994789 PMCID: PMC8100889 DOI: 10.1177/1178223421995854] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC) is the leading cause of cancer death in women and the second-most common cancer. An estimated 281 550 new cases of invasive BC will be diagnosed in women in the United States, and about 43 600 will die during 2021. Continual research has shed light on all disease areas, including tumor classification and biomarkers for diagnosis/prognosis. As research investigations evolve, new classes of drugs are emerging with potential benefits in BC treatment that are covered in this manuscript. The initial sections present updated classification and terminology used for diagnosis and prognosis, which leads to the following topics, discussing the past and present treatments available for BC. Our review will generate interest in exploring the complexity of the cell cycle and its association with cancer biology as part of the plethora of target factors toward developing newer drugs and effective therapeutic management of BC.
Collapse
Affiliation(s)
- Jason Schick
- College of Osteopathic Medicine, Michigan State University, Clinton Township, MI, USA
| | - Raquel P Ritchie
- College of Osteopathic Medicine, Michigan State University, Clinton Township, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Carolina Restini
- College of Osteopathic Medicine, Michigan State University, Clinton Township, MI, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
41
|
Barragué H, Fontaine J, Abravanel F, Mauré E, Péron JM, Alric L, Dubois M, Izopet J, Champagne E. Mobilization of γδ T Cells and IL-10 Production at the Acute Phase of Hepatitis E Virus Infection in Cytomegalovirus Carriers. THE JOURNAL OF IMMUNOLOGY 2021; 206:1027-1038. [PMID: 33483348 DOI: 10.4049/jimmunol.2000187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022]
Abstract
Alterations in the γδ T cell compartment have been reported in immunocompromised individuals infected with hepatitis E virus (HEV)-g3. We now report the analysis of blood γδ T cells from acutely HEV-infected individuals in the absence of immunosuppression. In these patients, non-Vδ2 (ND2) γδ T cells outnumbered otherwise predominant Vδ2 cells selectively in human CMV (HCMV)-seropositive patients and were higher than in HCMVpos controls, mimicking HCMV reactivation, whereas their serum was PCR-negative for HCMV. Stimulation of their lymphocytes with HEV-infected hepatocarcinoma cells led to an HEV-specific response in γδ subsets of HCMVpos individuals. HEV infection was associated with a lowered expression of TIGIT, LAG-3, and CD160 immune checkpoint markers on ND2 effector memory cells in HCMVneg but not in HCMVpos HEV patients. γδ cell lines, predominantly ND2, were generated from patients after coculture with hepatocarcinoma cells permissive to HEV and IL-2/12/18. Upon restimulation with HEV-infected or uninfected cells and selected cytokines, these cell lines produced IFN-γ and IL-10, the latter being induced by IL-12 in IFN-γ-producing cells and upregulated by HEV and IL-18. They were also capable of suppressing the proliferation of CD3/CD28-activated CD4 cells in transwell experiments. Importantly, IL-10 was detected in the plasma of 10 of 10 HCMVpos HEV patients but rarely in controls or HCMVneg HEV patients, implying that γδ cells are probably involved in IL-10 production at the acute phase of infection. Our data indicate that HEV mobilizes a pool of ND2 memory cells in HCMV carriers, promoting the development of an immunoregulatory environment.
Collapse
Affiliation(s)
- Hugo Barragué
- Université Toulouse III Paul-Sabatier, F-31024 Toulouse, France.,Centre de Physiopathologie de Toulouse Purpan, INSERM-U1043, CNRS-UMR5282, F-31024 Toulouse, France
| | - Jessica Fontaine
- Université Toulouse III Paul-Sabatier, F-31024 Toulouse, France.,Centre de Physiopathologie de Toulouse Purpan, INSERM-U1043, CNRS-UMR5282, F-31024 Toulouse, France
| | - Florence Abravanel
- Centre de Physiopathologie de Toulouse Purpan, INSERM-U1043, CNRS-UMR5282, F-31024 Toulouse, France.,CHU Toulouse, Hôspital Purpan, Laboratoire de Virologie, Centre National de Référence Hépatite E, F-31059 Toulouse, France; and
| | - Emilie Mauré
- Centre de Physiopathologie de Toulouse Purpan, INSERM-U1043, CNRS-UMR5282, F-31024 Toulouse, France
| | - Jean-Marie Péron
- Pôle Hospitalo-Universitaire des Maladies de l'Appareil Digestif, Hôspital Rangueil, F-31059 Toulouse, France
| | - Laurent Alric
- Pôle Hospitalo-Universitaire des Maladies de l'Appareil Digestif, Hôspital Rangueil, F-31059 Toulouse, France
| | - Martine Dubois
- CHU Toulouse, Hôspital Purpan, Laboratoire de Virologie, Centre National de Référence Hépatite E, F-31059 Toulouse, France; and
| | - Jacques Izopet
- Université Toulouse III Paul-Sabatier, F-31024 Toulouse, France.,Centre de Physiopathologie de Toulouse Purpan, INSERM-U1043, CNRS-UMR5282, F-31024 Toulouse, France.,CHU Toulouse, Hôspital Purpan, Laboratoire de Virologie, Centre National de Référence Hépatite E, F-31059 Toulouse, France; and
| | - Eric Champagne
- Université Toulouse III Paul-Sabatier, F-31024 Toulouse, France; .,Centre de Physiopathologie de Toulouse Purpan, INSERM-U1043, CNRS-UMR5282, F-31024 Toulouse, France
| |
Collapse
|
42
|
Li Y, Li G, Zhang J, Wu X, Chen X. The Dual Roles of Human γδ T Cells: Anti-Tumor or Tumor-Promoting. Front Immunol 2021; 11:619954. [PMID: 33664732 PMCID: PMC7921733 DOI: 10.3389/fimmu.2020.619954] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
γδ T cells are the unique T cell subgroup with their T cell receptors composed of γ chain and δ chain. Unlike αβ T cells, γδ T cells are non-MHC-restricted in recognizing tumor antigens, and therefore defined as innate immune cells. Activated γδ T cells can promote the anti-tumor function of adaptive immune cells. They are considered as a bridge between adaptive immunity and innate immunity. However, several other studies have shown that γδ T cells can also promote tumor progression by inhibiting anti-tumor response. Therefore, γδ T cells may have both anti-tumor and tumor-promoting effects. In order to clarify this contradiction, in this review, we summarized the functions of the main subsets of human γδ T cells in how they exhibit their respective anti-tumor or pro-tumor effects in cancer. Then, we reviewed recent γδ T cell-based anti-tumor immunotherapy. Finally, we summarized the existing problems and prospect of this immunotherapy.
Collapse
Affiliation(s)
- Yang Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Gen Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jian Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoli Wu
- School of Life Sciences, Tian Jin University, Tian Jin, China
| | - Xi Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
43
|
Andreu-Ballester JC, Galindo-Regal L, Hidalgo-Coloma J, Cuéllar C, García-Ballesteros C, Hurtado C, Uribe N, del Carmen Martín M, Jiménez AI, López-Chuliá F, Llombart-Cussac A. Differences in circulating γδ T cells in patients with primary colon cancer and relation with prognostic factors. PLoS One 2020; 15:e0243545. [PMID: 33326443 PMCID: PMC7743935 DOI: 10.1371/journal.pone.0243545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/24/2020] [Indexed: 01/11/2023] Open
Abstract
Downregulation of the T cell system has been proposed as a mechanism to block immunity in colonic cancer (CC). However, little has been studied about circulating αβ and γδ T cells and their immunological status in newly diagnosed patients. The aim of this study was to characterize the αβ and γδ T cell subsets in peripheral blood of patients with CC matched with healthy volunteers. In this prospective case-control study, blood samples were obtained from 96 patients with newly diagnosed treatment-naïve infiltrating colonic adenocarcinoma and 48 healthy volunteers. Pathological report at surgery was obtained from all CC patients. A significant decrease in CD3+ γδ T cells and CD3+CD8+ γδ T cells (p<0.001) were observed in CC patients. Apoptosis was significantly increased in all conventional and both αβ and γδ T cell subsets in patients with CC vs healthy subjects. γδ T cells were decreased in peripheral blood of patients with microscopic infiltration in tissues, history of cancer and synchronous colon cancer (p < 0.05). IFN-γ was significantly reduced in CC patients compared to controls. Cytotoxic effector γδ T cells TEMRA (CD8 and CD56) are the proportionally most abundant T cells in peripheral blood of CC patients. Patients with CC present a deep downregulation in the systemic T-cell immunity. These variations are evident through all tumor stages and suggest that a deficiency in γδ T cell populations could be preventing control of tumor progression. This fact prove the role of immunomodulation on CC carcinogenesis.
Collapse
Affiliation(s)
| | | | - Julia Hidalgo-Coloma
- Department of Medical Oncology, Arnau de Vilanova University Hospital, València, Spain
| | - Carmen Cuéllar
- Faculty of Pharmacy, Department of Microbiology and Parasitology, Complutense University, Madrid, Spain
| | | | - Carolina Hurtado
- Faculty of Pharmacy, Laboratory of Parasitology, University San Pablo CEU, Madrid, Spain
| | - Natalia Uribe
- Department of General and Digestive Surgery, Arnau de Vilanova University Hospital, València, Spain
| | - María del Carmen Martín
- Department of General and Digestive Surgery, Arnau de Vilanova University Hospital, València, Spain
| | - Ana Isabel Jiménez
- Pathology Department, Arnau de Vilanova University Hospital, València, Spain
| | | | | |
Collapse
|
44
|
Mi K, Chen F, Qian Z, Chen J, Lv D, Zhang C, Xu Y, Wang H, Zhang Y, Jiang Y, Shang D. Characterizing heterogeneity of non-small cell lung tumour microenvironment to identify signature prognostic genes. J Cell Mol Med 2020; 24:14608-14618. [PMID: 33184998 PMCID: PMC7754023 DOI: 10.1111/jcmm.16092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022] Open
Abstract
Growing evidence has highlighted the immune response as an important feature of carcinogenesis and therapeutic efficacy in non‐small cell lung cancer (NSCLC). This study focused on the characterization of immune infiltration profiling in patients with NSCLC and its correlation with survival outcome. All TCGA samples were divided into three heterogeneous clusters based on immune cell profiles: cluster 1 ('low infiltration' cluster), cluster 2 ('heterogeneous infiltration' cluster) and cluster 3 ('high infiltration' cluster). The immune cells were responsible for a significantly favourable prognosis for the 'high infiltration' community. Cluster 1 had the lowest cytotoxic activity, tumour‐infiltrating lymphocytes and interferon‐gamma (IFN‐γ), as well as immune checkpoint molecules expressions. In addition, MHC‐I and immune co‐stimulator were also found to have lower cluster 1 expressions, indicating a possible immune escape mechanism. A total of 43 differentially expressed genes (DEGs) that overlapped among the groups were determined based on three clusters. Finally, based on a univariate Cox regression model, prognostic immune‐related genes were identified and combined to construct a risk score model able to predict overall survival (OS) rates in the validation datasets.
Collapse
Affiliation(s)
- Kai Mi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Fuhui Chen
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhipeng Qian
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jing Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Dongxu Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongguang Wang
- School of Civil Engineering, Northeast Forestry University, Harbin, China.,Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), School of Material Science and Engineering, Northeast Forestry University, Harbin, China
| | - Yuepeng Zhang
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Desi Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
45
|
Arneth B. Contributions of T cells in multiple sclerosis: what do we currently know? J Neurol 2020; 268:4587-4593. [PMID: 33083867 DOI: 10.1007/s00415-020-10275-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a complex autoimmune disorder characterized by neurologic dysfunction. The symptoms worsen as the disease progresses to the relapsing stage. AIM This study aimed to examine the role of T cells in MS pathogenesis. MATERIALS AND METHODS The review was performed based on articles obtained from PsycINFO, PubMed, Web of Science, and CINAHL. Search terms and phrases, such as "multiple sclerosis," "MS," "T cells," "development," "Dysregulated T cells," and "Effector T cells", were used to identify articles that could help explore the research topic. RESULTS The pathogenesis of MS is linked to the regulatory, inflammatory, suppressive, and effector roles of T cells. However, the actual roles of specific T cell subsets in MS development are not well understood. DISCUSSION The study revealed a significant link between MS and T cell activity. Targeting T cells is a potential strategy for the development of new therapies to manage MS. CONCLUSION MS is a complex demyelinating condition that affects several million people around the world. Research has revealed that various classes of T cells, including effector T cells and regulatory T cells, influence the development and progression of MS. Further investigations are required to elucidate the underlying mechanisms through which specific T cell populations influence MS pathogenesis.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg UKGM, Justus Liebig University Giessen, Feulgenstr 12, 35440, Giessen, Germany.
| |
Collapse
|
46
|
Wesch D, Kabelitz D, Oberg HH. Tumor resistance mechanisms and their consequences on γδ T cell activation. Immunol Rev 2020; 298:84-98. [PMID: 33048357 DOI: 10.1111/imr.12925] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Human γδ T lymphocytes are predominated by two major subsets, defined by the variable domain of the δ chain. Both, Vδ1 and Vδ2 T cells infiltrate in tumors and have been implicated in cancer immunosurveillance. Since the localization and distribution of tumor-infiltrating γδ T cell subsets and their impact on survival of cancer patients are not completely defined, this review summarizes the current knowledge about this issue. Different intrinsic tumor resistance mechanisms and immunosuppressive molecules of immune cells in the tumor microenvironment have been reported to negatively influence functional properties of γδ T cell subsets. Here, we focus on selected tumor resistance mechanisms including overexpression of cyclooxygenase (COX)-2 and indolamine-2,3-dioxygenase (IDO)-1/2, regulation by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/TRAIL-R4 pathway and the release of galectins. These inhibitory mechanisms play important roles in the cross-talk of γδ T cell subsets and tumor cells, thereby influencing cytotoxicity or proliferation of γδ T cells and limiting a successful γδ T cell-based immunotherapy. Possible future directions of a combined therapy of adoptively transferred γδ T cells together with γδ-targeting bispecific T cell engagers and COX-2 or IDO-1/2 inhibitors or targeting sialoglycan-Siglec pathways will be discussed and considered as attractive therapeutic options to overcome the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
47
|
Chabab G, Barjon C, Bonnefoy N, Lafont V. Pro-tumor γδ T Cells in Human Cancer: Polarization, Mechanisms of Action, and Implications for Therapy. Front Immunol 2020; 11:2186. [PMID: 33042132 PMCID: PMC7524881 DOI: 10.3389/fimmu.2020.02186] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor immune microenvironment contributes to tumor initiation, progression and response to therapy. Among the immune cell subsets that play a role in the tumor microenvironment, innate-like T cells that express T cell receptors composed of γ and δ chains (γδ T cells) are of particular interest. Indeed, γδ T cells contribute to the immune response against many cancers, notably through their powerful effector functions that lead to the elimination of tumor cells and the recruitment of other immune cells. However, their presence in the tumor microenvironment has been associated with poor prognosis in various solid cancers (breast, colon and pancreatic cancer), suggesting that γδ T cells also display pro-tumor activities. In this review, we outline the current evidences of γδ T cell pro-tumor functions in human cancer. We also discuss the factors that favor γδ T cell polarization toward a pro-tumoral phenotype, the characteristics and functions of such cells, and the impact of pro-tumor subsets on γδ T cell-based therapies.
Collapse
Affiliation(s)
- Ghita Chabab
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Clément Barjon
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Nathalie Bonnefoy
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Virginie Lafont
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| |
Collapse
|
48
|
Abstract
Worldwide, approximately half a million people are diagnosed with pancreatic cancer every year, with mortality rates of more than 90%. T cells within pancreatic tumors are generally infrequent and incapable of eliciting antitumor immunity. Thus, pancreatic cancer is considered an "immunologically cold" tumor. However, recent studies clearly show that when T-cell immunity in pancreatic cancer is sufficiently induced, T cells become effective weapons. This fact suggests that to improve pancreatic cancer patients' clinical outcomes, we need to unveil the complex immune biology of this disease. In this review, we discuss the elements of tumor immunogenicity in the specific context of pancreatic malignancy.
Collapse
|
49
|
Vitiello GA, Miller G. Targeting the interleukin-17 immune axis for cancer immunotherapy. J Exp Med 2020; 217:jem.20190456. [PMID: 31727783 PMCID: PMC7037254 DOI: 10.1084/jem.20190456] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/23/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
IL-17 plays versatile roles during tumorigenesis. Here, Vitiello and Miller summarize current knowledge in harnessing IL-17–producing γδ and Th17 cells for successful cancer immunotherapy. The role of IL-17 in cancer remains controversial. Emerging evidence suggests that during early oncogenesis IL-17 supports tumor growth, whereas in established tumors IL-17 production by γδ and Th17 cells potentiates antitumor immunity. Consequently, γδ and Th17 cells are attractive targets for immunotherapy in the IL-17 immune axis. To optimize IL-17–based immunotherapy, a deeper understanding of the cytokines dictating IL-17 production and the polarity of γδ and Th17 cells is critical. Here, we delve into the dichotomous roles of IL-17 in cancer and provide insight into the tumor microenvironment conducive for successful IL-17–based γδ and Th17 cell immunotherapy.
Collapse
Affiliation(s)
- Gerardo A Vitiello
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY
| | - George Miller
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY
| |
Collapse
|
50
|
Siegers GM, Dutta I, Kang EY, Huang J, Köbel M, Postovit LM. Aberrantly Expressed Embryonic Protein NODAL Alters Breast Cancer Cell Susceptibility to γδ T Cell Cytotoxicity. Front Immunol 2020; 11:1287. [PMID: 32636849 PMCID: PMC7319087 DOI: 10.3389/fimmu.2020.01287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/21/2020] [Indexed: 01/18/2023] Open
Abstract
Gamma delta (γδ) T cells kill transformed cells, and increased circulating γδ T cells levels correlate with improved outcome in cancer patients; however, their function within the breast tumor microenvironment (TME) remains controversial. As tumors progress, they begin to express stem-cell associated proteins, concomitant with the emergence of therapy resistant metastatic disease. For example, invasive breast cancers often secrete the embryonic morphogen, NODAL. NODAL has been shown to promote angiogenesis, therapy resistance and metastasis in breast cancers. However, to date, little is known about how this secreted protein may interact with cells in the TME. Herein we explore how NODAL in the TME may influence γδ T cell function. We have assessed the proximity of γδ T cells to NODAL in a cohort of triple negative breast tumors. In all cases in which γδ T cells could be identified in these tumors, γδ T cells were found in close proximity to NODAL-expressing tumor cells. Migration of γδ and αβ T cells was similar toward MDA-MB-231 cells in which NODAL had been knocked down (shN) and MDA-MB-231 scrambled control cells (shC). Furthermore, Vδ1 γδ T cells did not migrate preferentially toward conditioned medium from these cell lines. While 24-h exposure to NODAL did not impact CD69, PD-1, or T cell antigen receptor (TCR) expression on γδ T cells, long term exposure resulted in decreased Vδ2 TCR expression. Maturation of γδ T cells was not significantly influenced by NODAL stimulation. While neither short- nor long-term NODAL stimulation impacted the ability of γδ T cells to kill MCF-7 breast cancer cells, the absence of NODAL resulted in greater sensitivity of targets to γδ T cell cytotoxicity, while overexpression of NODAL conferred resistance. This appeared to be at least in part due to an inverse correlation between NODAL and surface MICA/B expression on breast cancer target lines. As such, it appears that NODAL may play a role in strategies employed by breast cancer cells to evade γδ T cell targeting, and this should be considered in the development of safe and effective γδ T cell immunotherapies.
Collapse
Affiliation(s)
| | - Indrani Dutta
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Eun Young Kang
- Department of Pathology and Laboratory Medicine, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
| | - Jing Huang
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
| | - Lynne-Marie Postovit
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|