1
|
Chapman PA, Hudson D, Morgan XC, Beck CW. The role of family and environment in determining the skin bacterial communities of captive aquatic frogs, Xenopus laevis. FEMS Microbiol Ecol 2024; 100:fiae131. [PMID: 39317670 PMCID: PMC11503959 DOI: 10.1093/femsec/fiae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024] Open
Abstract
Skin microbes play an important role in amphibian tissue regeneration. Xenopus spp. (African clawed frogs) are well-established model organisms, and standard husbandry protocols, including use of antibiotics, may affect experimental outcomes by altering bacterial assemblages. It is therefore essential to improve knowledge of Xenopus bacterial community characteristics and inheritance. We undertook bacterial 16S rRNA gene sequencing and source tracking of a captive Xenopus laevis colony, including various life stages and environmental samples across multiple aquarium systems. Tank environments supported the most complex bacterial communities, while egg jelly bacteria were the most diverse of frog life stages; tadpole bacterial communities were relatively simple. Rhizobium (Proteobacteria) and Chryseobacterium (Bacteroidota) were dominant in tadpoles, whereas Chryseobacterium, Vogesella (Proteobacteria), and Acinetobacter (Proteobacteria) were common in females. Tadpoles received approximately two-thirds of their bacteria via vertical transmission, though 23 genera were differentially abundant between females and tadpoles. Female frog skin appears to select for specific taxa, and while tadpoles inherit a proportion of their skin bacteria from females via the egg, they support a distinct and less diverse community. The outcomes of this study suggest the impacts of breaking the bacterial transmission chain with antibiotic treatment should be considered when raising tadpoles for experimental purposes.
Collapse
Affiliation(s)
- Phoebe A Chapman
- Department of Zoology, University of Otago, Dunedin, 9016, New Zealand
| | - Daniel Hudson
- Department of Zoology, University of Otago, Dunedin, 9016, New Zealand
| | - Xochitl C Morgan
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, United States
| | - Caroline W Beck
- Department of Zoology, University of Otago, Dunedin, 9016, New Zealand
| |
Collapse
|
2
|
Risely A, Byrne PG, Hunter DA, Carranco AS, Hoye BJ, Silla AJ. Skin Bacterial and Fungal Microbiome Responses to Diet Supplementation and Rewilding in the Critically Endangered Southern Corroboree Frog. Mol Ecol 2024:e17562. [PMID: 39431302 DOI: 10.1111/mec.17562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024]
Abstract
The composition and dynamics of the skin bacterial and fungal microbiome is thought to influence host-pathogen defence. This microbial community is shaped by host captivity, diet, and microbial interactions between bacterial and fungal components. However, there remains little understanding of how specific micronutrients influence bacterial and fungal microbiome composition and their inter-domain interactions during rewilding of captive-bred animals. This study experimentally investigated the effect of dietary beta-carotene supplementation and subsequent field release on bacterial and fungal microbiome composition and dynamics using the Southern Corroboree frog (Pseudophryne corroboree) as a model system. We found large-scale diversification of bacterial communities post-release and similar diversification of fungal communities. The rewilded fungal mycobiome was more transient and demonstrated stronger temporal and micro-spatial fluctuations than the bacterial microbiome. Accounting for temporal and spatial factors, we found strong residual associations between bacterial members, yet limited evidence for inter-domain associations, suggesting that co-occurrence patterns between bacterial and fungal communities are largely a result of shared responses to the environment rather than direct interactions. Lastly, we found supplementation of dietary beta-carotene in captivity had no impact on post-release microbiome diversity, yet was associated with approximately 15% of common bacterial and fungal genera. Our research demonstrates that environmental factors play a dominant role over dietary beta-carotene supplementation in shaping microbiome diversity post-release, and suggest inter-domain interactions may also only exert a minor influence. Further research on the function and ecology of skin bacterial and fungal microbiomes will be crucial for developing strategies to support survival of endangered amphibian species.
Collapse
Affiliation(s)
- Alice Risely
- School of Science, Engineering and Environment, University of Salford, Manchester, UK
| | - Phillip G Byrne
- Environmental Futures, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - David A Hunter
- NSW Department of Climate Change, Energy, the Environment and Water, Albury, New South Wales, Australia
| | - Ana S Carranco
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Bethany J Hoye
- Environmental Futures, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Aimee J Silla
- Environmental Futures, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
3
|
Wang ZY, Xie WQ, Xiang ZY, Zhang CY, Xie YG, Quah RYC, Ding GH. Exploring the effects of environmentally relevant concentrations of tris(2-chloroethyl) phosphate on tadpole health: A comprehensive analysis of intestinal microbiota and hepatic transcriptome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174428. [PMID: 38964390 DOI: 10.1016/j.scitotenv.2024.174428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/10/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Tris(2-chloroethyl) phosphate (TCEP), a chlorinated organophosphate ester, is commonly found in aquatic environments. Due to its various toxic effects, it may pose a risk to the health of aquatic organisms. However, the potential impacts of TCEP exposure on the intestinal microbiota and hepatic function in amphibians have not been reported. This study investigated the impact of long-term exposure to environmentally relevant concentrations of TCEP (0, 3, and 90 μg/L) on the intestinal microbiota and hepatic transcriptome of Polypedates megacephalus tadpoles. The results showed that the body size of the tadpoles decreased significantly with an increase in TCEP concentration. Additionally, TCEP exposure affected the diversity and composition of the intestinal microbiota in tadpoles, leading to significant changes in the relative abundance of certain bacterial groups (the genera Aeromonas decreased and Citrobacter increased) and potentially promoting a more even distribution of microbial species, as indicated by a significant increase in the Simpson index. Moreover, the impact of TCEP on hepatic gene expression profiles in tadpoles was significant, with the majority of differentially expressed genes (DEGs) (709 out of 906 total DEGs in 3 μg/L of TCEP versus control, and 344 out of 387 DEGs in 90 μg/L of TCEP versus control) being significantly down-regulated, which were primarily related to immune response and immune system process. Notably, exposure to TCEP significantly reduced the relative abundance of the genera Aeromonas and Cetobacterium in the tadpole intestine. This reduction was positively correlated with the down-regulated expression of immune-related genes in the liver of corresponding tadpoles. In summary, these findings provide empirical evidence of the potential health risks to tadpoles exposed to TCEP at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Zi-Ying Wang
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, Zhejiang, China; College of Animal Science and Technology, Zhejiang A & F University, Lin'an, Zhejiang, China
| | - Wen-Qi Xie
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, Zhejiang, China
| | - Zi-Yong Xiang
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, Zhejiang, China
| | - Chi-Ying Zhang
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, Zhejiang, China
| | - Yi-Ge Xie
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, Zhejiang, China
| | - Roy You Chen Quah
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Guo-Hua Ding
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, Zhejiang, China.
| |
Collapse
|
4
|
Li Y, Li Z, Wang H. Gut dysbiosis of Rana zhenhaiensis tadpoles after lead (Pb) exposure based on integrated analysis of microbiota and gut transcriptome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116922. [PMID: 39181079 DOI: 10.1016/j.ecoenv.2024.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Lead (Pb) is a ubiquitously detected heavy metal pollutant in aquatic ecosystems. Previous studies focused mainly on the response of gut microbiota to Pb stress, with less emphasis on gene expression in intestine, thereby limiting the information about impacts of Pb on intestinal homeostasis in amphibians. Here, microbial community and transcriptional response of intestines in Rana zhenhaiensis tadpoles to Pb exposure were evaluated. Our results showed that 10 μg/L Pb significantly decreased bacterial diversity compared to the controls by the Simpson index. Additionally, 1000 μg/L Pb exposure resulted in a significant reduction in the abundance of Fusobacteriota phylum and Cetobacterium genus but a significant expansion in Hafnia-Obesumbacterium genus. Moreover, transcriptome analysis revealed that about 90 % of the DEGs (8458 out of 9450 DEGs) were down-regulated in 1000 μg/L Pb group, mainly including genes annotated with biological functions in fatty acid degradation, and oxidative phosphorylation, while up-regulated DEGs involved in metabolism of xenobiotics by cytochrome P450. The expression of Gsto1, Gsta5, Gstt4, and Nadph showed strong correlation with the abundance of genera Serratia, Lactococcus, and Hafnia-Obesumbacterium. The findings of this study provide important insights into understanding the influence of Pb on intestinal homeostasis in amphibians.
Collapse
Affiliation(s)
- Yonghui Li
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China.
| | - Zizhu Li
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China.
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
5
|
Liu S, Imad S, Hussain S, Xiao S, Yu X, Cao H. Sex, health status and habitat alter the community composition and assembly processes of symbiotic bacteria in captive frogs. BMC Microbiol 2024; 24:34. [PMID: 38262927 PMCID: PMC10804495 DOI: 10.1186/s12866-023-03150-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Frogs are critical economic animals essential to agricultural ecosystem equilibrium. However, Meningitis-like Infectious Disease (MID) often affects them in agricultural settings. While frog-associated microbiota contribute to elemental cycling and immunity, the effects of frog sex and health on gut bacteria remain understudied, and the relationship between frog habitat and soil microbes is unclear. We aimed to determine how frog sex, health status and habitat influence symbiotic bacteria and community assembly mechanism to provide guidance for sustainable frog farming and conservation. RESULTS We employed 16S rRNA sequencing to investigate gut microbiota differences in relation to frog sex and health status. We also compared symbiotic communities in frog-aggregation, native and soybean soil on the farm. Results showed that gut bacterial β-diversity and taxonomy were markedly influenced by frog sex and health. Healthy frogs had more robust gut bacterial metabolism than frogs infected with MID. Cooccurrence network analysis revealed that healthy female frogs had more complex microbial network structure than males; however, diseased males showed the greatest network complexity. The assembly mechanism of gut bacteria in male frogs was dominated by deterministic processes, whereas in female frogs it was dominated by stochastic processes. Among symbiotic bacteria in frog habitat soils, deterministic processes predominantly shaped the community assembly of soybean soil. In particular, soybean soil was enriched in pathogens and nitrogen functions, whereas frog-aggregation soil was markedly increased in sulphur respiration and hydrocarbon degradation. CONCLUSION Our study reveals that sex mainly alters the interaction network and assembly mechanism of frog intestinal bacteria; MID infection significantly inhibits the metabolic functions of intestinal bacteria. Furthermore, diverse frog habitat soils could shape more symbiotic bacteria to benefit frog farming. Our findings provide new horizons for symbiotic bacteria among frogs, which could contribute to sustainable agriculture and ecological balance.
Collapse
Affiliation(s)
- Senlin Liu
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, Jiangsu, 210095, People's Republic of China
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Sewar Imad
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Sarfraz Hussain
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, Jiangsu, 210095, People's Republic of China
| | | | - Xiaowei Yu
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Hui Cao
- College of Life Sciences/Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affair, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
6
|
Risely A, Byrne PG, Hoye BJ, Silla AJ. Dietary carotenoid supplementation has long-term and community-wide effects on the amphibian skin microbiome. Mol Ecol 2024; 33:e17203. [PMID: 37962103 DOI: 10.1111/mec.17203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/24/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The amphibian skin microbiome plays a crucial role in host immunity and pathogen defence, yet we know little about the environmental drivers of skin microbial variation across host individuals. Inter-individual variation in the availability of micro-nutrients such as dietary carotenoids, which are involved in amphibian immunity, may be one factor that influences skin microbial assembly across different life history stages. We compared the effect of four carotenoid supplementation regimes during different life stages on the adult skin microbiome using a captive population of the critically endangered southern corroboree frog, Pseudophryne corroboree. We applied 16S rRNA sequencing paired with joint-species distribution models to examine the effect of supplementation on taxon abundances. We found that carotenoid supplementation had subtle yet taxonomically widespread effects on the skin microbiome, even 4.5 years post supplementation. Supplementation during any life-history stage tended to have a positive effect on the number of bacterial taxa detected, although explanatory power was low. Some genera were sensitive to supplementation pre-metamorphosis, but most demonstrated either additive or dominant effects, whereby supplementation during one life history stage had intermediate or similar effects, respectively, to supplementation across life. Carotenoid supplementation increased abundances of taxa belonging to lactic acid bacteria, including Lactococcus and Enterococcus, a group of bacteria that have previously been linked to protection against the amphibian fungal pathogen Batrachochytrium dendrobatidis (Bd). While the fitness benefits of these microbial shifts require further study, these results suggest a fundamental relationship between nutrition and the amphibian skin microbiome which may be critical to amphibian health and the development of novel conservation strategies.
Collapse
Affiliation(s)
- A Risely
- School of Science, Engineering and Environment, Salford University, Manchester, UK
| | - Phillip G Byrne
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Bethany J Hoye
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Aimee J Silla
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
7
|
Chai L, Song Y, Chen A, Jiang L, Deng H. Gut microbiota perturbations during larval stages in Bufo gargarizans tadpoles after Cu exposure with or without the presence of Pb. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122774. [PMID: 37871736 DOI: 10.1016/j.envpol.2023.122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Cu and Pb are ubiquitous environmental contaminants, but there is limited information on their potential impacts on gut microbiota profile in anuran amphibians at different developmental stages during metamorphosis. In this study, Bufo gargarizans tadpoles were chronically exposed to Cu alone or Cu combined with Pb from Gs26 throughout metamorphosis. Morphology of tadpoles, histological characteristic and bacterial community of intestines were evaluated at three developmental stages: Gs33, Gs36, and Gs42. Results showed that Cu and Cu + Pb exposure caused various degrees of morphological and histological changes in guts at tested three stages. In addition, bacterial richness and diversity in tadpoles especially at Gs33 and Gs42 were disturbed by Cu and Cu + Pb. Beta diversity demonstrated that the bacterial community structures were influenced by both heavy metals exposure and developmental stages. Alterations in taxonomic composition were characterized by increased abundance of Proteobacteria and Firmicutes, reduction of Fusobacteriota, as well as decreased Cetobacterium and increased C39 at all three stages. Overall, response of gut bacterial diversity and composition to Cu stress depends on the developmental stage, while the altered patterns of bacterial community at Cu stress could be modified further by the presence of Pb. Moreover, predicted metabolic disorders were associated with shifts in bacterial community, but needs integrated information from metagenomic and metatranscriptomic analyses. These results contribute to the growing body of research about potential ecotoxicological effects of heavy metals on amphibian gut microbiota during metamorphosis.
Collapse
Affiliation(s)
- Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China.
| | - Yanjiao Song
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China.
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Ling Jiang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Hongzhang Deng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| |
Collapse
|
8
|
Niu Y, Li X, Zhang H, Xu T, Wei D, An Z, Storey KB. Hepatic transcriptome and gut microbiome provide insights into freeze tolerance in the high-altitude frog, Nanorana parkeri. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101147. [PMID: 37797475 DOI: 10.1016/j.cbd.2023.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/03/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Among amphibians, freeze tolerance is a low-temperature survival strategy that has been well studied in several species. One influence on animal health and survival under adverse conditions is the gut microbiome. Gut microbes can be greatly affected by temperature fluctuations but, to date, this has not been addressed in high-altitude species. Nanorana parkeri (Anura: Dicroglossidae) lives at high altitudes on the Tibetan plateau and shows a good freeze tolerance. In the present study, we addressed two goals: (1) analysis of the effects of whole body freezing on the liver transcriptome, and (2) assess modifications of the gut microbiome as a consequence of freezing. We found that up-regulated genes in liver were significantly enriched in lipid and fatty acid metabolism that could contribute to accumulating the cryoprotectant glycerol and raising levels of unsaturated fatty acids. The results suggest the crucial importance of membrane adaptations and fuel reserves for freezing survival of these frogs. Down-regulated genes were significantly enriched in the immune response and inflammatory response, suggesting that energy-consuming processes are inhibited to maintain metabolic depression during freezing. Moreover, freezing had a significant effect on intestinal microbiota. The abundance of bacteria in the family Lachnospiraceae was significantly increased after freezing exposure, which likely supports freezing survival of N. parkeri. The lower abundance of bacteria in the family Peptostreptococcaceae in frozen frogs may be associated with the hypometabolic state and decreased immune response. In summary, these findings provide insights into the regulatory mechanisms of freeze tolerance in a high-altitude amphibian at the level of gene expression and gut microbiome, and contribute to enhancing our understanding of the adaptations that support frog survival in high-altitude extreme environments.
Collapse
Affiliation(s)
- Yonggang Niu
- Department of Life Sciences, Dezhou University, Dezhou, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China.
| | - Xiangyong Li
- Department of Life Sciences, Dezhou University, Dezhou, China; Wuhan National Laboratory for Optoelectronics, China
| | - Haiying Zhang
- Department of Life Sciences, Dezhou University, Dezhou, China
| | - Tisen Xu
- Department of Life Sciences, Dezhou University, Dezhou, China
| | - Dengbang Wei
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Zhifang An
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
9
|
Ramírez-Barahona S, González-Serrano FM, Martínez-Ugalde E, Soto-Pozos A, Parra-Olea G, Rebollar EA. Host phylogeny and environment shape the diversity of salamander skin bacterial communities. Anim Microbiome 2023; 5:52. [PMID: 37828573 PMCID: PMC10571319 DOI: 10.1186/s42523-023-00271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
The composition and diversity of animal-associated microbial communities are shaped by multiple ecological and evolutionary processes acting at different spatial and temporal scales. Skin microbiomes are thought to be strongly influenced by the environment due to the direct interaction of the host's skin with the external media. As expected, the diversity of amphibian skin microbiomes is shaped by climate and host sampling habitats, whereas phylogenetic effects appear to be weak. However, the relative strength of phylogenetic and environmental effects on salamander skin microbiomes remains poorly understood. Here, we analysed sequence data from 1164 adult salamanders of 44 species to characterise and compare the diversity and composition of skin bacteria. We assessed the relative contribution of climate, host sampling habitat, and host phylogeny to the observed patterns of bacterial diversity. We found that bacterial alpha diversity was mainly associated with host sampling habitat and climate, but that bacterial beta diversity was more strongly associated with host taxonomy and phylogeny. This phylogenetic effect predominantly occurred at intermediate levels of host divergence (0-50 Mya). Our results support the importance of environmental factors shaping the diversity of salamander skin microbiota, but also support host phylogenetic history as a major factor shaping these bacterial communities.
Collapse
Affiliation(s)
- S Ramírez-Barahona
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - F M González-Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - E Martínez-Ugalde
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - A Soto-Pozos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - G Parra-Olea
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - E A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
10
|
Hartmann AM, McGrath-Blaser SE, Colón-Piñeiro Z, Longo AV. Ontogeny drives shifts in skin bacterial communities in facultatively paedomorphic salamanders. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001399. [PMID: 37815535 PMCID: PMC10634365 DOI: 10.1099/mic.0.001399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
Microbiomes are major determinants of host growth, development and survival. In amphibians, host-associated bacteria in the skin can inhibit pathogen infection, but many processes can influence the structure and composition of the community. Here we quantified the shifts in skin-associated bacteria across developmental stages in the striped newt (Notophthalmus perstriatus), a threatened salamander species with a complex life history and vulnerable to infection by the amphibian chytrid fungus Batrachochytrium dendrobatidis and ranavirus. Our analyses show that pre-metamorphic larval and paedomorphic stages share similar bacterial compositions, and that the changes in the microbiome coincided with physiological restructuring during metamorphosis. Newts undergoing metamorphosis exhibited microbiome compositions that were intermediate between paedomorphic and post-metamorphic stages, further supporting the idea that metamorphosis is a major driver of host-associated microbes in amphibians. We did not find support for infection-related disruption of the microbiome, though infection replicates were small for each respective life stage.
Collapse
Affiliation(s)
- Arik M. Hartmann
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | | | | | - Ana V. Longo
- Department of Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Santos B, Martins FMS, Sabino-Pinto J, Licata F, Crottini A. Skin and gut microbiomes of tadpoles vary differently with host and water environment: a short-term experiment using 16S metabarcoding. Sci Rep 2023; 13:16321. [PMID: 37770544 PMCID: PMC10539280 DOI: 10.1038/s41598-023-43340-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/22/2023] [Indexed: 09/30/2023] Open
Abstract
The host-microbiome community is influenced by several host and environmental factors. In order to disentangle the individual effects of host and environment, we performed a laboratory experiment to assess the effects of the exposure to different water sources on the skin and gut microbiome of two amphibian species (Pelophylax perezi and Bufo spinosus). We observed that the bacterial communities greatly varied with water environment and host identity. Tadpoles of B. spinosus collected from a waterbody with poorer bacterial diversity exhibited a more diverse skin and gut microbiome after exposed to a richer water source. Tadpoles of P. perezi, originally collected from a richer water environment, exhibited less marked alterations in diversity patterns independently of the water source but showed alterations in gut composition. These results highlight that environment alterations, such as the water source, combined with the host effect, impact the microbiome of amphibian species in different ways; the population history (e.g., previous water environment and habitat) of the host species may also influence future alterations on tadpole microbiome.
Collapse
Affiliation(s)
- Bárbara Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
| | - Filipa M S Martins
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Joana Sabino-Pinto
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Fulvio Licata
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Angelica Crottini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal
| |
Collapse
|
12
|
Garcia C, Andersen CJ, Blesso CN. The Role of Lipids in the Regulation of Immune Responses. Nutrients 2023; 15:3899. [PMID: 37764683 PMCID: PMC10535783 DOI: 10.3390/nu15183899] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Lipid metabolism plays a major role in the regulation of the immune system. Exogenous (dietary and microbial-derived) and endogenous (non-microbial-derived) lipids play a direct role in regulating immune cell activation, differentiation and expansion, and inflammatory phenotypes. Understanding the complexities of lipid-immune interactions may have important implications for human health, as certain lipids or immune pathways may be beneficial in circumstances of acute infection yet detrimental in chronic inflammatory diseases. Further, there are key differences in the lipid effects between specific immune cell types and location (e.g., gut mucosal vs. systemic immune cells), suggesting that the immunomodulatory properties of lipids may be tissue-compartment-specific, although the direct effect of dietary lipids on the mucosal immune system warrants further investigation. Importantly, there is recent evidence to suggest that lipid-immune interactions are dependent on sex, metabolic status, and the gut microbiome in preclinical models. While the lipid-immune relationship has not been adequately established in/translated to humans, research is warranted to evaluate the differences in lipid-immune interactions across individuals and whether the optimization of lipid-immune interactions requires precision nutrition approaches to mitigate or manage disease. In this review, we discuss the mechanisms by which lipids regulate immune responses and the influence of dietary lipids on these processes, highlighting compelling areas for future research.
Collapse
Affiliation(s)
| | | | - Christopher N. Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (C.G.); (C.J.A.)
| |
Collapse
|
13
|
Ruiz VL, Robert J. The amphibian immune system. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220123. [PMID: 37305914 PMCID: PMC10258673 DOI: 10.1098/rstb.2022.0123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/16/2023] [Indexed: 06/13/2023] Open
Abstract
Amphibians are at the forefront of bridging the evolutionary gap between mammals and more ancient, jawed vertebrates. Currently, several diseases have targeted amphibians and understanding their immune system has importance beyond their use as a research model. The immune system of the African clawed frog, Xenopus laevis, and that of mammals is well conserved. We know that several features of the adaptive and innate immune system are very similar for both, including the existence of B cells, T cells and innate-like T cells. In particular, the study of the immune system at early stages of development is benefitted by studying X. laevis tadpoles. The tadpoles mainly rely on innate immune mechanisms including pre-set or innate-like T cells until after metamorphosis. In this review we lay out what is known about the innate and adaptive immune system of X. laevis including the lymphoid organs as well as how other amphibian immune systems are similar or different. Furthermore, we will describe how the amphibian immune system responds to some viral, bacterial and fungal insults. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Vania Lopez Ruiz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
14
|
Paiola M, Dimitrakopoulou D, Pavelka MS, Robert J. Amphibians as a model to study the role of immune cell heterogeneity in host and mycobacterial interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104594. [PMID: 36403788 DOI: 10.1016/j.dci.2022.104594] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Mycobacterial infections represent major concerns for aquatic and terrestrial vertebrates including humans. Although our current knowledge is mostly restricted to Mycobacterium tuberculosis and mammalian host interactions, increasing evidence suggests common features in endo- and ectothermic animals infected with non-tuberculous mycobacteria (NTMs) like those described for M. tuberculosis. Importantly, most of the pathogenic and non-pathogenic NTMs detected in amphibians from wild, farmed, and research facilities represent, in addition to the potential economic loss, a rising concern for human health. Upon mycobacterial infection in mammals, the protective immune responses involving the innate and adaptive immune systems are highly complex and therefore not fully understood. This complexity results from the versatility and resilience of mycobacteria to hostile conditions as well as from the immune cell heterogeneity arising from the distinct developmental origins according with the concept of layered immunity. Similar to the differing responses of neonates versus adults during tuberculosis development, the pathogenesis and inflammatory responses are stage-specific in Xenopus laevis during infection by the NTM M. marinum. That is, both in human fetal and neonatal development and in tadpole development, responses are characterized by hypo-responsiveness and a lower capacity to contain mycobacterial infections. Similar to a mammalian fetus and neonates, T cells and myeloid cells in Xenopus tadpoles and axolotls are different from the adult immune cells. Fetal and amphibian larval T cells, which are characterized by a lower T cell receptor (TCR) repertoire diversity, are biased toward regulatory function, and they have distinct progenitor origins from those of the adult immune cells. Some early developing T cells and likely macrophage subpopulations are conserved in adult anurans and mammals, and therefore, they likely play an important role in the host-pathogen interactions from early stages of development to adulthood. Thus, we propose the use of developing amphibians, which have the advantage of being free-living early in their development, as an alternative and complementary model to study the role of immune cell heterogeneity in host-mycobacteria interactions.
Collapse
Affiliation(s)
- Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Dionysia Dimitrakopoulou
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Martin S Pavelka
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
15
|
Immunohistochemistry of the Gut-Associated Lymphoid Tissue (GALT) in African Bonytongue ( Heterotis niloticus, Cuvier 1829). Int J Mol Sci 2023; 24:ijms24032316. [PMID: 36768639 PMCID: PMC9917283 DOI: 10.3390/ijms24032316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Heterotis niloticus is a basal teleost, belonging to the Osteoglossidae family, which is widespread in many parts of Africa. The digestive tract of H. niloticus presents similar characteristics to those of higher vertebrates, exhibiting a gizzard-like stomach and lymphoid aggregates in the intestinal lamina propria. The adaptive immune system of teleost fish is linked with each of their mucosal body surfaces. In fish, the gut-associated lymphoid tissue (GALT) is generally a diffuse immune system that represents an important line of defense against those pathogens inhabiting the external environment that can enter through food. The GALT comprises intraepithelial lymphocytes, which reside in the epithelial layer, and lamina propria leukocytes, which consist of lymphocytes, macrophages, granulocytes, and dendritic-like cells. This study aims to characterize, for the first time, the leukocytes present in the GALT of H. niloticus, by confocal immuno- fluorescence techniques, using specific antibodies: toll-like receptor 2, major histocompatibility complex class II, S100 protein, serotonin, CD4, langerin, and inducible nitric oxide synthetase. Our results show massive aggregates of immune cells in the thickness of the submucosa, arranged in circumscribed oval-shaped structures that are morphologically similar to the isolated lymphoid follicles present in birds and mammals, thus expanding our knowledge about the intestinal immunity shown by this fish.
Collapse
|
16
|
Evariste L, Mouchet F, Pinelli E, Flahaut E, Gauthier L, Barret M. Gut microbiota impairment following graphene oxide exposure is associated to physiological alterations in Xenopus laevis tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159515. [PMID: 36270377 DOI: 10.1016/j.scitotenv.2022.159515] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Graphene-based nanomaterials such as graphene oxide (GO) possess unique properties triggering high expectations for the development of technological applications. Thus, GO is likely to be released in aquatic ecosystems. It is essential to evaluate its ecotoxicological potential to ensure a safe use of these nanomaterials. In amphibians, previous studies highlighted X. laevis tadpole growth inhibitions together with metabolic disturbances and genotoxic effects following GO exposure. As GO is known to exert bactericidal effects whereas the gut microbiota constitutes a compartment involved in host homeostasis regulation, it is important to determine if this microbial compartment constitutes a toxicological pathway involved in known GO-induced host physiological impairments. This study investigates the potential link between gut microbial communities and host physiological alterations. For this purpose, X. laevis tadpoles were exposed during 12 days to GO. Growth rate was monitored every 2 days and genotoxicity was assessed through enumeration of micronucleated erythrocytes. Genomic DNA was also extracted from the whole intestine to quantify gut bacteria and to analyze the community composition. GO exposure led to a dose dependent growth inhibition and genotoxic effects were detected following exposure to low doses. A transient decrease of the total bacteria was noticed with a persistent shift in the gut microbiota structure in exposed animals. Genotoxic effects were associated to gut microbiota remodeling characterized by an increase of the relative abundance of Bacteroides fragilis. The growth inhibitory effects would be associated to a shift in the Firmicutes/Bacteroidetes ratio while metagenome inference suggested changes in metabolic pathways and upregulation of detoxification processes. This work indicates that the gut microbiota compartment is a biological compartment of interest as it is integrative of host physiological alterations and should be considered for ecotoxicological studies as structural or functional impairments could lead to later life host fitness loss.
Collapse
Affiliation(s)
- Lauris Evariste
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Florence Mouchet
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Eric Pinelli
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Laury Gauthier
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Maialen Barret
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
17
|
Chettri D, Nad S, Konar U, Verma AK. CAZyme from gut microbiome for efficient lignocellulose degradation and biofuel production. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.1054242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Over-exploitation and energy security concerns of the diminishing fossil fuels is a challenge to the present global economy. Further, the negative impact of greenhouse gases released using conventional fuels has led to the need for searching for alternative biofuel sources with biomass in the form of lignocellulose coming up as among the potent candidates. The entrapped carbon source of the lignocellulose has multiple applications other than biofuel generation under the biorefinery approach. However, the major bottleneck in using lignocellulose for biofuel production is its recalcitrant nature. Carbohydrate Active Enzymes (CAZymes) are enzymes that are employed for the disintegration and consumption of lignocellulose biomass as the carbon source for the production of biofuels and bio-derivatives. However, the cost of enzyme production and their stability and catalytic efficiency under stressed conditions is a concern that hinders large-scale biofuel production and utilization. Search for novel CAZymes with superior activity and stability under industrial condition has become a major research focus in this area considering the fact that the most conventional CAZymes has low commercial viability. The gut of plant-eating herbivores and other organisms is a potential source of CAZyme with high efficiency. The review explores the potential of the gut microbiome of various organisms in the production of an efficient CAZyme system and the challenges in using the biofuels produced through this approach as an alternative to conventional biofuels.
Collapse
|
18
|
Ienes-Lima J, Prichula J, Abadie M, Borges-Martins M, Frazzon APG. First Report of Culturable Skin Bacteria in Melanophryniscus admirabilis (Admirable Redbelly Toad). MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02069-7. [PMID: 35859070 DOI: 10.1007/s00248-022-02069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Melanophryniscus admirabilis is a small toad, critically endangered with a microendemic distribution in the Atlantic Forest in southern Brazil. The amphibian skin microbiome is considered one of the first lines of defense against pathogenic infections, such as Batrachochytrium dendrobatidis (Bd). The knowledge of skin amphibian microbiomes is important to numerous fields, including species conservation, detection, and quantification of environmental changes and stressors. In the present study, we investigated, for the first time, cultivable bacteria in the skin of wild M. admirabilis, and detected Bd fungus by nested polymerase chain reaction (PCR) technique. Skin swab samples were collected from 15 wild M. admirabilis, and the isolation of bacteria was performed by means of different culture strategies. A total of 62 bacterial isolates being Bacillus (n = 22; 34.48%), Citrobacter (n = 10; 16.13%), and Serratia (n = 12; 19.35%) were more frequently isolated genera. Interestingly, all skin samples tested were Bd negative. Some bacterial genera identified in our study might be acting in a synergic relationship and protecting them against the Bd fungus. In addition, these bacteria may play an essential role in maintaining this species in an environment modulated by anthropic actions. This first report of skin cultivable bacteria from M. admirabilis natural population improves our knowledge of skin amphibian microbiomes, contributing to a better understanding of their ecology and how this species has survived in an environment modulated by anthropic action.
Collapse
Affiliation(s)
- Julia Ienes-Lima
- Post-Graduation Program in Agricultural and Environmental Microbiology, Department of Microbiology, Immunology, and Parasitology, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Janira Prichula
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Michelle Abadie
- Post-Graduation Program in Animal Biology, Department of Zoology, Biosciences Institute, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Márcio Borges-Martins
- Post-Graduation Program in Animal Biology, Department of Zoology, Biosciences Institute, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Ana Paula Guedes Frazzon
- Post-Graduation Program in Agricultural and Environmental Microbiology, Department of Microbiology, Immunology, and Parasitology, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil.
| |
Collapse
|
19
|
de Amaral M, Ienes-Lima J. Anurans against SARS-CoV-2: A review of the potential antiviral action of anurans cutaneous peptides. Virus Res 2022; 315:198769. [PMID: 35430319 PMCID: PMC9008983 DOI: 10.1016/j.virusres.2022.198769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/17/2023]
Abstract
At the end of 2019, in China, clinical signs and symptoms of unknown etiology have been reported in several patients whose sample sequencing revealed pneumonia caused by the SARS-CoV-2 virus. COVID-19 is a disease triggered by this virus, and in 2020, the World Health Organization declared it a pandemic. Since then, efforts have been made to find effective therapeutic agents against this disease. Identifying novel natural antiviral drugs can be an alternative to treatment. For this reason, antimicrobial peptides secreted by anurans' skin have gained attention for showing a promissory antiviral effect. Hence, this review aimed to elucidate how and which peptides secreted by anurans' skin can be considered therapeutic agents to treat or prevent human viral infectious diseases. Through a literature review, we attempted to identify potential antiviral frogs' peptides to combat COVID-19. As a result, the Magainin-1 and -2 peptides, from the Magainin family, the Dermaseptin-S9, from the Dermaseptin family, and Caerin 1.6 and 1.10, from the Caerin family, are molecules that already showed antiviral effects against SARS-CoV-2 in silico. In addition to these peptides, this review suggests that future studies should use other families that already have antiviral action against other viruses, such as Brevinins, Maculatins, Esculentins, Temporins, and Urumins. To apply these peptides as therapeutic agents, experimental studies with peptides already tested in silico and new studies with other families not tested yet should be considered.
Collapse
Affiliation(s)
- Marjoriane de Amaral
- Comparative Metabolism and Endocrinology Laboratory, Department of Physiology, Federal University of Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, Rio Grande do Sul 90050-170, Brazil.
| | - Julia Ienes-Lima
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
20
|
Zhu W, Zhao C, Feng J, Chang J, Zhu W, Chang L, Liu J, Xie F, Li C, Jiang J, Zhao T. Effects of Habitat River Microbiome on the Symbiotic Microbiota and Multi-Organ Gene Expression of Captive-Bred Chinese Giant Salamander. Front Microbiol 2022; 13:884880. [PMID: 35770173 PMCID: PMC9234736 DOI: 10.3389/fmicb.2022.884880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
The reintroduction of captive-bred individuals is a primary approach to rebuild the wild populations of the Chinese giant salamander (Andrias davidianus), the largest extant amphibian species. However, the complexity of the wild habitat (e.g., diverse microorganisms and potential pathogens) potentially threatens the survival of reintroduced individuals. In this study, fresh (i.e., containing environmental microbiota) or sterilized river sediments (120°C sterilized treatment) were added to the artificial habitats to treat the larvae of the Chinese giant salamander (control group—Cnt: 20 individuals, treatment group 1 with fresh river sediments—T1: 20 individuals, and treatment group 2 with sterilized river sediments—T2: 20 individuals). The main objective of this study was to test whether this procedure could provoke their wild adaptability from the perspective of commensal microbiotas (skin, oral cavity, stomach, and gut) and larvae transcriptomes (skin, spleen, liver, and brain). Our results indicated that the presence of habitat sediments (whether fresh or sterilized) reshaped the oral bacterial community composition. Specifically, Firmicutes decreased dramatically from ~70% to ~20–25% (mainly contributed by Lactobacillaceae), while Proteobacteria increased from ~6% to ~31–36% (mainly contributed by Gammaproteobacteria). Consequently, the proportion of antifungal operational taxonomic units (OTUs) increased, and the function of oral microbiota likely shifted from growth-promoting to pathogen defense. Interestingly, the skin microbiota, rather than the colonization of habitat microbiota, was the major source of the pre-treated oral microbiota. From the host perspective, the transcriptomes of all four organs were changed for treated individuals. Specifically, the proteolysis and apoptosis in the skin were promoted, and the transcription of immune genes was activated in the skin, spleen, and liver. Importantly, more robust immune activation was detected in individuals treated with sterilized sediments. These results suggested that the pathogen defense of captive-bred individuals was improved after being treated, which may benefit their survival in the wild. Taken together, our results suggested that the pre-exposure of captive-bred Chinese giant salamander individuals to habitat sediments could be considered and added into the reintroduction processes to help them better adapt to wild conditions.
Collapse
Affiliation(s)
- Wei Zhu
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Chunlin Zhao
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Jianyi Feng
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Jiang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Wenbo Zhu
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Liming Chang
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Jiongyu Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Feng Xie
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Cheng Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
| | - Jianping Jiang
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
- *Correspondence: Jianping Jiang
| | - Tian Zhao
- Chinese Academy of Sciences (CAS) Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, China
- Tian Zhao
| |
Collapse
|
21
|
Robinson KA, Prostak SM, Campbell Grant EH, Fritz-Laylin LK. Amphibian mucus triggers a developmental transition in the frog-killing chytrid fungus. Curr Biol 2022; 32:2765-2771.e4. [DOI: 10.1016/j.cub.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022]
|
22
|
Reider KE, Zerger M, Whiteman HH. Extending the biologging revolution to amphibians: Implantation, extraction, and validation of miniature temperature loggers. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:403-411. [PMID: 34982510 DOI: 10.1002/jez.2575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Quantifying ectotherm body temperature is important to understand physiological performance under environmental change. The increasing availability of small, commercially-available animal-borne biologgers increases accessibility to high-quality body temperature data. However, amphibians present several challenges to successful datalogger implantation including small body sizes and physiologically active skin. We developed a method for the implantation, extraction, and validation of temperature biologgers in captive salamanders. We assessed the effect of biologger implantation and extraction surgery on body condition. Implantation had no effects on short or long-term body condition. Body condition also did not differ between implant and control groups after datalogger extraction. Biologgers did not alter preferred temperature in a laboratory thermal gradient, indicating that temperature data would not be biased by implantation. We provide detailed recommendations for datalogger placement and refinement of surgical techniques to further improve outcomes, enhance our understanding of fitness, species range limitations, and responses to environmental and climatic change.
Collapse
Affiliation(s)
- Kelsey E Reider
- Department of Biological Sciences, Murray State University, Murray, Kentucky, USA
| | - Megan Zerger
- Department of Biological Sciences, Murray State University, Murray, Kentucky, USA
- Watershed Studies Institute, Murray State University, Murray, Kentucky, USA
| | - Howard H Whiteman
- Department of Biological Sciences, Murray State University, Murray, Kentucky, USA
- Watershed Studies Institute, Murray State University, Murray, Kentucky, USA
| |
Collapse
|
23
|
Bai M, Zhao B, Liu Z, Zheng Z, Wei X, Li L, Li K, Song X, Xu J, Li Z. Mucosa-Like Conformal Hydrogel Coating for Aqueous Lubrication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108848. [PMID: 35075678 DOI: 10.1002/adma.202108848] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/09/2022] [Indexed: 02/05/2023]
Abstract
Mucosa is a protective and lubricating barrier in biological tissue, which has a great clinical inspiration because of its slippery, soft, and hydrophilic surface. However, mimicking mucosal traits on complex surface remains an enormous challenge. Herein, a novel approach to create mucosa-like conformal hydrogel coating is developed. A thin conformal hydrogel layer mimicking the epithelial layer is obtained by first absorbing micelles, followed by forming covalent interlinks with the polymer substrate via interface-initiated hydrogel polymerization. The resulting coating exhibits uniform thickness (≈15 µm), mucosa-matched compliance (Young's modulus = 1.1 ± 0.1 kPa) and lubrication (coefficients of friction = 0.018 ± 0.003), robust interfacial bonding against peeling (peeling strength = 1218.0 ± 187.9 J m-2 ), as well as high water absorption capacity. It effectively resists adhesion of proteins and bacteria without compromising biocompatibility. As demonstrated by an in vivo cynomolgus monkey model and clinical trial, applications of the mucosa-like conformal hydrogel coating on the endotracheal tube significantly reduce intubation-related complications, such as invasive stimuli, mucosal lesions, laryngeal edema, inflammation, and postoperative pain. This work offers a promising prototype for surface decoration of biomedical devices and holds great prospects for clinical translation to enable interventional operations with minimally invasive impacts.
Collapse
Affiliation(s)
- Meng‐Han Bai
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Baisong Zhao
- Department of Anesthesiology Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou 510623 China
| | - Zhou‐Yun‐Tong Liu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Zi‐Li Zheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Xin Wei
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Lingli Li
- West China School of Nursing Sichuan University/West China Hospital Sichuan University Chengdu 610041 China
| | - Ka Li
- West China School of Nursing Sichuan University/West China Hospital Sichuan University Chengdu 610041 China
| | - Xingrong Song
- Department of Anesthesiology Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou 510623 China
| | - Jia‐Zhuang Xu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
- West China School of Nursing Sichuan University/West China Hospital Sichuan University Chengdu 610041 China
| | - Zhong‐Ming Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| |
Collapse
|
24
|
Barbosa EA, Alves GSC, Coura MDMA, Silva HDLE, Rocha FSD, Nunes JB, Watanabe MDS, Andrade AC, Brand GD. A first look at the N- and O-glycosylation landscape in anuran skin secretions. Biochimie 2022; 197:19-37. [DOI: 10.1016/j.biochi.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 11/26/2022]
|
25
|
McGrath-Blaser S, Steffen M, Grafe TU, Torres-Sánchez M, McLeod DS, Muletz-Wolz CR. Early life skin microbial trajectory as a function of vertical and environmental transmission in Bornean foam-nesting frogs. Anim Microbiome 2021; 3:83. [PMID: 34930504 PMCID: PMC8686334 DOI: 10.1186/s42523-021-00147-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The amphibian skin microbiome is an important mediator of host health and serves as a potential source of undiscovered scientifically significant compounds. However, the underlying modalities of how amphibian hosts obtain their initial skin-associated microbiome remains unclear. Here, we explore microbial transmission patterns in foam-nest breeding tree frogs from Southeast Asia (Genus: Polypedates) whose specialized breeding strategy allows for better delineation between vertically and environmentally derived microbes. To facilitate this, we analyzed samples associated with adult frog pairs taken after mating-including adults of each sex, their foam nests, environments, and tadpoles before and after environmental interaction-for the bacterial communities using DNA metabarcoding data (16S rRNA). Samples were collected from frogs in-situ in Brunei, Borneo, a previously unsampled region for amphibian-related microbial diversity. RESULTS Adult frogs differed in skin bacterial communities among species, but tadpoles did not differ among species. Foam nests had varying bacterial community composition, most notably in the nests' moist interior. Nest interior bacterial communities were discrete for each nest and overall displayed a narrower diversity compared to the nest exteriors. Tadpoles sampled directly from the foam nest displayed a bacterial composition less like the nest interior and more similar to that of the adults and nest exterior. After one week of pond water interaction the tadpole skin microbiome shifted towards the tadpole skin and pond water microbial communities being more tightly coupled than between tadpoles and the internal nest environment, but not to the extent that the skin microbiome mirrored the pond bacterial community. CONCLUSIONS Both vertical influence and environmental interaction play a role in shaping the tadpole cutaneous microbiome. Interestingly, the interior of the foam nest had a distinct bacterial community from the tadpoles suggesting a limited environmental effect on tadpole cutaneous bacterial selection at initial stages of life. The shift in the tadpole microbiome after environmental interaction indicates an interplay between underlying host and ecological mechanisms that drive community formation. This survey serves as a baseline for further research into the ecology of microbial transmission in aquatic animals.
Collapse
Affiliation(s)
- Sarah McGrath-Blaser
- Department of Biology, University of Florida, 421 Carr Hall, Gainesville, FL 32611 USA
| | - Morgan Steffen
- Department of Biology, James Madison University, 951 Carrier Dr, Harrisonburg, VA 22807 USA
| | - T. Ulmar Grafe
- Universiti Brunei Darussalam, Tungku Link, Gadong, BE 1410 Brunei
| | - María Torres-Sánchez
- Department of Biology, University of Florida, 421 Carr Hall, Gainesville, FL 32611 USA
| | - David S. McLeod
- Department of Biology, James Madison University, 951 Carrier Dr, Harrisonburg, VA 22807 USA
- North Carolina Museum of Natural Sciences, 11 West Jones Street, Raleigh, NC 27601 USA
| | - Carly R. Muletz-Wolz
- Smithsonian National Zoo and Conservation Biology Institute, Center for Conservation Genomics, 3001 Connecticut Ave., Washington, DC 20008 USA
| |
Collapse
|
26
|
Yang J, Park J, Jung Y, Chun J. AMDB: a database of animal gut microbial communities with manually curated metadata. Nucleic Acids Res 2021; 50:D729-D735. [PMID: 34747470 PMCID: PMC8728277 DOI: 10.1093/nar/gkab1009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
Variations in gut microbiota can be explained by animal host characteristics, including host phylogeny and diet. However, there are currently no databases that allow for easy exploration of the relationship between gut microbiota and diverse animal hosts. The Animal Microbiome Database (AMDB) is the first database to provide taxonomic profiles of the gut microbiota in various animal species. AMDB contains 2530 amplicon data from 34 projects with manually curated metadata. The total data represent 467 animal species and contain 10 478 bacterial taxa. This novel database provides information regarding gut microbiota structures and the distribution of gut bacteria in animals, with an easy-to-use interface. Interactive visualizations are also available, enabling effective investigation of the relationship between the gut microbiota and animal hosts. AMDB will contribute to a better understanding of the gut microbiota of animals. AMDB is publicly available without login requirements at http://leb.snu.ac.kr/amdb.
Collapse
Affiliation(s)
- Junwon Yang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea.,Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jonghyun Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea.,Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yeonjae Jung
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Jongsik Chun
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea.,Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
27
|
Wang Y, Smith HK, Goossens E, Hertzog L, Bletz MC, Bonte D, Verheyen K, Lens L, Vences M, Pasmans F, Martel A. Diet diversity and environment determine the intestinal microbiome and bacterial pathogen load of fire salamanders. Sci Rep 2021; 11:20493. [PMID: 34650115 PMCID: PMC8516891 DOI: 10.1038/s41598-021-98995-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/09/2021] [Indexed: 01/04/2023] Open
Abstract
Diverse communities of symbiotic microbes inhabit the digestive systems of vertebrates and play a crucial role in animal health, and host diet plays a major role in shaping the composition and diversity of these communities. Here, we characterized diet and gut microbiome of fire salamander populations from three Belgian forests. We carried out DNA metabarcoding on fecal samples, targeting eukaryotic 18S rRNA of potential dietary prey items, and bacterial 16S rRNA of the concomitant gut microbiome. Our results demonstrated an abundance of soft-bodied prey in the diet of fire salamanders, and a significant difference in the diet composition between males and females. This sex-dependent effect on diet was also reflected in the gut microbiome diversity, which is higher in males than female animals. Proximity to human activities was associated with increased intestinal pathogen loads. Collectively, the data supports a relationship between diet, environment and intestinal microbiome in fire salamanders, with potential health implications.
Collapse
Affiliation(s)
- Yu Wang
- grid.5342.00000 0001 2069 7798Wildlife Health Ghent, Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Hannah K. Smith
- grid.5342.00000 0001 2069 7798Wildlife Health Ghent, Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Evy Goossens
- grid.5342.00000 0001 2069 7798Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Lionel Hertzog
- grid.5342.00000 0001 2069 7798Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium ,Thünen Institute for Biodiversity, Bundesallee 68, 38116 Brunswick, Germany
| | - Molly C. Bletz
- grid.6738.a0000 0001 1090 0254Evolutionary Biology Lab, Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, 38106 Brunswick, Germany
| | - Dries Bonte
- grid.5342.00000 0001 2069 7798Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Kris Verheyen
- grid.5342.00000 0001 2069 7798Forest & Nature Lab, Department of Environment, Ghent University, Geraardsberge Steenweg 267, 9090 Gontrode, Belgium
| | - Luc Lens
- grid.5342.00000 0001 2069 7798Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Miguel Vences
- grid.6738.a0000 0001 1090 0254Evolutionary Biology Lab, Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, 38106 Brunswick, Germany
| | - Frank Pasmans
- grid.5342.00000 0001 2069 7798Wildlife Health Ghent, Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - An Martel
- grid.5342.00000 0001 2069 7798Wildlife Health Ghent, Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
28
|
Kogame T, Kabashima K, Egawa G. Putative Immunological Functions of Inducible Skin-Associated Lymphoid Tissue in the Context of Mucosa-Associated Lymphoid Tissue. Front Immunol 2021; 12:733484. [PMID: 34512668 PMCID: PMC8426509 DOI: 10.3389/fimmu.2021.733484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Acquired immunity is orchestrated in various lymphoid organs, including bone marrow, thymus, spleen, and lymph nodes in humans. However, mucosa-associated lymphoid tissue (MALT) is evolutionally known to be emerged in the oldest vertebrates as an immunological tissue for acquired immunity, much earlier than the advent of lymph nodes which appeared in endotherms. Furthermore, the lymphocytes which developed in MALT are known to circulate within the limited anatomical areas. Thus, MALT is comprehended as not the structure but the immune network dedicated to local immunity. As for the skin, skin-associated lymphoid tissue (SALT) was previously postulated; however, its existence has not been proven. Our group recently showed that aggregations of dendritic cells, M2 macrophages, and high endothelial venules (HEVs) are essential components to activate effector T cells in the murine contact hypersensitivity model and termed it as inducible SALT (iSALT) since it was a transient entity that serves for acquired immunity of the skin. Furthermore, in various human skin diseases, we reported that the ectopic formation of lymphoid follicles that immunohistochemically analogous to MALT and regarded them as human counterparts of iSALT. These data raised the possibility that SALT can exist as an inducible form, namely iSALT, which shares the biological significance of MALT. In this article, we revisit the evolution of immunological organs and the related components among vertebrates to discuss the conserved functions of MALT. Furthermore, we also discuss the putative characteristics and functions of iSALT in the context of the MALT concept.
Collapse
Affiliation(s)
- Toshiaki Kogame
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Gyohei Egawa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
29
|
Song X, Zhang J, Song J, Zhai Y. Decisive Effects of Life Stage on the Gut Microbiota Discrepancy Between Two Wild Populations of Hibernating Asiatic Toads ( Bufo gargarizans). Front Microbiol 2021; 12:665849. [PMID: 34413833 PMCID: PMC8369469 DOI: 10.3389/fmicb.2021.665849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
Until now, the effects of driving factors on the gut microbiota of amphibians are still mostly confounded. Due to a long-term fasting, hibernating amphibians are ideal experimental materials to explore this question. In this study, we characterized the small intestine microbiota of adult hibernating Asiatic toads (Bufo gargarizans) collected from two geographical populations using 16S rRNA amplicon sequencing technique and evaluated the effects of non-dietary factors (e.g., sex and host genetic background). Proteobacteria (0.9196 ± 0.0892) was characterized as the most dominant phylum in the small gut microbiota of hibernating Asiatic toads, among which five core OTUs were identified and three were classified into Pseudomonas. In view of the coincidence between the dominant KEGG pathways (such as the two-component system) and Pseudomonas, Pseudomonas appeared to be a key adaptor for small gut microbiota during hibernation. Furthermore, we detected a greater discrepancy of gut microbiota between geographical populations than between sexes. Both sex and host genetic background showed a minor effect on the gut microbiota variation. Finally, life stage was determined to be the decisive factor driving the gut microbiota discrepancy between populations. However, a large proportion of the gut microbiota variation (∼70%) could not be explained by the measured deterministic factors (i.e., sex, location, body length, and routine blood indices). Therefore, other factors and/or stochastic processes may play key roles in shaping gut bacterial community of hibernating amphibians.
Collapse
Affiliation(s)
- Xiaowei Song
- College of Life Sciences, Xinyang Normal University, Xinyang, China
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jingwei Zhang
- Hospital of Xinyang Normal University, Xinyang Normal University, Xinyang, China
| | - Jinghan Song
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Yuanyuan Zhai
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
30
|
Kataoka C, Kashiwada S. Ecological Risks Due to Immunotoxicological Effects on Aquatic Organisms. Int J Mol Sci 2021; 22:8305. [PMID: 34361068 PMCID: PMC8347160 DOI: 10.3390/ijms22158305] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
The immunotoxic effects of some anthropogenic pollutants on aquatic organisms are among the causes of concern over the presence of these pollutants in the marine environment. The immune system is part of an organism's biological defense necessarily for homeostasis. Thus, the immunotoxicological impacts on aquatic organisms are important to understand the effects of pollutant chemicals in the aquatic ecosystem. When aquatic organisms are exposed to pollutant chemicals with immunotoxicity, it results in poor health. In addition, aquatic organisms are exposed to pathogenic bacteria, viruses, parasites, and fungi. Exposure to pollutant chemicals has reportedly caused aquatic organisms to show various immunotoxic symptoms such as histological changes of lymphoid tissue, changes of immune functionality and the distribution of immune cells, and changes in the resistance of organisms to infection by pathogens. Alterations of immune systems by contaminants can therefore lead to the deaths of individual organisms, increase the general risk of infections by pathogens, and probably decrease the populations of some species. This review introduced the immunotoxicological impact of pollutant chemicals in aquatic organisms, including invertebrates, fish, amphibians, and marine mammals; described typical biomarkers used in aquatic immunotoxicological studies; and then, discussed the current issues on ecological risk assessment and how to address ecological risk assessment through immunotoxicology. Moreover, the usefulness of the population growth rate to estimate the immunotoxicological impact of pollution chemicals was proposed.
Collapse
Affiliation(s)
- Chisato Kataoka
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Shosaku Kashiwada
- Department of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan;
- Research Centre for Life and Environmental Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| |
Collapse
|
31
|
Kim PS, Shin NR, Lee JB, Kim MS, Whon TW, Hyun DW, Yun JH, Jung MJ, Kim JY, Bae JW. Host habitat is the major determinant of the gut microbiome of fish. MICROBIOME 2021; 9:166. [PMID: 34332628 PMCID: PMC8325807 DOI: 10.1186/s40168-021-01113-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/14/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Our understanding of the gut microbiota of animals is largely based on studies of mammals. To better understand the evolutionary basis of symbiotic relationships between animal hosts and indigenous microbes, it is necessary to investigate the gut microbiota of non-mammalian vertebrate species. In particular, fish have the highest species diversity among groups of vertebrates, with approximately 33,000 species. In this study, we comprehensively characterized gut bacterial communities in fish. RESULTS We analyzed 227 individual fish representing 14 orders, 42 families, 79 genera, and 85 species. The fish gut microbiota was dominated by Proteobacteria (51.7%) and Firmicutes (13.5%), different from the dominant taxa reported in terrestrial vertebrates (Firmicutes and Bacteroidetes). The gut microbial community in fish was more strongly shaped by host habitat than by host taxonomy or trophic level. Using a machine learning approach trained on the microbial community composition or predicted functional profiles, we found that the host habitat exhibited the highest classification accuracy. Principal coordinate analysis revealed that the gut bacterial community of fish differs significantly from those of other vertebrate classes (reptiles, birds, and mammals). CONCLUSIONS Collectively, these data provide a reference for future studies of the gut microbiome of aquatic animals as well as insights into the relationship between fish and their gut bacteria, including the key role of host habitat and the distinct compositions in comparison with those of mammals, reptiles, and birds. Video Abstract.
Collapse
Affiliation(s)
- Pil Soo Kim
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Na-Ri Shin
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Dongdaemun-gu, Seoul, 02447 Republic of Korea
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Jeollabuk-do 56212 Republic of Korea
| | - Jae-Bong Lee
- Distant-water Fisheries Resources Division, National Institute of Fisheries Science, Gijang-eup, Busan, 46083 Republic of Korea
| | - Min-Soo Kim
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Tae Woong Whon
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Dong-Wook Hyun
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Ji-Hyun Yun
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Mi-Ja Jung
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Joon Yong Kim
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Jin-Woo Bae
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| |
Collapse
|
32
|
Gabriel A, Costa S, Henriques I, Lopes I. Effects of Long-Term Exposure to Increased Salinity on the Amphibian Skin Bacterium Erwinia toletana. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:779-788. [PMID: 33877369 DOI: 10.1007/s00244-021-00845-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Amphibian's skin bacterial community may help them to cope with several types of environmental perturbations, including osmotic stress caused by increased salinity. This work assessed whether an amphibian skin bacterium could increase its tolerance to NaCl after a long-term exposure to this salt. A strain of Erwinia toletana, isolated from the skin of Pelophylax perezi, was exposed to two salinity scenarios (with 18 g/L of NaCl): (1) long-term exposure (for 46 days; Et-NaCl), and (2) long-term exposure followed by a recovery period (exposure for 30 days to NaCl and then to LB medium for 16 days; Et-R). After exposure, the sensitivity of E. toletana clonal populations to NaCl was assessed by exposing them to 6 NaCl concentrations (LB medium spiked with NaCl) plus a control (LB medium). Genotypic alterations were assessed by PCR-based molecular typing method (BOX-PCR). The results showed that tolerance of E. toletana to NaCl slightly increased after the long-term exposure, EC50 for growth were: 22.5 g/L (8.64-36.4) for Et-LB; 30.3 g/L (23.2-37.4) for Et-NaCl; and 26.1 g/L (19.332.9) for Et-R. Differences in metabolic activity were observed between Et-LB and Et-R and between Et-NaCl and Et-R, suggesting the use of different substrates by this bacterium when exposed to salinized environments. NaCl-induced genotypic alterations were not detected. This work suggests that E. toletana exposed to low levels of salinity, activate different metabolic pathways to cope with osmotic stress. These findings may be further explored to be used in bioaugmentation procedures through the supplementation with this bacterium of the skin microbiome of natural populations of amphibians exposed to salinization.
Collapse
Affiliation(s)
- Antonieta Gabriel
- Department of Biology, CESAM, University of Aveiro, Campus Universitario de Santiago, Aveiro, Portugal.
| | - Sara Costa
- Department of Biology, CESAM, University of Aveiro, Campus Universitario de Santiago, Aveiro, Portugal
| | - Isabel Henriques
- Department of Life Sciences, CESAM, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Isabel Lopes
- Department of Biology, CESAM, University of Aveiro, Campus Universitario de Santiago, Aveiro, Portugal
| |
Collapse
|
33
|
Mangus LM, França MS, Shivaprasad HL, Wolf JC. Research-Relevant Background Lesions and Conditions in Common Avian and Aquatic Species. ILAR J 2021; 62:169-202. [PMID: 33782706 DOI: 10.1093/ilar/ilab008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/18/2020] [Accepted: 12/20/2020] [Indexed: 12/20/2022] Open
Abstract
Non-mammalian vertebrates including birds, fish, and amphibians have a long history of contributing to ground-breaking scientific discoveries. Because these species offer several experimental advantages over higher vertebrates and share extensive anatomic and genetic homology with their mammalian counterparts, they remain popular animal models in a variety of fields such as developmental biology, physiology, toxicology, drug discovery, immunology, toxicology, and infectious disease. As with all animal models, familiarity with the anatomy, physiology, and spontaneous diseases of these species is necessary for ensuring animal welfare, as well as accurate interpretation and reporting of study findings. Working with avian and aquatic species can be especially challenging in this respect due to their rich diversity and array of unique adaptations. Here, we provide an overview of the research-relevant anatomic features, non-infectious conditions, and infectious diseases that impact research colonies of birds and aquatic animals, including fish and Xenopus species.
Collapse
Affiliation(s)
- Lisa M Mangus
- Department of Molecular and Comparative Pathobiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Monique S França
- Poultry Diagnostic and Research Center, The University of Georgia, Athens, Georgia, USA
| | - H L Shivaprasad
- California Animal Health and Food Safety Laboratory System, University of California, Davis, Tulare, California, USA
| | - Jeffrey C Wolf
- Experimental Pathology Laboratories, Inc., Sterling, Virginia, USA
| |
Collapse
|
34
|
Vera Candioti F, Dos Santos Dias PH, Rowley JJL, Hertwig S, Haas A, Altig R. Anatomical features of the phytotelma dwelling, egg-eating, fanged tadpoles of Rhacophorus vampyrus (Anura: Rhacophoridae). J Morphol 2021; 282:769-778. [PMID: 33713040 DOI: 10.1002/jmor.21348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/09/2022]
Abstract
Tadpoles of the Vampire tree frog Rhacophorus vampyrus differ substantially from other rhacophorid tadpoles, by having profound modifications in external morphology. The morphological peculiarities of this species likely correlate with their arboreal microhabitat and strict oophagous diet. In this work, we examine buccal and musculoskeletal anatomy and compare them to other rhacophorid and egg-eating larvae. The shape and arrangement of cartilages of the lower jaw are unique among tadpoles, and the lack of a palatoquadrate suspensorium is only known in the distantly related macrophagous tadpoles of the dicroglossid Occidozyga baluensis. The cranial musculature is massive, and the morphology of several mandibular, hyoid, and abdominal muscles could be related to the ingestion and transit of large eggs. In the buccal cavity, conspicuous aspects are the absence of ridges and papillae, and the development of a unique glandular zone in the buccal floor. Finally, observations of the skeletal support of keratinized mouthparts allow us to present a topography-based hypothesis of homology of the conspicuous fangs of these tadpoles.
Collapse
Affiliation(s)
- Florencia Vera Candioti
- Unidad Ejecutora Lillo (Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación Miguel Lillo), Tucumán, Argentina
| | - Pedro Henrique Dos Santos Dias
- Naturhistorisches Museum der Burgergemeinde Bern, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Jodi J L Rowley
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia.,Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, New South Wales, Australia
| | - Stefan Hertwig
- Naturhistorisches Museum der Burgergemeinde Bern, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Alexander Haas
- Center of Natural History (CeNak), Universität Hamburg, Hamburg, Germany
| | - Ronald Altig
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
35
|
Piccinni MZ, Watts JEM, Fourny M, Guille M, Robson SC. The skin microbiome of Xenopus laevis and the effects of husbandry conditions. Anim Microbiome 2021; 3:17. [PMID: 33546771 PMCID: PMC7866774 DOI: 10.1186/s42523-021-00080-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Historically the main source of laboratory Xenopus laevis was the environment. The increase in genetically altered animals and evolving governmental constraints around using wild-caught animals for research has led to the establishment of resource centres that supply animals and reagents worldwide, such as the European Xenopus Resource Centre. In the last decade, centres were encouraged to keep animals in a "low microbial load" or "clean" state, where embryos are surface sterilized before entering the housing system; instead of the conventional, "standard" conditions where frogs and embryos are kept without prior surface treatment. Despite Xenopus laevis having been kept in captivity for almost a century, surprisingly little is known about the frogs as a holobiont and how changing the microbiome may affect resistance to disease. This study examines how the different treatment conditions, "clean" and "standard" husbandry in recirculating housing, affects the skin microbiome of tadpoles and female adults. This is particularly important when considering the potential for poor welfare caused by a change in husbandry method as animals move from resource centres to smaller research colonies. RESULTS We found strong evidence for developmental control of the surface microbiome on Xenopus laevis; adults had extremely similar microbial communities independent of their housing, while both tadpole and environmental microbiome communities were less resilient and showed greater diversity. CONCLUSIONS Our findings suggest that the adult Xenopus laevis microbiome is controlled and selected by the host. This indicates that the surface microbiome of adult Xenopus laevis is stable and defined independently of the environment in which it is housed, suggesting that the use of clean husbandry conditions poses little risk to the skin microbiome when transferring adult frogs to research laboratories. This will have important implications for frog health applicable to Xenopus laevis research centres throughout the world.
Collapse
Affiliation(s)
- Maya Z. Piccinni
- grid.4701.20000 0001 0728 6636School of Biological Sciences, University of Portsmouth, Portsmouth, UK
- grid.4701.20000 0001 0728 6636European Xenopus Resource Centre, University of Portsmouth, Portsmouth, UK
| | - Joy E. M. Watts
- grid.4701.20000 0001 0728 6636School of Biological Sciences, University of Portsmouth, Portsmouth, UK
- grid.4701.20000 0001 0728 6636Centre for Enzyme Innovation, University of Portsmouth, Portsmouth, UK
| | - Marie Fourny
- grid.10400.350000 0001 2108 3034University of Rouen-Normandy, Rouen, France
| | - Matt Guille
- grid.4701.20000 0001 0728 6636School of Biological Sciences, University of Portsmouth, Portsmouth, UK
- grid.4701.20000 0001 0728 6636European Xenopus Resource Centre, University of Portsmouth, Portsmouth, UK
| | - Samuel C. Robson
- grid.4701.20000 0001 0728 6636Centre for Enzyme Innovation, University of Portsmouth, Portsmouth, UK
- grid.4701.20000 0001 0728 6636School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
36
|
Douglas AJ, Hug LA, Katzenback BA. Composition of the North American Wood Frog (Rana sylvatica) Bacterial Skin Microbiome and Seasonal Variation in Community Structure. MICROBIAL ECOLOGY 2021; 81:78-92. [PMID: 32613267 DOI: 10.1007/s00248-020-01550-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
While a number of amphibian skin microbiomes have been characterized, it is unclear how these communities might vary in response to seasonal changes in the environment and the corresponding behaviors that many amphibians exhibit. Given recent studies demonstrating the importance of the skin microbiome in frog innate immune defense against pathogens, investigating how changes in the environment impact the microbial species present will provide a better understanding of conditions that may alter host susceptibility to pathogens in their environment. We sampled the bacterial skin microbiome of North American wood frogs (Rana sylvatica) from two breeding ponds in the spring, along with the bacterial community present in their vernal breeding pools, and frogs from the nearby forest floor in the summer and fall to determine whether community composition differs by sex, vernal pond site, or temporally across season (spring, summer, fall). Taxon relative abundance data reveals a profile of bacterial phyla similar to those previously described on anuran skin, with Proteobacteria, Bacteroidetes, and Actinobacteria dominating the wood frog skin microbiome. Our results indicate that sex had no significant effect on skin microbiota diversity; however, this may be due to our limited female frog sample size. Vernal pool site had a small but significant effect on skin microbiota, but skin-associated communities were more similar to each other than to the communities observed in the frogs' respective pond water. Across seasons, diversity analyses suggest that there are significant differences between the bacterial skin microbiome of frogs from spring and summer/fall groups while the average α-diversity per frog remained consistent. These results illustrate seasonal variation in wood frog skin microbiome structure and highlight the importance of considering temporal trends in an amphibian microbiome, particularly for species whose life history requires recurrent shifts in habitat and behavior.
Collapse
Affiliation(s)
- Alexander J Douglas
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Laura A Hug
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Barbara A Katzenback
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
37
|
Fallahi F, Borran S, Ashrafizadeh M, Zarrabi A, Pourhanifeh MH, Khaksary Mahabady M, Sahebkar A, Mirzaei H. Curcumin and inflammatory bowel diseases: From in vitro studies to clinical trials. Mol Immunol 2020; 130:20-30. [PMID: 33348246 DOI: 10.1016/j.molimm.2020.11.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel diseases (IBDs) may result from mutations in genes encoding for innate immunity, which can lead to exacerbated inflammatory response. Although some mono-targeted treatments have developed in recent years, IBDs are caused through several pathway perturbations. Therefore, targeting all these pathways is difficult to be achieved by a single agent. Moreover, those mono-targeted therapies are usually expensive and may cause side-effects. These limitations highlight the significance of an available, inexpensive and multi-targeted dietary agents or natural compounds for the treatment and prevention of IBDs. Curcumin is a multifunctional phenolic compound that is known for its anti-inflammatory and immunomodulatory properties. Over the past decades, mounting experimental investigations have revealed the therapeutic potential of curcumin against a broad spectrum of inflammatory diseases including IBDs. Furthermore, it has been reported that curcumin directly interacts with many signaling mediators implicated in the pathogenesis of IBDs. These preclinical findings have created a solid basis for the assessment of the efficacy of curcumin in clinical practice. In clinical trials, different dosages e.g., 550 mg /three times daily-1month, and 1 g /twice times daily-6month of curcumin were used for patients with IBDs. Taken together, these findings indicated that curcumin could be employed as a therapeutic candidate in the treatment of IBDs. Moreover, it seems that overcome to current limitations of curcumin i.e., poor oral bioavailability, and poor oral absorption with using nanotechnology and others, could improve the efficacy of curcumin both in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Farzaneh Fallahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | | | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
38
|
Gallo BD, Farrell JM, Leydet B. Use of next generation sequencing to compare simple habitat and species level differences in the gut microbiota of an invasive and native freshwater fish species. PeerJ 2020; 8:e10237. [PMID: 33384896 PMCID: PMC7751434 DOI: 10.7717/peerj.10237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Research on the gut microbiome of host organisms has rapidly advanced with next generation sequencing (NGS) and high-performance computing capabilities. Nonetheless, gut microbiome research has focused on mammalian organisms in laboratory settings, and investigations pertaining to wild fish gut microbiota remain in their infancy. We applied a procedure (available at https://github.com/bngallo1994) for sampling of the fish gut for use in NGS to describe microbial community structure. Our approach allowed for high bacterial OTU diversity coverage (>99.7%, Good’s Coverage) that led to detection of differences in gut microbiota of an invasive (Round Goby) and native (Yellow Bullhead) fish species and collected from the upper St. Lawrence River, an environment where the gut microbiota of fish had not previously been tested. Additionally, results revealed habitat level differences in gut microbiota using two distance metrics (Unifrac, Bray–Curtis) between nearshore littoral and offshore profundal collections of Round Goby. Species and habitat level differences in intestinal microbiota may be of importance in understanding individual and species variation and its importance in regulating fish health and physiology.
Collapse
Affiliation(s)
- Benjamin D Gallo
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA
| | - John M Farrell
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Brian Leydet
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA
| |
Collapse
|
39
|
Fong JJ, Sung YH, Ding L. Comparative Analysis of the Fecal Microbiota of Wild and Captive Beal's Eyed Turtle ( Sacalia bealei) by 16S rRNA Gene Sequencing. Front Microbiol 2020; 11:570890. [PMID: 33240228 PMCID: PMC7677423 DOI: 10.3389/fmicb.2020.570890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
The Beal’s eyed turtle (Sacalia bealei) is threatened with extinction due to hunting for large-scale trade. In Hong Kong, there are some of the world’s remaining wild populations of S. bealei, as well as a breeding colony. This breeding colony is at the core of conservation efforts (captive breeding, reintroduction programs). Therefore, we would like to know how captivity, in particular diet, affects the gut microbiota. Using high-throughput 16S rRNA gene sequencing, we comparatively analyzed the fecal microbiota of wild and captive S. bealei. We found that wild S. bealei have higher alpha diversity than captive S. bealei, but the difference was not significant. Significant differences were found in β-diversity; at the phylum level, wild S. bealei have higher relative abundances of Proteobacteria and captive S. bealei have higher relative abundances of Firmicutes. At the genus level, Cetobacterium and Citrobacter are more abundant in wild S. bealei, while Clostridium spp. are significantly more abundant in captive S. bealei. These results suggest conditions in captivity, with diet being a major factor, influence the gut microbiota of S. bealei. The connection between diet and health has always been considered for captive animals, and in this study we use the gut microbiota as an another tool to assess health.
Collapse
Affiliation(s)
| | - Yik-Hei Sung
- Science Unit, Lingnan University, Hong Kong, China
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| |
Collapse
|
40
|
Grogan LF, Humphries JE, Robert J, Lanctôt CM, Nock CJ, Newell DA, McCallum HI. Immunological Aspects of Chytridiomycosis. J Fungi (Basel) 2020; 6:jof6040234. [PMID: 33086692 PMCID: PMC7712659 DOI: 10.3390/jof6040234] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/27/2022] Open
Abstract
Amphibians are currently the most threatened vertebrate class, with the disease chytridiomycosis being a major contributor to their global declines. Chytridiomycosis is a frequently fatal skin disease caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). The severity and extent of the impact of the infection caused by these pathogens across modern Amphibia are unprecedented in the history of vertebrate infectious diseases. The immune system of amphibians is thought to be largely similar to that of other jawed vertebrates, such as mammals. However, amphibian hosts are both ectothermic and water-dependent, which are characteristics favouring fungal proliferation. Although amphibians possess robust constitutive host defences, Bd/Bsal replicate within host cells once these defences have been breached. Intracellular fungal localisation may contribute to evasion of the induced innate immune response. Increasing evidence suggests that once the innate defences are surpassed, fungal virulence factors suppress the targeted adaptive immune responses whilst promoting an ineffectual inflammatory cascade, resulting in immunopathology and systemic metabolic disruption. Thus, although infections are contained within the integument, crucial homeostatic processes become compromised, leading to mortality. In this paper, we present an integrated synthesis of amphibian post-metamorphic immunological responses and the corresponding outcomes of infection with Bd, focusing on recent developments within the field and highlighting future directions.
Collapse
Affiliation(s)
- Laura F. Grogan
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Southport, QLD 4222, Australia;
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (J.E.H.); (D.A.N.)
- Correspondence:
| | - Josephine E. Humphries
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (J.E.H.); (D.A.N.)
| | - Jacques Robert
- University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Chantal M. Lanctôt
- Australian Rivers Institute, Griffith University, Southport, QLD 4222, Australia;
| | - Catherine J. Nock
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia;
| | - David A. Newell
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia; (J.E.H.); (D.A.N.)
| | - Hamish I. McCallum
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Southport, QLD 4222, Australia;
| |
Collapse
|
41
|
Brenes-Soto A, Tye M, Esmail MY. The Role of Feed in Aquatic Laboratory Animal Nutrition and the Potential Impact on Animal Models and Study Reproducibility. ILAR J 2020; 60:197-215. [PMID: 33094819 DOI: 10.1093/ilar/ilaa006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
Feed plays a central role in the physiological development of terrestrial and aquatic animals. Historically, the feeding practice of aquatic research species derived from aquaculture, farmed, or ornamental trades. These diets are highly variable, with limited quality control, and have been typically selected to provide the fastest growth or highest fecundity. These variations of quality and composition of diets may affect animal/colony health and can introduce confounding experimental variables into animal-based studies that impact research reproducibility.
Collapse
Affiliation(s)
- Andrea Brenes-Soto
- Department of Animal Science, University of Costa Rica, San José, Costa Rica
| | - Marc Tye
- Zebrafish Core Facility, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Michael Y Esmail
- Tufts Comparative Medicine Services, Tufts University Health Science Campus, Boston, Massachusetts
| |
Collapse
|
42
|
Martin H. C, Ibáñez R, Nothias LF, Caraballo-Rodríguez AM, Dorrestein PC, Gutiérrez M. Metabolites from Microbes Isolated from the Skin of the Panamanian Rocket Frog Colostethus panamansis (Anura: Dendrobatidae). Metabolites 2020; 10:E406. [PMID: 33065987 PMCID: PMC7601193 DOI: 10.3390/metabo10100406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 01/02/2023] Open
Abstract
The Panamanian rocket frog Colostethus panamansis (family Dendrobatidae) has been affected by chytridiomycosis, a deadly disease caused by the fungus Batrachochytrium dendrobatidis (Bd). While there are still uninfected frogs, we set out to isolate microbes from anatomically distinct regions in an effort to create a cultivable resource within Panama for potential drug/agricultural/ecological applications that perhaps could also be used as part of a strategy to protect frogs from infections. To understand if there are specific anatomies that should be explored in future applications of this resource, we mapped skin-associated bacteria of C. panamansis and their metabolite production potential by mass spectrometry on a 3D model. Our results indicate that five bacterial families (Enterobacteriaceae, Comamonadaceae, Aeromonadaceae, Staphylococcaceae and Pseudomonadaceae) dominate the cultivable microbes from the skin of C. panamansis. The combination of microbial classification and molecular analysis in relation to the anti-Bd inhibitory databases reveals the resource has future potential for amphibian conservation.
Collapse
Affiliation(s)
- Christian Martin H.
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, Panama 0843-01103, Panama;
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522510, India
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Balboa, Ancon, Panama 0843-03092, Panama;
| | - Louis-Félix Nothias
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (L.-F.N.); (A.M.C.-R.); (P.C.D.)
| | - Andrés Mauricio Caraballo-Rodríguez
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (L.-F.N.); (A.M.C.-R.); (P.C.D.)
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (L.-F.N.); (A.M.C.-R.); (P.C.D.)
| | - Marcelino Gutiérrez
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, Panama 0843-01103, Panama;
| |
Collapse
|
43
|
Tong Q, Cui LY, Du XP, Hu ZF, Bie J, Xiao JH, Wang HB, Zhang JT. Comparison of Gut Microbiota Diversity and Predicted Functions Between Healthy and Diseased Captive Rana dybowskii. Front Microbiol 2020; 11:2096. [PMID: 32983063 PMCID: PMC7490342 DOI: 10.3389/fmicb.2020.02096] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 08/10/2020] [Indexed: 01/26/2023] Open
Abstract
The gut microbiota plays a key role in host health, and disruptions to gut bacterial homeostasis can cause disease. However, the effect of disease on gut microbiota assembly remains unclear and gut microbiota-based predictions of health status is a promising yet poorly established field. Using Illumina high-throughput sequencing technology, we compared the gut microbiota between healthy (HA and HB) and diarrhoeic (DS) Rana dybowskii groups and analyzed the functional profiles through a phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis. In addition, we estimated the correlation between gut microbiota structures and predicted the functional compositions. The results showed significant differences in the phylogenetic diversity (Pd), Shannon, and observed richness (Sobs) indices between the DS and HB groups, with significant differences observed in the gut microbiota composition between the DS group and the HA and HB groups. Linear discriminant analysis (LDA) effect size (LEfSe) results revealed that Proteobacteria were significantly enriched in the DS group; Bacteroidetes were significantly enriched in the HA and HB groups; and Aeromonas, Citrobacter, Enterococcus, Hafnia-Obesumbacterium, Morganella, Lactococcus, Providencia, Vagococcus, and Staphylococcus were significantly enriched in the DS group. Venn diagrams revealed that there were many more unique genera in the DS group than the HA and HB groups. Among 102 sensitive species selected using the indicator method, 33 indicated a healthy status and 69 (e.g., Acinetobacter, Aeromonas, Legionella, Morganella, Proteus, Providencia, Staphylococcus, and Vagococcus) indicated a diseased status. There was a significant and positive association between the composition and functional composition of the gut microbiota, thus indicating low functional redundancy of the frog gut bacterial community. Rana dybowskii disease was associated with changes in the gut microbiota, which subsequently disrupted bacterial-mediated functions. The results of this study can aid in revealing the effect of the R. dybowskii gut microbiota on host health and provide a basis for elucidating the mechanism of the occurrence of R. dybowskii disease.
Collapse
Affiliation(s)
- Qing Tong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Jiamusi Branch of Heilongjiang Academy of Forestry Sciences, Jiamusi, China
| | - Li-Yong Cui
- Jiamusi Branch of Heilongjiang Academy of Forestry Sciences, Jiamusi, China
| | - Xiao-Peng Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zong-Fu Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jia Bie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jian-Hua Xiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hong-Bin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jian-Tao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
44
|
Rollins-Smith LA. Global Amphibian Declines, Disease, and the Ongoing Battle between Batrachochytrium Fungi and the Immune System. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.178] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Louise A. Rollins-Smith
- Departments of Pathology, Microbiology and Immunology and Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
45
|
Zolfaghari Emameh R, Kuuslahti M, Nosrati H, Lohi H, Parkkila S. Assessment of databases to determine the validity of β- and γ-carbonic anhydrase sequences from vertebrates. BMC Genomics 2020; 21:352. [PMID: 32393172 PMCID: PMC7216627 DOI: 10.1186/s12864-020-6762-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/30/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The inaccuracy of DNA sequence data is becoming a serious problem, as the amount of molecular data is multiplying rapidly and expectations are high for big data to revolutionize life sciences and health care. In this study, we investigated the accuracy of DNA sequence data from commonly used databases using carbonic anhydrase (CA) gene sequences as generic targets. CAs are ancient metalloenzymes that are present in all unicellular and multicellular living organisms. Among the eight distinct families of CAs, including α, β, γ, δ, ζ, η, θ, and ι, only α-CAs have been reported in vertebrates. RESULTS By an in silico analysis performed on the NCBI and Ensembl databases, we identified several β- and γ-CA sequences in vertebrates, including Homo sapiens, Mus musculus, Felis catus, Lipotes vexillifer, Pantholops hodgsonii, Hippocampus comes, Hucho hucho, Oncorhynchus tshawytscha, Xenopus tropicalis, and Rhinolophus sinicus. Polymerase chain reaction (PCR) analysis of genomic DNA persistently failed to amplify positive β- or γ-CA gene sequences when Mus musculus and Felis catus DNA samples were used as templates. Further BLAST homology searches of the database-derived "vertebrate" β- and γ-CA sequences revealed that the identified sequences were presumably derived from gut microbiota, environmental microbiomes, or grassland ecosystems. CONCLUSIONS Our results highlight the need for more accurate and fast curation systems for DNA databases. The mined data must be carefully reconciled with our best knowledge of sequences to improve the accuracy of DNA data for publication.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 14965/161 Iran
| | - Marianne Kuuslahti
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland
| | - Hassan Nosrati
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland
- Fimlab Laboratories Ltd. and Tampere University Hospital, FI-33520 Tampere, Finland
| |
Collapse
|
46
|
Bernardo-Cravo AP, Schmeller DS, Chatzinotas A, Vredenburg VT, Loyau A. Environmental Factors and Host Microbiomes Shape Host-Pathogen Dynamics. Trends Parasitol 2020; 36:616-633. [PMID: 32402837 DOI: 10.1016/j.pt.2020.04.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 12/18/2022]
Abstract
Microorganisms are increasingly recognized as ecosystem-relevant components because they affect the population dynamics of hosts. Functioning at the interface of the host and pathogen, skin and gut microbiomes are vital components of immunity. Recent work reveals a strong influence of biotic and abiotic environmental factors (including the environmental microbiome) on disease dynamics, yet the importance of the host-host microbiome-pathogen-environment interaction has been poorly reflected in theory. We use amphibians and the disease chytridiomycosis caused by the fungal pathogen Batrachochytrium dendrobatidis to show how interactions between host, host microbiome, pathogen, and the environment all affect disease outcome. Our review provides new perspectives that improve our understanding of disease dynamics and ecology by incorporating environmental factors and microbiomes into disease theory.
Collapse
Affiliation(s)
- Adriana P Bernardo-Cravo
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France; Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Dirk S Schmeller
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Antonis Chatzinotas
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstrasse 15, 04318, Leipzig, Germany; Leipzig University, Institute of Biology, Johannisallee 21-23, 04103 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Adeline Loyau
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France; Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, Stechlin, D-16775, Germany
| |
Collapse
|
47
|
Walker DM, Hill AJ, Albecker MA, McCoy MW, Grisnik M, Romer A, Grajal-Puche A, Camp C, Kelehear C, Wooten J, Rheubert J, Graham SP. Variation in the Slimy Salamander (Plethodon spp.) Skin and Gut-Microbial Assemblages Is Explained by Geographic Distance and Host Affinity. MICROBIAL ECOLOGY 2020; 79:985-997. [PMID: 31802185 DOI: 10.1007/s00248-019-01456-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
A multicellular host and its microbial communities are recognized as a metaorganism-a composite unit of evolution. Microbial communities have a variety of positive and negative effects on the host life history, ecology, and evolution. This study used high-throughput amplicon sequencing to characterize the complete skin and gut microbial communities, including both bacteria and fungi, of a terrestrial salamander, Plethodon glutinosus (Family Plethodontidae). We assessed salamander populations, representing nine mitochondrial haplotypes ('clades'), for differences in microbial assemblages across 13 geographic locations in the Southeastern United States. We hypothesized that microbial assemblages were structured by both host factors and geographic distance. We found a strong correlation between all microbial assemblages at close geographic distances, whereas, as spatial distance increases, the patterns became increasingly discriminate. Network analyses revealed that gut-bacterial communities have the highest degree of connectedness across geographic space. Host salamander clade was explanatory of skin-bacterial and gut-fungal assemblages but not gut-bacterial assemblages, unless the latter were analyzed within a phylogenetic context. We also inferred the function of gut-fungal assemblages to understand how an understudied component of the gut microbiome may influence salamander life history. We concluded that dispersal limitation may in part describe patterns in microbial assemblages across space and also that the salamander host may select for skin and gut communities that are maintained over time in closely related salamander populations.
Collapse
Affiliation(s)
- Donald M Walker
- Department of Biology, Middle Tennessee State University, PO Box 60, Murfreesboro, TN, 37132, USA.
| | - Aubree J Hill
- Department of Biology, Tennessee Technological University, 1100 N. Dixie Ave, Cookeville, TN, 38505, USA
| | - Molly A Albecker
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Michael W McCoy
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Matthew Grisnik
- Department of Biology, Middle Tennessee State University, PO Box 60, Murfreesboro, TN, 37132, USA
| | - Alexander Romer
- Department of Biology, Middle Tennessee State University, PO Box 60, Murfreesboro, TN, 37132, USA
| | - Alejandro Grajal-Puche
- Department of Biology, Middle Tennessee State University, PO Box 60, Murfreesboro, TN, 37132, USA
| | - Carlos Camp
- Department of Biology, Piedmont College, 1021 Central Avenue, Demorest, GA, 30535, USA
| | - Crystal Kelehear
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Panama, Republic of Panama
- Department of Biology, Geology and Physical Sciences, Sul Ross State University, Alpine, TX, 79832, USA
| | - Jessica Wooten
- Department of Biology, Piedmont College, 1021 Central Avenue, Demorest, GA, 30535, USA
| | - Justin Rheubert
- Department of Natural Sciences, The University of Findlay, 1000 N. Main St, Findlay, OH, 45840, USA
| | - Sean P Graham
- Department of Biology, Geology and Physical Sciences, Sul Ross State University, Alpine, TX, 79832, USA
| |
Collapse
|
48
|
Tong Q, Hu ZF, Du XP, Bie J, Wang HB. Effects of Seasonal Hibernation on the Similarities Between the Skin Microbiota and Gut Microbiota of an Amphibian (Rana dybowskii). MICROBIAL ECOLOGY 2020; 79:898-909. [PMID: 31820074 DOI: 10.1007/s00248-019-01466-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Both the gut and skin microbiotas have important functions for amphibians. The gut microbiota plays an important role in both the health and evolution of the host species, whereas the role of skin microbiota in disease resistance is particularly important for amphibians. Many studies have examined the effects of environmental factors on the skin and gut microbiotas, but no study has yet explored the similarities between the skin and gut microbiotas. In this study, the gut and skin microbiotas of Rana dybowskii in summer and winter were investigated via high-throughput Illumina sequencing. The results showed that the alpha diversity of gut and skin microbiotas decreased significantly from summer to winter. In both seasons, the microbial composition and structure differed significantly between the gut and skin, and the similarities between these microbiotas differed between seasons. The pairwise distances between the gut and skin microbiotas were greater in winter than in summer. The ratio of core OTUs and shared OTUs to the sum of the OTUs in the gut and skin microbiotas in summer was significantly higher than that in winter. The similarities between the gut and skin microbiotas are important for understanding amphibian ecology and life history.
Collapse
Affiliation(s)
- Qing Tong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China
| | - Zong-Fu Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiao-Peng Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jia Bie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hong-Bin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China.
| |
Collapse
|
49
|
Yan F, Zhou E, Liu S, Gao A, Kong L, Li B, Tu X, Guo Z, Mo J, Chen M, Ye J. Complement C1q subunit molecules from Xenopus laevis possess conserved function in C1q-immunoglobulin interaction. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103532. [PMID: 31678076 DOI: 10.1016/j.dci.2019.103532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Complement component 1q (C1q), together with C1r and C1s to form C1, recognize and bind immune complex to initiate the classical complement pathway. In this study, C1q subunit molecules (XlC1qA, XlC1qB, XlC1qC) were cloned and analyzed from Xenopus laevis (X. laevis). The open reading frame (ORF) of XlC1qA is 819 bp of nucleotide sequence encoding 272 amino acids, the ORF of XlC1qB is 711 bp encoding 236 aa, and the XlC1qC is consists of 732 bp encoding 243 aa. The deduced amino acid sequences contain a collagen-like region (CLR), Gly-X-Y repeats in the N-terminus and a C1q family domain at the C-terminus. Phylogenetic analysis revealed that the XlC1qs are clustered with the amphibian clade. Expression analysis indicated that the XlC1qs exhibited constitutive expression in all examined tissues, with the highest expression in liver. Additionally, XlC1q could interact with heat-aggregated mouse IgG and IgM, Xenopus IgM and Nile tilapia IgM, respectively, indicating the functional conservation of XlC1q binding to immunoglobulins. Further, XlC1qs can inhibit C1q-dependent hemolysis of sensitized sheep red blood cells with concentration-dependent manner. These data collectively suggest that the function of C1qs in X. laevis may be conserved in interaction with immunoglobulins, as that of mammals and teleosts.
Collapse
Affiliation(s)
- Fangfang Yan
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Enxu Zhou
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Shuo Liu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Along Gao
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Linghe Kong
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Bingxi Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Xiao Tu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Zheng Guo
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Jinfeng Mo
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Meng Chen
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China.
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China.
| |
Collapse
|
50
|
Anatomical Uniqueness of the Mucosal Immune System (GALT, NALT, iBALT) for the Induction and Regulation of Mucosal Immunity and Tolerance. MUCOSAL VACCINES 2020. [PMCID: PMC7149644 DOI: 10.1016/b978-0-12-811924-2.00002-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|