1
|
Clarissa EM, Karmacharya M, Choi H, Kumar S, Cho YK. Nature Inspired Delivery Vehicles for CRISPR-Based Genome Editing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409353. [PMID: 39901476 DOI: 10.1002/smll.202409353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/16/2025] [Indexed: 02/05/2025]
Abstract
The advent of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based genome editing technologies has opened up groundbreaking possibilities for treating a wide spectrum of genetic disorders and diseases. However, the success of these technologies relies heavily on the development of efficient and safe delivery systems. Among the most promising approaches are natural and synthetic nanocarrier-mediated delivery systems, including viral vectors, extracellular vesicles (EVs), engineered cellular membrane particles, liposomes, and various nanoparticles. These carriers enhance the efficacy of the CRISPR system by providing a unique combination of efficiency, specificity, and reduced immunogenicity. Synthetic carriers such as liposomes and nanoparticles facilitate CRISPR delivery with high reproducibility and customizable functions. Viral vectors, renowned for their high transduction efficiency and broad tropism, serve as powerful vehicles for delivering CRISPR components to various cell types. EVs, as natural carriers of RNA and proteins, offer a stealth mechanism to evade immune detection, allowing for the targeted delivery of genome editors with minimal off-target effects. Engineered cellular membrane particles further improve delivery by simulating the cellular environment, enhancing uptake, and minimizing immune response. This review explores the innovative integration of CRISPR genome editors with various nanocarrier systems, focusing on recent advancements, applications, and future directions in therapeutic genome editing.
Collapse
Affiliation(s)
- Elizabeth Maria Clarissa
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Mamata Karmacharya
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Hyunmin Choi
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Sumit Kumar
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
2
|
Rizatdinova SN, Ershova AE, Astrakhantseva IV. Pseudotyped Viruses: A Useful Platform for Pre-Clinical Studies Conducted in a BSL-2 Laboratory Setting. Biomolecules 2025; 15:135. [PMID: 39858529 PMCID: PMC11763035 DOI: 10.3390/biom15010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The study of pathogenic viruses has always posed significant biosafety challenges. In particular, the study of highly pathogenic viruses requires methods with low biological risk but relatively high sensitivity and convenience in detection. In recent years, pseudoviruses, which consist of a backbone of one virus and envelope proteins of another virus, have become one of the most widely used tools for exploring the mechanisms of viruses binding to cells, membrane fusion and viral entry, as well as for screening the libraries of antiviral substances, evaluating the potential of neutralizing monoclonal antibodies, developing neutralization tests, and therapeutic platforms. During the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), pseudotyped virus-based assays played a pivotal role in advancing our understanding of virus-cell interactions and the role of its proteins in disease pathogenesis. Such tools facilitated the search for potential therapeutic agents and accelerated epidemiological studies on post-infection and post-vaccination humoral immunity. This review focuses on the use of pseudoviruses as a model for large-scale applications to study enveloped viruses.
Collapse
Affiliation(s)
| | | | - Irina V. Astrakhantseva
- Department of Immunobiology and Biomedicine, Sirius University of Science and Technology, 354349 Sirius, Krasnodarsky Krai, Russia; (S.N.R.); (A.E.E.)
| |
Collapse
|
3
|
Paciello I, Pierleoni G, Pantano E, Antonelli G, Pileri P, Maccari G, Cardamone D, Realini G, Perrone F, Neto MM, Pozzessere S, Fabbiani M, Panza F, Rancan I, Tumbarello M, Montagnani F, Medini D, Maes P, Temperton N, Simon-Loriere E, Schwartz O, Rappuoli R, Andreano E. Antigenic sin and multiple breakthrough infections drive converging evolution of COVID-19 neutralizing responses. Cell Rep 2024; 43:114645. [PMID: 39207904 PMCID: PMC11422482 DOI: 10.1016/j.celrep.2024.114645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Understanding the evolution of the B cell response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is fundamental to design the next generation of vaccines and therapeutics. We longitudinally analyze at the single-cell level almost 900 neutralizing human monoclonal antibodies (nAbs) isolated from vaccinated people and from individuals with hybrid and super hybrid immunity (SH), developed after three mRNA vaccine doses and two breakthrough infections. The most potent neutralization and Fc functions against highly mutated variants belong to the SH cohort. Repertoire analysis shows that the original Wuhan antigenic sin drives the convergent expansion of the same B cell germlines in vaccinated and SH cohorts. Only Omicron breakthrough infections expand previously unseen germ lines and generate broadly nAbs by restoring IGHV3-53/3-66 germ lines. Our analyses find that B cells initially expanded by the original antigenic sin continue to play a fundamental role in the evolution of the immune response toward an evolving virus.
Collapse
Affiliation(s)
- Ida Paciello
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Giulio Pierleoni
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy; Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Elisa Pantano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy; Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Giada Antonelli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Piero Pileri
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Giuseppe Maccari
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Dario Cardamone
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Giulia Realini
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Federica Perrone
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy; Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Martin Mayora Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent, UK
| | - Simone Pozzessere
- Department of Cellular Therapies, Hematology, and Laboratory Medicine, University Hospital of Siena, Siena, Italy
| | - Massimiliano Fabbiani
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, Siena University Hospital, Siena, Italy; Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesca Panza
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, Siena University Hospital, Siena, Italy
| | - Ilaria Rancan
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, Siena University Hospital, Siena, Italy
| | - Mario Tumbarello
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, Siena University Hospital, Siena, Italy; Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesca Montagnani
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, Siena University Hospital, Siena, Italy; Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Duccio Medini
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Piet Maes
- KU Leuven, Rega Institute, Department of Microbiology, Immunology, and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent, UK
| | - Etienne Simon-Loriere
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France; National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France; Vaccine Research Institute, Creteil, France
| | - Rino Rappuoli
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy; Fondazione Biotecnopolo di Siena, Siena, Italy
| | - Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy.
| |
Collapse
|
4
|
Focosi D, Franchini M, Senefeld JW, Joyner MJ, Sullivan DJ, Pekosz A, Maggi F, Casadevall A. Passive immunotherapies for the next influenza pandemic. Rev Med Virol 2024; 34:e2533. [PMID: 38635404 DOI: 10.1002/rmv.2533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Influenzavirus is among the most relevant candidates for a next pandemic. We review here the phylogeny of former influenza pandemics, and discuss candidate lineages. After briefly reviewing the other existing antiviral options, we discuss in detail the evidences supporting the efficacy of passive immunotherapies against influenzavirus, with a focus on convalescent plasma.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Hematology and Transfusion Medicine, Mantua Hospital, Mantua, Italy
| | - Jonathon W Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Fabrizio Maggi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Thomas J, Mughal F, Roper KJ, Kotsiri A, Albalawi W, Alshehri A, Reddy YBS, Mukherjee S, Pollakis G, Paxton WA, Hoptroff M. Development of a pseudo-typed virus particle based method to determine the efficacy of virucidal agents. Sci Rep 2024; 14:2174. [PMID: 38273020 PMCID: PMC10810821 DOI: 10.1038/s41598-024-52177-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
The ongoing Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic has highlighted the threat that viral outbreaks pose to global health. A key tool in the arsenal to prevent and control viral disease outbreaks is disinfection of equipment and surfaces with formulations that contain virucidal agents (VA). However, assessment of the efficacy of virus inactivation often requires live virus assays or surrogate viruses such as Modified Vaccinia Virus Ankara (MVA), which can be expensive, time consuming and technically challenging. Therefore, we have developed a pseudo-typed virus (PV) based approach to assess the inactivation of enveloped viruses with a fast and quantitative output that can be adapted to emerging viruses. Additionally, we have developed a method to completely remove the cytotoxicity of virucidal agents while retaining the required sensitivity to measure PV infectivity. Our results indicated that the removal of cytotoxicity was an essential step to accurately measure virus inactivation. Further, we demonstrated that there was no difference in susceptibility to virus inactivation between PVs that express the envelopes of HIV-1, SARS-CoV-2, and Influenza A/Indonesia. Therefore, we have developed an effective and safe alternative to live virus assays that enables the rapid assessment of virucidal activity for the development and optimization of virucidal reagents.
Collapse
Affiliation(s)
- Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK.
| | - Farah Mughal
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
| | - Kelly J Roper
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
| | - Aurelia Kotsiri
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
| | - Wejdan Albalawi
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
| | - Abdullateef Alshehri
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
| | - Yugandhar B S Reddy
- Unilever Research & Development Centre, 64 Main Road, Whitefield, Bangalore, Karnataka, 560066, India
| | - Sayandip Mukherjee
- Unilever Research & Development Centre, 64 Main Road, Whitefield, Bangalore, Karnataka, 560066, India
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK.
| | - William A Paxton
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK.
| | - Michael Hoptroff
- Unilever Research & Development, Port Sunlight, Bebington, Wirral, CH63 3JW, UK.
| |
Collapse
|
6
|
Di Genova C, Sutton G, Paillot R, Temperton N, Pronost S, Scott SD. Studying longitudinal neutralising antibody levels against Equid herpesvirus 1 in experimentally infected horses using a novel pseudotype based assay. Virus Res 2024; 339:199262. [PMID: 37931881 PMCID: PMC10694342 DOI: 10.1016/j.virusres.2023.199262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Infection with equid herpesvirus 1 (EHV-1), a DNA virus of the Herpesviridae family represents a significant welfare issue in horses and a great impact on the equine industry. During EHV-1 infection, entry of the virus into different cell types is complex due to the presence of twelve glycoproteins (GPs) on the viral envelope. To investigate virus entry mechanisms, specific combinations of GPs were pseudotyped onto lentiviral vectors. Pseudotyped virus (PV) particles bearing gB, gD, gH and gL were able to transduce several target cell lines (HEK293T/17, RK13, CHO-K1, FHK-Tcl3, MDCK I & II), demonstrating that these four EHV-1 glycoproteins are both essential and sufficient for cell entry. The successful generation of an EHV-1 PV permitted development of a PV neutralisation assay (PVNA). The efficacy of the PVNA was tested by measuring the level of neutralising serum antibodies from EHV-1 experimentally infected horses (n = 52) sampled in a longitudinal manner. The same sera were assessed using a conventional EHV-1 virus neutralisation (VN) assay, exhibiting a strong correlation (r = 0.82) between the two assays. Furthermore, PVs routinely require -80 °C for long term storage and a dry ice cold-chain during transport, which can impede dissemination and utilisation in other stakeholder laboratories. Consequently, lyophilisation of EHV-1 PVs was conducted to address this issue. PVs were lyophilised and pellets either reconstituted immediately or stored under various temperature conditions for different time periods. The recovery and functionality of these lyophilised PVs was compared with standard frozen aliquots in titration and neutralisation tests. Results indicated that lyophilisation could be used to stably preserve such complex herpesvirus pseudotypes, even after weeks of storage at room temperature, and that reconstituted EHV-1 PVs could be successfully employed in antibody neutralisation tests.
Collapse
Affiliation(s)
- Cecilia Di Genova
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent ME4 4 TB, United Kingdom; Animal and Plant Health Agency (APHA), Weybridge, Surrey KT15 3NB, United Kingdom
| | - Gabrielle Sutton
- LABÉO Frank Duncombe, 14280 Saint-Contest, France; BIOTARGEN, Normandie Univ, UNICAEN, 14000 Caen, France; Université de Montréal, H3C 3J7 Montreal, Quebec, Canada
| | - Romain Paillot
- LABÉO Frank Duncombe, 14280 Saint-Contest, France; BIOTARGEN, Normandie Univ, UNICAEN, 14000 Caen, France; School of Equine and Veterinary Physiotherapy, Writtle University College, Writtle, Chelmsford, Essex CM1 3RR, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent ME4 4 TB, United Kingdom
| | - Stéphane Pronost
- LABÉO Frank Duncombe, 14280 Saint-Contest, France; BIOTARGEN, Normandie Univ, UNICAEN, 14000 Caen, France
| | - Simon D Scott
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent ME4 4 TB, United Kingdom.
| |
Collapse
|
7
|
Preston HE, Bayliss R, Temperton N, Neto MM, Brewer J, Parker AL. Capture and inactivation of viral particles from bioaerosols by electrostatic precipitation. iScience 2023; 26:107567. [PMID: 37664619 PMCID: PMC10470311 DOI: 10.1016/j.isci.2023.107567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/11/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Infectious viral particles in bioaerosols generated during laparoscopic surgery place staff and patients at significant risk of infection and contributed to the postponement of countless surgical procedures during the COVID-19 pandemic causing excess deaths. The implementation of devices that inactivate viral particles from bioaerosols aid in preventing nosocomial viral spread. We evaluated whether electrostatic precipitation (EP) is effective in capturing and inactivating aerosolized enveloped and non-enveloped viruses. Using a closed-system model mimicking release of bioaerosols during laparoscopic surgery, known concentrations of each virus were aerosolized, exposed to EP and collected for analysis. We demonstrate that both enveloped and non-enveloped viral particles were efficiently captured and inactivated by EP, which was enhanced by increasing the voltage to 10 kV or using two discharge electrodes together at 8 kV. This study highlights EP as an effective means for capturing and inactivating viral particles in bioaerosols, which may enable continued surgical procedures during future pandemics.
Collapse
Affiliation(s)
- Hannah E. Preston
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Rebecca Bayliss
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Central Avenue, Chatham ME4 4BF, UK
| | - Martin Mayora Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Central Avenue, Chatham ME4 4BF, UK
| | - Jason Brewer
- Alesi Surgical Ltd, Medicentre, Heath Park Way, Cardiff CF14 4UJ, UK
| | - Alan L. Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
8
|
Zhang Z, King MR. Neutralization of the new coronavirus by extracting their spikes using engineered liposomes. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 50:102674. [PMID: 37054806 PMCID: PMC10085972 DOI: 10.1016/j.nano.2023.102674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
The devastating COVID-19 pandemic motivates the development of safe and effective antivirals to reduce morbidity and mortality associated with infection. We developed nanoscale liposomes that are coated with the cell receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19. Lentiviral particles pseudotyped with the spike protein of SARS-CoV-2 were constructed and used to test the virus neutralization potential of the engineered liposomes. Under TEM, we observed for the first time a dissociation of spike proteins from the pseudovirus surface when the pseudovirus was purified. The liposomes potently inhibit viral entry into host cells by extracting the spike proteins from the pseudovirus surface. As the receptor on the liposome surface can be readily changed to target other viruses, the receptor-coated liposome represents a promising strategy for broad spectrum antiviral development.
Collapse
Affiliation(s)
- Zhenjiang Zhang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Michael R King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA.
| |
Collapse
|
9
|
Application of Pseudotyped Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:45-60. [PMID: 36920691 DOI: 10.1007/978-981-99-0113-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Highly pathogenic emerging and reemerging viruses have serious public health and socioeconomic implications. Although conventional live virus research methods can more reliably investigate disease pathogenicity and evaluate antiviral products, they usually depend on high-level biosafety laboratories and skilled researchers; these requirements hinder in vitro assessments of efficacy, as well as efforts to test vaccines and antibody drugs. In contrast, pseudotyped viruses (i.e., single-round infectious viruses that mimic the membrane structures of various live viruses) are widely used in studies of highly pathogenic viruses because they can be handled in biosafety level 2 facilities. This chapter provides a concise overview of various aspects of pseudotyped virus technologies, including (1) exploration of the mechanisms of viral infection; (2) evaluation of the efficacies of vaccines and monoclonal antibodies based on pseudovirion-based neutralization assay; (3) assessment of antiviral agents (i.e., antibody-based drugs and inhibitors); (4) establishment of animal models of pseudotyped virus infection in vivo; (5) investigation of the evolution, infectivity, and antigenicity of viral variants and viral glycosylation; and (6) prediction of antibody-dependent cell-mediated cytotoxic activity.
Collapse
|
10
|
Wang Y, Zhou Z, Wu X, Li T, Wu J, Cai M, Nie J, Wang W, Cui Z. Pseudotyped Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:1-27. [PMID: 36920689 DOI: 10.1007/978-981-99-0113-5_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Pseudotyped viruses have been constructed for many viruses. They can mimic the authentic virus and have many advantages compared to authentic viruses. Thus, they have been widely used as a surrogate of authentic virus for viral function analysis, detection of neutralizing antibodies, screening viral entry inhibitors, and others. This chapter reviewed the progress in the field of pseudotyped viruses in general, including the definition and the advantages of pseudotyped viruses, their potential usage, different strategies or vectors used for the construction of pseudotyped viruses, and factors that affect the construction of pseudotyped viruses.
Collapse
Affiliation(s)
- Youchun Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming, China.
| | - Zehua Zhou
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Xi Wu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Tao Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Jiajing Wu
- Beijing Yunling Biotechnology Co., Ltd., Beijing, China
| | - Meina Cai
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Wenbo Wang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Zhimin Cui
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| |
Collapse
|
11
|
Alqarni S, Cooper L, Galvan Achi J, Bott R, Sali VK, Brown A, Santarsiero BD, Krunic A, Manicassamy B, Peet NP, Zhang P, Thatcher GRJ, Gaisina IN, Rong L, Moore TW. Synthesis, Optimization, and Structure-Activity Relationships of Imidazo[1,2- a]pyrimidines as Inhibitors of Group 2 Influenza A Viruses. J Med Chem 2022; 65:14104-14120. [PMID: 36260129 DOI: 10.1021/acs.jmedchem.2c01329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The influenza A virus (IAV) is a highly contagious virus that causes pandemics and seasonal epidemics, which are major public health issues. Current anti-influenza therapeutics are limited partly due to the continuous emergence of drug-resistant IAV strains; thus, there is an unmet need to develop novel anti-influenza therapies. Here, we present a novel imidazo[1,2-a]pyrimidine scaffold that targets group 2 IAV entry. We have explored three different regions of the lead compound, and we have developed a series of small molecules that have nanomolar activity against oseltamivir-sensitive and -resistant forms of group 2 IAVs. These small molecules target hemagglutinin (HA), which mediates the viral entry process. Mapping a known small-molecule-binding cavity of the HA structure with resistant mutants suggests that these molecules bind to that cavity and block HA-mediated membrane fusion.
Collapse
Affiliation(s)
- Saad Alqarni
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States.,Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Laura Cooper
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Jazmin Galvan Achi
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Ryan Bott
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Veeresh Kumar Sali
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Andrew Brown
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Bernard D Santarsiero
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Aleksej Krunic
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Norton P Peet
- Chicago BioSolutions Inc., Chicago, Illinois 60612, United States
| | - Pin Zhang
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Gregory R J Thatcher
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Irina N Gaisina
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States.,Chicago BioSolutions Inc., Chicago, Illinois 60612, United States
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612, United States.,Chicago BioSolutions Inc., Chicago, Illinois 60612, United States
| | - Terry W Moore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States.,UI Cancer Center, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
12
|
Zhu H, Li X, Ren X, Chen H, Qian P. Improving cross-protection against influenza virus in mice using a nanoparticle vaccine of mini-HA. Vaccine 2022; 40:6352-6361. [PMID: 36175214 DOI: 10.1016/j.vaccine.2022.09.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 01/27/2023]
Abstract
This study aimed to investigate the protective effect of mini-hemagglutinin (mini-HA) proteins expressed on lumazine synthase (LS) nanoparticles against influenza. Soluble mini-HA proteins were assembled with LS proteins via SpyTag/SpyCatcher in vitro. The size of mini-HA-LS nanoparticles was characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS), and the effect of mini-HA-LS nano-vaccines was explored in mice. The results indicate that the diameter of mini-HA-LS nanoparticles was approximately 60-80 nm. The nanoparticles could induce stronger humoral and cellular immune responses and produce cross-clade protection against influenza in mice.
Collapse
Affiliation(s)
- Hechao Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xujiao Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China.
| |
Collapse
|
13
|
Rahman S, Hasan M, Alam MS, Uddin KMM, Moni S, Rahman M. The evolutionary footprint of influenza A subtype H3N2 strains in Bangladesh: implication of vaccine strain selection. Sci Rep 2022; 12:16186. [PMID: 36171388 PMCID: PMC9519982 DOI: 10.1038/s41598-022-20179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
In February each year, World Health Organization (WHO) recommends candidate vaccine viruses for the forthcoming northern hemisphere (NH) season; however, the influenza season in the temperate zone of NH begins in October. During egg- or cell culture-propagation, the vaccine viruses become too old to confer the highest match with the latest strains, impacting vaccine effectiveness. Therefore, an alternative strategy like mRNA-based vaccine using the most recent strains should be considered. We analyzed influenza A subtype H3N2 strains circulating in NH during the last 10 years (2009-2020). Phylogenetic analysis revealed multiple clades of influenza strains circulating every season, which had substantial mismatches with WHO-recommended vaccine strains. The clustering pattern suggests that influenza A subtype H3N2 strains are not fixed to the specific geographical region but circulate globally in the same season. By analyzing 39 seasons from eight NH countries with the highest vaccine coverage, we also provide evidence that the influenza A, subtype H3N2 strains from South and Southeast Asia, including Bangladesh, had the highest genetic proximity to the NH strains. Furthermore, insilico analysis showed minimal effect on the Bangladeshi HA protein structure, indicating the stability of Bangladeshi strains. Therefore, we propose that Bangladeshi influenza strains represent genetic makeup that may better fit and serve as the most suitable candidate vaccine viruses for the forthcoming NH season.
Collapse
Affiliation(s)
- Sezanur Rahman
- Virology Laboratory, Infectious Diseases Division, icddr,b, Mohakhali, 68 Shaheed Tajuddin Ahmed Sarani, Dhaka, 1212, Bangladesh
| | - Mehedi Hasan
- Virology Laboratory, Infectious Diseases Division, icddr,b, Mohakhali, 68 Shaheed Tajuddin Ahmed Sarani, Dhaka, 1212, Bangladesh
| | - Md Shaheen Alam
- Virology Laboratory, Infectious Diseases Division, icddr,b, Mohakhali, 68 Shaheed Tajuddin Ahmed Sarani, Dhaka, 1212, Bangladesh
| | - K M Main Uddin
- Virology Laboratory, Infectious Diseases Division, icddr,b, Mohakhali, 68 Shaheed Tajuddin Ahmed Sarani, Dhaka, 1212, Bangladesh
| | - Sayra Moni
- Virology Laboratory, Infectious Diseases Division, icddr,b, Mohakhali, 68 Shaheed Tajuddin Ahmed Sarani, Dhaka, 1212, Bangladesh
| | - Mustafizur Rahman
- Virology Laboratory, Infectious Diseases Division, icddr,b, Mohakhali, 68 Shaheed Tajuddin Ahmed Sarani, Dhaka, 1212, Bangladesh.
- Genomics Centre, icddr,b, Mohakhali, Dhaka, 1212, Bangladesh.
| |
Collapse
|
14
|
Cuevas F, Kawabata H, Krammer F, Carreño JM. An
In Vitro
Microneutralization Assay for Influenza Virus Serology. Curr Protoc 2022; 2:e465. [PMID: 35848945 PMCID: PMC9298957 DOI: 10.1002/cpz1.465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Influenza is an infectious respiratory disease with significant morbidity and mortality rates among people of all ages. Influenza viruses spread and evolve rapidly in the human population. Different immune histories, given by previous exposures to influenza virus infections and/or vaccinations, result in a great diversity of humoral and cellular immune responses. Understanding protective immune responses induced against circulating virus strains and potential pandemic strains is vital for infection prevention and disease mitigation. Vaccine formulations for seasonal influenza must be reformulated annually to stay abreast of occurring virus mutations. Assays to measure the capacity of antibodies to neutralize influenza viruses provide a good estimate of protection against future infections with strains similar or identical to those used in the assay. Here, we describe a detailed protocol of our standard in vitro microneutralization assay to assess the neutralization activity of polyclonal sera or purified monoclonal antibodies. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. This article was corrected on 27 August 2022. See the end of the full text for details. Basic Protocol: Microneutralization assay to assess virus inhibition by serum or monoclonal antibodies Support Protocol 1: Preparation of cDMEM Support Protocol 2: Preparation and aliquoting of TPCK‐treated trypsin Support Protocol 3: Inactivation of serum samples by RDE treatment
Collapse
Affiliation(s)
- Frans Cuevas
- Department of Microbiology Icahn School of Medicine at Mount Sinai New York New York
| | - Hisaaki Kawabata
- Department of Microbiology Icahn School of Medicine at Mount Sinai New York New York
| | - Florian Krammer
- Department of Microbiology Icahn School of Medicine at Mount Sinai New York New York
- Department of Pathology, Molecular and Cell‐Based Medicine Icahn School of Medicine at Mount Sinai New York New York
- Center for Vaccine Research and Pandemic Preparedness (C‐VARPP) Icahn School of Medicine at Mount Sinai New York New York
| | - Juan Manuel Carreño
- Department of Microbiology Icahn School of Medicine at Mount Sinai New York New York
| |
Collapse
|
15
|
Construction of SARS-CoV-2 spike-pseudotyped retroviral vector inducing syncytia formation. Virus Genes 2022; 58:172-179. [PMID: 35322356 PMCID: PMC8942147 DOI: 10.1007/s11262-022-01890-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/24/2022] [Indexed: 11/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is handled in biosafety level 3 (BSL-3) facilities, whereas the antiviral screening of pseudotype virus is conducted in BSL-2 facilities. In this study, we developed a SARS-CoV-2 spike-pseudotyped virus based on a semi-replication-competent retroviral (s-RCR) vector system. The s-RCR vector system was divided into two packageable vectors, each with gag-pol and env genes. For env vector construction, SARS-CoV-2 SΔ19 env was inserted into the pCLXSN-IRES-EGFP retroviral vector to generate pCLXSN-SΔ19 env-EGFP. When pCLXSN-gag-pol and pCLXSN-SΔ19env-EGFP were co-transfected into HEK293 T cells to generate an s-RCR virus, titers of the s-RCR virus were consistently low in this transient transfection system (1 × 104 TU/mL). However, a three-fold higher amounts of MLV-based SARS-CoV-2 pseudotyped viruses (3 × 104 TU/mL) were released from stable producer cells, and the spike proteins induced syncytia formation in HEK293-hACE2 cells. Furthermore, s-RCR stocks collected from stable producer cells induced more substantial syncytia formation in the Vero E6-TMPRSS2 cell line than in the Vero E6 cell line. Therefore, a combination of the s-RCR vector and the two cell lines (HEK293-hACE2 or Vero E6-TMPRSS2) that induce syncytia formation can be useful for the rapid screening of novel fusion inhibitor drugs.
Collapse
|
16
|
Palmer P, Del Rosario JMM, da Costa KAS, Carnell GW, Huang CQ, Heeney JL, Temperton NJ, Wells DA. AutoPlate: Rapid Dose-Response Curve Analysis for Biological Assays. Front Immunol 2022; 12:681636. [PMID: 35222351 PMCID: PMC8866857 DOI: 10.3389/fimmu.2021.681636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
The emergence of COVID-19 has emphasised that biological assay data must be analysed quickly to develop safe, effective and timely vaccines/therapeutics. For viruses such as SARS-CoV-2, the primary way of measuring immune correlates of protection is through assays such as the pseudotype microneutralisation (pMN) assay, thanks to its safety and versatility. However, despite the presence of existing tools for data analysis such as PRISM and R the analysis of these assays remains cumbersome and time-consuming. We introduce an open-source R Shiny web application and R library (AutoPlate) to accelerate data analysis of dose-response curve immunoassays. Using example data from influenza studies, we show that AutoPlate improves on available analysis software in terms of ease of use, flexibility and speed. AutoPlate (https://philpalmer.shinyapps.io/AutoPlate/) is a tool for the use of laboratories and wider scientific community to accelerate the analysis of biological assays in the development of viral vaccines and therapeutics.
Collapse
Affiliation(s)
- Phil Palmer
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Joanne Marie M Del Rosario
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham, United Kingdom.,Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines
| | - Kelly A S da Costa
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham, United Kingdom
| | - George W Carnell
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Chloe Q Huang
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan L Heeney
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.,DIOSynVax, University of Cambridge, Cambridge, United Kingdom
| | - Nigel J Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham, United Kingdom
| | - David A Wells
- DIOSynVax, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Stott-Marshall RJ, Foster TL. Inhibition of Arenavirus Entry and Replication by the Cell-Intrinsic Restriction Factor ZMPSTE24 Is Enhanced by IFITM Antiviral Activity. Front Microbiol 2022; 13:840885. [PMID: 35283811 PMCID: PMC8915953 DOI: 10.3389/fmicb.2022.840885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
In the absence of effective vaccines and treatments, annual outbreaks of severe human haemorrhagic fever caused by arenaviruses, such as Lassa virus, continue to pose a significant human health threat. Understanding the balance of cellular factors that inhibit or promote arenavirus infection may have important implications for the development of effective antiviral strategies. Here, we identified the cell-intrinsic zinc transmembrane metalloprotease, ZMPSTE24, as a restriction factor against arenaviruses. Notably, CRISPR-Cas9-mediated knockout of ZMPSTE24 in human alveolar epithelial A549 cells increased arenavirus glycoprotein-mediated viral entry in pseudoparticle assays and live virus infection models. As a barrier to viral entry and replication, ZMPSTE24 may act as a downstream effector of interferon-induced transmembrane protein (IFITM) antiviral function; though through a yet poorly understood mechanism. Overexpression of IFITM1, IFITM2, and IFITM3 proteins did not restrict the entry of pseudoparticles carrying arenavirus envelope glycoproteins and live virus infection. Furthermore, gain-of-function studies revealed that IFITMs augment the antiviral activity of ZMPSTE24 against arenaviruses, suggesting a cooperative effect of viral restriction. We show that ZMPSTE24 and IFITMs affect the kinetics of cellular endocytosis, suggesting that perturbation of membrane structure and stability is likely the mechanism of ZMPSTE24-mediated restriction and cooperative ZMPSTE24-IFITM antiviral activity. Collectively, our findings define the role of ZMPSTE24 host restriction activity in the early stages of arenavirus infection. Moreover, we provide insight into the importance of cellular membrane integrity for productive fusion of arenaviruses and highlight a novel avenue for therapeutic development.
Collapse
Affiliation(s)
| | - Toshana L. Foster
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Wolfson Centre for Global Virus Research, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
18
|
Universal stabilization of the influenza hemagglutinin by structure-based redesign of the pH switch regions. Proc Natl Acad Sci U S A 2022; 119:2115379119. [PMID: 35131851 PMCID: PMC8833195 DOI: 10.1073/pnas.2115379119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
For an efficacious vaccine immunogen, influenza hemagglutinin (HA) needs to maintain a stable quaternary structure, which is contrary to the inherently dynamic and metastable nature of class I fusion proteins. In this study, we stabilized HA with three substitutions within its pH-sensitive regions where the refolding starts. An X-ray structure reveals how these substitutions stabilize the intersubunit β-sheet in the base and form an interprotomeric aliphatic layer across the stem while the native prefusion HA fold is retained. The identification of the stabilizing substitutions increases our understanding of how the pH sensitivity is structurally accomplished in HA and possibly other pH-sensitive class I fusion proteins. Our stabilization approach in combination with the occasional back mutation of rare amino acids to consensus results in well-expressing stable trimeric HAs. This repair and stabilization approach, which proves broadly applicable to all tested influenza A HAs of group 1 and 2, will improve the developability of influenza vaccines based on different types of platforms and formats and can potentially improve efficacy.
Collapse
|
19
|
Zhou W, Xu C, Wang P, Anashkina AA, Jiang Q. Impact of mutations in SARS-COV-2 spike on viral infectivity and antigenicity. Brief Bioinform 2022; 23:bbab375. [PMID: 34518867 PMCID: PMC8499914 DOI: 10.1093/bib/bbab375] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022] Open
Abstract
Since the outbreak of SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, the viral genome has acquired numerous mutations with the potential to alter the viral infectivity and antigenicity. Part of mutations in SARS-CoV-2 spike protein has conferred virus the ability to spread more quickly and escape from the immune response caused by the monoclonal neutralizing antibody or vaccination. Herein, we summarize the spatiotemporal distribution of mutations in spike protein, and present recent efforts and progress in investigating the impacts of those mutations on viral infectivity and antigenicity. As mutations continue to emerge in SARS-CoV-2, we strive to provide systematic evaluation of mutations in spike protein, which is vitally important for the subsequent improvement of vaccine and therapeutic neutralizing antibody strategies.
Collapse
Affiliation(s)
- Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Chang Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | | | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| |
Collapse
|
20
|
Delgadillo-Gutiérrez K, Castelán-Vega JA, Jiménez-Alberto A, Fernández-Lizárraga MDC, Aparicio-Ozores G, Monterrubio-López GP, Ribas-Aparicio RM. Characterization and use in neutralization assays of avian influenza codon-optimized H5 and H7 retroviral pseudotypes. J Virol Methods 2021; 300:114391. [PMID: 34890710 DOI: 10.1016/j.jviromet.2021.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/12/2021] [Accepted: 11/27/2021] [Indexed: 10/19/2022]
Abstract
Influenza is a relevant problem for public and animal health, with a significant economic impact. In recent years, outbreaks of avian influenza virus have resulted in devastating losses in the poultry industry worldwide, and although its transmission to humans is very rare, there is always a potential risk for an even more severe outbreak. Currently, vaccination is considered the most effective tool for the control and prevention of influenza infections in both humans and animals. The maintenance of animal welfare and the successful implementation of animal health programs depend on the timely administration of vaccines, which must comply with quality specifications indicated by health authorities; for example, the capability to ensure a minimum antibody titer. The production of viral antigens used in these tests can pose a biosafety risk, and some viral strains can be difficult to grow. Therefore, new biotechnological alternatives are required to overcome these disadvantages. In this study, we produced pseudotypes carrying H5 and H7 hemagglutinins from lowly and highly pathogenic avian influenza viruses. These pseudotypes were used in neutralization assays to detect neutralizing antibodies in avian sera, which were confirmed positive by inhibition of the hemagglutination test. Our results showed that the pseudotype neutralization assay is a viable alternative for the detection of neutralizing antibodies, by demonstrating subtype specificity and requiring reduced biosafety requirements. Therefore, it represents a versatile platform that can facilitate technology transfer protocols between laboratories, and an immediate application in serological tools for quality control of veterinary vaccines against avian influenza.
Collapse
Affiliation(s)
- Karen Delgadillo-Gutiérrez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Juan Arturo Castelán-Vega
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Alicia Jiménez-Alberto
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | | | - Gerardo Aparicio-Ozores
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Gloria Paulina Monterrubio-López
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Rosa María Ribas-Aparicio
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico.
| |
Collapse
|
21
|
Di Genova C, Sampson A, Scott S, Cantoni D, Mayora-Neto M, Bentley E, Mattiuzzo G, Wright E, Derveni M, Auld B, Ferrara BT, Harrison D, Said M, Selim A, Thompson E, Thompson C, Carnell G, Temperton N. Production, Titration, Neutralisation, Storage and Lyophilisation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Lentiviral Pseudotypes. Bio Protoc 2021; 11:e4236. [PMID: 34859134 PMCID: PMC8595416 DOI: 10.21769/bioprotoc.4236] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 11/02/2022] Open
Abstract
This protocol details a rapid and reliable method for the production and titration of high-titre viral pseudotype particles with the SARS-CoV-2 spike protein (and D614G or other variants of concern, VOC) on a lentiviral vector core, and use for neutralisation assays in target cells expressing angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). It additionally provides detailed instructions on substituting in new spike variants via gene cloning, lyophilisation and storage/shipping considerations for wide deployment potential. Results obtained with this protocol show that SARS-CoV-2 pseudotypes can be produced at equivalent titres to SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV) pseudotypes, neutralised by human convalescent plasma and monoclonal antibodies, and stored at a range of laboratory temperatures and lyophilised for distribution and subsequent application.
Collapse
Affiliation(s)
- Cecilia Di Genova
- Viral Pseudotype Unit (VPU Kent), Medway School of Pharmacy, University of Kent and Greenwich at Medway, Chatham Maritime, Kent, UK
| | - Alex Sampson
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, Cambridge University, Madingley Road, Cambridge, UK
| | - Simon Scott
- Viral Pseudotype Unit (VPU Kent), Medway School of Pharmacy, University of Kent and Greenwich at Medway, Chatham Maritime, Kent, UK
| | - Diego Cantoni
- Viral Pseudotype Unit (VPU Kent), Medway School of Pharmacy, University of Kent and Greenwich at Medway, Chatham Maritime, Kent, UK
| | - Martin Mayora-Neto
- Viral Pseudotype Unit (VPU Kent), Medway School of Pharmacy, University of Kent and Greenwich at Medway, Chatham Maritime, Kent, UK
| | - Emma Bentley
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Potters Bar, Hertfordshire, UK
| | - Giada Mattiuzzo
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Potters Bar, Hertfordshire, UK
| | - Edward Wright
- Viral Pseudotype Unit (VPU Sussex), School of Life Sciences, University of Sussex, Brighton, UK
| | - Mariliza Derveni
- Viral Pseudotype Unit (VPU Sussex), School of Life Sciences, University of Sussex, Brighton, UK
| | - Bethany Auld
- Viral Pseudotype Unit (VPU Sussex), School of Life Sciences, University of Sussex, Brighton, UK
| | - Bill T Ferrara
- School of Science, University of Greenwich, Chatham Maritime, Kent, UK
| | - Dale Harrison
- School of Science, University of Greenwich, Chatham Maritime, Kent, UK
| | - Mohamed Said
- School of Science, University of Greenwich, Chatham Maritime, Kent, UK
| | - Arwa Selim
- School of Science, University of Greenwich, Chatham Maritime, Kent, UK
| | - Elinor Thompson
- School of Science, University of Greenwich, Chatham Maritime, Kent, UK
| | | | - George Carnell
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, Cambridge University, Madingley Road, Cambridge, UK
| | - Nigel Temperton
- Viral Pseudotype Unit (VPU Kent), Medway School of Pharmacy, University of Kent and Greenwich at Medway, Chatham Maritime, Kent, UK
| |
Collapse
|
22
|
Sholukh AM, Fiore-Gartland A, Ford ES, Miner MD, Hou YJ, Tse LV, Kaiser H, Zhu H, Lu J, Madarampalli B, Park A, Lempp FA, St. Germain R, Bossard EL, Kee JJ, Diem K, Stuart AB, Rupert PB, Brock C, Buerger M, Doll MK, Randhawa AK, Stamatatos L, Strong RK, McLaughlin C, Huang ML, Jerome KR, Baric RS, Montefiori D, Corey L. Evaluation of Cell-Based and Surrogate SARS-CoV-2 Neutralization Assays. J Clin Microbiol 2021; 59:e0052721. [PMID: 34288726 PMCID: PMC8451402 DOI: 10.1128/jcm.00527-21] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022] Open
Abstract
Determinants of protective immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection require the development of well-standardized, reproducible antibody assays. This need has led to the emergence of a variety of neutralization assays. Head-to-head evaluation of different SARS-CoV-2 neutralization platforms could facilitate comparisons across studies and laboratories. Five neutralization assays were compared using 40 plasma samples from convalescent individuals with mild to moderate coronavirus disease 2019 (COVID-19): four cell-based systems using either live recombinant SARS-CoV-2 or pseudotyped viral particles created with lentivirus (LV) or vesicular stomatitis virus (VSV) packaging and one surrogate enzyme-linked immunosorbent assay (ELISA)-based test that measures inhibition of the spike protein receptor binding domain (RBD) binding its receptor human angiotensin converting enzyme 2 (hACE2). Vero cells, Vero E6 cells, HEK293T cells expressing hACE2, and TZM-bl cells expressing hACE2 and transmembrane serine protease 2 were tested. All cell-based assays showed 50% neutralizing dilution (ND50) geometric mean titers (GMTs) that were highly correlated (Pearson r = 0.81 to 0.89) and ranged within 3.4-fold. The live virus assay and LV pseudovirus assays with HEK293T/hACE2 cells showed very similar mean titers, 141 and 178, respectively. ND50 titers positively correlated with plasma IgG targeting SARS-CoV-2 spike protein and RBD (r = 0.63 to 0.89), but moderately correlated with nucleoprotein IgG (r = 0.46 to 0.73). ND80 GMTs mirrored ND50 data and showed similar correlation between assays and with IgG concentrations. The VSV pseudovirus assay and LV pseudovirus assay with HEK293T/hACE2 cells in low- and high-throughput versions were calibrated against the WHO SARS-CoV-2 IgG standard. High concordance between the outcomes of cell-based assays with live and pseudotyped virions enables valid cross-study comparison using these platforms.
Collapse
Affiliation(s)
- Anton M. Sholukh
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Emily S. Ford
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Maurine D. Miner
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Yixuan J. Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Longping V. Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Haiying Zhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Joyce Lu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Bhanupriya Madarampalli
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Arnold Park
- Vir Biotechnology, San Francisco, California, USA
| | | | - Russell St. Germain
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Emily L. Bossard
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Jia Jin Kee
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Kurt Diem
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Andrew B. Stuart
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Peter B. Rupert
- Basic Sciences Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Chance Brock
- Basic Sciences Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Matthew Buerger
- Basic Sciences Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Margaret K. Doll
- Department of Population Health Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - April Kaur Randhawa
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Roland K. Strong
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
- Basic Sciences Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Colleen McLaughlin
- Department of Population Health Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Keith R. Jerome
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Lawrence Corey
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
23
|
Sampson AT, Heeney J, Cantoni D, Ferrari M, Sans MS, George C, Di Genova C, Mayora Neto M, Einhauser S, Asbach B, Wagner R, Baxendale H, Temperton N, Carnell G. Coronavirus Pseudotypes for All Circulating Human Coronaviruses for Quantification of Cross-Neutralizing Antibody Responses. Viruses 2021; 13:1579. [PMID: 34452443 PMCID: PMC8402765 DOI: 10.3390/v13081579] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/17/2021] [Accepted: 08/01/2021] [Indexed: 12/23/2022] Open
Abstract
The novel coronavirus SARS-CoV-2 is the seventh identified human coronavirus. Understanding the extent of pre-existing immunity induced by seropositivity to endemic seasonal coronaviruses and the impact of cross-reactivity on COVID-19 disease progression remains a key research question in immunity to SARS-CoV-2 and the immunopathology of COVID-2019 disease. This paper describes a panel of lentiviral pseudotypes bearing the spike (S) proteins for each of the seven human coronaviruses (HCoVs), generated under similar conditions optimized for high titre production allowing a high-throughput investigation of antibody neutralization breadth. Optimal production conditions and most readily available permissive target cell lines were determined for spike-mediated entry by each HCoV pseudotype: SARS-CoV-1, SARS-CoV-2 and HCoV-NL63 best transduced HEK293T/17 cells transfected with ACE2 and TMPRSS2, HCoV-229E and MERS-CoV preferentially entered HUH7 cells, and CHO cells were most permissive for the seasonal betacoronavirus HCoV-HKU1. Entry of ACE2 using pseudotypes was enhanced by ACE2 and TMPRSS2 expression in target cells, whilst TMPRSS2 transfection rendered HEK293T/17 cells permissive for HCoV-HKU1 and HCoV-OC43 entry. Additionally, pseudotype viruses were produced bearing additional coronavirus surface proteins, including the SARS-CoV-2 Envelope (E) and Membrane (M) proteins and HCoV-OC43/HCoV-HKU1 Haemagglutinin-Esterase (HE) proteins. This panel of lentiviral pseudotypes provides a safe, rapidly quantifiable and high-throughput tool for serological comparison of pan-coronavirus neutralizing responses; this can be used to elucidate antibody dynamics against individual coronaviruses and the effects of antibody cross-reactivity on clinical outcome following natural infection or vaccination.
Collapse
Affiliation(s)
- Alexander Thomas Sampson
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (J.H.); (M.F.); (M.S.S.); (C.G.); (G.C.)
| | - Jonathan Heeney
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (J.H.); (M.F.); (M.S.S.); (C.G.); (G.C.)
- DIOSynVax Ltd., Cambridge CB3 0ES, UK
| | - Diego Cantoni
- Viral Pseudotype Unit, University of Kent, Chatham ME4 4TB, UK; (D.C.); (C.D.G.); (M.M.N.); (N.T.)
| | - Matteo Ferrari
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (J.H.); (M.F.); (M.S.S.); (C.G.); (G.C.)
- DIOSynVax Ltd., Cambridge CB3 0ES, UK
| | - Maria Suau Sans
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (J.H.); (M.F.); (M.S.S.); (C.G.); (G.C.)
| | - Charlotte George
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (J.H.); (M.F.); (M.S.S.); (C.G.); (G.C.)
| | - Cecilia Di Genova
- Viral Pseudotype Unit, University of Kent, Chatham ME4 4TB, UK; (D.C.); (C.D.G.); (M.M.N.); (N.T.)
| | - Martin Mayora Neto
- Viral Pseudotype Unit, University of Kent, Chatham ME4 4TB, UK; (D.C.); (C.D.G.); (M.M.N.); (N.T.)
| | - Sebastian Einhauser
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; (S.E.); (B.A.); (R.W.)
| | - Benedikt Asbach
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; (S.E.); (B.A.); (R.W.)
| | - Ralf Wagner
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; (S.E.); (B.A.); (R.W.)
- Institute for Clinical Microbiology and Hygiene, University Hospital, 93053 Regensburg, Germany
| | - Helen Baxendale
- Royal Papworth Hospital NHS Foundation Trust, Cambridge CB2 0AY, UK;
| | - Nigel Temperton
- Viral Pseudotype Unit, University of Kent, Chatham ME4 4TB, UK; (D.C.); (C.D.G.); (M.M.N.); (N.T.)
| | - George Carnell
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (J.H.); (M.F.); (M.S.S.); (C.G.); (G.C.)
| |
Collapse
|
24
|
Lin X, Lin F, Liang T, Ducatez MF, Zanin M, Wong SS. Antibody Responsiveness to Influenza: What Drives It? Viruses 2021; 13:v13071400. [PMID: 34372607 PMCID: PMC8310379 DOI: 10.3390/v13071400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023] Open
Abstract
The induction of a specific antibody response has long been accepted as a serological hallmark of recent infection or antigen exposure. Much of our understanding of the influenza antibody response has been derived from studying antibodies that target the hemagglutinin (HA) protein. However, growing evidence points to limitations associated with this approach. In this review, we aim to highlight the issue of antibody non-responsiveness after influenza virus infection and vaccination. We will then provide an overview of the major factors known to influence antibody responsiveness to influenza after infection and vaccination. We discuss the biological factors such as age, sex, influence of prior immunity, genetics, and some chronic infections that may affect the induction of influenza antibody responses. We also discuss the technical factors, such as assay choices, strain variations, and viral properties that may influence the sensitivity of the assays used to measure influenza antibodies. Understanding these factors will hopefully provide a more comprehensive picture of what influenza immunogenicity and protection means, which will be important in our effort to improve influenza vaccines.
Collapse
Affiliation(s)
- Xia Lin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | - Fangmei Lin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | - Tingting Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | | | - Mark Zanin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Sook-San Wong
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +86-178-2584-6078
| |
Collapse
|
25
|
Del Rosario JMM, da Costa KAS, Asbach B, Ferrara F, Ferrari M, Wells DA, Mann GS, Ameh VO, Sabeta CT, Banyard AC, Kinsley R, Scott SD, Wagner R, Heeney JL, Carnell GW, Temperton NJ. Exploiting Pan Influenza A and Pan Influenza B Pseudotype Libraries for Efficient Vaccine Antigen Selection. Vaccines (Basel) 2021; 9:741. [PMID: 34358157 PMCID: PMC8310092 DOI: 10.3390/vaccines9070741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
We developed an influenza hemagglutinin (HA) pseudotype library encompassing Influenza A subtypes HA1-18 and Influenza B subtypes (both lineages) to be employed in influenza pseudotype microneutralization (pMN) assays. The pMN is highly sensitive and specific for detecting virus-specific neutralizing antibodies against influenza viruses and can be used to assess antibody functionality in vitro. Here we show the production of these viral HA pseudotypes and their employment as substitutes for wildtype viruses in influenza neutralization assays. We demonstrate their utility in detecting serum responses to vaccination with the ability to evaluate cross-subtype neutralizing responses elicited by specific vaccinating antigens. Our findings may inform further preclinical studies involving immunization dosing regimens in mice and may help in the creation and selection of better antigens for vaccine design. These HA pseudotypes can be harnessed to meet strategic objectives that contribute to the strengthening of global influenza surveillance, expansion of seasonal influenza prevention and control policies, and strengthening pandemic preparedness and response.
Collapse
Affiliation(s)
- Joanne Marie M. Del Rosario
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham ME4 4BF, UK; (J.M.M.D.R.); (K.A.S.d.C.); (F.F.); (G.S.M.); (S.D.S.)
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines
- DIOSynVax, Cambridge CB3 0ES, UK; (M.F.); (D.A.W.); (R.K.); (J.L.H.); (G.W.C.)
| | - Kelly A. S. da Costa
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham ME4 4BF, UK; (J.M.M.D.R.); (K.A.S.d.C.); (F.F.); (G.S.M.); (S.D.S.)
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; (B.A.); (R.W.)
| | - Francesca Ferrara
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham ME4 4BF, UK; (J.M.M.D.R.); (K.A.S.d.C.); (F.F.); (G.S.M.); (S.D.S.)
- Vector Development and Production Laboratory, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Matteo Ferrari
- DIOSynVax, Cambridge CB3 0ES, UK; (M.F.); (D.A.W.); (R.K.); (J.L.H.); (G.W.C.)
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - David A. Wells
- DIOSynVax, Cambridge CB3 0ES, UK; (M.F.); (D.A.W.); (R.K.); (J.L.H.); (G.W.C.)
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Gurdip Singh Mann
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham ME4 4BF, UK; (J.M.M.D.R.); (K.A.S.d.C.); (F.F.); (G.S.M.); (S.D.S.)
| | - Veronica O. Ameh
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture Makurdi, Makurdi P.M.B. 2373, Bene State, Nigeria;
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, P. Bag X04, Onderstepoort 0110, South Africa;
| | - Claude T. Sabeta
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, P. Bag X04, Onderstepoort 0110, South Africa;
- OIE Rabies Reference Laboratory, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa
| | - Ashley C. Banyard
- Animal and Plant Health Agency (APHA), Department of Virology, Weybridge, Surrey KT15 3NB, UK;
| | - Rebecca Kinsley
- DIOSynVax, Cambridge CB3 0ES, UK; (M.F.); (D.A.W.); (R.K.); (J.L.H.); (G.W.C.)
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Simon D. Scott
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham ME4 4BF, UK; (J.M.M.D.R.); (K.A.S.d.C.); (F.F.); (G.S.M.); (S.D.S.)
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; (B.A.); (R.W.)
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Jonathan L. Heeney
- DIOSynVax, Cambridge CB3 0ES, UK; (M.F.); (D.A.W.); (R.K.); (J.L.H.); (G.W.C.)
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - George W. Carnell
- DIOSynVax, Cambridge CB3 0ES, UK; (M.F.); (D.A.W.); (R.K.); (J.L.H.); (G.W.C.)
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Nigel J. Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham ME4 4BF, UK; (J.M.M.D.R.); (K.A.S.d.C.); (F.F.); (G.S.M.); (S.D.S.)
- DIOSynVax, Cambridge CB3 0ES, UK; (M.F.); (D.A.W.); (R.K.); (J.L.H.); (G.W.C.)
| |
Collapse
|
26
|
Ferrara F, Del Rosario JMM, da Costa KAS, Kinsley R, Scott S, Fereidouni S, Thompson C, Kellam P, Gilbert S, Carnell G, Temperton N. Development of Lentiviral Vectors Pseudotyped With Influenza B Hemagglutinins: Application in Vaccine Immunogenicity, mAb Potency, and Sero-Surveillance Studies. Front Immunol 2021; 12:661379. [PMID: 34108964 PMCID: PMC8182064 DOI: 10.3389/fimmu.2021.661379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022] Open
Abstract
Influenza B viruses (IBV) cause respiratory disease epidemics in humans and are therefore components of seasonal influenza vaccines. Serological methods are employed to evaluate vaccine immunogenicity prior to licensure. However, classical methods to assess influenza vaccine immunogenicity such as the hemagglutination inhibition assay (HI) and the serial radial hemolysis assay (SRH), have been proven to have many limitations. As such, there is a need to develop innovative methods that can improve on these traditional assays and provide advantages such as ease of production and access, safety, reproducibility, and specificity. It has been previously demonstrated that the use of replication-defective viruses, such as lentiviral vectors pseudotyped with influenza A hemagglutinins in microneutralization assays (pMN) is a safe and sensitive alternative to study antibody responses elicited by natural influenza infection or vaccination. Consequently, we have produced Influenza B hemagglutinin-pseudotypes (IBV PV) using plasmid-directed transfection. To activate influenza B hemagglutinin, we have explored the use of proteases in increasing PV titers via their co-transfection during pseudotype virus production. When tested for their ability to transduce target cells, the influenza B pseudotypes produced exhibit tropism for different cell lines. The pseudotypes were evaluated as alternatives to live virus in microneutralization assays using reference sera standards, mouse and human sera collected during vaccine immunogenicity studies, surveillance sera from seals, and monoclonal antibodies (mAbs) against IBV. The influenza B pseudotype pMN was found to effectively detect neutralizing and cross-reactive responses in all assays and shows promise as an effective and versatile tool in influenza research.
Collapse
Affiliation(s)
- Francesca Ferrara
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom
| | - Joanne Marie M Del Rosario
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom.,Department of Physical Sciences & Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines
| | - Kelly A S da Costa
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom
| | - Rebecca Kinsley
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Simon Scott
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom
| | - Sasan Fereidouni
- Research Institute of Wildlife Ecology, Veterinary Medicine University, Vienna, Austria
| | - Craig Thompson
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Paul Kellam
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Sarah Gilbert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - George Carnell
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom
| |
Collapse
|
27
|
Creanga A, Gillespie RA, Fisher BE, Andrews SF, Lederhofer J, Yap C, Hatch L, Stephens T, Tsybovsky Y, Crank MC, Ledgerwood JE, McDermott AB, Mascola JR, Graham BS, Kanekiyo M. A comprehensive influenza reporter virus panel for high-throughput deep profiling of neutralizing antibodies. Nat Commun 2021; 12:1722. [PMID: 33741916 PMCID: PMC7979723 DOI: 10.1038/s41467-021-21954-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
Broadly neutralizing antibodies (bnAbs) have been developed as potential countermeasures for seasonal and pandemic influenza. Deep characterization of these bnAbs and polyclonal sera provides pivotal understanding for influenza immunity and informs effective vaccine design. However, conventional virus neutralization assays require high-containment laboratories and are difficult to standardize and roboticize. Here, we build a panel of engineered influenza viruses carrying a reporter gene to replace an essential viral gene, and develop an assay using the panel for in-depth profiling of neutralizing antibodies. Replication of these viruses is restricted to cells expressing the missing viral gene, allowing it to be manipulated in a biosafety level 2 environment. We generate the neutralization profile of 24 bnAbs using a 55-virus panel encompassing the near-complete diversity of human H1N1 and H3N2, as well as pandemic subtype viruses. Our system offers in-depth profiling of influenza immunity, including the antibodies against the hemagglutinin stem, a major target of universal influenza vaccines.
Collapse
Affiliation(s)
- Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brian E Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christina Yap
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Liam Hatch
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
28
|
Matsuda K, Migueles SA, Huang J, Bolkhovitinov L, Stuccio S, Griesman T, Pullano AA, Kang BH, Ishida E, Zimmerman M, Kashyap N, Martins KM, Stadlbauer D, Pederson J, Patamawenu A, Wright N, Shofner T, Evans S, Liang CJ, Candia J, Biancotto A, Fantoni G, Poole A, Smith J, Alexander J, Gurwith M, Krammer F, Connors M. A replication-competent adenovirus-vectored influenza vaccine induces durable systemic and mucosal immunity. J Clin Invest 2021; 131:140794. [PMID: 33529172 DOI: 10.1172/jci140794] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/07/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUNDTo understand the features of a replicating vaccine that might drive potent and durable immune responses to transgene-encoded antigens, we tested a replication-competent adenovirus type 4 encoding influenza virus H5 HA (Ad4-H5-Vtn) administered as an oral capsule or via tonsillar swab or nasal spray.METHODSViral shedding from the nose, mouth, and rectum was measured by PCR and culturing. H5-specific IgG and IgA antibodies were measured by bead array binding assays. Serum antibodies were measured by a pseudovirus entry inhibition, microneutralization, and HA inhibition assays.RESULTSAd4-H5-Vtn DNA was shed from most upper respiratory tract-immunized (URT-immunized) volunteers for 2 to 4 weeks, but cultured from only 60% of participants, with a median duration of 1 day. Ad4-H5-Vtn vaccination induced increases in H5-specific CD4+ and CD8+ T cells in the peripheral blood as well as increases in IgG and IgA in nasal, cervical, and rectal secretions. URT immunizations induced high levels of serum neutralizing antibodies (NAbs) against H5 that remained stable out to week 26. The duration of viral shedding correlated with the magnitude of the NAb response at week 26. Adverse events (AEs) were mild, and peak NAb titers were associated with overall AE frequency and duration. Serum NAb titers could be boosted to very high levels 2 to 5 years after Ad4-H5-Vtn vaccination with recombinant H5 or inactivated split H5N1 vaccine.CONCLUSIONReplicating Ad4 delivered to the URT caused prolonged exposure to antigen, drove durable systemic and mucosal immunity, and proved to be a promising platform for the induction of immunity against viral surface glycoprotein targets.TRIAL REGISTRATIONClinicalTrials.gov NCT01443936 and NCT01806909.FUNDINGIntramural and Extramural Research Programs of the NIAID, NIH (U19 AI109946) and the Centers of Excellence for Influenza Research and Surveillance (CEIRS), NIAID, NIH (contract HHSN272201400008C).
Collapse
Affiliation(s)
- Kenta Matsuda
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Stephen A Migueles
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Jinghe Huang
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Lyuba Bolkhovitinov
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Sarah Stuccio
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Trevor Griesman
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Alyssa A Pullano
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Byong H Kang
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Elise Ishida
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Matthew Zimmerman
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Neena Kashyap
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Kelly M Martins
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jessica Pederson
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Andy Patamawenu
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Nathaniel Wright
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Tulley Shofner
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Sean Evans
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | | | - Julián Candia
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA
| | - Angelique Biancotto
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA
| | - Giovanna Fantoni
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA
| | - April Poole
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Jon Smith
- Emergent Biosolutions Inc., Gaithersburg, Maryland, USA
| | | | - Marc Gurwith
- Emergent Biosolutions Inc., Gaithersburg, Maryland, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mark Connors
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Andreano E, Nicastri E, Paciello I, Pileri P, Manganaro N, Piccini G, Manenti A, Pantano E, Kabanova A, Troisi M, Vacca F, Cardamone D, De Santi C, Torres JL, Ozorowski G, Benincasa L, Jang H, Di Genova C, Depau L, Brunetti J, Agrati C, Capobianchi MR, Castilletti C, Emiliozzi A, Fabbiani M, Montagnani F, Bracci L, Sautto G, Ross TM, Montomoli E, Temperton N, Ward AB, Sala C, Ippolito G, Rappuoli R. Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell 2021; 184:1821-1835.e16. [PMID: 33667349 PMCID: PMC7901298 DOI: 10.1016/j.cell.2021.02.035] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 12/26/2022]
Abstract
Human monoclonal antibodies are safe, preventive, and therapeutic tools that can be rapidly developed to help restore the massive health and economic disruption caused by the coronavirus disease 2019 (COVID-19) pandemic. By single-cell sorting 4,277 SARS-CoV-2 spike protein-specific memory B cells from 14 COVID-19 survivors, 453 neutralizing antibodies were identified. The most potent neutralizing antibodies recognized the spike protein receptor-binding domain, followed in potency by antibodies that recognize the S1 domain, the spike protein trimer, and the S2 subunit. Only 1.4% of them neutralized the authentic virus with a potency of 1–10 ng/mL. The most potent monoclonal antibody, engineered to reduce the risk of antibody-dependent enhancement and prolong half-life, neutralized the authentic wild-type virus and emerging variants containing D614G, E484K, and N501Y substitutions. Prophylactic and therapeutic efficacy in the hamster model was observed at 0.25 and 4 mg/kg respectively in absence of Fc functions.
Collapse
Affiliation(s)
- Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Emanuele Nicastri
- National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, Rome, Italy
| | - Ida Paciello
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Piero Pileri
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Noemi Manganaro
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | | | | | - Elisa Pantano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Anna Kabanova
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy; Tumour Immunology Unit, Fondazione Toscana Life Sciences, Siena, Italy
| | - Marco Troisi
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Fabiola Vacca
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Dario Cardamone
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy; University of Turin, Turin, Italy
| | - Concetta De Santi
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Hyesun Jang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Cecilia Di Genova
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham, UK
| | - Lorenzo Depau
- MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Jlenia Brunetti
- MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Agrati
- National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, Rome, Italy
| | | | - Concetta Castilletti
- National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, Rome, Italy
| | - Arianna Emiliozzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy; Department of Medical Sciences, Infectious and Tropical Diseases Unit, University Hospital of Siena, Siena, Italy
| | - Massimiliano Fabbiani
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, University Hospital of Siena, Siena, Italy
| | - Francesca Montagnani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy; Department of Medical Sciences, Infectious and Tropical Diseases Unit, University Hospital of Siena, Siena, Italy
| | - Luisa Bracci
- MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Giuseppe Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Emanuele Montomoli
- VisMederi S.r.l, Siena, Italy; VisMederi Research S.r.l., Siena, Italy; Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham, UK
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Claudia Sala
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, Rome, Italy
| | - Rino Rappuoli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy; Faculty of Medicine, Imperial College, London, UK.
| |
Collapse
|
30
|
Toon K, Bentley EM, Mattiuzzo G. More Than Just Gene Therapy Vectors: Lentiviral Vector Pseudotypes for Serological Investigation. Viruses 2021; 13:217. [PMID: 33572589 PMCID: PMC7911487 DOI: 10.3390/v13020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Serological assays detecting neutralising antibodies are important for determining the immune responses following infection or vaccination and are also often considered a correlate of protection. The target of neutralising antibodies is usually located in the Envelope protein on the viral surface, which mediates cell entry. As such, presentation of the Envelope protein on a lentiviral particle represents a convenient alternative to handling of a potentially high containment virus or for those viruses with no established cell culture system. The flexibility, relative safety and, in most cases, ease of production of lentiviral pseudotypes, have led to their use in serological assays for many applications such as the evaluation of candidate vaccines, screening and characterization of anti-viral therapeutics, and sero-surveillance. Above all, the speed of production of the lentiviral pseudotypes, once the envelope sequence is published, makes them important tools in the response to viral outbreaks, as shown during the COVID-19 pandemic in 2020. In this review, we provide an overview of the landscape of the serological applications of pseudotyped lentiviral vectors, with a brief discussion on their production and batch quality analysis. Finally, we evaluate their role as surrogates for the real virus and possible alternatives.
Collapse
Affiliation(s)
- Kamilla Toon
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Emma M. Bentley
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
| | - Giada Mattiuzzo
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
| |
Collapse
|
31
|
Reynolds CJ, Swadling L, Gibbons JM, Pade C, Jensen MP, Diniz MO, Schmidt NM, Butler DK, Amin OE, Bailey SNL, Murray SM, Pieper FP, Taylor S, Jones J, Jones M, Lee WYJ, Rosenheim J, Chandran A, Joy G, Di Genova C, Temperton N, Lambourne J, Cutino-Moguel T, Andiapen M, Fontana M, Smit A, Semper A, O'Brien B, Chain B, Brooks T, Manisty C, Treibel T, Moon JC, Noursadeghi M, Altmann DM, Maini MK, McKnight Á, Boyton RJ. Discordant neutralizing antibody and T cell responses in asymptomatic and mild SARS-CoV-2 infection. Sci Immunol 2020; 5:eabf3698. [PMID: 33361161 PMCID: PMC8101131 DOI: 10.1126/sciimmunol.abf3698] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
Understanding the nature of immunity following mild/asymptomatic infection with SARS-CoV-2 is crucial to controlling the pandemic. We analyzed T cell and neutralizing antibody responses in 136 healthcare workers (HCW) 16-18 weeks after United Kingdom lockdown, 76 of whom had mild/asymptomatic SARS-CoV-2 infection captured by serial sampling. Neutralizing antibodies (nAb) were present in 89% of previously infected HCW. T cell responses tended to be lower following asymptomatic infection than in those reporting case-definition symptoms of COVID-19, while nAb titers were maintained irrespective of symptoms. T cell and antibody responses were sometimes discordant. Eleven percent lacked nAb and had undetectable T cell responses to spike protein but had T cells reactive with other SARS-CoV-2 antigens. Our findings suggest that the majority of individuals with mild or asymptomatic SARS-CoV-2 infection carry nAb complemented by multispecific T cell responses at 16-18 weeks after mild or asymptomatic SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Leo Swadling
- Division of Infection and Immunity, University College London, London, UK
| | - Joseph M Gibbons
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Corinna Pade
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Melanie P Jensen
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Mariana O Diniz
- Division of Infection and Immunity, University College London, London, UK
| | - Nathalie M Schmidt
- Division of Infection and Immunity, University College London, London, UK
| | - David K Butler
- Department of Infectious Disease, Imperial College London, London, UK
| | - Oliver E Amin
- Division of Infection and Immunity, University College London, London, UK
| | - Sasha N L Bailey
- Department of Infectious Disease, Imperial College London, London, UK
| | - Sam M Murray
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Stephen Taylor
- National Infection Service, Public Health England, Porton Down, UK
| | - Jessica Jones
- National Infection Service, Public Health England, Porton Down, UK
| | - Meleri Jones
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Wing-Yiu Jason Lee
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Joshua Rosenheim
- Division of Infection and Immunity, University College London, London, UK
| | - Aneesh Chandran
- Division of Infection and Immunity, University College London, London, UK
| | - George Joy
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Cecilia Di Genova
- Viral Pseudotype Unit, Medway School of Pharmacy, Chatham Maritime, Kent, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Chatham Maritime, Kent, UK
| | | | | | - Mervyn Andiapen
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | | | | | - Amanda Semper
- National Infection Service, Public Health England, Porton Down, UK
| | - Ben O'Brien
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- German Heart Centre and Charité University, Berlin, Germany
| | - Benjamin Chain
- Division of Infection and Immunity, University College London, London, UK
| | - Tim Brooks
- National Infection Service, Public Health England, Porton Down, UK
| | - Charlotte Manisty
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, UK
| | - Thomas Treibel
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, UK
| | - James C Moon
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Science, University College London, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, UK
| | - Daniel M Altmann
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London, UK
| | - Áine McKnight
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rosemary J Boyton
- Department of Infectious Disease, Imperial College London, London, UK.
- Lung Division, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| |
Collapse
|
32
|
Almasaud A, Alharbi NK, Hashem AM. Generation of MERS-CoV Pseudotyped Viral Particles for the Evaluation of Neutralizing Antibodies in Mammalian Sera. Methods Mol Biol 2020; 2099:117-126. [PMID: 31883092 PMCID: PMC7123069 DOI: 10.1007/978-1-0716-0211-9_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Pseudotyped viral particle production has been used extensively and broadly for many viruses to evaluate levels of neutralizing antibodies, viral entry inhibitors and vaccine immunogenicity. This assay is extremely safe and useful alternative to live virus-based assay without the need for high containment facilities. In this chapter, we describe the generation of MERS-CoV pseudotyped viral particles (MERSpp) expressing full-length spike protein using second-generation lentiviral packaging system. This platform is optimized to generate high titer of MERSpp and to test sera from different mammalian species.
Collapse
Affiliation(s)
- Abdulrahman Almasaud
- Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Naif Khalaf Alharbi
- Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia. .,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | - Anwar M Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia. .,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, Research Center, Jeddah, Saudi Arabia.
| |
Collapse
|
33
|
Del Rosario JMM, Smith M, Zaki K, Risley P, Temperton N, Engelhardt OG, Collins M, Takeuchi Y, Hufton SE. Protection From Influenza by Intramuscular Gene Vector Delivery of a Broadly Neutralizing Nanobody Does Not Depend on Antibody Dependent Cellular Cytotoxicity. Front Immunol 2020; 11:627. [PMID: 32547534 PMCID: PMC7273724 DOI: 10.3389/fimmu.2020.00627] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/19/2020] [Indexed: 01/12/2023] Open
Abstract
Cross-subtype neutralizing single domain antibodies against influenza present new opportunities for immunoprophylaxis and pandemic preparedness. Their simple modular structure and single open reading frame format are highly amenable to gene therapy-mediated delivery. We have previously described R1a-B6, an alpaca-derived single domain antibody (nanobody), that is capable of potent cross-subtype neutralization in vitro of H1N1, H5N1, H2N2, and H9N2 influenza viruses, through binding to a highly conserved epitope in the influenza hemagglutinin stem region. To evaluate the potential of R1a-B6 for immunoprophylaxis, we have reformatted it as an Fc fusion for adeno-associated viral (AAV) vector delivery. Our findings demonstrate that a single intramuscular injection in mice of AAV encoding R1a-B6 fused to Fc fragments of different isotypes equipped either, with or without antibody dependent cellular cytotoxicity (ADCC) activity, was able to drive sustained high-level expression (0.5-1.1 mg/mL) in sera with no evidence of reduction for up to 6 months. R1a-B6-Fc fusions of both isotypes gave complete protection against lethal challenge with both pandemic A/California/07/2009 (H1N1)pdm09 and avian influenza A/Vietnam/1194/2004 (H5N1). This data suggests that R1a-B6 is capable of cross-subtype protection and ADCC was not essential for R1a-B6 efficacy. Our findings demonstrate AAV delivery of cross-subtype neutralizing nanobodies may be an effective strategy to prevent influenza infection and provide long-term protection independent of a host induced immune response.
Collapse
Affiliation(s)
- Joanne Marie M Del Rosario
- Division of Biotherapeutics, National Institute for Biological Standards and Control, Potters Bar, United Kingdom.,Division of Advanced Therapies, National Institute for Biological Standards and Control, Potters Bar, United Kingdom.,Division of Infection and Immunity, University College London, London, United Kingdom.,Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines
| | - Matthew Smith
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Kam Zaki
- Division of Advanced Therapies, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Paul Risley
- Division of Biotherapeutics, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, United Kingdom
| | - Othmar G Engelhardt
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Mary Collins
- Division of Advanced Therapies, National Institute for Biological Standards and Control, Potters Bar, United Kingdom.,Division of Infection and Immunity, University College London, London, United Kingdom.,Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yasuhiro Takeuchi
- Division of Advanced Therapies, National Institute for Biological Standards and Control, Potters Bar, United Kingdom.,Division of Infection and Immunity, University College London, London, United Kingdom
| | - Simon E Hufton
- Division of Biotherapeutics, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| |
Collapse
|
34
|
Zikavirus prME Envelope Pseudotyped Human Immunodeficiency Virus Type-1 as a Novel Tool for Glioblastoma-Directed Virotherapy. Cancers (Basel) 2020; 12:cancers12041000. [PMID: 32325703 PMCID: PMC7226176 DOI: 10.3390/cancers12041000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme is the most lethal type of brain tumor that is not yet curable owing to its frequent resurgence after surgery. Resistance is mainly caused by the presence of a subpopulation of tumor cells, the glioma stem cells (GSCs), which are highly resistant to radiation and chemotherapy. In 2015, Zikavirus (ZIKV)-induced microcephaly emerged in newborns, indicating that ZIKV has a specific neurotropism. Accordingly, an oncolytic tropism for infecting GSCs was demonstrated in a murine tumor model. Like other flaviviruses, ZIKV is enveloped by two proteins, prM and E. The pME expression plasmid along with the HIV-1 vector pNL Luc AM generated prME pseudotyped viral particles. Four different prME envelopes, Z1 to Z4, were cloned, and the corresponding pseudotypes, Z1- to Z4-HIVluc, produced by this two-plasmid system, were tested for entry efficiency using Vero-B4 cells. The most efficient pseudotype, Z1-HIVluc, also infected glioma-derived cell lines U87 and 86HG39. The pseudotype system was then extended by using a three-plasmid system including pME-Z1, the HIV-1 packaging plasmid psPAX2, and the lentiviral vector pLenti-luciferase-P2A-Neo. The corresponding pseudotype, designated Z1-LENTIluc, also infected U87 and 86HG39 cells. Altogether, a pseudotyped virus especially targeting glioma-derived cells might be a promising candidate for a prospective glioblastoma-directed virotherapy.
Collapse
|
35
|
Vasmehjani AA, Salehi-Vaziri M, Azadmanesh K, Nejati A, Pouriayevali MH, Gouya MM, Parsaeian M, Shahmahmoodi S. Efficient production of a lentiviral system for displaying Crimean-Congo hemorrhagic fever virus glycoproteins reveals a broad range of cellular susceptibility and neutralization ability. Arch Virol 2020; 165:1109-1120. [PMID: 32189084 DOI: 10.1007/s00705-020-04576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/02/2020] [Indexed: 11/28/2022]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne disease with a mortality rate of up to 50% in humans. To avoid safety concerns associated with the use of live virus in virus neutralization assays and to detect human serum neutralizing antibodies, we prepared lentiviral particles containing the CCHF glycoprotein (lenti-CCHFV-GP). Incorporation of the GP into the lentiviral particle was confirmed by electron microscopy and Western blotting. Lenti-CCHFV-GP was found to be able to infect a wide range of cell lines, including BHK-21, HeLa, HepG2, and AsPC-1 cells. In addition, lenti-CCHFV-GP was successfully used as an alternative to CCHFV for the detection of neutralizing antibodies. Sera collected from CCHF survivors neutralized lenti-CCHFV-GP particles in a dose-dependent manner. Our results suggest that the lenti-CCHFV-GP pseudovirus can be used as a safe tool for neutralization assays in low-containment laboratories.
Collapse
Affiliation(s)
- Abbas Ahmadi Vasmehjani
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| | - Mostafa Salehi-Vaziri
- Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.,Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | | | - Ahmad Nejati
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| | - Mohammad Hassan Pouriayevali
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Mahdi Gouya
- National Communicable Disease Control Centre, Ministry of Health and Medical Education, Tehran, Iran
| | - Mahboubeh Parsaeian
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shohreh Shahmahmoodi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, 1417613151, Iran. .,Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Sedova ES, Scherbinin DN, Lysenko AA, Alekseeva SV, Artemova EA, Shmarov MM. Non-neutralizing Antibodies Directed at Conservative Influenza Antigens. Acta Naturae 2019; 11:22-32. [PMID: 31993232 PMCID: PMC6977952 DOI: 10.32607/20758251-2019-11-4-22-32] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/21/2019] [Indexed: 11/20/2022] Open
Abstract
At the moment, developing new broad-spectrum influenza vaccines which would help avoid annual changes in a vaccine's strain set is urgency. In addition, developing new vaccines based on highly conserved influenza virus proteins could allow us to better prepare for potential pandemics and significantly reduce the damage they cause. Evaluation of the humoral response to vaccine administration is a key aspect of the characterization of the effectiveness of influenza vaccines. In the development of new broad-spectrum influenza vaccines, it is important to study the mechanisms of action of various antibodies, including non-neutralizing ones, as well as to be in the possession of methods for quantifying these antibodies after immunization with new vaccines against influenza. In this review, we focused on the mechanisms of anti-influenza action of non-neutralizing antibodies, such as antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and antibody-mediated complement-dependent cytotoxicity (CDC). The influenza virus antigens that trigger these reactions are hemagglutinin (HA) and neuraminidase (NA), as well as highly conserved antigens, such as M2 (ion channel), M1 (matrix protein), and NP (nucleoprotein). In addition, the mechanisms of action and methods for detecting antibodies to neuraminidase (NA) and to the stem domain of hemagglutinin (HA) of the influenza virus are considered.
Collapse
Affiliation(s)
- E. S. Sedova
- Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, 123098 Russia
| | - D. N. Scherbinin
- Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, 123098 Russia
| | - A. A. Lysenko
- Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, 123098 Russia
| | - S. V. Alekseeva
- Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, 123098 Russia
| | - E. A. Artemova
- Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, 123098 Russia
| | - M. M. Shmarov
- Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, 123098 Russia
| |
Collapse
|
37
|
Giotis ES, Carnell G, Young EF, Ghanny S, Soteropoulos P, Wang LF, Barclay WS, Skinner MA, Temperton N. Entry of the bat influenza H17N10 virus into mammalian cells is enabled by the MHC class II HLA-DR receptor. Nat Microbiol 2019; 4:2035-2038. [PMID: 31358984 DOI: 10.1038/s41564-019-0517-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022]
Abstract
Haemagglutinin and neuraminidase surface glycoproteins of the bat influenza H17N10 virus neither bind to nor cleave sialic acid receptors, indicating that this virus employs cell entry mechanisms distinct from those of classical influenza A viruses. We observed that certain human haematopoietic cancer cell lines and canine MDCK II cells are susceptible to H17-pseudotyped viruses. We identified the human HLA-DR receptor as an entry mediator for H17 pseudotypes, suggesting that H17N10 possesses zoonotic potential.
Collapse
Affiliation(s)
- Efstathios S Giotis
- Section of Virology, Department of Medicine, Imperial College London, London, UK.
| | - George Carnell
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham, UK.,Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Erik F Young
- Department of Surgery, Hackensack University Medical Center, Hackensack, NJ, USA.,Bioelectronic Systems Lab, Columbia University, New York, NY, USA
| | - Saleena Ghanny
- The Genomics Center, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | | | - Lin-Fa Wang
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, Singapore, Singapore
| | - Wendy S Barclay
- Section of Virology, Department of Medicine, Imperial College London, London, UK
| | - Michael A Skinner
- Section of Virology, Department of Medicine, Imperial College London, London, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham, UK
| |
Collapse
|
38
|
Ramage W, Gaiotto T, Ball C, Risley P, Carnell GW, Temperton N, Cheung CY, Engelhardt OG, Hufton SE. Cross-Reactive and Lineage-Specific Single Domain Antibodies against Influenza B Hemagglutinin. Antibodies (Basel) 2019; 8:E14. [PMID: 31544820 PMCID: PMC6640691 DOI: 10.3390/antib8010014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 11/23/2022] Open
Abstract
Influenza B virus (IBV) circulates in the human population and causes considerable disease burden worldwide, each year. Current IBV vaccines can struggle to mount an effective cross-reactive immune response, as strains become mismatched, due to constant antigenic changes. Additional strategies which use monoclonal antibodies, with broad reactivity, are of considerable interest, both, as diagnostics and as immunotherapeutics. Alternatives to conventional monoclonal antibodies, such as single domain antibodies (NanobodiesTM) with well-documented advantages for applications in infectious disease, have been emerging. In this study we have isolated single domain antibodies (sdAbs), specific to IBV, using alpacas immunised with recombinant hemagglutinin (HA) from two representative viruses, B/Florida/04/2006 (B/Yamagata lineage) and B/Brisbane/60/2008 (B/Victoria lineage). Using phage display, we have isolated a panel of single domain antibodies (sdAbs), with both cross-reactive and lineage-specific binding. Several sdAbs recognise whole virus antigens, corresponding to influenza B strains included in vaccines spanning over 20 years, and were capable of neutralising IBV pseudotypes corresponding to prototype strains from both lineages. Lineage-specific sdAbs recognised the head domain, whereas, sdAbs identified as cross-reactive could be classified as either head binding or stem binding. Using yeast display, we were able to correlate lineage specificity with naturally occurring sequence divergence, at residue 122 in the highly variable 120 loop of the HA1 domain. The single domain antibodies described, might have applications in IBV diagnostics, vaccine potency testing and as immunotherapeutics.
Collapse
Affiliation(s)
- Walter Ramage
- Biotherapeutics Division, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - Tiziano Gaiotto
- Biotherapeutics Division, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - Christina Ball
- Biotherapeutics Division, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - Paul Risley
- Biotherapeutics Division, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - George W Carnell
- Infectious Diseases and Allergy Group, School of Pharmacy, University of Kent, Kent ME4 4TB, UK.
| | - Nigel Temperton
- Infectious Diseases and Allergy Group, School of Pharmacy, University of Kent, Kent ME4 4TB, UK.
| | - Chung Y Cheung
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - Othmar G Engelhardt
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - Simon E Hufton
- Biotherapeutics Division, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| |
Collapse
|
39
|
Dahdal S, Saison C, Valette M, Bachy E, Pallet N, Lina B, Koenig A, Monneret G, Defrance T, Morelon E, Thaunat O. Residual Activatability of Circulating Tfh17 Predicts Humoral Response to Thymodependent Antigens in Patients on Therapeutic Immunosuppression. Front Immunol 2019; 9:3178. [PMID: 30804950 PMCID: PMC6370621 DOI: 10.3389/fimmu.2018.03178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/27/2018] [Indexed: 12/31/2022] Open
Abstract
The generation of antibodies against protein antigens (such as donor-specific HLA molecules) requires that T follicular helper cells (Tfh) provide help to B cells. Immunosuppressive (IS) armamentarium prevents T cell activation, yet a significant proportion of renal transplant patients develop donor-specific antibodies (DSA), which suggests that IS drugs do not efficiently block T follicular helper cells. To test this hypothesis, the number of circulating Tfh, their polarization profile, and ability to up-regulate (i) the co-stimulatory molecules CD40L and ICOS, and (ii) the activation marker CD25, following in vitro stimulation in presence of IS drugs, were compared between 36 renal transplant patients (6–72 months post transplantation) and nine healthy controls. IS drugs reduced the number of Tfh1 and 2 but had little impact on Tfh17, which was the dominant subset in transplant patients. Although, IS drugs decreased activation-induced expression of co-stimulatory molecules by Tfh, the impact was highly variable between individuals. Furthermore, 20% of transplant patients displayed normal expression of CD25 on Tfh following in vitro stimulation (i.e., “residual activatability”). To test whether residual activatability of Tfh correlates with antibody response against thymo-dependent antigens we took advantage of the 2015 influenza vaccination campaign, which provided a normalized setting for antigenic stimulation. In line with our hypothesis, responders to influenza vaccine exhibited significantly higher percentage of CD25-expressing Tfh17 after in vitro stimulation. A results that was confirmed retrospectively in nine transplanted patients at the time of first DSA detection. We concluded that “residual activatability” of Tfh17 might be used as a non-invasive biomarker to identify transplant patients at higher risk to develop DSA under immunosuppression. If validated in larger studies, this assay might help optimizing the prevention of DSA through personalized adaptation of immunosuppressive regimen.
Collapse
Affiliation(s)
- Suzan Dahdal
- French National Institute of Health and Medical Research (Inserm) Unit 1111, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot University Hospital, Lyon, France
| | - Carole Saison
- French National Institute of Health and Medical Research (Inserm) Unit 1111, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot University Hospital, Lyon, France
| | - Martine Valette
- Hospices Civils de Lyon, Croix-Rousse University Hospital, Infectious Agents Institute (IAI) Laboratory of Virology-National Reference Center for Respiratory Viruses (Including Influenza), Lyon, France
| | - Emmanuel Bachy
- Department of Hematology, Hospices Civils de Lyon, Lyon Sud University Hospital, Pierre Bénite, France.,Claude Bernard University (Lyon 1), Lyon, France
| | - Nicolas Pallet
- Laboratory of Biochemistry, Assistance Publique-Hôpitaux de Paris, Georges Pompidou Hospital, Paris, France.,Paris Descartes University, Paris, France
| | - Bruno Lina
- French National Institute of Health and Medical Research (Inserm) Unit 1111, Lyon, France.,Hospices Civils de Lyon, Croix-Rousse University Hospital, Infectious Agents Institute (IAI) Laboratory of Virology-National Reference Center for Respiratory Viruses (Including Influenza), Lyon, France.,Claude Bernard University (Lyon 1), Lyon, France
| | - Alice Koenig
- French National Institute of Health and Medical Research (Inserm) Unit 1111, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot University Hospital, Lyon, France
| | - Guillaume Monneret
- Laboratory of Immunology, Hospices Civils de Lyon, Edouard Herriot University Hospital, Lyon, France
| | - Thierry Defrance
- French National Institute of Health and Medical Research (Inserm) Unit 1111, Lyon, France
| | - Emmanuel Morelon
- French National Institute of Health and Medical Research (Inserm) Unit 1111, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot University Hospital, Lyon, France.,Claude Bernard University (Lyon 1), Lyon, France
| | - Olivier Thaunat
- French National Institute of Health and Medical Research (Inserm) Unit 1111, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot University Hospital, Lyon, France.,Claude Bernard University (Lyon 1), Lyon, France
| |
Collapse
|
40
|
Delgadillo-Gutiérrez K, Ribas-Aparicio RM, Jiménez-Alberto A, Aparicio-Ozores G, Castelán-Vega JA. Stability of retroviral pseudotypes carrying the hemagglutinin of avian influenza viruses under various storage conditions. J Virol Methods 2018; 263:44-49. [PMID: 30347199 DOI: 10.1016/j.jviromet.2018.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/09/2018] [Accepted: 10/16/2018] [Indexed: 11/25/2022]
Abstract
Retroviral pseudotypes are broadly used as safe instruments to mimic the structure and surface of highly pathogenic viruses. They have been employed for the discovery of new drugs, as diagnostic tools in vaccine studies, and part of serological assays. Because of their widespread use in research and their potential as tools for quality control, it is important to know their shelf life, stability, and best storage conditions. In this study, we produced pseudotypes carrying the lacZ reporter gene and the hemagglutinin (HA) of avian influenza virus subtypes H5 and H7 to investigate their stability under various storage conditions. We produced pseudotypes with titers of approximately 106 RLU/mL, which decreased to 105-106 RLU/mL after short-term storage at 4 °C (up to 4 weeks). Stability was maintained after long-term storage at -20 °C (up to 12 months), even under storage variations such as freeze-thaw cycles. We conclude that, although the titers decreased by 1 log10 under the different storage conditions, the remaining titers can be readily applicable in many techniques, such as neutralization assays. These findings show that large quantities of retroviral pseudotypes can be safely stored for short- or long-term use, allowing standardization and reduced variation in assays involving retroviral pseudotypes.
Collapse
Affiliation(s)
- Karen Delgadillo-Gutiérrez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Rosa María Ribas-Aparicio
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Alicia Jiménez-Alberto
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Gerardo Aparicio-Ozores
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Juan A Castelán-Vega
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico.
| |
Collapse
|
41
|
Thompson CP, Lourenço J, Walters AA, Obolski U, Edmans M, Palmer DS, Kooblall K, Carnell GW, O'Connor D, Bowden TA, Pybus OG, Pollard AJ, Temperton NJ, Lambe T, Gilbert SC, Gupta S. A naturally protective epitope of limited variability as an influenza vaccine target. Nat Commun 2018; 9:3859. [PMID: 30242149 PMCID: PMC6155085 DOI: 10.1038/s41467-018-06228-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
Current antigenic targets for influenza vaccine development are either highly immunogenic epitopes of high variability or conserved epitopes of low immunogenicity. This requires continuous update of the variable epitopes in the vaccine formulation or boosting of immunity to invariant epitopes of low natural efficacy. Here we identify a highly immunogenic epitope of limited variability in the head domain of the H1 haemagglutinin protein. We show that a cohort of young children exhibit natural immunity to a set of historical influenza strains which they could not have previously encountered and that this is partially mediated through the epitope. Furthermore, vaccinating mice with these epitope conformations can induce immunity to human H1N1 influenza strains that have circulated since 1918. The identification of epitopes of limited variability offers a mechanism by which a universal influenza vaccine can be created; these vaccines would also have the potential to protect against newly emerging influenza strains.
Collapse
Affiliation(s)
- Craig P Thompson
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
- The Jenner Institute Laboratories, University of Oxford, Oxford, OX3 7DQ, UK.
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Adam A Walters
- The Jenner Institute Laboratories, University of Oxford, Oxford, OX3 7DQ, UK
| | - Uri Obolski
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Matthew Edmans
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
- The Jenner Institute Laboratories, University of Oxford, Oxford, OX3 7DQ, UK
| | - Duncan S Palmer
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Kreepa Kooblall
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford, OX3 7LE, UK
| | - George W Carnell
- Medway School of Pharmacy, University of Kent, Chatham, ME4 4BF, UK
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, OX3 7LE, UK
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, OX3 7LE, UK
| | | | - Teresa Lambe
- The Jenner Institute Laboratories, University of Oxford, Oxford, OX3 7DQ, UK
| | - Sarah C Gilbert
- The Jenner Institute Laboratories, University of Oxford, Oxford, OX3 7DQ, UK
| | - Sunetra Gupta
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| |
Collapse
|
42
|
Development of in vitro and in vivo neutralization assays based on the pseudotyped H7N9 virus. Sci Rep 2018; 8:8484. [PMID: 29855533 PMCID: PMC5981435 DOI: 10.1038/s41598-018-26822-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/15/2018] [Indexed: 11/08/2022] Open
Abstract
H7N9 viral infections pose a great threat to both animal and human health. This avian virus cannot be handled in level 2 biocontainment laboratories, substantially hindering evaluation of prophylactic vaccines and therapeutic agents. Here, we report a high-titer pseudoviral system with a bioluminescent reporter gene, enabling us to visually and quantitatively conduct analyses of virus replications in both tissue cultures and animals. For evaluation of immunogenicity of H7N9 vaccines, we developed an in vitro assay for neutralizing antibody measurement based on the pseudoviral system; results generated by the in vitro assay were found to be strongly correlated with those by either hemagglutination inhibition (HI) or micro-neutralization (MN) assay. Furthermore, we injected the viruses into Balb/c mice and observed dynamic distributions of the viruses in the animals, which provides an ideal imaging model for quantitative analyses of prophylactic and therapeutic monoclonal antibodies. Taken together, the pseudoviral systems reported here could be of great value for both in vitro and in vivo evaluations of vaccines and antiviral agents without the need of wild type H7N9 virus.
Collapse
|
43
|
Gallinaro A, Borghi M, Bona R, Grasso F, Calzoletti L, Palladino L, Cecchetti S, Vescio MF, Macchia D, Morante V, Canitano A, Temperton N, Castrucci MR, Salvatore M, Michelini Z, Cara A, Negri D. Integrase Defective Lentiviral Vector as a Vaccine Platform for Delivering Influenza Antigens. Front Immunol 2018; 9:171. [PMID: 29459873 PMCID: PMC5807328 DOI: 10.3389/fimmu.2018.00171] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/19/2018] [Indexed: 12/31/2022] Open
Abstract
Viral vectors represent an attractive technology for vaccine delivery. We exploited the integrase defective lentiviral vector (IDLV) as a platform for delivering relevant antigens within the context of the ADITEC collaborative research program. In particular, Influenza virus hemagglutinin (HA) and nucleoprotein (NP) were delivered by IDLVs while H1N1 A/California/7/2009 subunit vaccine (HAp) with or without adjuvant was used to compare the immune response in a murine model of immunization. In order to maximize the antibody response against HA, both IDLVs were also pseudotyped with HA (IDLV-HA/HA and IDLV-NP/HA, respectively). Groups of CB6F1 mice were immunized intramuscularly with a single dose of IDLV-NP/HA, IDLV-HA/HA, HAp alone, or with HAp together with the systemic adjuvant MF59. Six months after the vaccine prime all groups were boosted with HAp alone. Cellular and antibody responses to influenza antigens were measured at different time points after the immunizations. Mice immunized with HA-pseudotyped IDLVs showed similar levels of anti-H1N1 IgG over time, evaluated by ELISA, which were comparable to those induced by HAp + MF59 vaccination, but significantly higher than those induced by HAp alone. The boost with HAp alone induced an increase of antibodies in all groups, and the responses were maintained at higher levels up to 18 weeks post-boost. The antibody response was functional and persistent overtime, capable of neutralizing virus infectivity, as evaluated by hemagglutination inhibition and microneutralization assays. Moreover, since neuraminidase (NA)-expressing plasmid was included during IDLV preparation, immunization with IDLV-NP/HA and IDLV-HA/HA also induced functional anti-NA antibodies, evaluated by enzyme-linked lectin assay. IFNγ-ELISPOT showed evidence of HA-specific response in IDLV-HA/HA immunized animals and persistent NP-specific CD8+ T cell response in IDLV-NP/HA immunized mice. Taken together our results indicate that IDLV can be harnessed for producing a vaccine able to induce a comprehensive immune response, including functional antibodies directed toward HA and NA proteins present on the vector particles in addition to a functional T cell response directed to the protein transcribed from the vector.
Collapse
Affiliation(s)
| | - Martina Borghi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Roberta Bona
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Felicia Grasso
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Calzoletti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Serena Cecchetti
- Confocal Microscopy Unit NMR, Confocal Microscopy Area Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | | | - Daniele Macchia
- Center for Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Valeria Morante
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Canitano
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Kent, United Kingdom
| | | | - Mirella Salvatore
- Department of Medicine, Weill Cornell Medical College, New York, United States
| | - Zuleika Michelini
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Cara
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Donatella Negri
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
44
|
Pseudotype Neutralization Assays: From Laboratory Bench to Data Analysis. Methods Protoc 2018; 1:mps1010008. [PMID: 31164554 PMCID: PMC6526431 DOI: 10.3390/mps1010008] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 11/29/2022] Open
Abstract
Pseudotype neutralization assays are powerful tools to study functional antibody responses against viruses in low biosafety laboratories. However, protocols described in the literature differ widely with respect to material, reagents, and methods used to perform these assays and to analyse the raw data generated. This could result in discrepancies between the results of different laboratories even when the same pseudotypes and the same samples are analysed. Here, we describe, in detail, an experimental protocol to perform pseudotype neutralization assays using lentiviral pseudotypes bearing influenza haemagglutinin and expressing firefly luciferase. We also present the steps necessary to analyse the data and calculate the half maximal inhibitory concentration of the sera analysed. This protocol will provide support for the validation and the standardization of the pseudotype neutralization assay for influenza virus serology. Additionally, it will provide a starting point for the development of pseudotype neutralization assays using pseudotypes bearing other viral envelope proteins.
Collapse
|
45
|
Biuso F, Carnell G, Montomoli E, Temperton N. A Lentiviral Pseudotype ELLA for the Measurement of Antibodies Against Influenza Neuraminidase. Bio Protoc 2018. [DOI: 10.21769/bioprotoc.2936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
46
|
King B, Tarr AW. How have retrovirus pseudotypes contributed to our understanding of viral entry? Future Virol 2017. [DOI: 10.2217/fvl-2017-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Study of virus entry into host cells is important for understanding viral tropism and pathogenesis. Studying the entry of in vitro cultured viruses is not always practicable. Study of highly pathogenic viruses, viruses that do not grow in culture, and viruses that rapidly change phenotype in vitro can all benefit from alternative models of entry. Retrovirus particles can be engineered to display the envelope proteins of heterologous enveloped viruses. This approach, broadly termed ‘pseudotyping’, is an important technique for interrogating virus entry. In this perspective we consider how retrovirus pseudotypes have addressed these challenges and improved our understanding of the entry pathways of diverse virus species, including Ebolavirus, human immunodeficiency virus and hepatitis C virus.
Collapse
Affiliation(s)
- Barnabas King
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & the University of Nottingham, Nottingham, UK
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, UK
| | - Alexander W Tarr
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & the University of Nottingham, Nottingham, UK
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
47
|
Ferrara F, Molesti E, Scott S, Cattoli G, Temperton N. The Use of Hyperimmune Chicken Reference Sera Is Not Appropriate for the Validation of Influenza Pseudotype Neutralization Assays. Pathogens 2017; 6:pathogens6040045. [PMID: 28946689 PMCID: PMC5750569 DOI: 10.3390/pathogens6040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/13/2017] [Accepted: 09/20/2017] [Indexed: 11/16/2022] Open
Abstract
The pseudotype particle neutralization test (pp-NT) is a next-generation serological assay employed for the sensitive study of influenza antibody responses against hemagglutinin (HA), including stalk-directed antibodies. However, a validation of this assay has yet to be performed, and this limits its use to primarily research laboratories. To identify possible serological standards to be used in optimization and validation of the pp-NT, we have evaluated the cross-reactivity of hyperimmune chicken reference antisera in this assay. Our findings show that the cross-reactivity detected by the pp-NT is only partly explained by phylogenetic relationships and protein homology between the HA subtypes analysed; further studies are necessary to understand the origin of the cross-reactivity detected, and reference standards with higher specificity should be evaluated or generated de novo for future use in pp-NT.
Collapse
Affiliation(s)
- Francesca Ferrara
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham, Kent ME4 4TB, UK.
| | - Eleonora Molesti
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham, Kent ME4 4TB, UK.
| | - Simon Scott
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham, Kent ME4 4TB, UK.
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Division, International Atomic Energy Agency, A-2444 Seibersdorf, Austria.
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham, Kent ME4 4TB, UK.
| |
Collapse
|
48
|
Carnell G, Grehan K, Ferrara F, Molesti E, Temperton N. An Optimized Method for the Production Using PEI, Titration and Neutralizationof SARS-CoV Spike Luciferase Pseudotypes. Bio Protoc 2017; 7:e2514. [PMID: 34541175 DOI: 10.21769/bioprotoc.2514] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/21/2017] [Accepted: 07/28/2017] [Indexed: 11/02/2022] Open
Abstract
The protocol outlined represents a cost-effective, rapid and reliable method for the generation of high-titre viral pseudotype particles with the wild-type SARS-CoV spike protein on a lentiviral vector core using the widely available transfection reagent PEI. This protocol is optimized for transfection in 6-well plates; however it can be readily scaled to different production volumes according to application. This protocol has multiple benefits including the use of readily available reagents, consistent, high pseudotype virus production Relative Luminescence Units (RLU) titres and rapid generation of novel coronavirus pseudotypes for research into strain variation, tropism and immunogenicity/sero-prevalence.
Collapse
Affiliation(s)
- George Carnell
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham Maritime, Kent, United Kingdom
| | - Keith Grehan
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham Maritime, Kent, United Kingdom
| | - Francesca Ferrara
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham Maritime, Kent, United Kingdom
| | - Eleonora Molesti
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham Maritime, Kent, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham Maritime, Kent, United Kingdom
| |
Collapse
|
49
|
Scott SD, Kinsley R, Temperton N, Daly JM. The Optimisation of Pseudotyped Viruses for the Characterisation of Immune Responses to Equine Influenza Virus. Pathogens 2016; 5:pathogens5040068. [PMID: 27983716 PMCID: PMC5198168 DOI: 10.3390/pathogens5040068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/20/2016] [Accepted: 12/04/2016] [Indexed: 11/28/2022] Open
Abstract
Pseudotyped viruses (PVs) produced by co-transfecting cells with plasmids expressing lentiviral core proteins and viral envelope proteins are potentially powerful tools for studying various aspects of equine influenza virus (EIV) biology. The aim of this study was to optimise production of equine influenza PVs. Co-transfection of the HAT protease to activate the haemagglutinin (HA) yielded a higher titre PV than TMPRSS2 with the HA from A/equine/Richmond/1/2007 (H3N8), whereas for A/equine/Newmarket/79 (H3N8), both proteases resulted in equivalent titres. TMPRSS4 was ineffective with the HA of either strain. There was also an inverse relationship between the amount of protease-expression plasmids and the PV titre obtained. Interestingly, the PV titre obtained by co-transfection of a plasmid encoding the cognate N8 NA was not as high as that generated by the addition of exogenous neuraminidase (NA) from Clostridium perfringens to allow the release of nascent PV particles. Finally, initial characterisation of the reliability of PV neutralisation tests (PVNTs) demonstrated good intra-laboratory repeatability. In conclusion, we have demonstrated that equine influenza PV production can be readily optimised to provide a flexible tool for studying EIV.
Collapse
Affiliation(s)
- Simon D Scott
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime ME4 4TB, UK.
| | - Rebecca Kinsley
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime ME4 4TB, UK.
| | - Nigel Temperton
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime ME4 4TB, UK.
| | - Janet M Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK.
| |
Collapse
|
50
|
Gaiotto T, Hufton SE. Cross-Neutralising Nanobodies Bind to a Conserved Pocket in the Hemagglutinin Stem Region Identified Using Yeast Display and Deep Mutational Scanning. PLoS One 2016; 11:e0164296. [PMID: 27741319 PMCID: PMC5065140 DOI: 10.1371/journal.pone.0164296] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/22/2016] [Indexed: 12/20/2022] Open
Abstract
Cross-neutralising monoclonal antibodies against influenza hemagglutinin (HA) are of considerable interest as both therapeutics and diagnostic tools. We have recently described five different single domain antibodies (nanobodies) which share this cross-neutralising activity and suggest their small size, high stability, and cleft binding properties may present distinct advantages over equivalent conventional antibodies. We have used yeast display in combination with deep mutational scanning to give residue level resolution of positions in the antibody-HA interface which are crucial for binding. In addition, we have mapped positions within HA predicted to have minimal effect on antibody binding when mutated. Our cross-neutralising nanobodies were shown to bind to a highly conserved pocket in the HA2 domain of A(H1N1)pdm09 influenza virus overlapping with the fusion peptide suggesting their mechanism of action is through the inhibition of viral membrane fusion. We also note that the epitope overlaps with that of CR6261 and F10 which are human monoclonal antibodies in clinical development as immunotherapeutics. Although all five nanobodies mapped to the same highly conserved binding pocket we observed differences in the size of the epitope footprint which has implications in comparing the relative genetic barrier each nanobody presents to a rapidly evolving influenza virus. To further refine our epitope map, we have re-created naturally occurring mutations within this HA stem epitope and tested their effect on binding using yeast display. We have shown that a D46N mutation in the HA2 stem domain uniquely interferes with binding of R2b-E8. Further testing of this substitution in the context of full length purified HA from 1918 H1N1 pandemic (Spanish flu), 2009 H1N1 pandemic (swine flu) and highly pathogenic avian influenza H5N1 demonstrated binding which correlated with D46 whereas binding to seasonal H1N1 strains carrying N46 was absent. In addition, our deep sequence analysis predicted that binding to the emerging H1N1 strain (A/Christchurch/16/2010) carrying the HA2-E47K mutation would not affect binding was confirmed experimentally. This demonstrates yeast display, in combination with deep sequencing, may be able to predict antibody reactivity to emerging influenza strains so assisting in the preparation for future influenza pandemics.
Collapse
Affiliation(s)
- Tiziano Gaiotto
- Biotherapeutics Group, National Institute for Biological Standards and Control, a centre of the Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Herts, EN6 3QG, United Kingdom
| | - Simon E. Hufton
- Biotherapeutics Group, National Institute for Biological Standards and Control, a centre of the Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Herts, EN6 3QG, United Kingdom
- * E-mail:
| |
Collapse
|