1
|
Farhad SZ, Karbalaeihasanesfahani A, Dadgar E, Nasiri K, Esfahaniani M, Nabi Afjadi M. The role of periodontitis in cancer development, with a focus on oral cancers. Mol Biol Rep 2024; 51:814. [PMID: 39008163 DOI: 10.1007/s11033-024-09737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Periodontitis is a severe gum infection that begins as gingivitis and can lead to gum recession, bone loss, and tooth loss if left untreated. It is primarily caused by bacterial infection, which triggers inflammation and the formation of periodontal pockets. Notably, periodontitis is associated with systemic health issues and has been linked to heart disease, diabetes, respiratory diseases, adverse pregnancy outcomes, and cancers. Accordingly, the presence of chronic inflammation and immune system dysregulation in individuals with periodontitis significantly contributes to the initiation and progression of various cancers, particularly oral cancers. These processes promote genetic mutations, impair DNA repair mechanisms, and create a tumor-supportive environment. Moreover, the bacteria associated with periodontitis produce harmful byproducts and toxins that directly damage the DNA within oral cells, exacerbating cancer development. In addition, chronic inflammation not only stimulates cell proliferation but also inhibits apoptosis, causes DNA damage, and triggers the release of pro-inflammatory cytokines. Collectively, these factors play a crucial role in the progression of cancer in individuals affected by periodontitis. Further, specific viral and bacterial agents, such as hepatitis B and C viruses, human papillomavirus (HPV), Helicobacter pylori (H. pylori), and Porphyromonas gingivalis, contribute to cancer development through distinct mechanisms. Bacterial infections have systemic implications for cancer development, while viral infections provoke immune and inflammatory responses that can lead to genetic mutations. This review will elucidate the link between periodontitis and cancers, particularly oral cancers, exploring their underlying mechanisms to provide insights for future research and treatment advancements.
Collapse
Affiliation(s)
- Shirin Zahra Farhad
- Department of Periodontics, Faculty of Dentistry, Isfahan(Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | | | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Shi L, Zhao L, Li Q, Huang L, Qin Y, Zhuang Z, Wang X, Huang H, Zhang J, Zhang J, Yan Q. Role of the Pseudomonas plecoglossicida fliL gene in immune response of infected hybrid groupers (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Front Immunol 2024; 15:1415744. [PMID: 39026675 PMCID: PMC11254626 DOI: 10.3389/fimmu.2024.1415744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Pseudomonas plecoglossicida, a gram-negative bacterium, is the main pathogen of visceral white-point disease in marine fish, responsible for substantial economic losses in the aquaculture industry. The FliL protein, involved in torque production of the bacterial flagella motor, is essential for the pathogenicity of a variety of bacteria. In the current study, the fliL gene deletion strain (ΔfliL), fliL gene complement strain (C-ΔfliL), and wild-type strain (NZBD9) were compared to explore the influence of the fliL gene on P. plecoglossicida pathogenicity and its role in host immune response. Results showed that fliL gene deletion increased the survival rate (50%) and reduced white spot disease progression in the hybrid groupers. Moreover, compared to the NZBD9 strain, the ΔfliL strain was consistently associated with lower bacterial loads in the grouper spleen, head kidney, liver, and intestine, coupled with reduced tissue damage. Transcriptomic analysis identified 2 238 differentially expressed genes (DEGs) in the spleens of fish infected with the ΔfliL strain compared to the NZBD9 strain. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, the DEGs were significantly enriched in seven immune system-associated pathways and three signaling molecule and interaction pathways. Upon infection with the ΔfliL strain, the toll-like receptor (TLR) signaling pathway was activated in the hybrid groupers, leading to the activation of transcription factors (NF-κB and AP1) and cytokines. The expression levels of proinflammatory cytokine-related genes IL-1β, IL-12B, and IL-6 and chemokine-related genes CXCL9, CXCL10, and CCL4 were significantly up-regulated. In conclusion, the fliL gene markedly influenced the pathogenicity of P. plecoglossicida infection in the hybrid groupers. Notably, deletion of fliL gene in P. plecoglossicida induced a robust immune response in the groupers, promoting defense against and elimination of pathogens via an inflammatory response involving multiple cytokines.
Collapse
Affiliation(s)
- Lian Shi
- Fisheries College, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, China
| | - Qi Li
- Fisheries College, Jimei University, Xiamen, China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, China
| | - Zhixia Zhuang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Xiaoru Wang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Huabin Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, China
| | - Jiaolin Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
3
|
Zhu X, Sculean A, Eick S. In-vitro effects of different hyaluronic acids on periodontal biofilm-immune cell interaction. Front Cell Infect Microbiol 2024; 14:1414861. [PMID: 38938883 PMCID: PMC11208323 DOI: 10.3389/fcimb.2024.1414861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Recent studies have demonstrated a positive role of hyaluronic acid (HA) on periodontal clinical outcomes. This in-vitro study aimed to investigate the impact of four different HAs on interactions between periodontal biofilm and immune cells. Methods The four HAs included: high-molecular-weight HA (HHA, non-cross-linked), low-molecular-weight HA (LHA), oligomers HA (OHA), and cross-linked high-molecular-weight HA (CHA). Serial experiments were conducted to verify the influence of HAs on: (i) 12-species periodontal biofilm (formation and pre-existing); (ii) expression of inflammatory cytokines and HA receptors in monocytic (MONO-MAC-6) cells and periodontal ligament fibroblasts (PDLF) with or without exposure to periodontal biofilms; (iii) generation of reactive oxygen species (ROS) in MONO-MAC-6 cells and PDLF with presence of biofilm and HA. Results The results indicated that HHA and CHA reduced the bacterial counts in a newly formed (4-h) biofilm and in a pre-existing five-day-old biofilm. Without biofilm challenge, OHA triggered inflammatory reaction by increasing IL-1β and IL-10 levels in MONO-MAC cells and IL-8 in PDLF in a time-dependent manner, whereas CHA suppressed this response by inhibiting the expression of IL-10 in MONO-MAC cells and IL-8 in PDLF. Under biofilm challenge, HA decreased the expression of IL-1β (most decreasing HHA) and increased IL-10 levels in MONO-MAC-6 cells in a molecular weight dependent manner (most increasing CHA). The interaction between HA and both cells may occur via ICAM-1 receptor. Biofilm stimulus increased ROS levels in MONO-MAC-6 cells and PDLF, but only HHA slightly suppressed the high generation of ROS induced by biofilm stimulation in both cells. Conclusion Overall, these results indicate that OHA induces inflammation, while HHA and CHA exhibit anti-biofilm, primarily anti-inflammatory, and antioxidant properties in the periodontal environment.
Collapse
Affiliation(s)
- Xilei Zhu
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Tatullo M, Nor J, Orrù G, Piattelli A, Cascardi E, Spagnuolo G. Oral-Gut-Estrobolome Axis May Exert a Selective Impact on Oral Cancer. J Dent Res 2024; 103:461-466. [PMID: 38584298 DOI: 10.1177/00220345241236125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
A subset of bacterial species that holds genes encoding for β-glucuronidase and β-galactosidase, enzymes involved in the metabolism of conjugated estrogens, is called the "estrobolome." There is an emerging interest embracing this concept, as it may exert a selective impact on a number of pathologies, including oral cancer. Although the estrobolome bacteria are typically part of the gut microbiota, recent experimental pieces of evidence have suggested a crosstalk among oral and gut microbiota. In fact, several oral bacterial species are well represented also in the gut microbiota, and these microbes can effectively induce the estrobolome activation. The main pathways used for activating the estrobolome are based on the induction of the expression patterns for 2 bacterial enzymes: β-glucuronidase and aromatase, both involved in the increase of estrogen released in the bloodstream and consequently in the salivary compartment. Mechanistically, high estrogen availability in saliva is responsible for an increase in oral cancer risk for different reasons: briefly, 1) estrogens directly exert biological and metabolic effects on oral mucosa cells; 2) they can modulate the pathological profile of some bacteria, somewhere associated with neoplastic processes (i.e., Fusobacterium spp., Parvimonas ssp.); and 3) some oral bacteria are able to convert estrogens into carcinogenic metabolites, such as 4-hydroxyestrone and 16α-hydroxyestrone (16α-OHE), and can also promote local and systemic inflammation. Nowadays, only a small number of scientific studies have taken into consideration the potential correlations among oral dysbiosis, alterations of the gut estrobolome, and some hormone-dependent cancers: this lack of attention on such a promising topic could be a bias affecting the full understanding of the pathogenesis of several estrogen-related oral pathologies. In our article, we have speculated on the activity of an oral-gut-estrobolome axis, capable of synergizing these 2 important microbiotas, shedding light on a pilot hypothesis requiring further research.
Collapse
Affiliation(s)
- M Tatullo
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro," Bari, Italy
- School of Dentistry, University of Dundee, Dundee, Scotland, UK
| | - J Nor
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Otolaryngology-Head & Neck Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - G Orrù
- Department of Surgical Sciences, Oral Biotechnology Laboratory (OBL), University of Cagliari, Cagliari, Italy
| | - A Piattelli
- School of Dentistry, Saint Camillus International University for Health Sciences, Rome, Italy
| | - E Cascardi
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Puglia, Italy
| | - G Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II" Naples, Italy
| |
Collapse
|
5
|
Ferrà-Cañellas MDM, Garcia-Sureda L. Exploring the Potential of Micro-Immunotherapy in the Treatment of Periodontitis. Life (Basel) 2024; 14:552. [PMID: 38792574 PMCID: PMC11122531 DOI: 10.3390/life14050552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Periodontitis, characterized by the progressive destruction of dental support tissues due to altered immune responses, poses a significant concern for public health. This condition involves intricate interactions between the immune response and oral microbiome, where innate and adaptive immune responses, with their diverse cell populations and inflammatory mediators, play crucial roles in this immunopathology. Indeed, cytokines, chemokines, growth factors, and immune cells perform key functions in tissue remodeling. Focusing on periodontal therapies, our attention turns to micro-immunotherapy (MI), employing low doses (LDs) and ultra-low doses (ULDs) of immunological signaling molecules like cytokines, growth factors, and hormones. Existing studies across various fields lay the groundwork for the application of MI in periodontitis, highlighting its anti-inflammatory and regenerative potential in soft tissue models based on in vitro research. In summary, this review underscores the versatility and potential of MI in managing periodontal health, urging further investigations to solidify its clinical integration. MI supports an innovative approach by modulating immune responses at low doses to address periodontitis.
Collapse
Affiliation(s)
- Maria del Mar Ferrà-Cañellas
- Preclinical Research Department, Labo’Life España, 07330 Consell, Spain
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07122 Palma de Mallorca, Spain
| | | |
Collapse
|
6
|
Wang Z, Sun W, Hua R, Wang Y, Li Y, Zhang H. Promising dawn in tumor microenvironment therapy: engineering oral bacteria. Int J Oral Sci 2024; 16:24. [PMID: 38472176 DOI: 10.1038/s41368-024-00282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 03/14/2024] Open
Abstract
Despite decades of research, cancer continues to be a major global health concern. The human mouth appears to be a multiplicity of local environments communicating with other organs and causing diseases via microbes. Nowadays, the role of oral microbes in the development and progression of cancer has received increasing scrutiny. At the same time, bioengineering technology and nanotechnology is growing rapidly, in which the physiological activities of natural bacteria are modified to improve the therapeutic efficiency of cancers. These engineered bacteria were transformed to achieve directed genetic reprogramming, selective functional reorganization and precise control. In contrast to endotoxins produced by typical genetically modified bacteria, oral flora exhibits favorable biosafety characteristics. To outline the current cognitions upon oral microbes, engineered microbes and human cancers, related literatures were searched and reviewed based on the PubMed database. We focused on a number of oral microbes and related mechanisms associated with the tumor microenvironment, which involve in cancer occurrence and development. Whether engineering oral bacteria can be a possible application of cancer therapy is worth consideration. A deeper understanding of the relationship between engineered oral bacteria and cancer therapy may enhance our knowledge of tumor pathogenesis thus providing new insights and strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Zifei Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Wansu Sun
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruixue Hua
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Yuanyin Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Yang Li
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China.
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China.
| |
Collapse
|
7
|
Alexakou E, Bakopoulou A, Apatzidou DA, Kritis A, Malousi A, Anastassiadou V. Biological Effects of "Inflammageing" on Human Oral Cells: Insights into a Potential Confounder of Age-Related Diseases. Int J Mol Sci 2023; 25:5. [PMID: 38203178 PMCID: PMC10778866 DOI: 10.3390/ijms25010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVES The term "inflammageing" describes the process of inflammation-induced aging that leads living cells to a state of permanent cell cycle arrest due to chronic antigenic irritation. This in vitro study aimed to shed light on the mechanisms of "inflammageing" on human oral cells. METHODS Primary cultures of human gingival fibroblasts (hGFs) were exposed to variable pro-inflammatory stimuli, including lipopolysaccharide (LPS), Tumor Necrosis Factor-alpha (TNFa), and gingival crevicular fluid (GCF) collected from active periodontal pockets of systemically healthy patients. Inflammageing was studied through two experimental models, employing either late-passage ("aged") cells (p. 10) that were exposed to the pro-inflammatory stimuli or early-passage ("young") cells (p. 1) continuously exposed during a period of several passages (up to p. 10) to the above-mentioned stimuli. Cells were evaluated for the expression of beta-galactosidase activity (histochemical staining), senescence-associated genes (qPCR analysis), and biomarkers related to a Senescence-Associated Secretory Phenotype (SASP), through proteome profile analysis and bioinformatics. RESULTS A significant increase (p < 0.05) in beta-galactosidase-positive cells was observed after exposure to each pro-inflammatory stimulus. The senescence-associated gene expression included upregulation for CCND1 and downregulation for SUSD6, and STAG1, a profile typical for cellular senescence. Overall, pro-inflammatory priming of late-passage cells caused more pronounced effects in terms of senescence than long-term exposure of early-passage cells to these stimuli. Proteomic analysis showed induction of SASP, evidenced by upregulation of several pro-inflammatory proteins (IL-6, IL-10, IL-16, IP-10, MCP-1, MCP-2, M-CSF, MIP-1a, MIP-1b, TNFb, sTNF-RI, sTNF-RII, TIMP-2) implicated in cellular aging and immune responses. The least potent impact on the induction of SASP was provoked by LPS and the most pronounced by GCF. CONCLUSION This study demonstrates that long-term exposure of hGFs to various pro-inflammatory signals induced or accelerated cellular senescence with the most pronounced impact noted for the late-passage cells. The outcome of these analyses provides insights into oral chronic inflammation as a potential confounder of age-related diseases.
Collapse
Affiliation(s)
- Elli Alexakou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54124 Thessaloniki, Greece; (E.A.); (V.A.)
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54124 Thessaloniki, Greece; (E.A.); (V.A.)
| | - Danae A. Apatzidou
- Department of Preventive Dentistry, Periodontology & Implant Biology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54124 Thessaloniki, Greece;
| | - Aristeidis Kritis
- Department of Physiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54124 Thessaloniki, Greece;
- Regenerative Medicine Center, Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Andigoni Malousi
- Department of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54124 Thessaloniki, Greece;
| | - Vassiliki Anastassiadou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54124 Thessaloniki, Greece; (E.A.); (V.A.)
| |
Collapse
|
8
|
Qin L, Wu J. Targeting anticancer immunity in oral cancer: Drugs, products, and nanoparticles. ENVIRONMENTAL RESEARCH 2023; 239:116751. [PMID: 37507044 DOI: 10.1016/j.envres.2023.116751] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Oral cavity carcinomas are the most frequent malignancies among head and neck malignancies. Oral tumors include not only oral cancer cells with different potency and stemness but also consist of diverse cells, containing anticancer immune cells, stromal and also immunosuppressive cells that influence the immune system reactions. The infiltrated T and natural killer (NK) cells are the substantial tumor-suppressive immune compartments in the tumor. The infiltration of these cells has substantial impacts on the response of tumors to immunotherapy, chemotherapy, and radiotherapy. Nevertheless, cancer cells, stromal cells, and some other compartments like regulatory T cells (Tregs), macrophages, and myeloid-derived suppressor cells (MDSCs) can repress the immune responses against malignant cells. Boosting anticancer immunity by inducing the immune system or repressing the tumor-promoting cells is one of the intriguing approaches for the eradication of malignant cells such as oral cancers. This review aims to concentrate on the secretions and interactions in the oral tumor immune microenvironment. We review targeting tumor stroma, immune system and immunosuppressive interactions in oral tumors. This review will also focus on therapeutic targets and therapeutic agents such as nanoparticles and products with anti-tumor potency that can boost anticancer immunity in oral tumors. We also explain possible future perspectives including delivery of various cells, natural products and drugs by nanoparticles for boosting anticancer immunity in oral tumors.
Collapse
Affiliation(s)
- Liling Qin
- Gezhouba Central Hospital of the Third Clinical Medical College of Three Gorges University, Yichang, Hubei, 443002, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei, 434000, China.
| |
Collapse
|
9
|
Yamamoto Y, Kamiya T, Yano M, Huyen VT, Oishi M, Nishio M, Suzuki A, Sunami K, Ohtani N. Oral Microbial Profile Analysis in Patients with Oral and Pharyngeal Cancer Reveals That Tumoral Fusobacterium nucleatum Promotes Oral Cancer Progression by Activating YAP. Microorganisms 2023; 11:2957. [PMID: 38138101 PMCID: PMC10746018 DOI: 10.3390/microorganisms11122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The incidence of oral cancer has recently been increasing worldwide, particularly among young individuals and women. The primary risk factors for head and neck cancers, including oral and pharyngeal cancers, are smoking, alcohol consumption, poor oral hygiene, and repeated exposure to mechanical stimuli. However, approximately one-third of the patients with oral and pharyngeal cancers are neither smokers nor drinkers, which points to the existence of other mechanisms. Recently, human microbes have been linked to various diseases, including cancer. Oral pathogens, especially periodontal pathobionts, are reported to play a role in the development of colon and other types of cancer. In this study, we employed a series of bioinformatics analyses to pinpoint Fusobacterium nucleatum as the predominant oral bacterial species in oral and pharyngeal cancer tissue samples. We successfully isolated Fn. polymorphum from the saliva of patients with oral cancer and demonstrated that Fn. polymorphum indeed promoted oral squamous cell carcinoma development by activating YAP in a mouse tongue cancer model. Our research offers scientific evidence for the role of the oral microbiome in oral cancer progression and provides insights that would help in devising preventative strategies against oral cancer, potentially by altering oral bacterial profiles.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Department of Otolaryngology and Head & Neck Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
- Department of Otolaryngology and Head & Neck Surgery, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Tomonori Kamiya
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Megumu Yano
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Vu Thuong Huyen
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Masahiro Oishi
- Department of Otolaryngology and Head & Neck Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Miki Nishio
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Kishiko Sunami
- Department of Otolaryngology and Head & Neck Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
- Department of Otolaryngology and Head & Neck Surgery, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Naoko Ohtani
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| |
Collapse
|
10
|
Rao P, Jing J, Fan Y, Zhou C. Spatiotemporal cellular dynamics and molecular regulation of tooth root ontogeny. Int J Oral Sci 2023; 15:50. [PMID: 38001110 PMCID: PMC10673972 DOI: 10.1038/s41368-023-00258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Tooth root development involves intricate spatiotemporal cellular dynamics and molecular regulation. The initiation of Hertwig's epithelial root sheath (HERS) induces odontoblast differentiation and the subsequent radicular dentin deposition. Precisely controlled signaling pathways modulate the behaviors of HERS and the fates of dental mesenchymal stem cells (DMSCs). Disruptions in these pathways lead to defects in root development, such as shortened roots and furcation abnormalities. Advances in dental stem cells, biomaterials, and bioprinting show immense promise for bioengineered tooth root regeneration. However, replicating the developmental intricacies of odontogenesis has not been resolved in clinical treatment and remains a major challenge in this field. Ongoing research focusing on the mechanisms of root development, advanced biomaterials, and manufacturing techniques will enable next-generation biological root regeneration that restores the physiological structure and function of the tooth root. This review summarizes recent discoveries in the underlying mechanisms governing root ontogeny and discusses some recent key findings in developing of new biologically based dental therapies.
Collapse
Affiliation(s)
- Pengcheng Rao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junjun Jing
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Zhu X, von Werdt L, Zappalà G, Sculean A, Eick S, Stähli A. In vitro activity of hyaluronic acid and human serum on periodontal biofilm and periodontal ligament fibroblasts. Clin Oral Investig 2023; 27:5021-5029. [PMID: 37380794 PMCID: PMC10492760 DOI: 10.1007/s00784-023-05121-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVES A beneficial effect of cross-linked hyaluronic acid (cHA) on periodontal wound healing and regeneration has recently been demonstrated. The present in vitro study was designed to obtain deeper knowledge on the effect of cHA when applied in the gingival sulcus (serum-rich environment) during non-surgical periodontal therapy. MATERIALS AND METHODS The influence of cHA, human serum (HS), and cHA/HS on (i) a 12-species biofilm formation, (ii) the adhesion of periodontal ligament fibroblasts (PDLF) to dentine surface, (iii) the expression and secretion of interleukin-8, and (iv) the expression of receptors of HA in PDLF and gingival fibroblasts (GF) were evaluated. RESULTS At 4 h of biofilm formation, cHA and HS in combination (cHA/HS) slightly decreased the colony-forming unit counts in biofilm whereas the metabolic activity of biofilm was reduced in all test groups (cHA, HS, cHA/HS) vs. control. At 24 h, the quantity of biofilm was reduced in all test groups vs. untreated control. The test substances did not affect adhesion of PDLF to dentin. HS increased the expression of IL-8 by PDLF and GF which was partially downregulated by cHA. HS and/or cHA promoted the expression of the HA receptor RHAMM in GF but not in PDLF. CONCLUSIONS In summary, the present data indicate that serum neither negatively affect the activity of cHA against periodontal biofilm nor had any unwanted influence on the activity of PDLF. CLINICAL RELEVANCE These findings lend additional support for the positive effects of cHA on cells involved in periodontal wound healing, thus pointing to its potential use in non-surgical periodontal therapy.
Collapse
Affiliation(s)
- Xilei Zhu
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Livia von Werdt
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Graziano Zappalà
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
12
|
Lamont RJ, Miller DP, Bagaitkar J. Illuminating the oral microbiome: cellular microbiology. FEMS Microbiol Rev 2023; 47:fuad045. [PMID: 37533213 PMCID: PMC10657920 DOI: 10.1093/femsre/fuad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Epithelial cells line mucosal surfaces such as in the gingival crevice and provide a barrier to the ingress of colonizing microorganisms. However, epithelial cells are more than a passive barrier to microbial intrusion, and rather constitute an interactive interface with colonizing organisms which senses the composition of the microbiome and communicates this information to the underlying cells of the innate immune system. Microorganisms, for their part, have devised means to manipulate host cell signal transduction pathways to favor their colonization and survival. Study of this field, which has become known as cellular microbiology, has revealed much about epithelial cell physiology, bacterial colonization and pathogenic strategies, and innate host responses.
Collapse
Affiliation(s)
- Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, KY40202, United States
| | - Daniel P Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, VA23298, United States
| | - Juhi Bagaitkar
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, OH43205, United States
- Department of Pediatrics, The Ohio State College of Medicine, Columbus, OH, OH43210, United States
| |
Collapse
|
13
|
Isola G, Santonocito S, Lupi SM, Polizzi A, Sclafani R, Patini R, Marchetti E. Periodontal Health and Disease in the Context of Systemic Diseases. Mediators Inflamm 2023; 2023:9720947. [PMID: 37214190 PMCID: PMC10199803 DOI: 10.1155/2023/9720947] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 09/04/2022] [Accepted: 04/07/2023] [Indexed: 05/24/2023] Open
Abstract
During recent years, considerable progress has been made in understanding the etiopathogenesis of periodontitis in its various forms and their interactions with the host. Furthermore, a number of reports have highlighted the importance of oral health and disease in systemic conditions, especially cardiovascular diseases and diabetes. In this regard, research has attempted to explain the role of periodontitis in promoting alteration in distant sites and organs. Recently, DNA sequencing studies have revealed how oral infections can occur in distant sites such as the colon, reproductive tissues, metabolic diseases, and atheromas. The objective of this review is to describe and update the emerging evidence and knowledge regarding the association between periodontitis and systemic disease and to analyse the evidence that has reported periodontitis as a risk factor for the development of various forms of systemic diseases in order to provide a better understanding of the possible shared etiopathogenetic pathways between periodontitis and the different forms of systemic diseases.
Collapse
Affiliation(s)
- Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy
| | - Saturnino Marco Lupi
- Department of Clinical Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy
| | - Rossana Sclafani
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy
| | - Romeo Patini
- Institute of Dentistry and Maxillofacial Surgery, Fondazione Policlinico Universitario Agostino Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Enrico Marchetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
14
|
Benjamin WJ, Wang K, Zarins K, Bellile E, Blostein F, Argirion I, Taylor JMG, D’Silva NJ, Chinn SB, Rifkin S, Sartor MA, Rozek LS. Oral Microbiome Community Composition in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:2549. [PMID: 37174014 PMCID: PMC10177240 DOI: 10.3390/cancers15092549] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/13/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The impact of the oral microbiome on head and neck cancer pathogenesis and outcomes requires further study. 16s rRNA was isolated and amplified from pre-treatment oral wash samples for 52 cases and 102 controls. The sequences were binned into operational taxonomic units (OTUs) at the genus level. Diversity metrics and significant associations between OTUs and case status were assessed. The samples were binned into community types using Dirichlet multinomial models, and survival outcomes were assessed by community type. Twelve OTUs from the phyla Firmicutes, Proteobacteria, and Acinetobacter were found to differ significantly between the cases and the controls. Beta-diversity was significantly higher between the cases than between the controls (p < 0.01). Two community types were identified based on the predominant sets of OTUs within our study population. The community type with a higher abundance of periodontitis-associated bacteria was more likely to be present in the cases (p < 0.01), in older patients (p < 0.01), and in smokers (p < 0.01). Significant differences between the cases and the controls in community type, beta-diversity, and OTUs indicate that the oral microbiome may play a role in HNSCC.
Collapse
Affiliation(s)
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katherine Zarins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily Bellile
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Freida Blostein
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ilona Argirion
- Division of Cancer Epidemiology and Genomics, National Cancer Institute, Bethesda, MA 20814, USA
| | - Jeremy M. G. Taylor
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nisha J. D’Silva
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Steven B. Chinn
- Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samara Rifkin
- Department of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laura S. Rozek
- Medical Center Department of Oncology, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
15
|
Periodontitis and COVID-19: Immunological Characteristics, Related Pathways, and Association. Int J Mol Sci 2023; 24:ijms24033012. [PMID: 36769328 PMCID: PMC9917474 DOI: 10.3390/ijms24033012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Both periodontitis and Coronavirus disease 2019 (COVID-19) pose grave threats to public health and social order, endanger human life, and place a significant financial strain on the global healthcare system. Since the COVID-19 pandemic, mounting research has revealed a link between COVID-19 and periodontitis. It is critical to comprehend the immunological mechanisms of the two illnesses as well as their immunological interaction. Much evidence showed that there are many similar inflammatory pathways between periodontitis and COVID-19, such as NF-κB pathway, NLRP3/IL-1β pathway, and IL-6 signaling pathway. Common risk factors such as gender, lifestyle, and comorbidities contribute to the severity of both diseases. Revealing the internal relationship between the two diseases is conducive to the treatment of the two diseases in an emergency period. It is also critical to maintain good oral hygiene and a positive attitude during treatment. This review covers four main areas: immunological mechanisms, common risk factors, evidence of the association between the two diseases, and possible interventions and potential targets. These will provide potential ideas for drug development and clinical treatment of the two diseases.
Collapse
|
16
|
Yu X, Shi Y, Yuan R, Chen Z, Dong Q, Han L, Wang L, Zhou J. Microbial dysbiosis in oral squamous cell carcinoma: A systematic review and meta-analysis. Heliyon 2023; 9:e13198. [PMID: 36793959 PMCID: PMC9922960 DOI: 10.1016/j.heliyon.2023.e13198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Objective The aim of this study was to summarize previously published data and assess the alterations in the composition of the oral microbiome in OSCC using a systematic review and meta-analysis. Design Electronic databases were systematically searched for studies on the oral microbiome in OSCC published before December 2021. Qualitative assessments of compositional variations at the phylum level were performed. The meta-analysis on abundance changes of bacteria genera was performed via a random-effects model. Results A total of 18 studies involving 1056 participants were included. They consisted of two categories of studies: 1) case-control studies (n = 9); 2) nine studies that compared the oral microbiome between cancerous tissues and paired paracancerous tissues. At the phylum level, enrichment of Fusobacteria but depletion in Actinobacteria and Firmicutes in the oral microbiome was demonstrated in both categories of studies. At the genus level, Fusobacterium showed an increased abundance in OSCC patients (SMD = 0.65, 95% CI: 0.43-0.87, Z = 5.809, P = 0.000) and in cancerous tissues (SMD = 0.54, 95% CI: 0.36-0.72, Z = 5.785, P = 0.000). The abundance of Streptococcus was decreased in OSCC (SMD = -0.46, 95% CI: -0.88-0.04, Z = -2.146, P = 0.032) and in cancerous tissues (SMD = -0.45, 95% CI: -0.78-0.13, Z = -2.726, P = 0.006). Conclusions Disturbances in the interactions between enriched Fusobacterium and depleted Streptococcus may participate in or prompt the occurrence and development of OSCC and could be potential biomarkers for detection of OSCC.
Collapse
Affiliation(s)
- Xiaoyun Yu
- Graduate School of Dalian Medical University, Dalian, 116044, China
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Yongmei Shi
- Department of Outpatient, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Rongtao Yuan
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Zhenggang Chen
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Quanjiang Dong
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Linzi Han
- Graduate School of Dalian Medical University, Dalian, 116044, China
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Lili Wang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Jianhua Zhou
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
17
|
Muthukrishnan L. "Perturbed oral microbiome and their interaction as molecular signature in the early prognosis of oral cancer progression". Chem Biol Interact 2023; 369:110290. [PMID: 36470524 DOI: 10.1016/j.cbi.2022.110290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Lakshmipathy Muthukrishnan
- Department of Conservative Dentistry & Endodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), 162 Poonamalle High Road, Chennai, Tamil Nadu 600 077, India.
| |
Collapse
|
18
|
Guo ZC, Jing SL, Jumatai S, Gong ZC. Porphyromonas gingivalis promotes the progression of oral squamous cell carcinoma by activating the neutrophil chemotaxis in the tumour microenvironment. Cancer Immunol Immunother 2022; 72:1523-1539. [PMID: 36513851 DOI: 10.1007/s00262-022-03348-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND We aimed to determine the significance of Porphyromonas gingivalis (P. gingivalis) in promoting tumour progression in the tumour microenvironment (TME) of oral squamous cell carcinoma (OSCC). METHODS The Gene Expression Omnibus (GEO) was used to screen out the differentially expressed genes from the two datasets of GEO138206 and GSE87539. Immunohistochemistry and immunofluorescence analysis of samples, cell biological behaviour experiments, and tumour-bearing animal experiments were used to verify the results in vivo and in vitro. The mechanism was revealed at the molecular level, and rescue experiments were carried out by using inhibitors and lentiviruses. RESULTS CXCL2 was selected by bioinformatics analysis and was found to be related to a poor prognosis in OSCC patients. Samples with P. gingivalis infection in the TME of OSCC had the strongest cell invasion and proliferation and the largest tumour volume in tumour-bearing animal experiments and exhibited JAK1/STAT3 signalling pathway activation and epithelial-mesenchymal transition (EMT). The expression of P. gingivalis, CXCL2 and TANs were independent risk factors for poor prognosis in OSCC patients. A CXCL2/CXCR2 signalling axis inhibitor significantly decreased the invasion and proliferation ability of cells and the tumour volume in mice. When lentivirus was used to block the CXCL2/CXCR2 signalling axis, the activity of the JAK1/STAT3 signalling pathway was decreased, and the phenotype of EMT was reversed. CONCLUSION Porphyromonas gingivalis promotes OSCC progression by recruiting TANs via activation of the CXCL2/CXCR2 axis in the TME of OSCC.
Collapse
Affiliation(s)
- Zhi-Chen Guo
- Oncological Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Institute of Stomatology, No.137, Li Yu Shan South Road, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Si-Li Jing
- Department of Ophthalmology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Sakendeke Jumatai
- Oncological Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Institute of Stomatology, No.137, Li Yu Shan South Road, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Zhong-Cheng Gong
- Oncological Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Institute of Stomatology, No.137, Li Yu Shan South Road, Urumqi, 830054, Xinjiang, People's Republic of China.
| |
Collapse
|
19
|
Michikawa C, Gopalakrishnan V, Harrandah AM, Karpinets TV, Garg RR, Chu RA, Park YP, Chukkapallia SS, Yadlapalli N, Erikson-Carter KC, Gleber-Netto FO, Sayour E, Progulske-Fox A, Chan EKL, Wu X, Zhang J, Jobin C, Wargo JA, Pickering CR, Myers JN, Silver N. Fusobacterium is enriched in oral cancer and promotes induction of programmed death-ligand 1 (PD-L1). Neoplasia 2022; 31:100813. [PMID: 35834946 PMCID: PMC9287628 DOI: 10.1016/j.neo.2022.100813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 12/11/2022]
Abstract
Recently, increased number of studies have demonstrated a relationship between the oral microbiome and development of head and neck cancer, however, there are few studies to investigate the role of oral bacteria in the context of the tumor microenvironment in a single head and neck subsite. Here, paired tumor and adjacent normal tissues from thirty-seven oral tongue squamous cell carcinoma (SCC) patients were subjected to 16S rRNA gene sequencing and whole exome sequencing (WES), in addition to RNA sequencing for tumor samples. We observed that Fusobacterium was significantly enriched in oral tongue cancer and that Rothia and Streptococcus were enriched in adjacent normal tissues. A decrease in alpha diversity was found in tumor when compared to adjacent normal tissues. While increased Fusobacterium in tumor samples was not associated with changes in immune cell infiltration, it was associated with increased PD-L1 mRNA expression. Therefore, we examined the effects of Fusobacterium on PD-L1 expression in head and neck SCC cell lines. We demonstrated that infection with Fusobacterium species can increase both PD-L1 mRNA and surface PD-L1 protein expression on head and neck cancer cell lines. The correlation between Fusobacterium and PD-L1 expression in oral tongue SCC, in conjunction with the ability of the bacterium to induce PD-L1 expression in vitro suggests a potential role for Fusobacterium on modulation of the tumor immune microenvironment in head and neck cancer.
Collapse
Affiliation(s)
- Chieko Michikawa
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Amani M Harrandah
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA; Department of Oral Biology, Umm AlQura University, Makkah, Saudi Arabia
| | - Tatiana V Karpinets
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rekha Rani Garg
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Randy A Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuk Pheel Park
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Sasanka S Chukkapallia
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Nikhita Yadlapalli
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Kelly C Erikson-Carter
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Elias Sayour
- Department of Pediatrics and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Ann Progulske-Fox
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Edward K L Chan
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Xiaogang Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Christian Jobin
- Department of Internal Medicine, University of Florida, Gainesville, FL, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Natalie Silver
- Cleveland Clinic, Head and Neck Institute/Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|
20
|
Ptasiewicz M, Bębnowska D, Małkowska P, Sierawska O, Poniewierska-Baran A, Hrynkiewicz R, Niedźwiedzka-Rystwej P, Grywalska E, Chałas R. Immunoglobulin Disorders and the Oral Cavity: A Narrative Review. J Clin Med 2022; 11:jcm11164873. [PMID: 36013115 PMCID: PMC9409910 DOI: 10.3390/jcm11164873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The oral mucosa is a mechanical barrier against the penetration and colonization of microorganisms. Oral homeostasis is maintained by congenital and adaptive systems in conjunction with normal oral flora and an intact oral mucosa. Components contributing to the defense of the oral cavity include the salivary glands, innate antimicrobial proteins of saliva, plasma proteins, circulating white blood cells, keratinocyte products of the oral mucosa, and gingival crevicular fluid. General disturbances in the level of immunoglobulins in the human body may be manifested as pathological lesions in the oral mucosa. Symptoms of immunoglobulin-related general diseases such as mucous membrane pemphigoid (MMP), pemphigus vulgaris (PV), linear IgA bullous dermatosis (LABD), Epidermolysis Bullosa Aquisita (EBA), and Hyper-IgE syndrome (HIES) may appear in the oral cavity. In this review, authors present selected diseases associated with immunoglobulins in which the lesions appear in the oral cavity. Early detection and treatment of autoimmune diseases, sometimes showing a severe evolution (e.g., PV), allow the control of their dissemination and involvement of skin or other body organs. Immunoglobulin disorders with oral manifestations are not common, but knowledge, differentiation and diagnosis are essential for proper treatment.
Collapse
Affiliation(s)
- Maja Ptasiewicz
- Department of Oral Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| | | | - Paulina Małkowska
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
- Doctoral School, University of Szczecin, 71-412 Szczecin, Poland
| | - Olga Sierawska
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
- Doctoral School, University of Szczecin, 71-412 Szczecin, Poland
| | | | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | | | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Renata Chałas
- Department of Oral Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
21
|
Sampath C, Harris EP, Berthaud V, Tabatabai MA, Wilus DM, Crayton MA, Moss K, Webster-Cyriaque J, Southerland JH, Koethe JR, Gangula PR. Periodontal Treatment Reduces Circulating Pro-Inflammatory Cytokine and Chemokine Levels in African American HIV+ Individuals with Virological Suppression. JOURNAL OF DENTAL APPLICATIONS 2022; 8:477-487. [PMID: 36274905 PMCID: PMC9583701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Introduction Periodontal Disease (PD), a chronic inflammatory disease, is highly prevalent among Persons Living With HIV (PLWH) and is characterized by microbial symbiosis and oxidative stress. Our hypothesis stipulates that periodontal therapy attenuates systemic inflammatory and bacterial burden while improving periodontal status in PLWH. Methods Sixteen African Americans (AA) with suppressed HIV viremia on long-term Antiretroviral Therapy (ART) were recruited to this study. Participants were placed into two groups, based on their dental care status: group 1 (In-Care, IC) and group 2 (Out of Care, OC). Periodontal health was investigated at baseline, 3 months, 6 months, and 12 months. Cytokine/chemokines, microbial phyla, and Asymmetric Dimethylarginine (ADMA, a marker for endothelial cell dysfunction) levels were assessed in the serum. Statistical comparisons between groups and at different visits were performed using multiple comparison tests. Results Across longitudinal visits, periodontal treatment significantly reduced the levels of several cytokines and chemokines. At baseline, the out of care group had significantly higher blood levels of ADMA and actinobacteria than the IC group. Periodontal treatment significantly altered the abundance of circulating genomic bacterial DNA for various phyla in out of care group. Conclusions Periodontal treatment interventions effectively attenuated circulating pro-inflammatory cytokines and altered microbial translocation, both critical drivers of systemic inflammation in PLWH.
Collapse
Affiliation(s)
- C Sampath
- Department of Oral Diagnostic Sciences & Research in Biochemistry Meharry Medical College, School of Dentistry, USA
| | - E P Harris
- Department of Oral Diagnostic Sciences & Research in Biochemistry Meharry Medical College, School of Dentistry, USA
- Meharry Community Wellness Center, USA
| | | | - M A Tabatabai
- Department of Biostatistics, School of Graduate Studies and Research, USA
| | - D M Wilus
- School of Graduate Studies and Research, USA
| | - M A Crayton
- Department of Oral Diagnostic Sciences & Research in Biochemistry Meharry Medical College, School of Dentistry, USA
| | - K Moss
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, USA
| | | | - J H Southerland
- University of Texas Medical Branch at Galveston, Galveston, USA
| | - J R Koethe
- Vanderbilt University Medical Center, USA
| | - P R Gangula
- Department of Oral Diagnostic Sciences & Research in Biochemistry Meharry Medical College, School of Dentistry, USA
| |
Collapse
|
22
|
Spuldaro TR, Wagner VP, Nör F, Gaio EJ, Squarize CH, Carrard VC, Rösing CK, Castilho RM. Periodontal disease affects oral cancer progression in a surrogate animal model for tobacco exposure. Int J Oncol 2022; 60:77. [PMID: 35514311 PMCID: PMC9097773 DOI: 10.3892/ijo.2022.5367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/12/2022] [Indexed: 11/11/2022] Open
Abstract
For decades, the link between poor oral hygiene and the increased prevalence of oral cancer has been suggested. Most recently, emerging evidence has suggested that chronic inflammatory diseases from the oral cavity (e.g., periodontal disease), to some extent, play a role in the development of oral squamous cell carcinoma (OSCC). The present study aimed to explore the direct impact of biofilm‑induced periodontitis in the carcinogenesis process using a tobacco surrogate animal model for oral cancer. A total of 42 Wistar rats were distributed into four experimental groups: Control group, periodontitis (Perio) group, 4‑nitroquinoline 1‑oxide (4‑NQO) group and 4NQO/Perio group. Periodontitis was stimulated by placing a ligature subgingivally, while oral carcinogenesis was induced by systemic administration of 4NQO in the drinking water for 20 weeks. It was observed that the Perio, 4NQO and 4NQO/Perio groups presented with significantly higher alveolar bone loss compared with that in the control group. Furthermore, all groups receiving 4NQO developed lesions on the dorsal surface of the tongue; however, the 4NQO/Perio group presented larger lesions compared with the 4NQO group. There was also a modest overall increase in the number of epithelial dysplasia and OSCC lesions in the 4NQO/Perio group. Notably, abnormal focal activation of cellular differentiation (cytokeratin 10‑positive cells) that extended near the basal cell layer of the mucosa was observed in rats receiving 4NQO alone, but was absent in rats receiving 4NQO and presenting with periodontal disease. Altogether, the presence of periodontitis combined with 4NQO administration augmented tumor size in the current rat model and tampered with the protective mechanisms of the cellular differentiation of epithelial cells.
Collapse
Affiliation(s)
- Tobias R. Spuldaro
- Department of Periodontology, Federal University of Rio Grande do Sul, Porto Alegre, RS 90010-150, Brazil
| | - Vivian P. Wagner
- Department of Oral Pathology, Federal University of Rio Grande do Sul, Porto Alegre, RS 90010-150, Brazil
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield S10 2TN, UK
| | - Felipe Nör
- Department of Oral Pathology, Federal University of Rio Grande do Sul, Porto Alegre, RS 90010-150, Brazil
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Eduardo J. Gaio
- Department of Periodontology, Federal University of Rio Grande do Sul, Porto Alegre, RS 90010-150, Brazil
| | - Cristiane H. Squarize
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-0944, USA
| | - Vinicius C. Carrard
- Department of Oral Pathology, Federal University of Rio Grande do Sul, Porto Alegre, RS 90010-150, Brazil
- Department of Oral Medicine, Otorhinolaryngology Service, Porto Alegre General Hospital, Port Alegre, RS 90035-903, Brazil
| | - Cassiano K. Rösing
- Department of Periodontology, Federal University of Rio Grande do Sul, Porto Alegre, RS 90010-150, Brazil
| | - Rogerio M. Castilho
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-0944, USA
| |
Collapse
|
23
|
Huang Y, Liu L, Liu Q, Huo F, Hu X, Guo S, Tian W. Dental follicle cells derived small extracellular vesicles inhibit pathogenicity of Porphyromonas gingivalis. Oral Dis 2022. [PMID: 35509129 DOI: 10.1111/odi.14239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/10/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE It aims to explore the effect of dental follicle cells derived small extracellular vesicles (D-sEV) with or without lipopolysaccharides (LPS) pretreating on the pathogenicity of Porphyromonas gingivalis (P. gingivalis). METHODS The antibacterial effects of D-sEV were evaluated by measuring the growth, biofilm formation, gingipains and type IX secretion system (T9SS) expression of P. gingivalis. And the influence of D-sEV on P. gingivalis adhesion, invasion, cytotoxicity, and host immune response was examined in gingival epithelial cells (GECs). Then P. gingivalis treated with D-sEV was applied to investigate the pathogenicity in experimental periodontitis of mice. RESULTS It showed that both D-sEV and P. gingivalis LPS pretreated D-sEV (L-D-sEV) could target P. gingivalis, inhibit their growth and biofilm formation, and hinder the attachment and invasion in GECs, therefore remarkably decreasing P. gingivalis cytotoxicity and the expression of IL-1β and IL-6 in GECs. In addition, they significantly reduced the expression of P. gingivalis virulence factors (gingipains and T9SS). In vivo, it showed that the bacteria in the gingiva were significantly decreased after sEV treatment. Meanwhile, less bone loss and fewer inflammatory cells infiltration and osteoclast formation in D-sEV and L-D-sEV groups. CONCLUSION Both D-sEV and L-D-sEV were proven to inhibit the pathogenicity of P.gingivalis and thus prevented the development of periodontitis.
Collapse
Affiliation(s)
- Yanli Huang
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Li Liu
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qian Liu
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Fangjun Huo
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China
| | - Xingyu Hu
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shujuan Guo
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Weidong Tian
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, School of Stomatology, Sichuan University, West China, Chengdu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
24
|
Lamont RJ, Fitzsimonds ZR, Wang H, Gao S. Role of Porphyromonas gingivalis in oral and orodigestive squamous cell carcinoma. Periodontol 2000 2022; 89:154-165. [PMID: 35244980 DOI: 10.1111/prd.12425] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oral and esophageal squamous cell carcinomas harbor a diverse microbiome that differs compositionally from precancerous and healthy tissues. Though causality is yet to be definitively established, emerging trends implicate periodontal pathogens such as Porphyromonas gingivalis as associated with the cancerous state. Moreover, infection with P. gingivalis correlates with a poor prognosis, and P. gingivalis is oncopathogenic in animal models. Mechanistically, properties of P. gingivalis that have been established in vitro and could promote tumor development include induction of a dysbiotic inflammatory microenvironment, inhibition of apoptosis, increased cell proliferation, enhanced angiogenesis, activation of epithelial-to-mesenchymal transition, and production of carcinogenic metabolites. The microbial community context is also relevant to oncopathogenicity, and consortia of P. gingivalis and Fusobacterium nucleatum are synergistically pathogenic in oral cancer models in vivo. In contrast, oral streptococci, such as Streptococcus gordonii, can antagonize protumorigenic epithelial cell phenotypes induced by P. gingivalis, indicating functionally specialized roles for bacteria in oncogenic communities. Consistent with the notion of the bacterial community constituting the etiologic unit, metatranscriptomic data indicate that functional, rather than compositional, properties of the tumor-associated communities have more relevance to cancer development. A consistent association of P. gingivalis with oral and orodigestive carcinoma could have diagnostic potential for early detection of these conditions that have a high incidence and low survival rates.
Collapse
Affiliation(s)
- Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Zackary R Fitzsimonds
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Huizhi Wang
- Department of Oral and Craniofacial Molecular Biology, VCU School of Dentistry, Richmond, Virginia, USA
| | - Shegan Gao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
25
|
Elebyary O, Barbour A, Fine N, Tenenbaum HC, Glogauer M. The Crossroads of Periodontitis and Oral Squamous Cell Carcinoma: Immune Implications and Tumor Promoting Capacities. FRONTIERS IN ORAL HEALTH 2022; 1:584705. [PMID: 35047982 PMCID: PMC8757853 DOI: 10.3389/froh.2020.584705] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Periodontitis (PD) is increasingly considered to interact with and promote a number of inflammatory diseases, including cancer. In the case of oral squamous cell carcinoma (OSCC) the local inflammatory response associated with PD is capable of triggering altered cellular events that can promote cancer cell invasion and proliferation of existing primary oral carcinomas as well as supporting the seeding of metastatic tumor cells into the gingival tissue giving rise to secondary tumors. Both the immune and stromal components of the periodontium exhibit phenotypic alterations and functional differences during PD that result in a microenvironment that favors cancer progression. The inflammatory milieu in PD is ideal for cancer cell seeding, migration, proliferation and immune escape. Understanding the interactions governing this attenuated anti-tumor immune response is vital to unveil unexplored preventive or therapeutic possibilities. Here we review the many commonalities between the oral-inflammatory microenvironment in PD and oral-inflammatory responses that are associated with OSCC progression, and how these conditions can act to promote and sustain the hallmarks of cancer.
Collapse
Affiliation(s)
- Omnia Elebyary
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | - Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Howard C Tenenbaum
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Department of Dentistry, Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Department of Dentistry, Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
26
|
Mao L, Tang Y, Deng MJ, Huang CT, Lan D, Nong WZ, Li L, Wang Q. A combined biomarker panel shows improved sensitivity and specificity for detection of ovarian cancer. J Clin Lab Anal 2022; 36:e24232. [PMID: 34995016 PMCID: PMC8842139 DOI: 10.1002/jcla.24232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022] Open
Abstract
Background Combined biomarkers can improve the sensitivity and specificity of ovarian cancer (OC) diagnosis and effectively predict patient prognosis. This study explored the diagnostic and prognostic values of serum CCL18 and CXCL1 antigens combined with C1D, FXR1, ZNF573, and TM4SF1 autoantibodies in OC. Methods CCL18 and CXCL1 monoclonal antibodies and C1D, FXR1, ZNF573, and TM4SF1 antigens were coated with microspheres. Logistic regression was used to construct a serum antigen‐antibody combined detection model; receiver‐operating characteristic curve (ROC) was used to evaluate the diagnostic efficacy of the model; and the Kaplan‐Meier method and Cox regression models were used for survival analysis to evaluate the prognosis of OC. Data from The Cancer Genome Atlas (TCGA) and Genotype‐Tissue Expression (GTEx) projects and online survival analysis tools were used to evaluate prognostic genes for OC. The CIBERSORT immune score was used to explore the factors influencing prognosis and their relationship with tumor‐infiltrating immune cells. Results The levels of each index in the blood samples of patients with OC were higher than those of the other groups. The combined detection model has higher specificity and sensitivity in the diagnosis of OC, and its diagnostic efficiency is better than that of CA125 alone and diagnosing other malignant tumors. CCL18 and TM4SF1 may be factors affecting the prognosis of OC, and CCL18 may be related to immune‐infiltrating cells. Conclusions The serum antigen‐antibody combined detection model established in this study has high sensitivity and specificity for the diagnosis of OC.
Collapse
Affiliation(s)
- Lu Mao
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yong Tang
- Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Ming-Jing Deng
- Institute of Life Sciences, Guangxi Medical University, Nanning, China
| | - Chun-Tao Huang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Dong Lan
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wen-Zheng Nong
- National Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Li Li
- Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Qi Wang
- Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| |
Collapse
|
27
|
Komlós G, Csurgay K, Horváth F, Pelyhe L, Németh Z. Periodontitis as a risk for oral cancer: a case-control study. BMC Oral Health 2021; 21:640. [PMID: 34911520 PMCID: PMC8672540 DOI: 10.1186/s12903-021-01998-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/24/2021] [Indexed: 01/22/2023] Open
Abstract
Background The aetiology of oral cancer is multifactorial, as various risk factors (genetics, socioeconomic and lifestyle factors) contribute to its development. Data in the literature suggest that people with periodontal disease have an increased risk of developing oral cancer, and the severity of periodontitis correlates with the appearance of oral squamous cell carcinoma. The aim of this study was to revise the non-genetic risk factors that may influence the development of OC, while focusing on the dental and periodontal status and OH.
Methods Two hundred patients (hundred diagnosed with oral cancer and hundred without oral cancer) were enrolled in our case–control study, to evaluate the association between oral cancer and the presence and severity of periodontitis, while examining several risk factors that might be responsible for oral cancer formation. A questionnaire customised for oral cancer patients was used to obtain the socioeconomic and lifestyle risk factors that may influence the development of oral squamous cell carcinoma. The dental and periodontal status along with the level of oral hygiene was recorded quantitatively. The chi-square and Mann–Whitney tests and logistic regression were used for the statistical analysis. Results By considering both the case and the control groups, a significant correlation was found between the incidence of oral cancer and some socioeconomic factors and lifestyle habits, such as the sex, age, education and alcohol consumption of an individual. The mean value of the Silness-Löe plaque index was significantly higher in the case population. The number of completely edentulous patients was higher among the oral cancer population. The incidence of oral cancer was 57.1% in patients with periodontal disease. In comparison, the incidence of oral squamous cell carcinoma was only 28.6% among the patients without periodontitis. Most of the oral cancer patients (72.1%) had stage 4 periodontitis. On the other hand, the vast majority of the control group (51.6%) had stage 2 periodontitis. Conclusion Periodontitis can be an individual risk factor for oral cancer development. Periodontally compromised individuals should be strictly monitored, especially those with severe periodontitis and coexisting lifestyle risk factors. Maintaining their periodontal health in at-risk patients can minimize cancer risks.
Collapse
Affiliation(s)
- György Komlós
- Department of Oro-Maxillofacial Surgery and Stomatology, Faculty of Dentistry, Semmelweis University, Mária str 52, 1085, Budapest, Hungary.
| | - Katalin Csurgay
- Department of Oro-Maxillofacial Surgery and Stomatology, Faculty of Dentistry, Semmelweis University, Mária str 52, 1085, Budapest, Hungary
| | - Ferenc Horváth
- Department of Public Health, Faculty of Medicine, Semmelweis University, Nagyvárad Sq. 4, 1089, Budapest, Hungary
| | | | - Zsolt Németh
- Department of Oro-Maxillofacial Surgery and Stomatology, Faculty of Dentistry, Semmelweis University, Mária str 52, 1085, Budapest, Hungary
| |
Collapse
|
28
|
Identification of Possible Salivary Metabolic Biomarkers and Altered Metabolic Pathways in South American Patients Diagnosed with Oral Squamous Cell Carcinoma. Metabolites 2021; 11:metabo11100650. [PMID: 34677365 PMCID: PMC8537096 DOI: 10.3390/metabo11100650] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) represents 90% of oral malignant neoplasms. The search for specific biomarkers for OSCC is a very active field of research contributing to establishing early diagnostic methods and unraveling underlying pathogenic mechanisms. In this work we investigated the salivary metabolites and the metabolic pathways of OSCC aiming find possible biomarkers. Salivary metabolites samples from 27 OSCC patients and 41 control individuals were compared through a gas chromatography coupled to a mass spectrometer (GC-MS) technique. Our results allowed identification of pathways of the malate-aspartate shuttle, the beta-alanine metabolism, and the Warburg effect. The possible salivary biomarkers were identified using the area under receiver-operating curve (AUC) criterion. Twenty-four metabolites were identified with AUC > 0.8. Using the threshold of AUC = 0.9 we find malic acid, maltose, protocatechuic acid, lactose, 2-ketoadipic, and catechol metabolites expressed. We notice that this is the first report of salivary metabolome in South American oral cancer patients, to the best of our knowledge. Our findings regarding these metabolic changes are important in discovering salivary biomarkers of OSCC patients. However, additional work needs to be performed considering larger populations to validate our results.
Collapse
|
29
|
Stokowa-Sołtys K, Wojtkowiak K, Jagiełło K. Fusobacterium nucleatum - Friend or foe? J Inorg Biochem 2021; 224:111586. [PMID: 34425476 DOI: 10.1016/j.jinorgbio.2021.111586] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 01/16/2023]
Abstract
Fusobacterium nucleatum (F. nucleatum) is one of the most abundant Gram-negative anaerobic bacteria, part of the gut, and oral commensal flora, generally found in human dental plaque. Its presence could be associated with various human diseases, including, e.g., periodontal, angina, lung and gynecological abscesses. This bacteria can enter the blood circulation as a result of periodontal infection. It was proven that F. nucleatum migrates from its primary site of colonization in the oral cavity to other parts of the body. It could cause numerous diseases, including cancers. On the other hand, it was shown that Fusobacterium produces significant amounts of butyric acid, which is a great source of energy for colonocytes (anti-inflammatory cells). Therefore, it is very interesting to get to know the two faces of F. nucleatum.
Collapse
Affiliation(s)
- Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | - Kamil Wojtkowiak
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Karolina Jagiełło
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
30
|
Beltran JF, Viafara-Garcia SM, Labrador AP, Basterrechea J. The Role of Periodontopathogens and Oral Microbiome in the Progression of Oral Cancer. A Review. Open Dent J 2021. [DOI: 10.2174/1874210602115010367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic periodontal disease and oral bacteria dysbiosis can lead to the accumulation of genetic mutations that eventually stimulate Oral Squamous Cell Cancer (OSCC). The annual incidence of OSCC is increasing significantly, and almost half of the cases are diagnosed in an advanced stage. Worldwide there are more than 380,000 new cases diagnosed every year, and a topic of extensive research in the last few years is the alteration of oral bacteria, their compositional changes and microbiome. This review aims to establish the relationship between bacterial dysbiosis and OSCC. Several bacteria implicated in periodontal disease, including Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia, and some Streptococcus species, promote angiogenesis, cell proliferation, and alteration in the host defense process; these same bacteria have been present in different stages of OSCC. Our review showed that genes involved in bacterial chemotaxis, the lipopolysaccharide (LPS) of the cell wall membrane of gram negatives bacteria, were significantly increased in patients with OSCC. Additionally, some bacterial diversity, particularly with Firmicutes, and Actinobacteria species, has been identified in pre-cancerous stage samples. This review suggests the importance of an early diagnosis and more comprehensive periodontal therapy for patients by the dental care professional.
Collapse
|
31
|
Pizzicannella J, Marconi GD, Guarnieri S, Fonticoli L, Della Rocca Y, Konstantinidou F, Rajan TS, Gatta V, Trubiani O, Diomede F. Role of ascorbic acid in the regulation of epigenetic processes induced by Porphyromonas gingivalis in endothelial-committed oral stem cells. Histochem Cell Biol 2021; 156:423-436. [PMID: 34370052 PMCID: PMC8604817 DOI: 10.1007/s00418-021-02014-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Abstract
Periodontitis is a common inflammatory disease that affects the teeth-supporting tissue and causes bone and tooth loss. Moreover, in a worldwide population, periodontal disease is often associated with cardiovascular diseases. Emerging studies have reported that one of the major pathogens related to periodontitis is Porphyromonas gingivalis (P. gingivalis), which triggers the inflammatory intracellular cascade. Here, we hypothesized a possible protective effect of ascorbic acid (AA) in the restoration of the physiological molecular pathway after exposure to lipopolysaccharide derived from P. gingivalis (LPS-G). In particular, human gingiva-derived mesenchymal stem cells (hGMSCs) and endothelial-differentiated hGMSCs (e-hGMSCs) exposed to LPS-G showed upregulation of p300 and downregulation of DNA methyltransferase 1 (DNMT1), proteins associated with DNA methylation and histone acetylation. The co-treatment of AA and LPS-G showed a physiological expression of p300 and DNMT1 in hGMSCs and e-hGMSCs. Moreover, the inflammatory process triggered by LPS-G was demonstrated by evaluation of reactive oxygen species (ROS) and their intracellular localization. AA exposure re-established the physiological ROS levels. Despite the limitations of in vitro study, these findings collectively expand our knowledge regarding the molecular pathways involved in periodontal disease, and suggest the involvement of epigenetic modifications in the development of periodontitis.
Collapse
Affiliation(s)
- Jacopo Pizzicannella
- "Ss. Annunziata" Hospital, ASL 02 Lanciano-Vasto-Chieti, Via dei Vestini, 29, Chieti, 66100, Italy
| | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, 66100, Italy
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, 66100, Italy.,Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" Chieti-Pescara, Via Luigi Polacchi,19, Chieti, 66100, Italy
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, 66100, Italy
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, 66100, Italy
| | - Fani Konstantinidou
- Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" Chieti-Pescara, Via Luigi Polacchi,19, Chieti, 66100, Italy.,Department of Psychological, Health and Territorial Sciences, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, 66100, Italy
| | - Thangavelu Soundara Rajan
- Department of Biotechnology, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, 641021, Tamil Nadu, India
| | - Valentina Gatta
- Center for Advanced Studies and Technology (CAST), University "G. D'Annunzio" Chieti-Pescara, Via Luigi Polacchi,19, Chieti, 66100, Italy.,Department of Psychological, Health and Territorial Sciences, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, 66100, Italy
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, 66100, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti, 66100, Italy.
| |
Collapse
|
32
|
A bacterial tyrosine phosphatase modulates cell proliferation through targeting RGCC. PLoS Pathog 2021; 17:e1009598. [PMID: 34015051 PMCID: PMC8172045 DOI: 10.1371/journal.ppat.1009598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/02/2021] [Accepted: 04/30/2021] [Indexed: 01/22/2023] Open
Abstract
Tyrosine phosphatases are often weaponized by bacteria colonizing mucosal barriers to manipulate host cell signal transduction pathways. Porphyromonas gingivalis is a periodontal pathogen and emerging oncopathogen which interferes with gingival epithelial cell proliferation and migration, and induces a partial epithelial mesenchymal transition. P. gingivalis produces two tyrosine phosphatases, and we show here that the low molecular weight tyrosine phosphatase, Ltp1, is secreted within gingival epithelial cells and translocates to the nucleus. An ltp1 mutant of P. gingivalis showed a diminished ability to induce epithelial cell migration and proliferation. Ltp1 was also required for the transcriptional upregulation of Regulator of Growth and Cell Cycle (RGCC), one of the most differentially expressed genes in epithelial cells resulting from P. gingivalis infection. A phosphoarray and siRNA showed that P. gingivalis controlled RGCC expression through Akt, which was activated by phosphorylation on S473. Akt activation is opposed by PTEN, and P. gingivalis decreased the amount of PTEN in epithelial cells. Ectopically expressed Ltp1 bound to PTEN, and reduced phosphorylation of PTEN at Y336 which controls proteasomal degradation. Ltp-1 induced loss of PTEN stability was prevented by chemical inhibition of the proteasome. Knockdown of RGCC suppressed upregulation of Zeb2 and mesenchymal markers by P. gingivalis. RGCC inhibition was also accompanied by a reduction in production of the proinflammatory cytokine IL-6 in response to P. gingivalis. Elevated IL-6 levels can contribute to periodontal destruction, and the ltp1 mutant of P. gingivalis incited less bone loss compared to the parental strain in a murine model of periodontal disease. These results show that P. gingivalis can deliver Ltp1 within gingival epithelial cells, and establish PTEN as the target for Ltp1 phosphatase activity. Disruption of the Akt1/RGCC signaling axis by Ltp1 facilitates P. gingivalis-induced increases in epithelial cell migration, proliferation, EMT and inflammatory cytokine production. Bacteria colonizing the oral cavity can induce inflammatory destruction of the periodontal tissues, and are increasingly associated with oral squamous cell carcinoma. P. gingivalis, a major periodontal pathogen, can subvert epithelial pathways that control important physiological processes relating to innate immunity and cell fate; however, little is known about the effector molecules. Here we show that P. gingivalis can deliver a tyrosine phosphatase, Ltp1, within epithelial cells, and Ltp1 phosphatase activity destabilizes PTEN, a negative regulator of Akt1 signaling. The production of RGCC is thus increased and this leads to increased epithelial cell migration, proliferation, a partial mesenchymal phenotype and inflammatory cytokine production. Ltp1 phosphatase activity thus provides a mechanistic basis for a number of P. gingivalis properties that contribute to disease. Indeed, an Ltp1-deficient mutant was less pathogenic in a murine model of periodontitis. These results contribute to deciphering the pathophysiological events that underlie oral bacterial diseases that initiate at mucosal barriers.
Collapse
|
33
|
Hosokawa Y, Hosokawa I, Ozaki K, Matsuo T. Nobiletin Inhibits Inflammatory Reaction in Interleukin-1β-Stimulated Human Periodontal Ligament Cells. Pharmaceutics 2021; 13:667. [PMID: 34066937 PMCID: PMC8148442 DOI: 10.3390/pharmaceutics13050667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022] Open
Abstract
The immune response in periodontal lesions is involved in the progression of periodontal disease. Therefore, it is important to find a bioactive substance that has anti-inflammatory effects in periodontal lesions. This study aimed to examine if nobiletin, which is found in the peel of citrus fruits, could inhibit inflammatory responses in interleukin (IL)-1β-stimulated human periodontal ligament cells (HPDLCs). The release of cytokines (IL-6, IL-8, CXCL10, CCL20, and CCL2) and matrix metalloproteinases (MMP-1 and MMP-3) was assessed by ELISA. The expression of cell adhesion molecules (ICAM-1and VCAM-1) and the activation of signal transduction pathways (nuclear factor (NF)-κB, mitogen-activated protein kinases (MAPKs) and protein kinase B (Akt)) in HPDLCs were detected by Western blot analysis. Our experiments revealed that nobiletin decreased the expression of inflammatory cytokines, cell adhesion molecules, and MMPs in IL-1β-stimulated HPDLCs. Moreover, we revealed that nobiletin treatment could suppress the activation of the NF-κB, MAPKs, and Akt pathways. These findings indicate that nobiletin could inhibit inflammatory reactions in IL-1β-stimulated HPDLCs by inhibiting multiple signal transduction pathways, including NF-κB, MAPKs, and Akt.
Collapse
Affiliation(s)
- Yoshitaka Hosokawa
- Department of Conservative Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan; (I.H.); (T.M.)
| | - Ikuko Hosokawa
- Department of Conservative Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan; (I.H.); (T.M.)
| | - Kazumi Ozaki
- Department of Oral Health Care Promotion, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan;
| | - Takashi Matsuo
- Department of Conservative Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan; (I.H.); (T.M.)
| |
Collapse
|
34
|
Potential Non-Invasive Biomarkers for Early Diagnosis of Oral Squamous Cell Carcinoma. J Clin Med 2021; 10:jcm10081658. [PMID: 33924500 PMCID: PMC8070511 DOI: 10.3390/jcm10081658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 12/24/2022] Open
Abstract
This study aimed to investigate the role of a panel of salivary cytokines as biomarkers for early detection oral squamous cell carcinoma (OSCC), comparing their levels among healthy individuals, patients with oral leukoplakia (OL), and malignant lesions. Cytokine profiling analysis performed in a minimally invasive sample was correlated with clinicopathological variables in our patient cohorts. Unstimulated saliva was obtained from subjects with OSCC at early (n = 33) and advanced (n = 33) disease, OL with homogeneous (n = 33) and proliferative verrucous (n = 33) clinical presentations, and healthy controls (n = 25). Salivary IL-1α, IL-6, IL-8, IP-10, MCP-1, TNF-α, HCC-1, and PF-4 levels were analyzed by a sensitive bead-based multiplex immunoassay. Mean levels of IL-6, IL-8, TNF-α, HCC-1, MCP-1, and PF-4 differed significantly between OSCC, OL, and control saliva (p < 0.05). We found notably higher IL-6 and TNF-α in advanced compared to early OSCC stages. The area under the curve (AUC) for OSCC vs. control was greater than 0.8 for IL-6, IL-8, TNF-α, and HCC-1, and greater than 0.7 for PF-4. The presence of neck metastases (NM) was associated with increased IL-6 and TNF-α levels. Our findings suggest that salivary IL-6, IL-8, TNF-α, HCC-1, and PF-4 may discriminate between OSCC, OL, and healthy controls. IL-6 and TNF-α may indicate OSCC progression, being distinctive in the presence of NM.
Collapse
|
35
|
Ueda S, Goto M, Hashimoto K, Hasegawa S, Imazawa M, Takahashi M, Oh-Iwa I, Shimozato K, Nagao T, Nomoto S. Salivary CCL20 Level as a Biomarker for Oral Squamous Cell Carcinoma. Cancer Genomics Proteomics 2021; 18:103-112. [PMID: 33608307 DOI: 10.21873/cgp.20245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND/AIM This study investigated the utility of C-C motif chemokine ligand 20 (CCL20) expression in saliva as a biomarker for oral squamous cell carcinoma (OSCC) and also examined the associated microbiome. MATERIALS AND METHODS The study group included patients with OSCC or oral potentially malignant disorder (OPMD), and healthy volunteers (HVs). microarray and qRT-PCR were used to compare salivary CCL20 expression levels among groups. Data on CCL20 levels in oral cancer tissues and normal tissues were retrieved from a public database and examined. Furthermore, next-generation sequencing was used to investigate the salivary microbiome. RESULTS A significant increase in the expression level of CCL20 was observed in both OSCC tissues and saliva from patients with oral cancer. Fusobacterium was identified as the predominant bacteria in OSCC and correlated with CCL20 expression level. OSCC screening based on salivary CCL20 expression enabled successful differentiation between patients with OSCC and HVs. CONCLUSION CCL20 expression may be a useful biomarker for OSCC.
Collapse
Affiliation(s)
- Sei Ueda
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan.,Department of Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuo Goto
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Kengo Hashimoto
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan.,Department of Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Shogo Hasegawa
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Masahiko Imazawa
- Department of Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Marico Takahashi
- Department of Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Ichiro Oh-Iwa
- Department of Maxillofacial Surgery, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Japan
| | - Kazuo Shimozato
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Toru Nagao
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Shuji Nomoto
- Department of Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan;
| |
Collapse
|
36
|
Hosokawa Y, Hosokawa I, Ozaki K, Matsuo T. The Polymethoxy Flavonoid Sudachitin Inhibits Interleukin-1 β-Induced Inflammatory Mediator Production in Human Periodontal Ligament Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8826586. [PMID: 33575345 PMCID: PMC7864735 DOI: 10.1155/2021/8826586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/27/2020] [Accepted: 01/04/2021] [Indexed: 11/30/2022]
Abstract
Sudachitin, which is a polymethoxylated flavonoid found in the peel of Citrus sudachi, has some biological activities. However, the effect of sudachitin on periodontal resident cells is still uncertain. The aim of this study was to examine if sudachitin could decrease the expression of inflammatory mediators such as cytokines, chemokines, or matrix metalloproteinase (MMP) in interleukin- (IL-) 1β-stimulated human periodontal ligament cells (HPDLC). Sudachitin inhibited IL-1β-induced IL-6, IL-8, CXC chemokine ligand (CXCL)10, CC chemokine ligand (CCL)2, MMP-1, and MMP-3 production in HPDLC. On the other hand, tissue inhibitor of metalloproteinase- (TIMP-) 1 expression was increased by sudachitin treatment. Moreover, we found that the nuclear factor- (NF-) κB and protein kinase B (Akt) pathways in the IL-1β-stimulated HPDLC were inhibited by sudachitin treatment. These findings indicate that sudachitin is able to reduce inflammatory mediator production in IL-1β-stimulated HPDLC by inhibiting NF-κB and Akt pathways.
Collapse
Affiliation(s)
- Yoshitaka Hosokawa
- Department of Conservative Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | - Ikuko Hosokawa
- Department of Conservative Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | - Kazumi Ozaki
- Department of Oral Health Care Promotion, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | - Takashi Matsuo
- Department of Conservative Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| |
Collapse
|
37
|
Li Y, Du Z, Xie X, Zhang Y, Liu H, Zhou Z, Zhao J, Lee RS, Xiao Y, Ivanoviski S, Yan F. Epigenetic changes caused by diabetes and their potential role in the development of periodontitis. J Diabetes Investig 2021; 12:1326-1335. [PMID: 33300305 PMCID: PMC8354491 DOI: 10.1111/jdi.13477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/11/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Aims/Introduction Periodontal disease, a chronic inflammation induced by bacteria, is closely linked with diabetes mellitus. Many complications associated with diabetes are related to epigenetic changes. However, the exact epigenetic changes whereby diabetes affects periodontal disease remain largely unknown. Thus, we sought to investigate the role of diabetes‐dependent epigenetic changes of gingival tissue in the susceptibility to periodontal disease. Materials and Methods We studied the effect of streptozotocin‐induced diabetes in minipigs on gingival morphological and epigenetic tissue changes. Accordingly, we randomly divided six minipigs into two groups: streptozotocin‐induced diabetes group, n = 3; and non‐diabetes healthy control group, n = 3. After 85 days, all animals were killed, and gingival tissue was collected for histology, deoxyribonucleic acid methylation analysis and immunohistochemistry. Results A diabetes mellitus model was successfully created, as evidenced by significantly increased blood glucose levels, reduction of pancreatic insulin‐producing β‐cells and histopathological changes in the kidneys. The gingival tissues in the diabetes group presented acanthosis of both gingival squamous epithelium and sulcular/junctional epithelium, and a significant reduction in the number and length of rete pegs. Deoxyribonucleic acid methylation analysis showed a total of 1,163 affected genes, of which 599 and 564 were significantly hypermethylated and hypomethylated, respectively. Immunohistochemistry staining showed that the hypomethylated genes – tumor necrosis factor‐α and interleukin‐6 – were positively expressed under the junctional epithelium area in the diabetes group. Conclusions Diabetes mellitus induces morphological and epigenetic changes in periodontal tissue, which might contribute to the increased susceptibility of periodontal diseases in patients with diabetes.
Collapse
Affiliation(s)
- Yanfen Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhibin Du
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Xiaoting Xie
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Huifen Liu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ziqian Zhou
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jing Zhao
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ryan Sb Lee
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.,Australia-China Center for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Saso Ivanoviski
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Australia-China Center for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
38
|
Zanetta P, Squarzanti DF, Sorrentino R, Rolla R, Aluffi Valletti P, Garzaro M, Dell'Era V, Amoruso A, Azzimonti B. Oral microbiota and vitamin D impact on oropharyngeal squamous cell carcinogenesis: a narrative literature review. Crit Rev Microbiol 2021; 47:224-239. [PMID: 33476522 DOI: 10.1080/1040841x.2021.1872487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An emerging body of research is revealing the microbiota pivotal involvement in determining the health or disease state of several human niches, and that of vitamin D also in extra-skeletal regions. Nevertheless, much of the oral microbiota and vitamin D reciprocal impact in oropharyngeal squamous cell carcinogenesis (OPSCC) is still mostly unknown. On this premise, starting from an in-depth scientific bibliographic analysis, this narrative literature review aims to show a detailed view of the state of the art on their contribution in the pathogenesis of this cancer type. Significant differences in the oral microbiota species quantity and quality have been detected in OPSCC-affected patients; in particular, mainly high-risk human papillomaviruses (HR-HPVs), Fusobacterium nucleatum, Porphyromonas gingivalis, Pseudomonas aeruginosa, and Candida spp. seem to be highly represented. Vitamin D prevents and fights infections promoted by the above identified pathogens, thus confirming its homeostatic function on the microbiota balance. However, its antimicrobial and antitumoral actions, well-described for the gut, have not been fully documented for the oropharynx yet. Deeper investigations of the mechanisms that link vitamin D levels, oral microbial diversity and inflammatory processes will lead to a better definition of OPSCC risk factors for the optimization of specific prevention and treatment strategies.
Collapse
Affiliation(s)
- Paola Zanetta
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DSS), School of Medicine, Università del Piemonte Orientale (UPO), Novara, Italy
| | - Diletta Francesca Squarzanti
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DSS), School of Medicine, Università del Piemonte Orientale (UPO), Novara, Italy
| | - Rita Sorrentino
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Roberta Rolla
- Clinical Chemistry Unit, University Hospital "Maggiore della Carità", DSS, School of Medicine, UPO, Novara, Italy
| | - Paolo Aluffi Valletti
- ENT Division, University Hospital "Maggiore della Carità", DSS, School of Medicine, UPO, Novara, Italy
| | - Massimiliano Garzaro
- ENT Division, University Hospital "Maggiore della Carità", DSS, School of Medicine, UPO, Novara, Italy
| | - Valeria Dell'Era
- ENT Division, University Hospital "Maggiore della Carità", DSS, School of Medicine, UPO, Novara, Italy
| | | | - Barbara Azzimonti
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DSS), School of Medicine, Università del Piemonte Orientale (UPO), Novara, Italy
| |
Collapse
|
39
|
Alsofyani AA, Dallol A, Farraj SA, Alsiary RA, Samkari A, Alhaj-Hussain BT, Khan JA, Al-Maghrabi J, Al-Khayyat SS, Alkhatabi H, Elaimi A, Buhmeida A, Johargy AK, Abuzenadah AM, Azhar EI, Al-Qahtani MH. Molecular characterisation in tongue squamous cell carcinoma reveals key variants potentially linked to clinical outcomes. Cancer Biomark 2021; 28:213-220. [PMID: 32250288 DOI: 10.3233/cbm-190897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Oral tongue squamous cell carcinoma (OTSCC) is a highly aggressive malignancy characterized by frequent recurrence, poor survival with relatively few therapeutic options due to the late diagnosis in many cases. OBJECTIVES Understanding the molecular pathways underlying OTSCC tumourigenesis and the discovery of diagnostic and/or prognostic biomarkers. METHODS We performed high-throughput mutational analysis of 44 OTSCC formalin-fixed paraffin-embedded (FFPE) cases using the Cancer Hotspots Panel (CHP) v2 on the Ion Torrent™platform. We determined the frequency of human papilloma virus (HPV) using PCR and Epstein bar virus (EBV) positivity using immunohistochemistry. As a control for EBV infection we screened matched non-tumourous tissues. RESULTS Sequencing analysis identified missense, nonsense and frameshift mutations in TP53 (66%), PIK3CA (27%), CDKN2A (25%), EGFR (18%), and PTEN (14%). Interestingly, no significant associations were found between damaging mutations and clinicopathological data. A total of 10/44 of the OTSCC samples (23%) tested was positive for HPV18 DNA. OTSCC patients with positive HPV infection had worse overall survival compared to HPV-negative cases as determined by Kaplan-Meier survival (p= 0.023). Furthermore, EBNA1 expression showed a strong tumour-enriched expression pattern in 20 out of 21 samples (95%) in the epithelial compartments of the tissues analysed. CONCLUSIONS Taken together, this study highlights that the two most common events in OTSCC are TP53 mutations and EBV positivity. Helping to understand the contribution of TP53 mutations and EBV infection events could serve as useful biomarkers for OTSCC.
Collapse
Affiliation(s)
- Abeer A Alsofyani
- King Abdullah International Medical Research Center and King Saudbin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Ashraf Dallol
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Suha A Farraj
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rawiah A Alsiary
- King Abdullah International Medical Research Center and King Saudbin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Alaa Samkari
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Baraa T Alhaj-Hussain
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Jalaluddin Azam Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jaudah Al-Maghrabi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Heba Alkhatabi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aisha Elaimi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdelbaset Buhmeida
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayman Khalid Johargy
- Medical Microbiology Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Adel M Abuzenadah
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esam I Azhar
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed H Al-Qahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
40
|
Guo ZC, Jumatai S, Jing SL, Hu LL, Jia XY, Gong ZC. Bioinformatics and immunohistochemistry analyses of expression levels and clinical significance of CXCL2 and TANs in an oral squamous cell carcinoma tumor microenvironment of Prophyromonas gingivalis infection. Oncol Lett 2021; 21:189. [PMID: 33574928 PMCID: PMC7816391 DOI: 10.3892/ol.2021.12450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/07/2020] [Indexed: 01/31/2023] Open
Abstract
The present study aimed to detect the immunoexpression and clinical significance of Porphyromonas gingivalis (P. gingivalis) in the tumor microenvironment (TME) of oral squamous cell carcinoma (OSCC). The immunoexpression of P. gingivalis in OSCC tissues was detected via immunohistochemistry (IHC) after P. gingivalis was infected into the TME of OSCC. To identify the differentially expressed genes in the carcinogenesis and progression of OSCC with P. gingivalis infection, microarray datasets (GSE87539 and GSE138206) were downloaded from the Gene Expression Omnibus database. The immunoexpression levels of C-X-C motif chemokine ligand 2 (CXCL2) and tumor-associated neutrophils (TANs) were also evaluated via IHC, and the immunoexpression levels of all three clinical variables were analyzed using χ2 or Fisher's exact tests. The survival rates were calculated using the Kaplan-Meier method and the survival curves were compared using log-rank tests. Predominantly strong immunoexpression of P. gingivalis was identified in OSCC samples. CXCL2 was considered to be a differential gene in the two datasets. Immunoexpression of P. gingivalis was positively associated with CXCL2 and TANs expression. Furthermore, P. gingivalis was associated with survival status (P<0.001) and differentiation (P<0.001). CXCL2 was associated with age (P=0.038) and survival status (P=0.003), while TANs were associated with T stage (P=0.015) and clinical stage (P=0.002). These clinical variables were considered to be independent risk factors for the poor prognosis of patients with OSCC. Collectively, the results suggested that the immunoexpression of P. gingivalis may be positively associated with CXCL2 and TANs. In addition, the strong immunoexpression levels of P. gingivalis, CXCL2 and TANs may be associated with a poor prognosis in patients with OSCC.
Collapse
Affiliation(s)
- Zhi-Chen Guo
- Oncological Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Sakendeke Jumatai
- Oncological Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Si-Li Jing
- Department of Ophthalmology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Lu-Lu Hu
- Oncological Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Xin-Yu Jia
- Oncological Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Zhong-Cheng Gong
- Oncological Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China.,Xinjiang Uygur Autonomous Region Institute of Stomatology, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| |
Collapse
|
41
|
Li W, Xu J, Zhang R, Li Y, Wang J, Zhang X, Lin L. Is periodontal disease a risk indicator for colorectal cancer? A systematic review and meta-analysis. J Clin Periodontol 2021; 48:336-347. [PMID: 33179280 DOI: 10.1111/jcpe.13402] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/02/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022]
Abstract
AIMS Existing epidemiological studies have suggested that periodontal disease (PD) may be a risk indicator for colorectal cancer (CRC). However, no formal systematic review and meta-analysis have been performed. Therefore, we aimed to evaluate the association between PD and CRC risk in this study. MATERIALS AND METHODS We used the PubMed, EMBASE, Cochrane Library and Web of Science to search for related articles published from 1 January 1966 to 16 July 2020. Stata (Version 15) software was used to calculate the total risk ratio (RR) and 95% confidence interval (CI) of the included studies through the random-effects model to assess the association between PD and CRC risk. RESULTS Nine studies were included in the narrative synthesis, and seven studies were included in the meta-analysis. Results showed that PD significantly increased the risk of CRC by 44% (RR, 1.44; 95% CI, 1.18-1.76; I2 , 55.2%). CONCLUSION We found an association between PD and CRC. PD can be a potential risk indicator for the occurrence and development of CRC, and further studies are needed to assess causality. Hence, effective periodontal treatment could be a valuable preventive measure for CRC.
Collapse
Affiliation(s)
- Weiqi Li
- School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Province Key Laboratory of Oral Diseases, Shenyang, China
| | - Jiaying Xu
- School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Province Key Laboratory of Oral Diseases, Shenyang, China
| | - Ruya Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Province Key Laboratory of Oral Diseases, Shenyang, China
| | - Yuting Li
- School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Province Key Laboratory of Oral Diseases, Shenyang, China
| | - Jiadai Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xuan Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Li Lin
- School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
42
|
Chen PJ, Chen YY, Lin CW, Yeh YT, Yeh HW, Huang JY, Yang SF, Yeh CB. Effect of Periodontitis and Scaling and Root Planing on Risk of Pharyngeal Cancer: A Nested Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010008. [PMID: 33375028 PMCID: PMC7792785 DOI: 10.3390/ijerph18010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
This study investigated the association between periodontitis and the risk of pharyngeal cancer in Taiwan. For this population-based nested case–control study using the Longitudinal Health Insurance Database derived from Taiwan’s National Health Insurance Research Database, we identified patients (n = 1292) who were newly diagnosed with pharyngeal cancer between 2005 and 2013 and exactly paired them with propensity score matched control subjects (n = 2584). Periodontitis and scaling and root planing (SRP) were identified before the index date. Pharyngeal cancer was subdivided into 3 subgroups on the basis of anatomic location: nasopharyngeal cancer, oropharyngeal cancer, and hypopharyngeal cancer. A multiple conditional logistic regression model was applied to analyze the adjusted odds ratio (aOR). Periodontitis was associated with an increased risk of pharyngeal cancer (aOR, 1.57; 95% confidence interval (CI), 1.17 to 2.10), especially oropharyngeal cancer (aOR, 2.22; 95% CI, 1.07 to 4.60). We found a decreased risk of pharyngeal cancer in patients who had undergone SRP (aOR, 0.77; 95% CI, 0.61 to 0.96). In conclusion, this study showed that periodontitis was associated with an increased risk of pharyngeal cancer and SRP exerted a protective effect against pharyngeal cancer. Our results suggest that treating periodontitis and performing SRP, which are modifiable factors in oral health, in clinical practice may provide an opportunity to decrease the disease burden of pharyngeal cancer in Taiwan.
Collapse
Affiliation(s)
- Ping-Ju Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (P.-J.C.); (Y.-Y.C.); (J.-Y.H.)
- Department of Dentistry, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yin-Yang Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (P.-J.C.); (Y.-Y.C.); (J.-Y.H.)
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
| | - Ying-Tung Yeh
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
- Graduate School of Dentistry, School of Dentistry, Chung Shan Medical University, Taichung 402, Taiwan
| | - Han-Wei Yeh
- School of Medicine, Chang Gung University, Taoyuan City 333, Taiwan;
| | - Jing-Yang Huang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (P.-J.C.); (Y.-Y.C.); (J.-Y.H.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (P.-J.C.); (Y.-Y.C.); (J.-Y.H.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (S.-F.Y.); (C.-B.Y.)
| | - Chao-Bin Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (P.-J.C.); (Y.-Y.C.); (J.-Y.H.)
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (S.-F.Y.); (C.-B.Y.)
| |
Collapse
|
43
|
Rosa EP, Murakami-Malaquias-da-Silva F, Palma-Cruz M, de Carvalho Garcia G, Brito AA, Andreo L, Kamei SK, Negreiros RM, Rodrigues MFDSSD, Mesquita-Ferrari RA, Bussadori SK, Fernandes KPS, Ligeiro-de-Oliveira AP, Lino-Dos-Santos-Franco A, Horliana ACRT. The impact of periodontitis in the course of chronic obstructive pulmonary disease: Pulmonary and systemic effects. Life Sci 2020; 261:118257. [PMID: 32822712 DOI: 10.1016/j.lfs.2020.118257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/01/2020] [Accepted: 08/09/2020] [Indexed: 11/29/2022]
Abstract
AIMS The aim of this study was to verify the impact of periodontitis in the course of chronic obstructive pulmonary disease (COPD) in C57Bl/6J mice. MAIN METHODS The animals were randomly divided into four groups (n = 8): Basal, Periodontitis (P), COPD and COPD+P. COPD was induced by orotracheal instillation of 30 μl of cigarette extract 3 times/week for 7 weeks. Periodontitis was induced by ligation technique for 22 days. Euthanasia was performed on 51st day. The analyzes were total/differential cells and cytokines recovered from bronchoalveolar lavage (BAL), total/differential blood cell count, platelets, total marrow cell count, airway collagen deposition, alveolar enlargement analyzed by mean linear intercept (Lm), mucus and bone crest reabsorption. One-way ANOVA followed by the Student-Newman-Keuls was used. KEY FINDINGS The association COPD+P decreased macrophages (p = 0,0351), TNF-α (p = 0,0071) and INF-γ (p = 0,0004) in BAL, when compared to the COPD group maintaining emphysema levels by alveolar enlargement (p < .05) reorganization of collagen fibers (p = .001) and also mean linear intercept (lm) (p = .001) and mucus (p = .0001). The periodontitis group caused TNF-α increase (p = 0, 0001) in BAL. SIGNIFICANCE Periodontitis, per se, does not alter any of the parameters analyzed, except for increased TNF-α in BAL. However, its association with COPD caused macrophages TNF-α and INF-γ alterations, when compared to the COPD group maintaining emphysema levels by alveolar enlargement and reorganization of collagen fibers. It seems that periodontitis is influencing the course of Th1 profile cell, and cytokines and pulmonary alterations. Further studies are needed to clarify the regulatory process underlying these two diseases.
Collapse
Affiliation(s)
- Ellen Perim Rosa
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | | | - Marlon Palma-Cruz
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Geovana de Carvalho Garcia
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Auriléia Aparecida Brito
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Lucas Andreo
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Sergio Koiti Kamei
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Renata Matalon Negreiros
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | | | | | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | | | - Ana Paula Ligeiro-de-Oliveira
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | | | | |
Collapse
|
44
|
Fitzsimonds ZR, Rodriguez-Hernandez CJ, Bagaitkar J, Lamont RJ. From Beyond the Pale to the Pale Riders: The Emerging Association of Bacteria with Oral Cancer. J Dent Res 2020; 99:604-612. [PMID: 32091956 DOI: 10.1177/0022034520907341] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oral cancer, predominantly oral squamous cell carcinoma (OSCC), is the eighth-most common cancer worldwide, with a 5-y survival rate <50%. There are numerous risk factors for oral cancer, among which periodontal disease is gaining increasing recognition. The creation of a sustained dysbiotic proinflammatory environment by periodontal bacteria may serve to functionally link periodontal disease and oral cancer. Moreover, traditional periodontal pathogens, such as Porphyromonas gingivalis, Fusobacterium nucleatum, and Treponema denticola, are among the species most frequently identified as being enriched in OSCC, and they possess a number of oncogenic properties. These organisms share the ability to attach and invade oral epithelial cells, and from there each undergoes its own unique molecular dialogue with the host epithelium, which ultimately converges on acquired phenotypes associated with cancer, including inhibition of apoptosis, increased proliferation, and activation of epithelial-to-mesenchymal transition leading to increased migration of epithelial cells. Additionally, emerging properties of structured bacterial communities may increase oncogenic potential, and consortia of P. gingivalis and F. nucleatum are synergistically pathogenic within in vivo oral cancer models. Interestingly, however, some species of oral streptococci can antagonize the phenotypes induced by P. gingivalis, indicating functionally specialized roles for bacteria in oncogenic communities. Transcriptomic data support the concept that functional, rather than compositional, properties of oral bacterial communities have more relevance to cancer development. Collectively, the evidence is consistent with a modified polymicrobial synergy and dysbiosis model for bacterial involvement in OSCC, with driver mutations generating a conducive microenvironment on the epithelial boundary, which becomes further dysbiotic by the synergistic action of bacterial communities.
Collapse
Affiliation(s)
- Z R Fitzsimonds
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - C J Rodriguez-Hernandez
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - J Bagaitkar
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - R J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| |
Collapse
|
45
|
Irani S, Barati I, Badiei M. Periodontitis and oral cancer - current concepts of the etiopathogenesis. Oncol Rev 2020; 14:465. [PMID: 32231765 PMCID: PMC7097927 DOI: 10.4081/oncol.2020.465] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Gingival tissues are attacked by oral pathogens which can induce inflammatory reactions. The immune-inflammatory responses play essential roles in the patient susceptibility to periodontal diseases. There is a wealth of evidence indicating a link between chronic inflammation and risk of malignant transformation of the affected oral epithelium. Periodontitis is associated with an increased risk of developing chronic systemic conditions including autoimmune diseases and different types of cancers. Besides, some risk factors such as smoking, alcohol consumption and human papilloma virus have been found to be associated with both periodontitis and oral cancer. This review article aimed to study the current concepts in pathogenesis of chronic periodontitis and oral cancer by reviewing the related articles.
Collapse
Affiliation(s)
- Soussan Irani
- Dental Research Centre, Oral Pathology Department, Dental Faculty, Hamadan University of Medical Sciences
| | - Iman Barati
- Department of Periodontology, Dental Faculty, Hamadan University of Medical Sciences
| | - Mohammadreza Badiei
- Dental Student, Dental Faculty, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
46
|
Cancer Biology and Carcinogenesis: Fundamental Biological Processes and How They Are Deranged in Oral Cancer. TEXTBOOK OF ORAL CANCER 2020. [DOI: 10.1007/978-3-030-32316-5_29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Yuan H, Li Y, Tian G, Zhang W, Guo H, Xu Q, Wang T. Identification and characterization of three CXC chemokines in Asian swamp eel (Monopterus albus) uncovers a third CXCL11_like group in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 101:103454. [PMID: 31326565 DOI: 10.1016/j.dci.2019.103454] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Chemokines direct cell migration in development and immune defense, and bridge between innate and adaptive immune responses. The chemokine gene family has been rapidly evolving and has undergone species/lineage-specific expansion. Mammals possess inflammatory CXC chemokines CXCL1-8/15 and CXCL9-11 sub-groups, and homeostatic CXCL12-14, 16-17. Orthologues of mammalian CXCL12-14, three chemokines related to CXCL1-8/15 (CXCL8_L1-3), two chemokines related to CXC9-11 (CXCL11_L1-2), and five fish-specific chemokines (CXCL_F1-5) have been described in teleosts. In this study, we reported three novel CXC chemokines in Asian swamp eel Monopterus albus, a commercially important freshwater fish species in China. Two of them belong to the fish-specific CXCL_F2 group, named CXCL_F2a/b, that share 89.5% amino acid identity. The other (CXCL11_L3) belongs to a third CXCL11_L related to the mammalian CXCL9-11 subfamily found only in percomorph fish species, and is the only CXCL9-11 related molecules in this lineage. Mammalian CXCL9-11 attract Th1 cells, and block the migration of Th2 cells in an immune response. This study suggests that all major lineages of teleosts have a CXCL9-11 related chemokine that will aid future functional investigation of CXCL11_L in fish. Cxcl_f2a is highly expressed constitutively in the skin of swamp eels that may attract immune cells to protect the skin in the absence of scales. Cxcl11_l3 and cxcl_f2b are highly expressed in immune tissues/organs and are up-regulated by the viral mimic poly I:C, but not bacterial infection in vivo, suggesting their role in anti-viral defense. The two cxcl_f2 paralogues are differentially expressed and modulated, indicating sub- and/or neo-functionalization.
Collapse
Affiliation(s)
- Hanwen Yuan
- School of Animal Science, Yangtze University, Jingzhou, 434020, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, PR China
| | - Youshen Li
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Guangming Tian
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Wenbing Zhang
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Huizhi Guo
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Qiaoqing Xu
- School of Animal Science, Yangtze University, Jingzhou, 434020, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, PR China.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| |
Collapse
|
48
|
Khorasani MMY, Hassanshahi G, Brodzikowska A, Khorramdelazad H. Role(s) of cytokines in pulpitis: Latest evidence and therapeutic approaches. Cytokine 2019; 126:154896. [PMID: 31670007 DOI: 10.1016/j.cyto.2019.154896] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022]
Abstract
Pulpitis is known as a typical inflammation of dental pulp tissue, and microorganisms of the oral microbiome are involved in this opportunistic infection. Studies indicated that several factors related to host response have a crucial role in pulpitis. Among these factors, inflammatory mediators of the immune system such as cytokines and chemokines contribute to pulpal defense mechanisms. A wide range of cytokines have been observed in dental pulp and these small molecules are able to trigger inflammation and participate in immune cell trafficking, cell proliferation, inflammation, and tissue damage in pulp space. Therefore, the aim of this review was to describe the role of cytokines in the pathogenesis of pulpitis.
Collapse
Affiliation(s)
- Mohammad M Y Khorasani
- Department of Endodontics, School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Aniela Brodzikowska
- Department of Conservative Dentistry, Medical University of Warsaw, Miodowa 18, 00-246 Warsaw, Poland
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Morris J, Gonzales CB, De La Chapa JJ, Cabang AB, Fountzilas C, Patel M, Orozco S, Wargovich MJ. The Highly Pure Neem Leaf Extract, SCNE, Inhibits Tumorigenesis in Oral Squamous Cell Carcinoma via Disruption of Pro-tumor Inflammatory Cytokines and Cell Signaling. Front Oncol 2019; 9:890. [PMID: 31572681 PMCID: PMC6753233 DOI: 10.3389/fonc.2019.00890] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/27/2019] [Indexed: 12/23/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a deadly disease that comprises 60% of all head and neck squamous cell cancers. The leaves of the Neem tree (Azadirachta indica) have been used in traditional Ayurvedic medicine for centuries to treat numerous oral maladies and are known to have significant anti-inflammatory properties. We hypothesize that a highly pure super critical CO2 Neem leaf extract (SCNE) prevents initiation and progression of OSCC via downregulation of intra-tumor pro-inflammatory pathways, which promote tumorigenesis. Hence, we investigated the anticancer effects of SCNE using in vitro and in vivo platforms. OSCC cell lines (SCC4, Cal27, and HSC3) were treated with SCNE while inflammation, proliferation, and migration were analyzed over time. SCNE treatment significantly inhibited OSCC cell proliferation and migration and reduced MMP activity in vitro, suggesting its potential to inhibit tumor growth and metastasis. The preventive effects of SCNE in ectopic xenograft and 4NQO-1 (4-Nitroquinoline-1-oxide) carcinogen-induced mouse models of OSCC were also evaluated. Indeed, xenografted nude mice showed significant reduction of OSCC tumor volumes. Likewise, SCNE significantly reduced the incidence of tongue dysplasia in the 4NQO-1 OSCC initiation model. In both OSCC animal models, SCNE significantly depressed circulating pro-cancer inflammatory cytokines (host and tumor-secreted) including NFkB, COX2, IL-1, IL-6, TNFα, and IFNγ. In addition, we demonstrate that SCNE downregulates STAT3 and AKT expression and activity in vitro. We also demonstrate that the primary active component, nimbolide (NIM), has significant anticancer activity in established OSCC xenografts. Lastly, we show that SCNE induces an M1 phenotype in tumor associated macrophages (TAMS) in vivo. Taken together, these data strongly support SCNE as means of preventing OSCC via downregulation of pro-cancer inflammatory cascades and NIM as a potential new therapy for existing OSCC.
Collapse
Affiliation(s)
- Jay Morris
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| | - Cara B. Gonzales
- Department of Comprehensive Dentistry, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| | - Jorge J. De La Chapa
- Department of Comprehensive Dentistry, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| | - April B. Cabang
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| | - Christos Fountzilas
- Department of Medicine, GI Medical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Mandakini Patel
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| | - Stephanie Orozco
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| | - Michael J. Wargovich
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| |
Collapse
|
50
|
Wu Q, Cao R, Chen J, Xie X. Screening and identification of biomarkers associated with clinicopathological parameters and prognosis in oral squamous cell carcinoma. Exp Ther Med 2019; 18:3579-3587. [PMID: 31608128 PMCID: PMC6778814 DOI: 10.3892/etm.2019.7998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/16/2019] [Indexed: 12/27/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a major type of malignant tumor of the oral cavity. Despite marked advances in the management and diagnosis of OSCC, the associated overall survival ratio has only exhibited a modest increase in recent years. The present study aimed to identify potential crucial genes associated with clinical features and prognosis for OSCC, and to provide a basis for further investigation. RNA-sequencing data and corresponding clinical information were downloaded from The Cancer Genome Atlas database and differentially expressed mRNAs (DEmRNAs) were identified using the edgeR package. Bioinformatics analysis was performed to identify differentially expressed clinical features-associated mRNAs (CFmRNAs) and enhance the current knowledge of the function of them. Functional enrichment analysis and protein-protein interplay (PPI) network analysis were then performed to better understand CFmRNAs. Survival-associated genes were analyzed with Kaplan-Meier survival curves and the log-rank test. A total of 2,013 DEmRNAs between OSCC samples and normal tissues were identified, 180 of which were associated with clinical features. A total of 17 GO terms and 4 KEGG pathways were significantly enriched in functional enrichment analysis. A total of 4 hub genes (albumin, statherin, neurotensin and mucin 7) were identified in the PPI network analysis. A total of 6 genes (DDB1 and CUL4 associated factor 4 like 2, opiorphin prepropeptide, R3H domain containing like, transmembrane phosphatase with tensin homology, actin like 8 and protocadherin α 11) were observed to have an influence on survival. The DEmRNAs identified may have a crucial role in the genesis and development of OSCC and may be further developed for diagnostic, therapeutic and prognostic applications for OSCC in the future.
Collapse
Affiliation(s)
- Qiqi Wu
- Department of Endodontics, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410083, P.R. China
| | - Ruoyan Cao
- Department of Prosthodontics, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410083, P.R. China
| | - Juan Chen
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410083, P.R. China
| | - Xiaoli Xie
- Department of Endodontics, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410083, P.R. China
| |
Collapse
|