1
|
Maurice D, Costello P, Diring J, Gualdrini F, Frederico B, Treisman R. IL-2 delivery to CD8 + T cells during infection requires MRTF/SRF-dependent gene expression and cytoskeletal dynamics. Nat Commun 2024; 15:7956. [PMID: 39261466 PMCID: PMC11391060 DOI: 10.1038/s41467-024-52230-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
Paracrine IL-2 signalling drives the CD8 + T cell expansion and differentiation that allow protection against viral infections, but the underlying molecular events are incompletely understood. Here we show that the transcription factor SRF, a master regulator of cytoskeletal gene expression, is required for effective IL-2 signalling during L. monocytogenes infection. Acting cell-autonomously with its actin-regulated cofactors MRTF-A and MRTF-B, SRF is dispensible for initial TCR-mediated CD8+ T cell proliferation, but is required for sustained IL-2 dependent CD8+ effector T cell expansion, and persistence of memory cells. Following TCR activation, Mrtfab-null CD8+ T cells produce IL-2 normally, but homotypic clustering is impaired both in vitro and in vivo. Expression of cytoskeletal structural and regulatory genes, most notably actins, is defective in Mrtfab-null CD8+ T cells. Activation-induced cell clustering in vitro requires F-actin assembly, and Mrtfab-null cell clusters are small, contain less F-actin, and defective in IL-2 retention. Clustering of Mrtfab-null cells can be partially restored by exogenous actin expression. IL-2 mediated CD8+ T cell proliferation during infection thus depends on the control of cytoskeletal dynamics and actin gene expression by MRTF-SRF signalling.
Collapse
Affiliation(s)
- Diane Maurice
- Signalling and transcription Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Autoimmunity Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Patrick Costello
- Signalling and transcription Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jessica Diring
- Signalling and transcription Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Francesco Gualdrini
- Signalling and transcription Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, 20139, Italy
| | - Bruno Frederico
- Immunobiology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Early Oncology, R&D, AstraZeneca, Cambridge, UK
| | - Richard Treisman
- Signalling and transcription Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
2
|
Patel RP, Ghilardi G, Zhang Y, Chiang YH, Xie W, Guruprasad P, Kim KH, Chun I, Angelos MG, Pajarillo R, Hong SJ, Lee YG, Shestova O, Shaw C, Cohen I, Gupta A, Vu T, Qian D, Yang S, Nimmagadda A, Snook AE, Siciliano N, Rotolo A, Inamdar A, Harris J, Ugwuanyi O, Wang M, Carturan A, Paruzzo L, Chen L, Ballard HJ, Blanchard T, Xu C, Abdel-Mohsen M, Gabunia K, Wysocka M, Linette GP, Carreno B, Barrett DM, Teachey DT, Posey AD, Powell DJ, Sauter CT, Pileri S, Pillai V, Scholler J, Rook AH, Schuster SJ, Barta SK, Porazzi P, Ruella M. CD5 deletion enhances the antitumor activity of adoptive T cell therapies. Sci Immunol 2024; 9:eadn6509. [PMID: 39028827 DOI: 10.1126/sciimmunol.adn6509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/11/2024] [Accepted: 06/26/2024] [Indexed: 07/21/2024]
Abstract
Most patients treated with US Food and Drug Administration (FDA)-approved chimeric antigen receptor (CAR) T cells eventually experience disease progression. Furthermore, CAR T cells have not been curative against solid cancers and several hematological malignancies such as T cell lymphomas, which have very poor prognoses. One of the main barriers to the clinical success of adoptive T cell immunotherapies is CAR T cell dysfunction and lack of expansion and/or persistence after infusion. In this study, we found that CD5 inhibits CAR T cell activation and that knockout (KO) of CD5 using CRISPR-Cas9 enhances the antitumor effect of CAR T cells in multiple hematological and solid cancer models. Mechanistically, CD5 KO drives increased T cell effector function with enhanced cytotoxicity, in vivo expansion, and persistence, without apparent toxicity in preclinical models. These findings indicate that CD5 is a critical inhibitor of T cell function and a potential clinical target for enhancing T cell therapies.
Collapse
Affiliation(s)
- Ruchi P Patel
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Guido Ghilardi
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yunlin Zhang
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-Hao Chiang
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wei Xie
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Puneeth Guruprasad
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ki Hyun Kim
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Inkook Chun
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathew G Angelos
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Raymone Pajarillo
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Seok Jae Hong
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yong Gu Lee
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Olga Shestova
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
| | - Carolyn Shaw
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Cohen
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Aasha Gupta
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Trang Vu
- viTToria Biotherapeutics, Philadelphia, PA, USA
| | - Dean Qian
- viTToria Biotherapeutics, Philadelphia, PA, USA
| | - Steven Yang
- viTToria Biotherapeutics, Philadelphia, PA, USA
| | | | | | | | - Antonia Rotolo
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Arati Inamdar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Jaryse Harris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Ositadimma Ugwuanyi
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Wang
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Alberto Carturan
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Luca Paruzzo
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Linhui Chen
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Hatcher J Ballard
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Tatiana Blanchard
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Chong Xu
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Khatuna Gabunia
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Wysocka
- Department of Dermatology, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Gerald P Linette
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Beatriz Carreno
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - David M Barrett
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Oncology, Children's Hospital of Philadelphia, PA, USA
| | - David T Teachey
- Division of Oncology, Children's Hospital of Philadelphia, PA, USA
| | - Avery D Posey
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Powell
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - C Tor Sauter
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefano Pileri
- Division of Haematopathology, Istituto Europeo di Oncologia IRCCS, Italy
| | - Vinodh Pillai
- Division of Hemato-pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John Scholler
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Alain H Rook
- Department of Dermatology, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen J Schuster
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefan K Barta
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrizia Porazzi
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology and Oncology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Schlenker R, Schwalie PC, Dettling S, Huesser T, Irmisch A, Mariani M, Martínez Gómez JM, Ribeiro A, Limani F, Herter S, Yángüez E, Hoves S, Somandin J, Siebourg-Polster J, Kam-Thong T, de Matos IG, Umana P, Dummer R, Levesque MP, Bacac M. Myeloid-T cell interplay and cell state transitions associated with checkpoint inhibitor response in melanoma. MED 2024; 5:759-779.e7. [PMID: 38593812 DOI: 10.1016/j.medj.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/23/2023] [Accepted: 03/17/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND The treatment of melanoma, the deadliest form of skin cancer, has greatly benefited from immunotherapy. However, many patients do not show a durable response, which is only partially explained by known resistance mechanisms. METHODS We performed single-cell RNA sequencing of tumor immune infiltrates and matched peripheral blood mononuclear cells of 22 checkpoint inhibitor (CPI)-naive stage III-IV metastatic melanoma patients. After sample collection, the same patients received CPI treatment, and their response was assessed. FINDINGS CPI responders showed high levels of classical monocytes in peripheral blood, which preferentially transitioned toward CXCL9-expressing macrophages in tumors. Trajectories of tumor-infiltrating CD8+ T cells diverged at the level of effector memory/stem-like T cells, with non-responder cells progressing into a state characterized by cellular stress and apoptosis-related gene expression. Consistently, predicted non-responder-enriched myeloid-T/natural killer cell interactions were primarily immunosuppressive, while responder-enriched interactions were supportive of T cell priming and effector function. CONCLUSIONS Our study illustrates that the tumor immune microenvironment prior to CPI treatment can be indicative of response. In perspective, modulating the myeloid and/or effector cell compartment by altering the described cell interactions and transitions could improve immunotherapy response. FUNDING This research was funded by Roche Pharma Research and Early Development.
Collapse
Affiliation(s)
- Ramona Schlenker
- Roche Innovation Center Munich, Roche Pharma Research and Early Development (pRED), Penzberg, Germany.
| | | | - Steffen Dettling
- Roche Innovation Center Munich, Roche Pharma Research and Early Development (pRED), Penzberg, Germany
| | - Tamara Huesser
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Anja Irmisch
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marisa Mariani
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Julia M Martínez Gómez
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alison Ribeiro
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Florian Limani
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Sylvia Herter
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Emilio Yángüez
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Sabine Hoves
- Roche Innovation Center Munich, Roche Pharma Research and Early Development (pRED), Penzberg, Germany
| | - Jitka Somandin
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | | | | | | | - Pablo Umana
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marina Bacac
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| |
Collapse
|
4
|
Chu GJ, Bailey CG, Nagarajah R, Sagnella SM, Adelstein S, Rasko JEJ. The 4-1BBζ costimulatory domain in chimeric antigen receptors enhances CD8+ T-cell functionality following T-cell receptor stimulation. Cancer Cell Int 2023; 23:327. [PMID: 38105188 PMCID: PMC10726568 DOI: 10.1186/s12935-023-03171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cells have revolutionized the treatment of CD19- and B-cell maturation antigen-positive haematological malignancies. However, the effect of a CAR construct on the function of T-cells stimulated via their endogenous T-cell receptors (TCRs) has yet to be comprehensively investigated. METHODS Experiments were performed to systematically assess TCR signalling and function in CAR T-cells using anti-mesothelin human CAR T-cells as a model system. CAR T-cells expressing the CD28 or 4-1BB costimulatory endodomains were manufactured and compared to both untransduced T-cells and CAR T-cells with a non-functional endodomain. These cell products were treated with staphylococcal enterotoxin B to stimulate the TCR, and in vitro functional assays were performed by flow cytometry. RESULTS Increased proliferation, CD69 expression and IFNγ production were identified in CD8+ 4-1BBζ CAR T-cells compared to control untransduced CD8+ T-cells. These functional differences were associated with higher levels of phosphorylated ZAP70 after stimulation. In addition, these functional differences were associated with a differing immunophenotype, with a more than two-fold increase in central memory cells in CD8+ 4-1BBζ CAR T-cell products. CONCLUSION Our data indicate that the 4-1BBζ CAR enhances CD8+ TCR-mediated function. This could be beneficial if the TCR targets epitopes on malignant tissues or infectious agents, but detrimental if the TCR targets autoantigens.
Collapse
Affiliation(s)
- Gerard J Chu
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia
- Department of Clinical Immunology and Allergy, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Charles G Bailey
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, Camperdown, NSW, Australia
| | - Rajini Nagarajah
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia
| | - Sharon M Sagnella
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Stephen Adelstein
- Department of Clinical Immunology and Allergy, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - John E J Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, Camperdown, NSW, Australia.
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
| |
Collapse
|
5
|
Gräbnitz F, Oxenius A. CD8 T-cell diversification: Asymmetric cell division and its functional implications. Eur J Immunol 2023; 53:e2250225. [PMID: 36788705 DOI: 10.1002/eji.202250225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Establishment of cellular diversity is a basic requirement for the development of multicellular organisms. Cellular diversification can be induced by asymmetric cell division (ACD), during which the emerging two daughter cells unequally inherit lineage specific cargo (including transcription factors, receptors for specific signaling inputs, metabolic platforms, and possibly different epigenetic landscapes), resulting in two daughter cells endowed with different fates. While ACD is strongly involved in lineage choices in mammalian stem cells, its role in fate diversification in lineage committed cell subsets that still exhibit plastic potential, such as T-cells, is currently investigated. In this review, we focus predominantly on the role of ACD in fate diversification of CD8 T-cells. Further, we discuss the impact of differential T-cell receptor stimulation strengths and differentiation history on ACD-mediated fate diversification and highlight a particular importance of ACD in the development of memory CD8 T-cells upon high-affinity stimulation conditions.
Collapse
Affiliation(s)
- Fabienne Gräbnitz
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich, 8093, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich, 8093, Switzerland
| |
Collapse
|
6
|
Palaniyandi S, Strattan E, Kumari R, Mysinger M, Hakim N, Kesler MV, Apatira M, Bittencourt F, Wang L, Jia Z, Gururaja TL, Hill RJ, Hildebrandt GC. Combinatorial inhibition of Tec kinases BTK and ITK is beneficial in ameliorating murine sclerodermatous chronic graft versus host disease. Bone Marrow Transplant 2023; 58:924-935. [PMID: 37160943 DOI: 10.1038/s41409-023-02001-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
Graft-versus-host disease (GVHD) is the major factor limiting the widespread use of potentially curative allogeneic hematopoietic stem cell transplant (allo-HSCT). Chronic GVHD is characterized by the activation of alloreactive donor immune cells, especially B- and T-cells, leading to tissue damage and pathogenic fibrosis. In this study, we used highly specific next-generation inhibitors of ITK (PCYC-274), BTK (PCYC-804), and ibrutinib-like BTK/ITK inhibitors (PCYC-914 and PCYC-401) in the B10.D2 → BALB/C model of murine sclerodermatous cGVHD. From the third week onward, allogeneic recipients in each group of respective Tec kinase inhibitors were treated three times weekly with inhibitors at doses of 10 and 30 mg/kg or with saline control via oral gavage. Overall, we found that selective BTK inhibition was less effective than combined ITK/BTK or ITK inhibition in lengthening survival and reducing symptoms of cGVHD. ITK inhibition was most efficacious, with PCYC-274 and PCYC-401 demonstrating a nearly 50 percent reduction in GVHD scoring even at the 10 mg/kg dose, while 30 mg/kg of these compounds almost completely ameliorated GVHD symptomology. BTK/ITK and ITK-treated mice showed significant reductions in overall pathology. Significant reductions in dermal thickness and fibrosis were shown for all treatment groups. There was evidence of mixed Th1 and Th2 cytokine profiles in the skin of mice with dermal cGVHD, as both IFN-gamma and IL-4 were upregulated in the allogeneic control group, while kinase inhibition significantly reduced levels of these cytokines. Using an in vitro model of T-cell polarization, Th1 cell production of TNF-alpha and IFN-gamma were partially blocked by ITK. Th2 cell production of IL-4 was almost completely blocked synergistically by ITK and BTK inhibition. BTK-specific inhibition was unable to block either Th1 or Th2 cytokine production. Taken together, these results confirm previous reports that ITK-focused inhibition inhibits Th1 and Th2 cells. Additionally, the compound's effects on T-cell proliferation were tested by CFSE assay. Pure ITK inhibition was most effective at blocking T-cell proliferation, with no proliferation in PCYC-274-treated cells even at 0.1uM. PCYC-401 and PCYC-914 showed some inhibition at lower doses, with complete inhibition evident at 10uM. PCYC-804 was only partially able to block proliferation even at 10uM. In conclusion, we observed substantial benefit for differential inhibition of Tec kinases in GVHD, with ITK being most efficacious and Th1 cells being more resistant to inhibition, matching the previously reported findings of a Th2 to Th1 selective pressure in cells treated with ibrutinib. Our data warrants the further development of ITK and ITK/BTK inhibitors with specific inhibitory ratios to improve the treatment of GVHD and other T-cell mediated diseases.
Collapse
Affiliation(s)
- Senthilnathan Palaniyandi
- Division of Hematology and Medical Oncology, Department of Medicine, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Ethan Strattan
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Reena Kumari
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Miranda Mysinger
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Natalya Hakim
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| | - Melissa V Kesler
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| | - Mutiah Apatira
- Pharmacyclics LLC, an AbbVie Company, Sunnyvale, CA, USA
| | | | - Longcheng Wang
- Pharmacyclics LLC, an AbbVie Company, Sunnyvale, CA, USA
| | - Zhaozhong Jia
- Pharmacyclics LLC, an AbbVie Company, Sunnyvale, CA, USA
| | | | - Ronald J Hill
- Pharmacyclics LLC, an AbbVie Company, Sunnyvale, CA, USA
| | - Gerhard C Hildebrandt
- Division of Hematology and Medical Oncology, Department of Medicine, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA.
- Division of Hematology & Blood and Marrow Transplantation, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
7
|
Li Y, Qi J, Liu Y, Zheng Y, Zhu H, Zang Y, Guan X, Xie S, Zhao H, Fu Y, Xiang H, Zhang W, Chen H, Liu H, Zhao Y, Feng Y, Bu F, Liang Y, Li Y, Xu Q, He Y, Sun L, Liu L, Gu Y, Xu X, Hou Y, Dong X, Liu Y. High-Throughput Screening of Functional Neo-Antigens and Their Specific T-Cell Receptors via the Jurkat Reporter System Combined with Droplet Microfluidics. Anal Chem 2023. [PMID: 37300490 DOI: 10.1021/acs.analchem.3c01754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
T-cell receptor (TCR)-engineered T cells can precisely recognize a broad repertoire of targets derived from both intracellular and surface proteins of tumor cells. TCR-T adoptive cell therapy has shown safety and promising efficacy in solid tumor immunotherapy. However, antigen-specific functional TCR screening is time-consuming and expensive, which limits its application clinically. Here, we developed a novel integrated antigen-TCR screening platform based on droplet microfluidic technology, enabling high-throughput peptide-major histocompatibility complex (pMHC)-to-TCR paired screening with a high sensitivity and low background signal. We introduced DNA barcoding technology to label peptide antigen candidate-loaded antigen-presenting cells and Jurkat reporter cells to check the specificity of pMHC-TCR candidates. Coupled with the next-generation sequencing pipeline, interpretation of the DNA barcodes and the gene expression level of the Jurkat T-cell activation pathway provided a clear peptide-MHC-TCR recognition relationship. Our proof-of-principle study demonstrates that the platform could achieve pMHC-TCR paired high-throughput screening, which is expected to be used in the cross-reactivity and off-target high-throughput paired testing of candidate pMHC-TCRs in clinical applications.
Collapse
Affiliation(s)
- Yijian Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen 518083, China
| | - Jingyu Qi
- BGI-Shenzhen, Shenzhen 518083, China
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yang Liu
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518116, China
| | | | | | - Yupeng Zang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiangyu Guan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Yunyun Fu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Haitao Xiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Weicong Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Huan Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Yu Feng
- BGI-Shenzhen, Shenzhen 518083, China
| | - Fanyu Bu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yanling Liang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yang Li
- BGI-Shenzhen, Shenzhen 518083, China
| | - Qumiao Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Ying He
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518060, China
| | - Li Sun
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518060, China
| | - Longqi Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China
| | - Ying Gu
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China
| | - Yong Hou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xuan Dong
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen 518083, China
| | - Ya Liu
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518100, China
| |
Collapse
|
8
|
Fraessle SP, Tschulik C, Effenberger M, Cletiu V, Gerget M, Schober K, Busch DH, Germeroth L, Stemberger C, Poltorak MP. Activation-inducible CAR expression enables precise control over engineered CAR T cell function. Commun Biol 2023; 6:604. [PMID: 37277433 DOI: 10.1038/s42003-023-04978-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
CAR T cell therapy is a rapidly growing area of oncological treatments having a potential of becoming standard care for multiple indications. Coincidently, CRISPR/Cas gene-editing technology is entering next-generation CAR T cell product manufacturing with the promise of more precise and more controllable cell modification methodology. The intersection of these medical and molecular advancements creates an opportunity for completely new ways of designing engineered cells to help overcome current limitations of cell therapy. In this manuscript we present proof-of-concept data for an engineered feedback loop. We manufactured activation-inducible CAR T cells with the help of CRISPR-mediated targeted integration. This new type of engineered T cells expresses the CAR gene dependent on their activation status. This artifice opens new possibilities to regulate CAR T cell function both in vitro and in vivo. We believe that such a physiological control system can be a powerful addition to the currently available toolbox of next-generation CAR constructs.
Collapse
Affiliation(s)
- Simon P Fraessle
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Claudia Tschulik
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Manuel Effenberger
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany.
| | - Vlad Cletiu
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Maria Gerget
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Kilian Schober
- Institute for Medical Microbiology Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Lothar Germeroth
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Christian Stemberger
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Mateusz P Poltorak
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| |
Collapse
|
9
|
Gräbnitz F, Stark D, Shlesinger D, Petkidis A, Borsa M, Yermanos A, Carr A, Barandun N, Wehling A, Balaz M, Schroeder T, Oxenius A. Asymmetric cell division safeguards memory CD8 T cell development. Cell Rep 2023; 42:112468. [PMID: 37178119 DOI: 10.1016/j.celrep.2023.112468] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
The strength of T cell receptor (TCR) stimulation and asymmetric distribution of fate determinants are both implied to affect T cell differentiation. Here, we uncover asymmetric cell division (ACD) as a safeguard mechanism for memory CD8 T cell generation specifically upon strong TCR stimulation. Using live imaging approaches, we find that strong TCR stimulation induces elevated ACD rates, and subsequent single-cell-derived colonies comprise both effector and memory precursor cells. The abundance of memory precursor cells emerging from a single activated T cell positively correlates with first mitosis ACD. Accordingly, preventing ACD by inhibition of protein kinase Cζ (PKCζ) during the first mitosis upon strong TCR stimulation markedly curtails the formation of memory precursor cells. Conversely, no effect of ACD on fate commitment is observed upon weak TCR stimulation. Our data provide relevant mechanistic insights into the role of ACD for CD8 T cell fate regulation upon different activation conditions.
Collapse
Affiliation(s)
- Fabienne Gräbnitz
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Dominique Stark
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Danielle Shlesinger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Anthony Petkidis
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mariana Borsa
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Alexander Yermanos
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Andreas Carr
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Niculò Barandun
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Arne Wehling
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Miroslav Balaz
- Department of Metabolic Disease Research, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; Department of Health Sciences and Technology, ETH Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| |
Collapse
|
10
|
Matsumoto Y, Rottapel R. PARsylation-mediated ubiquitylation: lessons from rare hereditary disease Cherubism. Trends Mol Med 2023; 29:390-405. [PMID: 36948987 DOI: 10.1016/j.molmed.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 03/24/2023]
Abstract
Modification of proteins by ADP-ribose (PARsylation) is catalyzed by the poly(ADP-ribose) polymerase (PARP) family of enzymes exemplified by PARP1, which controls chromatin organization and DNA repair. Additionally, PARsylation induces ubiquitylation and proteasomal degradation of its substrates because PARsylation creates a recognition site for E3-ubiquitin ligase. The steady-state levels of the adaptor protein SH3-domain binding protein 2 (3BP2) is negatively regulated by tankyrase (PARP5), which coordinates ubiquitylation of 3BP2 by the E3-ligase ring finger protein 146 (RNF146). 3BP2 missense mutations uncouple 3BP2 from tankyrase-mediated negative regulation and cause Cherubism, an autosomal dominant autoinflammatory disorder associated with craniofacial dysmorphia. In this review, we summarize the diverse biological processes, including bone dynamics, metabolism, and Toll-like receptor (TLR) signaling controlled by tankyrase-mediated PARsylation of 3BP2, and highlight the therapeutic potential of this pathway.
Collapse
Affiliation(s)
- Yoshinori Matsumoto
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama 700-8558, Japan.
| | - Robert Rottapel
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Division of Rheumatology, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
| |
Collapse
|
11
|
Wu L, Balyan R, Brzostek J, Zhao X, Gascoigne NRJ. Time required for commitment to T cell proliferation depends on TCR affinity and cytokine response. EMBO Rep 2023; 24:e54969. [PMID: 36327141 PMCID: PMC9827553 DOI: 10.15252/embr.202254969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
T cell activation and effector functions are determined by the affinity of the interaction between T cell receptor (TCR) and its antigenic peptide MHC (pMHC) ligand. A better understanding of the quantitative aspects of TCR-pMHC affinity-dependent T cell activation is critical for the development of new immunotherapeutic strategies. However, the role of TCR-pMHC affinity in regulating the kinetics of CD8+ T cell commitment to proliferation and differentiation is unknown. Here, we show that the stronger the TCR-pMHC affinity, the shorter the time of T cell-APC co-culture required to commit CD8+ T cells to proliferation. The time threshold for T cell cytokine production is much lower than that for cell proliferation. There is a strong correlation between affinity-dependent differences in AKT phosphorylation and T cell proliferation. The cytokine IL-15 increases the poor proliferation of T cells stimulated with low affinity pMHC, suggesting that pro-inflammatory cytokines can override the affinity-dependent features of T cell proliferation.
Collapse
Affiliation(s)
- Liang‐zhe Wu
- Immunology Translational Research Programme, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Renu Balyan
- Immunology Translational Research Programme, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Present address:
Tessa Therapeutics Ltd.SingaporeSingapore
| | - Joanna Brzostek
- Immunology Translational Research Programme, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Present address:
Department of BiologyUniversity of FreiburgFreiburg im BreisgauGermany
| | - Xiang Zhao
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Present address:
Stanford University School of MedicineStanfordCAUSA
| | - Nicholas R J Gascoigne
- Immunology Translational Research Programme, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
12
|
Kasmani MY, Zander R, Chung HK, Chen Y, Khatun A, Damo M, Topchyan P, Johnson KE, Levashova D, Burns R, Lorenz UM, Tarakanova VL, Joshi NS, Kaech SM, Cui W. Clonal lineage tracing reveals mechanisms skewing CD8+ T cell fate decisions in chronic infection. J Exp Med 2023; 220:e20220679. [PMID: 36315049 PMCID: PMC9623343 DOI: 10.1084/jem.20220679] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022] Open
Abstract
Although recent evidence demonstrates heterogeneity among CD8+ T cells during chronic infection, developmental relationships and mechanisms underlying their fate decisions remain incompletely understood. Using single-cell RNA and TCR sequencing, we traced the clonal expansion and differentiation of CD8+ T cells during chronic LCMV infection. We identified immense clonal and phenotypic diversity, including a subset termed intermediate cells. Trajectory analyses and infection models showed intermediate cells arise from progenitor cells before bifurcating into terminal effector and exhausted subsets. Genetic ablation experiments identified that type I IFN drives exhaustion through an IRF7-dependent mechanism, possibly through an IFN-stimulated subset bridging progenitor and exhausted cells. Conversely, Zeb2 was critical for generating effector cells. Intriguingly, some T cell clones exhibited lineage bias. Mechanistically, we identified that TCR avidity correlates with an exhausted fate, whereas SHP-1 selectively restricts low-avidity effector cell accumulation. Thus, our work elucidates novel mechanisms underlying CD8+ T cell fate determination during persistent infection and suggests two potential pathways leading to exhaustion.
Collapse
Affiliation(s)
- Moujtaba Y. Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Ryan Zander
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - H. Kay Chung
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA
| | - Yao Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Martina Damo
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Paytsar Topchyan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Kaitlin E. Johnson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Darya Levashova
- Department of Microbiology, Immunology, and Cancer Biology, and Carter Immunology Center, University of Virginia, Charlottesville, VA
| | - Robert Burns
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Ulrike M. Lorenz
- Department of Microbiology, Immunology, and Cancer Biology, and Carter Immunology Center, University of Virginia, Charlottesville, VA
| | - Vera L. Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Nikhil S. Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Susan M. Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| |
Collapse
|
13
|
Hussien SM, Rashed ER. Immune system modulation by low-dose ionizing radiation-induced adaptive response. Int J Immunopathol Pharmacol 2023; 37:3946320231172080. [PMID: 37075331 PMCID: PMC10127215 DOI: 10.1177/03946320231172080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
OBJECTIVE Hormesis or low-dose ionizing radiation is known to induce various biological responses, a subcategory of which is the adaptive response, which has been reported to protect against higher radiation doses via multiple mechanisms. This study investigated the role of the cell-mediated immunological component of low-dose ionizing radiation-induced adaptive response. METHODS Herein, male albino rats were exposed to whole-body gamma radiation, using a Cs137 source with low-dose ionizing radiation doses of 0.25 and 0.5 Gray (Gy); 14 days later, another irradiation session at a dose level of 5 Gy was carried on. Four days post-irradiation at 5 Gy, rats were sacrificed. The low-dose ionizing radiation-induced immuno-radiological response has been assessed through the T-cell receptor (TCR) gene expression quantification. Also, the serum levels of each of interleukins-2 and -10 (IL-2, IL-10), transforming growth factor-beta (TGF-β), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were quantified. RESULTS Results indicated that priming low irradiation doses resulted in significant decrements in TCR gene expression and the serum levels of IL-2, TGF-β, and 8-OHdG with an increment in IL-10 expression compared to the irradiated group, which did not receive low priming doses. CONCLUSION The observed low-dose ionizing radiation-induced radio-adaptive response significantly protected against high irradiation dose injuries, through immune suppression, representing a promising pre-clinical protocol that would be applied to minimize radiotherapy side effects on normal but not against the tumor cells.
Collapse
Affiliation(s)
- Soha M Hussien
- Department of Radiation Safety, Nuclear and Radiological Safety Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Engy R Rashed
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
14
|
Liang F, Yang J, Gan Q, Xia Y, Wang L, Huang Y, Peng C. Transcriptomic insights into the role of the spleen in a mouse model of Wiskott‑Aldrich syndrome. Exp Ther Med 2022; 25:64. [PMID: 36605531 PMCID: PMC9798154 DOI: 10.3892/etm.2022.11763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/18/2022] [Indexed: 12/13/2022] Open
Abstract
Wiskott-Aldrich syndrome (WAS) is a rare X-linked primary immunodeficiency characterized by microthrombocytopenia, eczema, recurrent infection and increased incidence of autoimmune disorders and malignancy. WAS is caused by mutations in the was gene, which is expressed exclusively in hematopoietic cells; the spleen serves an important role in hematopoiesis and red blood cell clearance. However, to the best of our knowledge, detailed comparative analysis of the spleen between WASp-knockout (WAS-KO) and wild-type (WT) mice, particularly at the transcriptomic level, have not been reported. The present study investigated the differences in the transcriptomes of spleen tissue of 10-week-old WAS-KO mice. Comparison of the gene expression profiles of WAS-KO and WT mice revealed 1,964 differentially expressed genes (DEGs). Among these genes, 996 DEGs were upregulated and 968 were downregulated in WAS-KO mice. To determine the functions of DEGs, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed for significantly upregulated and downregulated DEGs. The results showed that the levels of cell senescence and apoptosis-associated genes were increased, antigen processing and presentation mechanisms involved in the immune response were damaged and signal transduction processes were impaired in the spleen of WAS-KO mice. Thus, was gene deletion may lead to anemia and hemolysis-associated disease, primarily due to increased osmotic fragility of red blood cells, low hemoglobin and increased bilirubin levels and serum ferritin. These results indicated that senescence and apoptosis of blood cells also play an important role in the occurrence of WAS. Therefore, the present findings provide a theoretical basis for further study to improve the treatment of WAS.
Collapse
Affiliation(s)
- Fangfang Liang
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518034, P.R. China
| | - Jun Yang
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518034, P.R. China
| | - Qian Gan
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518034, P.R. China
| | - Yu Xia
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518034, P.R. China
| | - Linlin Wang
- Department of Radiology, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong 518112, P.R. China
| | - Yanyan Huang
- Department of Rheumatism and Immunology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518034, P.R. China
| | - Cheng Peng
- Department of Radiology, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong 518112, P.R. China,Correspondence to: Dr Cheng Peng, Department of Radiology, The Third People's Hospital of Shenzhen, 29 Bulan Road, Shenzhen, Guangdong 518112, P.R. China
| |
Collapse
|
15
|
Inflammatory Cytokines That Enhance Antigen Responsiveness of Naïve CD8 + T Lymphocytes Modulate Chromatin Accessibility of Genes Impacted by Antigen Stimulation. Int J Mol Sci 2022; 23:ijms232214122. [PMID: 36430600 PMCID: PMC9698886 DOI: 10.3390/ijms232214122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Naïve CD8+ T lymphocytes exposed to certain inflammatory cytokines undergo proliferation and display increased sensitivity to antigens. Such 'cytokine priming' can promote the activation of potentially autoreactive and antitumor CD8+ T cells by weak tissue antigens and tumor antigens. To elucidate the molecular mechanisms of cytokine priming, naïve PMEL-1 TCR transgenic CD8+ T lymphocytes were stimulated with IL-15 and IL-21, and chromatin accessibility was assessed using the assay for transposase-accessible chromatin (ATAC) sequencing. PMEL-1 cells stimulated by the cognate antigenic peptide mgp10025-33 served as controls. Cytokine-primed cells showed a limited number of opening and closing chromatin accessibility peaks compared to antigen-stimulated cells. However, the ATACseq peaks in cytokine-primed cells substantially overlapped with those of antigen-stimulated cells and mapped to several genes implicated in T cell signaling, activation, effector differentiation, negative regulation and exhaustion. Nonetheless, the expression of most of these genes was remarkably different between cytokine-primed and antigen-stimulated cells. In addition, cytokine priming impacted the expression of several genes following antigen stimulation in a synergistic or antagonistic manner. Our findings indicate that chromatin accessibility changes in cytokine-primed naïve CD8+ T cells not only underlie their increased antigen responsiveness but may also enhance their functional fitness by reducing exhaustion without compromising regulatory controls.
Collapse
|
16
|
D'Angeli V, Monzón‐Casanova E, Matheson LS, Gizlenci Ö, Petkau G, Gooding C, Berrens RV, Smith CWJ, Turner M. Polypyrimidine tract binding protein 1 regulates the activation of mouse CD8 T cells. Eur J Immunol 2022; 52:1058-1068. [PMID: 35460072 PMCID: PMC9546061 DOI: 10.1002/eji.202149781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022]
Abstract
The RNA-binding protein polypyrimidine tract binding protein 1 (PTBP1) has been found to have roles in CD4 T-cell activation, but its function in CD8 T cells remains untested. We show it is dispensable for the development of naïve mouse CD8 T cells, but is necessary for the optimal expansion and production of effector molecules by antigen-specific CD8 T cells in vivo. PTBP1 has an essential role in regulating the early events following activation of the naïve CD8 T cell leading to IL-2 and TNF production. It is also required to protect activated CD8 T cells from apoptosis. PTBP1 controls alternative splicing of over 400 genes in naïve CD8 T cells in addition to regulating the abundance of ∼200 mRNAs. PTBP1 is required for the nuclear accumulation of c-Fos, NFATc2, and NFATc3, but not NFATc1. This selective effect on NFAT proteins correlates with PTBP1-promoted expression of the shorter Aβ1 isoform and exon 13 skipped Aβ2 isoform of the catalytic A-subunit of calcineurin phosphatase. These findings reveal a crucial role for PTBP1 in regulating CD8 T-cell activation.
Collapse
Affiliation(s)
- Vanessa D'Angeli
- Laboratory of Lymphocyte Signalling and DevelopmentThe Babraham InstituteCambridgeUK
- IONTAS, The Works, Unity CampusCambridgeCB22 3EFUK
| | - Elisa Monzón‐Casanova
- Laboratory of Lymphocyte Signalling and DevelopmentThe Babraham InstituteCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Oxford Biomedica (UK) LtdOxfordOX4 6LTUK
| | - Louise S. Matheson
- Laboratory of Lymphocyte Signalling and DevelopmentThe Babraham InstituteCambridgeUK
| | - Özge Gizlenci
- Laboratory of Lymphocyte Signalling and DevelopmentThe Babraham InstituteCambridgeUK
| | - Georg Petkau
- Laboratory of Lymphocyte Signalling and DevelopmentThe Babraham InstituteCambridgeUK
| | - Clare Gooding
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Rebecca V. Berrens
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Martin Turner
- Laboratory of Lymphocyte Signalling and DevelopmentThe Babraham InstituteCambridgeUK
| |
Collapse
|
17
|
Ahmad Mokhtar AM, Salikin NH, Haron AS, Amin-Nordin S, Hashim IF, Mohd Zaini Makhtar M, Zulfigar SB, Ismail NI. RhoG's Role in T Cell Activation and Function. Front Immunol 2022; 13:845064. [PMID: 35280994 PMCID: PMC8913496 DOI: 10.3389/fimmu.2022.845064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/08/2022] [Indexed: 12/29/2022] Open
Abstract
The role of RhoG in T cell development is redundant with other Racs subfamily members, and this redundancy may be attributed to redundant signal transduction pathways. However, the absence of RhoG increases TCR signalling and proliferation, implying that RhoG activity is critical during late T cell activation following antigen–receptor interaction. Moreover, RhoG is required to halt signal transduction and prevent hyper-activated T cells. Despite increase in TCR signalling, cell proliferation is inhibited, implying that RhoG induces T cell anergy by promoting the activities of transcription factors, including nuclear factor of activated T cell (NFAT)/AP-1. The role of NFAT plays in T cell anergy is inducing the transcription of anergy-associated genes, such as IL-2, IL-5, and IFN-γ. Although information about RhoG in T cell-related diseases is limited, mutant forms of RhoG, Ala151Ser and Glu171Lys have been observed in thymoma and hemophagocytic lymphohistiocytosis (HLH), respectively. Current information only focuses on these two diseases, and thus the role of RhoG in normal and pathological circumstances should be further investigated. This approach is necessary because RhoG and its associated proteins represent prospective targets for attack particularly in the therapy of cancer and immune-mediated illnesses.
Collapse
Affiliation(s)
- Ana Masara Ahmad Mokhtar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Nor Hawani Salikin
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Malaysia
| | | | - Syafinaz Amin-Nordin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ilie Fadzilah Hashim
- Department of Clinical Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Muaz Mohd Zaini Makhtar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Malaysia.,Fellow of Center for Global Sustainability Studies, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Siti Balqis Zulfigar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Nurul Izza Ismail
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
18
|
Behrens G, Heissmeyer V. Cooperation of RNA-Binding Proteins – a Focus on Roquin Function in T Cells. Front Immunol 2022; 13:839762. [PMID: 35251035 PMCID: PMC8894612 DOI: 10.3389/fimmu.2022.839762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 12/18/2022] Open
Abstract
Post-transcriptional gene regulation by RNA-binding proteins (RBPs) is important in the prevention of inflammatory and autoimmune diseases. With respect to T cell activation and differentiation, the RBPs Roquin-1/2 and Regnase-1 play pivotal roles by inducing degradation and/or translational silencing of target mRNAs. These targets encode important proinflammatory mediators and thus Roquin and Regnase-1 functions dampen cellular programs that can lead to inflammation and autoimmune disease. Recent findings demonstrate direct physical interaction of both RBPs. Here, we propose that cooperativity of trans-acting factors may be more generally used to reinforce the regulatory impact on selected targets and promote specific cell fate decisions. We develop this concept for Roquin and Regnase-1 function in resting and activated T cells and discuss the involvement in autoimmunity as well as how the therapeutic potential can be used in anti-tumor therapies.
Collapse
Affiliation(s)
- Gesine Behrens
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany
- *Correspondence: Vigo Heissmeyer,
| |
Collapse
|
19
|
Shakiba M, Zumbo P, Espinosa-Carrasco G, Menocal L, Dündar F, Carson SE, Bruno EM, Sanchez-Rivera FJ, Lowe SW, Camara S, Koche RP, Reuter VP, Socci ND, Whitlock B, Tamzalit F, Huse M, Hellmann MD, Wells DK, Defranoux NA, Betel D, Philip M, Schietinger A. TCR signal strength defines distinct mechanisms of T cell dysfunction and cancer evasion. J Exp Med 2022; 219:e20201966. [PMID: 34935874 PMCID: PMC8704919 DOI: 10.1084/jem.20201966] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 07/07/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022] Open
Abstract
T cell receptor (TCR) signal strength is a key determinant of T cell responses. We developed a cancer mouse model in which tumor-specific CD8 T cells (TST cells) encounter tumor antigens with varying TCR signal strength. High-signal-strength interactions caused TST cells to up-regulate inhibitory receptors (IRs), lose effector function, and establish a dysfunction-associated molecular program. TST cells undergoing low-signal-strength interactions also up-regulated IRs, including PD1, but retained a cell-intrinsic functional state. Surprisingly, neither high- nor low-signal-strength interactions led to tumor control in vivo, revealing two distinct mechanisms by which PD1hi TST cells permit tumor escape; high signal strength drives dysfunction, while low signal strength results in functional inertness, where the signal strength is too low to mediate effective cancer cell killing by functional TST cells. CRISPR-Cas9-mediated fine-tuning of signal strength to an intermediate range improved anti-tumor activity in vivo. Our study defines the role of TCR signal strength in TST cell function, with important implications for T cell-based cancer immunotherapies.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Cytokines/metabolism
- Disease Models, Animal
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Humans
- Immunotherapy, Adoptive/methods
- Lymphocyte Activation/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Mice
- Neoplasms/etiology
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction
- T-Cell Antigen Receptor Specificity
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Tumor Escape
Collapse
Affiliation(s)
- Mojdeh Shakiba
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY
| | | | - Laura Menocal
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Friederike Dündar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY
| | - Sandra E. Carson
- Department of Biochemistry, Cell and Molecular Biology, Weill Cornell Medicine, New York, NY
| | - Emmanuel M. Bruno
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Scott W. Lowe
- Cancer Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Steven Camara
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Richard P. Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vincent P. Reuter
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nicholas D. Socci
- Bioinformatics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Benjamin Whitlock
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Fella Tamzalit
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY
| | - Matthew D. Hellmann
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
- Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, Cornell University, New York, NY
| | - Daniel K. Wells
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
| | | | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Mary Philip
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY
| |
Collapse
|
20
|
Lawton ML, Emili A. Mass Spectrometry-Based Phosphoproteomics and Systems Biology: Approaches to Study T Lymphocyte Activation and Exhaustion. J Mol Biol 2021; 433:167318. [PMID: 34687714 DOI: 10.1016/j.jmb.2021.167318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022]
Abstract
T lymphocytes respond to extracellular cues and recognize and clear foreign bodies. These functions are tightly regulated by receptor-mediated intracellular signal transduction pathways and phosphorylation cascades resulting in rewiring of transcription, cell adhesion, and metabolic pathways, which leads to changes in downstream effector functions including cytokine secretion and target-cell killing. Given that these pathways become dysregulated in chronic diseases such as cancer, auto-immunity, diabetes, and persistent infections, mapping T cell signaling dynamics in normal and pathological states is central to understanding and modulating immune system behavior. Despite recent advances, there remains much to be learned from the study of T cell signaling at a systems level. The application of global phospho-proteomic profiling technology has the potential to provide unprecedented insights into the molecular networks that govern T cell function. These include capturing the spatiotemporal dynamics of the T cell responses as an ensemble of interacting components, rather than a static view at a single point in time. In this review, we describe innovative experimental approaches to study signaling mechanisms in the TCR, co-stimulatory receptors, synthetic signaling molecules such as chimeric antigen receptors, inhibitory receptors, and T cell exhaustion. Technical advances in mass spectrometry and systems biology frameworks are emphasized as these are poised to identify currently unknown functional relationships and dependencies to create causal predictive models that expand from the traditional narrow reductionist lens of singular components in isolation.
Collapse
Affiliation(s)
- Matthew L Lawton
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
21
|
Hussien SM. Cellular and Molecular Detection of Multi-doses of Ionizing Radiation-Induced Immunomodulatory Response. Cell Biochem Biophys 2021; 79:887-894. [PMID: 34224072 DOI: 10.1007/s12013-021-01017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 11/26/2022]
Abstract
Ionizing radiation (IR) is used in a wide range of clinical applications. The study aims to evaluate various IR doses for their immunomodulatory responses, which can be used in multiple immunological conditions. Forty rats were exposed to whole-body gamma rays of 0, 0.25, 0.5, and 1 Gray (Gy). T-cell receptor (TCR) gene expression, serum transforming growth factor-beta, interleukin-10 (IL-10), and nitric oxide levels were measured on days 1 and 4 post irradiation. TCR activation occurred only at the genetic level, and radiation raised all measured parameters, even at low doses at α = 0.05 (P < 0.05). Except for IL-10, it shows a nearly 6% (P < 0.05) rise in early response in irradiated groups up to 0.5 Gy. At lower doses, the indirect impacts of IR were as essential as the direct impacts, and they increased over time in most measured parameters due to endogenous releases. They were having an anti-proliferative effect on the immune system. Lastly, a single acute IR dose can raise anti-inflammatory cytokines and anti-proliferative effects in the immune system, avoiding various contraindications associated with immunomodulatory drugs. More information on safety and clinical relevance is needed.
Collapse
Affiliation(s)
- Soha M Hussien
- Immunology lecturer, Radiation Safety Department, National Center for Nuclear Safety and Radiation Control, Egyptian Atomic Energy Authority/ Egyptian Nuclear and Radiological Regulatory Authority, 3 Ahmed Elzomor Str., 11762, P.O. Box 7551, Nasr City, Cairo, Egypt.
| |
Collapse
|
22
|
Wahyuningtyas R, Lai YS, Wu ML, Chen HW, Chung WB, Chaung HC, Chang KT. Recombinant Antigen of Type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV-2) Promotes M1 Repolarization of Porcine Alveolar Macrophages and Th1 Type Response. Vaccines (Basel) 2021; 9:vaccines9091009. [PMID: 34579246 PMCID: PMC8473084 DOI: 10.3390/vaccines9091009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
The polarization status of porcine alveolar macrophages (PAMs) determines the infectivity of porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV infection skews macrophage polarization toward an M2 phenotype, followed by T-cells inactivation. CD163, one of the scavenger receptors of M2 macrophages, has been described as a putative receptor for PRRSV. In this study, we examined two types of PRRSV-2-derived recombinant antigens, A1 (g6Ld10T) and A2 (lipo-M5Nt), for their ability to mediate PAM polarization and T helper (Th1) response. A1 and A2 were composed of different combination of ORF5, ORF6, and ORF7 in full or partial length. To enhance the adaptive immunity, they were conjugated with T cells epitopes or lipidated elements, respectively. Our results showed that CD163+ expression on PAMs significantly decreased after being challenged with A1 but not A2, followed by a significant increase in pro-inflammatory genes (TNF-α, IL-6, and IL-12). In addition, next generation sequencing (NGS) data show an increase in T-cell receptor signaling in PAMs challenged with A1. Using a co-culture system, PAMs challenged with A1 can induce Th1 activation by boosting IFN-γ and IL-12 secretion and TNF-α expression. In terms of innate and T-cell-mediated immunity, we conclude that A1 is regarded as a potential vaccine for immunization against PRRSV infection due to its ability to reverse the polarization status of PAMs toward pro-inflammatory phenotypes, which in turn reduces CD163 expression for viral entry and increases immunomodulation for Th1-type response.
Collapse
Affiliation(s)
- Rika Wahyuningtyas
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan;
| | - Yin-Siew Lai
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
| | - Mei-Li Wu
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 400, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 800, Taiwan
| | - Wen-Bin Chung
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan;
| | - Hso-Chi Chaung
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan;
- Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
- Correspondence: (H.-C.C.); (K.-T.C.)
| | - Ko-Tung Chang
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
- Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
- Correspondence: (H.-C.C.); (K.-T.C.)
| |
Collapse
|
23
|
Hierarchy of signaling thresholds downstream of the T cell receptor and the Tec kinase ITK. Proc Natl Acad Sci U S A 2021; 118:2025825118. [PMID: 34452995 DOI: 10.1073/pnas.2025825118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The strength of peptide:MHC interactions with the T cell receptor (TCR) is correlated with the time to first cell division, the relative scale of the effector cell response, and the graded expression of activation-associated proteins like IRF4. To regulate T cell activation programming, the TCR and the TCR proximal interleukin-2-inducible T cell kinase (ITK) simultaneously trigger many biochemically separate signaling cascades. T cells lacking ITK exhibit selective impairments in effector T cell responses after activation, but under the strongest signaling conditions, ITK activity is dispensable. To gain insight into whether TCR signal strength and ITK activity tune observed graded gene expression through the unequal activation of distinct signaling pathways, we examined Erk1/2 phosphorylation or nuclear factor of activated T cells (NFAT) and nuclear factor (NF)-κB translocation in naïve OT-I CD8+ cell nuclei. We observed the consistent digital activation of NFAT1 and Erk1/2, but NF-κB displayed dynamic, graded activation in response to variation in TCR signal strength, tunable by treatment with an ITK inhibitor. Inhibitor-treated cells showed the dampened induction of AP-1 factors Fos and Fosb, NF-κB response gene transcripts, and survival factor Il2 transcripts. ATAC sequencing analysis also revealed that genomic regions most sensitive to ITK inhibition were enriched for NF-κB and AP-1 motifs. Specific inhibition of NF-κB during peptide stimulation tuned the expression of early gene products like c-Fos. Together, these data indicate a key role for ITK in orchestrating the optimal activation of separate TCR downstream pathways, specifically aiding NF-κB activation. More broadly, we revealed a mechanism by which variations in TCR signal strength can produce patterns of graded gene expression in activated T cells.
Collapse
|
24
|
Abstract
Next-generation sequencing technologies have revolutionized our ability to catalog the landscape of somatic mutations in tumor genomes. These mutations can sometimes create so-called neoantigens, which allow the immune system to detect and eliminate tumor cells. However, efforts that stimulate the immune system to eliminate tumors based on their molecular differences have had less success than has been hoped for, and there are conflicting reports about the role of neoantigens in the success of this approach. Here we review some of the conflicting evidence in the literature and highlight key aspects of the tumor-immune interface that are emerging as major determinants of whether mutation-derived neoantigens will contribute to an immunotherapy response. Accounting for these factors is expected to improve success rates of future immunotherapy approaches.
Collapse
Affiliation(s)
- Andrea Castro
- Biomedical Informatics Program, University of California San Diego, La Jolla, California 92093, USA
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA;
| | - Maurizio Zanetti
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
- The Laboratory of Immunology, Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA;
- The Laboratory of Immunology, Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
25
|
Possible Therapeutic Strategy Involving the Purine Synthesis Pathway Regulated by ITK in Tongue Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13133333. [PMID: 34283052 PMCID: PMC8269312 DOI: 10.3390/cancers13133333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 01/09/2023] Open
Abstract
The epidermal growth factor receptor is the only available tyrosine kinase molecular target for treating oral cancer. To improve the prognosis of tongue squamous cell carcinoma (TSCC) patients, a novel molecular target for tyrosine kinases is thus needed. We examined the expression of interleukin-2-inducible T-cell kinase (ITK) using immunohistochemistry, and the biological function of ITK was investigated using biochemical, phosphoproteomic, and metabolomic analyses. We found that ITK is overexpressed in TSCC patients with poor outcomes. The proliferation of oral cancer cell lines expressing ITK via transfection exhibited significant increases in three-dimensional culture assays and murine inoculation models with athymic male nude mice as compared with mock control cells. Suppressing the kinase activity using chemical inhibitors significantly reduced the increase in cell growth induced by ITK expression. Phosphoproteomic analyses revealed that ITK expression triggered phosphorylation of a novel tyrosine residue in trifunctional purine biosynthetic protein adenosine-3, an enzyme in the purine biosynthesis pathway. A significant increase in de novo biosynthesis of purines was observed in cells expressing ITK, which was abolished by the ITK inhibitor. ITK thus represents a potentially useful target for treating TSCC through modulation of purine biosynthesis.
Collapse
|
26
|
Ngoenkam J, Paensuwan P, Wipa P, Schamel WWA, Pongcharoen S. Wiskott-Aldrich Syndrome Protein: Roles in Signal Transduction in T Cells. Front Cell Dev Biol 2021; 9:674572. [PMID: 34169073 PMCID: PMC8217661 DOI: 10.3389/fcell.2021.674572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 11/23/2022] Open
Abstract
Signal transduction regulates the proper function of T cells in an immune response. Upon binding to its specific ligand associated with major histocompatibility complex (MHC) molecules on an antigen presenting cell, the T cell receptor (TCR) initiates intracellular signaling that leads to extensive actin polymerization. Wiskott-Aldrich syndrome protein (WASp) is one of the actin nucleation factors that is recruited to TCR microclusters, where it is activated and regulates actin network formation. Here we highlight the research that has focused on WASp-deficient T cells from both human and mice in TCR-mediated signal transduction. We discuss the role of WASp in proximal TCR signaling as well as in the Ras/Rac-MAPK (mitogen-activated protein kinase), PKC (protein kinase C) and Ca2+-mediated signaling pathways.
Collapse
Affiliation(s)
- Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Pussadee Paensuwan
- Department of Optometry, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Piyamaporn Wipa
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Wolfgang W. A. Schamel
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Freiburg University Clinics, University of Freiburg, Freiburg, Germany
| | - Sutatip Pongcharoen
- Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
27
|
Crump NT, Hadjinicolaou AV, Xia M, Walsby-Tickle J, Gileadi U, Chen JL, Setshedi M, Olsen LR, Lau IJ, Godfrey L, Quek L, Yu Z, Ballabio E, Barnkob MB, Napolitani G, Salio M, Koohy H, Kessler BM, Taylor S, Vyas P, McCullagh JSO, Milne TA, Cerundolo V. Chromatin accessibility governs the differential response of cancer and T cells to arginine starvation. Cell Rep 2021; 35:109101. [PMID: 33979616 PMCID: PMC8131582 DOI: 10.1016/j.celrep.2021.109101] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/01/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
Depleting the microenvironment of important nutrients such as arginine is a key strategy for immune evasion by cancer cells. Many tumors overexpress arginase, but it is unclear how these cancers, but not T cells, tolerate arginine depletion. In this study, we show that tumor cells synthesize arginine from citrulline by upregulating argininosuccinate synthetase 1 (ASS1). Under arginine starvation, ASS1 transcription is induced by ATF4 and CEBPβ binding to an enhancer within ASS1. T cells cannot induce ASS1, despite the presence of active ATF4 and CEBPβ, as the gene is repressed. Arginine starvation drives global chromatin compaction and repressive histone methylation, which disrupts ATF4/CEBPβ binding and target gene transcription. We find that T cell activation is impaired in arginine-depleted conditions, with significant metabolic perturbation linked to incomplete chromatin remodeling and misregulation of key genes. Our results highlight a T cell behavior mediated by nutritional stress, exploited by cancer cells to enable pathological immune evasion.
Collapse
Affiliation(s)
- Nicholas T Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Andreas V Hadjinicolaou
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Meng Xia
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - John Walsby-Tickle
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Uzi Gileadi
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Ji-Li Chen
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Mashiko Setshedi
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Lars R Olsen
- Section for Bioinformatics, DTU Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - I-Jun Lau
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Laura Godfrey
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Lynn Quek
- School of Cancer and Pharmaceutical Sciences, King's College London, SGDP Centre, Memory Lane, London SE5 8AF, UK
| | - Zhanru Yu
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Erica Ballabio
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Mike B Barnkob
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Giorgio Napolitani
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Mariolina Salio
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Hashem Koohy
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Stephen Taylor
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - James S O McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
28
|
Freen-van Heeren JJ. Post-transcriptional control of T-cell cytokine production: Implications for cancer therapy. Immunology 2021; 164:57-72. [PMID: 33884612 DOI: 10.1111/imm.13339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 01/05/2023] Open
Abstract
As part of the adaptive immune system, T cells are vital for the eradication of infected and malignantly transformed cells. To perform their protective function, T cells produce effector molecules that are either directly cytotoxic, such as granzymes, perforin, interferon-γ and tumour necrosis factor α, or attract and stimulate (immune) cells, such as interleukin-2. As these molecules can also induce immunopathology, tight control of their production is required. Indeed, inflammatory cytokine production is regulated on multiple levels. Firstly, locus accessibility and transcription factor availability and activity determine the amount of mRNA produced. Secondly, post-transcriptional mechanisms, influencing mRNA splicing/codon usage, stability, decay, localization and translation rate subsequently determine the amount of protein that is produced. In the immune suppressive environments of tumours, T cells gradually lose the capacity to produce effector molecules, resulting in tumour immune escape. Recently, the role of post-transcriptional regulation in fine-tuning T-cell effector function has become more appreciated. Furthermore, several groups have shown that exhausted or dysfunctional T cells from cancer patients or murine models possess mRNA for inflammatory mediators, but fail to produce effector molecules, hinting that post-transcriptional events also play a role in hampering tumour-infiltrating lymphocyte effector function. Here, the post-transcriptional regulatory events governing T-cell cytokine production are reviewed, with a specific focus on the importance of post-transcriptional regulation in anti-tumour responses. Furthermore, potential approaches to circumvent tumour-mediated dampening of T-cell effector function through the (dis)engagement of post-transcriptional events are explored, such as CRISPR/Cas9-mediated genome editing or chimeric antigen receptors.
Collapse
|
29
|
Lee HS, Jeong GS. Therapeutic effect of kaempferol on atopic dermatitis by attenuation of T cell activity via interaction with multidrug resistance-associated protein 1. Br J Pharmacol 2021; 178:1772-1788. [PMID: 33555623 DOI: 10.1111/bph.15396] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/28/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Kaempferol is a natural flavonoid widely investigated in various fields due to its antioxidant, anti-cancer, and anti-inflammatory activities, but few studies have shown its inhibitory effect on T cell activation. This study examined the therapeutic potential of kaempferol in atopic dermatitis by modulating T cell activation. EXPERIMENTAL APPROACH Effects of kaempferol on T cell activation and the underlying mechanisms were investigated in Jurkat cells and mouse CD4+ T cells. A model of atopic dermatitis in mice was used to determine its therapeutic potential on T cell-mediated conditions in vivo. Western blots, RT-PCR, pulldown assays and ELISA were used, along with histological analysis of skin. KEY RESULTS Pretreatment with kaempferol reduced CD69 expression and production of inflammatory cytokines including IL-2 from activated Jurkat cells and murine CD4+ T cells without cytotoxicity. Pulldown assays revealed that kaempferol physically binds to MRP-1 in T cells, inhibiting the action of MRP-1. In activated T cells, kaempferol suppressed JNK phosphorylation and the TAK1-IKKα mediated NF-κB pathway. Oral administration of kaempferol to mice showed improved manifestation of atopic dermatitis, a T cell-mediated condition. Western blot results showed that, as in the in vitro studies, decreased phosphorylation of JNK was associated with down-regulated MRP-1 activity in vivo, in the kaempferol-treated mice in the atopic dermatitis model. CONCLUSION AND IMPLICATIONS Kaempferol regulates T cell activation by inhibiting MRP-1 activity in activated T cells, thus showing protective effects against T cell mediated disease in vivo.
Collapse
Affiliation(s)
- Hyun-Su Lee
- College of Pharmacy, Keimyung University, Daegu, Korea
| | | |
Collapse
|
30
|
Emerson DA, Rolig AS, Redmond WL. Enhancing the Generation of Eomes hi CD8 + T Cells Augments the Efficacy of OX40- and CTLA-4-Targeted Immunotherapy. Cancer Immunol Res 2021; 9:430-440. [PMID: 33593794 DOI: 10.1158/2326-6066.cir-20-0338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/10/2020] [Accepted: 02/12/2021] [Indexed: 11/16/2022]
Abstract
CTLA-4 blockade in combination with an agonist OX40-specific monoclonal antibody synergizes to augment antitumor immunity through enhanced T-cell effector function, leading to increased survival in preclinical cancer models. We have shown previously that anti-OX40/anti-CTLA-4 combination therapy synergistically enhances the expression of Eomesodermin (Eomes) in CD8+ T cells. Eomes is a critical transcription factor for the differentiation and memory function of CD8+ T cells. We hypothesized that EomeshiCD8+ T cells were necessary for anti-OX40/anti-CTLA-4 immunotherapy efficacy and that further enhancement of this population would improve tumor-free survival. Indeed, CD8+ T cell-specific deletion of Eomes abrogated the efficacy of anti-OX40/anti-CTLA-4 therapy. We also found that anti-OX40/anti-CTLA-4-induced EomeshiCD8+ T cells expressed lower levels of checkpoint receptors (PD1, Tim-3, and Lag-3) and higher levels of effector cytokines (IFNγ and TNFα) than their Eomeslo counterparts. Eomes expression is negatively regulated in T cells through interleukin-2-inducible T-cell kinase (ITK) signaling. We investigated the impact of modulating ITK signaling with ibrutinib, an FDA-approved tyrosine kinase inhibitor, and found that anti-OX40/anti-CTLA-4/ibrutinib therapy further enhanced CD8+ T cell-specific Eomes expression, leading to enhanced tumor regression and improved survival, both of which were associated with increased T-cell effector function across multiple tumor models. Taken together, these data demonstrate the potential of anti-OX40/anti-CTLA-4/ibrutinib as a triple therapy to improve the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Dana A Emerson
- Cell, Developmental, and Cancer Biology Department, Oregon Health and Science University, Portland, Oregon.,Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon
| | - Annah S Rolig
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon
| | - William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon.
| |
Collapse
|
31
|
Ahmadi A, Ayyadevara VSSA, Baudry J, Roh KH. Calcium signaling on Jurkat T cells induced by microbeads coated with novel peptide ligands specific to human CD3ε. J Mater Chem B 2021; 9:1661-1675. [PMID: 33481966 DOI: 10.1039/d0tb02235g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CD3ε is expressed on T lymphocytes as a part of the T cell receptor (TCR)-CD3 complex. Together with other CD3 molecules, CD3ε is responsible for the activation of T cells via transducing the event of antigen recognition by the TCR into intracellular signaling cascades. The present study first aims to identify a novel peptide ligand that binds to human CD3ε in a specific manner and to perform an initial evaluation of its biological efficacy on the human T cell line, Jurkat cells. We screened a phage-display peptide library against human CD3ε using a subtractive biopanning process, from which we identified 13 phage clones displaying unique peptide sequences. One dominant phage clone displaying the 7 amino acid sequence of WSLGYTG, which occupied 90% of tested plaques (18 out of 20) after the 5th round of biopanning, demonstrated a superior binding behavior to other clones in the binding assays against recombinant CD3ε on microbeads or Jurkat cells. The synthesized peptide also showed specific binding to Jurkat cells in a dose-dependent manner but not to B cell lymphoma line, 2PK3 cells. Molecular modeling and docking simulation confirmed that the selected peptide ligand in an energetically stable conformation binds to a pocket of CD3ε that is not hidden by either CD3γ or CD3δ. Lastly, magnetic microbeads conjugated with the synthesized peptide ligands showed a weak but specific association with Jurkat cells and induced the calcium flux, a hallmark indication of proximal T cell receptor signaling, which gave rise to an enhancement of IL-2 section and cell proliferation. The novel peptide ligand and its various multivalent forms have a great potential in applications related to T cell biology and T cell immunotherapy.
Collapse
Affiliation(s)
- Armin Ahmadi
- Department of Chemical & Materials Engineering, University of Alabama in Huntsville, 301 Sparkman Drive NW, Huntsville, AL 35899, USA.
| | - V S S Abhinav Ayyadevara
- Biotechnology Science and Engineering, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Jerome Baudry
- Biotechnology Science and Engineering, University of Alabama in Huntsville, Huntsville, AL 35899, USA and Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Kyung-Ho Roh
- Department of Chemical & Materials Engineering, University of Alabama in Huntsville, 301 Sparkman Drive NW, Huntsville, AL 35899, USA. and Biotechnology Science and Engineering, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| |
Collapse
|
32
|
Clark M, Kroger CJ, Ke Q, Tisch RM. The Role of T Cell Receptor Signaling in the Development of Type 1 Diabetes. Front Immunol 2021; 11:615371. [PMID: 33603744 PMCID: PMC7884625 DOI: 10.3389/fimmu.2020.615371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
T cell receptor (TCR) signaling influences multiple aspects of CD4+ and CD8+ T cell immunobiology including thymic development, peripheral homeostasis, effector subset differentiation/function, and memory formation. Additional T cell signaling cues triggered by co-stimulatory molecules and cytokines also affect TCR signaling duration, as well as accessory pathways that further shape a T cell response. Type 1 diabetes (T1D) is a T cell-driven autoimmune disease targeting the insulin producing β cells in the pancreas. Evidence indicates that dysregulated TCR signaling events in T1D impact the efficacy of central and peripheral tolerance-inducing mechanisms. In this review, we will discuss how the strength and nature of TCR signaling events influence the development of self-reactive T cells and drive the progression of T1D through effects on T cell gene expression, lineage commitment, and maintenance of pathogenic anti-self T cell effector function.
Collapse
Affiliation(s)
- Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
33
|
The Potential of T Cell Factor 1 in Sustaining CD8 + T Lymphocyte-Directed Anti-Tumor Immunity. Cancers (Basel) 2021; 13:cancers13030515. [PMID: 33572793 PMCID: PMC7866257 DOI: 10.3390/cancers13030515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The transcription factor T cell factor 1 (TCF1), encoded by the TCF7 gene, is a key regulator of T-cell fate, which is known to promote T cell proliferation and establish T cell stemness. Importantly, increasing evidence has demonstrated that TCF1 is a critical determinant of the success of anti-tumor immunotherapy, implicating that TCF1 is a promising biomarker and therapeutic target in cancer. In recent years, new findings have emerged to provide a clearer view of TCF1 and its role in T cell biology. In this review, we aim to provide a comprehensive outline of the most recent literature on the role of TCF1 in T cell development and to discuss the potential of TCF1 in sustaining CD8+ T lymphocyte-directed anti-tumor immunity. Abstract T cell factor 1 (TCF1) is a transcription factor that has been highlighted to play a critical role in the promotion of T cell proliferation and maintenance of cell stemness in the embryonic and CD8+ T cell populations. The regulatory nature of TCF1 in CD8+ T cells is of great significance, especially within the context of T cell exhaustion, which is linked to the tumor and viral escape in pathological contexts. Indeed, inhibitory signals, such as programmed cell death 1 (PD-1) and cytotoxic-T-lymphocyte-associated protein 4 (CTLA-4), expressed on exhausted T lymphocytes (TEX), have become major therapeutic targets in immune checkpoint blockade (ICB) therapy. The significance of TCF1 in the sustenance of CTL-mediated immunity against pathogens and tumors, as well as its recently observed necessity for an effective anti-tumor immune response in ICB therapy, presents TCF1 as a potentially significant biomarker and/or therapeutic target for overcoming CD8+ T cell exhaustion and resistance to ICB therapy. In this review, we aim to outline the recent findings on the role of TCF1 in T cell development and discuss its implications in anti-tumor immunity.
Collapse
|
34
|
Freen-van Heeren JJ. Toll-like receptor-2/7-mediated T cell activation: An innate potential to augment CD8 + T cell cytokine production. Scand J Immunol 2021; 93:e13019. [PMID: 33377182 DOI: 10.1111/sji.13019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022]
Abstract
CD8+ T cells are critical to combat pathogens and eradicate malignantly transformed cells. To exert their effector function and kill target cells, T cells produce copious amounts of effector molecules, including the pro-inflammatory cytokines interferon γ, tumour necrosis factor α and interleukin 2. TCR triggering alone is sufficient to induce cytokine secretion by effector and memory CD8+ T cells. However, T cells can also be directly activated by pathogen-derived molecules, such as through the triggering of Toll-like receptors (TLRs). TLR-mediated pathogen sensing by T cells results in the production of only interferon γ. However, in particular when the antigen load on target cells is low, or when TCR affinity to the antigen is limited, antigen-experienced T cells can benefit from costimulatory signals. TLR stimulation can also function in a costimulatory fashion to enhance TCR triggering. Combined TCR and TLR triggering enhances the proliferation, memory formation and effector function of T cells, resulting in enhanced production of interferon γ, tumour necrosis factor α and interleukin 2. Therefore, TLR ligands or the exploitation of TLR signalling could provide novel opportunities for immunotherapy approaches. In fact, CD19 CAR T cells bearing an intracellular TLR2 costimulatory domain were recently employed to treat cancer patients in a clinical trial. Here, the current knowledge regarding TLR2/7 stimulation-induced cytokine production by T cells is reviewed. Specifically, the transcriptional and post-transcriptional pathways engaged upon TLR2/7 sensing and TLR2/7 signalling are discussed. Finally, the potential uses of TLRs to enhance the anti-tumor effector function of T cells are explored.
Collapse
|
35
|
Kiuchi M, Onodera A, Kokubo K, Ichikawa T, Morimoto Y, Kawakami E, Takayama N, Eto K, Koseki H, Hirahara K, Nakayama T. The Cxxc1 subunit of the Trithorax complex directs epigenetic licensing of CD4+ T cell differentiation. J Exp Med 2021; 218:211672. [PMID: 33433611 PMCID: PMC7808308 DOI: 10.1084/jem.20201690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Different dynamics of gene expression are observed during cell differentiation. In T cells, genes that are turned on early or turned off and stay off have been thoroughly studied. However, genes that are initially turned off but then turned on again after stimulation has ceased have not been defined; they are obviously important, especially in the context of acute versus chronic inflammation. Using the Th1/Th2 differentiation paradigm, we found that the Cxxc1 subunit of the Trithorax complex directs transcription of genes initially down-regulated by TCR stimulation but up-regulated again in a later phase. The late up-regulation of these genes was impaired either by prolonged TCR stimulation or Cxxc1 deficiency, which led to decreased expression of Trib3 and Klf2 in Th1 and Th2 cells, respectively. Loss of Cxxc1 resulted in enhanced pathogenicity in allergic airway inflammation in vivo. Thus, Cxxc1 plays essential roles in the establishment of a proper CD4+ T cell immune system via epigenetic control of a specific set of genes.
Collapse
Affiliation(s)
- Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan.,Institute for Global Prominent Research, Chiba University, Chuo-ku, Chiba, Japan
| | - Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Tomomi Ichikawa
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Yuki Morimoto
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Eiryo Kawakami
- Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Medical Sciences Innovation Hub Program, RIKEN, Yokohama, Kanagawa, Japan
| | - Naoya Takayama
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koji Eto
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Haruhiko Koseki
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan.,AMED-PRIME, Japan Agency for Medical Research and Development, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Medical Science and Technology (AMED-CREST), Chiba, Japan
| |
Collapse
|
36
|
Zhang Z, Xiong D, Wang X, Liu H, Wang T. Mapping the functional landscape of T cell receptor repertoires by single-T cell transcriptomics. Nat Methods 2021; 18:92-99. [PMID: 33408405 PMCID: PMC7799492 DOI: 10.1038/s41592-020-01020-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/12/2020] [Indexed: 11/08/2022]
Abstract
Many experimental and bioinformatics approaches have been developed to characterize the human T cell receptor (TCR) repertoire. However, the unknown functional relevance of TCR profiling hinders unbiased interpretation of the biology of T cells. To address this inadequacy, we developed tessa, a tool to integrate TCRs with gene expression of T cells to estimate the effect that TCRs confer on the phenotypes of T cells. Tessa leveraged techniques combining single-cell RNA-sequencing with TCR sequencing. We validated tessa and showed its superiority over existing approaches that investigate only the TCR sequences. With tessa, we demonstrated that TCR similarity constrains the phenotypes of T cells to be similar and dictates a gradient in antigen targeting efficiency of T cell clonotypes with convergent TCRs. We showed this constraint could predict a functional dichotomization of T cells postimmunotherapy treatment and is weakened in tumor contexts.
Collapse
Affiliation(s)
- Ze Zhang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Danyi Xiong
- Department of Statistical Science, Southern Methodist University, Dallas, TX, USA
| | - Xinlei Wang
- Department of Statistical Science, Southern Methodist University, Dallas, TX, USA
| | - Hongyu Liu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
37
|
The NF-κB/leukemia inhibitory factor/STAT3 signaling pathway in antibody-mediated suppression of Sindbis virus replication in neurons. Proc Natl Acad Sci U S A 2020; 117:29035-29045. [PMID: 33144502 DOI: 10.1073/pnas.2016691117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alphaviruses are positive-sense, enveloped RNA viruses that are important causes of viral encephalomyelitis. Sindbis virus (SINV) is the prototype alphavirus and preferentially infects neurons in rodents to induce an encephalomyelitis similar to the human disease. Using a mouse model of SINV infection of the nervous system, many of the immune processes involved in recovery from viral encephalomyelitis have been identified. Antibody specific to the SINV E2 glycoprotein plays an important role in recovery and is sufficient for noncytolytic suppression of virus replication in vivo and in vitro. To investigate the mechanism of anti-E2 antibody-mediated viral suppression, a reverse-phase protein array was used to broadly survey cellular signaling pathway activation following antibody treatment of SINV-infected differentiated AP-7 neuronal cells. Anti-E2 antibody induced rapid transient NF-κB and later sustained Y705 STAT3 phosphorylation, outlining an intracellular signaling cascade activated by antiviral antibody. Because NF-κB target genes include the STAT3-activating IL-6 family cytokines, expression of these messenger RNAS (mRNAs) was assessed. Expression of leukemia inhibitory factor (LIF) cytokine mRNA, but not other IL-6 family member mRNAs, was up-regulated by anti-E2 antibody. LIF induced STAT3 Y705 phosphorylation in infected differentiated AP-7 cells but did not inhibit virus replication. However, anti-E2 antibody localized the LIF receptor to areas of E2 expression on the infected cell surface, and LIF enhanced the antiviral effects of antibody. These findings identify activation of the NF-κB/LIF/STAT3 signaling cascade as involved in inducing antibody-mediated viral suppression and highlight the importance of nonneutralizing antibody functions in viral clearance from neurons.
Collapse
|
38
|
Healy ZR, Weinhold KJ, Murdoch DM. Transcriptional Profiling of CD8+ CMV-Specific T Cell Functional Subsets Obtained Using a Modified Method for Isolating High-Quality RNA From Fixed and Permeabilized Cells. Front Immunol 2020; 11:1859. [PMID: 32983102 PMCID: PMC7492549 DOI: 10.3389/fimmu.2020.01859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/10/2020] [Indexed: 01/04/2023] Open
Abstract
Previous studies suggest that the presence of antigen-specific polyfunctional T cells is correlated with improved pathogen clearance, disease control, and clinical outcomes; however, the molecular mechanisms responsible for the generation, function, and survival of polyfunctional T cells remain unknown. The study of polyfunctional T cells has been, in part, limited by the need for intracellular cytokine staining (ICS), necessitating fixation and cell membrane permeabilization that leads to unacceptable degradation of RNA. Adopting elements from prior research efforts, we developed and optimized a modified protocol for the isolation of high-quality RNA (i.e., RIN > 7) from primary human T cells following aldehyde-fixation, detergent-based permeabilization, intracellular cytokines staining, and sorting. Additionally, this method also demonstrated utility preserving RNA when staining for transcription factors. This modified protocol utilizes an optimized combination of an RNase inhibitor and high-salt buffer that is cost-effective while maintaining the ability to identify and resolve cell populations for sorting. Overall, this protocol resulted in minimal loss of RNA integrity, quality, and quantity during cytoplasmic staining of cytokines and subsequent flourescence-activated cell sorting. Using this technique, we obtained the transcriptional profiles of functional subsets (i.e., non-functional, monofunctional, bifunctional, polyfunctional) of CMV-specific CD8+T cells. Our analyses demonstrated that these functional subsets are molecularly distinct, and that polyfunctional T cells are uniquely enriched for transcripts involved in viral response, inflammation, cell survival, proliferation, and metabolism when compared to monofunctional cells. Polyfunctional T cells demonstrate reduced activation-induced cell death and increased proliferation after antigen re-challenge. Further in silico analysis of transcriptional data suggested a critical role for STAT5 transcriptional activity in polyfunctional cell activation. Pharmacologic inhibition of STAT5 was associated with a significant reduction in polyfunctional cell cytokine expression and proliferation, demonstrating the requirement of STAT5 activity not only for proliferation and cell survival, but also cytokine expression. Finally, we confirmed this association between CMV-specific CD8+ polyfunctionality with STAT5 signaling also exists in immunosuppressed transplant recipients using single cell transcriptomics, indicating that results from this study may translate to this vulnerable patient population. Collectively, these results shed light on the mechanisms governing polyfunctional T cell function and survival and may ultimately inform multiple areas of immunology, including but not limited to the development of new vaccines, CAR-T cell therapies, and adoptive T cell transfer.
Collapse
Affiliation(s)
- Zachary R Healy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University Hospital, Durham, NC, United States
| | - Kent J Weinhold
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - David M Murdoch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University Hospital, Durham, NC, United States
| |
Collapse
|
39
|
Solouki S, Huang W, Elmore J, Limper C, Huang F, August A. TCR Signal Strength and Antigen Affinity Regulate CD8 + Memory T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:1217-1227. [PMID: 32759295 DOI: 10.4049/jimmunol.1901167] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
CD8+ T cells play a critical role in adaptive immunity, differentiating into CD8+ memory T cells that form the basis of protective cellular immunity. Vaccine efficacy is attributed to long-term protective immunity, and understanding the parameters that regulate development of CD8+ T cells is critical to the design of T cell-mediated vaccines. We show in this study using mouse models that two distinct parameters, TCR signal strength (regulated by the tyrosine kinase ITK) and Ag affinity, play important but separate roles in modulating the development of memory CD8+ T cells. Unexpectedly, our data reveal that reducing TCR signal strength along with reducing Ag affinity for the TCR leads to enhanced and accelerated development of CD8+ memory T cells. Additionally, TCR signal strength is able to regulate CD8+ T cell effector cytokine R production independent of TCR Ag affinity. Analysis of RNA-sequencing data reveals that genes for inflammatory cytokines/cytokine receptors are significantly altered upon changes in Ag affinity and TCR signal strength. Furthermore, our findings show that the inflammatory milieu is critical in regulating this TCR signal strength-mediated increase in memory development, as both CpG oligonucleotide treatment or cotransfer of wild-type and Itk-/- T cells eliminates the observed increase in memory cell formation. These findings suggest that TCR signal strength and Ag affinity independently contribute to CD8+ memory T cell development, which is modulated by inflammation, and suggest that manipulating TCR signal strength along with Ag affinity, may be used to tune the development of CD8+ memory T cells during vaccine development.
Collapse
Affiliation(s)
- Sabrina Solouki
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - Weishan Huang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and.,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Jessica Elmore
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - Candice Limper
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - Fei Huang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - Avery August
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| |
Collapse
|
40
|
Bhattacharyya ND, Feng CG. Regulation of T Helper Cell Fate by TCR Signal Strength. Front Immunol 2020; 11:624. [PMID: 32508803 PMCID: PMC7248325 DOI: 10.3389/fimmu.2020.00624] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
T cells are critical in orchestrating protective immune responses to cancer and an array of pathogens. The interaction between a peptide MHC (pMHC) complex on antigen presenting cells (APCs) and T cell receptors (TCRs) on T cells initiates T cell activation, division, and clonal expansion in secondary lymphoid organs. T cells must also integrate multiple T cell-intrinsic and extrinsic signals to acquire the effector functions essential for the defense against invading microbes. In the case of T helper cell differentiation, while innate cytokines have been demonstrated to shape effector CD4+ T lymphocyte function, the contribution of TCR signaling strength to T helper cell differentiation is less understood. In this review, we summarize the signaling cascades regulated by the strength of TCR stimulation. Various mechanisms in which TCR signal strength controls T helper cell expansion and differentiation are also discussed.
Collapse
Affiliation(s)
- Nayan D Bhattacharyya
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Carl G Feng
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
41
|
Ma CY, Marioni JC, Griffiths GM, Richard AC. Stimulation strength controls the rate of initiation but not the molecular organisation of TCR-induced signalling. eLife 2020; 9:e53948. [PMID: 32412411 PMCID: PMC7308083 DOI: 10.7554/elife.53948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Millions of naïve T cells with different TCRs may interact with a peptide-MHC ligand, but very few will activate. Remarkably, this fine control is orchestrated using a limited set of intracellular machinery. It remains unclear whether changes in stimulation strength alter the programme of signalling events leading to T cell activation. Using mass cytometry to simultaneously measure multiple signalling pathways during activation of murine CD8+ T cells, we found a programme of distal signalling events that is shared, regardless of the strength of TCR stimulation. Moreover, the relationship between transcription of early response genes Nr4a1 and Irf8 and activation of the ribosomal protein S6 is also conserved across stimuli. Instead, we found that stimulation strength dictates the rate with which cells initiate signalling through this network. These data suggest that TCR-induced signalling results in a coordinated activation program, modulated in rate but not organization by stimulation strength.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Female
- Flow Cytometry
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/metabolism
- Kinetics
- Ligands
- Lymphocyte Activation/drug effects
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Ovalbumin/pharmacology
- Peptide Fragments/pharmacology
- Phosphorylation
- Receptors, Antigen, T-Cell/agonists
- Receptors, Antigen, T-Cell/metabolism
- Ribosomal Protein S6/metabolism
- Signal Transduction/drug effects
- Single-Cell Analysis
Collapse
Affiliation(s)
- Claire Y Ma
- Cambridge Institute for Medical Research, University of CambridgeCambridgeUnited Kingdom
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of CambridgeCambridgeUnited Kingdom
- EMBL-European Bioinformatics Institute, Wellcome Genome CampusCambridgeUnited Kingdom
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUnited Kingdom
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of CambridgeCambridgeUnited Kingdom
| | - Arianne C Richard
- Cambridge Institute for Medical Research, University of CambridgeCambridgeUnited Kingdom
- Cancer Research UK Cambridge Institute, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
42
|
Fenwick C, Joo V, Jacquier P, Noto A, Banga R, Perreau M, Pantaleo G. T-cell exhaustion in HIV infection. Immunol Rev 2020; 292:149-163. [PMID: 31883174 PMCID: PMC7003858 DOI: 10.1111/imr.12823] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
The T‐cell response is central in the adaptive immune‐mediated elimination of pathogen‐infected and/or cancer cells. This activated T‐cell response can inflict an overwhelming degree of damage to the targeted cells, which in most instances leads to the control and elimination of foreign invaders. However, in conditions of chronic infection, persistent exposure of T cells to high levels of antigen results in a severe T‐cell dysfunctional state called exhaustion. T‐cell exhaustion leads to a suboptimal immune‐mediated control of multiple viral infections including the human immunodeficiency virus (HIV). In this review, we will discuss the role of T‐cell exhaustion in HIV disease progression, the long‐term defect of T‐cell function even in aviremic patients on antiretroviral therapy (ART), the role of exhaustion‐specific markers in maintaining a reservoir of latently infected cells, and exploiting these markers in HIV cure strategies.
Collapse
Affiliation(s)
- Craig Fenwick
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Victor Joo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Patricia Jacquier
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alessandra Noto
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Riddhima Banga
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
43
|
Freen-van Heeren JJ, Popović B, Guislain A, Wolkers MC. Human T cells employ conserved AU-rich elements to fine-tune IFN-γ production. Eur J Immunol 2020; 50:949-958. [PMID: 32112565 PMCID: PMC7384093 DOI: 10.1002/eji.201948458] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/27/2020] [Accepted: 02/27/2020] [Indexed: 12/25/2022]
Abstract
Long‐lasting CD8+ T cell responses are critical in combatting infections and tumors. The pro‐inflammatory cytokine IFN‐γ is a key effector molecule herein. We recently showed that in murine T cells the production of IFN‐γ is tightly regulated through adenylate uridylate–rich elements (AREs) that are located in the 3′ untranslated region (UTR) of the Ifng mRNA molecule. Loss of AREs resulted in prolonged cytokine production in activated T cells and boosted anti‐tumoral T cell responses. Here, we investigated whether these findings can be translated to primary human T cells. Utilizing CRISPR‐Cas9 technology, we deleted the ARE region from the IFNG 3′ UTR in peripheral blood‐derived human T cells. Loss of AREs stabilized the IFNG mRNA in T cells and supported a higher proportion of IFN‐γ protein‐producing T cells. Importantly, combining MART‐1 T cell receptor engineering with ARE‐Del gene editing showed that this was also true for antigen‐specific activation of T cells. MART‐1‐specific ARE‐Del T cells showed higher percentages of IFN‐γ producing T cells in response to MART‐1 expressing tumor cells. Combined, our study reveals that ARE‐mediated posttranscriptional regulation is conserved between murine and human T cells. Furthermore, generating antigen‐specific ARE‐Del T cells is feasible, a feature that could potentially be used for therapeutical purposes.
Collapse
Affiliation(s)
- Julian J Freen-van Heeren
- Department of Hematopoiesis, Sanquin Research-Amsterdam UMC Landsteiner Laboratory, Amsterdam, The Netherlands.,Department of Hematopoiesis, Oncode Institute, Amsterdam, The Netherlands
| | - Branka Popović
- Department of Hematopoiesis, Sanquin Research-Amsterdam UMC Landsteiner Laboratory, Amsterdam, The Netherlands.,Department of Hematopoiesis, Oncode Institute, Amsterdam, The Netherlands
| | - Aurélie Guislain
- Department of Hematopoiesis, Sanquin Research-Amsterdam UMC Landsteiner Laboratory, Amsterdam, The Netherlands.,Department of Hematopoiesis, Oncode Institute, Amsterdam, The Netherlands
| | - Monika C Wolkers
- Department of Hematopoiesis, Sanquin Research-Amsterdam UMC Landsteiner Laboratory, Amsterdam, The Netherlands.,Department of Hematopoiesis, Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
44
|
ElTanbouly MA, Zhao Y, Nowak E, Li J, Schaafsma E, Le Mercier I, Ceeraz S, Lines JL, Peng C, Carriere C, Huang X, Day M, Koehn B, Lee SW, Silva Morales M, Hogquist KA, Jameson SC, Mueller D, Rothstein J, Blazar BR, Cheng C, Noelle RJ. VISTA is a checkpoint regulator for naïve T cell quiescence and peripheral tolerance. Science 2020; 367:eaay0524. [PMID: 31949051 PMCID: PMC7391053 DOI: 10.1126/science.aay0524] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/30/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
Negative checkpoint regulators (NCRs) temper the T cell immune response to self-antigens and limit the development of autoimmunity. Unlike all other NCRs that are expressed on activated T lymphocytes, V-type immunoglobulin domain-containing suppressor of T cell activation (VISTA) is expressed on naïve T cells. We report an unexpected heterogeneity within the naïve T cell compartment in mice, where loss of VISTA disrupted the major quiescent naïve T cell subset and enhanced self-reactivity. Agonistic VISTA engagement increased T cell tolerance by promoting antigen-induced peripheral T cell deletion. Although a critical player in naïve T cell homeostasis, the ability of VISTA to restrain naïve T cell responses was lost under inflammatory conditions. VISTA is therefore a distinctive NCR of naïve T cells that is critical for steady-state maintenance of quiescence and peripheral tolerance.
Collapse
Affiliation(s)
- Mohamed A ElTanbouly
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Yanding Zhao
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Elizabeth Nowak
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | - Evelien Schaafsma
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | - Sabrina Ceeraz
- Immunology Discovery, Janssen Research and Development LLC, Spring House, PA, USA
| | - J Louise Lines
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Changwei Peng
- Division of Rheumatic and Autoimmune Diseases, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- The Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | | | - Xin Huang
- ImmuNext Corporation, Lebanon, NH, USA
| | - Maria Day
- ImmuNext Corporation, Lebanon, NH, USA
| | - Brent Koehn
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Sam W Lee
- Yale University School of Medicine, New Haven, CT, USA
| | - Milagros Silva Morales
- Division of Rheumatic and Autoimmune Diseases, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Kristin A Hogquist
- Division of Rheumatic and Autoimmune Diseases, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- The Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Stephen C Jameson
- Division of Rheumatic and Autoimmune Diseases, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- The Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Daniel Mueller
- Division of Rheumatic and Autoimmune Diseases, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- The Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | | | - Bruce R Blazar
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Chao Cheng
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
- ImmuNext Corporation, Lebanon, NH, USA
| |
Collapse
|
45
|
PD-1 Imposes Qualitative Control of Cellular Transcriptomes in Response to T Cell Activation. Mol Cell 2020; 77:937-950.e6. [PMID: 31926851 DOI: 10.1016/j.molcel.2019.12.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/07/2019] [Accepted: 12/12/2019] [Indexed: 01/08/2023]
Abstract
Targeted blockade of programmed cell death 1 (PD-1), an immune-checkpoint receptor that inhibits T cell activation, provides clinical benefits in various cancers. However, how PD-1 modulates gene expression in T cells remains enigmatic. Here we investigated how PD-1 affects transcriptome changes induced by T cell receptor (TCR) activation. Intriguingly, we identified a huge variance in PD-1 sensitivity among TCR-inducible genes. When we quantified the half maximal effective concentration (EC50) as the relationship between change in gene expression and TCR signal strength, we found that genes associated with survival and proliferation were efficiently expressed upon TCR activation and resistant to PD-1-mediated inhibition. Conversely, genes encoding cytokines and effector molecules were expressed less efficiently and sensitive to PD-1-mediated inhibition. We further demonstrated that transcription factor binding motifs and CpG frequency in the promoter region affect EC50 and thus the PD-1 sensitivity of genes. Our findings explain how PD-1, dependent on the TCR signal strength, calibrates cellular transcriptomes to shape functional properties of T cell populations.
Collapse
|
46
|
Dimitriou ID, Lee K, Akpan I, Lind EF, Barr VA, Ohashi PS, Samelson LE, Rottapel R. Timed Regulation of 3BP2 Induction Is Critical for Sustaining CD8 + T Cell Expansion and Differentiation. Cell Rep 2019; 24:1123-1135. [PMID: 30067970 PMCID: PMC6701191 DOI: 10.1016/j.celrep.2018.06.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/17/2018] [Accepted: 06/18/2018] [Indexed: 12/28/2022] Open
Abstract
Successful anti-viral response requires the sustained activation and expansion of CD8+ T cells for periods that far exceed the time limit of physical T cell interaction with antigen-presenting cells (APCs). The expanding CD8+ T cell pool generates the effector and memory cell populations that provide viral clearance and long-term immunity, respectively. Here, we demonstrate that 3BP2 is recruited in cytoplasmic microclusters and nucleates a signaling complex that facilitates MHC:peptide-independent activation of signaling pathways downstream of the TCR. We show that induction of the adaptor molecule 3BP2 is a sensor of TCR signal strength and is critical for sustaining CD8+ T cell proliferation and regulating effector and memory differentiation. Dimitriou et al. show that the adaptor protein 3BP2 lowers the threshold of T cell activation and that the induction of the 3BP2 signaling module at later time points may serve to recapitulate and prolong the biochemical signals emanating from the TCR required for sustained MHC:peptide-independent T cell proliferation.
Collapse
Affiliation(s)
- Ioannis D Dimitriou
- Princess Margaret Cancer Center, Toronto Medical Discovery Tower, Toronto, ON M5G 1L7, Canada
| | - Korris Lee
- Princess Margaret Cancer Center, Toronto Medical Discovery Tower, Toronto, ON M5G 1L7, Canada
| | - Itoro Akpan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Evan F Lind
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Valarie A Barr
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Pamela S Ohashi
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1L7, Canada
| | - Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Robert Rottapel
- Princess Margaret Cancer Center, Toronto Medical Discovery Tower, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1L7, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S 1L7, Canada.
| |
Collapse
|
47
|
Courtney AH, Shvets AA, Lu W, Griffante G, Mollenauer M, Horkova V, Lo WL, Yu S, Stepanek O, Chakraborty AK, Weiss A. CD45 functions as a signaling gatekeeper in T cells. Sci Signal 2019; 12:12/604/eaaw8151. [PMID: 31641081 DOI: 10.1126/scisignal.aaw8151] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
T cells require the protein tyrosine phosphatase CD45 to detect and respond to antigen because it activates the Src family kinase Lck, which phosphorylates the T cell antigen receptor (TCR) complex. CD45 activates Lck by opposing the negative regulatory kinase Csk. Paradoxically, CD45 has also been implicated in suppressing TCR signaling by dephosphorylating the same signaling motifs within the TCR complex upon which Lck acts. We sought to reconcile these observations using chemical and genetic perturbations of the Csk/CD45 regulatory axis incorporated with computational analyses. Specifically, we titrated the activities of Csk and CD45 and assessed their influence on Lck activation, TCR-associated ζ-chain phosphorylation, and more downstream signaling events. Acute inhibition of Csk revealed that CD45 suppressed ζ-chain phosphorylation and was necessary for a regulatable pool of active Lck, thereby interconnecting the activating and suppressive roles of CD45 that tune antigen discrimination. CD45 suppressed signaling events that were antigen independent or induced by low-affinity antigen but not those initiated by high-affinity antigen. Together, our findings reveal that CD45 acts as a signaling "gatekeeper," enabling graded signaling outputs while filtering weak or spurious signaling events.
Collapse
Affiliation(s)
- Adam H Courtney
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA. .,Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexey A Shvets
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wen Lu
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gloria Griffante
- Division of Molecular Immunology, Department of Internal Medicine, University Hospital Erlangen and Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | - Veronika Horkova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - Wan-Lin Lo
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Steven Yu
- Howard Hughes Medical Institute (HHMI), San Francisco, CA 94143, USA
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - Arup K Chakraborty
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arthur Weiss
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA. .,Howard Hughes Medical Institute (HHMI), San Francisco, CA 94143, USA
| |
Collapse
|
48
|
Andreotti AH, Joseph RE, Conley JM, Iwasa J, Berg LJ. Multidomain Control Over TEC Kinase Activation State Tunes the T Cell Response. Annu Rev Immunol 2019; 36:549-578. [PMID: 29677469 DOI: 10.1146/annurev-immunol-042617-053344] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Signaling through the T cell antigen receptor (TCR) activates a series of tyrosine kinases. Directly associated with the TCR, the SRC family kinase LCK and the SYK family kinase ZAP-70 are essential for all downstream responses to TCR stimulation. In contrast, the TEC family kinase ITK is not an obligate component of the TCR cascade. Instead, ITK functions as a tuning dial, to translate variations in TCR signal strength into differential programs of gene expression. Recent insights into TEC kinase structure have provided a view into the molecular mechanisms that generate different states of kinase activation. In resting lymphocytes, TEC kinases are autoinhibited, and multiple interactions between the regulatory and kinase domains maintain low activity. Following TCR stimulation, newly generated signaling modules compete with the autoinhibited core and shift the conformational ensemble to the fully active kinase. This multidomain control over kinase activation state provides a structural mechanism to account for ITK's ability to tune the TCR signal.
Collapse
Affiliation(s)
- Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA; ,
| | - Raji E Joseph
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA; ,
| | - James M Conley
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA; ,
| | - Janet Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA;
| | - Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA; ,
| |
Collapse
|
49
|
Wu SW, Li L, Wang Y, Xiao Z. CTL-Derived Exosomes Enhance the Activation of CTLs Stimulated by Low-Affinity Peptides. Front Immunol 2019; 10:1274. [PMID: 31275303 PMCID: PMC6593274 DOI: 10.3389/fimmu.2019.01274] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/20/2019] [Indexed: 01/07/2023] Open
Abstract
Cytotoxic T cells (CTLs) bind to peptides presented by MHC I (pMHC) through T cell receptors of various affinities. Low-affinity CTLs are important for the control of intracellular pathogens and cancers; however, the mechanisms by which these lower affinity CTLs are activated and maintained are not well understood. We recently discovered that fully activated CTLs stimulated by strong-affinity peptides in the presence of IL-12 are able to secrete exosomes that, in turn, stimulate bystander CTLs without requiring the presence of antigen. We hypothesized that exosomes secreted by high-affinity CTLs could strengthen the activation of low-affinity CTLs. Naive OT-I CD8+ cells were stimulated with altered N4 peptides of different affinities in the presence or absence of Exo. The presence of Exo preferentially increased cell proliferation and enhanced the production of IFNγ in CTLs stimulated by low-affinity peptides. The expression of granzyme B (GZB) was augmented in all affinities, with higher GZB production in low-affinity stimulated CTLs than in high-affinity stimulated ones. Exosomes promoted the rapid activation of low-affinity CTLs, which remained responsive to exosomes for a prolonged duration. Unexpectedly, exosomes could be induced quickly (24 h) following CTL activation and at a higher quantity per cell than later (72 h). While exosome protein profiles vary significantly between early exosomes and their later-derived counterparts, both appear to have similar downstream functions. These results reveal a potential mechanism for fully activated CTLs in activating lower-affinity CTLs that may have important implications in boosting the function of low-affinity CTLs in immunotherapy for cancers and chronic viral infections.
Collapse
Affiliation(s)
- Shu-Wei Wu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Lei Li
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Yan Wang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Zhengguo Xiao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| |
Collapse
|
50
|
Richard AC, Lun ATL, Lau WWY, Göttgens B, Marioni JC, Griffiths GM. T cell cytolytic capacity is independent of initial stimulation strength. Nat Immunol 2018; 19:849-858. [PMID: 30013148 PMCID: PMC6300116 DOI: 10.1038/s41590-018-0160-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/31/2018] [Indexed: 01/15/2023]
Abstract
How cells respond to myriad stimuli with finite signaling machinery is central to immunology. In naive T cells, the inherent effect of ligand strength on activation pathways and endpoints has remained controversial, confounded by environmental fluctuations and intercellular variability within populations. Here we studied how ligand potency affected the activation of CD8+ T cells in vitro, through the use of genome-wide RNA, multi-dimensional protein and functional measurements in single cells. Our data revealed that strong ligands drove more efficient and uniform activation than did weak ligands, but all activated cells were fully cytolytic. Notably, activation followed the same transcriptional pathways regardless of ligand potency. Thus, stimulation strength did not intrinsically dictate the T cell-activation route or phenotype; instead, it controlled how rapidly and simultaneously the cells initiated activation, allowing limited machinery to elicit wide-ranging responses.
Collapse
Affiliation(s)
- Arianne C Richard
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Aaron T L Lun
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Winnie W Y Lau
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Department of Haematology, Wellcome - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Department of Haematology, Wellcome - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Cambridge, UK.
- Wellcome Sanger Institute, Cambridge, UK.
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|