1
|
Xu T, Schou AS, Lackman JJ, Barrio-Calvo M, Verhallen L, Goth CK, Jensen BAH, Veldkamp CT, Volkman BF, Peterson FC, Hjortø GM. Chemokine Receptor N-Terminus Charge Dictates Reliance on Post-Translational Modifications for Effective Ligand Capture and Following Boosting by Defense Peptides. Int J Mol Sci 2024; 25:10854. [PMID: 39409188 PMCID: PMC11477141 DOI: 10.3390/ijms251910854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
The chemokine receptors CCR1 and CCR5 display overlapping expression patterns and ligand dependency. Here we find that ligand activation of CCR5, not CCR1, is dependent on N-terminal receptor O-glycosylation. Release from O-glycosylation dependency is obtained by increasing CCR5 N-terminus acidity to the level of CCR1. Ligand activation of CCR5, not CCR1, drastically improves in the absence of glycosaminoglycans (GAGs). Ligand activity at both CCR1 and CCR5 is boosted by positively charged/basic peptides shown to interact with acidic chemokine receptor N-termini. We propose that receptors with an inherent low N-terminus acidity rely on post-translational modifications (PTMs) to efficiently compete with acidic entities in the local environment for ligand capture. Although crucial for initial ligand binding, strong electrostatic interactions between the ligand and the receptor N-terminus may counteract following insertion of the ligand into the receptor binding pocket and activation, a process that seems to be aided in the presence of basic peptides. Basic peptides bind to the naked CCR1 N-terminus, not the CCR5 N-terminus, explaining the loss of boosting of ligand-induced signaling via CCR5 in cells incapable of glycosylation.
Collapse
Affiliation(s)
- Ting Xu
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (T.X.); (A.S.S.); (M.B.-C.); (L.V.); (C.K.G.); (B.A.H.J.)
| | - Anne Sophie Schou
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (T.X.); (A.S.S.); (M.B.-C.); (L.V.); (C.K.G.); (B.A.H.J.)
| | - Jarkko J. Lackman
- Copenhagen Center for Glycomics, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Marina Barrio-Calvo
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (T.X.); (A.S.S.); (M.B.-C.); (L.V.); (C.K.G.); (B.A.H.J.)
- Evaxion Biotech, 2970 Hørsholm, Denmark
| | - Lisa Verhallen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (T.X.); (A.S.S.); (M.B.-C.); (L.V.); (C.K.G.); (B.A.H.J.)
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Christoffer Knak Goth
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (T.X.); (A.S.S.); (M.B.-C.); (L.V.); (C.K.G.); (B.A.H.J.)
- Glx Analytix APS, 2400 Copenhagen, Denmark
| | - Benjamin Anderschou Holbech Jensen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (T.X.); (A.S.S.); (M.B.-C.); (L.V.); (C.K.G.); (B.A.H.J.)
| | | | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.F.V.); (F.C.P.)
| | - Francis C. Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.F.V.); (F.C.P.)
| | - Gertrud Malene Hjortø
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (T.X.); (A.S.S.); (M.B.-C.); (L.V.); (C.K.G.); (B.A.H.J.)
| |
Collapse
|
2
|
Pereira RVS, EzEldeen M, Ugarte-Berzal E, Vandooren J, Martens E, Gouwy M, Ganseman E, Van Damme J, Matthys P, Vranckx JJ, Proost P, Opdenakker G. Protection of stromal cell-derived factor-1 SDF-1/CXCL12 against proteases yields improved skin wound healing. Front Immunol 2024; 15:1359497. [PMID: 39156898 PMCID: PMC11327020 DOI: 10.3389/fimmu.2024.1359497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
SDF-1/CXCL12 is a unique chemotactic factor with multiple functions on various types of precursor cells, all carrying the cognate receptor CXCR4. Whereas individual biological functions of SDF-1/CXCL12 have been well documented, practical applications in medicine are insufficiently studied. This is explained by the complex multifunctional biology of SDF-1 with systemic and local effects, critical dependence of SDF-1 activity on aminoterminal proteolytic processing and limited knowledge of applicable modulators of its activity. We here present new insights into modulation of SDF-1 activity in vitro and in vivo by a macromolecular compound, chlorite-oxidized oxyamylose (COAM). COAM prevented the proteolytic inactivation of SDF-1 by two inflammation-associated proteases: matrix metalloproteinase-9/MMP-9 and dipeptidylpeptidase IV/DPPIV/CD26. The inhibition of proteolytic inactivation was functionally measured by receptor-mediated effects, including intracellular calcium mobilization, ERK1/2 phosphorylation, receptor internalization and chemotaxis of CXCR4-positive cells. Protection of SDF-1/CXCL12 against proteolysis was dependent on electrostatic COAM-SDF-1 interactions. By in vivo experiments in mice, we showed that the combination of COAM with SDF-1 delivered through physiological fibrin hydrogel had beneficial effect for the healing of skin wounds. Collectively, we show that COAM protects SDF-1 from proteolytic inactivation, maintaining SDF-1 biological activities. Thus, protection from proteolysis by COAM represents a therapeutic strategy to prolong SDF-1 bioavailability for wound healing applications.
Collapse
Affiliation(s)
- Rafaela Vaz Sousa Pereira
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mostafa EzEldeen
- Department of Imaging and Pathology, OMFS-IMPATH Research Group KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Oral Health Sciences, KU Leuven and Pediatric Dentistry and Special Dental Care, University Hospitals Leuven, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Eva Ganseman
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jan Jeroen Vranckx
- Department of Development & Regeneration & Department of Plastic & Reconstructive Surgery, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Messina JM, Luo M, Hossan MS, Gadelrab HA, Yang X, John A, Wilmore JR, Luo J. Unveiling cytokine charge disparity as a potential mechanism for immune regulation. Cytokine Growth Factor Rev 2024; 77:1-14. [PMID: 38184374 DOI: 10.1016/j.cytogfr.2023.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
Cytokines are small signaling proteins that regulate the immune responses to infection and tissue damage. Surface charges of cytokines determine their in vivo fate in immune regulation, e.g., half-life and distribution. The overall negative charges in the extracellular microenvironment and the acidosis during inflammation and infection may differentially impact cytokines with different surface charges for fine-tuned immune regulation via controlling tissue residential properties. However, the trend and role of cytokine surface charges has yet to be elucidated in the literature. Interestingly, we have observed that most pro-inflammatory cytokines have a negative charge, while most anti-inflammatory cytokines and chemokines have a positive charge. In this review, we extensively examined the surface charges of all cytokines and chemokines, summarized the pharmacokinetics and tissue adhesion of major cytokines, and analyzed the link of surface charge with cytokine biodistribution, activation, and function in immune regulation. Additionally, we identified that the general trend of charge disparity between pro- and anti-inflammatory cytokines represents a unique opportunity to develop precise immune modulation approaches, which can be applied to many inflammation-associated diseases including solid tumors, chronic wounds, infection, and sepsis.
Collapse
Affiliation(s)
- Jennifer M Messina
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Minghao Luo
- Department of Clinical Medicine, 2nd Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Md Shanewaz Hossan
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Hadil A Gadelrab
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiguang Yang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Anna John
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Joel R Wilmore
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States; Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY 13210, United States.
| |
Collapse
|
4
|
Abstract
For our immune system to contain or eliminate malignant solid tumours, both myeloid and lymphoid haematopoietic cells must not only extravasate from the bloodstream into the tumour tissue but also further migrate to various specialized niches of the tumour microenvironment to functionally interact with each other, with non-haematopoietic stromal cells and, ultimately, with cancer cells. These interactions regulate local immune cell survival, proliferative expansion, differentiation and their execution of pro-tumour or antitumour effector functions, which collectively determine the outcome of spontaneous or therapeutically induced antitumour immune responses. None of these interactions occur randomly but are orchestrated and critically depend on migratory guidance cues provided by chemokines, a large family of chemotactic cytokines, and their receptors. Understanding the functional organization of the tumour immune microenvironment inevitably requires knowledge of the multifaceted roles of chemokines in the recruitment and positioning of its cellular constituents. Gaining such knowledge will not only generate new insights into the mechanisms underlying antitumour immunity or immune tolerance but also inform the development of biomarkers (or 'biopatterns') based on spatial tumour tissue analyses, as well as novel strategies to therapeutically engineer immune responses in patients with cancer. Here we will discuss recent observations on the role of chemokines in the tumour microenvironment in the context of our knowledge of their physiological functions in development, homeostasis and antimicrobial responses.
Collapse
Affiliation(s)
- Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Julia K Lill
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lukas M Altenburger
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Hua E, Xu D, Chen H, Zhang S, Feng J, Xu L. Development of the dipeptidyl peptidase 4 family and its association with lung diseases: a narrative review. J Thorac Dis 2023; 15:7024-7034. [PMID: 38249892 PMCID: PMC10797411 DOI: 10.21037/jtd-23-1158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/10/2023] [Indexed: 01/23/2024]
Abstract
Background and Objective Dipeptidyl peptidase (DPP)4 is a member of a subfamily of serine peptidase S9. DPP4, expressed as a type II transmembrane protein, has a wide tissue distribution and is most active in the lung and small intestine. Many substrates of DPP4 have been identified, including neuropeptides, chemokines, and glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptides (GIPs). DPP4 inhibitors are clinically useful in the treatment of type 2 diabetes mellitus. DPP9, an N-terminal dipeptide targeting enzyme with proline or alanine, may have DPP4-like activity. DPP9 is ubiquitously expressed at human and rodent messenger RNA (mRNA) levels and therefore may play a role in the immune system and epithelial cells. It has been shown that DPP9 plays an important signaling role in the regulation of survival and proliferation pathways and is also involved in cell migration, apoptosis, and cell adhesion. In recent years, there has been further progress in DPP9 inhibition through activation of apoptosis by the inflammasome sensor protein Nlrp1b. This study aims to investigate the association of DPP4 family members and DPP9 with lung disease. Methods The literature search was initiated using the PubMed database. We searched for the content (DPP4) AND (Lung Diseases), (DPP9) AND (Lung Diseases), from which we filtered the literature we needed. Key Content and Findings Given the high biological activity of the DPP4 family, their involvement in various lung diseases is highly relevant. There is growing evidence for the importance of DPP4 and DPP9 of the DPP4 family in lung diseases, which are closely associated with diseases such as asthma, lung infections, pulmonary fibrosis (PF), and lung cancer. Conclusions This review summarizes most of the current evidence that DPP4/9 is associated with lung disease. Within the DPP4 family, the role of DPP4 in particular in respiratory disease is important.
Collapse
Affiliation(s)
- Ershi Hua
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Six People’s Hospital of Nantong), Nantong, China
| | - Dongmei Xu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Huamao Chen
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Shuwen Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Jian Feng
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Liqin Xu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
6
|
Larsen O, Schuermans S, Walser A, Louka S, Lillethorup IA, Våbenø J, Qvortrup K, Proost P, Rosenkilde MM. Chemokine N-terminal-derived peptides differentially regulate signaling by the receptors CCR1 and CCR5. FEBS Lett 2023; 597:3049-3060. [PMID: 37994578 DOI: 10.1002/1873-3468.14778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023]
Abstract
Inflammatory chemokines are often elevated in disease settings, where the largest group of CC-chemokines are the macrophage inflammatory proteins (MIP), which are promiscuous for the receptors CCR1 and CCR5. MIP chemokines, such as CCL3 and CCL5 are processed at the N terminus, which influences signaling in a highly diverse manner. Here, we investigate the signaling capacity of peptides corresponding to truncated N termini. These 3-10-residue peptides displayed weak potency but, surprisingly, retained their signaling on CCR1. In contrast, none of the peptides generated a signal on CCR5, but a CCL3-derived tetrapeptide was a positive modulator boosting the signal of several chemokine variants on CCR5. In conclusion, chemokine N termini can be mimicked to produce small CCR1-selective agonists, as well as CCR5-selective modulators.
Collapse
Affiliation(s)
- Olav Larsen
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Sara Schuermans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Anna Walser
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Stavroula Louka
- Department of Chemistry, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | - Jon Våbenø
- Helgeland Hospital Trust, Sandnessjøen, Norway
| | - Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Mette M Rosenkilde
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
7
|
Tian Y, Kong L, Li Y, Liao Z, Cai X, Deng S, Yang X, Zhang B, Wang Y, Zhang Z, Wu B, Wen L, Huang F, Hu Y, Wan C, Liao Y, Sun Y, Yang K. Dipeptidyl peptidase 4 inhibition sensitizes radiotherapy by promoting T cell infiltration. Oncoimmunology 2023; 12:2268257. [PMID: 37849962 PMCID: PMC10578189 DOI: 10.1080/2162402x.2023.2268257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023] Open
Abstract
Radiotherapy could regulate systemic antitumor immunity, while the immune state in the tumor microenvironment (TME) also affects the efficacy of radiotherapy. We have found that higher CD8+ T cell infiltration is associated with longer overall survival of lung adenocarcinoma and melanoma patients receiving radiotherapy. 8-Gray radiation increased the transcriptional levels of chemokines in tumor cells in vitro. However, it was not sufficient to induce significant lymphocyte infiltration in vivo. Dipeptidyl peptidase 4 (DPP4) has been reported to inactivate chemokines via post-translational truncation. Single-cell sequencing revealed that dendritic cells (DCs) had a higher DPP4 expression among other cells in the TME and upregulated DPP4 expression after radiation. Combining a DPP4 inhibitor with radiotherapy could promote chemokines expression and T cell infiltration in the TME, enhancing the antitumor effect of radiotherapy. Moreover, this therapy further enhanced the therapeutic efficacy of anti-PD-1. In this study, we demonstrated the underlying mechanism of why radiotherapy failed to induce sufficient T cell infiltration and proposed an effective strategy to promote T cell infiltration and sensitize radiotherapy. These findings demonstrate the translational value of DPP4 inhibition as a complementary approach to enhance the efficacy of radiotherapy and the combination of radiotherapy with immunotherapy.
Collapse
Affiliation(s)
- Yu Tian
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Lingyi Kong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Yan Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Zhiyun Liao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Xing Cai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Suke Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Xiao Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Bin Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Yijun Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Zhanjie Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Lu Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Fang Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Yifei Liao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Roy AN, Gupta AM, Banerjee D, Chakrabarti J, Raghavendra PB. Unraveling DPP4 Receptor Interactions with SARS-CoV-2 Variants and MERS-CoV: Insights into Pulmonary Disorders via Immunoinformatics and Molecular Dynamics. Viruses 2023; 15:2056. [PMID: 37896834 PMCID: PMC10612102 DOI: 10.3390/v15102056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Human coronaviruses like MERS CoV are known to utilize dipeptidyl peptidase 4 (DPP4), apart from angiotensin-converting enzyme 2(ACE2) as a potential co-receptor for viral cell entry. DPP4, the ubiquitous membrane-bound aminopeptidase, is closely associated with elevation of disease severity in comorbidities. In SARS-CoV-2, there is inadequate evidence for combination of spike protein variants with DPP4, and underlying adversity in COVID-19. To elucidate this mechanistic basis, we have investigated interaction of spike protein variants with DPP4 through molecular docking and simulation studies. The possible binding interactions between the receptor binding domain (RBD) of different spike variants of SARS-CoV-2 and DPP4 have been compared with interactions observed in the experimentally determined structure of the complex of MERS-CoV with DPP4. Comparative binding affinity confers that Delta-CoV-2: DPP4 shows close proximity with MERS-CoV:DPP4, as depicted from accessible surface area, radius of gyration and number of hydrogen bonding in the interface. Mutations in the delta variant, L452R and T478K directly participate in DPP4 interaction, enhancing DPP4 binding. E484K in alpha and gamma variants of spike protein is also found to interact with DPP4. Hence, DPP4 interaction with spike protein becomes more suitable due to mutation, especially due to L452R, T478K and E484K. Furthermore, perturbation in the nearby residues Y495, Q474 and Y489 is evident due to L452R, T478K and E484K, respectively. Virulent strains of spike protein are more susceptible to DPP4 interaction and are prone to be victimized in patients due to comorbidities. Our results will aid the rational optimization of DPP4 as a potential therapeutic target to manage COVID-19 disease severity.
Collapse
Affiliation(s)
- Arpan Narayan Roy
- National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India; (A.N.R.); (D.B.)
| | - Aayatti Mallick Gupta
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, West Bengal, India; (A.M.G.); (J.C.)
| | - Deboshmita Banerjee
- National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India; (A.N.R.); (D.B.)
| | - Jaydeb Chakrabarti
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, West Bengal, India; (A.M.G.); (J.C.)
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, West Bengal, India
| | - Pongali B. Raghavendra
- National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India; (A.N.R.); (D.B.)
| |
Collapse
|
9
|
Rossetti DV, Muntiu A, Massimi L, Tamburrini G, Desiderio C. Citrullination Post-Translational Modification: State of the Art of Brain Tumor Investigations and Future Perspectives. Diagnostics (Basel) 2023; 13:2872. [PMID: 37761239 PMCID: PMC10529966 DOI: 10.3390/diagnostics13182872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
The present review aims to describe the state of the art of research studies investigating the citrullination post-translational modification in adult and pediatric brain tumors. After an introduction to the deimination reaction and its occurrence in proteins and polypeptide chains, the role of the citrullination post-translational modification in physiological as well as pathological states, including cancer, is summarized, and the recent literature and review papers on the topic are examined. A separate section deals with the specific focus of investigation of the citrullination post-translational modification in relation to brain tumors, examining the state of the art of the literature that mainly concerns adult and pediatric glioblastoma and posterior fossa pediatric tumors. We examined the literature on this emerging field of research, and we apologize in advance for any possible omission. Although only a few studies inspecting citrullination in brain tumors are currently available, the results interestingly highlighted different profiles of the citrullinome associated with different histotypes. The data outlined the importance of this post-translational modification in modulating cancer invasion and chemoresistance, influencing key factors involved in apoptosis, cancer cell communication through extracellular vesicle release, autophagy, and gene expression processes, which suggests the prospect of taking citrullination as a target of cancer treatment or as a source of potential diagnostic and prognostic biomarkers for potential clinical applications in the future.
Collapse
Affiliation(s)
- Diana Valeria Rossetti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy;
| | - Alexandra Muntiu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Luca Massimi
- UOC Neurochirurgia Infantile, Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (L.M.); (G.T.)
| | - Gianpiero Tamburrini
- UOC Neurochirurgia Infantile, Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (L.M.); (G.T.)
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy;
| |
Collapse
|
10
|
Cambier S, Beretta F, Pörtner N, Metzemaekers M, de Carvalho AC, Martens E, Kaes J, Aelbrecht C, Jacobs C, Van Mol P, Wauters E, Meersseman P, Hermans G, Marques RE, Vanaudenaerde B, Vos R, Wauters J, Gouwy M, Proost P. Proteolytic inactivation of CXCL12 in the lungs and circulation of COVID-19 patients. Cell Mol Life Sci 2023; 80:234. [PMID: 37505242 PMCID: PMC11073220 DOI: 10.1007/s00018-023-04870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
The human chemokine stromal cell-derived factor-1 (SDF-1) or CXCL12 is involved in several homeostatic processes and pathologies through interaction with its cognate G protein-coupled receptor CXCR4. Recent research has shown that CXCL12 is present in the lungs and circulation of patients with coronavirus disease 2019 (COVID-19). However, the question whether the detected CXCL12 is bioactive was not addressed. Indeed, the activity of CXCL12 is regulated by NH2- and COOH-terminal post-translational proteolysis, which significantly impairs its biological activity. The aim of the present study was to characterize proteolytic processing of CXCL12 in broncho-alveolar lavage (BAL) fluid and blood plasma samples from critically ill COVID-19 patients. Therefore, we optimized immunosorbent tandem mass spectrometry proteoform analysis (ISTAMPA) for detection of CXCL12 proteoforms. In patient samples, this approach uncovered that CXCL12 is rapidly processed by site-specific NH2- and COOH-terminal proteolysis and ultimately degraded. This proteolytic inactivation occurred more rapidly in COVID-19 plasma than in COVID-19 BAL fluids, whereas BAL fluid samples from stable lung transplantation patients and the non-affected lung of lung cancer patients (control groups) hardly induced any processing of CXCL12. In COVID-19 BAL fluids with high proteolytic activity, processing occurred exclusively NH2-terminally and was predominantly mediated by neutrophil elastase. In low proteolytic activity BAL fluid and plasma samples, NH2- and COOH-terminal proteolysis by CD26 and carboxypeptidases were observed. Finally, protease inhibitors already approved for clinical use such as sitagliptin and sivelestat prevented CXCL12 processing and may therefore be of pharmacological interest to prolong CXCL12 half-life and biological activity in vivo.
Collapse
Affiliation(s)
- Seppe Cambier
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Rega - Herestraat 49, Box 1042, 3000, Leuven, Belgium
| | - Fabio Beretta
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Rega - Herestraat 49, Box 1042, 3000, Leuven, Belgium
| | - Noëmie Pörtner
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Rega - Herestraat 49, Box 1042, 3000, Leuven, Belgium
| | - Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Rega - Herestraat 49, Box 1042, 3000, Leuven, Belgium
| | - Ana Carolina de Carvalho
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Rega - Herestraat 49, Box 1042, 3000, Leuven, Belgium
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Erik Martens
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Janne Kaes
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Celine Aelbrecht
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Cato Jacobs
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Pierre Van Mol
- Laboratory of Translational Genetics, Department of Human Genetics, VIB-KU Leuven, Leuven, Belgium
| | - Els Wauters
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Philippe Meersseman
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Greet Hermans
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Bart Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Robin Vos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Joost Wauters
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Rega - Herestraat 49, Box 1042, 3000, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Rega - Herestraat 49, Box 1042, 3000, Leuven, Belgium.
| |
Collapse
|
11
|
Hipp AV, Bengsch B, Globig AM. Friend or Foe - Tc17 cell generation and current evidence for their importance in human disease. DISCOVERY IMMUNOLOGY 2023; 2:kyad010. [PMID: 38567057 PMCID: PMC10917240 DOI: 10.1093/discim/kyad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 04/04/2024]
Abstract
The term Tc17 cells refers to interleukin 17 (IL-17)-producing CD8+ T cells. While IL-17 is an important mediator of mucosal defense, it is also centrally involved in driving the inflammatory response in immune-mediated diseases, such as psoriasis, multiple sclerosis, and inflammatory bowel disease. In this review, we aim to gather the current knowledge on the phenotypic and transcriptional profile, the in vitro and in vivo generation of Tc17 cells, and the evidence pointing towards a relevant role of Tc17 cells in human diseases such as infectious diseases, cancer, and immune-mediated diseases.
Collapse
Affiliation(s)
- Anna Veronika Hipp
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Bertram Bengsch
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Anna-Maria Globig
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
12
|
Park JYC, King A, Björk V, English BW, Fedintsev A, Ewald CY. Strategic outline of interventions targeting extracellular matrix for promoting healthy longevity. Am J Physiol Cell Physiol 2023; 325:C90-C128. [PMID: 37154490 DOI: 10.1152/ajpcell.00060.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
The extracellular matrix (ECM), composed of interlinked proteins outside of cells, is an important component of the human body that helps maintain tissue architecture and cellular homeostasis. As people age, the ECM undergoes changes that can lead to age-related morbidity and mortality. Despite its importance, ECM aging remains understudied in the field of geroscience. In this review, we discuss the core concepts of ECM integrity, outline the age-related challenges and subsequent pathologies and diseases, summarize diagnostic methods detecting a faulty ECM, and provide strategies targeting ECM homeostasis. To conceptualize this, we built a technology research tree to hierarchically visualize possible research sequences for studying ECM aging. This strategic framework will hopefully facilitate the development of future research on interventions to restore ECM integrity, which could potentially lead to the development of new drugs or therapeutic interventions promoting health during aging.
Collapse
Affiliation(s)
- Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Aaron King
- Foresight Institute, San Francisco, California, United States
| | | | - Bradley W English
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | | | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
13
|
Cecchinato V, Martini V, Pirani E, Ghovehoud E, Uguccioni M. The chemokine landscape: one system multiple shades. Front Immunol 2023; 14:1176619. [PMID: 37251376 PMCID: PMC10213763 DOI: 10.3389/fimmu.2023.1176619] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Leukocyte trafficking is mainly governed by chemokines, chemotactic cytokines, which can be concomitantly produced in tissues during homeostatic conditions or inflammation. After the discovery and characterization of the individual chemokines, we and others have shown that they present additional properties. The first discoveries demonstrated that some chemokines act as natural antagonists on chemokine receptors, and prevent infiltration of leukocyte subsets in tissues. Later on it was shown that they can exert a repulsive effect on selective cell types, or synergize with other chemokines and inflammatory mediators to enhance chemokine receptors activities. The relevance of the fine-tuning modulation has been demonstrated in vivo in a multitude of processes, spanning from chronic inflammation to tissue regeneration, while its role in the tumor microenvironment needs further investigation. Moreover, naturally occurring autoantibodies targeting chemokines were found in tumors and autoimmune diseases. More recently in SARS-CoV-2 infection, the presence of several autoantibodies neutralizing chemokine activities distinguished disease severity, and they were shown to be beneficial, protecting from long-term sequelae. Here, we review the additional properties of chemokines that influence cell recruitment and activities. We believe these features need to be taken into account when designing novel therapeutic strategies targeting immunological disorders.
Collapse
|
14
|
Matsumoto A, Hiroi M, Mori K, Yamamoto N, Ohmori Y. Differential Anti-Tumor Effects of IFN-Inducible Chemokines CXCL9, CXCL10, and CXCL11 on a Mouse Squamous Cell Carcinoma Cell Line. Med Sci (Basel) 2023; 11:medsci11020031. [PMID: 37218983 DOI: 10.3390/medsci11020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 05/24/2023] Open
Abstract
Chemokines are a group of cytokines involved in the mobilization of leukocytes, which play a role in host defense and a variety of pathological conditions, including cancer. Interferon (IFN)-inducible chemokines C-X-C motif ligand 9 (CXCL), CXCL10, and CXCL11 are anti-tumor chemokines; however, the differential anti-tumor effects of IFN-inducible chemokines are not completely understood. In this study, we investigated the anti-tumor effects of IFN-inducible chemokines by transferring chemokine expression vectors into a mouse squamous cell carcinoma cell line, SCCVII, to generate a cell line stably expressing chemokines and transplanted it into nude mice. The results showed that CXCL9- and CXCL11-expressing cells markedly inhibited tumor growth, whereas CXCL10-expressing cells did not inhibit growth. The NH2-terminal amino acid sequence of mouse CXCL10 contains a cleavage sequence by dipeptidyl peptidase 4 (DPP4), an enzyme that cleaves the peptide chain of chemokines. IHC staining indicated DPP4 expression in the stromal tissue, suggesting CXCL10 inactivation. These results suggest that the anti-tumor effects of IFN-inducible chemokines are affected by the expression of chemokine-cleaving enzymes in tumor tissues.
Collapse
Affiliation(s)
- Ari Matsumoto
- Division of Oral and Maxillofacial Surgery, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado 350-0283, Japan
| | - Miki Hiroi
- Division of Basic Biology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado 350-0283, Japan
| | - Kazumasa Mori
- Division of Oral and Maxillofacial Surgery, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado 350-0283, Japan
| | - Nobuharu Yamamoto
- Division of Oral and Maxillofacial Surgery, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado 350-0283, Japan
| | - Yoshihiro Ohmori
- Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado 350-0283, Japan
| |
Collapse
|
15
|
Sharbatdar Y, Mousavian R, Noorbakhsh Varnosfaderani SM, Aziziyan F, Liaghat M, Baziyar P, Yousefi Rad A, Tavakol C, Moeini AM, Nabi-Afjadi M, Zalpoor H, Kazemi-Lomedasht F. Diabetes as one of the long-term COVID-19 complications: from the potential reason of more diabetic patients' susceptibility to COVID-19 to the possible caution of future global diabetes tsunami. Inflammopharmacology 2023; 31:1029-1052. [PMID: 37079169 PMCID: PMC10116486 DOI: 10.1007/s10787-023-01215-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 03/27/2023] [Indexed: 04/21/2023]
Abstract
According to recent researches, people with diabetes mellitus (type 1 and 2) have a higher incidence of coronavirus disease 2019 (COVID-19), which is caused by a SARS-CoV-2 infection. In this regard, COVID-19 may make diabetic patients more sensitive to hyperglycemia by modifying the immunological and inflammatory responses and increasing reactive oxygen species (ROS) predisposing the patients to severe COVID-19 and potentially lethal results. Actually, in addition to COVID-19, diabetic patients have been demonstrated to have abnormally high levels of inflammatory cytokines, increased virus entrance, and decreased immune response. On the other hand, during the severe stage of COVID-19, the SARS-CoV-2-infected patients have lymphopenia and inflammatory cytokine storms that cause damage to several body organs such as β cells of the pancreas which may make them as future diabetic candidates. In this line, the nuclear factor kappa B (NF-κB) pathway, which is activated by a number of mediators, plays a substantial part in cytokine storms through various pathways. In this pathway, some polymorphisms also make the individuals more competent to diabetes via infection with SARS-CoV-2. On the other hand, during hospitalization of SARS-CoV-2-infected patients, the use of some drugs may unintentionally lead to diabetes in the future via increasing inflammation and stress oxidative. Thus, in this review, we will first explain why diabetic patients are more susceptible to COVID-19. Second, we will warn about a future global diabetes tsunami via the SARS-CoV-2 as one of its long-term complications.
Collapse
Affiliation(s)
- Yasamin Sharbatdar
- Department of Anesthesiology, School of Allied Medical Sciences, Ahvaz Jundishapur, University of Medical Sciences, Ahvaz, Iran
| | - Ronak Mousavian
- Department of Clinical Biochemistry, School of Medicine, Cellular and Molecular Research Center, Medical Basic Science Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, University of Tarbiat Modares, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Liaghat
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Ali Yousefi Rad
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Chanour Tavakol
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mansour Moeini
- Department of Internal Medicine, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, University of Tarbiat Modares, Tehran, Iran.
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
16
|
Cambier S, Gouwy M, Proost P. The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell Mol Immunol 2023; 20:217-251. [PMID: 36725964 PMCID: PMC9890491 DOI: 10.1038/s41423-023-00974-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/12/2022] [Indexed: 02/03/2023] Open
Abstract
Chemokines are an indispensable component of our immune system through the regulation of directional migration and activation of leukocytes. CXCL8 is the most potent human neutrophil-attracting chemokine and plays crucial roles in the response to infection and tissue injury. CXCL8 activity inherently depends on interaction with the human CXC chemokine receptors CXCR1 and CXCR2, the atypical chemokine receptor ACKR1, and glycosaminoglycans. Furthermore, (hetero)dimerization and tight regulation of transcription and translation, as well as post-translational modifications further fine-tune the spatial and temporal activity of CXCL8 in the context of inflammatory diseases and cancer. The CXCL8 interaction with receptors and glycosaminoglycans is therefore a promising target for therapy, as illustrated by multiple ongoing clinical trials. CXCL8-mediated neutrophil mobilization to blood is directly opposed by CXCL12, which retains leukocytes in bone marrow. CXCL12 is primarily a homeostatic chemokine that induces migration and activation of hematopoietic progenitor cells, endothelial cells, and several leukocytes through interaction with CXCR4, ACKR1, and ACKR3. Thereby, it is an essential player in the regulation of embryogenesis, hematopoiesis, and angiogenesis. However, CXCL12 can also exert inflammatory functions, as illustrated by its pivotal role in a growing list of pathologies and its synergy with CXCL8 and other chemokines to induce leukocyte chemotaxis. Here, we review the plethora of information on the CXCL8 structure, interaction with receptors and glycosaminoglycans, different levels of activity regulation, role in homeostasis and disease, and therapeutic prospects. Finally, we discuss recent research on CXCL12 biochemistry and biology and its role in pathology and pharmacology.
Collapse
Affiliation(s)
- Seppe Cambier
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| |
Collapse
|
17
|
Dallavalasa S, Tulimilli SV, Prakash J, Ramachandra R, Madhunapantula SV, Veeranna RP. COVID-19: Diabetes Perspective-Pathophysiology and Management. Pathogens 2023; 12:pathogens12020184. [PMID: 36839456 PMCID: PMC9967788 DOI: 10.3390/pathogens12020184] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Recent evidence relating to the impact of COVID-19 on people with diabetes is limited but continues to emerge. COVID-19 pneumonia is a newly identified illness spreading rapidly throughout the world and causes many disabilities and fatal deaths. Over the ensuing 2 years, the indirect effects of the pandemic on healthcare delivery have become prominent, along with the lingering effects of the virus on those directly infected. Diabetes is a commonly identified risk factor that contributes not only to the severity and mortality of COVID-19 patients, but also to the associated complications, including acute respiratory distress syndrome (ARDS) and multi-organ failure. Diabetic patients are highly affected due to increased viral entry into the cells and decreased immunity. Several hypotheses to explain the increased incidence and severity of COVID-19 infection in people with diabetes have been proposed and explained in detail recently. On the other hand, 20-50% of COVID-19 patients reported new-onset hyperglycemia without diabetes and new-onset diabetes, suggesting the two-way interactions between COVID-19 and diabetes. A systematic review is required to confirm diabetes as a complication in those patients diagnosed with COVID-19. Diabetes and diabetes-related complications in COVID-19 patients are primarily due to the acute illness caused during the SARS-CoV-2 infection followed by the release of glucocorticoids, catecholamines, and pro-inflammatory cytokines, which have been shown to drive hyperglycemia positively. This review provides brief insights into the potential mechanisms linking COVID-19 and diabetes, and presents clinical management recommendations for better handling of the disease.
Collapse
Affiliation(s)
- Siva Dallavalasa
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Centre), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India
| | - SubbaRao V. Tulimilli
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Centre), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India
| | - Janhavi Prakash
- Department of Biochemistry, Council of Scientific and Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India
| | - Ramya Ramachandra
- Department of Biochemistry, Council of Scientific and Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Centre), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India
- Leader, Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India
| | - Ravindra P. Veeranna
- Department of Biochemistry, Council of Scientific and Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India
- Correspondence:
| |
Collapse
|
18
|
Søndergaard CS, Esquivel PN, Dalamaga M, Magkos F. Use of Antihyperglycemic Drugs and Risk of Cancer in Patients with Diabetes. Curr Oncol Rep 2023; 25:29-40. [PMID: 36445570 DOI: 10.1007/s11912-022-01344-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Diabetes is associated with an increased risk for several types of cancer. Therefore, use of antihyperglycemic medications to lower blood glucose may modify cancer risk. Here we review available data on the link between the most common classes of antihyperglycemic agents and cancer risk among patients with diabetes. RECENT FINDINGS A database search was conducted between February 2022 and June 2022 on PubMed and Embase for systematic reviews and meta-analyses investigating the association between antihyperglycemic agents and risk of cancer. Use of biguanides such as metformin is associated with 20-30% lower risk for all cancer incidence, and somewhat greater benefit for cancer-related mortality. Alpha-glucosidase inhibitors, e.g., acarbose, have not been consistently associated with cancer. Similarly, no consistent effects have been reported for thiazolidinediones, but the relationship with cancer seems to depend on the type of drug, dose, and duration of treatment. Exposure to various types of incretin-based therapies (glucagon-like peptide-1 agonists and dipeptidyl peptidase-4 inhibitors) has not been found to significantly modify cancer risk. Inhibitors of sodium glucose cotransporter-2 may raise risk for bladder cancer and reduce risk for gastrointestinal cancer. Use of insulin and insulin analogs is associated with a significant increase in total cancer risk by almost 50% compared to other antihyperglycemic drugs. Likewise, insulin secretagogues like sulfonylureas have generally been linked to greater risk for cancer by ~ 20%, although these associations may be agent-specific and dose-dependent. Current evidence suggests that the risk of cancer associated with the use of antihyperglycemic medications among patients with diabetes depends on the class of drug and type of agent, dosage, and duration of treatment. More research is needed to delineate the mechanisms by which these agents affect the process of carcinogenesis.
Collapse
Affiliation(s)
- Christian Sümeghy Søndergaard
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Copenhagen, Denmark
| | - Paulina Nuñez Esquivel
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Copenhagen, Denmark
| | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Faidon Magkos
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Copenhagen, Denmark.
| |
Collapse
|
19
|
Gakharia T, Bakhtadze S, Lim M, Khachapuridze N, Kapanadze N. Alterations of Plasma Pro-Inflammatory Cytokine Levels in Children with Refractory Epilepsies. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9101506. [PMID: 36291442 PMCID: PMC9600205 DOI: 10.3390/children9101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
Paediatric epilepsy is a multifaceted neurological disorder with various aetiologies. Up to 30% of patients are considered drug-resistant. The background impact of interfering inflammatory and neuronal pathways has been closely linked to paediatric epilepsy. The characteristics of the inflamed state have been described not only in epilepsies, which are considered prototypes of an inflammatory pathophysiology, but also in patients with drug-resistant epilepsy, especially in epileptic encephalopathies. The imbalance of different cytokine levels was confirmed in several epileptic models. Chemokines are new targets for exploring neuroimmune communication in epileptogenesis, which control leukocyte migration and have a possible role in neuromodulation. Additionally, prostaglandin E2 (PGE2) is an important effector molecule for central neural inflammatory responses and may influence drug responsiveness. We measured the serum interictal quantitative levels of chemokines (CCL2, CCL4, CCL11) and PGE2 in correlation with the seizure frequency and severity in controlled and intractable childhood epilepsies. Our refractory seizure group demonstrated significantly increased concentrations of eotaxin (CCL11) compared to the controlled epilepsy group. The higher level of CCL11 was correlated with an increased seizure frequency, while the PGE2 levels were associated with the severity of seizure and epilepsy, supporting the findings that proinflammatory cytokines may contribute to epileptogenesis and possibly have a role in developing seizure resistance.
Collapse
Affiliation(s)
- Tatia Gakharia
- Department of Childs Neurology, Tbilisi State Medical University, 0186 Tbilisi, Georgia
- Correspondence: ; Tel.: +995-592933291
| | - Sophia Bakhtadze
- Department of Childs Neurology, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| | - Ming Lim
- Evelina London Children’s Hospital @ Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
- Women’s and Children’s Department, Faculty of Life Sciences and Medicine, Kings College London, London SE1 7EH, UK
| | - Nana Khachapuridze
- Department of Childs Neurology, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| | - Nana Kapanadze
- Department of Childs Neurology, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| |
Collapse
|
20
|
Brandt EF, Baues M, Wirtz TH, May JN, Fischer P, Beckers A, Schüre BC, Sahin H, Trautwein C, Lammers T, Berres ML. Chemokine CXCL10 Modulates the Tumor Microenvironment of Fibrosis-Associated Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms23158112. [PMID: 35897689 PMCID: PMC9329882 DOI: 10.3390/ijms23158112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes a devastating health burden. Recently, tumor microenvironment-directed interventions have profoundly changed the landscape of HCC therapy. In the present study, the function of the chemokine CXCL10 during fibrosis-associated hepatocarcinogenesis was analyzed with specific focus on its impact in shaping the tumor microenvironment. C57BL/6J wild type (WT) and Cxcl10 knockout mice (Cxcl10−/−) were treated with diethylnitrosamine (DEN) and tetrachloromethane (CCl4) to induce fibrosis-associated HCCs. Cxcl10 deficiency attenuated hepatocarcinogenesis by decreasing tumor cell proliferation as well as tumor vascularization and modulated tumor-associated extracellular matrix composition. Furthermore, the genetic inactivation of Cxcl10 mediated an alteration of the tumor-associated immune response and modified chemokine/chemokine receptor networks. The DEN/CCl4-treated Cxcl10−/− mice presented with a pro-inflammatory tumor microenvironment and an accumulation of anti-tumoral immune cells in the tissue. The most striking alteration in the Cxcl10−/− tumor immune microenvironment was a vast accumulation of anti-tumoral T cells in the invasive tumor margin. In summary, our results demonstrate that CXCL10 exerts a non-redundant impact on several hallmarks of the tumor microenvironment and especially modulates the infiltration of anti-tumorigenic immune cells in HCC. In the era of microenvironment-targeted HCC therapies, interfering with CXCL10 defines a novel asset for further improvement of therapeutic strategies.
Collapse
Affiliation(s)
- Elisa F. Brandt
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (E.F.B.); (T.H.W.); (P.F.); (A.B.); (H.S.); (C.T.)
| | - Maike Baues
- Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, 52074 Aachen, Germany; (M.B.); (J.-N.M.); (B.-C.S.); (T.L.)
| | - Theresa H. Wirtz
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (E.F.B.); (T.H.W.); (P.F.); (A.B.); (H.S.); (C.T.)
| | - Jan-Niklas May
- Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, 52074 Aachen, Germany; (M.B.); (J.-N.M.); (B.-C.S.); (T.L.)
| | - Petra Fischer
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (E.F.B.); (T.H.W.); (P.F.); (A.B.); (H.S.); (C.T.)
| | - Anika Beckers
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (E.F.B.); (T.H.W.); (P.F.); (A.B.); (H.S.); (C.T.)
| | - Björn-Carsten Schüre
- Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, 52074 Aachen, Germany; (M.B.); (J.-N.M.); (B.-C.S.); (T.L.)
| | - Hacer Sahin
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (E.F.B.); (T.H.W.); (P.F.); (A.B.); (H.S.); (C.T.)
| | - Christian Trautwein
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (E.F.B.); (T.H.W.); (P.F.); (A.B.); (H.S.); (C.T.)
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, 52074 Aachen, Germany; (M.B.); (J.-N.M.); (B.-C.S.); (T.L.)
| | - Marie-Luise Berres
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany; (E.F.B.); (T.H.W.); (P.F.); (A.B.); (H.S.); (C.T.)
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
21
|
Zainal AA, Merkhan MM. IMPACT OF ANTIDIABETIC DRUGS ON RISK AND OUTCOME OF COVID-19 INFECTION: A REVIEW. MILITARY MEDICAL SCIENCE LETTERS 2022; 91:140-160. [DOI: 10.31482/mmsl.2022.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Proline-specific peptidase activities (DPP4, PRCP, FAP and PREP) in plasma of hospitalized COVID-19 patients. Clin Chim Acta 2022; 531:4-11. [PMID: 35283094 PMCID: PMC8920094 DOI: 10.1016/j.cca.2022.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/18/2022] [Accepted: 03/06/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND COVID-19 patients experience several features of dysregulated immune system observed in sepsis. We previously showed a dysregulation of several proline-selective peptidases such as dipeptidyl peptidase 4 (DPP4), fibroblast activation protein alpha (FAP), prolyl oligopeptidase (PREP) and prolylcarboxypeptidase (PRCP) in sepsis. In this study, we investigated whether these peptidases are similarly dysregulated in hospitalized COVID-19 patients. METHODS Fifty-six hospitalized COVID-19 patients and 32 healthy controls were included. Enzymatic activities of DPP4, FAP, PREP and PRCP were measured in samples collected shortly after hospital admission and in longitudinal follow-up samples. RESULTS Compared to healthy controls, both DPP4 and FAP activities were significantly lower in COVID-19 patients at hospital admission and FAP activity further decreased significantly in the first week of hospitalization. While PRCP activity remained unchanged, PREP activity was significantly increased in COVID-19 patients at hospitalization and further increased during hospital stay and stayed elevated until the day of discharge. CONCLUSION The changes in activities of proline-selective peptidases in plasma are very similar in COVID-19 and septic shock patients. The pronounced decrease in FAP activity deserves further investigation, both from a pathophysiological viewpoint and as its utility as a part of a biomarker panel.
Collapse
|
23
|
Does DPP-IV Inhibition Offer New Avenues for Therapeutic Intervention in Malignant Disease? Cancers (Basel) 2022; 14:cancers14092072. [PMID: 35565202 PMCID: PMC9103952 DOI: 10.3390/cancers14092072] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary There is growing interest in identifying the effects of antidiabetic agents on cancer risk, progression, and anti-cancer treatment due to the long-term use of these medications and the inherently increased risk of malignancies in diabetic patients. Tumor development and progression are affected by multiple mediators in the tumor microenvironment, several of which may be proteolytically modified by the multifunctional protease dipeptidyl peptidase-IV (DPP-IV, CD26). Currently, low-molecular-weight DPP-IV inhibitors (gliptins) are used in patients with type 2 diabetes based on the observation that DPP-IV inhibition enhances insulin secretion by increasing the bioavailability of incretins. However, the DPP-IV-mediated cleavage of other biopeptides and chemokines is also prevented by gliptins. The potential utility of gliptins in other areas of medicine, including cancer, is therefore being evaluated. Here, we critically review the existing evidence on the role of DPP-IV inhibitors in cancer pathogenesis, their potential to be used in anti-cancer treatment, and the possible perils associated with this approach. Abstract Dipeptidyl peptidase IV (DPP-IV, CD26) is frequently dysregulated in cancer and plays an important role in regulating multiple bioactive peptides with the potential to influence cancer progression and the recruitment of immune cells. Therefore, it represents a potential contributing factor to cancer pathogenesis and an attractive therapeutic target. Specific DPP-IV inhibitors (gliptins) are currently used in patients with type 2 diabetes mellitus to promote insulin secretion by prolonging the activity of the incretins glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Nevertheless, the modulation of the bioavailability and function of other DPP-IV substrates, including chemokines, raises the possibility that the use of these orally administered drugs with favorable side-effect profiles might be extended beyond the treatment of hyperglycemia. In this review, we critically examine the possible utilization of DPP-IV inhibition in cancer prevention and various aspects of cancer treatment and discuss the potential perils associated with the inhibition of DPP-IV in cancer. The current literature is summarized regarding the possible chemopreventive and cytotoxic effects of gliptins and their potential utility in modulating the anti-tumor immune response, enhancing hematopoietic stem cell transplantation, preventing acute graft-versus-host disease, and alleviating the side-effects of conventional anti-tumor treatments.
Collapse
|
24
|
Filidou E, Kandilogiannakis L, Tarapatzi G, Spathakis M, Steiropoulos P, Mikroulis D, Arvanitidis K, Paspaliaris V, Kolios G. Anti-Inflammatory and Anti-Fibrotic Effect of Immortalized Mesenchymal-Stem-Cell-Derived Conditioned Medium on Human Lung Myofibroblasts and Epithelial Cells. Int J Mol Sci 2022; 23:ijms23094570. [PMID: 35562961 PMCID: PMC9102072 DOI: 10.3390/ijms23094570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is caused by progressive lung tissue impairment due to extended chronic fibrosis, and it has no known effective treatment. The use of conditioned media (CM) from an immortalized human adipose mesenchymal stem cell line could be a promising therapeutic strategy, as it can reduce both fibrotic and inflammatory responses. We aimed to investigate the anti-inflammatory and anti-fibrotic effect of CM on human pulmonary subepithelial myofibroblasts (hPSM) and on A549 pulmonary epithelial cells, treated with pro-inflammatory or pro-fibrotic mediators. CM inhibited the proinflammatory cytokine-induced mRNA and protein production of various chemokines in both hPSMs and A549 cells. It also downregulated the mRNA expression of IL-1α, but upregulated IL-1β and IL-6 mRNA production in both cell types. CM downregulated the pro-fibrotic-induced mRNA expression of collagen Type III and the migration rate of hPSMs, but upregulated fibronectin mRNA production and the total protein collagen secretion. CM's direct effect on the chemotaxis and cell recruitment of immune-associated cells, and its indirect effect on fibrosis through the significant decrease in the migration capacity of hPSMs, makes it a plausible candidate for further development towards a therapeutic treatment for IPF.
Collapse
Affiliation(s)
- Eirini Filidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (L.K.); (G.T.); (M.S.); (K.A.); (G.K.)
| | - Leonidas Kandilogiannakis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (L.K.); (G.T.); (M.S.); (K.A.); (G.K.)
| | - Gesthimani Tarapatzi
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (L.K.); (G.T.); (M.S.); (K.A.); (G.K.)
| | - Michail Spathakis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (L.K.); (G.T.); (M.S.); (K.A.); (G.K.)
| | - Paschalis Steiropoulos
- Department of Pneumonology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Dimitrios Mikroulis
- Department of Cardiac Surgery, Democritus University of Thrace, University Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece;
| | - Konstantinos Arvanitidis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (L.K.); (G.T.); (M.S.); (K.A.); (G.K.)
| | - Vasilis Paspaliaris
- Vasilis Paspaliaris, Tithon Biotech Inc., 11440 West Bernardo Court, Suite 300, San Diego, CA 92127, USA
- Correspondence: ; Tel./Fax: +1-88-8780-2639
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (L.K.); (G.T.); (M.S.); (K.A.); (G.K.)
| |
Collapse
|
25
|
Wilk-Sledziewska K, Sielatycki PJ, Uscinska N, Bujno E, Rosolowski M, Kakareko K, Sledziewski R, Rydzewska-Rosolowska A, Hryszko T, Zbroch E. The Impact of Cardiovascular Risk Factors on the Course of COVID-19. J Clin Med 2022; 11:2250. [PMID: 35456343 PMCID: PMC9026388 DOI: 10.3390/jcm11082250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
AIM OF THE STUDY The aim of our review is to indicate and discuss the impact of cardiovascular risk factors, such as obesity, diabetes, lipid profile, hypertension and smoking on the course and mortality of COVID-19 infection. BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic is spreading around the world and becoming a major public health crisis. All coronaviruses are known to affect the cardiovascular system. There is a strong correlation between cardiovascular risk factors and severe clinical complications, including death in COVID-19 patients. All the above-mentioned risk factors are widespread and constitute a significant worldwide health problem. Some of them are modifiable and the awareness of their connection with the COVID-19 progress may have a crucial impact on the current and possible upcoming infection. DATA COLLECTION We searched for research papers describing the impact of selected cardiovascular risk factors on the course, severity, complications and mortality of COVID-19 infection form PubMed and Google Scholar databases. Using terms, for example: "COVID-19 cardiovascular disease mortality", "COVID-19 hypertension/diabetes mellitus/obesity/dyslipidemia", "cardiovascular risk factors COVID-19 mortality" and other related terms listed in each subtitle. The publications were selected according to the time of their publications between January 2020 and December 2021. From the PubMed database we obtain 1552 results. Further studies were sought by manually searching reference lists of the relevant articles. Relevant articles were selected based on their title, abstract or full text. Articles were excluded if they were clearly related to another subject matter or were not published in English. The types of articles are mainly randomized controlled trial and systematic review. An additional criterion used by researchers was co-morbidities and age of patients in study groups. From a review of the publications, 105 of them were selected for this work with all subheadings included. Findings and Results: The intention of this review was to summarize current knowledge about comorbidities and development of COVID-19 infection. We tried to focus on the course and mortality of the abovementioned virus disease in patients with concomitant CV risk factors. Unfortunately, we were unable to assess the quality of data in screened papers and studies we choose because of the heterogenicity of the groups. The conducted studies had different endpoints and included different groups of patients in terms of nationality, age, race and clinical status. We decide to divide the main subjects of the research into separately described subtitles such as obesity, lipid profile, hypertension, diabetes, smoking. We believe that the studies we included and gathered are very interesting and show modern and present-day clinical data and approaches to COVID-19 infection in specific divisions of patients.
Collapse
Affiliation(s)
- Katarzyna Wilk-Sledziewska
- Department of Internal Medicine and Hypertension, Medical University of Bialystok, 15-540 Bialystok, Poland; (K.W.-S.); (P.J.S.); (N.U.); (E.B.); (M.R.)
| | - Piotr Jan Sielatycki
- Department of Internal Medicine and Hypertension, Medical University of Bialystok, 15-540 Bialystok, Poland; (K.W.-S.); (P.J.S.); (N.U.); (E.B.); (M.R.)
| | - Natalia Uscinska
- Department of Internal Medicine and Hypertension, Medical University of Bialystok, 15-540 Bialystok, Poland; (K.W.-S.); (P.J.S.); (N.U.); (E.B.); (M.R.)
| | - Elżbieta Bujno
- Department of Internal Medicine and Hypertension, Medical University of Bialystok, 15-540 Bialystok, Poland; (K.W.-S.); (P.J.S.); (N.U.); (E.B.); (M.R.)
| | - Mariusz Rosolowski
- Department of Internal Medicine and Hypertension, Medical University of Bialystok, 15-540 Bialystok, Poland; (K.W.-S.); (P.J.S.); (N.U.); (E.B.); (M.R.)
| | - Katarzyna Kakareko
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, 15-276 Bialystok, Poland; (K.K.); (A.R.-R.); (T.H.)
| | - Rafal Sledziewski
- Department of Radiology, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Alicja Rydzewska-Rosolowska
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, 15-276 Bialystok, Poland; (K.K.); (A.R.-R.); (T.H.)
| | - Tomasz Hryszko
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, 15-276 Bialystok, Poland; (K.K.); (A.R.-R.); (T.H.)
| | - Edyta Zbroch
- Department of Internal Medicine and Hypertension, Medical University of Bialystok, 15-540 Bialystok, Poland; (K.W.-S.); (P.J.S.); (N.U.); (E.B.); (M.R.)
| |
Collapse
|
26
|
Larsen O, van der Velden WJC, Mavri M, Schuermans S, Rummel PC, Karlshøj S, Gustavsson M, Proost P, Våbenø J, Rosenkilde MM. Identification of a conserved chemokine receptor motif that enables ligand discrimination. Sci Signal 2022; 15:eabg7042. [PMID: 35258997 DOI: 10.1126/scisignal.abg7042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extensive ligand-receptor promiscuity in the chemokine signaling system balances beneficial redundancy and specificity. However, this feature poses a major challenge to selectively modulate the system pharmacologically. Here, we identified a conserved cluster of three aromatic receptor residues that anchors the second extracellular loop (ECL2) to the top of receptor transmembrane helices (TM) 4 and 5 and enables recognition of both shared and specific characteristics of interacting chemokines. This cluster was essential for the activation of several chemokine receptors. Furthermore, characteristic motifs of the ß1 strand and 30s loop make the two main CC-chemokine subgroups-the macrophage inflammatory proteins (MIPs) and monocyte chemoattractant proteins (MCPs)-differentially dependent on this cluster in the promiscuous receptors CCR1, CCR2, and CCR5. The cluster additionally enabled CCR1 and CCR5 to discriminate between closely related MIPs based on the N terminus of the chemokine. G protein signaling and β-arrestin2 recruitment assays confirmed the importance of the conserved cluster in receptor discrimination of chemokine ligands. This extracellular site may facilitate the development of chemokine-related therapeutics.
Collapse
Affiliation(s)
- Olav Larsen
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Wijnand J C van der Velden
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Maša Mavri
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Sara Schuermans
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Pia C Rummel
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Stefanie Karlshøj
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Martin Gustavsson
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Jon Våbenø
- Helgeland Hospital Trust, Prestmarkveien 1, 8800 Sandnessjøen, Norway
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
27
|
Verhulst E, Garnier D, De Meester I, Bauvois B. Validating Cell Surface Proteases as Drug Targets for Cancer Therapy: What Do We Know, and Where Do We Go? Cancers (Basel) 2022; 14:624. [PMID: 35158891 PMCID: PMC8833564 DOI: 10.3390/cancers14030624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cell surface proteases (also known as ectoproteases) are transmembrane and membrane-bound enzymes involved in various physiological and pathological processes. Several members, most notably dipeptidyl peptidase 4 (DPP4/CD26) and its related family member fibroblast activation protein (FAP), aminopeptidase N (APN/CD13), a disintegrin and metalloprotease 17 (ADAM17/TACE), and matrix metalloproteinases (MMPs) MMP2 and MMP9, are often overexpressed in cancers and have been associated with tumour dysfunction. With multifaceted actions, these ectoproteases have been validated as therapeutic targets for cancer. Numerous inhibitors have been developed to target these enzymes, attempting to control their enzymatic activity. Even though clinical trials with these compounds did not show the expected results in most cases, the field of ectoprotease inhibitors is growing. This review summarizes the current knowledge on this subject and highlights the recent development of more effective and selective drugs targeting ectoproteases among which small molecular weight inhibitors, peptide conjugates, prodrugs, or monoclonal antibodies (mAbs) and derivatives. These promising avenues have the potential to deliver novel therapeutic strategies in the treatment of cancers.
Collapse
Affiliation(s)
- Emile Verhulst
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Delphine Garnier
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| |
Collapse
|
28
|
Picton ACP, Paximadis M, Koor GW, Bharuthram A, Shalekoff S, Lassauniere R, Ive P, Tiemessen CT. Reduced CCR5 Expression and Immune Quiescence in Black South African HIV-1 Controllers. Front Immunol 2021; 12:781263. [PMID: 34987508 PMCID: PMC8720782 DOI: 10.3389/fimmu.2021.781263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Unique Individuals who exhibit either suppressive HIV-1 control, or the ability to maintain low viral load set-points and preserve their CD4+ T cell counts for extended time periods in the absence of antiretroviral therapy, are broadly termed HIV-1 controllers. We assessed the extent to which black South African controllers (n=9), differ from uninfected healthy controls (HCs, n=22) in terms of lymphocyte and monocyte CCR5 expression (density and frequency of CCR5-expressing cells), immune activation as well as peripheral blood mononuclear cell (PBMC) mitogen-induced chemokine/cytokine production. In addition, relative CD4+ T cell CCR5 mRNA expression was assessed in a larger group of controllers (n=20) compared to HCs (n=10) and HIV-1 progressors (n=12). Despite controllers having significantly higher frequencies of activated CD4+ and CD8+ T cells (HLA-DR+) compared to HCs, CCR5 density was significantly lower in these T cell populations (P=0.039 and P=0.064, respectively). This lower CCR5 density was largely attributable to controllers with higher VLs (>400 RNA copies/ml). Significantly lower CD4+ T cell CCR5 density in controllers was maintained (P=0.036) when HCs (n=12) and controllers (n=9) were matched for age. CD4+ T cell CCR5 mRNA expression was significantly less in controllers compared to HCs (P=0.007) and progressors (P=0.002), whereas HCs and progressors were similar (P=0.223). The levels of soluble CD14 in plasma did not differ between controllers and HCs, suggesting no demonstrable monocyte activation. While controllers had lower monocyte CCR5 density compared to the HCs (P=0.02), significance was lost when groups were age-matched (P=0.804). However, when groups were matched for both CCR5 promoter haplotype and age (n=6 for both) reduced CCR5 density on monocytes in controllers relative to HCs was highly significant (P=0.009). Phytohemagglutinin-stimulated PBMCs from the controllers produced significantly less CCL3 (P=0.029), CCL4 (P=0.008) and IL-10 (P=0.028) compared to the HCs, which was largely attributable to the controllers with lower VLs (<400 RNA copies/ml). Our findings support a hypothesis of an inherent (genetic) predisposition to lower CCR5 expression in individuals who naturally control HIV-1, as has been suggested for Caucasian controllers, and thus, likely involves a mechanism shared between ethnically divergent population groups.
Collapse
Affiliation(s)
- Anabela C. P. Picton
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Maria Paximadis
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- *Correspondence: Maria Paximadis,
| | - Gemma W. Koor
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Avani Bharuthram
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sharon Shalekoff
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ria Lassauniere
- Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Prudence Ive
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Clinical HIV Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Caroline T. Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
29
|
Chan PC, Hsieh PS. The Chemokine Systems at the Crossroads of Inflammation and Energy Metabolism in the Development of Obesity. Int J Mol Sci 2021; 22:ijms222413528. [PMID: 34948325 PMCID: PMC8709111 DOI: 10.3390/ijms222413528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity is characterized as a complex and multifactorial excess accretion of adipose tissue accompanied with alterations in the immune and metabolic responses. Although the chemokine systems have been documented to be involved in the control of tissue inflammation and metabolism, the dual role of chemokines and chemokine receptors in the pathogenesis of the inflammatory milieu and dysregulated energy metabolism in obesity remains elusive. The objective of this review is to present an update on the link between chemokines and obesity-related inflammation and metabolism dysregulation under the light of recent knowledge, which may present important therapeutic targets that could control obesity-associated immune and metabolic disorders and chronic complications in the near future. In addition, the cellular and molecular mechanisms of chemokines and chemokine receptors including the potential effect of post-translational modification of chemokines in the regulation of inflammation and energy metabolism will be discussed in this review.
Collapse
Affiliation(s)
- Pei-Chi Chan
- National Defense Medical Center (NDMC), Department of Physiology & Biophysics, Taipei 114, Taiwan;
| | - Po-Shiuan Hsieh
- National Defense Medical Center (NDMC), Department of Physiology & Biophysics, Taipei 114, Taiwan;
- Graduate Institute of Medical Science, NDMC, Taipei 114, Taiwan
- Department of Medical Research, Tri-Service General Hospital, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-87923100 (ext. 18622); Fax: +886-2-87924827
| |
Collapse
|
30
|
Decalf J, Tom J, Mai E, Hernandez-Barry H, Noland CL, Vollmar BS, Li A, Li H, Xie D, Zhu L, Payandeh J, Wu C, Comps-Agrar L, Moussion C, Albert ML, Song A. A novel method to produce synthetic murine CXCL10 for efficient screening of functional variants. Bioorg Chem 2021; 116:105376. [PMID: 34560560 DOI: 10.1016/j.bioorg.2021.105376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022]
Abstract
Antitumor immune responses depend on the infiltration of solid tumors by effector T cells, a process guided by chemokines. In particular, the chemokine CXCL10 has been shown to play a critical role in mediating recruitment of CXCR3 + cytolytic T and NK cells in tumors, though its use as a therapeutic agent has not been widely explored. One of the limitations is due to the rapid inactivation of CXCL10 by dipeptidyl peptidase 4 (DPP4), a broadly expressed enzyme that is active in plasma and other bodily fluids. In the present study, we describe a novel method to produce synthetic CXCL10 that is resistant to DPP4 N-terminal truncation. Using a Fmoc solid-phase peptide synthesis approach, synthetic murine WT CXCL10 was produced, showing similar biochemical and biological properties to the recombinant protein. This synthesis method supported production of natural (amino acid substitution, insertion or deletion) and non-natural (chemical modifications) variants of CXCL10. In association with a functional screening cascade that assessed DPP4-mediated cleavage, CXCR3 signaling potency and chemotactic activity, we successfully generated 20 murine CXCL10 variants. Among those, two non-natural variants with N-methylated Leu3 (MeLeu3) and a reduced amide bond between Pro2 and Leu3 (rLeu3), respectively, showed resistance to DPP4 truncation but decreased CXCR3 signaling and chemotactic activity. Interestingly, MeLeu3 and rLeu3 CXCL10 behaved as DPP4 inhibitors, preventing the truncation of WT CXCL10. This study highlights the potential of using Fmoc solid-phase chemistry in association with biochemical and biological characterization to rapidly identify CXCL10 variants with desired properties. These novel methods unlock the opportunity to develop DPP4 resistant CXCL10 variants, as well as other chemokine substrates, while maintaining chemotactic properties.
Collapse
Affiliation(s)
- Jérémie Decalf
- Department of Cancer Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Jeffrey Tom
- Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Elaine Mai
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hilda Hernandez-Barry
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Cameron L Noland
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Breanna S Vollmar
- Department of Protein Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alice Li
- Department of Protein Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hong Li
- Department of Protein Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Daniel Xie
- TideMed Pharma, Room 1-1115, No. 291, Fucheng Road, Hangzhou Qiantang New Area, Hangzhou 310018, China
| | - Lunchao Zhu
- TideMed Pharma, Room 1-1115, No. 291, Fucheng Road, Hangzhou Qiantang New Area, Hangzhou 310018, China
| | - Jian Payandeh
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Cong Wu
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Laetitia Comps-Agrar
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Christine Moussion
- Department of Cancer Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Matthew L Albert
- Department of Cancer Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA; Department of Immunology and Infectious Diseases, Insitro, South San Francisco, CA 94080, USA
| | - Aimin Song
- Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
31
|
Pranata R, Henrina J, Raffaello WM, Lawrensia S, Huang I. Diabetes and COVID-19: The past, the present, and the future. Metabolism 2021; 121:154814. [PMID: 34119537 PMCID: PMC8192264 DOI: 10.1016/j.metabol.2021.154814] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023]
Abstract
Diabetes, one of the most prevalent chronic diseases in the world, is strongly associated with a poor prognosis in COVID-19. Scrupulous blood sugar management is crucial, since the worse outcomes are closely associated with higher blood sugar levels in COVID-19 infection. Although recent observational studies showed that insulin was associated with mortality, it should not deter insulin use in hospitalized patients requiring tight glucose control. Back and forth dilemma in the past with regards to continue/discontinue certain medications used in diabetes have been mostly resolved. The initial fears of consequences related to continuing certain medications have been largely dispelled. COVID-19 also necessitates the transformation in diabetes care through the integration of technologies. Recent advances in health-related technologies, notably telemedicine and remote continuous glucose monitoring, have become essential in the management of diabetes during the pandemic. Today, these technologies have changed the landscape of medicine and become more important than ever. Being a high-risk population, patients with type 1 or type 2 diabetes, should be prioritized for vaccination. In the future, as the pandemic fades, the prevalence of non-communicable diseases is expected to rise due to lifestyle changes and medical issues/dilemma encountered during the pandemic.
Collapse
Affiliation(s)
- Raymond Pranata
- Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Indonesia.
| | | | | | | | - Ian Huang
- Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Indonesia; Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin General Hospital, Bandung, Indonesia
| |
Collapse
|
32
|
Tolerability and Efficacy of s.c. IgG Self-Treatment in ME/CFS Patients with IgG/IgG Subclass Deficiency: A Proof-of-Concept Study. J Clin Med 2021; 10:jcm10112420. [PMID: 34072494 PMCID: PMC8198960 DOI: 10.3390/jcm10112420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Chronic fatigue syndrome (ME/CFS) is a complex disease frequently triggered by infections. IgG substitution may have therapeutic effect both by ameliorating susceptibility to infections and due to immunomodulatory effects. METHODS We conducted a proof of concept open trial with s.c. IgG in 17 ME/CFS patients suffering from recurrent infections and mild IgG or IgG subclass deficiency to assess tolerability and efficacy. Patients received s.c. IgG therapy of 0.8 g/kg/month for 12 months with an initial 2 months dose escalation phase of 0.2 g and 0.4 g/kg/month. RESULTS Primary outcome was improvement of fatigue assessed by Chalder Fatigue Scale (CFQ; decrease ≥ 6 points) and of physical functioning assessed by SF-36 (increase ≥ 25 points) at month 12. Of 12 patients receiving treatment per protocol 5 had a clinical response at month 12. Two additional patients had an improvement according to this definition at months 6 and 9. In four patients treatment was ceased due to adverse events and in one patient due to disease worsening. We identified LDH and soluble IL-2 receptor as potential biomarker for response. CONCLUSION Our data indicate that self-administered s.c. IgG treatment is feasible and led to clinical improvement in a subset of ME/CFS patients.
Collapse
|
33
|
Chen KY, Wu SM, Tseng CH, Lee KY, Lin YH, Liu HY, Chien LN. Combination therapies with thiazolidinediones are associated with a lower risk of acute exacerbations in new-onset COPD patients with advanced diabetic mellitus: a cohort-based case-control study. BMC Pulm Med 2021; 21:141. [PMID: 33926423 PMCID: PMC8086317 DOI: 10.1186/s12890-021-01505-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The effects of oral antihyperglycaemic drugs (OADs) for type 2 diabetes mellitus (T2DM) on the outcomes of co-existing chronic obstructive pulmonary disease (COPD) patients are not well studied. We examined the association of combinational OADs and the risk of acute exacerbations of COPD (AECOPD) in T2DM patients with co-existing COPD. METHODS A cohort-based case-control study was conducted using data from the National Health Insurance Research Database of Taiwan. Among new-onset COPD-T2DM patients, 65,370 were prescribed metformin and 2nd-line OADs before the date of COPD onset. Each AECOPD case was matched to 4 randomly selected controls according to the propensity score estimated by the patient's baseline characteristics. Conditional logistic regression analysis was performed to estimate the association between AECOPD risk and OAD use. RESULTS Among COPD-T2DM patients, 3355 AECOPD cases and 13,420 matched controls were selected. Of the patients treated with a double combination of oral OADs (n = 12,916), those treated with sulfonylurea (SU) and thiazolidinediones (TZD) had a lower AECOPD risk than the patients who received metformin (MET) and SU, with an adjusted odds ratio (OR) of 0.69 (95% confidence interval [CI] 0.51-0.94, P = 0.02). Of the patients with a triple combination of oral OADs (n = 3859), we found that those treated with MET, SU and TZD had a lower risk of AECOPD (adjusted OR 0.81 (0.68-0.96, P = 0.01) than a combination of MET, SU and α-glucosidase inhibitors (AGIs) regardless of the level of COPD complexity. CONCLUSION Combination therapies with TZD were associated with a reduced risk of AECOPD in advanced T2DM patients with co-existing COPD.
Collapse
Affiliation(s)
- Kuan-Yuan Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Hua Tseng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Kang-Yun Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Huei Lin
- Post-Baccalaureate Program in Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yi Liu
- Office of Data, Taipei Medical University, No. 250 Wuxing St., Taipei, 11031, Taiwan
| | - Li-Nien Chien
- Office of Data, Taipei Medical University, No. 250 Wuxing St., Taipei, 11031, Taiwan.
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
34
|
Metzemaekers M, Abouelasrar Salama S, Vandooren J, Mortier A, Janssens R, Vandendriessche S, Ganseman E, Martens E, Gouwy M, Neerinckx B, Verschueren P, De Somer L, Wouters C, Struyf S, Opdenakker G, Van Damme J, Proost P. From ELISA to Immunosorbent Tandem Mass Spectrometry Proteoform Analysis: The Example of CXCL8/Interleukin-8. Front Immunol 2021; 12:644725. [PMID: 33777041 PMCID: PMC7991300 DOI: 10.3389/fimmu.2021.644725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/12/2021] [Indexed: 11/15/2022] Open
Abstract
With ELISAs one detects the ensemble of immunoreactive molecules in biological samples. For biomolecules undergoing proteolysis for activation, potentiation or inhibition, other techniques are necessary to study biology. Here we develop methodology that combines immunosorbent sample preparation and nano-scale liquid chromatography—tandem mass spectrometry (nano-LC-MS/MS) for proteoform analysis (ISTAMPA) and apply this to the aglycosyl chemokine CXCL8. CXCL8, the most powerful human chemokine with neutrophil chemotactic and –activating properties, occurs in different NH2-terminal proteoforms due to its susceptibility to site-specific proteolytic modification. Specific proteoforms display up to 30-fold enhanced activity. The immunosorbent ion trap top-down mass spectrometry-based approach for proteoform analysis allows for simultaneous detection and quantification of full-length CXCL8(1-77), elongated CXCL8(-2-77) and all naturally occurring truncated CXCL8 forms in biological samples. For the first time we demonstrate site-specific proteolytic activation of CXCL8 in synovial fluids from patients with chronic joint inflammation and address the importance of sample collection and processing.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Rik Janssens
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Eva Ganseman
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Barbara Neerinckx
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Patrick Verschueren
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lien De Somer
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Carine Wouters
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Metzemaekers M, Mortier A, Vacchini A, Boff D, Yu K, Janssens R, Farina FM, Milanesi S, Berghmans N, Pörtner N, Van Damme J, Allegretti M, Teixeira MM, Locati M, Borroni EM, Amaral FA, Proost P. Endogenous modification of the chemoattractant CXCL5 alters receptor usage and enhances its activity toward neutrophils and monocytes. Sci Signal 2021; 14:14/673/eaax3053. [PMID: 33688078 DOI: 10.1126/scisignal.aax3053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The inflammatory human chemokine CXCL5 interacts with the G protein-coupled receptor CXCR2 to induce chemotaxis and activation of neutrophils. CXCL5 also has weak agonist activity toward CXCR1. The N-terminus of CXCL5 can be modified by proteolytic cleavage or deimination of Arg9 to citrulline (Cit), and these modifications can occur separately or together. Here, we chemically synthesized native CXCL5(1-78), truncated CXCL5 [CXCL5(9-78)], and the citrullinated (Cit9) versions and characterized their functions in vitro and in vivo. Compared with full-length CXCL5, N-terminal truncation resulted in enhanced potency to induce G protein signaling and β-arrestin recruitment through CXCR2, increased CXCL5-initiated internalization of CXCR2, and greater Ca2+ signaling downstream of not only CXCR2 but also CXCR1. Citrullination did not affect the capacity of CXCL5 to activate classical or alternative signaling pathways. Administering the various CXCL5 forms to mice revealed that in addition to neutrophils, CXCL5 exerted chemotactic activity toward monocytes and that this activity was increased by N-terminal truncation. These findings were confirmed by in vitro chemotaxis and Ca2+ signaling assays with primary human CD14+ monocytes and human THP-1 monocytes. In vitro and in vivo analyses suggested that CXCL5 targeted monocytes through CXCR1 and CXCR2. Thus, truncation of the N-terminus makes CXCL5 a more potent chemoattractant for both neutrophils and monocytes that acts through CXCR1 and CXCR2.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, Leuven B-3000, Belgium.,Humanitas Clinical and Research Center, IRCCS, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, Leuven B-3000, Belgium
| | - Alessandro Vacchini
- Humanitas Clinical and Research Center, IRCCS, via Manzoni 56, 20089 Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Fratelli Cervi 93, I-20090 Segrate, Italy
| | - Daiane Boff
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, Leuven B-3000, Belgium.,Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brasil
| | - Karen Yu
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, Leuven B-3000, Belgium
| | - Rik Janssens
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, Leuven B-3000, Belgium.,Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brasil
| | - Floriana M Farina
- Humanitas Clinical and Research Center, IRCCS, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Samantha Milanesi
- Humanitas Clinical and Research Center, IRCCS, via Manzoni 56, 20089 Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Fratelli Cervi 93, I-20090 Segrate, Italy
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, Leuven B-3000, Belgium
| | - Noëmie Pörtner
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, Leuven B-3000, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, Leuven B-3000, Belgium
| | | | - Mauro M Teixeira
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brasil
| | - Massimo Locati
- Humanitas Clinical and Research Center, IRCCS, via Manzoni 56, 20089 Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Fratelli Cervi 93, I-20090 Segrate, Italy
| | - Elena M Borroni
- Humanitas Clinical and Research Center, IRCCS, via Manzoni 56, 20089 Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Fratelli Cervi 93, I-20090 Segrate, Italy
| | - Flavio A Amaral
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brasil
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, Leuven B-3000, Belgium.
| |
Collapse
|
36
|
Ropa J, Broxmeyer HE. An expanded role for dipeptidyl peptidase 4 in cell regulation. Curr Opin Hematol 2021; 27:215-224. [PMID: 32487805 DOI: 10.1097/moh.0000000000000590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Dipeptidyl peptidase 4 (DPP4) is a serine protease with diverse regulatory functions in healthy and diseased cells. Much remains unknown about the mechanisms and targets of DPP4. Here we discuss new studies exploring DPP4-mediated cellular regulation, provide an updated list of potential targets of DPP4, and discuss clinical implications of each. RECENT FINDINGS Recent studies have sought enhanced efficacy of targeting DPP4's role in regulating hematopoietic stem and progenitor cells for improved clinical application. Further studies have identified DPP4 functions in different cellular compartments and have proposed ways to target this protein in malignancy. These findings, together with an expanded list of putative extracellular, cell surface, and intracellular DPP4 targets, provide insight into new DPP4-mediated cell regulation. SUMMARY DPP4 posttranslationally modifies proteins and peptides with essential roles in hematopoietic cell regulation, stem cell transplantation, and malignancy. Targets include secreted signaling factors and may include membrane proteins and transcription factors critical for different hematopoietic functions. Knowing these targets and functions can provide insight into new regulatory roles for DPP4 that may be targeted to enhance transplantation, treat disease, and better understand different regulatory pathways of hematopoiesis.
Collapse
Affiliation(s)
- James Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | |
Collapse
|
37
|
Rivas-Fuentes S, Salgado-Aguayo A, Arratia-Quijada J, Gorocica-Rosete P. Regulation and biological functions of the CX3CL1-CX3CR1 axis and its relevance in solid cancer: A mini-review. J Cancer 2021; 12:571-583. [PMID: 33391453 PMCID: PMC7738983 DOI: 10.7150/jca.47022] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022] Open
Abstract
CX3CL1 is a transmembrane protein from which a soluble form can be generated by proteolytic shedding. Membranal and soluble forms of CX3CL1 exhibit different functions, although both bind to the CX3CR1 chemokine receptor. The CX3CL1-CX3CR1 axis mediates the adhesion of leukocytes and is also involved in cell survival and recruitment of immune cell subpopulations. The function of CX3CL1 is finely tuned by cytokines and transcription factors regulating its expression and post-translational modifications. On homeostasis, the CX3CL1-CX3CR1 axis participates in the removal of damaged neurons and neurogenesis, and it is also involved on several pathological contexts. The CX3CL1-CX3CR1 axis induces several cellular responses relevant to cancer such as proliferation, migration, invasion and apoptosis resistance. In this review, we address biological aspects of this molecular axis with important therapeutic potential, emphasizing its role in cancer, one of the most prevalent chronic diseases which significantly affect the quality of life and life expectancy of patients.
Collapse
Affiliation(s)
- Selma Rivas-Fuentes
- Department of Research on Biochemistry, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alfonso Salgado-Aguayo
- Laboratory of Research on Rheumatic Diseases, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Jenny Arratia-Quijada
- Department of Biomedical Sciences, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá Jalisco, Mexico
| | - Patricia Gorocica-Rosete
- Department of Research on Biochemistry, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
38
|
Abstract
Initial studies found increased severity of coronavirus disease 2019 (COVID-19), caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in patients with diabetes mellitus. Furthermore, COVID-19 might also predispose infected individuals to hyperglycaemia. Interacting with other risk factors, hyperglycaemia might modulate immune and inflammatory responses, thus predisposing patients to severe COVID-19 and possible lethal outcomes. Angiotensin-converting enzyme 2 (ACE2), which is part of the renin-angiotensin-aldosterone system (RAAS), is the main entry receptor for SARS-CoV-2; although dipeptidyl peptidase 4 (DPP4) might also act as a binding target. Preliminary data, however, do not suggest a notable effect of glucose-lowering DPP4 inhibitors on SARS-CoV-2 susceptibility. Owing to their pharmacological characteristics, sodium-glucose cotransporter 2 (SGLT2) inhibitors might cause adverse effects in patients with COVID-19 and so cannot be recommended. Currently, insulin should be the main approach to the control of acute glycaemia. Most available evidence does not distinguish between the major types of diabetes mellitus and is related to type 2 diabetes mellitus owing to its high prevalence. However, some limited evidence is now available on type 1 diabetes mellitus and COVID-19. Most of these conclusions are preliminary, and further investigation of the optimal management in patients with diabetes mellitus is warranted.
Collapse
Affiliation(s)
- Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea.
| | - Jae Hyun Bae
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Hyuk-Sang Kwon
- Department of Internal Medicine, Yeouido St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St Josef-Hospital (Ruhr-Universität Bochum), Bochum, Germany.
| |
Collapse
|
39
|
Worthen CA, Cui Y, Orringer JS, Johnson TM, Voorhees JJ, Fisher GJ. CD26 Identifies a Subpopulation of Fibroblasts that Produce the Majority of Collagen during Wound Healing in Human Skin. J Invest Dermatol 2020; 140:2515-2524.e3. [PMID: 32407715 PMCID: PMC7655599 DOI: 10.1016/j.jid.2020.04.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/23/2022]
Abstract
Fibroblasts produce collagens and other proteins that form the bulk of the extracellular matrix (ECM) in connective tissues. Emerging data point to functional heterogeneity of fibroblasts. However, the lack of subtype-specific markers hinders our understanding of the different roles of fibroblasts in ECM biology, wound healing, diseases, and aging. We have investigated the utility of the cell surface protein CD26 to identify functionally distinct fibroblast subpopulations in human skin. Using flow cytometry and immunohistology, we found that CD26, in combination with the cell surface glycoprotein CD90, identifies a distinct subpopulation of cells, which express relatively high levels of COL1A1, a hallmark of fibroblasts. Importantly, the population of CD26+ fibroblasts is selectively increased after wounding of human skin. These cells account for the majority of COL1A1 expression during the ECM remodeling phase of healing. The proportion of CD26+ fibroblasts in the skin of young and aged individuals is similar, indicating that the loss of collagen production during aging does not involve selective reduction of CD26+ fibroblasts. In culture, the majority of freshly isolated CD26- fibroblasts gain expression of CD26+. Taken together, these data provide a foundation for targeting CD26+ fibroblasts to modulate wound healing in human skin.
Collapse
Affiliation(s)
- Christal A Worthen
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yilei Cui
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jeffrey S Orringer
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Timothy M Johnson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - John J Voorhees
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gary J Fisher
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
40
|
Patel PM, Jones VA, Kridin K, Amber KT. The role of Dipeptidyl Peptidase-4 in cutaneous disease. Exp Dermatol 2020; 30:304-318. [PMID: 33131073 DOI: 10.1111/exd.14228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/21/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Dipeptidyl peptidase-4 (DPP4) is a multifunctional, transmembrane glycoprotein present on the cell surface of various tissues. It is present in multiple molecular forms including cell surface and soluble. The role of DPP4 and its inhibition in cutaneous dermatoses have been a recent point of investigation. DPP4 exerts a notable influence on T-cell biology, the induction of skin-specific lymphocytes, and the homeostasis between regulatory and effector T cells. Moreover, DPP4 interacts with a broad range of molecules, including adenosine deaminase, caveolin-1, CXCR4 receptor, M6P/insulin-like growth factor II-receptor and fibroblast activation protein-α, triggering downstream effects that modulate the immune response, cell adhesion and chemokine activity. DPP4 expression on melanocytes, keratinocytes and fibroblasts further alters cell function and, thus, has crucial implications in cutaneous pathology. As a result, DPP4 plays a significant role in bullous pemphigoid, T helper type 1-like reactions, cutaneous lymphoma, melanoma, wound healing and fibrotic disorders. This review illustrates the multifactorial role of DPP4 expression, regulation, and inhibition in cutaneous diseases.
Collapse
Affiliation(s)
- Payal M Patel
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Virginia A Jones
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Khalaf Kridin
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Kyle T Amber
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
41
|
Silva PL, Nakajima E, Costa RMD, Lee Ho P, Martins EA, Carvalho E, da Silva JB. Chemokine expression profiles in liver and kidney of mice with different susceptibilities to leptospirosis. Microb Pathog 2020; 149:104580. [PMID: 33080359 DOI: 10.1016/j.micpath.2020.104580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/10/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
Abstract
Leptospirosis is a global disease that affects humans and animals, impacting public health and the economy. The symptoms caused by Leptospira infection can vary from mild to severe, affecting liver, lungs, and kidneys. The host-pathogen interaction in leptospirosis is still poorly understood, but there is evidence for the role of the host immune response in the pathogenesis. Chemokines are a family of structurally-related low-molecular-mass proteins (8-14 kDa) that signal the recruitment of leukocytes. In this study the profile of 22 chemokines were evaluated in liver and kidney of three mice strains with different phenotypes of susceptibility to leptospirosis. We extended our previously reported observations showing that expression of chemokines with homeostatic function, activation and chemotaxis of leukocytes are essential to modulate and to induce resistance to leptospirosis. Our findings support that an early induction of CXC chemokines in resistant BALB/c mice can be associated with the control of the infection. The correlation of chemokine expression between liver and kidney observed in BALB/c suggests that a balance of chemokine induction in the organs may contribute to resistance to leptospirosis.
Collapse
Affiliation(s)
- Paloma Ld Silva
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Erika Nakajima
- Laboratório de biológicos recombinantes, Instituto Butantan, São Paulo, Brazil
| | - Renata Ma da Costa
- Global Antibiotics Research and Development Partnership (GARDP), Drugs for Neglected Diseases initiative (DNDi), Chemin Louis-Dunant 15, 1202 Geneva, Switzerland
| | - Paulo Lee Ho
- Divisão BioIndustrial, Instituto Butantan, São Paulo, Brazil
| | | | - Eneas Carvalho
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Josefa B da Silva
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil.
| |
Collapse
|
42
|
Jossen V, Muoio F, Panella S, Harder Y, Tallone T, Eibl R. An Approach towards a GMP Compliant In-Vitro Expansion of Human Adipose Stem Cells for Autologous Therapies. Bioengineering (Basel) 2020; 7:bioengineering7030077. [PMID: 32698363 PMCID: PMC7552624 DOI: 10.3390/bioengineering7030077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023] Open
Abstract
Human Adipose Tissue Stem Cells (hASCs) are a valuable source of cells for clinical applications (e.g., treatment of acute myocardial infarction and inflammatory diseases), especially in the field of regenerative medicine. However, for autologous (patient-specific) and allogeneic (off-the-shelf) hASC-based therapies, in-vitro expansion is necessary prior to the clinical application in order to achieve the required cell numbers. Safe, reproducible and economic in-vitro expansion of hASCs for autologous therapies is more problematic because the cell material changes for each treatment. Moreover, cell material is normally isolated from non-healthy or older patients, which further complicates successful in-vitro expansion. Hence, the goal of this study was to perform cell expansion studies with hASCs isolated from two different patients/donors (i.e., different ages and health statuses) under xeno- and serum-free conditions in static, planar (2D) and dynamically mixed (3D) cultivation systems. Our primary aim was I) to compare donor variability under in-vitro conditions and II) to develop and establish an unstructured, segregated growth model as a proof-of-concept study. Maximum cell densities of between 0.49 and 0.65 × 105 hASCs/cm2 were achieved for both donors in 2D and 3D cultivation systems. Cell growth under static and dynamically mixed conditions was comparable, which demonstrated that hydrodynamic stresses (P/V = 0.63 W/m3, τnt = 4.96 × 10−3 Pa) acting at Ns1u (49 rpm for 10 g/L) did not negatively affect cell growth, even under serum-free conditions. However, donor-dependent differences in the cell size were found, which resulted in significantly different maximum cell densities for each of the two donors. In both cases, stemness was well maintained under static 2D and dynamic 3D conditions, as long as the cells were not hyperconfluent. The optimal point for cell harvesting was identified as between cell densities of 0.41 and 0.56 × 105 hASCs/cm2 (end of exponential growth phase). The growth model delivered reliable predictions for cell growth, substrate consumption and metabolite production in both types of cultivation systems. Therefore, the model can be used as a basis for future investigations in order to develop a robust MC-based hASC production process for autologous therapies.
Collapse
Affiliation(s)
- Valentin Jossen
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
- Correspondence: or ; Tel.: +41-58-934-5334
| | - Francesco Muoio
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.); (T.T.)
| | - Stefano Panella
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.); (T.T.)
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Tiziano Tallone
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.); (T.T.)
| | - Regine Eibl
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| |
Collapse
|
43
|
Srivastava SP, Goodwin JE. Cancer Biology and Prevention in Diabetes. Cells 2020; 9:cells9061380. [PMID: 32498358 PMCID: PMC7349292 DOI: 10.3390/cells9061380] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
The available evidence suggests a complex relationship between diabetes and cancer. Epidemiological data suggest a positive correlation, however, in certain types of cancer, a more complex picture emerges, such as in some site-specific cancers being specific to type I diabetes but not to type II diabetes. Reports share common and differential mechanisms which affect the relationship between diabetes and cancer. We discuss the use of antidiabetic drugs in a wide range of cancer therapy and cancer therapeutics in the development of hyperglycemia, especially antineoplastic drugs which often induce hyperglycemia by targeting insulin/IGF-1 signaling. Similarly, dipeptidyl peptidase 4 (DPP-4), a well-known target in type II diabetes mellitus, has differential effects on cancer types. Past studies suggest a protective role of DPP-4 inhibitors, but recent studies show that DPP-4 inhibition induces cancer metastasis. Moreover, molecular pathological mechanisms of cancer in diabetes are currently largely unclear. The cancer-causing mechanisms in diabetes have been shown to be complex, including excessive ROS-formation, destruction of essential biomolecules, chronic inflammation, and impaired healing phenomena, collectively leading to carcinogenesis in diabetic conditions. Diabetes-associated epithelial-to-mesenchymal transition (EMT) and endothelial-to-mesenchymal transition (EndMT) contribute to cancer-associated fibroblast (CAF) formation in tumors, allowing the epithelium and endothelium to enable tumor cell extravasation. In this review, we discuss the risk of cancer associated with anti-diabetic therapies, including DPP-4 inhibitors and SGLT2 inhibitors, and the role of catechol-o-methyltransferase (COMT), AMPK, and cell-specific glucocorticoid receptors in cancer biology. We explore possible mechanistic links between diabetes and cancer biology and discuss new therapeutic approaches.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine, Yale University, New Haven, CT 06520-8064, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520-8066, USA
- Correspondence: (S.P.S.); (J.E.G.)
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, Yale University, New Haven, CT 06520-8064, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520-8066, USA
- Correspondence: (S.P.S.); (J.E.G.)
| |
Collapse
|
44
|
Zou H, Zhu N, Li S. The emerging role of dipeptidyl-peptidase-4 as a therapeutic target in lung disease. Expert Opin Ther Targets 2020; 24:147-153. [PMID: 31971463 DOI: 10.1080/14728222.2020.1721468] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Dipeptidyl-peptidase-4 (DPP-4) is a surface bound ectopeptidase that is commonly known as CD26 or adenosine deaminase binding protein. DPP-4 is membrane anchored but it can be cleaved by numerous proteases including matrix-metalloproteinases (MMPs). DPP-4 is expressed by endothelial and epithelial cells, the kidney, intestine and cells of the immune system; it has a broad spectrum of biological functions in immune regulation, cancer biology and glucose metabolism.Areas covered: This article sheds light on the functions of DPP-4, the molecular mechanisms that govern its expression, it's role in the pathogenesis of common respiratory illnesses and potential as a therapeutic target.Expert opinion: DPP-4 has a deleterious role in respiratory disease. Its biological functions, key molecular pathways, interactions and associations are slowly being elucidated. Progressing our knowledge of the role of this multi-faceted molecule may yield vital and novel therapies for respiratory diseases such as lung cancer, asthma, and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Hai Zou
- Department of Respiratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ning Zhu
- Department of Respiratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shengqing Li
- Department of Respiratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Inhibition of dipeptidyl peptidase 4 (DPP4) activates immune cells chemotaxis in hepatocellular carcinoma. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.onsig.2019.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
46
|
Broughton TWK, ElTanbouly MA, Schaafsma E, Deng J, Sarde A, Croteau W, Li J, Nowak EC, Mabaera R, Smits NC, Kuta A, Noelle RJ, Lines JL. Defining the Signature of VISTA on Myeloid Cell Chemokine Responsiveness. Front Immunol 2019; 10:2641. [PMID: 31803182 PMCID: PMC6877598 DOI: 10.3389/fimmu.2019.02641] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/24/2019] [Indexed: 01/02/2023] Open
Abstract
The role of negative checkpoint regulators (NCRs) in human health and disease cannot be overstated. V-domain Ig-containing Suppressor of T-cell Activation (VISTA) is an Ig superfamily protein predominantly expressed within the hematopoietic compartment and has been studied for its role in the negative regulation of T cell responses. The findings presented in this study show that, unlike all other NCRs, VISTA deficiency dramatically impacts on macrophage cytokine and chemokine production, as well as the chemotactic response of VISTA-deficient macrophages. A select group of inflammatory chemokines, including CCL2, CCL3, CCL4, and CCL5, was strikingly elevated in culture supernatants from VISTA KO macrophages. VISTA deficiency also altered chemokine receptor recycling and profoundly disrupted myeloid chemotaxis. The impact of VISTA deficiency on chemotaxis in vivo was apparent with the reduced ability of both KO macrophages and MDSCs to migrate to the tumor microenvironment. This is the first demonstration of an NCR impacting on myeloid mediator production and chemotaxis, and will guide the use of anti-VISTA therapeutics to manipulate the chemotaxis of inflammatory macrophages or immunosuppressive MDSCs in inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Thomas W. K. Broughton
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
- Division of Transplantation Immunology & Mucosal Biology, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Mohamed A. ElTanbouly
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Evelien Schaafsma
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Jie Deng
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Aurélien Sarde
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Walburga Croteau
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Jiannan Li
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Elizabeth C. Nowak
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Rodwell Mabaera
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
- Section of Hematology and Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Nicole C. Smits
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Anna Kuta
- Immunext Corp., Lebanon, NH, United States
| | - Randolph J. Noelle
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - J. Louise Lines
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
47
|
Elmansi AM, Awad ME, Eisa NH, Kondrikov D, Hussein KA, Aguilar-Pérez A, Herberg S, Periyasamy-Thandavan S, Fulzele S, Hamrick MW, McGee-Lawrence ME, Isales CM, Volkman BF, Hill WD. What doesn't kill you makes you stranger: Dipeptidyl peptidase-4 (CD26) proteolysis differentially modulates the activity of many peptide hormones and cytokines generating novel cryptic bioactive ligands. Pharmacol Ther 2019; 198:90-108. [PMID: 30759373 PMCID: PMC7883480 DOI: 10.1016/j.pharmthera.2019.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dipeptidyl peptidase 4 (DPP4) is an exopeptidase found either on cell surfaces where it is highly regulated in terms of its expression and surface availability (CD26) or in a free/circulating soluble constitutively available and intrinsically active form. It is responsible for proteolytic cleavage of many peptide substrates. In this review we discuss the idea that DPP4-cleaved peptides are not necessarily inactivated, but rather can possess either a modified receptor selectivity, modified bioactivity, new antagonistic activity, or even a novel activity relative to the intact parent ligand. We examine in detail five different major DPP4 substrates: glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), peptide tyrosine-tyrosine (PYY), and neuropeptide Y (NPY), and stromal derived factor 1 (SDF-1 aka CXCL12). We note that discussion of the cleaved forms of these five peptides are underrepresented in the research literature, and are both poorly investigated and poorly understood, representing a serious research literature gap. We believe they are understudied and misinterpreted as inactive due to several factors. This includes lack of accurate and specific quantification methods, sample collection techniques that are inherently inaccurate and inappropriate, and a general perception that DPP4 cleavage inactivates its ligand substrates. Increasing evidence points towards many DPP4-cleaved ligands having their own bioactivity. For example, GLP-1 can work through a different receptor than GLP-1R, DPP4-cleaved GIP can function as a GIP receptor antagonist at high doses, and DPP4-cleaved PYY, NPY, and CXCL12 can have different receptor selectivity, or can bind novel, previously unrecognized receptors to their intact ligands, resulting in altered signaling and functionality. We believe that more rigorous research in this area could lead to a better understanding of DPP4's role and the biological importance of the generation of novel cryptic ligands. This will also significantly impact our understanding of the clinical effects and side effects of DPP4-inhibitors as a class of anti-diabetic drugs that potentially have an expanding clinical relevance. This will be specifically relevant in targeting DPP4 substrate ligands involved in a variety of other major clinical acute and chronic injury/disease areas including inflammation, immunology, cardiology, stroke, musculoskeletal disease and injury, as well as cancer biology and tissue maintenance in aging.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Mohamed E Awad
- Department of Oral Biology, School of Dentistry, Augusta University, Augusta, GA 30912, United States
| | - Nada H Eisa
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, United States; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Khaled A Hussein
- Department of Surgery and Medicine, National Research Centre, Cairo, Egypt
| | - Alexandra Aguilar-Pérez
- Department of Anatomy and Cell Biology, Indiana University School of Medicine in Indianapolis, IN, United States; Department of Cellular and Molecular Biology, School of Medicine, Universidad Central del Caribe, Bayamon, 00956, Puerto Rico; Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Samuel Herberg
- Departments of Ophthalmology & Cell and Dev. Bio., SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | | | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Mark W Hamrick
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Meghan E McGee-Lawrence
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Carlos M Isales
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Division of Endocrinology, Diabetes and Metabolism, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Brian F Volkman
- Biochemistry Department, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States; Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States.
| |
Collapse
|
48
|
Yang F, Takagaki Y, Yoshitomi Y, Ikeda T, Li J, Kitada M, Kumagai A, Kawakita E, Shi S, Kanasaki K, Koya D. Inhibition of Dipeptidyl Peptidase-4 Accelerates Epithelial-Mesenchymal Transition and Breast Cancer Metastasis via the CXCL12/CXCR4/mTOR Axis. Cancer Res 2018; 79:735-746. [PMID: 30584072 DOI: 10.1158/0008-5472.can-18-0620] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 09/21/2018] [Accepted: 12/13/2018] [Indexed: 11/16/2022]
Abstract
Dipeptidyl peptidase (DPP)-4 is a multifunctional glycoprotein involved in various biological and pathologic processes. DPP-4 has been widely recognized as a therapeutic target for type 2 diabetes mellitus but is also implicated in the development of human malignancies. Here, we show that inhibition of DPP-4 accelerates breast cancer metastasis via induction of CXCL12/CXCR4, which activates mTOR to promote epithelial-mesenchymal transition (EMT). In cultured cells, DPP-4 knockdown induced EMT and cell migration. Treatment with the DPP-4 inhibitor KR62436 (KR) promoted primary tumor growth and lung metastasis in a 4T1 tumor allograft mouse model; DPP-4 knockdown in 4T1 cells displayed similar phenotypes in vivo and in vitro. KR treatment enhanced the levels of CXCL12/CXCR4 and phosphorylated mTOR, which were associated with the induction of EMT in metastatic cancer cells. KR-induced EMT in cancer cells was inhibited by treatment with the CXCR4 inhibitor AMD3100 or the mTOR inhibitor rapamycin, and AMD3100 suppressed KR-induced metastasis in vivo. Our findings suggest that DPP-4 plays a significant role in cancer biology and that inhibition of DPP-4 promotes cancer metastasis via induction of the CXCL12/CXCR4/mTOR/EMT axis. SIGNIFICANCE: These findings reveal that inhibition of DPP-4 increases the metastatic potential of breast cancer. This is especially important given the potential use of DPP-4 inhibition as a therapeutic strategy for type 2 diabetes.
Collapse
Affiliation(s)
- Fan Yang
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yuta Takagaki
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yasuo Yoshitomi
- Department of Biochemistry, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Takayuki Ikeda
- Department of Biochemistry, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Jinpeng Li
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Munehiro Kitada
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Asako Kumagai
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Emi Kawakita
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Sen Shi
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Keizo Kanasaki
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan. .,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Daisuke Koya
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, Japan. .,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
49
|
Vacchini A, Mortier A, Proost P, Locati M, Metzemaekers M, Borroni EM. Differential Effects of Posttranslational Modifications of CXCL8/Interleukin-8 on CXCR1 and CXCR2 Internalization and Signaling Properties. Int J Mol Sci 2018; 19:E3768. [PMID: 30486423 PMCID: PMC6321254 DOI: 10.3390/ijms19123768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 12/21/2022] Open
Abstract
CXCL8 or interleukin (IL)-8 directs neutrophil migration and activation through interaction with CXCR1 and CXCR2 that belong to the family of G protein-coupled receptors (GPCRs). Naturally occurring posttranslational modifications of the NH₂-terminal region of CXCL8 affect its biological activities, but the underlying molecular mechanisms are only partially understood. Here, we studied the implications of site-specific citrullination and truncation for the signaling potency of CXCL8. Native CXCL8(1-77), citrullinated [Cit5]CXCL8(1-77) and the major natural isoform CXCL8(6-77) were chemically synthesized and tested in internalization assays using human neutrophils. Citrullinated and truncated isoforms showed a moderately enhanced capacity to induce internalization of CXCR1 and CXCR2. Moreover, CXCL8-mediated activation of Gαi-dependent signaling through CXCR1 and CXCR2 was increased upon modification to [Cit5]CXCL8(1-77) or CXCL8(6-77). All CXCL8 variants promoted recruitment of β-arrestins 1 and 2 to CXCR1 and CXCR2. Compared to CXCL8(1-77), CXCL8(6-77) showed an enhanced potency to recruit β-arrestin 2 to both receptors, while for [Cit5]CXCL8(1-77) only the capacity to induce β-arrestin 2 recruitment to CXCR2 was increased. Both modifications had no biasing effect, i.e., did not alter the preference of CXCL8 to activate either Gαi-protein or β-arrestin-dependent signaling through its receptors. Our results support the concept that specific chemokine activities are fine-tuned by posttranslational modifications.
Collapse
Affiliation(s)
- Alessandro Vacchini
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via fratelli Cervi 93, I-20090 Segrate, Italy.
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, B-3000 Leuven, Belgium.
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, B-3000 Leuven, Belgium.
| | - Massimo Locati
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via fratelli Cervi 93, I-20090 Segrate, Italy.
| | - Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, B-3000 Leuven, Belgium.
| | - Elena Monica Borroni
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via fratelli Cervi 93, I-20090 Segrate, Italy.
| |
Collapse
|
50
|
How post-translational modifications influence the biological activity of chemokines. Cytokine 2018; 109:29-51. [DOI: 10.1016/j.cyto.2018.02.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2022]
|