1
|
Greiter BM, Sidorov S, Osuna E, Seiler M, Relly C, Hackenberg A, Luchsinger I, Cannizzaro E, Martin R, Marchesi M, von Felten S, Egli A, Berger C, Meyer Sauteur PM. Clinical characteristics and serological profiles of Lyme disease in children: a 15-year retrospective cohort study in Switzerland. THE LANCET REGIONAL HEALTH. EUROPE 2025; 48:101143. [PMID: 39736882 PMCID: PMC11683244 DOI: 10.1016/j.lanepe.2024.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 01/01/2025]
Abstract
Background Lyme disease (LD) is caused by Borrelia burgdorferi and is the most common tickborne disease in the northern hemisphere. Although classical characteristics of LD are well-known, the diagnosis and treatment are often delayed. Laboratory diagnosis by serological testing is recommended for most LD manifestations. The objective of this study was to describe clinical characteristics and associated serological profiles in children with LD. Methods This retrospective cohort study included children aged 0-18 years, diagnosed with LD according to current guidelines at University Children's Hospital Zurich between January 1, 2006 and December 31, 2020. Two-tier serological testing with the recomWell enzyme-linked immunosorbent assay and recomLine Western blot (MIKROGEN Diagnostik, MIKROGEN GmbH, Neuried, Germany) was performed at the Institute of Medical Microbiology, University of Zurich. Findings In total, 469 children diagnosed with LD were included (median age, 7.9 years); 190 patients (40.5%) with Lyme neuroborreliosis (LNB), 171 (36.5%) patients with skin manifestations (erythema migrans, n = 121; multiple erythema migrans, n = 11; borrelial lymphocytoma, n = 37; and acrodermatitis chronica atrophicans, n = 2), and 108 (23.0%) patients with Lyme arthritis. We observed seasonal variations for patients with skin manifestations and LNB, with high prevalence in May-October, but not for patients with Lyme arthritis. Significant differences between LD manifestation groups were found for age, inflammatory parameters, and specificity and concentration of B. burgdorferi-specific serum antibody responses. We observed distinct patterns of pronounced serum antibody responses against B. burgdorferi antigens in LNB (IgM against VlsE, p41, and OspC) and Lyme arthritis (IgG against p100, VlsE, p58, p41, p39, and p18). Interpretation Our study is one of the largest and most detailed for children with LD. We present unique findings regarding the differences in clinical characteristics and immune responses between various manifestations of LD in children. Funding No specific funding to disclose for this study.
Collapse
Affiliation(s)
- Beat M. Greiter
- Division of Infectious Diseases and Hospital Epidemiology, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Semjon Sidorov
- Division of Infectious Diseases and Hospital Epidemiology, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ester Osuna
- Division of Infectious Diseases and Hospital Epidemiology, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michelle Seiler
- Emergency Department, University Children's Hospital Zurich, Zurich, Switzerland
| | - Christa Relly
- Division of Infectious Diseases and Hospital Epidemiology, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Annette Hackenberg
- Department of Pediatric Neurology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Isabelle Luchsinger
- Department of Dermatology, Pediatric Skin Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Elvira Cannizzaro
- Department of Rheumatology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Martina Marchesi
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Medica-Medical Laboratories, Zurich, Switzerland
| | - Stefanie von Felten
- Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Adrian Egli
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Christoph Berger
- Division of Infectious Diseases and Hospital Epidemiology, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Patrick M. Meyer Sauteur
- Division of Infectious Diseases and Hospital Epidemiology, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Wu Q, Pan X, Han D, Ma Z, Zhang H. New Insights into the Epidemiological Characteristics of Mycoplasma pneumoniae Infection before and after the COVID-19 Pandemic. Microorganisms 2024; 12:2019. [PMID: 39458327 PMCID: PMC11509874 DOI: 10.3390/microorganisms12102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Mycoplasma pneumoniae (M. pneumoniae), a prevalent respiratory pathogen affecting children and adolescents, is known to trigger periodic global epidemics. The most recent significant outbreak commenced in the first half of 2023 and reached its peak globally during the autumn and winter months. Considering the worldwide repercussions of the COVID-19 pandemic, it has become increasingly essential to delve into the epidemiological characteristics of M. pneumoniae both before and after the pandemic. This review aims to provide a comprehensive analysis of the key features of M. pneumoniae epidemics in the pre-and post-COVID-19 contexts, including but not limited to shifts in the susceptible population, the molecular genotypes of the pathogen, the clinical manifestations, and potential new trends in drug resistance. Additionally, we will introduce the latest advancements in the diagnosis of M. pneumoniae.
Collapse
Affiliation(s)
- Qianyue Wu
- Clinical Lab in Children’s Hospital of Shanghai, Children’s Hospital of Shanghai Jiao Tong University, Shanghai 200040, China; (Q.W.); (X.P.); (D.H.); (Z.M.)
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Xiaozhou Pan
- Clinical Lab in Children’s Hospital of Shanghai, Children’s Hospital of Shanghai Jiao Tong University, Shanghai 200040, China; (Q.W.); (X.P.); (D.H.); (Z.M.)
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Dingding Han
- Clinical Lab in Children’s Hospital of Shanghai, Children’s Hospital of Shanghai Jiao Tong University, Shanghai 200040, China; (Q.W.); (X.P.); (D.H.); (Z.M.)
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Zhan Ma
- Clinical Lab in Children’s Hospital of Shanghai, Children’s Hospital of Shanghai Jiao Tong University, Shanghai 200040, China; (Q.W.); (X.P.); (D.H.); (Z.M.)
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Hong Zhang
- Clinical Lab in Children’s Hospital of Shanghai, Children’s Hospital of Shanghai Jiao Tong University, Shanghai 200040, China; (Q.W.); (X.P.); (D.H.); (Z.M.)
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| |
Collapse
|
3
|
Haddad NS, Morrison-Porter A, Quehl H, Capric V, Lamothe PA, Anam F, Runnstrom MC, Truong AD, Dixit AN, Woodruff MC, Chen A, Park J, Nguyen DC, Hentenaar I, Kim CY, Kyu S, Stewart B, Wagman E, Geoffroy H, Sanz D, Cashman KS, Ramonell RP, Cabrera-Mora M, Alter DN, Roback JD, Horwath MC, O’Keefe JB, Dretler AW, Gripaldo R, Yeligar SM, Natoli T, Betin V, Patel R, Vela K, Hernandez MR, Usman S, Varghese J, Jalal A, Lee S, Le SN, Amoss RT, Daiss JL, Sanz I, Lee FEH. MENSA, a Media Enriched with Newly Synthesized Antibodies, to Identify SARS-CoV-2 Persistence and Latent Viral Reactivation in Long-COVID. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.05.24310017. [PMID: 39006446 PMCID: PMC11245097 DOI: 10.1101/2024.07.05.24310017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Post-acute sequelae of SARS-CoV-2 (SARS2) infection (PASC) is a heterogeneous condition, but the main viral drivers are unknown. Here, we use MENSA, Media Enriched with Newly Synthesized Antibodies, secreted exclusively from circulating human plasmablasts, to provide an immune snapshot that defines the underlying viral triggers. We provide proof-of-concept testing that the MENSA technology can capture the new host immune response to accurately diagnose acute primary and breakthrough infections when known SARS2 virus or proteins are present. It is also positive after vaccination when spike proteins elicit an acute immune response. Applying the same principles for long-COVID patients, MENSA is positive for SARS2 in 40% of PASC vs none of the COVID recovered (CR) patients without any sequelae demonstrating ongoing SARS2 viral inflammation only in PASC. Additionally, in PASC patients, MENSAs are also positive for Epstein-Barr Virus (EBV) in 37%, Human Cytomegalovirus (CMV) in 23%, and herpes simplex virus 2 (HSV2) in 15% compared to 17%, 4%, and 4% in CR controls respectively. Combined, a total of 60% of PASC patients have a positive MENSA for SARS2, EBV, CMV, and/or HSV2. MENSA offers a unique antibody snapshot to reveal the underlying viral drivers in long-COVID thus demonstrating the persistence of SARS2 and reactivation of viral herpes in 60% of PASC patients.
Collapse
Affiliation(s)
- Natalie S. Haddad
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- MicroB-plex Inc, Atlanta, GA, 30332, USA
| | - Andrea Morrison-Porter
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- MicroB-plex Inc, Atlanta, GA, 30332, USA
| | - Hannah Quehl
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Violeta Capric
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Pedro A. Lamothe
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Fabliha Anam
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Martin C. Runnstrom
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Department of Medicine, Atlanta Veterans Affairs Health Care System, Decatur, Georgia, 30033, USA
| | - Alex D. Truong
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Adviteeya N. Dixit
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Matthew C. Woodruff
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Anting Chen
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jiwon Park
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Doan C. Nguyen
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Ian Hentenaar
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Caroline Y. Kim
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Shuya Kyu
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Brandon Stewart
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Elizabeth Wagman
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Hannah Geoffroy
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | | | - Kevin S. Cashman
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Richard P. Ramonell
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Asthma and Environmental Lung Health Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Monica Cabrera-Mora
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - David N. Alter
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA
| | - John D. Roback
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Michael C. Horwath
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA
| | - James B. O’Keefe
- Division of General Internal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | - Ria Gripaldo
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Samantha M. Yeligar
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Department of Medicine, Atlanta Veterans Affairs Health Care System, Decatur, Georgia, 30033, USA
| | - Ted Natoli
- ImmuneID, Inc Biotechnology Research, Waltham, MA, 02451, USA
| | - Viktoria Betin
- ImmuneID, Inc Biotechnology Research, Waltham, MA, 02451, USA
| | - Rahulkumar Patel
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Kennedy Vela
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Mindy Rodriguez Hernandez
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Sabeena Usman
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - John Varghese
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Anum Jalal
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Saeyun Lee
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Sang N. Le
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - R. Toby Amoss
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | | | - Ignacio Sanz
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - F. Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
4
|
Cheng Y, Shen R, Liu F, Li Y, Wang J, Hou Y, Liu Y, Zhou H, Hou F, Wang Y, Li X, Qiao R, Luo S. Humoral and cellular immune responses induced by serogroup W135 meningococcal conjugate and polysaccharide vaccines. Vaccine 2024; 42:2781-2792. [PMID: 38508928 DOI: 10.1016/j.vaccine.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/15/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Investigating the mechanisms by which W135 meningococcal conjugate (PSW135-TT) activates adaptive immune responses in mice can provide a comprehensive understanding of the immune mechanisms of bacterial polysaccharide conjugate vaccines. We compared B-cell and T-cell immune responses immunized with W135 meningococcal capsular polysaccharides (PSW135), tetanus toxoid (TT) and PSW135-TT in mice. The results showed that PSW135-TT could induce higher PSW135-specific and TT-specific IgG antibodies with a significant enhancement after two doses. All serum antibodies immunized with PSW135- TT had strong bactericidal activity, whereas none of the serum antibodies immunized with PSW135 had bactericidal activity. Besides, IgM and IgG antibodies immunized with PSW135-TT after two doses were positively correlated with the titer of bactericidal antibodies. We also found Th cells favored Th2 humoral immune responses in PSW135-TT, PSW135, and TT-immunized mice, especially peripheral blood lymphocytes. Furthermore, PSW135-TT and TT could effectively activate bone marrow derived dendritic cells (BMDCs) and promote BMDCs to highly express major histocompatibility complex Ⅱ (MHCⅡ), CD86 and CD40 molecules in mice, whereas PSW135 couldn't. These data verified the typical characteristics of PSW135-TT and TT as T cell dependent antigen (TD-Ag) and PSW135 as T cell independent antigen (TI-Ag), which will be very helpful for further exploration of the immune mechanism of polysaccharide-protein conjugate vaccines and improvement of the quality of bacterial polysaccharide conjugate vaccines in future.
Collapse
Affiliation(s)
- Yahui Cheng
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Rong Shen
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Fanglei Liu
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Yanting Li
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Jing Wang
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Yali Hou
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Yueping Liu
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Haifei Zhou
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Fengping Hou
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Yunjin Wang
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Xiongxiong Li
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Ruijie Qiao
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China.
| | - Shuquan Luo
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China.
| |
Collapse
|
5
|
Haddad NS, Nozick S, Ohanian S, Smith R, Elias S, Auwaerter PG, Lee FEH, Daiss JL. Circulating antibody-secreting cells are a biomarker for early diagnosis in patients with Lyme disease. PLoS One 2023; 18:e0293203. [PMID: 37922270 PMCID: PMC10624293 DOI: 10.1371/journal.pone.0293203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/07/2023] [Indexed: 11/05/2023] Open
Abstract
BACKGROUND Diagnostic immunoassays for Lyme disease have several limitations including: 1) not all patients seroconvert; 2) seroconversion occurs later than symptom onset; and 3) serum antibody levels remain elevated long after resolution of the infection. INTRODUCTION MENSA (Medium Enriched for Newly Synthesized Antibodies) is a novel diagnostic fluid that contains antibodies produced in vitro by circulating antibody-secreting cells (ASC). It enables measurement of the active humoral immune response. METHODS In this observational, case-control study, we developed the MicroB-plex Anti-C6/Anti-pepC10 Immunoassay to measure antibodies specific for the Borrelia burgdorferi peptide antigens C6 and pepC10 and validated it using a CDC serum sample collection. Then we examined serum and MENSA samples from 36 uninfected Control subjects and 12 Newly Diagnosed Lyme Disease Patients. RESULTS Among the CDC samples, antibodies against C6 and/or pepC10 were detected in all seropositive Lyme patients (8/8), but not in sera from seronegative patients or healthy controls (0/24). Serum antibodies against C6 and pepC10 were detected in one of 36 uninfected control subjects (1/36); none were detected in the corresponding MENSA samples (0/36). In samples from newly diagnosed patients, serum antibodies identified 8/12 patients; MENSA antibodies also detected 8/12 patients. The two measures agreed on six positive individuals and differed on four others. In combination, the serum and MENSA tests identified 10/12 early Lyme patients. Typically, serum antibodies persisted 80 days or longer while MENSA antibodies declined to baseline within 40 days of successful treatment. DISCUSSION MENSA-based immunoassays present a promising complement to serum immunoassays for diagnosis and tracking therapeutic success in Lyme infections.
Collapse
Affiliation(s)
| | - Sophia Nozick
- MicroB-plex, Inc., Atlanta, GA, United States of America
| | - Shant Ohanian
- MicroB-plex, Inc., Atlanta, GA, United States of America
| | - Robert Smith
- Division of Infectious Diseases, Maine Medical Center, MaineHealth Institute for Research, Portland, ME, United States of America
| | - Susan Elias
- Division of Infectious Diseases, Maine Medical Center, MaineHealth Institute for Research, Portland, ME, United States of America
| | - Paul G. Auwaerter
- Sherrilyn and Ken Fisher Center for Environmental Infectious Diseases, The Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | - F. Eun-Hyung Lee
- MicroB-plex, Inc., Atlanta, GA, United States of America
- Division of Pulmonary, Allergy & Immunology, Emory University, Atlanta, GA, United States of America
| | - John L. Daiss
- MicroB-plex, Inc., Atlanta, GA, United States of America
| |
Collapse
|
6
|
Covens K, Verbinnen B, de Jong BG, Moens L, Wuyts G, Verheyen G, Nys K, Cremer J, Smulders S, Schrijvers R, Weinhäusel A, Vermeire S, Verschueren P, Langhe ED, van Dongen JJM, van Zelm MC, Bossuyt X. Plasma cells are not restricted to the CD27+ phenotype: characterization of CD27-CD43+ antibody-secreting cells. Front Immunol 2023; 14:1165936. [PMID: 37492569 PMCID: PMC10364057 DOI: 10.3389/fimmu.2023.1165936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/11/2023] [Indexed: 07/27/2023] Open
Abstract
Circulating antibody-secreting cells are present in the peripheral blood of healthy individuals reflecting the continued activity of the humoral immune system. Antibody-secreting cells typically express CD27. Here we describe and characterize a small population of antibody-secreting class switched CD19+CD43+ B cells that lack expression of CD27 in the peripheral blood of healthy subjects. In this study, we characterized CD27-CD43+ cells. We demonstrate that class-switched CD27-CD43+ B cells possess characteristics of conventional plasmablasts as they spontaneously secrete antibodies, are morphologically similar to antibody-secreting cells, show downregulation of B cell differentiation markers, and have a gene expression profile related to conventional plasmablasts. Despite these similarities, we observed differences in IgA and IgG subclass distribution, expression of homing markers, replication history, frequency of somatic hypermutation, immunoglobulin repertoire, gene expression related to Toll-like receptors, cytokines, and cytokine receptors, and antibody response to vaccination. Their frequency is altered in immune-mediated disorders. Conclusion we characterized CD27-CD43+ cells as antibody-secreting cells with differences in function and homing potential as compared to conventional CD27+ antibody-secreting cells.
Collapse
Affiliation(s)
- Kris Covens
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology Research Group, Leuven, Belgium
- Biocartis, Research and Development, Mechelen, Belgium
| | - Bert Verbinnen
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology Research Group, Leuven, Belgium
- Biomedical Laboratory Technology, Radius, Life Sciences and Chemistry, Thomas More Kempen, Geel, Belgium
| | - Britt G. de Jong
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Department of Periodontology, ACTA, University of Amsterdam and VU University, Amsterdam, Netherlands
| | - Leen Moens
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology Research Group, Leuven, Belgium
- Department of Microbiology and Immunology, Inborn Errors of Immunity, Leuven, Belgium
| | - Greet Wuyts
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology Research Group, Leuven, Belgium
| | - Geert Verheyen
- Biomedical Laboratory Technology, Radius, Life Sciences and Chemistry, Thomas More Kempen, Geel, Belgium
| | - Kris Nys
- Gastroenterology, University Hospitals Leuven, Leuven, Belgium
| | - Jonathan Cremer
- Department of Microbiology and Immunology, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Stijn Smulders
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology Research Group, Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology and Immunology, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Andreas Weinhäusel
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Molecular Diagnostics, Vienna, Austria
| | | | | | - Ellen De Langhe
- Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Jacques J. M. van Dongen
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC, USAL-CSIC-FICUS), Salamanca, Spain
- Department of Medicine, University of Salamanca (USAL), Salamanca, Spain
| | - Menno C. van Zelm
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Xavier Bossuyt
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology Research Group, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Ansaryan S, Liu YC, Li X, Economou AM, Eberhardt CS, Jandus C, Altug H. High-throughput spatiotemporal monitoring of single-cell secretions via plasmonic microwell arrays. Nat Biomed Eng 2023:10.1038/s41551-023-01017-1. [PMID: 37012313 PMCID: PMC10365996 DOI: 10.1038/s41551-023-01017-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/02/2023] [Indexed: 04/05/2023]
Abstract
Methods for the analysis of cell secretions at the single-cell level only provide semiquantitative endpoint readouts. Here we describe a microwell array for the real-time spatiotemporal monitoring of extracellular secretions from hundreds of single cells in parallel. The microwell array incorporates a gold substrate with arrays of nanometric holes functionalized with receptors for a specific analyte, and is illuminated with light spectrally overlapping with the device's spectrum of extraordinary optical transmission. Spectral shifts in surface plasmon resonance resulting from analyte-receptor bindings around a secreting cell are recorded by a camera as variations in the intensity of the transmitted light while machine-learning-assisted cell tracking eliminates the influence of cell movements. We used the microwell array to characterize the antibody-secretion profiles of hybridoma cells and of a rare subset of antibody-secreting cells sorted from human donor peripheral blood mononuclear cells. High-throughput measurements of spatiotemporal secretory profiles at the single-cell level will aid the study of the physiological mechanisms governing protein secretion.
Collapse
Affiliation(s)
- Saeid Ansaryan
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yen-Cheng Liu
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Xiaokang Li
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Agora Center, Lausanne, Switzerland
| | | | - Christiane Sigrid Eberhardt
- Center for Vaccinology, University Hospitals Geneva and University of Geneva, Geneva, Switzerland
- Division of General Pediatrics, Department of Woman, Child and Adolescent Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Camilla Jandus
- Ludwig Institute for Cancer Research, Lausanne Branch, Agora Center, Lausanne, Switzerland
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Hatice Altug
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
8
|
Faber E, Tshilwane SI, Van Kleef M, Pretorius A. The impact of Escherichia coli contamination products present in recombinant African horse sickness virus serotype 4 proteins on the innate and humoral immune responses. Mol Immunol 2022; 152:1-13. [DOI: 10.1016/j.molimm.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
|
9
|
Wolf C, Köppert S, Becza N, Kuerten S, Kirchenbaum GA, Lehmann PV. Antibody Levels Poorly Reflect on the Frequency of Memory B Cells Generated following SARS-CoV-2, Seasonal Influenza, or EBV Infection. Cells 2022; 11:cells11223662. [PMID: 36429090 PMCID: PMC9688940 DOI: 10.3390/cells11223662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The scope of immune monitoring is to define the existence, magnitude, and quality of immune mechanisms operational in a host. In clinical trials and praxis, the assessment of humoral immunity is commonly confined to measurements of serum antibody reactivity without accounting for the memory B cell potential. Relying on fundamentally different mechanisms, however, passive immunity conveyed by pre-existing antibodies needs to be distinguished from active B cell memory. Here, we tested whether, in healthy human individuals, the antibody titers to SARS-CoV-2, seasonal influenza, or Epstein-Barr virus antigens correlated with the frequency of recirculating memory B cells reactive with the respective antigens. Weak correlations were found. The data suggest that the assessment of humoral immunity by measurement of antibody levels does not reflect on memory B cell frequencies and thus an individual's potential to engage in an anamnestic antibody response against the same or an antigenically related virus. Direct monitoring of the antigen-reactive memory B cell compartment is both required and feasible towards that goal.
Collapse
Affiliation(s)
- Carla Wolf
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sebastian Köppert
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Noémi Becza
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Greg A. Kirchenbaum
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
| | - Paul V. Lehmann
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
- Correspondence: ; Tel.: +1-(216)-791-5084
| |
Collapse
|
10
|
Xu H, Li T, Zhang X, Li H, Lv D, Wang Y, Huo F, Bai J, Wang C. Impaired Circulating Antibody-Secreting Cells Generation Predicts the Dismal Outcome in the Elderly Septic Shock Patients. J Inflamm Res 2022; 15:5293-5308. [PMID: 36124208 PMCID: PMC9482413 DOI: 10.2147/jir.s376962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/13/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Sepsis is a condition that derives from a dysregulated host response to infection. Although B lymphocytes play a pivotal role in immune response, little is known about status of their terminally differentiated cells, antibody-secreting cells (ASCs) during immunosuppressive phase of sepsis, especially in elderly patients. Our aim was to extensively characterize the immune functions of ASCs in elderly septic patients. Patients and Methods Clinical and laboratory data were collected on days 1, 3, and 7 of hospitalization. Circulating ASCs were evaluated by flow cytometry from fresh whole blood in elderly septic patients at the onset of disease. RNA sequencing analyzed ASCs gene expression profile. Receiver operating characteristic (ROC) curve analysis and logistic regression predicted the survival rate of 28-day mortality. Results A total of 103 septic patients were enrolled. The number and proportion of ASCs among total lymphocytes dramatically increased in septic patients, and RNA sequencing analysis showed that ASCs from septic patients exhibited a different gene expression profile. Furthermore, we found these ASCs could promote the function of T cells. Logistic regression analysis showed ASCs population was an independent outcome predictor in septic shock patients. Conclusion Our study revealed the complex nature of immune disorders in sepsis and identified circulating ASCs population as a useful biomarker for predicting mortality in elderly septic patients, which provided a novel clue to combat this severe disease.
Collapse
Affiliation(s)
- Huihui Xu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Teng Li
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Xiaoming Zhang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China.,Shanghai Huashen Institute of Microbes and Infections, Shanghai, 200052, People's Republic of China
| | - Hongqiang Li
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Diyu Lv
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Yiyuan Wang
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Fangjie Huo
- Department of Respiratory Medicine, Xi'an No. 4 hospital, Xi'an, 710004, People's Republic of China
| | - Jianwen Bai
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China.,Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, People's Republic of China
| | - Chunmei Wang
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China.,Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, People's Republic of China
| |
Collapse
|
11
|
Daamen AR, Bachali P, Bonham CA, Somerville L, Sturek JM, Grammer AC, Kadl A, Lipsky PE. COVID-19 patients exhibit unique transcriptional signatures indicative of disease severity. Front Immunol 2022; 13:989556. [PMID: 36189236 PMCID: PMC9522616 DOI: 10.3389/fimmu.2022.989556] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/29/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 manifests a spectrum of respiratory symptoms, with the more severe often requiring hospitalization. To identify markers for disease progression, we analyzed longitudinal gene expression data from patients with confirmed SARS-CoV-2 infection admitted to the intensive care unit (ICU) for acute hypoxic respiratory failure (AHRF) as well as other ICU patients with or without AHRF and correlated results of gene set enrichment analysis with clinical features. The results were then compared with a second dataset of COVID-19 patients separated by disease stage and severity. Transcriptomic analysis revealed that enrichment of plasma cells (PCs) was characteristic of all COVID-19 patients whereas enrichment of interferon (IFN) and neutrophil gene signatures was specific to patients requiring hospitalization. Furthermore, gene expression results were used to divide AHRF COVID-19 patients into 2 groups with differences in immune profiles and clinical features indicative of severe disease. Thus, transcriptomic analysis reveals gene signatures unique to COVID-19 patients and provides opportunities for identification of the most at-risk individuals.
Collapse
Affiliation(s)
| | | | - Catherine A. Bonham
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Charlottesville, VA, United States
| | - Lindsay Somerville
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Charlottesville, VA, United States
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Jeffrey M. Sturek
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Charlottesville, VA, United States
| | | | - Alexandra Kadl
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Charlottesville, VA, United States
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| | | |
Collapse
|
12
|
Burkholderia pseudomallei JW270 Is Lethal in the Madagascar Hissing Cockroach Infection Model and Can Be Utilized at Biosafety Level 2 to Identify Putative Virulence Factors. Infect Immun 2022; 90:e0015922. [PMID: 35862734 PMCID: PMC9387215 DOI: 10.1128/iai.00159-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is classified by the CDC as a tier 1 select agent, and work involving it must be performed in a biosafety level 3 (BSL-3) laboratory. Three BSL-2 surrogate strains derived from B. pseudomallei 1026b, a virulent clinical isolate, have been removed from the CDC select agent list. These strains, Bp82, B0011, and JW270, are highly attenuated in rodent models of melioidosis and cannot be utilized to identify virulence determinants because of their high 50% lethal dose (LD50). We previously demonstrated that the Madagascar hissing cockroach (MHC) is a tractable surrogate host to study the innate immune response against Burkholderia. In this study, we found that JW270 maintains its virulence in MHCs. This surprising result indicates that it may be possible to identify potential virulence genes in JW270 by using MHCs at BSL-2. We tested this hypothesis by constructing JW270 mutations in genes that are required (hcp1) or dispensable (hcp2) for B. pseudomallei virulence in rodents. JW270 Δhcp1 was avirulent in MHCs and JW270 Δhcp2 was virulent, suggesting that MHCs can be used at BSL-2 for the discovery of important virulence factors. JW270 ΔBPSS2185, a strain harboring a mutation in a type IV pilin locus (TFP8) required for full virulence in BALB/c mice, was also found to be attenuated in MHCs. Finally, we demonstrate that the hmqA-G locus, which encodes the production of a family of secondary metabolites called 4-hydroxy-3-methyl-2-alkylquinolines, is important for JW270 virulence in MHCs and may represent a novel virulence determinant.
Collapse
|
13
|
Silveira CGT, Magnani DM, Costa PR, Avelino-Silva VI, Ricciardi MJ, Timenetsky MDCST, Goulart R, Correia CA, Marmorato MP, Ferrari L, Nakagawa ZB, Tomiyama C, Tomiyama H, Kalil J, Palacios R, Precioso AR, Watkins DI, Kallás EG. Plasmablast Expansion Following the Tetravalent, Live-Attenuated Dengue Vaccine Butantan-DV in DENV-Naïve and DENV-Exposed Individuals in a Brazilian Cohort. Front Immunol 2022; 13:908398. [PMID: 35837409 PMCID: PMC9274664 DOI: 10.3389/fimmu.2022.908398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
An effective vaccine against the dengue virus (DENV) should induce a balanced, long-lasting antibody (Ab) response against all four viral serotypes. The burst of plasmablasts in the peripheral blood after vaccination may reflect enriched vaccine-specific Ab secreting cells. Here we characterize the acute plasmablast responses from naïve and DENV-exposed individuals following immunization with the live attenuated tetravalent (LAT) Butantan DENV vaccine (Butantan-DV). The frequency of circulating plasmablasts was determined by flow cytometric analysis of fresh whole blood specimens collected from 40 participants enrolled in the Phase II Butantan-DV clinical trial (NCT01696422) before and after (days 6, 12, 15 and 22) vaccination. We observed a peak in the number of circulating plasmablast at day 15 after vaccination in both the DENV naïve and the DENV-exposed vaccinees. DENV-exposed vaccinees experienced a significantly higher plasmablast expansion. In the DENV-naïve vaccinees, plasmablasts persisted for approximately three weeks longer than among DENV-exposed volunteers. Our findings indicate that the Butantan-DV can induce plasmablast responses in both DENV-naïve and DENV-exposed individuals and demonstrate the influence of pre-existing DENV immunity on Butantan DV-induced B-cell responses.
Collapse
Affiliation(s)
- Cássia G. T. Silveira
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Diogo M. Magnani
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Priscilla R. Costa
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Vivian I. Avelino-Silva
- Department of Infectious and Parasitic Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Michael J. Ricciardi
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States
| | | | - Raphaella Goulart
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Carolina A. Correia
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mariana P. Marmorato
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Lilian Ferrari
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Zelinda B. Nakagawa
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Claudia Tomiyama
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Helena Tomiyama
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Jorge Kalil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ricardo Palacios
- Division of Clinical Trials and Pharmacovigilance, Instituto Butantan, São Paulo, Brazil
| | - Alexander R. Precioso
- Division of Clinical Trials and Pharmacovigilance, Instituto Butantan, São Paulo, Brazil
- Pediatrics Department, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - David I. Watkins
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Esper G. Kallás
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Infectious and Parasitic Diseases, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Bartlett ML, Suwanmanee S, Peart Akindele N, Ghimire S, Chan AK, Guo C, Gould SJ, Cox AL, Griffin DE. Continued Virus-Specific Antibody-Secreting Cell Production, Avidity Maturation and B Cell Evolution in Patients Hospitalized with COVID-19. Viral Immunol 2022; 35:259-272. [PMID: 35285743 PMCID: PMC9063170 DOI: 10.1089/vim.2021.0191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Understanding the development and sustainability of the virus-specific protective immune response to infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) remains incomplete with respect to the appearance and disappearance of virus-specific antibody-secreting cells (ASCs) in circulation. Therefore, we performed cross-sectional and longitudinal analyses of peripheral blood mononuclear cells and plasma collected from 55 hospitalized patients up to 4 months after onset of COVID-19 symptoms. Spike (S)- and nucleocapsid (N)-specific IgM and IgG ASCs appeared within 2 weeks accompanied by flow cytometry increases in double negative plasmablasts consistent with a rapid extrafollicular B cell response. Total and virus-specific IgM and IgG ASCs peaked at 3-4 weeks and were still being produced at 3-4 months accompanied by increasing antibody avidity consistent with a slower germinal center B cell response. N-specific ASCs were produced for longer than S-specific ASCs and avidity maturation was greater for antibody to N than S. Patients with more severe disease produced more S-specific IgM and IgG ASCs than those with mild disease and had higher levels of N- and S-specific antibody. Women had more B cells in circulation than men and produced more S-specific IgA and IgG and N-specific IgG ASCs. Flow cytometry analysis of B cell phenotypes showed an increase in circulating B cells at 4-6 weeks with decreased percentages of switched and unswitched memory B cells. These data indicate ongoing antigen-specific stimulation, maturation, and production of ASCs for several months after onset of symptoms in patients hospitalized with COVID-19.
Collapse
Affiliation(s)
- Maggie L. Bartlett
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - San Suwanmanee
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Nadine Peart Akindele
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shristi Ghimire
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andy K.P. Chan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Chenxu Guo
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephen J. Gould
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea L. Cox
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Detection of Newly Secreted Antibodies Predicts Non-recurrence in Primary Clostridioides difficile Infection. J Clin Microbiol 2022; 60:e0220121. [PMID: 35107301 DOI: 10.1128/jcm.02201-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Within eight weeks of primary Clostridioides difficile infection (CDI), as many as 30% of patients develop recurrent disease with the associated risks of multiple relapses, morbidity, and economic burden. There are no clear clinical correlates or validated biomarkers that can predict recurrence during primary infection. This study demonstrates the potential of a simple test for identifying hospitalized CDI patients at low risk for disease recurrence. Methods: Forty-six hospitalized CDI patients were enrolled at Emory University Hospitals. Serum and a novel matrix from circulating plasmablasts called "Medium Enriched for Newly Synthesized Antibodies" (MENSA) samples were collected during weeks 1, 2, and 4. Antibodies specific for ten C. difficile antigens were measured in each sample Results: Among the 46 C. difficile-infected patients, nine (19.5%) experienced recurrence within eight weeks of primary infection. Among the 37 non-recurrent patients, 23 (62%; 23/37) had anti-C. difficile MENSA antibodies specific for any of the three toxin antigens: TcdB-CROP, TcdBvir-CROP, and/or CDTb. Positive MENSA responses occurred early (within the first 12 days post-symptom onset), including six patients who never seroconverted. A similar trend was observed in serum responses, but they peaked later and identified fewer patients (51%; 19/37). In contrast, none (0%; 0/9) of the patients who subsequently recurred after hospitalization produced antibodies specific for any of the three C. difficile toxin antigens. Thus, patients with a negative early MENSA response against all three C. difficile toxin antigens had a 19-fold greater relative risk of recurrence. Discussion: MENSA and serum levels of IgA and/or IgG antibodies for three C. difficile toxins have prognostic potential. These immunoassays measure nascent immune responses that reduce the likelihood of recurrence thereby providing a biomarker of protection from recurrent CDI. Patients who are positive by this immunoassay are unlikely to suffer recurrence. Early identification of patients at-risk for recurrence by negative MENSA creates opportunities for targeted prophylactic strategies that can reduce the incidence, cost and morbidity due to recurrent CDI.
Collapse
|
16
|
Broketa M, Bruhns P. Single-Cell Technologies for the Study of Antibody-Secreting Cells. Front Immunol 2022; 12:821729. [PMID: 35173713 PMCID: PMC8841722 DOI: 10.3389/fimmu.2021.821729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/29/2021] [Indexed: 01/05/2023] Open
Abstract
Antibody-secreting cells (ASC), plasmablasts and plasma cells, are terminally differentiated B cells responsible for large-scale production and secretion of antibodies. ASC are derived from activated B cells, which may differentiate extrafollicularly or form germinal center (GC) reactions within secondary lymphoid organs. ASC therefore consist of short-lived, poorly matured plasmablasts that generally secrete lower-affinity antibodies, or long-lived, highly matured plasma cells that generally secrete higher-affinity antibodies. The ASC population is responsible for producing an immediate humoral B cell response, the polyclonal antibody repertoire, as well as in parallel building effective humoral memory and immunity, or potentially driving pathology in the case of autoimmunity. ASC are phenotypically and transcriptionally distinct from other B cells and further distinguishable by morphology, varied lifespans, and anatomical localization. Single cell analyses are required to interrogate the functional and transcriptional diversity of ASC and their secreted antibody repertoire and understand the contribution of individual ASC responses to the polyclonal humoral response. Here we summarize the current and emerging functional and molecular techniques for high-throughput characterization of ASC with single cell resolution, including flow and mass cytometry, spot-based and microfluidic-based assays, focusing on functional approaches of the secreted antibodies: specificity, affinity, and secretion rate.
Collapse
Affiliation(s)
- Matteo Broketa
- Institut Pasteur, Université de Paris, INSERM UMR 1222, Unit of Antibodies in Therapy and Pathology, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Pierre Bruhns
- Institut Pasteur, Université de Paris, INSERM UMR 1222, Unit of Antibodies in Therapy and Pathology, Paris, France
| |
Collapse
|
17
|
Ehling RA, Weber CR, Mason DM, Friedensohn S, Wagner B, Bieberich F, Kapetanovic E, Vazquez-Lombardi R, Di Roberto RB, Hong KL, Wagner C, Pataia M, Overath MD, Sheward DJ, Murrell B, Yermanos A, Cuny AP, Savic M, Rudolf F, Reddy ST. SARS-CoV-2 reactive and neutralizing antibodies discovered by single-cell sequencing of plasma cells and mammalian display. Cell Rep 2022; 38:110242. [PMID: 34998467 PMCID: PMC8692065 DOI: 10.1016/j.celrep.2021.110242] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/22/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023] Open
Abstract
Characterization of COVID-19 antibodies has largely focused on memory B cells; however, it is the antibody-secreting plasma cells that are directly responsible for the production of serum antibodies, which play a critical role in resolving SARS-CoV-2 infection. Little is known about the specificity of plasma cells, largely because plasma cells lack surface antibody expression, thereby complicating their screening. Here, we describe a technology pipeline that integrates single-cell antibody repertoire sequencing and mammalian display to interrogate the specificity of plasma cells from 16 convalescent patients. Single-cell sequencing allows us to profile antibody repertoire features and identify expanded clonal lineages. Mammalian display screening is used to reveal that 43 antibodies (of 132 candidates) derived from expanded plasma cell lineages are specific to SARS-CoV-2 antigens, including antibodies with high affinity to the SARS-CoV-2 receptor-binding domain (RBD) that exhibit potent neutralization and broad binding to the RBD of SARS-CoV-2 variants (of concern/interest).
Collapse
Affiliation(s)
- Roy A Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; deepCDR Biologics AG, Basel, Switzerland
| | - Derek M Mason
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; deepCDR Biologics AG, Basel, Switzerland
| | - Simon Friedensohn
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; deepCDR Biologics AG, Basel, Switzerland
| | - Bastian Wagner
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Florian Bieberich
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Edo Kapetanovic
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Raphaël B Di Roberto
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kai-Lin Hong
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Botnar Research Centre for Child Health, Basel, Switzerland
| | | | - Michele Pataia
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; deepCDR Biologics AG, Basel, Switzerland
| | - Max D Overath
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Botnar Research Centre for Child Health, Basel, Switzerland; Institute of Microbiology and Immunology, Department of Biology, ETH Zurich, Zurich, Switzerland; Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Andreas P Cuny
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstr. 26, 4058 Basel, Switzerland
| | - Miodrag Savic
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Surgery, Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland; Department of Health, Economics and Health Directorate, Canton Basel-Landschaft, Switzerland
| | - Fabian Rudolf
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstr. 26, 4058 Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Botnar Research Centre for Child Health, Basel, Switzerland.
| |
Collapse
|
18
|
Venkatesan MM, Ballou C, Barnoy S, McNeal M, El-Khorazaty J, Frenck R, Baqar S. Antibody in Lymphocyte Supernatant (ALS) responses after oral vaccination with live Shigella sonnei vaccine candidates WRSs2 and WRSs3 and correlation with serum antibodies, ASCs, fecal IgA and shedding. PLoS One 2021; 16:e0259361. [PMID: 34793505 PMCID: PMC8601580 DOI: 10.1371/journal.pone.0259361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
The levels of antigen-specific Antibodies in Lymphocyte Supernatant (ALS) using an ELISA are being used to evaluate mucosal immune responses as an alternate to measuring the number of Antibody Secreting Cells (ASCs) using an ELISpot assay. A recently completed trial of two novel S. sonnei live oral vaccine candidates WRSs2 and WRSs3 established that both candidates were safe, well tolerated and immunogenic in a vaccine dose-dependent manner. Previously, mucosal immune responses were measured by assaying IgA- and IgG-ASC in peripheral blood mononuclear cells (PBMCs). In this report, the magnitude of the S. sonnei antigen-specific IgA- and IgG-ALS responses was measured and correlated with previously described ASCs, serum antibodies, fecal IgA and vaccine shedding. Overall, the magnitude of S. sonnei anti-Invaplex50 ALS was higher than that of LPS or IpaB, and both vaccines demonstrated a more robust IgA-ALS response than IgG; however, compared to WRSs3, the magnitude and percentage of responders were higher among WRSs2 recipients for IgA- or IgG-ALS. All WRSs2 vaccinees at the two highest doses responded for LPS and Invaplex50-specific IgA-ALS and 63-100% for WRSs3 vaccinees responded. Regardless of the vaccine candidate, vaccine dose or detecting antigen, the kinetics of ALS responses were similar peaking on days 7 to 9 and returning to baseline by day 14. The ALS responses were vaccine-specific since no responses were detected among placebo recipients at any time. A strong correlation and agreement between responders/non-responders were noted between ALS and other mucosal (ASC and fecal IgA) and systemic (serum antibody) immune responses. These data indicate that the ALS assay can be a useful tool to evaluate mucosal responses to oral vaccination, an observation noted with trials of other bacterial diarrheal pathogens. Furthermore, this data will guide the list of immunological assays to be conducted for efficacy trials in different populations. It is hoped that an antigen-specific-ALS titer may be a key mucosal correlate of protection, a feature not currently available for any Shigella vaccines candidates. https://clinicaltrials.gov/show/NCT01336699.
Collapse
Affiliation(s)
- Malabi M. Venkatesan
- Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | | | - Shoshana Barnoy
- Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Monica McNeal
- Division of Infectious Diseases, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | | | - Robert Frenck
- Division of Infectious Diseases, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Shahida Baqar
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
19
|
Kyu S, Ramonell RP, Kuruvilla M, Kraft CS, Wang YF, Falsey AR, Walsh EE, Daiss JL, Paulos S, Rajam G, Wu H, Velusamy S, Lee FEH. Diagnosis of Streptococcus pneumoniae infection using circulating antibody secreting cells. PLoS One 2021; 16:e0259644. [PMID: 34767590 PMCID: PMC8589192 DOI: 10.1371/journal.pone.0259644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae infections cause morbidity and mortality worldwide. A rapid, simple diagnostic method could reduce the time needed to introduce definitive therapy potentially improving patient outcomes. METHODS We introduce two new methods for diagnosing S. pneumoniae infections by measuring the presence of newly activated, pathogen-specific, circulating Antibody Secreting Cells (ASC). First, ASC were detected by ELISpot assays that measure cells secreting antibodies specific for signature antigens. Second, the antibodies secreted by isolated ASC were collected in vitro in a novel matrix, MENSA (media enriched with newly synthesized antibodies) and antibodies against S. pneumoniae antigens were measured using Luminex immunoassays. Each assay was evaluated using blood from S. pneumoniae and non-S. pneumoniae-infected adult patients. RESULTS We enrolled 23 patients with culture-confirmed S. pneumoniae infections and 24 controls consisting of 12 non-S. pneumoniae infections, 10 healthy donors and two colonized with S. pneumoniae. By ELISpot assays, twenty-one of 23 infected patients were positive, and all 24 controls were negative. Using MENSA samples, four of five S. pneumoniae-infected patients were positive by Luminex immunoassays while all five non-S. pneumoniae-infected patients were negative. CONCLUSION Specific antibodies produced by activated ASC may provide a simple diagnostic for ongoing S. pneumoniae infections. This method has the potential to diagnose acute bacterial infections.
Collapse
Affiliation(s)
- Shuya Kyu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Richard P. Ramonell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Merin Kuruvilla
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Colleen S. Kraft
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Yun F. Wang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ann R. Falsey
- Division of Infectious Diseases, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Rochester General Hospital, Rochester, New York, United States of America
| | - Edward E. Walsh
- Division of Infectious Diseases, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Rochester General Hospital, Rochester, New York, United States of America
| | - John L. Daiss
- Center for Musculoskeletal Research and Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, United States of America
- MicroB-plex, Inc., Atlanta, Georgia, United States of America
| | - Simon Paulos
- Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | | | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, United States of America
| | - Srinivasan Velusamy
- Division of Bacterial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - F. Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
20
|
Aggarwal C, Saini K, Reddy ES, Singla M, Nayak K, Chawla YM, Maheshwari D, Singh P, Sharma P, Bhatnagar P, Kumar S, Gottimukkala K, Panda H, Gunisetty S, Davis CW, Kissick HT, Kabra SK, Lodha R, Medigeshi GR, Ahmed R, Murali-Krishna K, Chandele A. Immunophenotyping and Transcriptional Profiling of Human Plasmablasts in Dengue. J Virol 2021; 95:e0061021. [PMID: 34523972 PMCID: PMC8577383 DOI: 10.1128/jvi.00610-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/11/2021] [Indexed: 12/07/2022] Open
Abstract
Plasmablasts represent a specialized class of antibody-secreting effector B cells that transiently appear in blood circulation following infection or vaccination. The expansion of these cells generally tends to be massive in patients with systemic infections such as dengue or Ebola that cause hemorrhagic fever. To gain a detailed understanding of human plasmablast responses beyond antibody expression, here, we performed immunophenotyping and RNA sequencing (RNA-seq) analysis of the plasmablasts from dengue febrile children in India. We found that plasmablasts expressed several adhesion molecules and chemokines or chemokine receptors that are involved in endothelial interactions or homing to inflamed tissues, including skin, mucosa, and intestine, and upregulated the expression of several cytokine genes that are involved in leukocyte extravasation and angiogenesis. These plasmablasts also upregulated the expression of receptors for several B-cell prosurvival cytokines that are known to be induced robustly in systemic viral infections such as dengue, some of which generally tend to be relatively higher in patients manifesting hemorrhage and/or shock than in patients with mild febrile infection. These findings improve our understanding of human plasmablast responses during the acute febrile phase of systemic dengue infection. IMPORTANCE Dengue is globally spreading, with over 100 million clinical cases annually, with symptoms ranging from mild self-limiting febrile illness to more severe and sometimes life-threatening dengue hemorrhagic fever or shock, especially among children. The pathophysiology of dengue is complex and remains poorly understood despite many advances indicating a key role for antibody-dependent enhancement of infection. While serum antibodies have been extensively studied, the characteristics of the early cellular factories responsible for antibody production, i.e., plasmablasts, are only beginning to emerge. This study provides a comprehensive understanding of the transcriptional profiles of human plasmablasts from dengue patients.
Collapse
Affiliation(s)
- Charu Aggarwal
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Keshav Saini
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Mohit Singla
- Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Kaustuv Nayak
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Yadya M. Chawla
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Deepti Maheshwari
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Prabhat Singh
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Pragati Sharma
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Biotechnology, School of Chemical and Life Sciences, New Delhi, India
| | - Priya Bhatnagar
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- TERI School of Advanced Studies, New Delhi, India
| | - Sanjeev Kumar
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kamalvishnu Gottimukkala
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Harekrushna Panda
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sivaram Gunisetty
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Carl W. Davis
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Haydn Thomas Kissick
- Department of Microbiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
21
|
Lai WC, Hsieh YC, Chen YC, Kuo CY, Chen CJ, Huang YC, Chiu CH, Lin TY, Huang KYA. A potent antibody-secreting B cell response to Mycoplasma pneumoniae in children with pneumonia. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:413-420. [PMID: 34503921 DOI: 10.1016/j.jmii.2021.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/09/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Mycoplasma pneumoniae is a major pathogen for community-acquired pneumonia and frequently causes outbreaks in children. M. pneumoniae-specific antibody response is detected upon acute infection and the serology is widely used in the clinical setting. Nevertheless, the cellular basis for antigen-specific antibody response to acute M. pneumoniae infection is largely undetermined in children. METHODS Hospitalized children with community-acquired pneumonia were enrolled and the infection with M. pneumoniae was confirmed with positive PCR result and negative findings for other pathogens. The M. pneumoniae P1-specific antibody-secreting B cell (ASC) response was examined with the ex vivo enzyme-linked immunosorbent spot assay and the relationships between the ASC frequency and serological level and clinical parameters within M. pneumoniae patients were studied. RESULTS A robust M. pneumoniae P1-specific ASC response was detected in the peripheral blood among M. pneumoniae-positive patients. By contrast, no M. pneumoniae-specific ASCs were detected among M. pneumoniae-negative patients. The IgM-secreting B cells are the predominant class and account for over 60% of total circulating M. pneumoniae-specific ASCs in the acute phase of illness. The M. pneumoniae P1-specific ASC frequency significantly correlated with the fever duration, and the IgG ASC frequency significantly correlated with serological titer among patients. CONCLUSION A rapid and potent elicitation of peripheral M. pneumoniae-specific ASC response to acute infection provides the cellular basis of antigen-specific humoral response and indicates the potential of cell-based diagnostic tool for acute M. pneumoniae infection. Our findings warrant further investigations into functional and molecular aspects of antibody immunity to M. pneumoniae.
Collapse
Affiliation(s)
- Wan-Chun Lai
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Chia Hsieh
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Yi-Ching Chen
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chen-Yen Kuo
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Jung Chen
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yhu-Chering Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tzou-Yien Lin
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuan-Ying A Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
22
|
Köppert S, Wolf C, Becza N, Sautto GA, Franke F, Kuerten S, Ross TM, Lehmann PV, Kirchenbaum GA. Affinity Tag Coating Enables Reliable Detection of Antigen-Specific B Cells in Immunospot Assays. Cells 2021; 10:cells10081843. [PMID: 34440612 PMCID: PMC8394687 DOI: 10.3390/cells10081843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022] Open
Abstract
Assessment of humoral immunity to SARS-CoV-2 and other infectious agents is typically restricted to detecting antigen-specific antibodies in the serum. Rarely does immune monitoring entail assessment of the memory B-cell compartment itself, although it is these cells that engage in secondary antibody responses capable of mediating immune protection when pre-existing antibodies fail to prevent re-infection. There are few techniques that are capable of detecting rare antigen-specific B cells while also providing information regarding their relative abundance, class/subclass usage and functional affinity. In theory, the ELISPOT/FluoroSpot (collectively ImmunoSpot) assay platform is ideally suited for antigen-specific B-cell assessments since it provides this information at single-cell resolution for individual antibody-secreting cells (ASC). Here, we tested the hypothesis that antigen-coating efficiency could be universally improved across a diverse set of viral antigens if the standard direct (non-specific, low affinity) antigen absorption to the membrane was substituted by high-affinity capture. Specifically, we report an enhancement in assay sensitivity and a reduction in required protein concentrations through the capture of recombinant proteins via their encoded hexahistidine (6XHis) affinity tag. Affinity tag antigen coating enabled detection of SARS-CoV-2 Spike receptor binding domain (RBD)-reactive ASC, and also significantly improved assay performance using additional control antigens. Collectively, establishment of a universal antigen-coating approach streamlines characterization of the memory B-cell compartment after SARS-CoV-2 infection or COVID-19 vaccinations, and facilitates high-throughput immune-monitoring efforts of large donor cohorts in general.
Collapse
Affiliation(s)
- Sebastian Köppert
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA; (S.K.); (C.W.); (N.B.); (F.F.); (P.V.L.)
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Carla Wolf
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA; (S.K.); (C.W.); (N.B.); (F.F.); (P.V.L.)
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Noémi Becza
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA; (S.K.); (C.W.); (N.B.); (F.F.); (P.V.L.)
| | - Giuseppe A. Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (G.A.S.); (T.M.R.)
| | - Fridolin Franke
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA; (S.K.); (C.W.); (N.B.); (F.F.); (P.V.L.)
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; (G.A.S.); (T.M.R.)
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Paul V. Lehmann
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA; (S.K.); (C.W.); (N.B.); (F.F.); (P.V.L.)
| | - Greg A. Kirchenbaum
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA; (S.K.); (C.W.); (N.B.); (F.F.); (P.V.L.)
- Correspondence: ; Tel.: +1-(216)-791-5084
| |
Collapse
|
23
|
Abstract
Neutralizing antibodies are the basis of almost all approved prophylactic vaccines and the foundation of effective protection from pathogens, including the recently emerging SARS Coronavirus 2 (SARS-CoV-2). However, the contribution of antibodies to protection and to the course of the disease during first-time exposure to a pathogen is unknown. We analyzed the antibodies and B cell responses in severe and mild COVID-19 patients. Despite our primary assumption that high antibody titers contribute to a mild disease, we found that severe COVID-19 illness, and not mild infection, correlates with strong anti-viral antibody and memory B cell responses. This phenomenon was also demonstrated for anti-Mycobacterium tuberculosis inhibiting antibodies that we recently isolated from an actively infected Tuberculosis-sick donor. This correlation between disease severity and antibody responses can be explained by the fact that high viral loads drive B cell stimulation and generation of high-affinity antibodies that will be protective upon future encounter with the particular pathogen.
Collapse
Affiliation(s)
- Natalia T Freund
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Haddad NS, Nozick S, Kim G, Ohanian S, Kraft C, Rebolledo PA, Wang Y, Wu H, Bressler A, Le SNT, Kuruvilla M, Cannon LE, Lee FEH, Daiss JL. Novel immunoassay for diagnosis of ongoing Clostridioides difficile infections using serum and medium enriched for newly synthesized antibodies (MENSA). J Immunol Methods 2021; 492:112932. [PMID: 33221459 DOI: 10.1016/j.jim.2020.112932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Clostridioides difficile infections (CDI) have been a challenging and increasingly serious concern in recent years. While early and accurate diagnosis is crucial, available assays have frustrating limitations. OBJECTIVE Develop a simple, blood-based immunoassay to accurately diagnose patients suffering from active CDI. MATERIALS AND METHODS Uninfected controls (N = 95) and CDI patients (N = 167) were recruited from Atlanta area hospitals. Blood samples were collected from patients within twelve days of a positive CDI test and processed to yield serum and PBMCs cultured to yield medium enriched for newly synthesized antibodies (MENSA). Multiplex immunoassays measured Ig responses to ten recombinant C. difficile antigens. RESULTS Sixty-six percent of CDI patients produced measurable responses to C. difficile antigens in their serum or MENSA within twelve days of a positive CDI test. Fifty-two of the 167 CDI patients (31%) were detectable in both serum and MENSA, but 32/167 (19%) were detectable only in MENSA, and 27/167 (16%) were detectable only in serum. DISCUSSION We describe the results of a multiplex immunoassay for the diagnosis of ongoing CDI in hospitalized patients. Our assay resolved patients into four categories: MENSA-positive only, serum-positive only, MENSA- and serum-positive, and MENSA- and serum-negative. The 30% of patients who were MENSA-positive only may be accounted for by nascent antibody secretion prior to seroconversion. Conversely, the serum-positive only subset may have been more advanced in their disease course. Immunocompromise and misdiagnosis may have contributed to the 34% of CDI patients who were not identified using MENSA or serum immunoassays. IMPORTANCE While there was considerable overlap between patients identified through MENSA and serum, each method detected a distinctive patient group. The combined use of both MENSA and serum to detect CDI patients resulted in the greatest identification of CDI patients. Together, longitudinal analysis of MENSA and serum will provide a more accurate evaluation of successful host humoral immune responses in CDI patients.
Collapse
Affiliation(s)
| | | | | | | | - Colleen Kraft
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Paulina A Rebolledo
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Yun Wang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Department of Pathology and Laboratory Medicine, Grady Memorial Hospital, Atlanta, GA, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Adam Bressler
- Infectious Disease Specialists of Atlanta, Decatur, GA, USA
| | - Sang Nguyet Thi Le
- Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Merin Kuruvilla
- Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, GA, USA
| | | | - F Eun-Hyung Lee
- MicroB-plex, Inc., Atlanta, GA, USA; Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, GA, USA
| | - John L Daiss
- MicroB-plex, Inc., Atlanta, GA, USA; Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
25
|
CD27 hiCD38 hi plasmablasts are activated B cells of mixed origin with distinct function. iScience 2021; 24:102482. [PMID: 34113823 PMCID: PMC8169951 DOI: 10.1016/j.isci.2021.102482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/23/2020] [Accepted: 04/26/2021] [Indexed: 01/09/2023] Open
Abstract
Clinically important broadly reactive B cells evolve during multiple infections, with B cells re-activated after secondary infection differing from B cells activated after a primary infection. Here we studied CD27highCD38high plasmablasts from patients with a primary or secondary dengue virus infection. Three transcriptionally and functionally distinct clusters were identified. The largest cluster 0/1 was plasma cell-related, with cells coding for serotype cross-reactive antibodies of the IgG1 isotype, consistent with memory B cell activation during an extrafollicular response. Cells in clusters 2 and 3 expressed low levels of antibody genes and high levels of genes associated with oxidative phosphorylation, EIF2 pathway, and mitochondrial dysfunction. Clusters 2 and 3 showed a transcriptional footprint of T cell help, in line with activation from naive B cells or memory B cells. Our results contribute to the understanding of the parallel B cell activation events that occur in humans after natural primary and secondary infection.
Collapse
|
26
|
Meyer Sauteur PM. Challenges and Progress Toward Determining Pneumonia Etiology. Clin Infect Dis 2021; 71:514-516. [PMID: 31504351 DOI: 10.1093/cid/ciz879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Patrick M Meyer Sauteur
- Division of Infectious Diseases and Hospital Epidemiology, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Gao L, Zhou J, Yang S, Wang L, Chen X, Yang Y, Li R, Pan Z, Zhao J, Li Z, Huang Q, Tang J, Hu L, Liu P, Zhang G, Chen Y, Ye L. The dichotomous and incomplete adaptive immunity in COVID-19 patients with different disease severity. Signal Transduct Target Ther 2021; 6:113. [PMID: 33686064 PMCID: PMC7938043 DOI: 10.1038/s41392-021-00525-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 12/28/2022] Open
Abstract
The adaptive immunity that protects patients from coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is not well characterized. In particular, the asymptomatic patients have been found to induce weak and transient SARS-CoV-2 antibody responses, but the underlying mechanisms remain unknown; meanwhile, the protective immunity that guide the recovery of these asymptomatic patients is elusive. Here, we characterized SARS-CoV-2-specific B-cell and T-cell responses in 10 asymptomatic patients and 64 patients with other disease severity (mild, n = 10, moderate, n = 32, severe, n = 12) and found that asymptomatic or mild symptomatic patients failed to mount virus-specific germinal center (GC) B cell responses that result in robust and prolonged humoral immunity, assessed by GC response indicators including follicular helper T (TFH) cell and memory B cell responses as well as serum CXCL13 levels. Alternatively, these patients mounted potent virus-specific TH1 and CD8+ T cell responses. In sharp contrast, patients of moderate or severe disease induced vigorous virus-specific GC B cell responses and associated TFH responses; however, the virus-specific TH1 and CD8+ T cells were minimally induced in these patients. These results, therefore, uncovered the protective immunity in asymptomatic patients and also revealed the strikingly dichotomous and incomplete humoral and cellular immune responses in COVID-19 patients with different disease severity, providing important insights into rational design of effective COVID-19 vaccines.
Collapse
Affiliation(s)
- Leiqiong Gao
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jing Zhou
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Sen Yang
- Chongqing Public Health Medical Center, Chongqing, China
| | - Lisha Wang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Xiangyu Chen
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yang Yang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Ren Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhiwei Pan
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jing Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhirong Li
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Qizhao Huang
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Jianfang Tang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Li Hu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Pinghuang Liu
- Comparative Immunology Research Center, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Yaokai Chen
- Chongqing Public Health Medical Center, Chongqing, China.
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
28
|
Villasis E, Garro K, Rosas-Aguirre A, Rodriguez P, Rosado J, Gave A, Guzman-Guzman M, Manrique P, White M, Speybroeck N, Vinetz JM, Torres K, Gamboa D. PvMSP8 as a Novel Plasmodium vivax Malaria Sero-Marker for the Peruvian Amazon. Pathogens 2021; 10:pathogens10030282. [PMID: 33801386 PMCID: PMC7999794 DOI: 10.3390/pathogens10030282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
The measurement of recent malaria exposure can support malaria control efforts. This study evaluated serological responses to an in-house Plasmodium vivax Merozoite Surface Protein 8 (PvMSP8) expressed in a Baculovirus system as sero-marker of recent exposure to P. vivax (Pv) in the Peruvian Amazon. In a first evaluation, IgGs against PvMSP8 and PvMSP10 proteins were measured by Luminex in a cohort of 422 Amazonian individuals with known history of Pv exposure (monthly data of infection status by qPCR and/or microscopy over five months). Both serological responses were able to discriminate between exposed and non-exposed individuals in a good manner, with slightly higher performance of anti-PvMSP10 IgGs (area under the curve AUC = 0.78 [95% CI = 0.72–0.83]) than anti-PvMSP8 IgGs (AUC = 0.72 [95% CI = 0.67–0.78]) (p = 0.01). In a second evaluation, the analysis by ELISA of 1251 plasma samples, collected during a population-based cross-sectional survey, confirmed the good performance of anti-PvMSP8 IgGs for discriminating between individuals with Pv infection at the time of survey and/or with antecedent of Pv in the past month (AUC = 0.79 [95% CI = 0.74–0.83]). Anti-PvMSP8 IgG antibodies can be considered as a good biomarker of recent Pv exposure in low-moderate transmission settings of the Peruvian Amazon.
Collapse
Affiliation(s)
- Elizabeth Villasis
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 15102, Lima, Peru; (K.G.); (P.R.); (K.T.)
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (A.R.-A.); (J.M.V.); (D.G.)
- Correspondence:
| | - Katherine Garro
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 15102, Lima, Peru; (K.G.); (P.R.); (K.T.)
| | - Angel Rosas-Aguirre
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (A.R.-A.); (J.M.V.); (D.G.)
- Research Institute of Health and Society (IRSS). Université Catholique de Louvain, Clos Chapelle-aux-champs 30/B1.30.14 1200 Woluwe-Saint-Lambert, Brussels 1200, Belgium;
| | - Pamela Rodriguez
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 15102, Lima, Peru; (K.G.); (P.R.); (K.T.)
| | - Jason Rosado
- Malaria: Parasites and Hosts Unit, Institut Pasteur, Paris 75015, France; (J.R.); (M.W.)
- Sorbonne Université, Faculté des Sciences et Ingénierie, École Doctorale Pierre Louis - Santé Publique, Campus des Cordeliers, ED 393, F-75005 Paris, France
| | - Anthony Gave
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
| | - Mitchel Guzman-Guzman
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
| | - Paulo Manrique
- Leishmania and Malaria Research Unit. Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
| | - Michael White
- Malaria: Parasites and Hosts Unit, Institut Pasteur, Paris 75015, France; (J.R.); (M.W.)
| | - Niko Speybroeck
- Research Institute of Health and Society (IRSS). Université Catholique de Louvain, Clos Chapelle-aux-champs 30/B1.30.14 1200 Woluwe-Saint-Lambert, Brussels 1200, Belgium;
| | - Joseph Michael Vinetz
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (A.R.-A.); (J.M.V.); (D.G.)
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Katherine Torres
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 15102, Lima, Peru; (K.G.); (P.R.); (K.T.)
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (A.R.-A.); (J.M.V.); (D.G.)
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (A.R.-A.); (J.M.V.); (D.G.)
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| |
Collapse
|
29
|
Meyer Sauteur PM, Trück J, van Rossum AMC, Berger C. Circulating Antibody-Secreting Cell Response During Mycoplasma pneumoniae Childhood Pneumonia. J Infect Dis 2021; 222:136-147. [PMID: 32034406 DOI: 10.1093/infdis/jiaa062] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/06/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND We recently demonstrated that the measurement of Mycoplasma pneumoniae (Mp)-specific immunoglobulin (Ig)M antibody-secreting cells (ASCs) improved diagnosis of Mp infection. Here, we aimed to describe Mp ASC kinetics and duration in comparison to conventional measures such as pharyngeal Mp deoxyribonucleic acid (DNA) and serum antibodies. METHODS This is a prospective longitudinal study of 63 community-acquired pneumonia (CAP) patients and 21 healthy controls (HCs), 3-18 years of age, from 2016 to 2017. Mycoplasma pneumoniae ASCs measured by enzyme-linked immunospot assay were assessed alongside Mp DNA and antibodies during 6-month follow-up. RESULTS Mycoplasma pneumoniae ASCs of the isotype IgM were found in 29 (46%), IgG were found in 27 (43%), and IgA were found in 27 (43%) CAP patients. Mycoplasma pneumoniae ASCs were detected from 2 days to a maximum of 6 weeks after symptom onset, whereas Mp DNA and antibodies persisted until 4 months (P = .03) and 6 months (P < .01). Mycoplasma pneumoniae ASCs were undetectable in HCs, in contrast to detection of Mp DNA in 10 (48%) or antibodies in 6 (29%) controls for a prolonged time. The Mp ASC response correlated with clinical disease, but it did not differ between patients treated with or without antibiotics against Mp. CONCLUSIONS Mycoplasma pneumoniae-specific ASCs are short-lived and associated with clinical disease, making it an optimal resource for determining Mp pneumonia etiology.
Collapse
Affiliation(s)
- Patrick M Meyer Sauteur
- Division of Infectious Diseases and Hospital Epidemiology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Johannes Trück
- Division of Infectious Diseases and Hospital Epidemiology, University Children's Hospital Zurich, Zurich, Switzerland.,Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Annemarie M C van Rossum
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Christoph Berger
- Division of Infectious Diseases and Hospital Epidemiology, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Meyer Sauteur PM, Ambroggio L, van Rossum AMC, Berger C. Reply to author. Clin Infect Dis 2021; 73:938-939. [PMID: 33581694 DOI: 10.1093/cid/ciab137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Patrick M Meyer Sauteur
- Division of Infectious Diseases and Hospital Epidemiology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Lilliam Ambroggio
- Emergency Medicine and Hospital Medicine, Children's Hospital Colorado, Denver, Colorado, USA
| | - Annemarie M C van Rossum
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Christoph Berger
- Division of Infectious Diseases and Hospital Epidemiology, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Esposito S, Argentiero A, Gramegna A, Principi N. Mycoplasma pneumoniae: a pathogen with unsolved therapeutic problems. Expert Opin Pharmacother 2021; 22:1193-1202. [PMID: 33544008 DOI: 10.1080/14656566.2021.1882420] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Despite the amount of new information, the most effective approach for the diagnosis and treatment of Mycoplasma pneumoniae infections is not established. In this narrative review the pharmacological options for macrolide-resistant (ML) M. pneumoniae infections in children are discussed. AREAS COVERED Despite significant improvement in the diagnosis and in the definition of diseases potentially associated with this pathogen, not all the problems related to M. pneumoniae infection are solved. True epidemiology of M. pneumoniae diseases and the real role of this pathogen in extra-respiratory manifestations is still unestablished. This reflects on therapy. It is not known whether antibiotics are really needed in all the cases, independently of severity and localization. The choice of antibiotic therapy is debated as it is not known whether ML resistance has clinical relevance. Moreover, not precisely defined is the clinical importance of corticosteroids for improvement of severe cases, including those associated with ML-resistant strains. EXPERT OPINION Improvement in M. pneumoniae identification is mandatory to reduce antibiotics overuse , especially in the presence of ML-resistant strains. Priority for future studies includes the evaluation of the true benefit of therapeutic approaches including corticosteroids in patients with severe CAP and in those with extra-respiratory M. pneumoniae diseases.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| | - Alberto Argentiero
- Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| | - Andrea Gramegna
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Nicola Principi
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
32
|
Rönnberg C, Lugaajju A, Nyman A, Hammar U, Bottai M, Lautenbach MJ, Sundling C, Kironde F, Persson KEM. A longitudinal study of plasma BAFF levels in mothers and their infants in Uganda, and correlations with subsets of B cells. PLoS One 2021; 16:e0245431. [PMID: 33465125 PMCID: PMC7815132 DOI: 10.1371/journal.pone.0245431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/03/2021] [Indexed: 01/05/2023] Open
Abstract
Malaria is a potentially life-threatening disease with approximately half of the world’s population at risk. Young children and pregnant women are hit hardest by the disease. B cells and antibodies are part of an adaptive immune response protecting individuals continuously exposed to the parasite. An infection with Plasmodium falciparum can cause dysregulation of B cell homeostasis, while antibodies are known to be key in controlling symptoms and parasitemia. BAFF is an instrumental cytokine for the development and maintenance of B cells. Pregnancy alters the immune status and renders previously clinically immune women at risk of severe malaria, potentially due to altered B cell responses associated with changes in BAFF levels. In this prospective study, we investigated the levels of BAFF in a malaria-endemic area in mothers and their infants from birth up to 9 months. We found that BAFF-levels are significantly higher in infants than in mothers. BAFF is highest in cord blood and then drops rapidly, but remains significantly higher in infants compared to mothers even at 9 months of age. We further correlated BAFF levels to P. falciparum-specific antibody levels and B cell frequencies and found a negative correlation between BAFF and both P. falciparum-specific and total proportions of IgG+ memory B cells, as well as CD27− memory B cells, indicating that exposure to both malaria and other diseases affect the development of B-cell memory and that BAFF plays a part in this. In conclusion, we have provided new information on how natural immunity against malaria is formed.
Collapse
Affiliation(s)
- Caroline Rönnberg
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Division of Infectious Diseases, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Allan Lugaajju
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Makerere University, Kampala, Uganda
| | - Anna Nyman
- Department of Laboratory Medicine, Lund University, Skåne University Hospital, Lund, Sweden
| | - Ulf Hammar
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matteo Bottai
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maximilian Julius Lautenbach
- Division of Infectious Diseases, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Fred Kironde
- Makerere University, Kampala, Uganda
- Habib Medical School, Islamic University in Uganda (IUIU), Mbale, Uganda
| | - Kristina E. M. Persson
- Department of Laboratory Medicine, Lund University, Skåne University Hospital, Lund, Sweden
- * E-mail:
| |
Collapse
|
33
|
Suda Y, Miyazaki A, Miyazawa K, Shibahara T, Ohashi S. Systemic and intestinal porcine epidemic diarrhea virus-specific antibody response and distribution of antibody-secreting cells in experimentally infected conventional pigs. Vet Res 2021; 52:2. [PMID: 33397461 PMCID: PMC7780908 DOI: 10.1186/s13567-020-00880-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/15/2020] [Indexed: 01/03/2023] Open
Abstract
Porcine epidemic diarrhea (PED) is a coronavirus disease characterized by the rapid spread of severe diarrhea among pigs. PED virus (PEDV) infects and replicates mainly in the epithelial cells of the duodenum, jejunum, ileum and colon. Serum or mucosal IgA antibody levels have been used to predict both vaccine efficacy and the level of protective immunity to enteric infectious diseases in individuals or herds. Details of the B-cell immune response upon PEDV infection, such as the systemic and mucosal PEDV IgA antibody response, the distribution of IgA antibody-secreting cells (ASCs), and their role in virus clearance are not yet clear. In this experimental infection study, we observed similar fluctuations in PEDV IgA antibody levels in serum and intestinal contents of the upper and lower jejunum and ileum, but not fecal samples, over the 4-week experimental course. ASCs that actively secrete PEDV IgA antibody without in vitro stimulation were distributed mainly in the upper jejunum, whereas memory B cells that showed enhanced PEDV IgA antibody production upon in vitro stimulation were observed in mesenteric lymph nodes and the ileum. Our findings will contribute to the development of effective vaccines and diagnostic methods for PEDV.
Collapse
Affiliation(s)
- Yuto Suda
- Kyushu Research Station, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 2702 Chuzan, Kagoshima, Kagoshima, 891-0105, Japan. .,Division of Viral Disease and Epidemiology, NIAH, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| | - Ayako Miyazaki
- Division of Viral Disease and Epidemiology, NIAH, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Kohtaro Miyazawa
- Division of Viral Disease and Epidemiology, NIAH, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Tomoyuki Shibahara
- Division of Pathology and Pathophysiology, NIAH, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.,Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka, 598-8531, Japan
| | - Seiichi Ohashi
- Division of Viral Disease and Epidemiology, NIAH, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| |
Collapse
|
34
|
Bartlett ML, Griffin DE. Acute RNA Viral Encephalomyelitis and the Role of Antibodies in the Central Nervous System. Viruses 2020; 12:v12090988. [PMID: 32899509 PMCID: PMC7551998 DOI: 10.3390/v12090988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
Acute RNA viral encephalomyelitis is a serious complication of numerous virus infections. Antibodies in the cerebral spinal fluid (CSF) are correlated to better outcomes, and there is substantive evidence of antibody secreting cells (ASCs) entering the central nervous system (CNS) and contributing to resolution of infection. Here, we review the RNA viruses known to cause acute viral encephalomyelitis with mechanisms of control that require antibody or ASCs. We compile the cytokines, chemokines, and surface receptors associated with ASC recruitment to the CNS after infection and compare known antibody-mediated mechanisms as well as potential noncytolytic mechanisms for virus control. These non-canonical functions of antibodies may be employed in the CNS to protect precious non-renewable neurons. Understanding the immune-specialized zone of the CNS is essential for the development of effective treatments for acute encephalomyelitis caused by RNA viruses.
Collapse
|
35
|
Chepkwony S, Parys A, Vandoorn E, Chiers K, Van Reeth K. Efficacy of Heterologous Prime-Boost Vaccination with H3N2 Influenza Viruses in Pre-Immune Individuals: Studies in the Pig Model. Viruses 2020; 12:v12090968. [PMID: 32882956 PMCID: PMC7552030 DOI: 10.3390/v12090968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 12/25/2022] Open
Abstract
In a previous study in influenza-naïve pigs, heterologous prime-boost vaccination with monovalent, adjuvanted whole inactivated vaccines (WIV) based on the European swine influenza A virus (SwIAV) strain, A/swine/Gent/172/2008 (G08), followed by the US SwIAV strain, A/swine/Pennsylvania/A01076777/2010 (PA10), was shown to induce broadly cross-reactive hemagglutination inhibition (HI) antibodies against 12 out of 15 antigenically distinct H3N2 influenza strains. Here, we used the pig model to examine the efficacy of that particular heterologous prime-boost vaccination regimen, in individuals with pre-existing infection-immunity. Pigs were first inoculated intranasally with the human H3N2 strain, A/Nanchang/933/1995. Seven weeks later, they were vaccinated intramuscularly with G08 followed by PA10 or vice versa. We examined serum antibody responses against the hemagglutinin and neuraminidase, and antibody-secreting cell (ASC) responses in peripheral blood, draining lymph nodes, and nasal mucosa (NMC), in ELISPOT assays. Vaccination induced up to 10-fold higher HI antibody titers than in naïve pigs, with broader cross-reactivity, and protection against challenge with an antigenically distant H3N2 strain. It also boosted ASC responses in lymph nodes and NMC. Our results show that intramuscular administration of WIV can lead to enhanced antibody responses and cross-reactivity in pre-immune subjects, and recall of ASC responses in lymph nodes and NMC.
Collapse
Affiliation(s)
- Sharon Chepkwony
- Laboratory of Virology, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, 9820 Merelbeke, Belgium; (S.C.); (A.P.); (E.V.)
| | - Anna Parys
- Laboratory of Virology, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, 9820 Merelbeke, Belgium; (S.C.); (A.P.); (E.V.)
| | - Elien Vandoorn
- Laboratory of Virology, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, 9820 Merelbeke, Belgium; (S.C.); (A.P.); (E.V.)
| | - Koen Chiers
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Kristien Van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, 9820 Merelbeke, Belgium; (S.C.); (A.P.); (E.V.)
- Correspondence: ; Tel.: +32-92647369
| |
Collapse
|
36
|
Rowley AH, Baker SC, Arrollo D, Gruen LJ, Bodnar T, Innocentini N, Hackbart M, Cruz-Pulido YE, Wylie KM, Kim KYA, Shulman ST. A Protein Epitope Targeted by the Antibody Response to Kawasaki Disease. J Infect Dis 2020; 222:158-168. [PMID: 32052021 PMCID: PMC7296860 DOI: 10.1093/infdis/jiaa066] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Kawasaki disease (KD) is the leading cause of childhood acquired heart disease in developed nations and can result in coronary artery aneurysms and death. Clinical and epidemiologic features implicate an infectious cause but specific antigenic targets of the disease are unknown. Peripheral blood plasmablasts are normally highly clonally diverse but the antibodies they encode are approximately 70% antigen-specific 1-2 weeks after infection. METHODS We isolated single peripheral blood plasmablasts from children with KD 1-3 weeks after onset and prepared 60 monoclonal antibodies (mAbs). We used the mAbs to identify their target antigens and assessed serologic response among KD patients and controls to specific antigen. RESULTS Thirty-two mAbs from 9 of 11 patients recognize antigen within intracytoplasmic inclusion bodies in ciliated bronchial epithelial cells of fatal cases. Five of these mAbs, from 3 patients with coronary aneurysms, recognize a specific peptide, which blocks binding to inclusion bodies. Sera from 5/8 KD patients day ≥ 8 after illness onset, compared with 0/17 infant controls (P < .01), recognized the KD peptide antigen. CONCLUSIONS These results identify a protein epitope targeted by the antibody response to KD and provide a means to elucidate the pathogenesis of this important worldwide pediatric problem.
Collapse
Affiliation(s)
- Anne H Rowley
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Microbiology/Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Susan C Baker
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
| | - David Arrollo
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Leah J Gruen
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Tetyana Bodnar
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nancy Innocentini
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Matthew Hackbart
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
| | - Yazmin E Cruz-Pulido
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
| | - Kristine M Wylie
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri, USA
| | - Kwang-Youn A Kim
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Stanford T Shulman
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| |
Collapse
|
37
|
Dhenni R, Phan TG. The geography of memory B cell reactivation in vaccine-induced immunity and in autoimmune disease relapses. Immunol Rev 2020; 296:62-86. [PMID: 32472583 DOI: 10.1111/imr.12862] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/05/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Memory B cells (Bmem) provide an active second layer of defense against re-infection by pathogens that have bypassed the passive first layer provided by neutralizing antibodies. Here, we review recent progress in our understanding of Bmem heterogeneity in terms of their origin (germinal center-dependent vs center-independent), phenotype (canonical vs atypical vs age-associated B cells), trafficking (recirculating vs tissue-resident), and fate (plasma cell vs germinal center differentiation). The development of transgenic models and intravital imaging technologies has made it possible to track the cellular dynamics of Bmem reactivation by antigen, their interactions with follicular memory T cells, and differentiation into plasma cells in subcapsular proliferative foci in the lymph nodes of immune animals. Such in situ studies have reinforced the importance of geography in shaping the outcome of the secondary antibody response. We also review the evidence for Bmem reactivation and differentiation into short-lived plasma cells in the pathogenesis of disease flares in relapsing-remitting autoimmune diseases. Elucidating the mechanisms that control the Bmem fate decision to differentiate into plasma cells or germinal center B cells will aid future efforts to more precisely engineer fit-for-purpose vaccines as well as to treat antibody-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Rama Dhenni
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
38
|
Meyer Sauteur PM, Seiler M, Trück J, Unger WWJ, Paioni P, Relly C, Staubli G, Haas T, Gysin C, M Bachmann L, van Rossum AMC, Berger C. Diagnosis of Mycoplasma pneumoniae Pneumonia with Measurement of Specific Antibody-Secreting Cells. Am J Respir Crit Care Med 2020; 200:1066-1069. [PMID: 31251669 PMCID: PMC6794114 DOI: 10.1164/rccm.201904-0860le] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Johannes Trück
- University Children's Hospital ZurichZurich, Switzerland
| | - Wendy W J Unger
- Erasmus MC University Medical Center-Sophia Children's HospitalRotterdam, the Netherlandsand
| | - Paolo Paioni
- University Children's Hospital ZurichZurich, Switzerland
| | - Christa Relly
- University Children's Hospital ZurichZurich, Switzerland
| | - Georg Staubli
- University Children's Hospital ZurichZurich, Switzerland
| | - Thorsten Haas
- University Children's Hospital ZurichZurich, Switzerland
| | - Claudine Gysin
- University Children's Hospital ZurichZurich, Switzerland
| | | | | | | |
Collapse
|
39
|
A model for establishment, maintenance and reactivation of the immune response after vaccination against Ebola virus. J Theor Biol 2020; 495:110254. [PMID: 32205143 DOI: 10.1016/j.jtbi.2020.110254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 11/22/2022]
Abstract
The 2014-2016 Ebola outbreak in West Africa has triggered accelerated development of several preventive vaccines against Ebola virus. Under the EBOVAC1 consortium, three phase I studies were carried out to assess safety and immunogenicity of a two-dose heterologous vaccination regimen developed by Janssen Vaccines and Prevention in collaboration with Bavarian Nordic. To describe the immune response induced by the two-dose heterologous vaccine regimen, we propose a mechanistic ODE based model, which takes into account the role of immunological memory. We perform identifiability and sensitivity analysis of the proposed model to establish which kind of biological data are ideally needed in order to accurately estimate parameters, and additionally, which of those are non-identifiable based on the available data. Antibody concentrations data from phase I studies have been used to calibrate the model and show its ability in reproducing the observed antibody dynamics. Together with other factors, the establishment of an effective and reactive immunological memory is of pivotal importance for several prophylactic vaccines. We show that introducing a memory compartment in our calibrated model allows to evaluate the magnitude of the immune response induced by a booster dose and its long-term persistence afterwards.
Collapse
|
40
|
Carter MJ, Gurung P, Jones C, Rajkarnikar S, Kandasamy R, Gurung M, Thorson S, Gautam MC, Prajapati KG, Khadka B, Maharjan A, Knight JC, Murdoch DR, Darton TC, Voysey M, Wahl B, O'Brien KL, Kelly S, Ansari I, Shah G, Ekström N, Melin M, Pollard AJ, Kelly DF, Shrestha S. Assessment of an Antibody-in-Lymphocyte Supernatant Assay for the Etiological Diagnosis of Pneumococcal Pneumonia in Children. Front Cell Infect Microbiol 2020; 9:459. [PMID: 32039044 PMCID: PMC6988833 DOI: 10.3389/fcimb.2019.00459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022] Open
Abstract
New diagnostic tests for the etiology of childhood pneumonia are needed. We evaluated the antibody-in-lymphocyte supernatant (ALS) assay to detect immunoglobulin (Ig) G secretion from ex vivo peripheral blood mononuclear cell (PBMC) culture, as a potential diagnostic test for pneumococcal pneumonia. We enrolled 348 children with pneumonia admitted to Patan Hospital, Kathmandu, Nepal between December 2015 and September 2016. PBMCs sampled from participants were incubated for 48 h before harvesting of cell culture supernatant (ALS). We used a fluorescence-based multiplexed immunoassay to measure the concentration of IgG in ALS against five conserved pneumococcal protein antigens. Of children with pneumonia, 68 had a confirmed etiological diagnosis: 12 children had pneumococcal pneumonia (defined as blood or pleural fluid culture-confirmed; or plasma CRP concentration ≥60 mg/l and nasopharyngeal carriage of serotype 1 pneumococci), and 56 children had non-pneumococcal pneumonia. Children with non-pneumococcal pneumonia had either a bacterial pathogen isolated from blood (six children); or C-reactive protein <60 mg/l, absence of radiographic consolidation and detection of a pathogenic virus by multiplex PCR (respiratory syncytial virus, influenza viruses, or parainfluenza viruses; 23 children). Concentrations of ALS IgG to all five pneumococcal proteins were significantly higher in children with pneumococcal pneumonia than in children with non-pneumococcal pneumonia. The concentration of IgG in ALS to the best-performing antigen discriminated between children with pneumococcal and non-pneumococcal pneumonia with a sensitivity of 1.0 (95% CI 0.73-1.0), specificity of 0.66 (95% CI 0.52-0.78) and area under the receiver-operating characteristic curve (AUROCC) 0.85 (95% CI 0.75-0.94). Children with pneumococcal pneumonia were older than children with non-pneumococcal pneumonia (median 5.6 and 2.0 years, respectively, p < 0.001). When the analysis was limited to children ≥2 years of age, assay of IgG ALS to pneumococcal proteins was unable to discriminate between children with pneumococcal pneumonia and non-pneumococcal pneumonia (AUROCC 0.67, 95% CI 0.47-0.88). This method detected spontaneous secretion of IgG to pneumococcal protein antigens from cultured PBMCs. However, when stratified by age group, assay of IgG in ALS to pneumococcal proteins showed limited utility as a test to discriminate between pneumococcal and non-pneumococcal pneumonia in children.
Collapse
Affiliation(s)
- Michael J. Carter
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Patan Academy of Health Sciences, Kathmandu, Nepal
- School of Life Course Sciences, King's College London, London, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | | | - Rama Kandasamy
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Meeru Gurung
- Patan Academy of Health Sciences, Kathmandu, Nepal
| | | | | | | | - Bibek Khadka
- Patan Academy of Health Sciences, Kathmandu, Nepal
| | | | - Julian C. Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - David R. Murdoch
- Department of Pathology, University of Otago, Christchurch, Christchurch, New Zealand
| | - Thomas C. Darton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Merryn Voysey
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Brian Wahl
- International Vaccine Access Center, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Katherine L. O'Brien
- International Vaccine Access Center, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Sarah Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Imran Ansari
- Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Ganesh Shah
- Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Nina Ekström
- Expert Microbiology Unit, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Merit Melin
- Expert Microbiology Unit, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Dominic F. Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | | |
Collapse
|
41
|
Muthukrishnan G, Masters EA, Daiss JL, Schwarz EM. Mechanisms of Immune Evasion and Bone Tissue Colonization That Make Staphylococcus aureus the Primary Pathogen in Osteomyelitis. Curr Osteoporos Rep 2019; 17:395-404. [PMID: 31721069 PMCID: PMC7344867 DOI: 10.1007/s11914-019-00548-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Staphylococcus aureus is the primary pathogen responsible for osteomyelitis, which remains a major healthcare burden. To understand its dominance, here we review the unique pathogenic mechanisms utilized by S. aureus that enable it to cause incurable osteomyelitis. RECENT FINDINGS Using an arsenal of toxins and virulence proteins, S. aureus kills and usurps immune cells during infection, to produce non-neutralizing pathogenic antibodies that thwart adaptive immunity. S. aureus also has specific mechanisms for distinct biofilm formation on implants, necrotic bone tissue, bone marrow, and within the osteocyte lacuno-canicular networks (OLCN) of live bone. In vitro studies have also demonstrated potential for intracellular colonization of osteocytes, osteoblasts, and osteoclasts. S. aureus has evolved a multitude of virulence mechanisms to achieve life-long infection of the bone, most notably colonization of OLCN. Targeting S. aureus proteins involved in these pathways could provide new targets for antibiotics and immunotherapies.
Collapse
Affiliation(s)
- Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA
| | - Elysia A Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - John L Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA.
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
42
|
Dynamics of the Humoral Immune Response to a Prime-Boost Ebola Vaccine: Quantification and Sources of Variation. J Virol 2019; 93:JVI.00579-19. [PMID: 31243126 PMCID: PMC6714808 DOI: 10.1128/jvi.00579-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/16/2019] [Indexed: 12/14/2022] Open
Abstract
The Ebola vaccine based on Ad26.ZEBOV/MVA-BN-Filo prime-boost regimens is being evaluated in multiple clinical trials. The long-term immune response to the vaccine is unknown, including factors associated with the response and variability around the response. We analyzed data from three phase 1 trials performed by the EBOVAC1 Consortium in four countries: the United Kingdom, Kenya, Tanzania, and Uganda. Participants were randomized into four groups based on the interval between prime and boost immunizations (28 or 56 days) and the sequence in which Ad26.ZEBOV and MVA-BN-Filo were administered. Consecutive enzyme-linked immunosorbent assay (ELISA) measurements of the IgG binding antibody concentrations against the Kikwit glycoprotein (GP) were available for 177 participants to assess the humoral immune response up to 1 year postprime. Using a mathematical model for the dynamics of the humoral response, from 7 days after the boost immunization up to 1 year after the prime immunization, we estimated the durability of the antibody response and the influence of different factors on the dynamics of the humoral response. Ordinary differential equations (ODEs) described the dynamics of antibody response and two populations of antibody-secreting cells (ASCs), short-lived (SL) and long-lived (LL). Parameters of the ODEs were estimated using a population approach. We estimated that half of the LL ASCs could persist for at least 5 years. The vaccine regimen significantly affected the SL ASCs and the antibody peak but not the long-term response. The LL ASC compartment dynamics differed significantly by geographic regions analyzed, with a higher long-term antibody persistence in European subjects. These differences could not be explained by the observed differences in cellular immune response.IMPORTANCE With no available licensed vaccines or therapies, the West African Ebola virus disease epidemic of 2014 to 2016 caused 11,310 deaths. Following this outbreak, the development of vaccines has been accelerated. Combining different vector-based vaccines as heterologous regimens could induce a durable immune response, assessed through antibody concentrations. Based on data from phase 1 trials in East Africa and Europe, the dynamics of the humoral immune response from 7 days after the boost immunization onwards were modeled to estimate the durability of the response and understand its variability. Antibody production is maintained by a population of long-lived cells. Estimation suggests that half of these cells can persist for at least 5 years in humans. Differences in prime-boost vaccine regimens affect only the short-term immune response. Geographical differences in long-lived cell dynamics were inferred, with higher long-term antibody concentrations induced in European participants.
Collapse
|
43
|
Palm AKE, Henry C. Remembrance of Things Past: Long-Term B Cell Memory After Infection and Vaccination. Front Immunol 2019; 10:1787. [PMID: 31417562 PMCID: PMC6685390 DOI: 10.3389/fimmu.2019.01787] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/16/2019] [Indexed: 02/03/2023] Open
Abstract
The success of vaccines is dependent on the generation and maintenance of immunological memory. The immune system can remember previously encountered pathogens, and memory B and T cells are critical in secondary responses to infection. Studies in mice have helped to understand how different memory B cell populations are generated following antigen exposure and how affinity for the antigen is determinant to B cell fate. Additionally, such studies were fundamental in defining memory B cell niches and how B cells respond following subsequent exposure with the same antigen. On the other hand, human studies are essential to the development of better, newer vaccines but sometimes limited by the difficulty to access primary and secondary lymphoid organs. However, work using human influenza and HIV virus infection and/or immunization in particular has significantly advanced today's understanding of memory B cells. This review will focus on the generation, function, and longevity of B-cell mediated immunological memory (memory B cells and plasma cells) in response to infection and vaccination both in mice and in humans.
Collapse
Affiliation(s)
- Anna-Karin E Palm
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Carole Henry
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
44
|
Masters EA, Trombetta RP, de Mesy Bentley KL, Boyce BF, Gill AL, Gill SR, Nishitani K, Ishikawa M, Morita Y, Ito H, Bello-Irizarry SN, Ninomiya M, Brodell JD, Lee CC, Hao SP, Oh I, Xie C, Awad HA, Daiss JL, Owen JR, Kates SL, Schwarz EM, Muthukrishnan G. Evolving concepts in bone infection: redefining "biofilm", "acute vs. chronic osteomyelitis", "the immune proteome" and "local antibiotic therapy". Bone Res 2019; 7:20. [PMID: 31646012 PMCID: PMC6804538 DOI: 10.1038/s41413-019-0061-z] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023] Open
Abstract
Osteomyelitis is a devastating disease caused by microbial infection of bone. While the frequency of infection following elective orthopedic surgery is low, rates of reinfection are disturbingly high. Staphylococcus aureus is responsible for the majority of chronic osteomyelitis cases and is often considered to be incurable due to bacterial persistence deep within bone. Unfortunately, there is no consensus on clinical classifications of osteomyelitis and the ensuing treatment algorithm. Given the high patient morbidity, mortality, and economic burden caused by osteomyelitis, it is important to elucidate mechanisms of bone infection to inform novel strategies for prevention and curative treatment. Recent discoveries in this field have identified three distinct reservoirs of bacterial biofilm including: Staphylococcal abscess communities in the local soft tissue and bone marrow, glycocalyx formation on implant hardware and necrotic tissue, and colonization of the osteocyte-lacuno canalicular network (OLCN) of cortical bone. In contrast, S. aureus intracellular persistence in bone cells has not been substantiated in vivo, which challenges this mode of chronic osteomyelitis. There have also been major advances in our understanding of the immune proteome against S. aureus, from clinical studies of serum antibodies and media enriched for newly synthesized antibodies (MENSA), which may provide new opportunities for osteomyelitis diagnosis, prognosis, and vaccine development. Finally, novel therapies such as antimicrobial implant coatings and antibiotic impregnated 3D-printed scaffolds represent promising strategies for preventing and managing this devastating disease. Here, we review these recent advances and highlight translational opportunities towards a cure.
Collapse
Affiliation(s)
- Elysia A. Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
| | - Ryan P. Trombetta
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
| | - Karen L. de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Brendan F Boyce
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Ann Lindley Gill
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY USA
| | - Steven R. Gill
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY USA
| | - Kohei Nishitani
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Masahiro Ishikawa
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Yugo Morita
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | | | - Mark Ninomiya
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - James D. Brodell
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Charles C. Lee
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Stephanie P. Hao
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Irvin Oh
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Hani A. Awad
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - John R. Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA USA
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY USA
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| |
Collapse
|
45
|
Breda CNDS, Davanzo GG, Basso PJ, Saraiva Câmara NO, Moraes-Vieira PMM. Mitochondria as central hub of the immune system. Redox Biol 2019; 26:101255. [PMID: 31247505 PMCID: PMC6598836 DOI: 10.1016/j.redox.2019.101255] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/01/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023] Open
Abstract
Nearly 130 years after the first insights into the existence of mitochondria, new rolesassociated with these organelles continue to emerge. As essential hubs that dictate cell fate, mitochondria integrate cell physiology, signaling pathways and metabolism. Thus, recent research has focused on understanding how these multifaceted functions can be used to improve inflammatory responses and prevent cellular dysfunction. Here, we describe the role of mitochondria on the development and function of immune cells, highlighting metabolic aspects and pointing out some metabolic- independent features of mitochondria that sustain cell function.
Collapse
Affiliation(s)
- Cristiane Naffah de Souza Breda
- Transplantation Immunobiology Lab, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo Gastão Davanzo
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Paulo José Basso
- Transplantation Immunobiology Lab, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Transplantation Immunobiology Lab, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Pedro Manoel Mendes Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.
| |
Collapse
|
46
|
Antiphospholipid antibodies and renal transplant: A systematic review and meta-analysis. Semin Arthritis Rheum 2019; 48:1041-1052. [DOI: 10.1016/j.semarthrit.2018.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022]
|
47
|
Haralambieva IH, Kennedy RB, Ovsyannikova IG, Schaid DJ, Poland GA. Current perspectives in assessing humoral immunity after measles vaccination. Expert Rev Vaccines 2019; 18:75-87. [PMID: 30585753 PMCID: PMC6413513 DOI: 10.1080/14760584.2019.1559063] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Repeated measles outbreaks in countries with relatively high vaccine coverage are mainly due to failure to vaccinate and importation; however, cases in immunized individuals exist raising questions about suboptimal measles vaccine-induced humoral immunity and/or waning immunity in a low measles-exposure environment. AREAS COVERED The plaque reduction neutralization measurement of functional measles-specific antibodies correlates with protection is the gold standard in measles serology, but it does not assess cellular-immune or other parameters that may be associated with durable and/or protective immunity after vaccination. Additional correlates of protection and long-term immunity and new determinants/signatures of vaccine responsiveness such as specific CD46 and IFI44L genetic variants associated with neutralizing antibody titers after measles vaccination are under investigation. Current and future systems biology studies, coupled with new technology/assays and analytical approaches, will lead to an increasingly sophisticated understanding of measles vaccine-induced humoral immunity and will identify 'signatures' of protective and durable immune responses. EXPERT OPINION This will translate into the development of highly predictive assays of measles vaccine efficacy, effectiveness, and durability for prospective identification of potential low/non-responders and susceptible individuals who require additional vaccine doses. Such new advances may drive insights into the development of new/improved vaccine formulations and delivery systems.
Collapse
Affiliation(s)
| | - Richard B Kennedy
- a Mayo Clinic Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| | | | - Daniel J Schaid
- a Mayo Clinic Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
- b Department of Health Sciences Research , Mayo Clinic , Rochester , MN , USA
| | - Gregory A Poland
- a Mayo Clinic Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
48
|
Romero-Ramírez S, Navarro-Hernandez IC, Cervantes-Díaz R, Sosa-Hernández VA, Acevedo-Ochoa E, Kleinberg-Bild A, Valle-Rios R, Meza-Sánchez DE, Hernández-Hernández JM, Maravillas-Montero JL. Innate-like B cell subsets during immune responses: Beyond antibody production. J Leukoc Biol 2018; 105:843-856. [PMID: 30457676 DOI: 10.1002/jlb.mr0618-227r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
B lymphocytes are recognized for their crucial role in the adaptive immunity since they represent the only leukocyte lineage capable of differentiating into Ab-secreting cells. However, it has been demonstrated that these lymphocytes can exert several Ab-independent functions, including engulfing and processing Ags for presentation to T cells, secreting soluble mediators, providing co-stimulatory signals, and even participating in lymphoid tissues development. Beyond that, several reports claiming the existence of multiple B cell subsets contributing directly to innate immune responses have appeared. These "innate-like" B lymphocytes, whose phenotype, development pathways, tissue distribution, and functions are in most cases notoriously different from those of conventional B cells, are crucial to early protective responses against pathogens by exerting "crossover" defensive strategies that blur the established boundaries of innate and adaptive branches of immunity. Examples of these mechanisms include the rapid secretion of the polyspecific natural Abs, increased susceptibility to innate receptors-mediated activation, cytokine secretion, downstream priming of other innate cells, usage of specific variable immunoglobulin gene-segments, and other features. As these new insights emerge, it is becoming preponderant to redefine the functionality of B cells beyond their classical adaptive-immune tasks.
Collapse
Affiliation(s)
- Sandra Romero-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Itze C Navarro-Hernandez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rodrigo Cervantes-Díaz
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Víctor A Sosa-Hernández
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ernesto Acevedo-Ochoa
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - Ari Kleinberg-Bild
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ricardo Valle-Rios
- División de Investigación de la Facultad de Medicina, Universidad Nacional Autónoma de México y Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - David E Meza-Sánchez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José M Hernández-Hernández
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José L Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
49
|
Tracking Anti- Staphylococcus aureus Antibodies Produced In Vivo and Ex Vivo during Foot Salvage Therapy for Diabetic Foot Infections Reveals Prognostic Insights and Evidence of Diversified Humoral Immunity. Infect Immun 2018; 86:IAI.00629-18. [PMID: 30275008 DOI: 10.1128/iai.00629-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/20/2018] [Indexed: 12/18/2022] Open
Abstract
Management of foot salvage therapy (FST) for diabetic foot infections (DFI) is challenging due to the absence of reliable diagnostics to identify the etiologic agent and prognostics to justify aggressive treatments. As Staphylococcus aureus is the most common pathogen associated with DFI, we aimed to develop a multiplex immunoassay of IgG in serum and medium enriched for newly synthesized anti-S. aureus antibodies (MENSA) generated from cultured peripheral blood mononuclear cells of DFI patients undergoing FST. Wound samples were collected from 26 DFI patients to identify the infecting bacterial species via 16S rRNA sequencing. Blood was obtained over 12 weeks of FST to assess anti-S. aureus IgG levels in sera and MENSA. The results showed that 17 out of 26 infections were polymicrobial and 12 were positive for S. aureus While antibody titers in serum and MENSA displayed similar diagnostic potentials to detect S. aureus infection, MENSA showed a 2-fold-greater signal-to-background ratio. Multivariate analyses revealed increases in predictive power of diagnosing S. aureus infections (area under the receiver operating characteristic curve [AUC] > 0.85) only when combining titers against different classes of antigens, suggesting cross-functional antigenic diversity. Anti-S. aureus IgG levels in MENSA decreased with successful FST and rose with reinfection. In contrast, IgG levels in serum remained unchanged throughout the 12-week FST. Collectively, these results demonstrate the applicability of serum and MENSA for diagnosis of S. aureus DFI with increased power by combining functionally distinct titers. We also found that tracking MENSA has prognostic potential to guide clinical decisions during FST.
Collapse
|
50
|
|