1
|
Lima RS, Belchior-Bezerra M, Silva de Oliveira D, Rocha RDS, Medeiros NI, Mattos RT, Dos Reis IC, Marques AS, Rosário PW, Calsolari MR, Correa-Oliveira R, Dutra WO, Moreira PR, Gomes JA. Obesity Influences T CD4 Lymphocytes Subsets Profiles in Children and Adolescent's Immune Response. J Nutr 2024; 154:3133-3143. [PMID: 39019165 DOI: 10.1016/j.tjnut.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Evidence shows that CD4+ T cells are altered in obesity and play a significant role in the systemic inflammation in adults with the disease. OBJECTIVES Because the profile of these cells is poorly understood in the pediatric population, this study aims to investigate the profile of CD4+ T lymphocytes and the plasma levels of cytokines in this population. METHODS Using flow cytometry, we compared the expression profile of lymphocyte markers, master transcription factors, cytokines, and molecules involved in the regulation of the immune response in CD4+ T cells from children and adolescents with obesity (OB group, n = 20) with those with eutrophy group (EU group, n = 16). Plasma levels of cytokines in both groups were determined by cytometric bead array (CBA). RESULTS The OB group presents a lower frequency of CD3+ T cells, as well as a decreased frequency of CD4+ T cells expressing CD28, IL-4, and FOXP3, but an increased frequency of CD4+IL-17A+ cells compared with the EU group. The frequency of CD28 is increased in Th2 and Treg cells in the OB group, whereas CTLA-4 is decreased in all subpopulations compared with the EU group. Furthermore, Th2, Th17, and Treg profiles can differentiate the EU and OB groups. IL-10 plasma levels are reduced in the OB group and negatively correlated with adiposity and inflammatory parameters. CONCLUSIONS CD4+ T cells have an altered pattern of expression in children and adolescents with obesity, contributing to the inflammatory state and clinical characteristics of these patients.
Collapse
Affiliation(s)
- Rafael Silva Lima
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mayara Belchior-Bezerra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniela Silva de Oliveira
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Nayara I Medeiros
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Imunologia Celular e Molecular, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Brazil
| | - Rafael T Mattos
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabelle Camile Dos Reis
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Aiessa Santos Marques
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro Ws Rosário
- Centro de Especialidades Médicas (CEM), Hospital Santa Casa, Belo Horizonte, Brazil
| | | | - Rodrigo Correa-Oliveira
- Imunologia Celular e Molecular, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Brazil
| | - Walderez O Dutra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paula Rocha Moreira
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana As Gomes
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
2
|
Hasegawa Y, Noll AL, Lang DJ, Akfaly EM, Liu Z, Bolling BW. Low-fat yogurt consumption maintains biomarkers of immune function relative to nondairy control food in women with elevated BMI: A randomized controlled crossover trial. Nutr Res 2024; 129:1-13. [PMID: 39153426 DOI: 10.1016/j.nutres.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/19/2024]
Abstract
Yogurt consumption may help reduce chronic inflammation associated with obesity. However, the underlying mechanism(s) by which yogurt consumption modulates the immune system have not been validated in human intervention studies. We hypothesized that 4-week yogurt consumption (12 oz/day) attenuates systemic inflammation by modulating the proportion of circulating T helper (Th) 17 and regulatory T (Treg) cells in adult women with elevated body mass index (BMI). To test the hypothesis, we conducted a randomized crossover dietary intervention study consisted of a 4-week dietary intervention in which participants consumed 12 oz of either low-fat dairy yogurt or a soy pudding control snack per day, with a 4-week washout between treatments. Thirty-nine healthy adult women with a BMI between 25 and 40 kg/m2 were enrolled and 20 completed the study. Changes in the biometrics, circulating T cells, and markers of systemic and colonic inflammation were assessed between the 2 treatment groups, as well as 24-hour diet recalls were conducted at baseline and following each treatment. The primary study outcome, the change in the proportion of circulating Th17 cells, was unaffected by the treatments. Secondary outcome measures, circulating Treg, Th17, and markers of chronic inflammation, were maintained by yogurt treatment, whereas circulating Treg was increased and interleukin-10 was reduced by control snack treatment. However, circulating Treg changes were not associated with changes to other biomarkers of inflammation, implying other immune cells and/or tissues may mediate circulating biomarkers of chronic inflammation. This study was approved by the University of Wisconsin-Madison institutional review board and registered at ClinicalTrials.gov NCT04149418.
Collapse
Affiliation(s)
- Yu Hasegawa
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrea L Noll
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Lang
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth M Akfaly
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhenhua Liu
- School of Public Health & Health Science, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Bradley W Bolling
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Yang X, Tang H, Sun X, Gui Q. M6A modification and T cells in adipose tissue inflammation. Cell Biochem Funct 2024; 42:e4089. [PMID: 38978329 DOI: 10.1002/cbf.4089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/11/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Adipose tissue in the obese state can lead to low-grade chronic inflammation while inducing or exacerbating obesity-related metabolic diseases and impairing overall health.T cells, which are essential immune cells similar to macrophages, are widely distributed in adipose tissue and perform their immunomodulatory function; they also cross-talk with other cells in the vascular stromal fraction. Based on a large number of studies, it has been found that N6 methyl adenine (m6A) is one of the most representative of epigenetic modifications, which affects the crosstalk between T cells, as well as other immune cells, in several ways and plays an important role in the development of adipose tissue inflammation and related metabolic diseases. In this review, we first provide an overview of the widespread presence of T cells in adipose tissue and summarize the key role of T cells in adipose tissue inflammation. Next, we explored the effects of m6A modifications on T cells in adipose tissue from the perspective of adipose tissue inflammation. Finally, we discuss the impact of m6a-regulated crosstalk between T cells and immune cells on the prospects for improving adipose tissue inflammation research, providing additional new ideas for the treatment of obesity.
Collapse
Affiliation(s)
- Xiaoting Yang
- Institute of Translational Medicine, Department of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Haojun Tang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Xuan Sun
- Institute of Translational Medicine, Department of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Qingjun Gui
- Institute of Translational Medicine, Department of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
4
|
Valentine Y, Nikolajczyk BS. T cells in obesity-associated inflammation: The devil is in the details. Immunol Rev 2024; 324:25-41. [PMID: 38767210 PMCID: PMC11694249 DOI: 10.1111/imr.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Obesity presents a significant health challenge, affecting 41% of adults and 19.7% of children in the United States. One of the associated health challenges of obesity is chronic low-grade inflammation. In both mice and humans, T cells in circulation and in the adipose tissue play a pivotal role in obesity-associated inflammation. Changes in the numbers and frequency of specific CD4+ Th subsets and their contribution to inflammation through cytokine production indicate declining metabolic health, that is, insulin resistance and T2D. While some Th subset alterations are consistent between mice and humans with obesity, some changes mainly characterize male mice, whereas female mice often resist obesity and inflammation. However, protection from obesity and inflammation is not observed in human females, who can develop obesity-related T-cell inflammation akin to males. The decline in female sex hormones after menopause is also implicated in promoting obesity and inflammation. Age is a second underappreciated factor for defining and regulating obesity-associated inflammation toward translating basic science findings to the clinic. Weight loss in mice and humans, in parallel with these other factors, does not resolve obesity-associated inflammation. Instead, inflammation persists amid modest changes in CD4+ T cell frequencies, highlighting the need for further research into resolving changes in T-cell function after weight loss. How lingering inflammation after weight loss affecting the common struggle to maintain lower weight is unknown. Semaglutide, a newly popular pharmaceutical used for treating T2D and reversing obesity, holds promise for alleviating obesity-associated health complications, yet its impact on T-cell-mediated inflammation remains unexplored. Further work in this area could significantly contribute to the scientific understanding of the impacts of weight loss and sex/hormones in obesity and obesity-associated metabolic decline.
Collapse
Affiliation(s)
- Yolander Valentine
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, Kentucky, USA
| | - Barbara S. Nikolajczyk
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Zhang S, Zhong R, Tang S, Chen L, Zhang H. Metabolic regulation of the Th17/Treg balance in inflammatory bowel disease. Pharmacol Res 2024; 203:107184. [PMID: 38615874 DOI: 10.1016/j.phrs.2024.107184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Inflammatory bowel disease (IBD) is a long-lasting and inflammatory autoimmune condition affecting the gastrointestinal tract, impacting millions of individuals globally. The balance between T helper 17 (Th17) cells and regulatory T cells (Tregs) is pivotal in the pathogenesis and progression of IBD. This review summarizes the pivotal role of Th17/Treg balance in maintaining intestinal homeostasis, elucidating how its dysregulation contributes to the development and exacerbation of IBD. It comprehensively synthesizes the current understanding of how dietary factors regulate the metabolic pathways influencing Th17 and Treg cell differentiation and function. Additionally, this review presents evidence from the literature on the potential of dietary regimens to regulate the Th17/Treg balance as a strategy for the management of IBD. By exploring the intersection between diet, metabolic regulation, and Th17/Treg balance, the review reveals innovative therapeutic approaches for IBD treatment, offering a promising perspective for future research and clinical practice.
Collapse
Affiliation(s)
- Shunfen Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
6
|
Englebert K, Taquin A, Azouz A, Acolty V, Vande Velde S, Vanhollebeke M, Innes H, Boon L, Keler T, Leo O, Goriely S, Moser M, Oldenhove G. The CD27/CD70 pathway negatively regulates visceral adipose tissue-resident Th2 cells and controls metabolic homeostasis. Cell Rep 2024; 43:113824. [PMID: 38386557 DOI: 10.1016/j.celrep.2024.113824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/11/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Adipose tissue homeostasis relies on the interplay between several regulatory lineages, such as type 2 innate lymphoid cells (ILC2s), T helper 2 (Th2) cells, regulatory T cells, eosinophils, and type 2 macrophages. Among them, ILC2s are numerically the dominant source of type 2 cytokines and are considered as major regulators of adiposity. Despite the overlap in immune effector molecules and sensitivity to alarmins (thymic stromal lymphopoietin and interleukin-33) between ILC2s and resident memory Th2 lymphocytes, the role of the adaptive axis of type 2 immunity remains unclear. We show that mice deficient in CD27, a member of the tumor necrosis factor receptor superfamily, are more resistant to obesity and associated disorders. A comparative analysis of the CD4 compartment of both strains revealed higher numbers of fat-resident memory Th2 cells in the adipose tissue of CD27 knockout mice, which correlated with decreased programmed cell death protein 1-induced apoptosis. Our data point to a non-redundant role for Th2 lymphocytes in obesogenic conditions.
Collapse
Affiliation(s)
- Kevin Englebert
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Anaelle Taquin
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Abdulkader Azouz
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Institute for Medical Immunology (IMI), ULB, Gosselies, Belgium
| | - Valérie Acolty
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Sylvie Vande Velde
- Interuniversity Institute of Bioinformatics in Brussels (ULB-VUB), Brussels, Belgium; Machine Learning Group, ULB, Brussels, Belgium
| | - Marie Vanhollebeke
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Hadrien Innes
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | | | | | - Oberdan Leo
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Stanislas Goriely
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium; Institute for Medical Immunology (IMI), ULB, Gosselies, Belgium
| | - Muriel Moser
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Guillaume Oldenhove
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium.
| |
Collapse
|
7
|
Hsu WL, Hsieh YT, Chen WM, Chien MH, Luo WJ, Chang JH, Devlin K, Su KY. High-fat diet induces C-reactive protein secretion, promoting lung adenocarcinoma via immune microenvironment modulation. Dis Model Mech 2023; 16:dmm050360. [PMID: 37929799 PMCID: PMC10651111 DOI: 10.1242/dmm.050360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
To understand the effects of a high-fat diet (HFD) on lung cancer progression and biomarkers, we here used an inducible mutant epidermal growth factor receptor (EGFR)-driven lung cancer transgenic mouse model fed a regular diet (RD) or HFD. The HFD lung cancer (LC-HFD) group exhibited significant tumor formation and deterioration, such as higher EGFR activity and proliferation marker expression, compared with the RD lung cancer (LC-RD) group. Transcriptomic analysis of the lung tissues revealed that the significantly changed genes in the LC-HFD group were highly enriched in immune-related signaling pathways, suggesting that an HFD alters the immune microenvironment to promote tumor growth. Cytokine and adipokine arrays combined with a comprehensive analysis using meta-database software indicated upregulation of C-reactive protein (CRP) in the LC-HFD group, which presented with increased lung cancer proliferation and metastasis; this was confirmed experimentally. Our results imply that an HFD can turn the tumor growth environment into an immune-related pro-tumorigenic microenvironment and demonstrate that CRP has a role in promoting lung cancer development in this microenvironment.
Collapse
Affiliation(s)
- Wei-Lun Hsu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Yun-Ting Hsieh
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Wei-Ming Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Min-Hui Chien
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Wei-Jia Luo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Jung-Hsuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Kevin Devlin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10055, Taiwan
| |
Collapse
|
8
|
Xiao Y, Xiao L, Li M, Liu S, Wang Y, Huang L, Liu S, Jiang T, Zhou L, Li Y. Perillartine protects against metabolic associated fatty liver in high-fat diet-induced obese mice. Food Funct 2023; 14:961-977. [PMID: 36541423 DOI: 10.1039/d2fo02227c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metabolic associated fatty liver disease is the main cause of chronic liver disease in the world, but there is still no effective treatment. In the search for drugs to treat liver steatosis, we screened 303 natural products using HepG2 cells and discovered that perillartine derived from Perilla frutescens (L.) improved fat deposition as well as glucose homeostasis in hepatocytes. In vitro, perillartine reduced the expression of genes involved in lipid synthesis, lipid transport, and gluconeogenesis in hepatocytes, increased the number of mitochondria, and upregulated the phosphorylation of Akt. In vivo, perillartine reduced body weight gain and the fat rate, improved glucose metabolism and energy balance, and altered the gut microbial composition in mice given a high-fat diet. In addition, RORγ was identified as a possible target of perillartine through pharmacophore screening. Functional studies revealed that the overexpression of RORγ blocked the effects of perillartine, suggesting that it reduced lipid accumulation and regulated glucose metabolism by inhibiting the transcriptional activity of RORγ. Our results provide new information on a natural product inhibitor for RORγ and reveal that perillartine is a new candidate for the treatment of obesity and metabolic associated fatty liver disease.
Collapse
Affiliation(s)
- Yang Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Lianggui Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Mingming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Songsong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Yuwei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Liang Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Tianyu Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| |
Collapse
|
9
|
Menegati LM, de Oliveira EE, Oliveira BDC, Macedo GC, de Castro E Silva FM. Asthma, obesity, and microbiota: A complex immunological interaction. Immunol Lett 2023; 255:10-20. [PMID: 36646290 DOI: 10.1016/j.imlet.2023.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Obesity and allergic asthma are inflammatory chronic diseases mediated by distinct immunological features, obesity presents a Th1/Th17 profile, asthma is commonly associated with Th2 response. However, when combined, they result in more severe asthma symptoms, greater frequency of exacerbation episodes, and lower therapy responsiveness. These features lead to decreased life quality, associated with higher morbidity/mortality rates. In addition, obesity prompts specific asthma phenotypes, which can be dependent on atopic status, age, and gender. In adults, obesity is associated with neutrophilic/Th17 profile, while in children, the outcome is diverse, in some cases children with obesity present aggravation of atopy, and Th2 inflammation, and in others an association with a Th1 profile, with reduced IgE levels and eosinophilia. These alterations occur due to a complex group of factors among which the microbiome has been recently explored. Particularly, evidence shows its important role in susceptibility or resistance to asthma development, via gut-lung-axis, and demonstrates its relevance to the immune pathogenesis of the syndrome. Few studies address the relevance of the lung microbiome in shaping the immune response, locally. However, specific bacteria, like Moraxella catarrhalis, Haemophilus influenza, and Streptococcus pneumoniae, correlate with important features of the obese-asthmatic phenotype. Although maternal obesity is known to increase asthma risk in offspring, the impact on lung colonization is unknown. This review details the main key immune mechanisms involved in obesity-aggravated asthma, featuring the effect of maternal obesity in the establishment of gut and lung microbiota of the offspring, acting as potential childhood asthma inducer.
Collapse
Affiliation(s)
- Laura Machado Menegati
- Faculdade de Medicina, Programa de Pós-Graduação em Saúde, Universidade Federal de Juiz de Fora, MG, Brazil
| | - Erick Esteves de Oliveira
- Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Departamento de Parasitologia, Microbiologia e Imunologia, Universidade Federal de Juiz de Fora MG, Brazil
| | | | - Gilson Costa Macedo
- Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Departamento de Parasitologia, Microbiologia e Imunologia, Universidade Federal de Juiz de Fora MG, Brazil
| | - Flávia Márcia de Castro E Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas - RJ, Universidade do Estado do Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Leija-Martínez JJ, Giacoman-Martínez A, Del-Río-Navarro BE, Sanchéz-Muñoz F, Hernández-Diazcouder A, Muñoz-Hernández O, Romero-Nava R, Villafaña S, Marchat LA, Hong E, Huang F. Promoter methylation status of RORC, IL17A, and TNFA in peripheral blood leukocytes in adolescents with obesity-related asthma. Heliyon 2022; 8:e12316. [PMID: 36590520 PMCID: PMC9798174 DOI: 10.1016/j.heliyon.2022.e12316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
A higher Th17-immune response characterises obesity and obesity-related asthma phenotype. Nevertheless, obesity-related asthma has a more significant Th17-immune response than obesity alone. Retinoid-related orphan receptor C (RORC) is the essential transcription factor for Th17 polarisation. Previous studies have found that adolescents with obesity-related asthma presented upregulation of RORC, IL17A, and TNFA. However, the mechanisms that cause these higher mRNA expression levels in this asthmatic phenotype are poorly understood. Methylation directly regulates gene expression by adding a methyl group to carbon 5 of dinucleotide CpG cytosine. Thus, we evaluated the relationship between RORC, IL17A, and TNFA methylation status and mRNA expression levels to investigate a possible epigenetic regulation. A total of 102 adolescents (11-18 years) were studied in the following four groups: 1) healthy participants (HP), 2) allergic asthmatic participants (AAP), 3) obese participants without asthma (OP), and 4) non-allergic obesity-related asthma participants (OAP). Real-time qPCR assessed the methylation status and gene expression levels in peripheral blood leukocytes. Remarkably, the OAP and AAP groups have lower promoter methylation patterns of RORC, IL17A, and TNFA than the HP group. Notably, the OAP group presents lower RORC promoter methylation status than the OP group. Interestingly, RORC promoter methylation status was moderately negatively associated with gene expression of RORC (r s = -0.39, p < 0.001) and IL17A (r s = -0.37, p < 0.01), respectively. Similarly, the promoter methylation pattern of IL17A was moderately negatively correlated with IL17A gene expression (r s = -0.3, p < 0.01). There is also a moderate inverse relationship between TNFA promoter methylation status and TNFA gene expression (r s = -0.3, p < 0.01). The present study suggests an association between lower RORC, IL17A, and TNFA gene promoter methylation status with obesity-related asthma and allergic asthma. RORC, IL17A, and TNFA gene promoter methylation patterns are moderately inversely correlated with their respective mRNA expression levels. Therefore, DNA methylation may regulate RORC, IL17A, and TNF gene expression in both asthmatic phenotypes.
Collapse
Affiliation(s)
- José J. Leija-Martínez
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico,Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico
| | - Abraham Giacoman-Martínez
- Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico,Department of Pharmacobiology, Centro de Investigacion de Estudio Avanzados del Instituto Politecnico Nacional, Calz. de Los Tenorios 235, Col. Granjas Coapa, Mexico City 14330, Mexico
| | - Blanca E. Del-Río-Navarro
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico,Hospital Infantil de México Federico Gómez, Department of Pediatric Allergy-Clinical Immunology, Mexico City, Mexico
| | - Fausto Sanchéz-Muñoz
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico,Departamento de Inmunología, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | | | - Onofre Muñoz-Hernández
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico
| | - Rodrigo Romero-Nava
- Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico,Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Santiago Villafaña
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Laurence A. Marchat
- Laboratorio 2 de Biomedicina Molecular, ENMH, Instituto Politécnico Nacional, Mexico
| | - Enrique Hong
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico,Department of Pharmacobiology, Centro de Investigacion de Estudio Avanzados del Instituto Politecnico Nacional, Calz. de Los Tenorios 235, Col. Granjas Coapa, Mexico City 14330, Mexico
| | - Fengyang Huang
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico,Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico,Corresponding author.
| |
Collapse
|
11
|
Belchior-Bezerra M, Lima RS, Medeiros NI, Gomes JAS. COVID-19, obesity, and immune response 2 years after the pandemic: A timeline of scientific advances. Obes Rev 2022; 23:e13496. [PMID: 35837843 PMCID: PMC9349458 DOI: 10.1111/obr.13496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023]
Abstract
In the 2 years since the COVID-19 pandemic was officially declared, science has made considerable strides in understanding the disease's pathophysiology, pharmacological treatments, immune response, and vaccination, but there is still much room for further advances, especially in comprehending its relationship with obesity. Science has not yet described the mechanisms that explain how obesity is directly associated with a poor prognosis. This paper gathers all published studies over the past 2 years that have described immune response, obesity, and COVID-19, a historical and chronological record for researchers and the general public alike. In summary, these studies describe how the cytokine/adipokine levels and inflammatory markers, such as the C-reactive protein, are associated with a higher body mass index in COVID-19-positive patients, suggesting that the inflammatory background and immune dysregulation in individuals with obesity may be expressed in the results and that adiposity may influence the immune response. The timeline presented here is a compilation of the results of 2 years of scientific inquiry, describing how the science has progressed, the principal findings, and the challenges ahead regarding SARS-CoV-2, COVID-19, and emerging variants, especially in patients with obesity.
Collapse
Affiliation(s)
- Mayara Belchior-Bezerra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafael Silva Lima
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nayara I Medeiros
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Imunologia Celular e Molecular, Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, Brazil
| | - Juliana A S Gomes
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
12
|
Kiran S, Rakib A, Kodidela S, Kumar S, Singh UP. High-Fat Diet-Induced Dysregulation of Immune Cells Correlates with Macrophage Phenotypes and Chronic Inflammation in Adipose Tissue. Cells 2022; 11:cells11081327. [PMID: 35456006 PMCID: PMC9031506 DOI: 10.3390/cells11081327] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity is a complex disease associated with various metabolic abnormalities, cardiovascular diseases, and low-grade chronic inflammation. Inflammation associated with T helper 1 (Th1) immune cells is dominant in adipose tissue (AT) and exerts metabolically deleterious impacts. The precise mechanism of alteration in AT immune system and its effect on metabolic homeostasis remains unclear. In this study, we investigated how a high-fat diet (HFD) alters the AT immune response and influences inflammation during obesity. HFD consumption amends the metabolic parameters, including body weight, glucose, and insulin levels. We observed increased infiltration of Th17 cells, a subset of dendritic cells (CD103+), and M1 macrophages in AT of mice fed HFD compared to those fed a normal diet (ND). In mice that were fed HFD, we also observed a reduction in regulatory T cells (Tregs) relative to the numbers of these cells in mice fed ND. Corresponding with this, mice in the HFD group exhibited higher levels of proinflammatory cytokines and chemokines than those in the ND group. We also observed alterations in signaling pathways, including increased protein expression of IRF3, TGFβ1, and mRNA expression of IL-6, KLF4, and STAT3 in the AT of the mice fed HFD as compared to those fed ND. Further, HFD-fed mice exhibited decreased protein expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) compared to mice fed ND, suggesting that PPAR-γ functions as a negative regulator of Th17 cell differentiation. These results suggest that HFD induces increased levels of inflammatory cytokines and key immune cells, including Th17, M1 macrophages, and CD103+ dendritic cells, and reduces levels of PPAR-γ and Tregs to sustain AT inflammation. This study supports the notion that dysregulation of Th17/Tregs, which polarizes macrophages towards M1 phenotypes in part through TGFβ1-IRF3-STAT3 and negatively regulates PPAR-γ mediated pathways, results in AT inflammation during obesity.
Collapse
|
13
|
Zhou ZY, Deng Y, Wen YL, Cheng YQ, Li KX, Chen HP. Chronic low-grade inflammation is involved in TLR4 knockout-induced spontaneous obesity in aged mice. Biomed Pharmacother 2022; 147:112637. [PMID: 35093760 DOI: 10.1016/j.biopha.2022.112637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/01/2022] [Accepted: 01/12/2022] [Indexed: 02/09/2023] Open
|
14
|
Artemniak-Wojtowicz D, Kucharska AM, Stelmaszczyk-Emmel A, Majcher A, Pyrżak B. Changes of Peripheral Th17 Cells Subset in Overweight and Obese Children After Body Weight Reduction. Front Endocrinol (Lausanne) 2022; 13:917402. [PMID: 35873001 PMCID: PMC9299423 DOI: 10.3389/fendo.2022.917402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Obesity has been a growing problem in young patients leading to serious metabolic complications. There are many studies supporting the idea, that obesity should be considered as a chronic inflammation closely associated with immune system alterations. Th17 subpopulation is strongly involved in this process. The aim of our study was to evaluate circulating Th17 cells in overweight and obese children and explore the relationships between Th17 subset and metabolic parameters. METHODS We evaluated peripheral Th17 cells in fresh peripheral blood samples from 27 overweight and obese and 15 normal-weight children. Th17 cells were identified by flow cytometry using monoclonal antibody and intracellular IL-17A staining. Th17 cells were defined as CD3+CD4+CD196+IL-17Aic+. The analysis involved anthropometric and metabolic parameters measured at baseline and three months after the change of lifestyle and diet. We evaluated the relationship between metabolic parameters and Th17 cells. RESULTS In overweight and obese children we found significantly higher Th17 cells percentage compared to normal weight controls (median 0.097% (0.044 - 0.289) vs 0.041% (0.023 - 0.099), p = 0.048). The percentage of Th17 cells decreased statistically significantly in children who reduced weight after the intervention (0.210% (0.143 - 0.315) vs 0.039% (0.028 - 0.106), p = 0.004). In this group we also noticed statistically significant reduction of TC and LDL-C concentration (p = 0.01, p = 0.04, respectively). CONCLUSIONS Obesity in children is associated with increased percentage of peripheral Th17 cells. Weight reduction leads to significant decrease of circulating Th17 cells and improvement of lipid parameters. This significant reduction of proinflammatory Th17 cells is a promising finding suggesting that obesity-induced inflammation in children could be relatively easily reversible.
Collapse
Affiliation(s)
- Dorota Artemniak-Wojtowicz
- Department of Pediatrics and Endocrinology, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Dorota Artemniak-Wojtowicz, ; Anna M. Kucharska,
| | - Anna M. Kucharska
- Department of Pediatrics and Endocrinology, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Dorota Artemniak-Wojtowicz, ; Anna M. Kucharska,
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Anna Majcher
- Department of Pediatrics and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Beata Pyrżak
- Department of Pediatrics and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
15
|
Wang Q, Wang Y, Xu D. The roles of T cells in obese adipose tissue inflammation. Adipocyte 2021; 10:435-445. [PMID: 34515616 PMCID: PMC8463033 DOI: 10.1080/21623945.2021.1965314] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue inflammation in obese patients can cause a series of metabolic diseases. There are a variety of immune cells in adipose tissue, and studies have shown that T cells are associated with adipose tissue inflammation. This review aims to describe the current understanding of the relationship between T cells and adipose tissue inflammation, with a focus on regulation by T cell subtypes. Studies have shown that Th1, Th17 and CD8+ T cells, which are important T cell subsets, can promote the development of adipose tissue inflammation, whereas Treg cells protect against inflammation, suggesting that targeting the mechanism by which T cell subtypes regulate adipose tissue inflammation is a potential therapeutic strategy for treating obesity. T cells play important roles in regulating obesity-associated adipose tissue inflammation, thus providing new research directions for the treatment of obesity. More studies are needed to clarify how T cell subtypes regulate adipose tissue inflammation to identify new treatments for obesity.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yurong Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Danyan Xu
- Department of Internal Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Zemlin C, Stuhlert C, Schleicher JT, Wörmann C, Altmayer L, Lang M, Scherer LS, Thul IC, Müller C, Kaiser E, Stutz R, Goedicke-Fritz S, Ketter L, Zemlin M, Wagenpfeil G, Steffgen G, Solomayer EF. Longitudinal Assessment of Physical Activity, Fitness, Body Composition, Immunological Biomarkers, and Psychological Parameters During the First Year After Diagnosis in Women With Non-Metastatic Breast Cancer: The BEGYN Study Protocol. Front Oncol 2021; 11:762709. [PMID: 34737966 PMCID: PMC8560964 DOI: 10.3389/fonc.2021.762709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022] Open
Abstract
Background Moderate physical activity is associated with an improved prognosis and psychosocial outcome in breast cancer patients. Although exercise and physical activity are associated with multiple physiological and psychological effects, many of the underlying mechanisms remain obscure. The BEGYN study (Influence of physical activity in breast cancer patients on physiological and psychological parameters and on biomarkers) aims at identifying potential associations between the extent of physical activity, fitness, body composition, immunological biomarkers, psycho-emotional parameters, and the course of treatment during the first year after diagnosis of breast cancer. Methods The prospective observational BEGYN study will include 110 non-metastatic breast cancer patients. The patients will be assessed during a base line visit prior to the initiation of the antineoplastic therapy and after 3, 6, 9 and 12 months. The physical activity will be measured using a fitness tracker and a self-assessment diary during the entire study. Each visit will include the assessment of (i) cardiorespiratory fitness measured by spiroergometry, (ii) body composition, (iii) psycho-emotional parameters (quality of life, mental health, fatigue, depression, distress, anxiety, well-being), and (iv) extensive blood tests including routine laboratory, vitamin D, selenium and immunologically relevant biomarkers (e.g., leukocyte subpopulations and cytokine profiles). Discussion Whereas most studies investigating the influence of physical activity in breast cancer patients focus on specific activities for three months or less, the BEGYN study will quantify the daily physical activity and cardiorespiratory fitness of breast cancer patients based on objective measurements in the context of the oncological therapy for 12 months after diagnosis. The study will reveal potential associations between exercise, immune status and physical as well as psycho-emotional outcome and the clinical course of the disease. Moreover, complementary therapies such as Vit D and Selenium supplementation and parameters investigating the motivation of the patients are part of the study. Due to this holistic approach, the BEGYN study will guide towards confirmatory studies on the role of physical activity in breast cancer patients to develop individualized counselling regarding the recommended type and extent of exercise. Trial Registration This study has been registered at the German Clinical Trials Register DRKS00024829.
Collapse
Affiliation(s)
- Cosima Zemlin
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Caroline Stuhlert
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Julia Theresa Schleicher
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Carolin Wörmann
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Laura Altmayer
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Marina Lang
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Laura-Sophie Scherer
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Ida Clara Thul
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Carolin Müller
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| | - Elisabeth Kaiser
- Department for General Pediatrics, Saarland University Medical Center, Homburg, Germany
| | - Regine Stutz
- Department for General Pediatrics, Saarland University Medical Center, Homburg, Germany
| | | | - Laura Ketter
- Department of Behavioural and Cognitive Sciences, Institute for Health and Behaviour, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michael Zemlin
- Department for General Pediatrics, Saarland University Medical Center, Homburg, Germany
| | - Gudrun Wagenpfeil
- Institute for Medical Biometry, Epidemiology and Medical Informatics (IMBEI), Saarland University, Homburg, Germany
| | - Georges Steffgen
- Department of Behavioural and Cognitive Sciences, Institute for Health and Behaviour, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Erich-Franz Solomayer
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
17
|
Manuel SS, Luis GM. Nutrition, Obesity and Asthma Inception in Children. The Role of Lung Function. Nutrients 2021; 13:nu13113837. [PMID: 34836093 PMCID: PMC8624093 DOI: 10.3390/nu13113837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity is an important public health problem. WHO estimates that about 39 million children younger than 5 years of age are overweighted or obese. On the other hand, asthma is the most prevalent chronic disease in childhood, and thus, many children share those two conditions. In the present paper we review the epidemiology of children with asthma and obesity, as well as the consequences of being obese on the respiratory system. On the one hand obesity produces an underlying T-helper 2 (TH2) low inflammation state in which numerous cytokines, which could have an impact in the respiratory system play, a role. On the other hand, some respiratory changes have been described in obese children and, specially, the development of the so called “dysanapsis” (the disproportionate scaling of airway dimensions to lung volume) which seems to be common during the first stages of life, probably related to the early development of this condition. Finally, this review deals with the role of adipokines and insulin resistance in the inception and worsening of asthma in the obese child.
Collapse
Affiliation(s)
- Sanchez-Solís Manuel
- Paediatric Allergy and Pulmonology Units, Virgen de la Arrixaca University Children’s Hospital, University of Murcia, El Palmar, 30120 Murcia, Spain;
- IMIB Bio-health Research Institute, El Palmar, 30120 Murcia, Spain
- ARADyAL Allergy Network, El Palmar, 30120 Murcia, Spain
| | - García-Marcos Luis
- Paediatric Allergy and Pulmonology Units, Virgen de la Arrixaca University Children’s Hospital, University of Murcia, El Palmar, 30120 Murcia, Spain;
- IMIB Bio-health Research Institute, El Palmar, 30120 Murcia, Spain
- ARADyAL Allergy Network, El Palmar, 30120 Murcia, Spain
- Correspondence:
| |
Collapse
|
18
|
Maguire RL, House JS, Lloyd DT, Skinner HG, Allen TK, Raffi AM, Skaar DA, Park SS, McCullough LE, Kollins SH, Bilbo SD, Collier DN, Murphy SK, Fuemmeler BF, Gowdy KM, Hoyo C. Associations between maternal obesity, gestational cytokine levels and child obesity in the NEST cohort. Pediatr Obes 2021; 16:e12763. [PMID: 33381912 PMCID: PMC8178180 DOI: 10.1111/ijpo.12763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/25/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Although maternal systemic inflammation is hypothesized to link maternal pre-pregnancy obesity to offspring metabolic dysfunction, patient empirical data are limited. OBJECTIVES In this study, we hypothesized that pre-pregnancy obesity alters systemic chemo/cytokines concentrations in pregnancy, and this alteration contributes to obesity in children. METHODS In a multi-ethnic cohort of 361 mother-child pairs, we measured prenatal concentrations of plasma TNF-α, IL-6, IL-8, IL-1β, IL-4, IFN-γ, IL-12 p70 subunit, and IL-17A using a multiplex ELISA and examined associations of pre-pregnancy obesity on maternal chemo/cytokine levels, and associations of these cytokine levels with offspring body mass index z score (BMI-z) at age 2-6 years using linear regression. RESULTS After adjusting for maternal smoking, ethnicity, age, and education, pre-pregnancy obesity was associated with increased concentrations of TNF-α (P = .026) and IFN-γ (P = .06). While we found no evidence for associations between TNF-α concentrations and offspring BMI-z, increased IFN-γ concentrations were associated with decreased BMI-z (P = .0002), primarily in Whites (P = .0011). In addition, increased maternal IL-17A concentrations were associated with increased BMI-z in offspring (P = .0005) with stronger associations in African Americans (P = .0042) than Whites (P = .24). CONCLUSIONS Data from this study are consistent with maternal obesity-related inflammation during pregnancy, increasing the risk of childhood obesity in an ethnic-specific manner.
Collapse
Affiliation(s)
- Rachel L. Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Obstetrics and Gynecology, Duke University, Durham, NC, USA
| | - John S. House
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Dillon T. Lloyd
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Harlyn G. Skinner
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | | | - Asifa Mohamed Raffi
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - David A. Skaar
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Sarah S. Park
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | | | - Scott H. Kollins
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Staci D. Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - David N. Collier
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Pediatrics, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Duke University, Durham, NC, USA
| | - Bernard F. Fuemmeler
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA, USA
| | - Kymberly M. Gowdy
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
19
|
Adipose Tissue Immunomodulation and Treg/Th17 Imbalance in the Impaired Glucose Metabolism of Children with Obesity. CHILDREN-BASEL 2021; 8:children8070554. [PMID: 34199040 PMCID: PMC8305706 DOI: 10.3390/children8070554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
In the last few decades, obesity has increased dramatically in pediatric patients. Obesity is a chronic disease correlated with systemic inflammation, characterized by the presence of CD4 and CD8 T cell infiltration and modified immune response, which contributes to the development of obesity related diseases and metabolic disorders, including impaired glucose metabolism. In particular, Treg and Th17 cells are dynamically balanced under healthy conditions, but imbalance occurs in inflammatory and pathological states, such as obesity. Some studies demonstrated that peripheral Treg and Th17 cells exhibit increased imbalance with worsening of glucose metabolic dysfunction, already in children with obesity. In this review, we considered the role of adipose tissue immunomodulation and the potential role played by Treg/T17 imbalance on the impaired glucose metabolism in pediatric obesity. In the patient care, immune monitoring could play an important role to define preventive strategies of pediatric metabolic disease treatments.
Collapse
|
20
|
Wen J, Liu Q, Liu M, Wang B, Li M, Wang M, Shi X, Liu H, Wu J. Increasing Imbalance of Treg/Th17 Indicates More Severe Glucose Metabolism Dysfunction in Overweight/obese Patients. Arch Med Res 2020; 52:339-347. [PMID: 33317842 DOI: 10.1016/j.arcmed.2020.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 11/15/2020] [Accepted: 11/27/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chronic low-grade inflammation and dysfunction of metabolism has been reported to be involved in obesity. Regulatory T cell (Treg) and helper T cell 17 (Th17) are involved in chronic inflammatory diseases. Impaired balance of Treg/Th17 is one of the major factors contributing to inflammatory status in obesity. METHODS Overweight/obese patients (n = 80) were recruited and classified into three subgroups: normal glucose tolerance group (NGT, n = 32), impaired glucose regulation group (IGR, n = 19) and type two diabetes mellitus group (T2DM, n = 29). Healthy individuals were paired as normal control group (NC, n = 37). We used flow cytometry to test the frequencies of circulating Treg and Th17 cells of all subjects. Serum IL-6, IL-10, TNF-α, IL-17A levels were detected by cytometric bead array and clinical information was extracted from medical records. RESULTS In group IGR and T2DM, we revealed a severe decrease in peripheral ratio of Treg/Th17 compared with NC, but no significant difference was seen in group NGT. The serum level of IL-6 in group NGT and T2DM was higher than healthy subjects. The FPG and HbA1c levels were negatively correlated with the ratio of Treg/Th17 in overweight/obese patients. ROC curve analysis revealed that peripheral Treg/Th17 ratio <1.255 was a risk factor for prediabetes and diabetes in overweight/obese patients. CONCLUSION Peripheral Treg/Th17 imbalance exists in overweight/obese patients with IGR or T2DM and peripheral Treg/Th17 imbalance might be a risk factor for prediabetes and diabetes in overweight/obese patients.
Collapse
Affiliation(s)
- Jie Wen
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qingjing Liu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengmeng Liu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bian Wang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mei Li
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Wang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiajie Shi
- Department of Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Childhood obesity, with persistent chronic inflammation, is a worldwide epidemic. Obesity causes dysregulation throughout the immune system, affecting the balance and levels of cytokines, adipokines, and innate and adaptive immune cells. The present review focuses on the impact of obesity on immune function in children: altering the baseline activation state of immune cells and affecting the ability of the host to combat pathogens and malignancy and respond appropriately to vaccination. RECENT FINDINGS Obesity causes dysregulation of the immune system. Single-cell RNA-sequencing of adipose tissue and resident immune cells is quantifying the impact of obesity on the frequency of immune cell subsets and their states. The system-wide alterations in immune function in obesity are most evident upon perturbation, including the response to infection (e.g. increased risk of severe COVID-19 in the ongoing pandemic), vaccination, and malignancy. However, mechanistic research in pediatric obesity is limited and this impacts our ability to care for these children. SUMMARY We must better understand baseline and perturbed immune health in obese children to determine how to account for altered frequency and function of humoral and cellular immune components in acute infection, during vaccine design and when considering therapeutic options for this complex, medically vulnerable group.
Collapse
Affiliation(s)
- Xingyuan Fang
- Children’s Hospital of Philadelphia, Department of Pediatrics, Division of Allergy Immunology, Philadelphia, PA
| | - Jorge Henao-Mejia
- Children’s Hospital of Philadelphia, Department of Pathology, Division of Allergy Immunology, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sarah E. Henrickson
- Children’s Hospital of Philadelphia, Department of Pediatrics, Division of Allergy Immunology, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
22
|
Leija-Martínez JJ, Huang F, Del-Río-Navarro BE, Sanchéz-Muñoz F, Romero-Nava R, Muñoz-Hernandez O, Rodríguez-Cortés O, Hall-Mondragon MS. Decreased methylation profiles in the TNFA gene promoters in type 1 macrophages and in the IL17A and RORC gene promoters in Th17 lymphocytes have a causal association with non-atopic asthma caused by obesity: A hypothesis. Med Hypotheses 2019; 134:109527. [PMID: 31877441 DOI: 10.1016/j.mehy.2019.109527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022]
Abstract
Obesity is a serious public health problem worldwide and has been associated in epidemiological studies with a unique type of non-atopic asthma, although the causal association of asthma and obesity has certain criteria, such as the strength of association, consistency, specificity, temporality, biological gradient, coherence, analogy and experimentation; nevertheless, the biological plausibility of this association remains uncertain. Various mechanisms have been postulated, such as immunological, hormonal, mechanical, environmental, genetic and epigenetic mechanisms. Our hypothesis favours immunological mechanisms because some cytokines, such as tumour necrosis factor alpha (TNF-α) and interleukin (IL)-17A, are responsible for orchestrating low-grade systemic inflammation associated with obesity; however, these cytokines are regulated by epigenetic mechanisms, such as gene promoter methylation.
Collapse
Affiliation(s)
- José J Leija-Martínez
- Universidad Nacional Autónoma de México, Mexico City, Mexico; Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico
| | - Fengyang Huang
- Universidad Nacional Autónoma de México, Mexico City, Mexico; Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico.
| | - Blanca E Del-Río-Navarro
- Universidad Nacional Autónoma de México, Mexico City, Mexico; Hospital Infantil de México Federico Gómez, Department of Pediatric Allergy Clinical Immunology, Mexico City, Mexico
| | - Fausto Sanchéz-Muñoz
- Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Inmunología, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Rodrigo Romero-Nava
- Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico; Laboratory of Pharmacology, Department of Health Sciences, Division of Health and Biological Sciences, Metropolitan Autonomous University of Iztapalapa, Mexico City, Mexico
| | | | - Octavio Rodríguez-Cortés
- Laboratorio 103, SEPI, Escuela Superior de Medicina, Instituto Politécnico Nacional, Calle Plan de San Luis y Díaz Mirón S/N, Casco de Santo Tomas, Miguel Hidalgo, 11340 Ciudad de México, Mexico
| | | |
Collapse
|
23
|
Inhibiting the Notch signaling pathway suppresses Th17-associated airway hyperresponsiveness in obese asthmatic mice. J Transl Med 2019; 99:1784-1794. [PMID: 31409887 DOI: 10.1038/s41374-019-0294-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/20/2019] [Accepted: 05/15/2019] [Indexed: 12/23/2022] Open
Abstract
Notch signaling is crucial for the regulation of asthma and obesity. The interleukin (IL)-17-expressing CD4+ T cell (Th17 cell) response and airway hyperresponsiveness (AHR) are critical features of both asthma and obesity. We previously demonstrated that inhibiting the Notch signaling pathway alleviates the Th17 response in a mouse model of asthma. However, obese asthmatic individuals show increased Th17 responses and AHR, with the underlying mechanism not currently understood. We aimed to assess the function of Notch signaling in obese mice with asthma and to determine the impact of a γ-secretase inhibitor (GSI), which inhibits the Notch signaling pathway, on the regulation of the Th17 response and AHR. C57BL/6 mice were administered ovalbumin (OVA) to induce asthma, while a high-fat diet (HFD) was used to induce mouse diet-induced obesity (DIO). GSI was then administered intranasally for 7 days in DIO-OVA-induced mice. The results showed increased Notch1 and hes family bHLH transcription factor 1 (Hes1) mRNA levels and Notch receptor intracellular domain (NICD) protein levels in obese asthmatic mice. Furthermore, these mice showed an increased proportion of Th17 cells, serum IL-17A, IL-6, and IL-1β levels, mucin 5AC (MUC5AC) mRNA level, retinoic acid-related orphan receptor-γt (RORγt) mRNA and protein levels, and increased AHR severity. Interestingly, GSI treatment resulted in reduced Notch1 and Hes1 mRNA and NICD protein levels in DIO-OVA-induced mice, with a decreased Th17 cell proportion and IL-17A quantity and alleviated AHR. These data strongly indicate that the Notch pathway is critical in obese asthmatic mice. In addition, inhibiting the Notch pathway ameliorates AHR and the Th17 response in obese mice with asthma.
Collapse
|
24
|
Excessive Body Weight and Immunological Response in Children with Allergic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1211:77-87. [PMID: 31456043 DOI: 10.1007/5584_2019_426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The prevalence of allergy and obesity is sharply on the rise in children. However, the nature of a mutual relation of the two conditions remains unclear. The aim of the study was to assess the impact of excessive body weight on the immune response in children with allergies. There were 56 children with allergies, aged 4-15 years, included into the study (41 with asthma and 15 with atopic dermatitis). Based on the body mass index, children were divided into two groups: normal weight (body mass index (BMI) <85th percentile) and excessive weight (BMI ≥ 85th percentile). The immunological parameters were evaluated by flow cytometry. We found that children with excessive body weight had a significantly lower percentage of CD4+ lymphocytes and a higher percentage of natural killer T cells (NKT) and CD16/56+ lymphocytes than those with normal weight. In the group with allergy, a significant positive association was noticed between BMI and the percentage of human leukocyte antigen (HLA)-DR-specific CD3. Further analysis was done after dividing the allergy group into the children with normal and excessive weight. There were an adverse association between BMI and the percentage of CD8+ lymphocytes in those with normal weight and a positive one between BMI and the percentage of CD4+ in those with excessive weight. We conclude that excessive body weight plays a major role in mediating the immunological response in children with allergy.
Collapse
|
25
|
Raucci F, Iqbal AJ, Saviano A, Minosi P, Piccolo M, Irace C, Caso F, Scarpa R, Pieretti S, Mascolo N, Maione F. IL-17A neutralizing antibody regulates monosodium urate crystal-induced gouty inflammation. Pharmacol Res 2019; 147:104351. [DOI: 10.1016/j.phrs.2019.104351] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/17/2023]
|
26
|
Machacek M, Saunders H, Zhang Z, Tan EP, Li J, Li T, Villar MT, Artigues A, Lydic T, Cork G, Slawson C, Fields PE. Elevated O-GlcNAcylation enhances pro-inflammatory Th17 function by altering the intracellular lipid microenvironment. J Biol Chem 2019; 294:8973-8990. [PMID: 31010828 PMCID: PMC6552434 DOI: 10.1074/jbc.ra119.008373] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/11/2019] [Indexed: 01/09/2023] Open
Abstract
Chronic, low-grade inflammation increases the risk for atherosclerosis, cancer, and autoimmunity in diseases such as obesity and diabetes. Levels of CD4+ T helper 17 (Th17) cells, which secrete interleukin 17A (IL-17A), are increased in obesity and contribute to the inflammatory milieu; however, the relationship between signaling events triggered by excess nutrient levels and IL-17A-mediated inflammation is unclear. Here, using cytokine, quantitative real-time PCR, immunoprecipitation, and ChIP assays, along with lipidomics and MS-based approaches, we show that increased levels of the nutrient-responsive, post-translational protein modification, O-GlcNAc, are present in naive CD4+ T cells from a diet-induced obesity murine model and that elevated O-GlcNAc levels increase IL-17A production. We also found that increased binding of the Th17 master transcription factor RAR-related orphan receptor γ t variant (RORγt) at the IL-17 gene promoter and enhancer, as well as significant alterations in the intracellular lipid microenvironment, elevates the production of ligands capable of increasing RORγt transcriptional activity. Importantly, the rate-limiting enzyme of fatty acid biosynthesis, acetyl-CoA carboxylase 1 (ACC1), is O-GlcNAcylated and necessary for production of these RORγt-activating ligands. Our results suggest that increased O-GlcNAcylation of cellular proteins may be a potential link between excess nutrient levels and pathological inflammation.
Collapse
Affiliation(s)
- Miranda Machacek
- From the Departments of Pathology and Laboratory Medicine.,Biochemistry and Molecular Biology, and
| | - Harmony Saunders
- From the Departments of Pathology and Laboratory Medicine.,Biochemistry and Molecular Biology, and
| | | | | | - Jibiao Li
- Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160 and
| | - Tiangang Li
- Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160 and
| | | | | | - Todd Lydic
- the Department of Physiology, Collaborative Mass Spectrometry Core, Michigan State University, East Lansing, Michigan 48824
| | - Gentry Cork
- From the Departments of Pathology and Laboratory Medicine.,Biochemistry and Molecular Biology, and
| | | | | |
Collapse
|
27
|
Stressed: The Unfolded Protein Response in T Cell Development, Activation, and Function. Int J Mol Sci 2019; 20:ijms20071792. [PMID: 30978945 PMCID: PMC6479341 DOI: 10.3390/ijms20071792] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/27/2022] Open
Abstract
The unfolded protein response (UPR) is a highly conserved pathway that allows cells to respond to stress in the endoplasmic reticulum caused by an accumulation of misfolded and unfolded protein. This is of great importance to secretory cells because, in order for proteins to traffic from the endoplasmic reticulum (ER), they need to be folded appropriately. While a wealth of literature has implicated UPR in immune responses, less attention has been given to the role of UPR in T cell development and function. This review discusses the importance of UPR in T cell development, homeostasis, activation, and effector functions. We also speculate about how UPR may be manipulated in T cells to ameliorate pathologies.
Collapse
|