1
|
Buckland B, Sanyal G, Ranheim T, Pollard D, Searles JA, Behrens S, Pluschkell S, Josefsberg J, Roberts CJ. Vaccine process technology-A decade of progress. Biotechnol Bioeng 2024; 121:2604-2635. [PMID: 38711222 DOI: 10.1002/bit.28703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 05/08/2024]
Abstract
In the past decade, new approaches to the discovery and development of vaccines have transformed the field. Advances during the COVID-19 pandemic allowed the production of billions of vaccine doses per year using novel platforms such as messenger RNA and viral vectors. Improvements in the analytical toolbox, equipment, and bioprocess technology have made it possible to achieve both unprecedented speed in vaccine development and scale of vaccine manufacturing. Macromolecular structure-function characterization technologies, combined with improved modeling and data analysis, enable quantitative evaluation of vaccine formulations at single-particle resolution and guided design of vaccine drug substances and drug products. These advances play a major role in precise assessment of critical quality attributes of vaccines delivered by newer platforms. Innovations in label-free and immunoassay technologies aid in the characterization of antigenic sites and the development of robust in vitro potency assays. These methods, along with molecular techniques such as next-generation sequencing, will accelerate characterization and release of vaccines delivered by all platforms. Process analytical technologies for real-time monitoring and optimization of process steps enable the implementation of quality-by-design principles and faster release of vaccine products. In the next decade, the field of vaccine discovery and development will continue to advance, bringing together new technologies, methods, and platforms to improve human health.
Collapse
Affiliation(s)
- Barry Buckland
- National Institute for Innovation in Manufacturing Biopharmaceuticals, University of Delaware, Newark, Delaware, USA
| | - Gautam Sanyal
- Vaccine Analytics, LLC, Kendall Park, New Jersey, USA
| | - Todd Ranheim
- Advanced Analytics Core, Resilience, Chapel Hill, North Carolina, USA
| | - David Pollard
- Sartorius, Corporate Research, Marlborough, Massachusetts, USA
| | | | - Sue Behrens
- Engineering and Biopharmaceutical Processing, Keck Graduate Institute, Claremont, California, USA
| | - Stefanie Pluschkell
- National Institute for Innovation in Manufacturing Biopharmaceuticals, University of Delaware, Newark, Delaware, USA
| | - Jessica Josefsberg
- Merck & Co., Inc., Process Research & Development, Rahway, New Jersey, USA
| | - Christopher J Roberts
- National Institute for Innovation in Manufacturing Biopharmaceuticals, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
2
|
Gray-Gaillard SL, Solis SM, Chen HM, Monteiro C, Ciabattoni G, Samanovic MI, Cornelius AR, Williams T, Geesey E, Rodriguez M, Ortigoza MB, Ivanova EN, Koralov SB, Mulligan MJ, Herati RS. SARS-CoV-2 inflammation durably imprints memory CD4 T cells. Sci Immunol 2024; 9:eadj8526. [PMID: 38905326 DOI: 10.1126/sciimmunol.adj8526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/30/2024] [Indexed: 06/23/2024]
Abstract
Memory CD4 T cells are critical to human immunity, yet it is unclear whether viral inflammation during memory formation has long-term consequences. Here, we compared transcriptional and epigenetic landscapes of Spike (S)-specific memory CD4 T cells in 24 individuals whose first exposure to S was via SARS-CoV-2 infection or mRNA vaccination. Nearly 2 years after memory formation, S-specific CD4 T cells established by infection remained enriched for transcripts related to cytotoxicity and for interferon-stimulated genes, likely because of a chromatin accessibility landscape altered by inflammation. Moreover, S-specific CD4 T cells primed by infection had reduced proliferative capacity in vitro relative to vaccine-primed cells. Furthermore, the transcriptional state of S-specific memory CD4 T cells was minimally altered by booster immunization and/or breakthrough infection. Thus, infection-associated inflammation durably imprints CD4 T cell memory, which affects the function of these cells and may have consequences for long-term immunity.
Collapse
Affiliation(s)
- Sophie L Gray-Gaillard
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Sabrina M Solis
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Han M Chen
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Clarice Monteiro
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Grace Ciabattoni
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Marie I Samanovic
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Amber R Cornelius
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Tijaana Williams
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Emilie Geesey
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Miguel Rodriguez
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Mila Brum Ortigoza
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Ellie N Ivanova
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Mark J Mulligan
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Ramin Sedaghat Herati
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
3
|
Braverman J, Monk IR, Zhang H, Stinear TP, Wakim LM. Polyclonal but not monoclonal circulating memory CD4 + T cells attenuate the severity of Staphylococcus aureus bacteremia. Front Immunol 2024; 15:1417220. [PMID: 38868766 PMCID: PMC11167101 DOI: 10.3389/fimmu.2024.1417220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Staphylococcus aureus bacteremia causes significant morbidity and mortality. Treatment of staphylococcal infections is hindered by widespread antibiotic resistance, and attempts to develop an S. aureus vaccine have failed. Improved S. aureus treatment and infection prevention options require a deeper understanding of the correlates of protective immunity. CD4+ T cells have been identified as key orchestrators in the defense against S. aureus, but uncertainties persist regarding the subset, polarity, and breadth of the memory CD4+ T-cell pool required for protection. Here, using a mouse model of systemic S. aureus infection, we discovered that the breadth of bacterium-specific memory CD4+ T-cell pool is a critical factor for protective immunity against invasive S. aureus infections. Seeding mice with a monoclonal bacterium-specific circulating memory CD4+ T-cell population failed to protect against systemic S. aureus infection; however, the introduction of a polyclonal and polyfunctional memory CD4+ T-cell pool significantly reduced the bacterial burden. Our findings support the development of a multi-epitope T-cell-based S. aureus vaccine, as a strategy to mitigate the severity of S. aureus bacteremia.
Collapse
Affiliation(s)
| | | | | | | | - Linda M. Wakim
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Warner BM, Yates JGE, Vendramelli R, Truong T, Meilleur C, Chan L, Leacy A, Pham PH, Pei Y, Susta L, Wootton SK, Kobasa D. Intranasal vaccination with an NDV-vectored SARS-CoV-2 vaccine protects against Delta and Omicron challenges. NPJ Vaccines 2024; 9:90. [PMID: 38782986 PMCID: PMC11116387 DOI: 10.1038/s41541-024-00870-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 03/29/2024] [Indexed: 05/25/2024] Open
Abstract
The rapid development and deployment of vaccines following the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been estimated to have saved millions of lives. Despite their immense success, there remains a need for next-generation vaccination approaches for SARS-CoV-2 and future emerging coronaviruses and other respiratory viruses. Here we utilized a Newcastle Disease virus (NDV) vectored vaccine expressing the ancestral SARS-CoV-2 spike protein in a pre-fusion stabilized chimeric conformation (NDV-PFS). When delivered intranasally, NDV-PFS protected both Syrian hamsters and K18 mice against Delta and Omicron SARS-CoV-2 variants of concern. Additionally, intranasal vaccination induced robust, durable protection that was extended to 6 months post-vaccination. Overall, our data provide evidence that NDV-vectored vaccines represent a viable next-generation mucosal vaccination approach.
Collapse
Affiliation(s)
- Bryce M Warner
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Jacob G E Yates
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Robert Vendramelli
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Thang Truong
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Courtney Meilleur
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Lily Chan
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Alexander Leacy
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Phuc H Pham
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada.
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada.
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
5
|
Wang W, Wang S, Meng X, Zhao Y, Li N, Wang T, Feng N, Yan F, Xia X. A virus-like particle candidate vaccine based on CRISPR/Cas9 gene editing technology elicits broad-spectrum protection against SARS-CoV-2. Antiviral Res 2024; 225:105854. [PMID: 38447647 DOI: 10.1016/j.antiviral.2024.105854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/08/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with frequent mutations has seriously damaged the effectiveness of the 2019 coronavirus disease (COVID-19) vaccine. There is an urgent need to develop a broad-spectrum vaccine while elucidating the underlying immune mechanisms. Here, we developed a SARS-CoV-2 virus-like particles (VLPs) vaccine based on the Canarypox-virus vector (ALVAC-VLPs) using CRISPR/Cas9. Immunization with ALVAC-VLPs showed the effectively induce SARS-CoV-2 specific T and B cell responses to resist the lethal challenge of mouse adaptive strains. Notably, ALVAC-VLPs conferred protection in golden hamsters against SARS-CoV-2 Wuhan-Hu-1 (wild-type, WT) and variants (Beta, Delta, Omicron BA.1, and BA.2), as evidenced by the prevention of weight loss, reduction in lung and turbinate tissue damage, and decreased viral load. Further investigation into the mechanism of immune response induced by ALVAC-VLPs revealed that toll-like receptor 4 (TLR4) mediates the recruitment of dendritic cells (DCs) to secondary lymphoid organs, thereby initiating follicle assisted T (Tfh) cell differentiation, the proliferation of germinal center (GC) B cells and plasma cell production. These findings demonstrate the immunogenicity and efficacy of the safe ALVAC-VLPs vaccine against SARS-CoV-2 and provide valuable insight into the development of COVID-19 vaccine strategies.
Collapse
Affiliation(s)
- Weiqi Wang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China
| | - Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China
| | - Xianyong Meng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China; College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China
| | - Nan Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China.
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China.
| | - Xianzhu Xia
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China.
| |
Collapse
|
6
|
Kandel A, Li L, Wang Y, Tuo W, Xiao Z. Differentiation and Regulation of Bovine Th2 Cells In Vitro. Cells 2024; 13:738. [PMID: 38727273 PMCID: PMC11083891 DOI: 10.3390/cells13090738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Bovine Th2 cells have usually been characterized by IL4 mRNA expression, but it is unclear whether their IL4 protein expression corresponds to transcription. We found that grass-fed healthy beef cattle, which had been regularly exposed to parasites on the grass, had a low frequency of IL4+ Th2 cells during flow cytometry, similar to animals grown in feedlots. To assess the distribution of IL4+ CD4+ T cells across tissues, samples from the blood, spleen, abomasal (draining), and inguinal lymph nodes were examined, which revealed limited IL4 protein detection in the CD4+ T cells across the examined tissues. To determine if bovine CD4+ T cells may develop into Th2 cells, naïve cells were stimulated with anti-bovine CD3 under a Th2 differentiation kit in vitro. The cells produced primarily IFNγ proteins, with only a small fraction (<10%) co-expressing IL4 proteins. Quantitative PCR confirmed elevated IFNγ transcription but no significant change in IL4 transcription. Surprisingly, GATA3, the master regulator of IL4, was highest in naïve CD4+ T cells but was considerably reduced following differentiation. To determine if the differentiated cells were true Th2 cells, an unbiased proteomic assay was carried out. The assay identified 4212 proteins, 422 of which were differently expressed compared to those in naïve cells. Based on these differential proteins, Th2-related upstream components were predicted, including CD3, CD28, IL4, and IL33, demonstrating typical Th2 differentiation. To boost IL4 expression, T cell receptor (TCR) stimulation strength was reduced by lowering anti-CD3 concentrations. Consequently, weak TCR stimulation essentially abolished Th2 expansion and survival. In addition, extra recombinant bovine IL4 (rbIL4) was added during Th2 differentiation, but, despite enhanced expansion, the IL4 level remained unaltered. These findings suggest that, while bovine CD4+ T cells can respond to Th2 differentiation stimuli, the bovine IL4 pathway is not regulated in the same way as in mice and humans. Furthermore, Ostertagia ostertagi (OO) extract, a gastrointestinal nematode in cattle, inhibited signaling via CD3, CD28, IL4, and TLRs/MYD88, indicating that external pathogens can influence bovine Th2 differentiation. In conclusion, though bovine CD4+ T cells can respond to IL4-driven differentiation, IL4 expression is not a defining feature of differentiated bovine Th2 cells.
Collapse
Affiliation(s)
- Anmol Kandel
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| | - Lei Li
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA;
| | - Zhengguo Xiao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| |
Collapse
|
7
|
Dayananda P, Chiu C, Openshaw P. Controlled Human Infection Challenge Studies with RSV. Curr Top Microbiol Immunol 2024; 445:41-68. [PMID: 35704096 DOI: 10.1007/82_2022_257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Despite considerable momentum in the development of RSV vaccines and therapeutics, there remain substantial barriers to the development and licensing of effective agents, particularly in high-risk populations. The unique immunobiology of RSV and lack of clear protective immunological correlates has held back RSV vaccine development, which, therefore, depends on large and costly clinical trials to demonstrate efficacy. Studies involving the deliberate infection of human volunteers offer an intermediate step between pre-clinical and large-scale studies of natural infection. Human challenge has been used to demonstrate the potential efficacy of vaccines and antivirals while improving our understanding of the protective immunity against RSV infection. Early RSV human infection challenge studies determined the role of routes of administration and size of inoculum on the disease. However, inherent limitations, the use of highly attenuated/laboratory-adapted RSV strains and the continued evolutionary adaptation of RSV limits extrapolation of results to present-day vaccine testing. With advances in technology, it is now possible to perform more detailed investigations of human mucosal immunity against RSV in experimentally infected adults and, more recently, older adults to optimise the design of vaccines and novel therapies. These studies identified defects in RSV-induced humoral and CD8+ T cell immunity that may partly explain susceptibility to recurrent RSV infection. We discuss the insights from human infection challenge models, ethical and logistical considerations, potential benefits, and role in streamlining and accelerating novel antivirals and vaccines against RSV. Finally, we consider how human challenges might be extended to include relevant at-risk populations.
Collapse
Affiliation(s)
- Pete Dayananda
- Department of Infectious Disease, Imperial College London, London, UK
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK.
| | - Peter Openshaw
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
8
|
Zhu H, Chelysheva I, Cross DL, Blackwell L, Jin C, Gibani MM, Jones E, Hill J, Trück J, Kelly DF, Blohmke CJ, Pollard AJ, O’Connor D. Molecular correlates of vaccine-induced protection against typhoid fever. J Clin Invest 2023; 133:e169676. [PMID: 37402153 PMCID: PMC10425215 DOI: 10.1172/jci169676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUNDTyphoid fever is caused by the Gram-negative bacterium Salmonella enterica serovar Typhi and poses a substantial public health burden worldwide. Vaccines have been developed based on the surface Vi-capsular polysaccharide of S. Typhi; these include a plain-polysaccharide-based vaccine, ViPS, and a glycoconjugate vaccine, ViTT. To understand immune responses to these vaccines and their vaccine-induced immunological protection, molecular signatures were analyzed using bioinformatic approaches.METHODSBulk RNA-Seq data were generated from blood samples obtained from adult human volunteers enrolled in a vaccine trial, who were then challenged with S. Typhi in a controlled human infection model (CHIM). These data were used to conduct differential gene expression analyses, gene set and modular analyses, B cell repertoire analyses, and time-course analyses at various post-vaccination and post-challenge time points between participants receiving ViTT, ViPS, or a control meningococcal vaccine.RESULTSTranscriptomic responses revealed strong differential molecular signatures between the 2 typhoid vaccines, mostly driven by the upregulation in humoral immune signatures, including selective usage of immunoglobulin heavy chain variable region (IGHV) genes and more polarized clonal expansions. We describe several molecular correlates of protection against S. Typhi infection, including clusters of B cell receptor (BCR) clonotypes associated with protection, with known binders of Vi-polysaccharide among these.CONCLUSIONThe study reports a series of contemporary analyses that reveal the transcriptomic signatures after vaccination and infectious challenge, while identifying molecular correlates of protection that may inform future vaccine design and assessment.TRIAL REGISTRATIONClinicalTrials.gov NCT02324751.
Collapse
Affiliation(s)
- Henderson Zhu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Irina Chelysheva
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Deborah L. Cross
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Luke Blackwell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Celina Jin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Malick M. Gibani
- Department of Infectious Disease, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Elizabeth Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Jennifer Hill
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Johannes Trück
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Dominic F. Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Christoph J. Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Daniel O’Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
9
|
Bruno PM, Timms RT, Abdelfattah NS, Leng Y, Lelis FJN, Wesemann DR, Yu XG, Elledge SJ. High-throughput, targeted MHC class I immunopeptidomics using a functional genetics screening platform. Nat Biotechnol 2023; 41:980-992. [PMID: 36593401 PMCID: PMC10314971 DOI: 10.1038/s41587-022-01566-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 10/13/2022] [Indexed: 01/03/2023]
Abstract
Identification of CD8+ T cell epitopes is critical for the development of immunotherapeutics. Existing methods for major histocompatibility complex class I (MHC class I) ligand discovery are time intensive, specialized and unable to interrogate specific proteins on a large scale. Here, we present EpiScan, which uses surface MHC class I levels as a readout for whether a genetically encoded peptide is an MHC class I ligand. Predetermined starting pools composed of >100,000 peptides can be designed using oligonucleotide synthesis, permitting large-scale MHC class I screening. We exploit this programmability of EpiScan to uncover an unappreciated role for cysteine that increases the number of predicted ligands by 9-21%, reveal affinity hierarchies by analysis of biased anchor peptide libraries and screen viral proteomes for MHC class I ligands. Using these data, we generate and iteratively refine peptide binding predictions to create EpiScan Predictor. EpiScan Predictor performs comparably to other state-of-the-art MHC class I peptide binding prediction algorithms without suffering from underrepresentation of cysteine-containing peptides. Thus, targeted immunopeptidomics using EpiScan will accelerate CD8+ T cell epitope discovery toward the goal of individual-specific immunotherapeutics.
Collapse
Affiliation(s)
- Peter M Bruno
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Richard T Timms
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Nouran S Abdelfattah
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Yumei Leng
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Felipe J N Lelis
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Duane R Wesemann
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
10
|
Gray-Gaillard SL, Solis S, Chen HM, Monteiro C, Ciabattoni G, Samanovic MI, Cornelius AR, Williams T, Geesey E, Rodriguez M, Ortigoza MB, Ivanova EN, Koralov SB, Mulligan MJ, Herati RS. Inflammation durably imprints memory CD4+ T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.11.15.516351. [PMID: 36415470 PMCID: PMC9681040 DOI: 10.1101/2022.11.15.516351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Adaptive immune responses are induced by vaccination and infection, yet little is known about how CD4+ T cell memory differs when primed in these two contexts. Notably, viral infection is generally associated with higher levels of systemic inflammation than is vaccination. To assess whether the inflammatory milieu at the time of CD4+ T cell priming has long-term effects on memory, we compared Spike-specific memory CD4+ T cells in 22 individuals around the time of the participants' third SARS-CoV-2 mRNA vaccination, with stratification by whether the participants' first exposure to Spike was via virus or mRNA vaccine. Multimodal single-cell profiling of Spike-specific CD4+ T cells revealed 755 differentially expressed genes that distinguished infection- and vaccine-primed memory CD4+ T cells. Spike-specific CD4+ T cells from infection-primed individuals had strong enrichment for cytotoxicity and interferon signaling genes, whereas Spike-specific CD4+ T cells from vaccine-primed individuals were enriched for proliferative pathways by gene set enrichment analysis. Moreover, Spike-specific memory CD4+ T cells established by infection had distinct epigenetic landscapes driven by enrichment of IRF-family transcription factors, relative to T cells established by mRNA vaccination. This transcriptional imprint was minimally altered following subsequent mRNA vaccination or breakthrough infection, reflecting the strong bias induced by the inflammatory environment during initial memory differentiation. Together, these data suggest that the inflammatory context during CD4+ T cell priming is durably imprinted in the memory state at transcriptional and epigenetic levels, which has implications for personalization of vaccination based on prior infection history.
Collapse
Affiliation(s)
| | - Sabrina Solis
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Han M. Chen
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Clarice Monteiro
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Grace Ciabattoni
- Department of Microbiology, New York University School of Medicine; New York, NY, USA
| | - Marie I. Samanovic
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Amber R. Cornelius
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Tijaana Williams
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Emilie Geesey
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Miguel Rodriguez
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Mila Brum Ortigoza
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Ellie N. Ivanova
- Department of Pathology, New York University School of Medicine; New York, NY, USA
| | - Sergei B. Koralov
- Department of Pathology, New York University School of Medicine; New York, NY, USA
| | - Mark J. Mulligan
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
- Department of Microbiology, New York University School of Medicine; New York, NY, USA
| | - Ramin Sedaghat Herati
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
- Department of Microbiology, New York University School of Medicine; New York, NY, USA
| |
Collapse
|
11
|
Wu T, Womersley HJ, Wang JR, Scolnick J, Cheow LF. Time-resolved assessment of single-cell protein secretion by sequencing. Nat Methods 2023; 20:723-734. [PMID: 37037998 DOI: 10.1038/s41592-023-01841-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 03/06/2023] [Indexed: 04/12/2023]
Abstract
Secreted proteins play critical roles in cellular communication. Methods enabling concurrent measurement of cellular protein secretion, phenotypes and transcriptomes are still unavailable. Here we describe time-resolved assessment of protein secretion from single cells by sequencing (TRAPS-seq). Released proteins are trapped onto the cell surface and probed by oligonucleotide-barcoded antibodies before being simultaneously sequenced with transcriptomes in single cells. We demonstrate that TRAPS-seq helps unravel the phenotypic and transcriptional determinants of the secretion of pleiotropic TH1 cytokines (IFNγ, IL-2 and TNF) in activated T cells. In addition, we show that TRAPS-seq can be used to track the secretion of multiple cytokines over time, uncovering unique molecular signatures that govern the dynamics of single-cell cytokine secretions. Our results revealed that early central memory T cells with CD45RA expression (TCMRA) are important in both the production and maintenance of polyfunctional cytokines. TRAPS-seq presents a unique tool for seamless integration of secretomics measurements with multi-omics profiling in single cells.
Collapse
Affiliation(s)
- Tongjin Wu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | - Howard John Womersley
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | | | - Jonathan Scolnick
- Singleron Biotechnologies Pte. Ltd., Singapore, Singapore
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
12
|
Ikram A, Alzahrani B, Zaheer T, Sattar S, Rasheed S, Aurangzeb M, Ishaq Y. An In Silico Deep Learning Approach to Multi-Epitope Vaccine Design: A Hepatitis E Virus Case Study. Vaccines (Basel) 2023; 11:vaccines11030710. [PMID: 36992295 DOI: 10.3390/vaccines11030710] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Hepatitis E Virus (HEV) is a major cause of acute and chronic hepatitis. The severity of HEV infection increases manyfold in pregnant women and immunocompromised patients. Despite the extensive research on HEV in the last few decades, there is no widely available vaccine yet. In the current study, immunoinformatic analyses were applied to predict a multi-epitope vaccine candidate against HEV. From the ORF2 region, 41 conserved and immunogenic epitopes were prioritized. These epitopes were further analyzed for their probable antigenic and non-allergenic combinations with several linkers. The stability of the vaccine construct was confirmed by molecular dynamic simulations. The vaccine construct is potentially antigenic and docking analysis revealed stable interactions with TLR3. These results suggest that the proposed vaccine can efficiently stimulate both cellular and humoral immune responses. However, further studies are needed to determine the immunogenicity of the vaccine construct.
Collapse
Affiliation(s)
- Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Tahreem Zaheer
- Department of Biological Physics, Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary
| | - Sobia Sattar
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan
| | - Sidra Rasheed
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan
| | - Muhammad Aurangzeb
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan
| | - Yasmeen Ishaq
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan
| |
Collapse
|
13
|
Sik Kim W, Jeong SH, Shin KW, Jin Lee H, Park JY, Lee IC, Jae Jeong H, Bae Ryu Y, Kwon HJ, Song Lee W. Solubilized curcuminoid complex prevents extensive immunosuppression through immune restoration and antioxidant activity: Therapeutic potential against SARS-CoV-2 (COVID-19). Int Immunopharmacol 2023; 115:109635. [PMID: 36580758 PMCID: PMC9790878 DOI: 10.1016/j.intimp.2022.109635] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
The therapeutic benefits of curcuminoids in various diseases have been extensively reported. However, little is known regarding their preventive effects on extensive immunosuppression. We investigated the immunoregulatory effects of a curcuminoid complex (CS/M), solubilized with stevioside, using a microwave-assisted method in a cyclophosphamide (CTX)-induced immunosuppressive mouse model and identified its new pharmacological benefits. CTX-treated mice showed a decreased number of innate cells, such as dendritic cells (DCs), neutrophils, and natural killer (NK) cells, and adaptive immune cells (CD4 and CD8 T cells) in the spleen. In addition, CTX administration decreased T cell activation, especially that of Th1 and CD8 T cells, whereas it increased Th2 and regulatory T (Treg) cell activations. Pre-exposure of CS/M to CTX-induced immunosuppressed mice restored the number of innate cells (DCs, neutrophils, and NK cells) and increased their activity (including the activity of macrophages). Exposure to CS/M also led to the superior restoration of T cell numbers, including Th1, activated CD8 T cells, and multifunctional T cells, suppressed by CTX, along with a decrease in Th2 and Treg cells. Furthermore,CTX-injected mice pre-exposed to CS/M were accompanied by an increase in the levels of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase), which play an essential role against oxidative stress. Importantly, CS/M treatment significantly reduced viral loads in severe acute respiratory syndrome coronavirus2-infected hamsters and attenuated the gross pathology in the lungs. These results provide new insights into the immunological properties of CS/M in preventing extensive immunosuppression and offer new therapeutic opportunities against various cancers and infectious diseases caused by viruses and intracellular bacteria.
Collapse
Affiliation(s)
- Woo Sik Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea.
| | - Seong-Hun Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea,Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ki-Won Shin
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyeon Jin Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ji-Young Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - In-Chul Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Hyung Jae Jeong
- Bio-processing Technology Development and Support Team, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Young Bae Ryu
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea.
| | - Woo Song Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea.
| |
Collapse
|
14
|
State of the art in epitope mapping and opportunities in COVID-19. Future Sci OA 2023; 16:FSO832. [PMID: 36897962 PMCID: PMC9987558 DOI: 10.2144/fsoa-2022-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The understanding of any disease calls for studying specific biological structures called epitopes. One important tool recently drawing attention and proving efficiency in both diagnosis and vaccine development is epitope mapping. Several techniques have been developed with the urge to provide precise epitope mapping for use in designing sensitive diagnostic tools and developing rpitope-based vaccines (EBVs) as well as therapeutics. In this review, we will discuss the state of the art in epitope mapping with a special emphasis on accomplishments and opportunities in combating COVID-19. These comprise SARS-CoV-2 variant analysis versus the currently available immune-based diagnostic tools and vaccines, immunological profile-based patient stratification, and finally, exploring novel epitope targets for potential prophylactic, therapeutic or diagnostic agents for COVID-19.
Collapse
|
15
|
Immunoinformatic-Based Multi-Epitope Vaccine Design for Co-Infection of Mycobacterium tuberculosis and SARS-CoV-2. J Pers Med 2023; 13:jpm13010116. [PMID: 36675777 PMCID: PMC9863242 DOI: 10.3390/jpm13010116] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/14/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
(1) Background: Many co-infections of Mycobacterium tuberculosis (MTB) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have emerged since the occurrence of the SARS-CoV-2 pandemic. This study aims to design an effective preventive multi-epitope vaccine against the co-infection of MTB and SARS-CoV-2. (2) Methods: The three selected proteins (spike protein, diacylglycerol acyltransferase, and low molecular weight T-cell antigen TB8.4) were predicted using bioinformatics, and 16 epitopes with the highest ranks (10 helper T lymphocyte epitopes, 2 CD8+ T lymphocytes epitopes, and 4 B-cell epitopes) were selected and assembled into the candidate vaccine referred to as S7D5L4. The toxicity, sensitization, stability, solubility, antigenicity, and immunogenicity of the S7D5L4 vaccine were evaluated using bioinformatics tools. Subsequently, toll-like receptor 4 docking simulation and discontinuous B-cell epitope prediction were performed. Immune simulation and codon optimization were carried out using immunoinformatics and molecular biology tools. (3) Results: The S7D5L4 vaccine showed good physical properties, such as solubility, stability, non-sensitization, and non-toxicity. This vaccine had excellent antigenicity and immunogenicity and could successfully simulate immune responses in silico. Furthermore, the normal mode analysis of the S7D5L4 vaccine and toll-like receptor 4 docking simulation demonstrated that the vaccine had docking potential and a stable reaction. (4) Conclusions: The S7D5L4 vaccine designed to fight against the co-infection of MTB and SARS-CoV-2 may be safe and effective. The protective efficacy of this promising vaccine should be further verified using in vitro and in vivo experiments.
Collapse
|
16
|
Aggarwal C, Ramasamy V, Garg A, Shukla R, Khanna N. Cellular T-cell immune response profiling by tetravalent dengue subunit vaccine (DSV4) candidate in mice. Front Immunol 2023; 14:1128784. [PMID: 36926350 PMCID: PMC10011089 DOI: 10.3389/fimmu.2023.1128784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
While most vaccines aim to develop a solid humoral and neutralizing antibody response against the pathogen, an effective vaccine candidate should be able to stimulate both the B-cell mediated humoral immunity, and T-cell mediated cellular immunity. The focus of vaccinology is rapidly gaining to generate T cell responses, which can mediate pathogen clearance and help B cells leading to protective antibody responses. Here we evaluate the cellular immune response of the pre-clinical tetravalent dengue subunit vaccine candidate, DSV4, in mice. While we have shown previously that DSV4 induces type-specific neutralizing antibody responses in mice, in this study, we show that the vaccine candidate DSV4 well induces dengue-specific T- cell responses evaluated by their ability to produce IFN-γ. In addition to IFN-γ secretion by both CD4+ and CD8+ T-cells in immunized mice, we observed that DSV4 also induces a higher frequency and cytokine functions of follicular CD4+ helper T-cells (TFH). These cytokines lead to an efficient germinal center reaction and potent B cell antibody response. Apart from TFH response, DSV4 stimulated Type 1 T helper cells (TH1) which is characteristic of a viral infection leading to secretion of pro-inflammatory cytokines and phagocyte-dependent protective immune responses. Our study highlights that DSV4 can mediate both arms of adaptive immunity-humoral and cell-mediated immunity in mice. By elucidating vaccine-specific T cell response, our work has implications in showing DSV4 as an effective, type-specific and safe dengue vaccine candidate.
Collapse
Affiliation(s)
- Charu Aggarwal
- Translational Health, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Viswanathan Ramasamy
- Translational Health, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Amit Garg
- Translational Health, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rahul Shukla
- Translational Health, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.,Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Navin Khanna
- Translational Health, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.,Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
17
|
Pahar B, Gray W, Fahlberg M, Grasperge B, Hunter M, Das A, Mabee C, Aye PP, Schiro F, Hensley K, Ratnayake A, Goff K, LaBranche C, Shen X, Tomaras GD, DeMarco CT, Montefiori D, Kissinger P, Marx PA, Traina-Dorge V. Recombinant Simian Varicella Virus-Simian Immunodeficiency Virus Vaccine Induces T and B Cell Functions and Provides Partial Protection against Repeated Mucosal SIV Challenges in Rhesus Macaques. Viruses 2022; 14:2819. [PMID: 36560823 PMCID: PMC9853323 DOI: 10.3390/v14122819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
HIV vaccine mediated efficacy, using an expanded live attenuated recombinant varicella virus-vectored SIV rSVV-SIVgag/env vaccine prime with adjuvanted SIV-Env and SIV-Gag protein boosts, was evaluated in a female rhesus macaques (RM) model against repeated intravaginal SIV challenges. Vaccination induced anti-SIV IgG responses and neutralizing antibodies were found in all vaccinated RMs. Three of the eight vaccinated RM remained uninfected (vaccinated and protected, VP) after 13 repeated challenges with the pathogenic SIVmac251-CX-1. The remaining five vaccinated and infected (VI) macaques had significantly reduced plasma viral loads compared with the infected controls (IC). A significant increase in systemic central memory CD4+ T cells and mucosal CD8+ effector memory T-cell responses was detected in vaccinated RMs compared to controls. Variability in lymph node SIV-Gag and Env specific CD4+ and CD8+ T cell cytokine responses were detected in the VI RMs while all three VP RMs had more durable cytokine responses following vaccination and prior to challenge. VI RMs demonstrated predominately SIV-specific monofunctional cytokine responses while the VP RMs generated polyfunctional cytokine responses. This study demonstrates that varicella virus-vectored SIV vaccination with protein boosts induces a 37.5% efficacy rate against pathogenic SIV challenge by generating mucosal memory, virus specific neutralizing antibodies, binding antibodies, and polyfunctional T-cell responses.
Collapse
Affiliation(s)
- Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
- School of Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Wayne Gray
- Biology Department, University of Mississippi, Oxford, MS 38677, USA
| | - Marissa Fahlberg
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Brooke Grasperge
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Meredith Hunter
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Christopher Mabee
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Pyone Pyone Aye
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Faith Schiro
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Krystle Hensley
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Aneeka Ratnayake
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Kelly Goff
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Celia LaBranche
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaoying Shen
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Georgia D. Tomaras
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - C. Todd DeMarco
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - David Montefiori
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Patricia Kissinger
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Preston A. Marx
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Vicki Traina-Dorge
- School of Medicine, Tulane University, New Orleans, LA 70118, USA
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| |
Collapse
|
18
|
Clarkson BDS, Johnson RK, Bingel C, Lothaller C, Howe CL. Preservation of antigen-specific responses in cryopreserved CD4 + and CD8 + T cells expanded with IL-2 and IL-7. J Transl Autoimmun 2022; 5:100173. [PMID: 36467614 PMCID: PMC9713293 DOI: 10.1016/j.jtauto.2022.100173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/31/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022] Open
Abstract
Objectives We sought to develop medium throughput standard operating procedures for screening cryopreserved human peripheral blood mononuclear cells (PBMCs) for CD4+ and CD8+ T cell responses to potential autoantigens. Methods Dendritic cells were loaded with a peptide cocktail from ubiquitous viruses or full-length viral protein antigens and cocultured with autologous T cells. We measured expression of surface activation markers on T cells by flow cytometry and cytometry by time of flight 24-72 h later. We tested responses among T cells freshly isolated from healthy control PBMCs, cryopreserved T cells, and T cells derived from a variety of T cell expansion protocols. We also compared the transcriptional profile of CD8+ T cells rested with interleukin (IL)7 for 48 h after 1) initial thawing, 2) expansion, and 3) secondary cryopreservation/thawing of expanded cells. To generate competent antigen presenting cells from PBMCs, we promoted differentiation of PBMCs into dendritic cells with granulocyte macrophage colony stimulating factor and IL-4. Results We observed robust dendritic cell differentiation from human PBMCs treated with 50 ng/mL GM-CSF and 20 ng/mL IL-4 in as little as 3 days. Dendritic cell purity was substantially increased by magnetically enriching for CD14+ monocytes prior to differentiation. We also measured antigen-dependent T cell activation in DC-T cell cocultures. However, polyclonal expansion of T cells with anti-CD3/antiCD28 abolished antigen-dependent upregulation of CD69 in our assay despite minimal transcriptional differences between rested CD8+ T cells before and after expansion. Furthermore, resting these expanded T cells in IL-2, IL-7 or IL-15 did not restore the antigen dependent responses. In contrast, T cells that were initially expanded with IL-2 + IL-7 rather than plate bound anti-CD3 + anti-CD28 retained responsiveness to antigen stimulation and these responses strongly correlated with responses measured at initial thawing. Significance While screening techniques for potential pathological autoantibodies have come a long way, comparable full-length protein target assays for screening patient T cells at medium throughput are noticeably lacking due to technical hurdles. Here we advance techniques that should have broad applicability to translational studies investigating cell mediated immunity in infectious or autoimmune diseases. Future studies are aimed at investigating possible CD8+ T cell autoantigens in MS and other CNS autoimmune diseases.
Collapse
Affiliation(s)
- Benjamin DS. Clarkson
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, 55905, USA,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA,Corresponding author. Mayo Clinic, Guggenheim 1521C, 200 First Street SW, Rochester, MN, 55905.
| | | | - Corinna Bingel
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center, Heidelberg, Germany
| | | | - Charles L. Howe
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, 55905, USA,Division of Experimental Neurology, Mayo Clinic, Rochester, MN, 55905, USA,Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
19
|
Chavda VP, Redwan EM. SARS-CoV-2: Immunopeptidomics and Other Immunological Studies. Vaccines (Basel) 2022; 10:vaccines10111975. [PMID: 36423070 PMCID: PMC9694091 DOI: 10.3390/vaccines10111975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has produced a significant continuing epidemic worldwide [...]
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380008, India
- Correspondence: (V.P.C.); (E.M.R.); Tel.: +91-7030-919-407 (V.P.C.)
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA City), Alexandria 21934, Egypt
- Correspondence: (V.P.C.); (E.M.R.); Tel.: +91-7030-919-407 (V.P.C.)
| |
Collapse
|
20
|
Strandmark J, Darboe A, Diray-Arce J, Ben-Othman R, Vignolo SM, Rao S, Smolen KK, Leroux-Roels G, Idoko OT, Sanchez-Schmitz G, Ozonoff A, Levy O, Kollmann TR, Marchant A, Kampmann B. A single birth dose of Hepatitis B vaccine induces polyfunctional CD4 + T helper cells. Front Immunol 2022; 13:1043375. [PMID: 36426360 PMCID: PMC9681035 DOI: 10.3389/fimmu.2022.1043375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/21/2022] [Indexed: 04/13/2024] Open
Abstract
A single birth-dose of Hepatitis B vaccine (HepB) can protect newborns from acquiring Hepatitis B infection through vertical transmission, though several follow-up doses are required to induce long-lived protection. In addition to stimulating antibodies, a birth-dose of HepB might also induce polyfunctional CD4+ T-cells, which may contribute to initial protection. We investigated whether vaccination with HepB in the first week of life induced detectable antigen-specific CD4+ T-cells after only a single dose and following completion of the entire HepB vaccine schedule (3 doses). Using HBsAg- stimulated peripheral blood mononuclear cells from 344 infants, we detected increased populations of antigen-specific polyfunctional CD154+IL-2+TNFα+ CD4+ T-cells following a single birth-dose of HepB in a proportion of infants. Frequencies of polyfunctional T-cells increased following the completion of the HepB schedule but increases in the proportion of responders as compared to following only one dose was marginal. Polyfunctional T-cells correlated positively with serum antibody titres following the birth dose (day30) and completion of the 3-dose primary HepB vaccine series (day 128). These data indicate that a single birth dose of HepB provides immune priming for both antigen-specific B- and T cells.
Collapse
Affiliation(s)
- Julia Strandmark
- Vaccines & Immunity Theme, Medical Research Council (MRC) Unit The Gambia at London School of Hygiene & Tropical Medicine (LSHTM), Fajara, Gambia
| | - Alansana Darboe
- Vaccines & Immunity Theme, Medical Research Council (MRC) Unit The Gambia at London School of Hygiene & Tropical Medicine (LSHTM), Fajara, Gambia
| | - Joann Diray-Arce
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Rym Ben-Othman
- Department of Paediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Sofia M. Vignolo
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
| | - Shun Rao
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
| | - Kinga K. Smolen
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | | | - Olubukola T. Idoko
- Vaccines & Immunity Theme, Medical Research Council (MRC) Unit The Gambia at London School of Hygiene & Tropical Medicine (LSHTM), Fajara, Gambia
| | - Guzmán Sanchez-Schmitz
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Al Ozonoff
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Klarman Cell Observatory & Global Health Initiative, Broad Institute of the Massachusetts Institute of Technology (MIT) & Harvard, Cambridge, MA, United States
| | - Ofer Levy
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Klarman Cell Observatory & Global Health Initiative, Broad Institute of the Massachusetts Institute of Technology (MIT) & Harvard, Cambridge, MA, United States
| | - Tobias R. Kollmann
- Department of Paediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | - Beate Kampmann
- Vaccines & Immunity Theme, Medical Research Council (MRC) Unit The Gambia at London School of Hygiene & Tropical Medicine (LSHTM), Fajara, Gambia
- The Vaccine Centre, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
21
|
Rakshit S, Adiga V, Ahmed A, Parthiban C, Chetan Kumar N, Dwarkanath P, Shivalingaiah S, Rao S, D’Souza G, Dias M, Maguire TJA, Doores KJ, Zoodsma M, Geckin B, Dasgupta P, Babji S, van Meijgaarden KE, Joosten SA, Ottenhoff THM, Li Y, Netea MG, Stuart KD, De Rosa SC, McElrath MJ, Vyakarnam A. Evidence for the heterologous benefits of prior BCG vaccination on COVISHIELD™ vaccine-induced immune responses in SARS-CoV-2 seronegative young Indian adults. Front Immunol 2022; 13:985938. [PMID: 36268023 PMCID: PMC9577398 DOI: 10.3389/fimmu.2022.985938] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
This proof-of-concept study tested if prior BCG revaccination can qualitatively and quantitively enhance antibody and T-cell responses induced by Oxford/AstraZeneca ChAdOx1nCoV-19 or COVISHIELD™, an efficacious and the most widely distributed vaccine in India. We compared COVISHIELD™ induced longitudinal immune responses in 21 BCG re-vaccinees (BCG-RV) and 13 BCG-non-revaccinees (BCG-NRV), all of whom were BCG vaccinated at birth; latent tuberculosis negative and SARS-CoV-2 seronegative prior to COVISHIELD™ vaccination. Compared to BCG-NRV, BCG-RV displayed significantly higher and persistent spike-specific neutralizing (n) Ab titers and polyfunctional CD4+ and CD8+ T-cells for eight months post COVISHIELD™ booster, including distinct CD4+IFN-γ+ and CD4+IFN-γ- effector memory (EM) subsets co-expressing IL-2, TNF-α and activation induced markers (AIM) CD154/CD137 as well as CD8+IFN-γ+ EM,TEMRA (T cell EM expressing RA) subset combinations co-expressing TNF-α and AIM CD137/CD69. Additionally, elevated nAb and T-cell responses to the Delta mutant in BCG-RV highlighted greater immune response breadth. Mechanistically, these BCG adjuvant effects were associated with elevated markers of trained immunity, including higher IL-1β and TNF-α expression in CD14+HLA-DR+monocytes and changes in chromatin accessibility highlighting BCG-induced epigenetic changes. This study provides first in-depth analysis of both antibody and memory T-cell responses induced by COVISHIELD™ in SARS-CoV-2 seronegative young adults in India with strong evidence of a BCG-induced booster effect and therefore a rational basis to validate BCG, a low-cost and globally available vaccine, as an adjuvant to enhance heterologous adaptive immune responses to current and emerging COVID-19 vaccines.
Collapse
Affiliation(s)
- Srabanti Rakshit
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Vasista Adiga
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
- Department of Biotechnology, PES University, Bangalore, India
| | - Asma Ahmed
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Chaitra Parthiban
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Nirutha Chetan Kumar
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | | | | | - Srishti Rao
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - George D’Souza
- Division of Nutrition, St. John’s Research Institute, Bangalore, India
| | - Mary Dias
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | | | - Katie J. Doores
- Department of Pulmonary Medicine, St. John’s Medical College, Bangalore, India
| | - Martijn Zoodsma
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Department of Computational Biology for Individualized Infection Medicine, Centre for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Busranur Geckin
- TWINCORE, a joint venture between the Helmholtz Centre for Infection Research, (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Prokar Dasgupta
- Department of Internal Medicine and Radboud Center for infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sudhir Babji
- Peter Gorer Department of Immunobiology, Liver Renal Urology Transplant Gastro/Gastrointestinal Surgery, Inflammation Biology, King’s College London, London, United Kingdom
| | | | - Simone A. Joosten
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Tom H. M. Ottenhoff
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Yang Li
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Department of Computational Biology for Individualized Infection Medicine, Centre for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Mihai G. Netea
- TWINCORE, a joint venture between the Helmholtz Centre for Infection Research, (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Kenneth D. Stuart
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Stephen C. De Rosa
- Centre for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - M. Juliana McElrath
- Centre for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Centre, Seattle, WA, United States
| | - Annapurna Vyakarnam
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- *Correspondence: Annapurna Vyakarnam, ;
| |
Collapse
|
22
|
Control of Simian Immunodeficiency Virus Infection in Prophylactically Vaccinated, Antiretroviral Treatment-Naive Macaques Is Required for the Most Efficacious CD8 T Cell Response during Treatment with the Interleukin-15 Superagonist N-803. J Virol 2022; 96:e0118522. [PMID: 36190241 PMCID: PMC9599604 DOI: 10.1128/jvi.01185-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The IL-15 superagonist N-803 has been shown to enhance the function of CD8 T cells and NK cells. We previously found that in a subset of vaccinated, ART-naive, SIV+ rhesus macaques, N-803 treatment led to a rapid but transient decline in plasma viremia that positively correlated with an increase in the frequency of CD8 T cells. Here, we tested the hypothesis that prophylactic vaccination was required for the N-803 mediated suppression of SIV plasma viremia. We either vaccinated rhesus macaques with a DNA prime/Ad5 boost regimen using vectors expressing SIVmac239 gag with or without a plasmid expressing IL-12 or left them unvaccinated. The animals were then intravenously infected with SIVmac239M. 6 months after infection, the animals were treated with N-803. We found no differences in the control of plasma viremia during N-803 treatment between vaccinated and unvaccinated macaques. Interestingly, when we divided the SIV+ animals based on their plasma viral load set-points prior to the N-803 treatment, N-803 increased the frequency of SIV-specific T cells expressing ki-67+ and granzyme B+ in animals with low plasma viremia (<104 copies/mL; SIV controllers) compared to animals with high plasma viremia (>104 copies/mL; SIV noncontrollers). In addition, Gag-specific CD8 T cells from the SIV+ controllers had a greater increase in CD8+CD107a+ T cells in ex vivo functional assays than did the SIV+ noncontrollers. Overall, our results indicate that N-803 is most effective in SIV+ animals with a preexisting immunological ability to control SIV replication. IMPORTANCE N-803 is a drug that boosts the immune cells involved in combating HIV/SIV infection. Here, we found that in SIV+ rhesus macaques that were not on antiretroviral therapy, N-803 increased the proliferation and potential capacity for killing of the SIV-specific immune cells to a greater degree in animals that spontaneously controlled SIV than in animals that did not control SIV. Understanding the mechanism of how N-803 might function differently in individuals that control HIV/SIV (for example, individuals on antiretroviral therapy or spontaneous controllers) compared to settings where HIV/SIV are not controlled, could impact the efficacy of N-803 utilization in the field of HIV cure.
Collapse
|
23
|
Distinctive populations of CD4+T cells associated with vaccine efficacy. iScience 2022; 25:104934. [PMID: 36060075 PMCID: PMC9436750 DOI: 10.1016/j.isci.2022.104934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Memory T cells underpin vaccine-induced immunity but are not yet fully understood. To distinguish features of memory cells that confer protective immunity, we used single cell transcriptome analysis to compare antigen-specific CD4+T cells recalled to lungs of mice that received a protective or nonprotective subunit vaccine followed by challenge with a fungal pathogen. We unexpectedly found populations specific to protection that expressed a strong type I interferon response signature, whose distinctive transcriptional signature appeared unconventionally dependent on IFN-γ receptor. We also detected a unique population enriched in protection that highly expressed the gene for the natural killer cell marker NKG7. Lastly, we detected differences in TCR gene use and in Th1- and Th17-skewed responses after protective and nonprotective vaccine, respectively, reflecting heterogeneous Ifng- and Il17a-expressing populations. Our findings highlight key features of transcriptionally diverse and distinctive antigen-specific T cells associated with protective vaccine-induced immunity. Protective and nonprotective vaccines generate distinct T cells in fungal infection A strong type I interferon signal is seen among CD4 T cells in protective immunity Th1 bias is seen with protective immunity; Th17 bias with nonprotective immunity Nkg7-expressing CD4 T cells are enriched in protective immunity
Collapse
|
24
|
Ferreira VH, Solera JT, Hu Q, Hall VG, Arbol BG, Rod Hardy W, Samson R, Marinelli T, Ierullo M, Virk AK, Kurtesi A, Mavandadnejad F, Majchrzak-Kita B, Kulasingam V, Gingras AC, Kumar D, Humar A. Homotypic and heterotypic immune responses to Omicron variant in immunocompromised patients in diverse clinical settings. Nat Commun 2022; 13:4489. [PMID: 35927279 PMCID: PMC9352686 DOI: 10.1038/s41467-022-32235-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/22/2022] [Indexed: 12/02/2022] Open
Abstract
Immunocompromised patients are predisposed to severe COVID-19. Here we compare homotypic and heterotypic humoral and cellular immune responses to Omicron BA.1 in organ transplant patients across a diverse clinical spectrum. We perform variant-specific pseudovirus neutralization assays for D614G, and Omicron-BA.1, -BA.2, and Delta variants. We also measure poly-and monofunctional T-cell responses to BA.1 and ancestral SARS-CoV-2 peptide pools. We identify that partially or fully-vaccinated transplant recipients after infection with Omicron BA.1 have the greatest BA.1 neutralizing antibody and BA.1-specific polyfunctional CD4+ and CD8+ T-cell responses, with potent cross-neutralization against BA.2. In these patients, the magnitude of the BA.1-directed response is comparable to immunocompetent triple-vaccinated controls. A subset of patients with pre-Omicron infection have heterotypic responses to BA.1 and BA.2, whereas uninfected transplant patients with three doses of vaccine demonstrate the weakest comparative responses. These results have implications for risk of infection, re-infection, and disease severity among immune compromised hosts with Omicron infection. Immunocompromised individuals are predisposed to severe SARS-CoV-2 infection, with transplant recipients typically displaying impaired immune response to pathogens, due to typical life-long immunosuppressive treatment. In this work, the authors evaluate the immune response to Omicron subvariants BA.1 and BA.2 in organ transplant recipients across a diverse clinical spectrum.
Collapse
Affiliation(s)
- Victor H Ferreira
- Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Javier T Solera
- Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Queenie Hu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Victoria G Hall
- Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Berta G Arbol
- Department of Medicine, University Health Network, Toronto, ON, Canada
| | - W Rod Hardy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Reuben Samson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Tina Marinelli
- Department of Medicine, University Health Network, Toronto, ON, Canada.,Department of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Matthew Ierullo
- Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Avneet Kaur Virk
- Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Alexandra Kurtesi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | | | | | | | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Deepali Kumar
- Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Atul Humar
- Department of Medicine, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
25
|
Pitaloka DAE, Izzati A, Amirah SR, Syakuran LA. Multi Epitope-Based Vaccine Design for Protection Against Mycobacterium tuberculosis and SARS-CoV-2 Coinfection. ADVANCES AND APPLICATIONS IN BIOINFORMATICS AND CHEMISTRY 2022; 15:43-57. [PMID: 35941993 PMCID: PMC9356608 DOI: 10.2147/aabc.s366431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
Abstract
Background A prophylactic and immunotherapeutic vaccine for Mycobacterium tuberculosis (MTB) and SARS-CoV-2 coinfection needs to be developed for a proactive and effective therapeutic approach. Therefore, this study aims to use immunoinformatics to design a multi-epitope vaccine for protection against MTB and SARS-CoV-2 coinfection. Methods The bioinformatic techniques were used to screen and construct potential epitopes from outer membrane protein A Rv0899 of MTB and spike glycoprotein of SARS-CoV-2 for B and T cells. The antigenicity, allergenicity, and several physiochemical properties of the developed multi-epitope vaccination were then evaluated. Additionally, molecular docking and normal mode analysis (NMA) were utilized in evaluating the vaccine’s immunogenicity and complex stability. Results Selected proteins and predicted epitopes suggest that the vaccine prediction can be helpful in the protection against both SARS-CoV-2 and MTB coinfection. Through docking molecular and NMA, the vaccine-TLR4 protein interaction was predicted to be efficient with a high level of IgG, T-helper cells, T-cytotoxic cells, andIFN-γ. Conclusion This epitope-based vaccine is a potentially attractive tool for SARS-CoV-2 and MTB coinfection vaccine development.
Collapse
Affiliation(s)
- Dian Ayu Eka Pitaloka
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Correspondence: Dian Ayu Eka Pitaloka, Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia, Tel +62-22-84288812, Email
| | - Afifah Izzati
- Pharmacy Program, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Siti Rafa Amirah
- Pharmacy Program, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Luqman Abdan Syakuran
- Faculty of Biology, Jenderal Soedirman University, Grendeng Purwokerto, 53122, Indonesia
| |
Collapse
|
26
|
Baloch Z, Ikram A, Shamim S, Obaid A, Awan FM, Naz A, Rauff B, Gilani K, Qureshi JA. Human Coronavirus Spike Protein Based Multi-Epitope Vaccine against COVID-19 and Potential Future Zoonotic Coronaviruses by Using Immunoinformatic Approaches. Vaccines (Basel) 2022; 10:1150. [PMID: 35891314 PMCID: PMC9323133 DOI: 10.3390/vaccines10071150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
Zoonotic coronaviruses (CoV) have emerged twice and have caused severe respiratory diseases in humans. Due to the frequent outbreaks of different human coronaviruses (HCoVs), the development of a pan-HCoV vaccine is of great importance. Various conserved epitopes shared by HCoVs are reported to induce cross-reactive T-cell responses. Therefore, this study aimed to design a multi-epitope vaccine, targeting the HCoV spike protein. Genetic analysis revealed that the spike region is highly conserved among SARS-CoV-2, bat SL-CoV, and SARS-CoV. By employing the immunoinformatic approach, we prioritized 20 MHC I and 10 MHCII conserved epitopes to design a multi-epitope vaccine. This vaccine candidate is anticipated to strongly elicit both humoral and cell-mediated immune responses. These results warrant further development of this vaccine into real-world application.
Collapse
Affiliation(s)
- Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
| | - Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan; (S.S.); (A.N.); (K.G.); (J.A.Q.)
| | - Saba Shamim
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan; (S.S.); (A.N.); (K.G.); (J.A.Q.)
| | - Ayesha Obaid
- Department of Medical Lab Technology, University of Haripur (UOH), Haripur 22620, Pakistan; (A.O.); (F.M.A.)
| | - Faryal Mehwish Awan
- Department of Medical Lab Technology, University of Haripur (UOH), Haripur 22620, Pakistan; (A.O.); (F.M.A.)
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan; (S.S.); (A.N.); (K.G.); (J.A.Q.)
| | - Bisma Rauff
- Department of Biomedical Engineering, University of Engineering and Technology (UET) Lahore, Narowal Campus, Narowal 51601, Pakistan;
| | - Khadija Gilani
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan; (S.S.); (A.N.); (K.G.); (J.A.Q.)
| | - Javed Anver Qureshi
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan; (S.S.); (A.N.); (K.G.); (J.A.Q.)
| |
Collapse
|
27
|
Qiao Y, Zhang Y, Chen J, Jin S, Shan Y. A biepitope, adjuvant-free, self-assembled influenza nanovaccine provides cross-protection against H3N2 and H1N1 viruses in mice. NANO RESEARCH 2022; 15:8304-8314. [PMID: 35911479 PMCID: PMC9325945 DOI: 10.1007/s12274-022-4482-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 05/27/2023]
Abstract
Currently, the incorporation of multiple epitopes into vaccines is more desirable than the incorporation of a single antigen for universal influenza vaccine development. However, epitopes induce poor immune responses. Although the use of adjuvants can overcome this obstacle, it may raise new problems. Effective antigen delivery vehicles that can function as both antigen carriers and intrinsic adjuvants are highly desired for vaccine development. Here, we report a biepitope nanovaccine that provides complete protection in mice against H3N2 virus as well as partial protection against H1N1 virus. This vaccine (3MCD-f) consists of two conserved epitopes (matrix protein 2 ectodomain (M2e) and CDhelix), and these epitopes were presented on the surface of ferritin in a sequential tandem format. Subcutaneous immunization with 3MCD-f in the absence of adjuvant induces robust humoral and cellular immune responses. These results provide a proof of concept for the 3MCD-f nanovaccine that might be an ideal candidate for future influenza pandemics.
Collapse
Affiliation(s)
- Yongbo Qiao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012 China
| | - YaXin Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012 China
| | - Jie Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012 China
| | - Shenghui Jin
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012 China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012 China
| |
Collapse
|
28
|
Differential Expression of CD45RO and CD45RA in Bovine T Cells. Cells 2022; 11:cells11111844. [PMID: 35681539 PMCID: PMC9180881 DOI: 10.3390/cells11111844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 01/06/2023] Open
Abstract
Effective vaccination induces immune memory to protect animals upon pathogen re-encounter. Despite contradictory reports, bovine memory T cells are identified based on two isoforms of CD45, expression of CD45RO plus exclusion of CD45RA. In this report, we contrasted CD45RA/RO expression on circulatory T cells with IFNγ and IL4 expression induced by a conventional method. To our surprise, 20% of cattle from an enclosed herd did not express CD45RO on T cells without any significant difference on CD45RA expression and IFNγ or IL4 induction. In CD45RO expressing cattle, CD45RA and CD45RO expressions excluded each other, with dominant CD45RO (>90%) expression on gamma delta (γδ) followed by CD4+ (60%) but significantly higher CD45RA expression on CD8+ T cells (about 80%). Importantly, more than 80% of CD45RO expressing CD4+ and CD8+ T cells failed to produce IFNγ and IL-4; however, within the cytokine inducing cells, CD4+ T cells highly expressed CD45RO but those within CD8+ T cells mostly expressed CD45RA. Hence, CD45RO is not ubiquitously expressed in cattle, and rather than with memory phenotype, CD45RA/RO expression are more associated with distinct T cell subtypes.
Collapse
|
29
|
Robles-Oteiza C, Wu CJ. Editorial overview: Vaccines: Reinvigorating therapeutic cancer vaccines. Curr Opin Immunol 2022; 76:102176. [PMID: 35429774 PMCID: PMC9612210 DOI: 10.1016/j.coi.2022.102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 12/05/2022]
Abstract
Lessons learned from the rapid deployment of vaccines during the COVID-19 pandemic are reinvigorating the cancer vaccine field. Using delivery platforms including mRNA and synthetic long peptides, recent clinical trials have demonstrated that cancer vaccines are safe, feasible, and can be associated with the generation of antigen-specific memory T cells and, in some cases, durable clinical responses. Despite these advances, fundamental questions remain regarding the optimal delivery platforms and antigen targets to use in cancer vaccines. Ongoing and future studies that harness advances in the identification of novel sources of antigens, the prediction of immunogenic antigens, and the use of single-cell technologies to profile antigen-specific T cells will hopefully reveal correlates with clinical outcomes and provide a mechanistic basis for future progress.
Collapse
Affiliation(s)
- Camila Robles-Oteiza
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
30
|
Rakshit S, Adiga V, Ahmed A, Parthiban C, Kumar NC, Dwarkanath P, Shivalingaiah S, Rao S, D’Souza G, Dias M, Maguire TJ, Doores K, Dasgupta P, Babji S, Ottenhoff TH, Stuart KD, De Rosa S, McElrath MJ, Vyakarnam A. BCG revaccination qualitatively and quantitatively enhances SARS-CoV-2 spike-specific neutralizing antibody and T cell responses induced by the COVISHIELD ™ vaccine in SARS-CoV-2 seronegative young Indian adults. RESEARCH SQUARE 2022:rs.3.rs-1395683. [PMID: 35262071 PMCID: PMC8902867 DOI: 10.21203/rs.3.rs-1395683/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study tested if prior BCG revaccination can further boost immune responses subsequently induced by a widely distributed and otherwise efficacious Oxford/AstraZeneca ChAdOx1nCoV-19 vaccine, referred to as COVISHIELD™, in India. We compared COVISHIELD™ induced longitudinal immune responses in 21 BCG re-vaccinees (BCG-RV) and 13 BCG-non-revaccinees (BCG-NRV), all of whom were BCG vaccinated at birth and latent tuberculosis negative, after COVISHIELD™ prime and boost with baseline samples that were collected pre-pandemic and pre-BCG revaccination. Compared to BCG-NRV, BCG-RV displayed significantly higher magnitude of spike-specific Ab and T cell responses, including a greater proportion of high responders; better quality polyfunctional CD4 and CD8 T cells that persisted and a more robust Ab and T cell response to the Delta mutant of SARS-CoV-2 highlighting greater breadth. Mechanistically, BCG adjuvant effects on COVISHIELD™ induced adaptive responses was associated with more robust innate responses to pathogen-associated-molecular-patterns through TNF-α and IL-1β secretion. This study provides first in-depth analysis of immune responses induced by COVISHIELD™ in India and highlights the potential of using a cheap and globally available vaccine, BCG, as an adjuvant to enhance heterologous adaptive immune responses induced by COVIDSHIELD™ and other emerging vaccines.
Collapse
Affiliation(s)
- Srabanti Rakshit
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Vasista Adiga
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Asma Ahmed
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Chaitra Parthiban
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Nirutha Chetan Kumar
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | | | | | - Srishti Rao
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - George D’Souza
- Department of Pulmonary Medicine, St. John’s Medical College, Bangalore, India
| | - Mary Dias
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Thomas J.A. Maguire
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London
| | - Katie Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London
| | - Prokar Dasgupta
- Peter Gorer Department of Immunobiology, Liver Renal Urology Transplant Gastro/Gastrointestinal Surgery, Inflammation Biology, King’s College, London
| | - Sudhir Babji
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Tom H.M Ottenhoff
- Dept. Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Stephen De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington, USA
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Annapurna Vyakarnam
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
- Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Science & Medicine, King’s College, London
| |
Collapse
|
31
|
Shkair L, Garanina EE, Martynova EV, Kolesnikova AI, Arkhipova SS, Titova AA, Rizvanov AA, Khaiboullina SF. Immunogenic Properties of MVs Containing Structural Hantaviral Proteins: An Original Study. Pharmaceutics 2022; 14:pharmaceutics14010093. [PMID: 35056989 PMCID: PMC8779827 DOI: 10.3390/pharmaceutics14010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 02/01/2023] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is an emerging infectious disease that remains a global public health threat. The highest incidence rate is among zoonotic disease cases in Russia. Most cases of HFRS are reported in the Volga region of Russia, which commonly identifies the Puumala virus (PUUV) as a pathogen. HFRS management is especially challenging due to the lack of specific treatments and vaccines. This study aims to develop new approaches for HFRS prevention. Our goal is to test the efficacy of microvesicles (MVs) as PUUV nucleocapsid (N) and glycoproteins (Gn/Gc) delivery vehicles. Our findings show that MVs could deliver the PUUV N and Gn/Gc proteins in vitro. We have also demonstrated that MVs loaded with PUUV proteins could elicit a specific humoral and cellular immune response in vivo. These data suggest that an MV-based vaccine could control HFRS.
Collapse
|
32
|
Dennehy KM, Löll E, Dhillon C, Classen JM, Warm TD, Schuierer L, Hyhlik-Dürr A, Römmele C, Gosslau Y, Kling E, Hoffmann R. Comparison of the Development of SARS-Coronavirus-2-Specific Cellular Immunity, and Central Memory CD4+ T-Cell Responses Following Infection versus Vaccination. Vaccines (Basel) 2021; 9:1439. [PMID: 34960185 PMCID: PMC8707815 DOI: 10.3390/vaccines9121439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 12/03/2022] Open
Abstract
Memory T-cell responses following infection with coronaviruses are reportedly long-lived and provide long-term protection against severe disease. Whether vaccination induces similar long-lived responses is not yet clear since, to date, there are limited data comparing memory CD4+ T-cell responses induced after SARS-CoV-2 infection versus following vaccination with BioNTech/Pfizer BNT162b2. We compared T-cell immune responses over time after infection or vaccination using ELISpot, and memory CD4+ T-cell responses three months after infection/vaccination using activation-induced marker flow cytometric assays. Levels of cytokine-producing T-cells were remarkably stable between three and twelve months after infection, and were comparable to IFNγ+ and IFNγ+IL-2+ T-cell responses but lower than IL-2+ T-cell responses at three months after vaccination. Consistent with this finding, vaccination and infection elicited comparable levels of SARS-CoV-2 specific CD4+ T-cells after three months in addition to comparable proportions of specific central memory CD4+ T-cells. By contrast, the proportions of specific effector memory CD4+ T-cells were significantly lower, whereas specific effector CD4+ T-cells were higher after infection than after vaccination. Our results suggest that T-cell responses-as measured by cytokine expression-and the frequencies of SARS-CoV-2-specific central memory CD4+T-cells-indicative of the formation of the long-lived memory T-cell compartment-are comparably induced after infection and vaccination.
Collapse
Affiliation(s)
- Kevin M. Dennehy
- Institute for Laboratory Medicine and Microbiology, Medical Faculty, University Hospital Augsburg, 86156 Augsburg, Germany; (E.L.); (L.S.); (E.K.); (R.H.)
| | - Eva Löll
- Institute for Laboratory Medicine and Microbiology, Medical Faculty, University Hospital Augsburg, 86156 Augsburg, Germany; (E.L.); (L.S.); (E.K.); (R.H.)
| | - Christine Dhillon
- Department of Pathology, Medical Faculty, University Hospital Augsburg, 86156 Augsburg, Germany;
| | - Johanna-Maria Classen
- Internal Medicine III-Gastroenterology and Infectious Diseases, Medical Faculty, University Hospital Augsburg, 86156 Augsburg, Germany; (J.-M.C.); (C.R.)
| | - Tobias D. Warm
- Clinic for Vascular Surgery, Medical Faculty, University Hospital Augsburg, 86156 Augsburg, Germany; (T.D.W.); (A.H.-D.); (Y.G.)
| | - Lukas Schuierer
- Institute for Laboratory Medicine and Microbiology, Medical Faculty, University Hospital Augsburg, 86156 Augsburg, Germany; (E.L.); (L.S.); (E.K.); (R.H.)
| | - Alexander Hyhlik-Dürr
- Clinic for Vascular Surgery, Medical Faculty, University Hospital Augsburg, 86156 Augsburg, Germany; (T.D.W.); (A.H.-D.); (Y.G.)
| | - Christoph Römmele
- Internal Medicine III-Gastroenterology and Infectious Diseases, Medical Faculty, University Hospital Augsburg, 86156 Augsburg, Germany; (J.-M.C.); (C.R.)
| | - Yvonne Gosslau
- Clinic for Vascular Surgery, Medical Faculty, University Hospital Augsburg, 86156 Augsburg, Germany; (T.D.W.); (A.H.-D.); (Y.G.)
| | - Elisabeth Kling
- Institute for Laboratory Medicine and Microbiology, Medical Faculty, University Hospital Augsburg, 86156 Augsburg, Germany; (E.L.); (L.S.); (E.K.); (R.H.)
| | - Reinhard Hoffmann
- Institute for Laboratory Medicine and Microbiology, Medical Faculty, University Hospital Augsburg, 86156 Augsburg, Germany; (E.L.); (L.S.); (E.K.); (R.H.)
| |
Collapse
|
33
|
Swanson PA, Padilla M, Hoyland W, McGlinchey K, Fields PA, Bibi S, Faust SN, McDermott AB, Lambe T, Pollard AJ, Durham NM, Kelly EJ. AZD1222/ChAdOx1 nCoV-19 vaccination induces a polyfunctional spike protein-specific T H1 response with a diverse TCR repertoire. Sci Transl Med 2021; 13:eabj7211. [PMID: 34591596 PMCID: PMC9924073 DOI: 10.1126/scitranslmed.abj7211] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/20/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
AZD1222 (ChAdOx1 nCoV-19), a replication-deficient simian adenovirus–vectored vaccine, has demonstrated safety, efficacy, and immunogenicity against coronavirus disease 2019 in clinical trials and real-world studies. We characterized CD4+ and CD8+ T cell responses induced by AZD1222 vaccination in peripheral blood mononuclear cells from 296 unique vaccine recipients aged 18 to 85 years who enrolled in the phase 2/3 COV002 trial. Total spike protein–specific CD4+ T cell helper type 1 (TH1) and CD8+ T cell responses were increased in AZD1222-vaccinated adults of all ages after two doses of AZD1222. CD4+ TH2 responses after AZD1222 vaccination were not detected. Furthermore, AZD1222-specific TH1 and CD8+ T cells both displayed a high degree of polyfunctionality in all adult age groups. T cell receptor β (TCRβ) sequences from vaccinated participants mapped against TCR sequences known to react to SARS-CoV-2 revealed substantial breadth and depth across the SARS-CoV-2 spike protein for both AZD1222-induced CD4+ and CD8+ T cell responses. Overall, AZD1222 vaccination induced a polyfunctional TH1-dominated T cell response, with broad CD4+ and CD8+ T cell coverage across the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Phillip A. Swanson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcelino Padilla
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wesley Hoyland
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kelly McGlinchey
- Discovery, Research and Early Development, Oncology R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | | | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and NIHR Oxford Biomedical Research Centre, Oxford OX4 6PG, UK
| | - Saul N. Faust
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, and Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and NIHR Oxford Biomedical Research Centre, Oxford OX4 6PG, UK
| | - Nicholas M. Durham
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Elizabeth J. Kelly
- Translational Medicine, Microbial Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | | |
Collapse
|
34
|
Ferreira VH, Marinelli T, Ierullo M, Ku T, Hall VG, Majchrzak-Kita B, Kulasingam V, Humar A, Kumar D. SARS-CoV-2 infection induces greater T-cell responses compared to vaccination in solid organ transplant recipients. J Infect Dis 2021; 224:1849-1860. [PMID: 34739078 PMCID: PMC8689890 DOI: 10.1093/infdis/jiab542] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/18/2021] [Indexed: 12/23/2022] Open
Abstract
T-cell immunity associated with SARS-CoV-2 infection or vaccination in solid organ transplant recipients (SOTRs) is poorly understood. To address this, we measured T-cell responses in 50 SOTRs with prior SARS-CoV-2 infection. The majority of patients mounted SARS-CoV-2-specific CD4 + T-cell responses against spike (S), nucleocapsid (NP) and membrane proteins; CD8 + T-cell responses were generated to a lesser extent. CD4 + T-cell responses correlated with antibody levels. Severity of disease and mycophenolate dose were moderately associated with lower proportions of antigen-specific T-cells. Relative to non-transplant controls, SOTRs had perturbations in both total and antigen-specific T-cells, including higher frequencies of total PD-1 +CD4 + T-cells. Vaccinated SOTRs (n=55) mounted significantly lower proportions of S-specific polyfunctional CD4 + T-cells after two doses, relative to unvaccinated SOTRs with prior COVID-19. Together, these results suggest that SOTR generate robust T-cell responses following natural infection that correlate with disease severity but generate comparatively lower T-cell responses following mRNA vaccination.
Collapse
Affiliation(s)
- Victor H Ferreira
- Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Tina Marinelli
- Ajmera Transplant Centre, University Health Network, Toronto, Canada.,Dept of Infectious Diseases, The Royal Prince Alfred Hospital, Sydney, Australia
| | - Matthew Ierullo
- Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Terrance Ku
- Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Victoria G Hall
- Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | | | | | - Atul Humar
- Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Deepali Kumar
- Ajmera Transplant Centre, University Health Network, Toronto, Canada
| |
Collapse
|
35
|
Kim HJ, Kim H, Choi Y, Lee JH, Kim D, Lee SK, Park KS. Cinnamomum verum-derived O-methoxycinnamaldehyde prevents lipopolysaccharide-induced depressive-like behavior in mice via NFAT mRNA stability in T lymphocytes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153703. [PMID: 34425473 DOI: 10.1016/j.phymed.2021.153703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Depressive-like behaviors are related to inflammatory immune activation. Cinnamomum verum (CV) has anti-inflammatory effects, but the molecular mechanisms underlying the antidepressant effects after immunological activation still remain elusive. PURPOSE The aim of the present study was to investigate the effect of CV in improving depressive-like behavior and explore its underlying mechanism in T lymphocytes. METHODS Mice were randomly divided into Control, LPS, LPS plus fluoxetine, LPS plus CV, and LPS plus MCA groups. Behavior was evaluated using forced swimming test (FST) and tail suspension test (TST). The experimental group mice were exposed to LPS to induce depressive-like behavior. Cell viability was measured upon treating splenic T lymphocytes and Jurkat T cells with CV. Cytokine activity was measured using ELISA and RT-qPCR. The components of CV were analyzed by HPLC. NFAT expression was evaluated by western blotting, immunofluorescence, and luciferase assay. To verify the half-life of NFAT mRNA, Jurkat cells were treated with actinomycin D for 1.5, 3, and 4.5 h. RESULTS CV effectively prevents inflammation-induced depressive-like behaviors. CV dose-dependently decreased protein and mRNA levels of TNFα and IL-2. Inhibition of TNFα and IL-2 production involves an MCA-mediated decrease in NFAT mRNA level, rather than inhibition of nuclear translocation. This mechanism was independent of NFAT transcription inducer p38 MAPK; it can be attributed to the promotion of NFAT mRNA decay. CONCLUSION Overall, MCA might be an alternative or adjuvant to existing NFAT-targeting immunosuppressants for clinical prophylaxis or therapy in the context of inflammation-induced depressive disorder or other T-cell-associated inflammatory disorders.
Collapse
Affiliation(s)
- Hye Jin Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyungjun Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Yujin Choi
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Jun-Hwan Lee
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; Korean Medicine Life Science, University of Science & Technology (UST), Campus of Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Donghwan Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea.
| | - Ki-Sun Park
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| |
Collapse
|
36
|
Immunostimulatory Potential of Extracellular Vesicles Isolated from an Edible Plant, Petasites japonicus, via the Induction of Murine Dendritic Cell Maturation. Int J Mol Sci 2021; 22:ijms221910634. [PMID: 34638974 PMCID: PMC8508627 DOI: 10.3390/ijms221910634] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have recently been isolated from different plants. Plant-derived EVs have been proposed as potent therapeutics and drug-delivery nanoplatforms for delivering biomolecules, including proteins, RNAs, DNAs, and lipids. Herein, Petasites japonicus-derived EVs (PJ-EVs) were isolated through a series of centrifugation steps and characterized using dynamic light scattering and transmission electron microscopy. Immunomodulatory effects of PJ-EVs were assessed using dendritic cells (DCs). PJ-EVs exhibited a spherical morphology with an average size of 122.6 nm. They induced the maturation of DCs via an increase in the expression of surface molecules (CD80, CD86, MHC-I, and MHC-II), production of Th1-polarizing cytokines (TNF-α and IL-12p70), and antigen-presenting ability; however, they reduced the antigen-uptake ability. Furthermore, maturation of DCs induced by PJ-EVs was dependent on the activation and phosphorylation of MAPK and NF-κB signal pathways. Notably, PJ-EV-treated DCs strongly induced the proliferation and differentiation of naïve T cells toward Th1-type T cells and cytotoxic CD8+ T cells along with robust secretion of IFN-γ and IL-2. In conclusion, our study indicates that PJ-EVs can be potent immunostimulatory candidates with an ability of strongly inducing the maturation of DCs.
Collapse
|
37
|
Immune Responses against SARS-CoV-2-Questions and Experiences. Biomedicines 2021; 9:biomedicines9101342. [PMID: 34680460 PMCID: PMC8533170 DOI: 10.3390/biomedicines9101342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding immune reactivity against SARS-CoV-2 is essential for coping with the COVID-19 pandemic. Herein, we discuss experiences and open questions about the complex immune responses to SARS-CoV-2. Some people react excellently without experiencing any clinical symptoms, they do not get sick, and they do not pass the virus on to anyone else ("sterilizing" immunity). Others produce antibodies and do not get COVID-19 but transmit the virus to others ("protective" immunity). Some people get sick but recover. A varying percentage develops respiratory failure, systemic symptoms, clotting disorders, cytokine storms, or multi-organ failure; they subsequently decease. Some develop long COVID, a new pathologic entity similar to fatigue syndrome or autoimmunity. In reality, COVID-19 is considered more of a systemic immune-vascular disease than a pulmonic disease, involving many tissues and the central nervous system. To fully comprehend the complex clinical manifestations, a profound understanding of the immune responses to SARS-CoV-2 is a good way to improve clinical management of COVID-19. Although neutralizing antibodies are an established approach to recognize an immune status, cellular immunity plays at least an equivalent or an even more important role. However, reliable methods to estimate the SARS-CoV-2-specific T cell capacity are not available for clinical routines. This deficit is important because an unknown percentage of people may exist with good memory T cell responsibility but a low number of or completely lacking peripheral antibodies against SARS-CoV-2. Apart from natural immune responses, vaccination against SARS-CoV-2 turned out to be very effective and much safer than naturally acquired immunity. Nevertheless, besides unwanted side effects of the currently available vector and mRNA preparations, concerns remain whether these vaccines will be strong enough to defeat the pandemic. Altogether, herein we discuss important questions, and try to give answers based on the current knowledge and preliminary data from our laboratories.
Collapse
|
38
|
Transdermal vaccination via 3D-printed microneedles induces potent humoral and cellular immunity. Proc Natl Acad Sci U S A 2021; 118:2102595118. [PMID: 34551974 PMCID: PMC8488660 DOI: 10.1073/pnas.2102595118] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 01/08/2023] Open
Abstract
Vaccination is an essential public health measure for infectious disease prevention. The exposure of the immune system to vaccine formulations with the appropriate kinetics is critical for inducing protective immunity. In this work, faceted microneedle arrays were designed and fabricated utilizing a three-dimensional (3D)-printing technique called continuous liquid interface production (CLIP). The faceted microneedle design resulted in increased surface area as compared with the smooth square pyramidal design, ultimately leading to enhanced surface coating of model vaccine components (ovalbumin and CpG). Utilizing fluorescent tags and live-animal imaging, we evaluated in vivo cargo retention and bioavailability in mice as a function of route of delivery. Compared with subcutaneous bolus injection of the soluble components, microneedle transdermal delivery not only resulted in enhanced cargo retention in the skin but also improved immune cell activation in the draining lymph nodes. Furthermore, the microneedle vaccine induced a potent humoral immune response, with higher total IgG (Immunoglobulin G) and a more balanced IgG1/IgG2a repertoire and achieved dose sparing. Furthermore, it elicited T cell responses as characterized by functional cytotoxic CD8+ T cells and CD4+ T cells secreting Th1 (T helper type 1)-cytokines. Taken together, CLIP 3D-printed microneedles coated with vaccine components provide a useful platform for a noninvasive, self-applicable vaccination.
Collapse
|
39
|
Grammatikos A, Donati M, Johnston SL, Gompels MM. Peripheral B Cell Deficiency and Predisposition to Viral Infections: The Paradigm of Immune Deficiencies. Front Immunol 2021; 12:731643. [PMID: 34527001 PMCID: PMC8435594 DOI: 10.3389/fimmu.2021.731643] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
In the era of COVID-19, understanding how our immune system responds to viral infections is more pertinent than ever. Immunodeficiencies with very low or absent B cells offer a valuable model to study the role of humoral immunity against these types of infection. This review looks at the available evidence on viral infections in patients with B cell alymphocytosis, in particular those with X-linked agammaglobulinemia (XLA), Good’s syndrome, post monoclonal-antibody therapy and certain patients with Common Variable Immune Deficiency (CVID). Viral infections are not as infrequent as previously thought in these conditions and individuals with very low circulating B cells seem to be predisposed to an adverse outcome. Particularly in the case of SARS-CoV2 infection, mounting evidence suggests that peripheral B cell alymphocytosis is linked to a poor prognosis.
Collapse
Affiliation(s)
- Alexandros Grammatikos
- Department of Immunology, Southmead Hospital, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| | - Matthew Donati
- Severn Infection Sciences and Public Health England National Infection Service South West, Department of Virology, Southmead Hospital, North Bristol NHS Trust, Bristol, United Kingdom
| | - Sarah L Johnston
- Department of Immunology, Southmead Hospital, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| | - Mark M Gompels
- Department of Immunology, Southmead Hospital, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| |
Collapse
|
40
|
Mahil SK, Bechman K, Raharja A, Domingo-Vila C, Baudry D, Brown MA, Cope AP, Dasandi T, Graham C, Lechmere T, Malim MH, Meynell F, Pollock E, Seow J, Sychowska K, Barker JN, Norton S, Galloway JB, Doores KJ, Tree TIM, Smith CH. The effect of methotrexate and targeted immunosuppression on humoral and cellular immune responses to the COVID-19 vaccine BNT162b2: a cohort study. THE LANCET. RHEUMATOLOGY 2021; 3:e627-e637. [PMID: 34258590 PMCID: PMC8266273 DOI: 10.1016/s2665-9913(21)00212-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Patients on therapeutic immunosuppressants for immune-mediated inflammatory diseases were excluded from COVID-19 vaccine trials. We therefore aimed to evaluate humoral and cellular immune responses to COVID-19 vaccine BNT162b2 (Pfizer-BioNTech) in patients taking methotrexate and commonly used targeted biological therapies, compared with healthy controls. Given the roll-out of extended interval vaccination programmes to maximise population coverage, we present findings after the first dose. METHODS In this cohort study, we recruited consecutive patients with a dermatologist-confirmed diagnosis of psoriasis who were receiving methotrexate or targeted biological monotherapy (tumour necrosis factor [TNF] inhibitors, interleukin [IL]-17 inhibitors, or IL-23 inhibitors) from a specialist psoriasis centre serving London and South East England. Consecutive volunteers without psoriasis and not receiving systemic immunosuppression who presented for vaccination at Guy's and St Thomas' NHS Foundation Trust (London, UK) were included as the healthy control cohort. All participants had to be eligible to receive the BNT162b2 vaccine. Immunogenicity was evaluated immediately before and on day 28 (±2 days) after vaccination. The primary outcomes were humoral immunity to the SARS-CoV-2 spike glycoprotein, defined as neutralising antibody responses to wild-type SARS-CoV-2, and spike-specific T-cell responses (including interferon-γ, IL-2, and IL-21) 28 days after vaccination. FINDINGS Between Jan 14 and April 4, 2021, 84 patients with psoriasis (17 on methotrexate, 27 on TNF inhibitors, 15 on IL-17 inhibitors, and 25 on IL-23 inhibitors) and 17 healthy controls were included. The study population had a median age of 43 years (IQR 31-52), with 56 (55%) males, 45 (45%) females, and 85 (84%) participants of White ethnicity. Seroconversion rates were lower in patients receiving immunosuppressants (60 [78%; 95% CI 67-87] of 77) than in controls (17 [100%; 80-100] of 17), with the lowest rate in those receiving methotrexate (seven [47%; 21-73] of 15). Neutralising activity against wild-type SARS-CoV-2 was significantly lower in patients receiving methotrexate (median 50% inhibitory dilution 129 [IQR 40-236]) than in controls (317 [213-487], p=0·0032), but was preserved in those receiving targeted biologics (269 [141-418]). Neutralising titres against the B.1.1.7 variant were similarly low in all participants. Cellular immune responses were induced in all groups, and were not attenuated in patients receiving methotrexate or targeted biologics compared with controls. INTERPRETATION Functional humoral immunity to a single dose of BNT162b2 is impaired by methotrexate but not by targeted biologics, whereas cellular responses are preserved. Seroconversion alone might not adequately reflect vaccine immunogenicity in individuals with immune-mediated inflammatory diseases receiving therapeutic immunosuppression. Real-world pharmacovigilance studies will determine how these findings reflect clinical effectiveness. FUNDING UK National Institute for Health Research.
Collapse
Affiliation(s)
- Satveer K Mahil
- St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Katie Bechman
- Centre for Rheumatic Diseases, King's College London, London, UK
| | - Antony Raharja
- St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Clara Domingo-Vila
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - David Baudry
- St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Matthew A Brown
- Centre for Rheumatic Diseases, King's College London, London, UK
| | - Andrew P Cope
- Centre for Rheumatic Diseases, King's College London, London, UK
| | - Tejus Dasandi
- St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Thomas Lechmere
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Freya Meynell
- St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Emily Pollock
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Jeffery Seow
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Kamila Sychowska
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Jonathan N Barker
- St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Sam Norton
- Psychology Department, Institute for Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - James B Galloway
- Centre for Rheumatic Diseases, King's College London, London, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Timothy I M Tree
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Catherine H Smith
- St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| |
Collapse
|
41
|
Volpatti LR, Wallace RP, Cao S, Raczy MM, Wang R, Gray LT, Alpar AT, Briquez PS, Mitrousis N, Marchell TM, Sasso MS, Nguyen M, Mansurov A, Budina E, Solanki A, Watkins EA, Schnorenberg MR, Tremain AC, Reda JW, Nicolaescu V, Furlong K, Dvorkin S, Yu SS, Manicassamy B, LaBelle JL, Tirrell MV, Randall G, Kwissa M, Swartz MA, Hubbell JA. Polymersomes Decorated with the SARS-CoV-2 Spike Protein Receptor-Binding Domain Elicit Robust Humoral and Cellular Immunity. ACS CENTRAL SCIENCE 2021; 7:1368-1380. [PMID: 34466656 PMCID: PMC8315245 DOI: 10.1021/acscentsci.1c00596] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 05/04/2023]
Abstract
The COVID-19 pandemic underscores the need for rapid, safe, and effective vaccines. In contrast to some traditional vaccines, nanoparticle-based subunit vaccines are particularly efficient in trafficking antigens to lymph nodes, where they induce potent immune cell activation. Here, we developed a strategy to decorate the surface of oxidation-sensitive polymersomes with multiple copies of the SARS-CoV-2 spike protein receptor-binding domain (RBD) to mimic the physical form of a virus particle. We evaluated the vaccination efficacy of these surface-decorated polymersomes (RBDsurf) in mice compared to RBD-encapsulated polymersomes (RBDencap) and unformulated RBD (RBDfree), using monophosphoryl-lipid-A-encapsulated polymersomes (MPLA PS) as an adjuvant. While all three groups produced high titers of RBD-specific IgG, only RBDsurf elicited a neutralizing antibody response to SARS-CoV-2 comparable to that of human convalescent plasma. Moreover, RBDsurf was the only group to significantly increase the proportion of RBD-specific germinal center B cells in the vaccination-site draining lymph nodes. Both RBDsurf and RBDencap drove similarly robust CD4+ and CD8+ T cell responses that produced multiple Th1-type cytokines. We conclude that a multivalent surface display of spike RBD on polymersomes promotes a potent neutralizing antibody response to SARS-CoV-2, while both antigen formulations promote robust T cell immunity.
Collapse
Affiliation(s)
- Lisa R Volpatti
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Rachel P Wallace
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Shijie Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Michal M Raczy
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Ruyi Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Laura T Gray
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Aaron T Alpar
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Priscilla S Briquez
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Nikolaos Mitrousis
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Tiffany M Marchell
- Committee on Immunology, University of Chicago, Chicago, Illinois 60637, United States
| | - Maria Stella Sasso
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Mindy Nguyen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Aslan Mansurov
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Erica Budina
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Ani Solanki
- Animal Resources Center, University of Chicago, Chicago, Illinois 60637, United States
| | - Elyse A Watkins
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Mathew R Schnorenberg
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Andrew C Tremain
- Committee on Immunology, University of Chicago, Chicago, Illinois 60637, United States
| | - Joseph W Reda
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Vlad Nicolaescu
- Department of Microbiology, Howard T. Ricketts Laboratory, University of Chicago, Chicago, Illinois 60637, United States
| | - Kevin Furlong
- Department of Microbiology, Howard T. Ricketts Laboratory, University of Chicago, Chicago, Illinois 60637, United States
| | - Steve Dvorkin
- Department of Microbiology, Howard T. Ricketts Laboratory, University of Chicago, Chicago, Illinois 60637, United States
| | - Shann S Yu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa 52242, United States
| | - James L LaBelle
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, Illinois 60637, United States
| | - Matthew V Tirrell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Glenn Randall
- Department of Microbiology, Howard T. Ricketts Laboratory, University of Chicago, Chicago, Illinois 60637, United States
| | - Marcin Kwissa
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Melody A Swartz
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Committee on Immunology, University of Chicago, Chicago, Illinois 60637, United States
- Ben May Department of Cancer Research, University of Chicago, Chicago, Illinois 60637, United States
- Committee on Cancer Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Committee on Immunology, University of Chicago, Chicago, Illinois 60637, United States
- Committee on Cancer Biology, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
42
|
Stadtmauer EA, Sullivan KM, El Idrissi M, Salaun B, Alonso Alonso A, Andreadis C, Anttila VJ, Bloor AJ, Broady R, Cellini C, Cuneo A, Dagnew AF, Di Paolo E, Eom H, González-Rodríguez AP, Grigg A, Guenther A, Heineman TC, Jarque I, Kwak JY, Lucchesi A, Oostvogels L, Polo Zarzuela M, Schuind AE, Shea TC, Sinisalo UM, Vural F, Yáñez San Segundo L, Zachée P, Bastidas A. Adjuvanted recombinant zoster vaccine in adult autologous stem cell transplant recipients: polyfunctional immune responses and lessons for clinical practice. Hum Vaccin Immunother 2021; 17:4144-4154. [PMID: 34406911 PMCID: PMC8828160 DOI: 10.1080/21645515.2021.1953346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Immunocompromised individuals, particularly autologous hematopoietic stem cell transplant (auHSCT) recipients, are at high risk for herpes zoster (HZ). We provide an in-depth description of humoral and cell-mediated immune (CMI) responses by age (protocol-defined) or underlying disease (post-hoc) as well as efficacy by underlying disease (post-hoc) of the adjuvanted recombinant zoster vaccine (RZV) in a randomized observer-blind phase III trial (ZOE-HSCT, NCT01610414). 1846 adult auHSCT recipients were randomized to receive a first dose of either RZV or placebo 50–70 days post-auHSCT, followed by the second dose at 1–2 months (M) later. In cohorts of 114–1721 participants, at 1 M post-second vaccine dose: Anti-gE antibody geometric mean concentrations (GMCs) and median gE-specific CD4[2+] T-cell frequencies (CD4 T cells expressing ≥2 of four assessed activation markers) were similar between 18–49 and ≥50-year-olds. Despite lower anti-gE antibody GMCs in non-Hodgkin B-cell lymphoma (NHBCL) patients, CD4[2+] T-cell frequencies were similar between NHBCL and other underlying diseases. The proportion of polyfunctional CD4 T cells increased over time, accounting for 79.6% of gE-specific CD4 T cells at 24 M post-dose two. Vaccine efficacy against HZ ranged between 42.5% and 82.5% across underlying diseases and was statistically significant in NHBCL and multiple myeloma patients. In conclusion, two RZV doses administered early post-auHSCT induced robust, persistent, and polyfunctional gE-specific immune responses. Efficacy against HZ was also high in NHBCL patients despite the lower humoral response.
What is the context?
After haematopoietic stem cell transplantation, patients have impaired immunity from conditioning chemotherapy regimens, often exacerbated by underlying diseases, putting them at high risk of developing herpes zoster. In this population, antiviral prophylaxis is the current standard of care to reduce herpes zoster risk. Vaccination provides an additional means to prevent herpes zoster. Live-attenuated vaccines are generally contraindicated in immunocompromised patients. A non-live, adjuvanted recombinant zoster vaccine (RZV, Shingrix, GSK), has been approved for use in adults ≥50 years of age in the European Union, United States, Canada, Australia, Japan, and China. This vaccine is highly efficacious at preventing herpes zoster in adults over 50 years of age, as demonstrated in large, placebo-controlled randomised trials. Importantly, Shingrix use is not contraindicated in immunocompromised conditions, and was found to be highly efficacious in adults who had recently undergone autologous haematopoietic stem cell transplant.
What is new?
In autologous haematopoietic stem cell transplant recipients in whom Shingrix has demonstrated efficacy, two doses elicited high and persistent immune responses. Date presented here further support our understanding of the impact of specific factors such as age or underlying diseases on the vaccine’s effect in the population studied, as well as the characteristics of the elicited cell-mediated immune responses.
What is the impact?
These results indicate that Shingrix, given shortly after haematopoietic stem cell transplant, can induce robust immune responses and reduce the risk of herpes zoster, even in individuals with immunosuppression due to underlying disease and/or use of immunosuppressive therapies, regardless of age or underlying disease.
Collapse
Affiliation(s)
| | - Keith M Sullivan
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | - Veli-Jukka Anttila
- Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Adrian Jc Bloor
- Haematology and Transplant Unit, The Christie NHS Foundation Trust, Manchester, UK
| | | | - Claudia Cellini
- U.O. di Ematologia, Ospedale Santa Maria Delle Croci, Ravenna, Italy
| | - Antonio Cuneo
- Unità Operativa di Ematologia, Azienda Osp. Universitaria Arcispedale S. Anna, Cona, Italy
| | | | | | - HyeonSeok Eom
- National Cancer Center, Goyang-si, Republic of Korea
| | | | - Andrew Grigg
- Department of Clinical Haematology, Austin Health, Heidelberg, Australia
| | | | | | - Isidro Jarque
- Hematology Department & CIBERONC, Instituto Carlos III, Hospital Universitario y Politécnico la fe, Valencia, Spain
| | - Jae-Yong Kwak
- Chonbuk National University Hospital, DukJin-Gu, Republic of Korea
| | - Alessandro Lucchesi
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | | | | | | - Thomas C Shea
- Division of Hematology and Medical Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ulla Marjatta Sinisalo
- Hematology Unit, Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Filiz Vural
- Ege University Medical Faculty Hospital, Izmir, Turkey
| | - Lucrecia Yáñez San Segundo
- Hematology Department, Hospital Universitario Marqués De Valdecilla-IDIVAL, University of Cantabria, Santander, Spain
| | - Pierre Zachée
- Hematologie - Oncologie, Ziekenhuisnetwerk Antwerpen - ZNA Stuivenberg & ZNA Middelheim, Antwerpen, Belgium
| | | |
Collapse
|
43
|
Chauveau L, Bridgeman A, Tan TK, Beveridge R, Frost JN, Rijal P, Pedroza‐Pacheco I, Partridge T, Gilbert‐Jaramillo J, Knight ML, Liu X, Russell RA, Borrow P, Drakesmith H, Townsend AR, Rehwinkel J. Inclusion of cGAMP within virus-like particle vaccines enhances their immunogenicity. EMBO Rep 2021; 22:e52447. [PMID: 34142428 PMCID: PMC8339669 DOI: 10.15252/embr.202152447] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/30/2023] Open
Abstract
Cyclic GMP-AMP (cGAMP) is an immunostimulatory molecule produced by cGAS that activates STING. cGAMP is an adjuvant when administered alongside antigens. cGAMP is also incorporated into enveloped virus particles during budding. Here, we investigate whether inclusion of cGAMP within viral vaccine vectors enhances their immunogenicity. We immunise mice with virus-like particles (VLPs) containing HIV-1 Gag and the vesicular stomatitis virus envelope glycoprotein G (VSV-G). cGAMP loading of VLPs augments CD4 and CD8 T-cell responses. It also increases VLP- and VSV-G-specific antibody titres in a STING-dependent manner and enhances virus neutralisation, accompanied by increased numbers of T follicular helper cells. Vaccination with cGAMP-loaded VLPs containing haemagglutinin induces high titres of influenza A virus neutralising antibodies and confers protection upon virus challenge. This requires cGAMP inclusion within VLPs and is achieved at markedly reduced cGAMP doses. Similarly, cGAMP loading of VLPs containing the SARS-CoV-2 Spike protein enhances Spike-specific antibody titres. cGAMP-loaded VLPs are thus an attractive platform for vaccination.
Collapse
Affiliation(s)
- Lise Chauveau
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Present address:
Institut de recherche en infectiologie de Montpellier (IRIM)CNRS UMR 9004MontpellierFrance
| | - Anne Bridgeman
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Tiong K Tan
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Ryan Beveridge
- MRC Molecular Hematology UnitMRC Weatherall Institute of Molecular MedicineJohn Radcliffe HospitalUniversity of OxfordOxfordUK
- Virus Screening FacilityMRC Weatherall Institute of Molecular MedicineJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Joe N Frost
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Pramila Rijal
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | | | - Thomas Partridge
- Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUK
| | - Javier Gilbert‐Jaramillo
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Michael L Knight
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Xu Liu
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC), Institute of Laboratory Animal SciencePeking Union Medicine CollegeChinese Academy of Medical SciencesBeijingChina
| | | | - Persephone Borrow
- Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUK
| | - Hal Drakesmith
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Alain R Townsend
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
44
|
Haseda Y, Munakata L, Kimura C, Kinugasa-Katayama Y, Mori Y, Suzuki R, Aoshi T. Development of combination adjuvant for efficient T cell and antibody response induction against protein antigen. PLoS One 2021; 16:e0254628. [PMID: 34339430 PMCID: PMC8328330 DOI: 10.1371/journal.pone.0254628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/01/2021] [Indexed: 01/01/2023] Open
Abstract
Most current clinical vaccines work primarily by inducing the production of neutralizing antibodies against pathogens. Vaccine adjuvants that efficiently induce T cell responses to protein antigens need to be developed. In this study, we developed a new combination adjuvant consisting of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP), D35, and an aluminum salt. Among the various combinations tested, the DOTAP/D35/aluminum salt adjuvant induced strong T cell and antibody responses against the model protein antigen with a single immunization. Adjuvant component and model antigen interaction studies in vitro also revealed that the strong mutual interactions among protein antigens and other components were one of the important factors for this efficient immune induction by the novel combination adjuvant. In addition, in vivo imaging of the antigen distribution suggested that the DOTAP component in the combination adjuvant formulation elicited transient antigen accumulation at the draining lymph nodes, possibly by antigen uptake DC migration. These results indicate the potential of the new combination adjuvant as a promising vaccine adjuvant candidate to treat infectious diseases and cancers.
Collapse
Affiliation(s)
- Yasunari Haseda
- Vaccine Dynamics Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Lisa Munakata
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Chiyo Kimura
- Department of Cellular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yumi Kinugasa-Katayama
- Department of Cellular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Taiki Aoshi
- Department of Cellular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
45
|
Del Valle A, Acosta-Rivero N, Laborde RJ, Cruz-Leal Y, Cabezas S, Luzardo MC, Alvarez C, Labrada M, Rodríguez A, Rodríguez GL, Raymond J, Nogueira CV, Grubaugh D, Fernández LE, Higgins D, Lanio ME. Sticholysin II shows similar immunostimulatory properties to LLO stimulating dendritic cells and MHC-I restricted T cell responses of heterologous antigen. Toxicon 2021; 200:38-47. [PMID: 34237340 DOI: 10.1016/j.toxicon.2021.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Induction of CD8+ T cell responses against tumor cells and intracellular pathogens is an important goal of modern vaccinology. One approach of translational interest is the use of liposomes encapsulating pore-forming proteins (PFPs), such as Listeriolysin O (LLO), which has shown efficacy at priming strong and sustained CD8+ T cell responses. Recently, we have demonstrated that Sticholysin II (StII), a PFP from the sea anemone Stichodactyla helianthus, co-encapsulated into liposomes with ovalbumin (OVA) was able to stimulate, antigen presenting cells, antigen-specific CD8+ T cells and anti-tumor activity in mice. In the present study, we aimed to compare StII and LLO in terms of their abilities to stimulate dendritic cells and to induce major histocompatibility complex (MHC) class I restricted T cell responses against OVA. Interestingly, StII exhibited similar abilities to LLO in vitro of inducing dendritic cells maturation, as measured by increased expression of CD40, CD80, CD86 and MHC-class II molecules, and of stimulating OVA cross-presentation to a CD8+ T cell line. Remarkably, using an ex vivo Enzyme-Linked ImmunoSpot Assay (ELISPOT) to monitor gamma interferon (INF-γ) producing effector memory CD8+ T cells, liposomal formulations containing either StII or LLO induced comparable frequencies of OVA-specific INF-γ producing CD8+ T cells in mice that were sustained in time. However, StII-containing liposomes stimulated antigen-specific memory CD8+ T cells with a higher potential to secrete IFN-γ than liposomes encapsulating LLO. This StII immunostimulatory property further supports its use for the rational design of T cell vaccines against cancers and intracellular pathogens. In summary, this study indicates that StII has immunostimulatory properties similar to LLO, despite being evolutionarily distant PFPs.
Collapse
Affiliation(s)
- A Del Valle
- Center for Protein Studies, Faculty of Biology, Havana University (UH) and Lab UH-CIM, Cuba
| | - N Acosta-Rivero
- Center for Protein Studies, Faculty of Biology, Havana University (UH) and Lab UH-CIM, Cuba.
| | - R J Laborde
- Center for Protein Studies, Faculty of Biology, Havana University (UH) and Lab UH-CIM, Cuba
| | - Y Cruz-Leal
- Center for Protein Studies, Faculty of Biology, Havana University (UH) and Lab UH-CIM, Cuba
| | - S Cabezas
- Center for Protein Studies, Faculty of Biology, Havana University (UH) and Lab UH-CIM, Cuba
| | - M C Luzardo
- Center for Protein Studies, Faculty of Biology, Havana University (UH) and Lab UH-CIM, Cuba
| | - C Alvarez
- Center for Protein Studies, Faculty of Biology, Havana University (UH) and Lab UH-CIM, Cuba
| | - M Labrada
- Center of Molecular Immunology (CIM), Playa, La Habana, Cuba
| | - A Rodríguez
- Center of Molecular Immunology (CIM), Playa, La Habana, Cuba
| | - G L Rodríguez
- Center of Molecular Immunology (CIM), Playa, La Habana, Cuba
| | - J Raymond
- Center of Molecular Immunology (CIM), Playa, La Habana, Cuba
| | | | - D Grubaugh
- Harvard Medical School, Harvard University, USA
| | - L E Fernández
- Center of Molecular Immunology (CIM), Playa, La Habana, Cuba
| | - D Higgins
- Harvard Medical School, Harvard University, USA
| | - M E Lanio
- Center for Protein Studies, Faculty of Biology, Havana University (UH) and Lab UH-CIM, Cuba.
| |
Collapse
|
46
|
Mathot E, Liberman K, Cao Dinh H, Njemini R, Bautmans I. Systematic review on the effects of physical exercise on cellular immunosenescence-related markers - An update. Exp Gerontol 2021; 149:111318. [PMID: 33794319 DOI: 10.1016/j.exger.2021.111318] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
Immunosenescence is a remodeling of the immune system occurring with aging that leads to an increased susceptibility to auto-immunity, infections and reduced vaccination response. A growing consensus supports the view that physical exercise may counteract immunosenescence and improve the immune response. Unfortunately, evidence regarding the effects of exercise on markers of cellular immunosenescence lacked uniformity at the time of an extensive literature review in 2016. Moreover, exercise-induced effects in older adults were underrepresented compared to young adults or completely lacking, such as for senescent T-cells and apoptosis of T-lymphocytes. The aim of this systematic literature study was to collect and appraise newly available data regarding exercise-induced changes on immunosenescence-related markers of immune cells and compare this against data that was already available in 2016. Systematic reviewing of newly available data in the field of exercise immunology provides additional evidence for the effect of exercise on immunosenescence-related cellular markers. Importantly, this review provides evidence for the effect of long-term exercise on senescent T-lymphocytes in older adults. Additionally, newly retrieved evidence shows an acute exercise-induced mobilization of naïve and memory cells in older adults. In general, data regarding long-term exercise-induced effects in older adults remain scarce. Noteworthy was the high number of articles describing exercise-induced effects on regulatory T-cells. However exercise-induced effects on this cell type are still inconclusive as some articles reported an exercise-induced up- or downregulation, while others reported no effects at all. Numerous studies on Natural Killer cell counts did not provide uniformity among data that was already available. Recent data regarding dendritic cells mostly described an increase after exercise. Overall, our literature update highlights the major influence of the type and intensity of exercise on immunosenescence-related markers, especially in older adults.
Collapse
Affiliation(s)
- Emelyn Mathot
- Frailty in Ageing Research group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Keliane Liberman
- Frailty in Ageing Research group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Hung Cao Dinh
- Frailty in Ageing Research group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Internal Medicine Department, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Rose Njemini
- Frailty in Ageing Research group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ivan Bautmans
- Frailty in Ageing Research group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Geriatrics Department, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| |
Collapse
|
47
|
The Bone Marrow as Sanctuary for Plasma Cells and Memory T-Cells: Implications for Adaptive Immunity and Vaccinology. Cells 2021; 10:cells10061508. [PMID: 34203839 PMCID: PMC8232593 DOI: 10.3390/cells10061508] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
The bone marrow (BM) is key to protective immunological memory because it harbors a major fraction of the body’s plasma cells, memory CD4+ and memory CD8+ T-cells. Despite its paramount significance for the human immune system, many aspects of how the BM enables decade-long immunity against pathogens are still poorly understood. In this review, we discuss the relationship between BM survival niches and long-lasting humoral immunity, how intrinsic and extrinsic factors define memory cell longevity and show that the BM is also capable of adopting many responsibilities of a secondary lymphoid organ. Additionally, with more and more data on the differentiation and maintenance of memory T-cells and plasma cells upon vaccination in humans being reported, we discuss what factors determine the establishment of long-lasting immunological memory in the BM and what we can learn for vaccination technologies and antigen design. Finally, using these insights, we touch on how this holistic understanding of the BM is necessary for the development of modern and efficient vaccines against the pandemic SARS-CoV-2.
Collapse
|
48
|
Han JM, Song HY, Seo HS, Byun EH, Lim ST, Kim WS, Byun EB. Immunoregulatory properties of a crude extraction fraction rich in polysaccharide from Chrysanthemum zawadskii Herbich var. latilobum and its potential role as a vaccine adjuvant. Int Immunopharmacol 2021; 95:107513. [PMID: 33756223 DOI: 10.1016/j.intimp.2021.107513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/28/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023]
Abstract
The objective of the current study was to demonstrate the immunostimulatory effects of a polysaccharide isolated from Chrysanthemum zawadskii Herbich var. latilobum leaves (CP) and evaluate its potential as a vaccine adjuvant. Results showed that CP induced maturation of the dendritic cells (DCs). In addition, CP-treated DCs activated naïve T cells to polarized CD4+ and CD8+ T cells and substantially induced the production of IFN-γ and IL-2 in vitro. Furthermore, CP initiated the maturation of DCs via the activation of MAPK and NF-κB signaling pathways. Interestingly, systemic administration of CP-treated DCs pulsed with ovalbumin (OVA) peptides significantly enhanced the immune response in vivo, which included the generation of antigen (OVA)-specific polyfunctional T cells, increased cytotoxic T lymphocyte activity, induction of Th1-mediated humoral immunity, and suppression of tumor growth. Taken together, our study highlighted the immunoregulatory activity of CP as well as its potential as a candidate vaccine adjuvant.
Collapse
Affiliation(s)
- Jeong Moo Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea; Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Ha-Yeon Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea; Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Ho Seong Seo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Eui-Hong Byun
- Department of Food Science and Technology, Kongju National University, Yesan 340-800, Republic of Korea
| | - Seung-Taik Lim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Woo Sik Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Eui-Baek Byun
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea.
| |
Collapse
|
49
|
CD4 + T Cells Cross-Reactive with Dengue and Zika Viruses Protect against Zika Virus Infection. Cell Rep 2021; 31:107566. [PMID: 32348763 PMCID: PMC7261136 DOI: 10.1016/j.celrep.2020.107566] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 02/06/2020] [Accepted: 04/02/2020] [Indexed: 12/31/2022] Open
Abstract
The underlying mechanisms by which prior immunity to dengue virus (DENV) affords cross-protection against the related flavivirus Zika virus (ZIKV) are poorly understood. Here, we examine the ability of DENV/ZIKV-cross-reactive CD4+ T cells to protect against versus exacerbate ZIKV infection by using a histocompatibility leukocyte antigen (HLA)-DRB1*0101 transgenic, interferon α/β receptor-deficient mouse model that supports robust DENV and ZIKV replication. By mapping the HLA-DRB1*0101-restricted T cell response, we identify DENV/ZIKV-cross-reactive CD4+ T cell epitopes that stimulate interferon gamma (IFNγ) and/or tumor necrosis factor (TNF) production. Vaccination of naive HLA-DRB1*0101 transgenic mice with these peptides induces a CD4+ T cell response sufficient to reduce tissue viral burden following ZIKV infection. Notably, this protective response requires IFNγ and/or TNF secretion but not anti-ZIKV immunoglobulin G (IgG) production. Thus, DENV/ZIKV-cross-reactive CD4+ T cells producing canonical Th1 cytokines can suppress ZIKV replication in an antibody-independent manner. These results may have important implications for increasing the efficacy and safety of DENV/ZIKV vaccines and for developing pan-flavivirus vaccines.
Collapse
|
50
|
Zhao J, Schank M, Wang L, Li Z, Nguyen LN, Dang X, Cao D, Khanal S, Nguyen LNT, Thakuri BKC, Ogbu SC, Lu Z, Wu XY, Morrison ZD, Gazzar ME, Liu Y, Zhang J, Ning S, Moorman JP, Yao ZQ. Mitochondrial Functions Are Compromised in CD4 T Cells From ART-Controlled PLHIV. Front Immunol 2021; 12:658420. [PMID: 34017335 PMCID: PMC8129510 DOI: 10.3389/fimmu.2021.658420] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/15/2021] [Indexed: 01/05/2023] Open
Abstract
The hallmark of HIV/AIDS is a gradual depletion of CD4 T cells. Despite effective control by antiretroviral therapy (ART), a significant subgroup of people living with HIV (PLHIV) fails to achieve complete immune reconstitution, deemed as immune non-responders (INRs). The mechanisms underlying incomplete CD4 T cell recovery in PLHIV remain unclear. In this study, CD4 T cells from PLHIV were phenotyped and functionally characterized, focusing on their mitochondrial functions. The results show that while total CD4 T cells are diminished, cycling cells are expanded in PLHIV, especially in INRs. HIV-INR CD4 T cells are more activated, displaying exhausted and senescent phenotypes with compromised mitochondrial functions. Transcriptional profiling and flow cytometry analysis showed remarkable repression of mitochondrial transcription factor A (mtTFA) in CD4 T cells from PLHIV, leading to abnormal mitochondrial and T cell homeostasis. These results demonstrate a sequential cellular paradigm of T cell over-activation, proliferation, exhaustion, senescence, apoptosis, and depletion, which correlates with compromised mitochondrial functions. Therefore, reconstituting the mtTFA pathway may provide an adjunctive immunological approach to revitalizing CD4 T cells in ART-treated PLHIV, especially in INRs.
Collapse
Affiliation(s)
- Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Zhengke Li
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Lam Nhat Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Xindi Dang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Dechao Cao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Sushant Khanal
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Bal Krishna Chand Thakuri
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Stella C Ogbu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Zeyuan Lu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Xiao Y Wu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Zheng D Morrison
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Ying Liu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, United States
| | - Jinyu Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Shunbin Ning
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Jonathan P Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States
| | - Zhi Q Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States
| |
Collapse
|