1
|
Covre LP, Fantecelle CH, Queiroz AM, Fardin JM, Miranda PH, Henson S, da Fonseca-Martins AM, de Matos Guedes HL, Mosser D, Falqueto A, Akbar A, Gomes DCO. NKG2C+CD57+ natural killer cells with senescent features are induced during cutaneous leishmaniasis and accumulate in patients with lesional healing impairment. Clin Exp Immunol 2024; 217:279-290. [PMID: 38700066 PMCID: PMC11310703 DOI: 10.1093/cei/uxae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/30/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024] Open
Abstract
Natural killer (NK) cells include different subsets with diverse effector capacities that are poorly understood in the context of parasitic diseases. Here, we investigated inhibitory and activating receptor expression on NK cells in patients with cutaneous leishmaniasis (CL) and explored their phenotypic and functional heterogeneity based on CD57 and NKG2C expression. The expression of CD57 identified NK cells that accumulated in CL patients and exhibited features of senescence. The CD57+ cells exhibited heightened levels of the activating receptor NKG2C and diminished expression of the inhibitory receptor NKG2A. RNA sequencing analyses based on NKG2C transcriptome have revealed two distinct profiles among CL patients associated with cytotoxic and functional genes. The CD57+NKG2C+ subset accumulated in the blood of patients and presented conspicuous features of senescence, including the expression of markers such as p16, yH2ax, and p38, as well as reduced proliferative capacity. In addition, they positively correlated with the number of days until lesion resolution. This study provides a broad understanding of the NK cell biology during Leishmania infection and reinforces the role of senescent cells in the adverse clinical outcomes of CL.
Collapse
Affiliation(s)
- Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Division of Medicine, University College London, London, UK
| | | | | | - Julia Miranda Fardin
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | | | - Sian Henson
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Herbert Leonel de Matos Guedes
- Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - David Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Aloisio Falqueto
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Arne Akbar
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Claudio Oliveira Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Division of Medicine, University College London, London, UK
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Brazil
| |
Collapse
|
2
|
Elebo N, Abdel-Shafy EA, Omoshoro-Jones JAO, Nsingwane Z, Hussein AAA, Smith M, Candy G, Cacciatore S, Fru P, Nweke EE. Comparative immune profiling of pancreatic ductal adenocarcinoma progression among South African patients. BMC Cancer 2024; 24:809. [PMID: 38973003 PMCID: PMC11229237 DOI: 10.1186/s12885-024-12595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/02/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Pancreatic Ductal Adenocarcinoma (PDAC) is an aggressive cancer characterized by an immunosuppressive microenvironment. Patients from specific ethnicities and population groups have poorer prognoses than others. Therefore, a better understanding of the immune landscape in such groups is necessary for disease elucidation, predicting patient outcomes and therapeutic targeting. This study investigated the expression of circulating key immune cell markers in South African PDAC patients of African ancestry. METHODS Blood samples were obtained from a total of 6 healthy volunteers (HC), 6 Chronic Pancreatitis (CP) and 34 PDAC patients consisting of 22 resectable (RPC), 8 locally advanced (LAPC) and 4 metastatic (MPC). Real-time Quantitative Polymerase Chain reactions (RT-qPCR), Metabolomics, Enzyme-Linked Immunosorbent Assay (ELISA), Reactive Oxygen Species (ROS), and Immunophenotyping assays were conducted. Statistical analysis was conducted in R (v 4.3.2). Additional analysis of single-cell RNA data from 20 patients (16 PDAC and 4 controls) was conducted to interrogate the distribution of T-cell and Natural Killer cell populations. RESULTS Granulocyte and neutrophil levels were significantly elevated while lymphocytes decreased with PDAC severity. The total percentages of CD3 T-cell subpopulations (helper and double negative T-cells) decreased when compared to HC. Although both NK (p = 0.014) and NKT (p < 0.001) cell levels increased as the disease progressed, their subsets: NK CD56dimCD16- (p = 0.024) and NKTs CD56+ (p = 0.008) cell levels reduced significantly. Of note is the negative association of NK CD56dimCD16- (p < 0.001) cell levels with survival time. The gene expression analyses showed no statistically significant correlation when comparing the PDAC groups with the controls. The inflammatory status of PDAC was assessed by ROS levels of serum which were elevated in CP (p = 0.025), (RPC (p = 0.003) and LAPC (p = 0.008)) while no significant change was observed in MPC, compared to the HC group. ROS was shown to be positively correlated with GlycA (R = 0.45, p = 0.0096). Single-cell analyses showed a significant difference in the ratio of NKT cells per total cell counts in LAPC (p < 0.001) and MPC (p < 0.001) groups compared with HC, confirming observations in our sample group. CONCLUSION The expression of these immune cell markers observed in this pilot study provides insight into their potential roles in tumour progression in the patient group and suggests their potential utility in the development of immunotherapeutic strategies.
Collapse
Affiliation(s)
- Nnenna Elebo
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology, Observatory, Cape Town, 7925, South Africa
| | - Ebtesam A Abdel-Shafy
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology, Observatory, Cape Town, 7925, South Africa
- National Research Centre, Cairo, Egypt
| | - Jones A O Omoshoro-Jones
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa
- Hepatopancreatobiliary Unit, Department of Surgery, Chris Hani-Baragwanath Academic Hospital, Soweto Johannesburg, South Africa
| | - Zanele Nsingwane
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa
| | - Ahmed A A Hussein
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology, Observatory, Cape Town, 7925, South Africa
- Theodore Bilharz Research Institute, Giza, Egypt
| | - Martin Smith
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa
- Hepatopancreatobiliary Unit, Department of Surgery, Chris Hani-Baragwanath Academic Hospital, Soweto Johannesburg, South Africa
| | - Geoffrey Candy
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa
| | - Stefano Cacciatore
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology, Observatory, Cape Town, 7925, South Africa
| | - Pascaline Fru
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa.
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida, Roodepoort, South Africa.
| |
Collapse
|
3
|
Larbi A. From Genesis to Old Age: Exploring the Immune System One Cell at a Time with Flow Cytometry. Biomedicines 2024; 12:1469. [PMID: 39062042 PMCID: PMC11275137 DOI: 10.3390/biomedicines12071469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The immune system is a highly complex and tightly regulated system that plays a crucial role in protecting the body against external threats, such as pathogens, and internal abnormalities, like cancer cells. It undergoes development during fetal stages and continuously learns from each encounter with pathogens, allowing it to develop immunological memory and provide a wide range of immune protection. Over time, after numerous encounters and years of functioning, the immune system can begin to show signs of erosion, which is commonly named immunosenescence. In this review, we aim to explore how the immune system responds to initial encounters with antigens and how it handles persistent stimulations throughout a person's lifetime. Our understanding of the immune system has greatly benefited from advanced technologies like flow cytometry. In this context, we will discuss the valuable contribution of flow cytometry in enhancing our knowledge of the immune system behavior in aging, with a specific focus on T-cells. Moreover, we will expand our discussion to the flow cytometry-based assessment of extracellular vesicles, a recently discovered communication channel in biology, and their implications for immune system functioning.
Collapse
Affiliation(s)
- Anis Larbi
- Medical and Scientific Affairs, Beckman Coulter Life Sciences, 22 Avenue des Nations, 93420 Villepinte, France;
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
4
|
Rallón N, Jiménez-Carretero D, Restrepo C, Ligos JM, Valentín-Quiroga J, Mahillo I, Cabello A, López-Collazo E, Sánchez-Cabo F, Górgolas M, Estrada V, Benito JM. A specific natural killer cells phenotypic signature associated to long term elite control of HIV infection. J Med Virol 2024; 96:e29646. [PMID: 38699988 DOI: 10.1002/jmv.29646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Elite controllers (ECs) are an exceptional group of people living with HIV (PLWH) that control HIV replication without therapy. Among the mechanisms involved in this ability, natural killer (NK)-cells have recently gained much attention. We performed an in-deep phenotypic analysis of NK-cells to search for surrogate markers associated with the long term spontaneous control of HIV. Forty-seven PLWH (22 long-term EC [PLWH-long-term elite controllers (LTECs)], 15 noncontrollers receiving antiretroviral treatment [ART] [PLWH-onART], and 10 noncontrollers cART-naïve [PLWH-offART]), and 20 uninfected controls were included. NK-cells homeostasis was analyzed by spectral flow cytometry using a panel of 15 different markers. Data were analyzed using FCSExpress and R software for unsupervised multidimensional analysis. Six different subsets of NK-cells were defined on the basis of CD16 and CD56 expression, and the multidimensional analysis revealed the existence of 68 different NK-cells clusters based on the expression levels of the 15 different markers. PLWH-offART presented the highest disturbance of NK-cells homeostasis and this was not completely restored by long-term ART. Interestingly, long term spontaneous control of HIV (PLWH-LTEC group) was associated with a specific profile of NK-cells homeostasis disturbance, characterized by an increase of CD16dimCD56dim subset when compared to uninfected controls (UC) group and also to offART and onART groups (p < 0.0001 for the global comparison), an increase of clusters C16 and C26 when compared to UC and onART groups (adjusted p-value < 0.05 for both comparisons), and a decrease of clusters C10 and C20 when compared to all the other groups (adjusted p-value < 0.05 for all comparisons). These findings may provide clues to elucidate markers of innate immunity with a relevant role in the long-term control of HIV.
Collapse
Affiliation(s)
- Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Daniel Jiménez-Carretero
- Unidad de Bioinformática, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Clara Restrepo
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | | | | | - Ignacio Mahillo
- Department of Statistics, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Alfonso Cabello
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Eduardo López-Collazo
- Grupo de respuesta inmune innata, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Unidad de Bioinformática, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Górgolas
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | | | - José M Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| |
Collapse
|
5
|
Creegan M, Degler J, Paquin-Proulx D, Eller MA, Machmach K. OMIP-098: A 26 parameter, 24 color flow cytometry panel for human memory NK cell phenotyping. Cytometry A 2023; 103:941-946. [PMID: 37807668 PMCID: PMC10872854 DOI: 10.1002/cyto.a.24802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
This 26-parameter flow cytometry panel has been developed and optimized to analyze NK cell phenotype, using cryopreserved peripheral blood mononuclear cells (PBMCs) from people living with and without human immunodeficiency virus (PLWH, PWOH). Our panel is designed for the analysis of several parameters of total NK cells and memory NK cell subsets including markers of maturation, activation, and proliferation, as well as activating and inhibitory receptors. Other tissues have not been tested (Table 1 ).
Collapse
Affiliation(s)
- Matthew Creegan
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| | - Justin Degler
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| | - Dominic Paquin-Proulx
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| | - Michael A. Eller
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
- Present address: Vaccine Research Program, Division of AIDS (DAIDS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), MD, USA
| | - Kawthar Machmach
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| |
Collapse
|
6
|
Claus M, Pieris N, Urlaub D, Bröde P, Schaaf B, Durak D, Renken F, Watzl C. Early expansion of activated adaptive but also exhausted NK cells during acute severe SARS-CoV-2 infection. Front Cell Infect Microbiol 2023; 13:1266790. [PMID: 37712059 PMCID: PMC10499356 DOI: 10.3389/fcimb.2023.1266790] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
The analysis of immunological parameters during the course of a SARS-CoV-2 infection is of great importance, both to identify diagnostic markers for the risk of a severe course of COVID-19, and to better understand the role of the immune system during the infection. By using multicolor flow cytometry we compared the phenotype of Natural Killer (NK) cells from hospitalized COVID-19 patients during early SARS-CoV-2 infection with samples from recovered and SARS-CoV-2 naïve subjects. Unsupervised high-dimensional analysis of 28-color flow cytometric data revealed a strong enrichment of NKG2C expressing NK cells in response to the acute viral infection. In addition, we found an overrepresentation of highly activated NK cell subsets with an exhausted phenotype. Moreover, our data show long-lasting phenotypic changes within the NK cell compartment that did not completely reverse up to 2 months after recovery. This demonstrates that NK cells are involved in the early innate immune response against SARS-CoV-2.
Collapse
Affiliation(s)
- Maren Claus
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Naomi Pieris
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Doris Urlaub
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Peter Bröde
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Bernhard Schaaf
- Department of Respiratory Medicine and Infectious Diseases, Klinikum Dortmund, Dortmund, Germany
- Faculty of Health, University Witten/Herdecke, Herdecke, Germany
| | - Deniz Durak
- Dortmund Health Department, Dortmund, Germany
| | | | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| |
Collapse
|
7
|
The Frequency and Function of NKG2C +CD57 + Adaptive NK Cells in Cytomagalovirus Co-Infected People Living with HIV Decline with Duration of Antiretroviral Therapy. Viruses 2023; 15:v15020323. [PMID: 36851537 PMCID: PMC9959045 DOI: 10.3390/v15020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Human cytomegalovirus (CMV) infection drives the expansion and differentiation of natural killer (NK) cells with adaptive-like features. We investigated whether age and time on antiretroviral therapy (ART) influenced adaptive NK cell frequency and functionality. Flow cytometry was used to evaluate the frequency of adaptive and conventional NK cells in 229 CMV+ individuals of whom 170 were people living with HIV (PLWH). The frequency of these NK cell populations producing CD107a, CCL4, IFN-γ or TNF-α was determined following a 6-h antibody dependent (AD) stimulation. Though ART duration and age were correlated, longer time on ART was associated with a reduced frequency of adaptive NK cells. In general, the frequency and functionality of NK cells following AD stimulation did not differ significantly between treated CMV+PLWH and CMV+HIV- persons, suggesting that HIV infection, per se, did not compromise AD NK cell function. AD activation of adaptive NK cells from CMV+PLWH induced lower frequencies of IFN-γ or TNF-α secreting cells in older persons, when compared with younger persons.
Collapse
|
8
|
Kristensen AB, Wragg KM, Vanderven HA, Lee WS, Silvers J, Kent HE, Grant MD, Kelleher AD, Juno JA, Kent SJ, Parsons MS. Phenotypic and functional characteristics of highly differentiated CD57+NKG2C+ NK cells in HIV-1-infected individuals. Clin Exp Immunol 2022; 210:163-174. [PMID: 36053502 PMCID: PMC9750827 DOI: 10.1093/cei/uxac082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/07/2022] [Accepted: 09/01/2022] [Indexed: 01/24/2023] Open
Abstract
Natural killer (NK) cells are important anti-viral effector cells. The function and phenotype of the NK cells that constitute an individual's NK cell repertoire can be influenced by ongoing or previous viral infections. Indeed, infection with human cytomegalovirus (HCMV) drives the expansion of a highly differentiated NK cell population characterized by expression of CD57 and the activating NKG2C receptor. This NK cell population has also been noted to occur in HIV-1-infected individuals. We evaluated the NK cells of HIV-1-infected and HIV-1-uninfected individuals to determine the relative frequency of highly differentiated CD57+NKG2C+ NK cells and characterize these cells for their receptor expression and responsiveness to diverse stimuli. Highly differentiated CD57+NKG2C+ NK cells occurred at higher frequencies in HCMV-infected donors relative to HCMV-uninfected donors and were dramatically expanded in HIV-1/HCMV co-infected donors. The expanded CD57+NKG2C+ NK cell population in HIV-1-infected donors remained stable following antiretroviral therapy. CD57+NKG2C+ NK cells derived from HIV-1-infected individuals were robustly activated by antibody-dependent stimuli that contained anti-HIV-1 antibodies or therapeutic anti-CD20 antibody, and these NK cells mediated cytolysis through NKG2C. Lastly, CD57+NKG2C+ NK cells from HIV-1-infected donors were characterized by reduced expression of the inhibitory NKG2A receptor. The abundance of highly functional CD57+NKG2C+ NK cells in HIV-1-infected individuals raises the possibility that these NK cells could play a role in HIV-1 pathogenesis or serve as effector cells for therapeutic/cure strategies.
Collapse
Affiliation(s)
- Anne B Kristensen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Kathleen M Wragg
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Hillary A Vanderven
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, Queensland, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Julie Silvers
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Helen E Kent
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Michael D Grant
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Anthony D Kelleher
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria, Australia
| | - Matthew S Parsons
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Romero-Martín L, Duran-Castells C, Olivella M, Rosás-Umbert M, Ruiz-Riol M, Sanchez J, Hartigan-O Connor D, Mothe B, Olvera À, Brander C. Disruption of the HLA-E/NKG2X axis is associated with uncontrolled HIV infections. Front Immunol 2022; 13:1027855. [PMID: 36466823 PMCID: PMC9716355 DOI: 10.3389/fimmu.2022.1027855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/18/2022] [Indexed: 09/28/2023] Open
Abstract
The contribution of the HLA-E/NKG2X axis in NK-mediated control of HIV infection remains unclear. We have studied the relationship between HLA-E expression and phenotypical as well as functional characteristics of NK cells, in the context of chronic HIV infection and in an in vitro model of acute infection. High viremia in HIV+ individuals was related to increased HLA-E expression, and changes in NK subpopulations, especially a reduction of the CD56bright as well as an increase in adaptive NK subpopulation. Uncontrolled HIV infection was also characterized by a reversion of the NKG2A/NKG2C expression ratio and a loss of positive and negative regulation of NK mediated by HLA-E. This was reflected in a lower cytotoxic, degranulation and cytokine production capacity, especially in CD56bright and adaptive NK. In line with these results, HLA-E expression showed a positive correlation with viral growth inhibition in an in vitro model of acute infection at day 7, which was lost after 14 days of culture. Using HLA-E expressing K562 cells, we determined that only one out of 11 described HIV-derived HLA-E epitopes increased HLA-E surface stability. In spite of that, eight of the 11 epitopes were capable of increasing degranulation and three drove differences in NK-cell mediated cell lysis or cytokine secretion. In conclusion, our results indicate that HLA-E molecules presenting HIV-derived epitopes may sensitize target cells for NK lysis in early HIV infection. However, prolonged exposure to elevated HLA-E expression levels in vivo may lead to NK cell dysfunction and reduced viral control In chronic infection.
Collapse
Affiliation(s)
- Luis Romero-Martín
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
| | - Clara Duran-Castells
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
| | - Mireia Olivella
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Míriam Rosás-Umbert
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Marta Ruiz-Riol
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Dennis Hartigan-O Connor
- California National Primate Research Center and Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Beatriz Mothe
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Fundació Lluita contra la Sida, Infectious Disease Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Àlex Olvera
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
10
|
Alsulami K, Sadouni M, Tremblay-Sher D, Baril JG, Trottier B, Dupuy FP, Chartrand-Lefebvre C, Tremblay C, Durand M, Bernard NF. High frequencies of adaptive NK cells are associated with absence of coronary plaque in cytomegalovirus infected people living with HIV. Medicine (Baltimore) 2022; 101:e30794. [PMID: 36197157 PMCID: PMC9509172 DOI: 10.1097/md.0000000000030794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The objective of this study was to evaluate whether adaptive NKG2C+CD57+ natural killer (adapNK) cell frequencies are associated with pre-clinical coronary atherosclerosis in participants of the Canadian HIV and Aging Cohort Study. This cross-sectional study included 194 Canadian HIV and Aging Cohort Study participants aged ≥ 40 years of which 128 were cytomegalovirus (CMV)+ people living with HIV (PLWH), 8 were CMV-PLWH, 37 were CMV mono-infected individuals, and 21 were neither human immunodeficiency virus nor CMV infected. Participants were evaluated for the frequency of their adapNK cells and total plaque volume (TPV). TPV was assessed using cardiac computed tomography. Participants were classified as free of, or having, coronary atherosclerosis if their TPV was "0" and ">0," respectively. The frequency of adapNK cells was categorized as low, intermediate or high if they constituted <4.6%, between ≥4.6% and 20% and >20%, respectively, of the total frequency of CD3-CD56dim NK cells. The association between adapNK cell frequency and TPV was assessed using an adjusted Poisson regression analysis. A greater proportion of CMV+PLWH with TPV = 0 had high adapNK cell frequencies than those with TPV > 0 (61.90% vs 39.53%, P = .03) with a similar non-significant trend for CMV mono-infected participants (46.15% vs 34.78%). The frequency of adapNK cells was negatively correlated with TPV. A high frequency of adapNK cells was associated with a relative risk of 0.75 (95% confidence intervals 0.58, 0.97, P = .03) for presence of coronary atherosclerosis. This observation suggests that adapNK cells play a protective role in the development of coronary atherosclerotic plaques.
Collapse
Affiliation(s)
- Khlood Alsulami
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Manel Sadouni
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Daniel Tremblay-Sher
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Jean-Guy Baril
- Clinique de Médecine Urbaine du Quartier Latin, Montreal, QC, Canada
| | - Benoit Trottier
- Clinique de Médecine Urbaine du Quartier Latin, Montreal, QC, Canada
| | - Franck P. Dupuy
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Carl Chartrand-Lefebvre
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Département de Radiologie, Radio-oncologie et Médecine Nucléaire, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Cécile Tremblay
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Department of Microbiology Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Madeleine Durand
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Department of Microbiology Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Nicole F. Bernard
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Clinical Immunology, McGill University Health Centre, Montreal, QC, Canada
- *Correspondence: Nicole F. Bernard, Research Institute of the McGill University Health Centre, Glen site, Bloc E, 1001 Decarie Blvd., Room EM3.3238, Montreal, QC H4A 3J1, Canada (e-mail: )
| |
Collapse
|
11
|
Csordas BG, de Sousa Palmeira PH, Peixoto RF, Comberlang FCQDDS, de Medeiros IA, Azevedo FLAAD, Veras RC, Janebro DI, Amaral IPG, Barbosa-Filho JM, Keesen TSL. Is IFN expression by NK cells a hallmark of severe COVID-19? Cytokine 2022; 157:155971. [PMID: 35908408 PMCID: PMC9304336 DOI: 10.1016/j.cyto.2022.155971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022]
Abstract
Natural Killer cells (NK) are crucial in host defense against viruses. There are many unanswered questions about the immune system in COVID-19, especially the mechanisms that contribute to the development of mild or severe forms of the disease. Although NK cells may have an essential role in the pathogenesis of COVID-19, the mechanisms involved in this process are not yet fully elucidated. Here, we demonstrate that CD3-CD56+ NK cells frequency in the volunteers who recovered from mild COVID-19 (Mild CoV) presented a significant increase compared to the healthy control (HC) and individuals recovering from severe COVID-19 (Severe CoV) groups. Furthermore, distinct IFN profiles in recovered COVID-19 patients with mild or severe clinical forms of the disease were observed in the total NK cells (CD3-CD56+). In the first group, NK cells express increased levels of IFN-α compared to the severe CoV, while higher production of IFN-γ in severe CoV was found. Moreover, NK cells in mild CoV express more cytolytic granules depicted by granzyme B and perforin. Compared to HC, PBMCs from mild CoV presented higher Ki-67 and TIM-3 production after Pool CoV-2 and Pool Spike CoV-2 peptides stimulus. In addition, non-stimulated PBMCs in the mild CoV group had higher NK TIM-3+ frequency than severe CoV. In the mild CoV group, Pool Spike CoV-2 and Pool CoV-2 peptides stimuli elicited higher granzyme B and perforin coexpression and IFN-α production by PBMCs. However, in severe CoV, Pool Spike CoV-2 reduced the coexpression of granzyme B, perforin, and CD107a suggesting a decrease in the cytotoxic activity of NK cells. Therefore, our study shows that NK cells may have a crucial role in COVID-19 with the involvement of IFN-α and cytotoxic properties that aid in developing qualified immune responses. Furthermore, the data suggest that higher amounts of IFN-γ may be linked to the severity of this disease.
Collapse
Affiliation(s)
- Bárbara Guimarães Csordas
- Postgraduate Program in Natural and Synthetic Bioactive Products, Immunology Laboratory of Infectious Diseases, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Pedro Henrique de Sousa Palmeira
- Postgraduate Program in Physiology Science, Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Rephany Fonseca Peixoto
- Postgraduate Program in Physiology Science, Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | | | - Isac Almeida de Medeiros
- Research Institute for Drugs and Medicines, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | | | - Robson Cavalcante Veras
- Research Institute for Drugs and Medicines, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Daniele Idalino Janebro
- Research Institute for Drugs and Medicines, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Ian P G Amaral
- Biotechnology Graduation Program, Immunology Laboratory of Infectious Diseases, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - José Maria Barbosa-Filho
- Pharmaceutical Sciences Department, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Tatjana Souza Lima Keesen
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil.
| |
Collapse
|
12
|
Bergantini L, d’Alessandro M, Otranto A, Cavallaro D, Gangi S, Fossi A, Perillo F, Luzzi L, Zanfrini E, Paladini P, Sestini P, Rottoli P, Bargagli E, Bennett D. Characterization of NKG2-A/-C, Kir and CD57 on NK Cells Stimulated with pp65 and IE-1 Antigens in Patients Awaiting Lung Transplant. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071081. [PMID: 35888169 PMCID: PMC9325149 DOI: 10.3390/life12071081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/03/2022]
Abstract
Introduction: Cytomegalovirus (CMV) is the leading opportunistic infection in lung transplant (LTx) recipients. CMV is associated with graft failure and decreased survival. Recently, new antiviral therapies have been proposed. The present study aimed to investigate NK and T cell subsets of patients awaiting LTx. We analyzed the cellular populations between reactive and non-reactive QuantiFERON (QF) CMV patients for the prediction of immunological response to infection. Methods: Seventeen pre-LTx patients and 15 healthy controls (HC) have been enrolled. QF and IFN-γ ELISA assay detections were applied. NK cell subsets and T cell and proliferation assay were detected before and after stimulation with pp-65 and IE-1 CMV antigens after stratification as QF+ and QF−. Furthermore, we quantified the serum concentrations of NK− and T-related cytokines by bead-based multiplex analysis. Results: CD56brCD16lowNKG2A+KIR+ resulted in the best discriminatory cellular subsets between pre-LTx and HC. Discrepancies emerged between serology and QF assay. Better proliferative capability emerged from patients who were QF+, in particular in CD8 and CD25-activated cells. CD56brCD16low, adaptive/memory-like NK and CD8Teff were highly increased only in QF+ patients. Conclusions: QF more than serology is useful in the detection of patients able to respond to viral infection. This study provides new insights in terms of immunological responses to CMV in pre-LTX patients, particularly in NK and T cells biology.
Collapse
Affiliation(s)
- Laura Bergantini
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena, Azienda Ospedaliera Universitaria Senese (AOUS), Viale Bracci, 53100 Siena, Italy; (L.B.); (A.O.); (D.C.); (S.G.); (A.F.); (F.P.); (P.S.); (P.R.); (E.B.); (D.B.)
| | - Miriana d’Alessandro
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena, Azienda Ospedaliera Universitaria Senese (AOUS), Viale Bracci, 53100 Siena, Italy; (L.B.); (A.O.); (D.C.); (S.G.); (A.F.); (F.P.); (P.S.); (P.R.); (E.B.); (D.B.)
- Respiratory Disease and Lung Transplant Unit, Department of Medical Sciences, Surgery and Neurosciences, Siena University, 53100 Siena, Italy
- Correspondence: ; Tel.: +39-0577-586713; Fax: +39-0577-280744
| | - Ambra Otranto
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena, Azienda Ospedaliera Universitaria Senese (AOUS), Viale Bracci, 53100 Siena, Italy; (L.B.); (A.O.); (D.C.); (S.G.); (A.F.); (F.P.); (P.S.); (P.R.); (E.B.); (D.B.)
| | - Dalila Cavallaro
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena, Azienda Ospedaliera Universitaria Senese (AOUS), Viale Bracci, 53100 Siena, Italy; (L.B.); (A.O.); (D.C.); (S.G.); (A.F.); (F.P.); (P.S.); (P.R.); (E.B.); (D.B.)
| | - Sara Gangi
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena, Azienda Ospedaliera Universitaria Senese (AOUS), Viale Bracci, 53100 Siena, Italy; (L.B.); (A.O.); (D.C.); (S.G.); (A.F.); (F.P.); (P.S.); (P.R.); (E.B.); (D.B.)
| | - Antonella Fossi
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena, Azienda Ospedaliera Universitaria Senese (AOUS), Viale Bracci, 53100 Siena, Italy; (L.B.); (A.O.); (D.C.); (S.G.); (A.F.); (F.P.); (P.S.); (P.R.); (E.B.); (D.B.)
| | - Felice Perillo
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena, Azienda Ospedaliera Universitaria Senese (AOUS), Viale Bracci, 53100 Siena, Italy; (L.B.); (A.O.); (D.C.); (S.G.); (A.F.); (F.P.); (P.S.); (P.R.); (E.B.); (D.B.)
| | - Luca Luzzi
- Thoracic Surgery Unit, Cardio-Thoracic and Vascular Department, University Hospital of Siena, Azienda Ospedaliera Universitaria Senese (AOUS), 53100 Siena, Italy; (L.L.); (E.Z.); (P.P.)
| | - Edoardo Zanfrini
- Thoracic Surgery Unit, Cardio-Thoracic and Vascular Department, University Hospital of Siena, Azienda Ospedaliera Universitaria Senese (AOUS), 53100 Siena, Italy; (L.L.); (E.Z.); (P.P.)
| | - Piero Paladini
- Thoracic Surgery Unit, Cardio-Thoracic and Vascular Department, University Hospital of Siena, Azienda Ospedaliera Universitaria Senese (AOUS), 53100 Siena, Italy; (L.L.); (E.Z.); (P.P.)
| | - Piersante Sestini
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena, Azienda Ospedaliera Universitaria Senese (AOUS), Viale Bracci, 53100 Siena, Italy; (L.B.); (A.O.); (D.C.); (S.G.); (A.F.); (F.P.); (P.S.); (P.R.); (E.B.); (D.B.)
| | - Paola Rottoli
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena, Azienda Ospedaliera Universitaria Senese (AOUS), Viale Bracci, 53100 Siena, Italy; (L.B.); (A.O.); (D.C.); (S.G.); (A.F.); (F.P.); (P.S.); (P.R.); (E.B.); (D.B.)
| | - Elena Bargagli
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena, Azienda Ospedaliera Universitaria Senese (AOUS), Viale Bracci, 53100 Siena, Italy; (L.B.); (A.O.); (D.C.); (S.G.); (A.F.); (F.P.); (P.S.); (P.R.); (E.B.); (D.B.)
| | - David Bennett
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena, Azienda Ospedaliera Universitaria Senese (AOUS), Viale Bracci, 53100 Siena, Italy; (L.B.); (A.O.); (D.C.); (S.G.); (A.F.); (F.P.); (P.S.); (P.R.); (E.B.); (D.B.)
| |
Collapse
|
13
|
Ran GH, Lin YQ, Tian L, Zhang T, Yan DM, Yu JH, Deng YC. Natural killer cell homing and trafficking in tissues and tumors: from biology to application. Signal Transduct Target Ther 2022; 7:205. [PMID: 35768424 PMCID: PMC9243142 DOI: 10.1038/s41392-022-01058-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells, a subgroup of innate lymphoid cells, act as the first line of defense against cancer. Although some evidence shows that NK cells can develop in secondary lymphoid tissues, NK cells develop mainly in the bone marrow (BM) and egress into the blood circulation when they mature. They then migrate to and settle down in peripheral tissues, though some special subsets home back into the BM or secondary lymphoid organs. Owing to its success in allogeneic adoptive transfer for cancer treatment and its "off-the-shelf" potential, NK cell-based immunotherapy is attracting increasing attention in the treatment of various cancers. However, insufficient infiltration of adoptively transferred NK cells limits clinical utility, especially for solid tumors. Expansion of NK cells or engineered chimeric antigen receptor (CAR) NK cells ex vivo prior to adoptive transfer by using various cytokines alters the profiles of chemokine receptors, which affects the infiltration of transferred NK cells into tumor tissue. Several factors control NK cell trafficking and homing, including cell-intrinsic factors (e.g., transcriptional factors), cell-extrinsic factors (e.g., integrins, selectins, chemokines and their corresponding receptors, signals induced by cytokines, sphingosine-1-phosphate (S1P), etc.), and the cellular microenvironment. Here, we summarize the profiles and mechanisms of NK cell homing and trafficking at steady state and during tumor development, aiming to improve NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Guang He Ran
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China
| | - Yu Qing Lin
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Tao Zhang
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China.
| | - Dong Mei Yan
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China.
| | - Jian Hua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
| | - You Cai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China.
- Department of Clinical Hematology, College of Pharmacy, Army Medical University, 400038, Chongqing, China.
| |
Collapse
|
14
|
Aviles-Padilla K, Angelo LS, Fan D, Paust S. CXCR6 + and NKG2C + Natural Killer Cells Are Distinct With Unique Phenotypic and Functional Attributes Following Bone Marrow Transplantation. Front Immunol 2022; 13:886835. [PMID: 35844621 PMCID: PMC9277058 DOI: 10.3389/fimmu.2022.886835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/03/2022] [Indexed: 01/07/2023] Open
Abstract
Reactivation of human cytomegalovirus (HCMV) is a life-threatening complication in transplant patients. Natural Killer (NK) cells are the first lymphocyte lineage to reconstitute following an allogeneic hematopoietic stem cell transplant (HSCT). Amongst them, NK cell Group 2 isoform C/Killer cell lectin-like receptor subfamily C, member 2 (NKG2C)-expressing NK cells contribute significantly to patient protection upon HCMV reactivation. NKG2C+ NK cells are capable of immunological memory, albeit NK cell memory is not restricted to them. Hepatic C-X-C Motif Chemokine Receptor 6 (CXCR6)-expressing NK cells also mediate memory responses in mice and humans. Small numbers of them circulate and can thus be studied in peripheral blood samples. We hypothesize that NKG2C+ and CXCR6+ NK cell subsets are distinct. To test our hypothesis, we used multi-parametric flow cytometry to determine the phenotypes and effector functions of CD56bright vs. CD56dim and NKG2C+ vs. CXCR6+ human NK cell subsets in the peripheral blood (PB) of pediatric transplant recipients monthly while monitoring patients for HCMV reactivation. Interestingly, we did not find any NKG2C+CXCR6+ NK cells in the transplant recipients' peripheral blood, suggesting that NKG2C+ and CXCR6+ NK cells are distinct. Also, NKG2C-CXCR6- NK cells, rather than NKG2C+ NK cells, made up most NK cells post-transplant, even in transplant recipients with HCMV viremia. In contrast to NKG2C+ NK cells, CXCR6+ NK cells appeared phenotypically less differentiated but were highly proliferative and produced IFN-γ and TNF α . Our findings contribute to our understanding of post-transplant NK cell development and its implications for human health.
Collapse
Affiliation(s)
- Kevin Aviles-Padilla
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
| | - Laura S. Angelo
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
| | - Dwight Fan
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States,The Developing Investigative Scholar’s Program (DISP), Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital and Rice University, Houston, TX, United States
| | - Silke Paust
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States,The Developing Investigative Scholar’s Program (DISP), Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital and Rice University, Houston, TX, United States,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States,*Correspondence: Silke Paust,
| |
Collapse
|
15
|
Tarancon-Diez L, Consuegra I, Vazquez-Alejo E, Ramos-Ruiz R, Ramos JT, Navarro ML, Muñoz-Fernández MÁ. miRNA Profile Based on ART Delay in Vertically Infected HIV-1 Youths Is Associated With Inflammatory Biomarkers and Activation and Maturation Immune Levels. Front Immunol 2022; 13:878630. [PMID: 35529880 PMCID: PMC9074828 DOI: 10.3389/fimmu.2022.878630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Early antiretroviral treatment (ART) in vertically acquired HIV-1-infection is associated with a rapid viral suppression, small HIV-1 reservoir, reduced morbimortality and preserved immune functions. We investigated the miRNA profile from vertically acquired HIV-1-infected young adults based on ART initiation delay and its association with the immune system activation. Using a microRNA panel and multiparametric flow cytometry, miRNome profile obtained from peripheral blood mononuclear cells and its association with adaptive and innate immune components were studied on vertically HIV-1-infected young adults who started ART early (EARLY, 0-53 weeks after birth) and later (LATE, 120-300 weeks). miR-1248 and miR-155-5p, were significantly upregulated in EARLY group compared with LATE group, while miR-501-3p, miR-548d-5p, miR-18a-3p and miR-296-5p were significantly downregulated in EARLY treated group of patients. Strong correlations were obtained between miRNAs levels and soluble biochemical biomarkers and immunological parameters including CD4 T-cell count and maturation by CD69 expression on CD4 T-cells and activation by HLA-DR on CD16high NK cell subsets for miR-1248 and miR-155-5p. In this preliminary study, a distinct miRNA signature discriminates early treated HIV-1-infected young adults. The role of those miRNAs target genes in the modulation of HIV-1 replication and latency may reveal new host signaling pathways that could be manipulated in antiviral strategies. Correlations between miRNAs levels and inflammatory and immunological markers highlight those miRNAs as potential biomarkers for immune inflammation and activation in HIV-1-infected young adults who initiated a late ART.
Collapse
Affiliation(s)
- Laura Tarancon-Diez
- Immunology Section, Laboratorio InmunoBiología Molecular (LIBM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Area of Immune System Pathology, Madrid, Spain
| | - Irene Consuegra
- Immunology Section, Laboratorio InmunoBiología Molecular (LIBM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Area of Immune System Pathology, Madrid, Spain
| | - Elena Vazquez-Alejo
- Immunology Section, Laboratorio InmunoBiología Molecular (LIBM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Area of Immune System Pathology, Madrid, Spain
| | | | - José Tomás Ramos
- Department of Paediatrics, Clínico San Carlos University Hospital, Madrid, Spain
| | - María Luisa Navarro
- Pediatric Infectious Disease Unit, Hospital Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid and CIBERINFEC, Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| | - Mª Ángeles Muñoz-Fernández
- Immunology Section, Laboratorio InmunoBiología Molecular (LIBM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Area of Immune System Pathology, Madrid, Spain
- *Correspondence: Mª Ángeles Muñoz-Fernández,
| |
Collapse
|
16
|
Sun Y, Zhou J, Jiang Y. Negative Regulation and Protective Function of Natural Killer Cells in HIV Infection: Two Sides of a Coin. Front Immunol 2022; 13:842831. [PMID: 35320945 PMCID: PMC8936085 DOI: 10.3389/fimmu.2022.842831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells play an important immunologic role, targeting tumors and virus-infected cells; however, NK cells do not impede the progression of human immunodeficiency virus (HIV) infection. In HIV infection, NK cells exhibit impaired functions and negatively regulate other immune cell responses, although NK cells can kill HIV-infected cells and thereby suppress HIV replication. Considerable recent research has emerged regarding NK cells in the areas of immune checkpoints, negative regulation, antibody-dependent cell-mediated cytotoxicity and HIV reservoirs during HIV infection; however, no overall summary of these factors is available. This review focuses on several important aspects of NK cells in relation to HIV infection, including changes in NK cell count, subpopulations, and immune checkpoints, as well as abnormalities in NK cell functions and NK cell negative regulation. The protective function of NK cells in inhibiting HIV replication to reduce the viral reservoir and approaches for enhancing NK cell functions are also summarized.
Collapse
|
17
|
Herrera L, Martin‐Inaraja M, Santos S, Inglés‐Ferrándiz M, Azkarate A, Perez‐Vaquero MA, Vesga MA, Vicario JL, Soria B, Solano C, De Paz R, Marcos A, Ferreras C, Perez‐Martinez A, Eguizabal C. Identifying SARS-CoV-2 'memory' NK cells from COVID-19 convalescent donors for adoptive cell therapy. Immunology 2022; 165:234-249. [PMID: 34775592 PMCID: PMC8652867 DOI: 10.1111/imm.13432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 disease is the manifestation of syndrome coronavirus 2 (SARS-CoV-2) infection, which is causing a worldwide pandemic. This disease can lead to multiple and different symptoms, being lymphopenia associated with severity one of the most persistent. Natural killer cells (NK cells) are part of the innate immune system, being fighting against virus-infected cells one of their key roles. In this study, we determined the phenotype of NK cells after COVID-19 and the main characteristic of SARS-CoV-2-specific-like NK population in the blood of convalescent donors. CD57+ NKG2C+ phenotype in SARS-CoV-2 convalescent donors indicates the presence of 'memory'/activated NK cells as it has been shown for cytomegalovirus infections. Although the existence of this population is donor dependent, its expression may be crucial for the specific response against SARS-CoV-2, so that, it gives us a tool for selecting the best donors to produce off-the-shelf living drug for cell therapy to treat COVID-19 patients under the RELEASE clinical trial (NCT04578210).
Collapse
Affiliation(s)
- Lara Herrera
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Myriam Martin‐Inaraja
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Silvia Santos
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Marta Inglés‐Ferrándiz
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Aida Azkarate
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Miguel A. Perez‐Vaquero
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Miguel A. Vesga
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Jose L. Vicario
- HistocompatibilityCentro de Transfusión de MadridMadridSpain
| | - Bernat Soria
- Instituto de BioingenieríaUniversidad Miguel Hernández de ElcheAlicanteSpain
- Instituto de Investigación Sanitaria Hospital General y Universitario de Alicante (ISABIAL)AlicanteSpain
| | - Carlos Solano
- Hospital Clínico Universitario de Valencia/Instituto de Investigación Sanitaria INCLIVAValenciaSpain
- School of MedicineUniversity of ValenciaSpain
| | - Raquel De Paz
- Hematology DepartmentUniversity Hospital La PazMadridSpain
| | - Antonio Marcos
- Hematology DepartmentUniversity Hospital La PazMadridSpain
| | - Cristina Ferreras
- Hospital La Paz Institute for Health ResearchIdiPAZUniversity Hospital La PazMadridSpain
| | - Antonio Perez‐Martinez
- Hospital La Paz Institute for Health ResearchIdiPAZUniversity Hospital La PazMadridSpain
- Pediatric Hemato‐Oncology DepartmentUniversity Hospital La PazMadridSpain
- Faculty of MedicineUniversidad Autónoma de MadridMadridSpain
| | - Cristina Eguizabal
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| |
Collapse
|
18
|
Overview of Memory NK Cells in Viral Infections: Possible Role in SARS-CoV-2 Infection. IMMUNO 2022. [DOI: 10.3390/immuno2010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
NK cells have usually been defined as cells of the innate immune system, although they are also involved in adaptative responses. These cells belong to the innate lymphocyte cells (ILC) family. They remove unwanted cells, tumoral cells and pathogens. NK cells are essential for viral infection clearance and are involved in tolerogenic responses depending on the dynamic balance of the repertoire of activating and inhibitory receptors. NK plasticity is crucial for tissue function and vigilant immune responses. They directly eliminate virus-infected cells by recognising viral protein antigens using a non-MHC dependent mechanism, recognising viral glycan structures and antigens by NCR family receptors, inducing apoptosis by Fas-Fas ligand interaction, and killing cells by antibody-dependent cell cytotoxicity via the FcγIII receptor. Activating receptors are responsible for the clearance of virally infected cells, while inhibitory KIR receptor activation impairs NK responses and facilitates virus escape. Effective NK memory cells have been described and characterised by a low NKG2A and high NKG2C or NKG2D expression. NK cells have also been used in cell therapy. In SARS-CoV-2 infection, several contradicting reports about the role of NK cells have been published. A careful analysis of the current data and possible implications will be discussed.
Collapse
|
19
|
Wang TD, Xu SL, Yu ZY, Ni SB, Zhang C, Jiao ZX. Arsenic Trioxide Combining Leflunomide Activates Nrf2-ARE-HO-1 Signaling Pathway and Protects Heart Xenografts. Chin J Integr Med 2021; 27:760-766. [PMID: 34319507 DOI: 10.1007/s11655-021-3495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the molecular mechanisms underlying the effects of arsenic trioxide (As2O3) in combination with leflunomide on the hamster-to-rat heart xenotransplant. METHODS Transplantation of LVG hamster hearts to Lewis rats was performed by anastomosis of vessels in the neck using end-to-end anastomosis with a non-suture cuff technique. Four groups of recipient rats (n=6 in each) were treated with normal saline (control), As2O3 [5 mg/(kg·day) intraperitoneally], leflunomide [5 mg/(kg·d) orally], or leflunomide [5 mg/(kg·d)+As2O3 [5 mg/(kg·d)] in combination. Donor hearts and/or rat spleens were harvested and analyzed 4 days after transplantation. Quantitative reverse-transcription polymerase chain reaction and Western blot analysis were performed to detect the expression of the nuclear factor erythroid-derived factor 2-related factor (Nrf2) and its target gene heme oxygenase-1 (HO-1), Treg cell marker fork-head Box P3 (FOXP3), apoptosis-associated proteins Bcl-2, Bax, and cleaved caspase-3. Immunohistochemical staining was used to detect the levels of inflammatory natural killer cell and macrophage infiltration, intercellular cell adhesion molecule-1 (ICAM-1) and complement C3. RESULTS Expression of Nrf2-ARE-HO-1 signaling pathway was upregulated in heart xenografts in rats treated with As2O3 plus leflunomide compared with control rats or rats treated with either drug alone (P<0.01), and this was accompanied by an increased Treg cells in the recipient rat spleen (P<0.01). In contrast, the expressions of Bax, cleaved caspase-3, ICAM-1, and complement C3, and infiltration of inflammatory cells in the xenografts were inhibited by As2O3 plus leflunomide treatment (P<0.01). CONCLUSION Combination treatment with As2O3 and leflunomide protected hamster heart-xenografts in recipient rats.
Collapse
Affiliation(s)
- Teng-da Wang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Song-Lin Xu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Zheng-Yi Yu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Shao-Bin Ni
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Zhi-Xing Jiao
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, China.
| |
Collapse
|
20
|
Zaghi E, Calvi M, Puccio S, Spata G, Terzoli S, Peano C, Roberto A, De Paoli F, van Beek JJ, Mariotti J, De Philippis C, Sarina B, Mineri R, Bramanti S, Santoro A, Le-Trilling VTK, Trilling M, Marcenaro E, Castagna L, Di Vito C, Lugli E, Mavilio D. Single-cell profiling identifies impaired adaptive NK cells expanded after HCMV reactivation in haploidentical HSCT. JCI Insight 2021; 6:146973. [PMID: 34003794 PMCID: PMC8262468 DOI: 10.1172/jci.insight.146973] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Haploidentical hematopoietic stem cell transplantation (h-HSCT) represents an efficient curative approach for patients affected by hematologic malignancies in which the reduced intensity conditioning induces a state of immunologic tolerance between donor and recipient. However, opportunistic viral infections greatly affect h-HSCT clinical outcomes. NK cells are the first lymphocytes that recover after transplant and provide a prompt defense against human cytomegalovirus (HCMV) infection/reactivation. By undertaking a longitudinal single-cell computational profiling of multiparametric flow cytometry, we show that HCMV accelerates NK cell immune reconstitution together with the expansion of CD158b1b2jpos/NKG2Aneg/NKG2Cpos/NKp30lo NK cells. The frequency of this subset correlates with HCMV viremia, further increases in recipients experiencing multiple episodes of viral reactivations, and persists for months after the infection. The transcriptional profile of FACS-sorted CD158b1b2jpos NK cells confirmed the ability of HCMV to deregulate NKG2C, NKG2A, and NKp30 gene expression, thus inducing the expansion of NK cells with adaptive traits. These NK cells are characterized by the downmodulation of several gene pathways associated with cell migration, the cell cycle, and effector-functions, as well as by a state of metabolic/cellular exhaustion. This profile reflects the functional impairments of adaptive NK cells to produce IFN-γ, a phenomenon also due to the viral-induced expression of lymphocyte-activation gene 3 (LAG-3) and programmed cell death protein 1 (PD-1) checkpoint inhibitors.
Collapse
Affiliation(s)
- Elisa Zaghi
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Michela Calvi
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,BIOMETRA, Università degli Studi di Milano, Milan, Italy
| | | | - Gianmarco Spata
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Sara Terzoli
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, and Genomic Unit
| | | | | | | | | | | | | | - Rossana Mineri
- Molecular Biology Section, Clinical Investigation Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | | | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | | | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,BIOMETRA, Università degli Studi di Milano, Milan, Italy
| | - Enrico Lugli
- Laboratory of Translational Immunology.,Flow Cytometry Core, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,BIOMETRA, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
21
|
Mata Forsberg M, Arasa C, van Zwol W, Uzunçayir S, Schönbichler A, Regenthal P, Schelin J, Lindkvist-Petersson K, Björkander S, Sverremark-Ekström E. Activation of human γδ T cells and NK cells by Staphylococcal enterotoxins requires both monocytes and conventional T cells. J Leukoc Biol 2021; 111:597-609. [PMID: 34114693 DOI: 10.1002/jlb.3a1020-630rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Staphylococcal enterotoxins (SE) pose a great threat to human health due to their ability to bypass antigen presentation and activate large amounts of conventional T cells resulting in a cytokine storm potentially leading to toxic shock syndrome. Unconventional T- and NK cells are also activated by SE but the mechanisms remain poorly understood. In this study, the authors aimed to explore the underlying mechanism behind SE-mediated activation of MAIT-, γδ T-, and NK cells in vitro. CBMC or PBMC were stimulated with the toxins SEA, SEH, and TSST-1, and cytokine and cytotoxic responses were analyzed with ELISA and flow cytometry. All toxins induced a broad range of cytokines, perforin and granzyme B, although SEH was not as potent as SEA and TSST-1. SE-induced IFN-γ expression in MAIT-, γδ T-, and NK cells was clearly reduced by neutralization of IL-12, while cytotoxic compounds were not affected at all. Kinetic assays showed that unconventional T cell and NK cell-responses are secondary to the response in conventional T cells. Furthermore, co-cultures of isolated cell populations revealed that the ability of SEA to activate γδ T- and NK cells was fully dependent on the presence of both monocytes and αβ T cells. Lastly, it was found that SE provoked a reduced and delayed cytokine response in infants, particularly within the unconventional T and NK cell populations. This study provides novel insights regarding the activation of unconventional T- and NK cells by SE, which contribute to understanding the vulnerability of young children towards Staphylococcus aureus infections.
Collapse
Affiliation(s)
- Manuel Mata Forsberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Claudia Arasa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Willemien van Zwol
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sibel Uzunçayir
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Anna Schönbichler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Paulina Regenthal
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jenny Schelin
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | | | - Sophia Björkander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Eva Sverremark-Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
22
|
Perera Molligoda Arachchige AS. Human NK cells: From development to effector functions. Innate Immun 2021; 27:212-229. [PMID: 33761782 PMCID: PMC8054151 DOI: 10.1177/17534259211001512] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
NK cells are the major lymphocyte subset of the innate immune system that mediates antiviral and anti-tumor responses. It is well established that they develop mechanisms to distinguish self from non-self during the process of NK cell education. Unlike T and B cells, natural killer cells lack clonotypic receptors and are activated after recognizing their target via germline-encoded receptors through natural cytotoxicity, cytokine stimulation, and Ab-dependent cellular cytotoxicity. Subsequently, they utilize cytotoxic granules, death receptor ligands, and cytokines to perform their effector functions. In this review, we provide a general overview of human NK cells, as opposed to murine NK cells, discussing their ontogeny, maturation, receptor diversity, types of responses, and effector functions. Furthermore, we also describe recent advances in human NK cell biology, including tissue-resident NK cell populations, NK cell memory, and novel approaches used to target NK cells in cancer immunotherapy.
Collapse
|
23
|
Barnes S, Schilizzi O, Audsley KM, Newnes HV, Foley B. Deciphering the Immunological Phenomenon of Adaptive Natural Killer (NK) Cells and Cytomegalovirus (CMV). Int J Mol Sci 2020; 21:ijms21228864. [PMID: 33238550 PMCID: PMC7700325 DOI: 10.3390/ijms21228864] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells play a significant and vital role in the first line of defense against infection through their ability to target cells without prior sensitization. They also contribute significantly to the activation and recruitment of both innate and adaptive immune cells through the production of a range of cytokines and chemokines. In the context of cytomegalovirus (CMV) infection, NK cells and CMV have co-evolved side by side to employ several mechanisms to evade one another. However, during this co-evolution the discovery of a subset of long-lived NK cells with enhanced effector potential, increased antibody-dependent responses and the potential to mediate immune memory has revolutionized the field of NK cell biology. The ability of a virus to imprint on the NK cell receptor repertoire resulting in the expansion of diverse, highly functional NK cells to this day remains a significant immunological phenomenon that only occurs in the context of CMV. Here we review our current understanding of the development of these NK cells, commonly referred to as adaptive NK cells and their current role in transplantation, infection, vaccination and cancer immunotherapy to decipher the complex role of CMV in dictating NK cell functional fate.
Collapse
Affiliation(s)
- Samantha Barnes
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Ophelia Schilizzi
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Katherine M. Audsley
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Hannah V. Newnes
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Bree Foley
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- Correspondence:
| |
Collapse
|
24
|
Wesley E, Uppendahl LD, Felices M, Dahl C, Messelt A, Boylan KLM, Skubitz APN, Vogel RI, Nelson HH, Geller MA. Cytomegalovirus and systemic inflammation at time of surgery is associated with worse outcomes in serous ovarian cancer. Gynecol Oncol 2020; 160:193-198. [PMID: 33168306 DOI: 10.1016/j.ygyno.2020.10.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/22/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Cytomegalovirus (CMV) is a common infection that establishes latency in healthy people. CMV has been associated with alterations of the immune compartment leading to improved responses, while inflammation has been shown to adversely impact outcomes. We investigated whether CMV serostatus predicts outcomes in ovarian cancer in the presence or absence of inflammation. METHODS A total of 106 patients with serous ovarian cancer from 2006 to 2009 were analyzed. CMV and systemic inflammation was measured using CMV immunoglobulin G (IgG) and C-reactive protein (CRP), respectively, in serum collected prior to cytoreduction. Patients were stratified by CMV IgG (non-reactive, reactive/borderline) and CRP (≤10, >10 mg/L) status. Overall survival (OS) and recurrence-free survival (RFS) were compared by group using log-rank tests and Cox proportional hazards regression models adjusting for age at surgery. RESULTS Of 106 eligible patients, 40 (37.7%) were CMV+/CRP+, 24 (22.6%) CMV+/CRP-, 19 (17.9%) CMV-/CRP+, and 23 (21.7%) CMV-/CRP-. CRP+ had higher CA-125 levels (P = 0.05) and higher rates of suboptimal debulking (P = 0.03). There were no other significant differences in demographic, surgical, or pathologic factors between groups. CMV+/CRP+ patients median RFS and OS were 16.9 months (95% CI: 9.0-21.1) and 31.7 months (95% CI: 25.0-48.7), respectively, with a significantly worse RFS (aHR: 1.85, 95% CI: 1.05-3.24, P = 0.03) and OS (aHR: 2.12, 95% CI: 1.17-3.82, P = 0.01) compared to CMV-/CRP- (RFS = 31.2 months (95% CI: 16.0-56.4) and OS = 63.8 months (95% CI: 50.7-87.0)). CMV+/CRP- group displayed the longest OS (89.3 months). CONCLUSIONS Previous exposure to CMV and high CRP at surgery portended worse RFS and OS compared to women who tested negative. The CMV+/CRP- group had the longest OS, indicating that CMV status alone, in the absence of inflammation, may be protective.
Collapse
Affiliation(s)
- Erin Wesley
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN, United States
| | - Locke D Uppendahl
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN, United States
| | - Martin Felices
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Carly Dahl
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN, United States
| | - Audrey Messelt
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN, United States
| | - Kristin L M Boylan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Amy P N Skubitz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Rachel I Vogel
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Heather H Nelson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States; Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, United States
| | - Melissa A Geller
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
25
|
Naujoks W, Quandt D, Hauffe A, Kielstein H, Bähr I, Spielmann J. Characterization of Surface Receptor Expression and Cytotoxicity of Human NK Cells and NK Cell Subsets in Overweight and Obese Humans. Front Immunol 2020; 11:573200. [PMID: 33101297 PMCID: PMC7546782 DOI: 10.3389/fimmu.2020.573200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity is associated with an increased risk for several cancer types and an altered phenotype and functionality of natural killer (NK) cells. This study aimed to investigate the association of overweight and obesity with NK cell functions and receptor expression profiles in humans. Therefore, peripheral blood mononuclear cells were isolated from normal weight, overweight, and obese healthy blood donors. In depth analysis of immune cell populations and 23 different surface markers, including NK cell receptors, NK-cell-related markers as well as functional intracellular markers on total NK cells and NK subgroups were performed by multicolor flow cytometry. The data revealed a decreased expression of the activating NK cell receptors KIR2DS4 and NKp46 as well as an increased expression of the inhibitory NK cell receptors NKG2A and Siglec-7 in overweight and obese compared to normal weight individuals. Additionally, the expression of the adhesion molecule CD62L and the maturation and differentiation marker CD27 was downregulated in NK cells of overweight and obese subjects. Furthermore, the cytotoxicity of NK cells against colorectal cancer cells was decreased in overweight and obese subjects. Investigations on underlying killing mechanisms demonstrated a reduced TRAIL expression on NK cells of obese subjects suggesting an impaired death receptor pathway in obesity. The present study gives new insights into an impaired functionality and phenotype of NK cells and NK cell subsets in overweight and obesity. These phenotypic alterations and dysfunction of NK cells might be an explanation for the increased cancer risk in obesity.
Collapse
Affiliation(s)
- Wiebke Naujoks
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dagmar Quandt
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Anja Hauffe
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ina Bähr
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Julia Spielmann
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
26
|
Zhang S, Liu W, Hu B, Wang P, Lv X, Chen S, Shao Z. Prognostic Significance of Tumor-Infiltrating Natural Killer Cells in Solid Tumors: A Systematic Review and Meta-Analysis. Front Immunol 2020; 11:1242. [PMID: 32714321 PMCID: PMC7343909 DOI: 10.3389/fimmu.2020.01242] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Tumor-infiltrating natural killer (NK) cells (TINKs) are crucial immune cells in tumor defense, and might be related to tumor prognosis. However, the results were discrepant among different studies. The present meta-analysis was performed to comprehensively assess the prognostic value of NK cell markers in solid tumor tissues. Methods: PubMed, Web of Science, and EMBASE were searched to identify original researches reporting the prognostic significance of TINKs in solid tumors. NK cell markers CD56, CD57, NKp30, and NKp46 were included in the analysis. The hazard ratios (HRs) and 95% confidence intervals (CIs) of pooled overall survival (OS), disease-free survival (DFS), metastasis-free survival (MFS), progression-free survival (PFS), and recurrence-free survival (RFS) were calculated by STATA software 14.0 to assess the prognostic significance. Results : Of the 56 included studies, there were 18 studies on CD56, 31 studies on CD57, 1 study on NKp30, and 7 studies on NKp46. High levels of CD56, CD57, NKp30, and NKp46 were significantly correlated with better OS of patients with solid malignancies (HR = 0.473, 95%CI: 0.315–0.710, p < 0.001; HR = 0.484, 95%CI: 0.380–0.616, p < 0.001; HR = 0.34, 95%CI: 0.14–0.80, p = 0.014; HR = 0.622, 95%CI: 0.470–0.821, p < 0.001, respectively). Our results also revealed that CD56, CD57, and NKp46 could act as independent prognostic predictors for favorable OS (HR = 0.372, 95%CI: 0.261–0.531, p < 0.001; HR = 0.525, 95%CI: 0.346–0.797, p = 0.003; HR = 0.559, 95%CI: 0.385–0.812, p = 0.002, respectively). Conclusions : Our results indicated that high levels of NK cell markers in solid tumor tissues could predict favorable prognosis for solid tumor patients.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Kared H, Tan SW, Lau MC, Chevrier M, Tan C, How W, Wong G, Strickland M, Malleret B, Amoah A, Pilipow K, Zanon V, Govern NM, Lum J, Chen JM, Lee B, Florian MC, Geiger H, Ginhoux F, Ruiz-Mateos E, Fulop T, Rajasuriar R, Kamarulzaman A, Ng TP, Lugli E, Larbi A. Immunological history governs human stem cell memory CD4 heterogeneity via the Wnt signaling pathway. Nat Commun 2020; 11:821. [PMID: 32041953 PMCID: PMC7010798 DOI: 10.1038/s41467-020-14442-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
The diversity of the naïve T cell repertoire drives the replenishment potential and capacity of memory T cells to respond to immune challenges. Attrition of the immune system is associated with an increased prevalence of pathologies in aged individuals, but whether stem cell memory T lymphocytes (TSCM) contribute to such attrition is still unclear. Using single cells RNA sequencing and high-dimensional flow cytometry, we demonstrate that TSCM heterogeneity results from differential engagement of Wnt signaling. In humans, aging is associated with the coupled loss of Wnt/β-catenin signature in CD4 TSCM and systemic increase in the levels of Dickkopf-related protein 1, a natural inhibitor of the Wnt/β-catenin pathway. Functional assays support recent thymic emigrants as the precursors of CD4 TSCM. Our data thus hint that reversing TSCM defects by metabolic targeting of the Wnt/β-catenin pathway may be a viable approach to restore and preserve immune homeostasis in the context of immunological history.
Collapse
Affiliation(s)
- Hassen Kared
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore.
| | - Shu Wen Tan
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Mai Chan Lau
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Marion Chevrier
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Crystal Tan
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Wilson How
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Glenn Wong
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Marie Strickland
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benoit Malleret
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Amanda Amoah
- Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Karolina Pilipow
- Humanitas Clinical and Research Center, Laboratory of Translational Immunology (LTI), Rozzano, Italy
| | - Veronica Zanon
- Humanitas Clinical and Research Center, Laboratory of Translational Immunology (LTI), Rozzano, Italy
| | - Naomi Mc Govern
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Jin Miao Chen
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | | | - Hartmut Geiger
- Institute of Molecular Medicine, University of Ulm, Ulm, Germany
- Experimental Hematology and Cancer Biology, CCHMC, Cincinnati, OH, USA
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Ezequiel Ruiz-Mateos
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | - Tamas Fulop
- Department of Medicine, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Reena Rajasuriar
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Adeeba Kamarulzaman
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tze Pin Ng
- Gerontology Research Programme and Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Enrico Lugli
- Humanitas Clinical and Research Center, Laboratory of Translational Immunology (LTI), Rozzano, Italy
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
- Department of Medicine, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada.
| |
Collapse
|
28
|
The Evolutionary Arms Race between Virus and NK Cells: Diversity Enables Population-Level Virus Control. Viruses 2019; 11:v11100959. [PMID: 31627371 PMCID: PMC6832630 DOI: 10.3390/v11100959] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
Viruses and natural killer (NK) cells have a long co-evolutionary history, evidenced by patterns of specific NK gene frequencies in those susceptible or resistant to infections. The killer immunoglobulin-like receptors (KIR) and their human leukocyte antigen (HLA) ligands together form the most polymorphic receptor-ligand partnership in the human genome and govern the process of NK cell education. The KIR and HLA genes segregate independently, thus creating an array of reactive potentials within and between the NK cell repertoires of individuals. In this review, we discuss the interplay between NK cell education and adaptation with virus infection, with a special focus on three viruses for which the NK cell response is often studied: human immunodeficiency virus (HIV), hepatitis C virus (HCV) and human cytomegalovirus (HCMV). Through this lens, we highlight the complex co-evolution of viruses and NK cells, and their impact on viral control.
Collapse
|
29
|
DeWolfe D, Aid M, McGann K, Ghofrani J, Geiger E, Helzer C, Malik S, Kleiboeker S, Jost S, Tan CS. NK Cells Contribute to the Immune Risk Profile in Kidney Transplant Candidates. Front Immunol 2019; 10:1890. [PMID: 31507586 PMCID: PMC6716214 DOI: 10.3389/fimmu.2019.01890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/26/2019] [Indexed: 01/03/2023] Open
Abstract
Background: A previously proposed immune risk profile (IRP), based on T cell phenotype and CMV serotype, is associated with mortality in the elderly and increased infections post-kidney transplant. To evaluate if NK cells contribute to the IRP and if the IRP can be predicted by a clinical T cell functional assays, we conducted a cross sectional study in renal transplant candidates to determine the incidence of IRP and its association with specific NK cell characteristics and ImmuKnow® value. Material and Methods: Sixty five subjects were enrolled in 5 cohorts designated by age and dialysis status. We determined T and NK cell phenotypes by flow cytometry and analyzed multiple factors contributing to IRP. Results: We identified 14 IRP+ [CMV seropositivity and CD4/CD8 ratio < 1 or being in the highest quintile of CD8+ senescent (28CD–/CD57+) T cells] individuals equally divided amongst the cohorts. Multivariable linear regression revealed a distinct IRP+ group. Age and dialysis status did not predict immune senescence in kidney transplant candidates. NK cell features alone could discriminate IRP– and IRP+ patients, suggesting that NK cells significantly contribute to the overall immune status in kidney transplant candidates and that a combined T and NK cell phenotyping can provide a more detailed IRP definition. ImmuKnow® value was negatively correlated to age and significantly lower in IRP+ patients and predicts IRP when used alone or in combination with NK cell features. Conclusion: NK cells contribute to overall immune senescence in kidney transplant candidates.
Collapse
Affiliation(s)
- David DeWolfe
- Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Malika Aid
- Center for Virology and Vaccines Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Kevin McGann
- Center for Virology and Vaccines Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Joshua Ghofrani
- Center for Virology and Vaccines Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Emma Geiger
- Center for Virology and Vaccines Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Catherine Helzer
- Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Shaily Malik
- Center for Virology and Vaccines Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | | | - Stephanie Jost
- Center for Virology and Vaccines Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Chen Sabrina Tan
- Center for Virology and Vaccines Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
30
|
Nath PR, Pal-Nath D, Mandal A, Cam MC, Schwartz AL, Roberts DD. Natural Killer Cell Recruitment and Activation Are Regulated by CD47 Expression in the Tumor Microenvironment. Cancer Immunol Res 2019; 7:1547-1561. [PMID: 31362997 DOI: 10.1158/2326-6066.cir-18-0367] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 03/29/2019] [Accepted: 07/26/2019] [Indexed: 12/19/2022]
Abstract
Elevated CD47 expression in some cancers is associated with decreased survival and limited clearance by phagocytes expressing the CD47 counterreceptor SIRPα. In contrast, elevated CD47 mRNA expression in human melanomas was associated with improved survival. Gene-expression data were analyzed to determine a potential mechanism for this apparent protective function and suggested that high CD47 expression increases recruitment of natural killer (NK) cells into the tumor microenvironment. The CD47 ligand thrombospondin-1 inhibited NK cell proliferation and CD69 expression in vitro Cd47 -/- NK cells correspondingly displayed augmented effector phenotypes, indicating an inhibitory function of CD47 on NK cells. Treating human NK cells with a CD47 antibody that blocks thrombospondin-1 binding abrogated its inhibitory effect on NK cell proliferation. Similarly, treating wild-type mice with a CD47 antibody that blocks thrombospondin-1 binding delayed B16 melanoma growth, associating with increased NK cell recruitment and increased granzyme B and interferon-γ levels in intratumoral NK but not CD8+ T cells. However, B16 melanomas grew faster in Cd47 -/- than in wild-type mice. Melanoma-bearing Cd47 -/- mice exhibited decreased splenic NK cell numbers, with impaired effector protein expression and elevated exhaustion markers. Proapoptotic gene expression in Cd47-/- NK cells was associated with stress-mediated increases in mitochondrial proton leak, reactive oxygen species, and apoptosis. Global gene-expression profiling in NK cells from tumor-bearing mice identified CD47-dependent transcriptional responses that regulate systemic NK activation and exhaustion. Therefore, CD47 positively and negatively regulates NK cell function, and therapeutic antibodies that block inhibitory CD47 signaling can enhance NK immune surveillance of melanomas.
Collapse
Affiliation(s)
- Pulak Ranjan Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Dipasmita Pal-Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ajeet Mandal
- Human Brain Collection Core, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Margaret C Cam
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, National Cancer Institute, and Leidos Biomedical Research, Inc., National Institutes of Health, Bethesda, Maryland
| | - Anthony L Schwartz
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
31
|
Das J, Lanier LL. Data analysis to modeling to building theory in NK cell biology and beyond: How can computational modeling contribute? J Leukoc Biol 2019; 105:1305-1317. [PMID: 31063614 DOI: 10.1002/jlb.6mr1218-505r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 12/31/2022] Open
Abstract
The use of mathematical and computational tools in investigating Natural Killer (NK) cell biology and in general the immune system has increased steadily in the last few decades. However, unlike the physical sciences, there is a persistent ambivalence, which however is increasingly diminishing, in the biology community toward appreciating the utility of quantitative tools in addressing questions of biological importance. We survey some of the recent developments in the application of quantitative approaches for investigating different problems in NK cell biology and evaluate opportunities and challenges of using quantitative methods in providing biological insights in NK cell biology.
Collapse
Affiliation(s)
- Jayajit Das
- Battelle Center for Mathematical Medicine, Research Institute at the Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA.,Department of Physics, The Ohio State University, Columbus, Ohio, USA.,Biophysics Program, The Ohio State University, Columbus, Ohio, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California, San Francisco, California, USA
| |
Collapse
|
32
|
Xu W, Monaco G, Wong EH, Tan WLW, Kared H, Simoni Y, Tan SW, How WZY, Tan CTY, Lee BTK, Carbajo D, K G S, Low ICH, Mok EWH, Foo S, Lum J, Tey HL, Tan WP, Poidinger M, Newell E, Ng TP, Foo R, Akbar AN, Fülöp T, Larbi A. Mapping of γ/δ T cells reveals Vδ2+ T cells resistance to senescence. EBioMedicine 2018; 39:44-58. [PMID: 30528453 PMCID: PMC6354624 DOI: 10.1016/j.ebiom.2018.11.053] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Background Immune adaptation with aging is a major of health outcomes. Studies in humans have mainly focus on αβ T cells while γδ T cells have been neglected despite their role in immunosurveillance. We investigated the impact of aging on γδ T cell subsets phenotypes, functions, senescence and their molecular response to stress. Methods Peripheral blood of young and old donors in Singapore have been used to assess the phenotype, functional capacity, proliferation capacity and gene expression of the various γδ T cell subsets. Peripheral blood mononuclear cells from apheresis cones and young donors have been used to characterize the telomere length, epigenetics profile and DNA damage response of the various γδ T cell subsets phenotype. Findings Our data shows that peripheral Vδ2+ phenotype, functional capacity (cytokines, cytotoxicity, proliferation) and gene expression profile are specific when compared against all other αβ and γδ T cells in aging. Hallmarks of senescence including telomere length, epigenetic profile and DNA damage response of Vδ2+ also differs against all other αβ and γδ T cells. Interpretation Our results highlight the differential impact of lifelong stress on γδ T cells subsets, and highlight possible mechanisms that enable Vδ2+ to be resistant to cellular aging. The new findings reinforce the concept that Vδ2+ have an “innate-like” behavior and are more resilient to the environment as compared to “adaptive-like” Vδ1+ T cells.
Collapse
Affiliation(s)
- Weili Xu
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Gianni Monaco
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore; Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Eleanor Huijin Wong
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), Genome Building, Biopolis, Singapore, Singapore
| | - Wilson Lek Wen Tan
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), Genome Building, Biopolis, Singapore, Singapore
| | - Hassen Kared
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Yannick Simoni
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Shu Wen Tan
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore; Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Wilson Zhi Yong How
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Crystal Tze Ying Tan
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Bernett Teck Kwong Lee
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Daniel Carbajo
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Srinivasan K G
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Ivy Chay Huang Low
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Esther Wing Hei Mok
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Shihui Foo
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | | | | | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Evan Newell
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore
| | - Tze Pin Ng
- Gerontology Research Programme, Department of Psychological Medicine, National University Health System, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Roger Foo
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), Genome Building, Biopolis, Singapore, Singapore
| | - Arne N Akbar
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Tamas Fülöp
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; Department of Microbiology, National University of Singapore, Singapore, Singapore; Department of Biology, Faculty of Science, University Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
33
|
Holder KA, Lajoie J, Grant MD. Natural Killer Cells Adapt to Cytomegalovirus Along a Functionally Static Phenotypic Spectrum in Human Immunodeficiency Virus Infection. Front Immunol 2018; 9:2494. [PMID: 30483249 PMCID: PMC6240648 DOI: 10.3389/fimmu.2018.02494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/09/2018] [Indexed: 01/20/2023] Open
Abstract
Events related to HCMV infection drive accumulation of functionally enhanced CD57posNKG2Cpos adapted NK cells. We investigated NK cell adaptation to HCMV along a proposed continuum progressing from acute activation through maturation and memory formation towards functional exhaustion. Acute exposure to conditioned medium collected 24 h after HCMV infection (HCMVsn) increased NK cell cytotoxicity for all HCMV-seronegative and seropositive donors tested, with mean 38 and 29% boosts in natural and antibody-dependent cell-mediated cytotoxicity (ADCC), respectively. Increases in NK cell cytotoxicity were completely abrogated by blocking type I interferon (IFN) receptors and equivalent responses occurred with exposure to IFN-α2 alone at the same concentration present in HCMVsn. To study longer term effects of HCMV infection, we focused on three groups of human immunodeficiency virus (HIV)-infected subjects distinguished as HCMV-seronegative or HCMV-seropositive with either high (>20%) or low (<6%) fractions of their NK cells expressing NKG2C. The NK cells of all three HIV-infected groups responded to HCMVsn and IFN-α2 in a manner similar to the NK cells of either HCMV-seronegative or seropositive controls. Neither HCMV status, nor the extent of phenotypic evidence of adaptation to HCMV infection significantly affected mean levels of ADCC or CD16-mediated NK cell degranulation and IFN-γ production compared between the HIV-infected groups. Levels of IFN-γ production correlated significantly with the fraction of NK cells lacking FcεRIγ (FcRγ), but not with the fraction of NK cells expressing NKG2C. There was negligible expression of exhaustion markers Lag-3 and PD-1 on NK cells in any of the groups and no significant difference between groups in the fraction of NK cells expressing Tim-3. The fraction of NK cells expressing Tim-3 was unaffected by CD16 stimulation. Relative to the total NK cell population, responses of Tim-3-expressing cells to CD16 stimulation were variably compromised in HCMV seronegative and seropositive groups. In general, NK cell function in response to signaling through CD16 was well preserved in HIV infection and although HCMV had a clear effect on NK cell FcRγ and NKG2C expression, there was little evidence that the level of adaptation to HCMV infection affected CD16-dependent NK cell signaling in HIV infection.
Collapse
Affiliation(s)
- Kayla A Holder
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Julie Lajoie
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Michael D Grant
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
34
|
Abel AM, Yang C, Thakar MS, Malarkannan S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front Immunol 2018; 9:1869. [PMID: 30150991 PMCID: PMC6099181 DOI: 10.3389/fimmu.2018.01869] [Citation(s) in RCA: 667] [Impact Index Per Article: 111.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 12/25/2022] Open
Abstract
Natural killer (NK) cells are the predominant innate lymphocyte subsets that mediate anti-tumor and anti-viral responses, and therefore possess promising clinical utilization. NK cells do not express polymorphic clonotypic receptors and utilize inhibitory receptors (killer immunoglobulin-like receptor and Ly49) to develop, mature, and recognize “self” from “non-self.” The essential roles of common gamma cytokines such as interleukin (IL)-2, IL-7, and IL-15 in the commitment and development of NK cells are well established. However, the critical functions of pro-inflammatory cytokines IL-12, IL-18, IL-27, and IL-35 in the transcriptional-priming of NK cells are only starting to emerge. Recent studies have highlighted multiple shared characteristics between NK cells the adaptive immune lymphocytes. NK cells utilize unique signaling pathways that offer exclusive ways to genetically manipulate to improve their effector functions. Here, we summarize the recent advances made in the understanding of how NK cells develop, mature, and their potential translational use in the clinic.
Collapse
Affiliation(s)
- Alex M Abel
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chao Yang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States.,Center of Excellence in Prostate Cancer, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|