1
|
Tomaszewski KL, Blanchard M, Olaniyi R, Brenton HR, Hayes S, Fatma F, Amarasinghe GK, Cho BK, Goo YA, DeDent AC, Fritz SA, Wardenburg JB. Enhanced Staphylococcus aureus protection by uncoupling of the α-toxin-ADAM10 interaction during murine neonatal vaccination. Nat Commun 2024; 15:8702. [PMID: 39379345 PMCID: PMC11461939 DOI: 10.1038/s41467-024-52714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Staphylococcus aureus remains a leading global cause of bacterial infection-associated mortality and has eluded prior vaccine development efforts. S. aureus α-toxin (Hla) is an essential virulence factor in disease, impairing the T cell response to infection. The anti-Hla antibody response is a correlate of human protective immunity. Here we observe that this response is limited early in human life and design a vaccine strategy to elicit immune protection against Hla in a neonatal mice. By targeted disruption of the interaction of Hla with its receptor ADAM10, we identify a vaccine antigen (HlaH35L/R66C/E70C, HlaHRE) that elicits an ~100-fold increase in the neutralizing anti-Hla response. Immunization with HlaHRE enhances the T follicular helper (TFH) cell response to S. aureus infection, correlating with the magnitude of the neutralizing anti-toxin response and disease protection. Furthermore, maternal HlaHRE immunization confers protection to offspring. Together, these findings illuminate a path for S. aureus vaccine development at the maternal-infant interface.
Collapse
Affiliation(s)
- Kelly L Tomaszewski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Forward Defense, LLC, St. Louis, MO, USA
| | - Meagan Blanchard
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Reuben Olaniyi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Merck & Co, West Point, PA, USA
| | - Hannah R Brenton
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Samantha Hayes
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Farheen Fatma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Byoung-Kyu Cho
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute - Washington University School of Medicine, St. Louis, MO, USA
| | - Young Ah Goo
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute - Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea C DeDent
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
- Cleveland Clinic Innovations, Cleveland Clinic, Cleveland, OH, USA
| | - Stephanie A Fritz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Juliane Bubeck Wardenburg
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
- Forward Defense, LLC, St. Louis, MO, USA.
| |
Collapse
|
2
|
Bufan B, Arsenović-Ranin N, Živković I, Ćuruvija I, Blagojević V, Dragačević L, Kovačević A, Kotur-Stevuljević J, Leposavić G. Modulation of T-Cell-Dependent Humoral Immune Response to Influenza Vaccine by Multiple Antioxidant/Immunomodulatory Micronutrient Supplementation. Vaccines (Basel) 2024; 12:743. [PMID: 39066381 PMCID: PMC11281378 DOI: 10.3390/vaccines12070743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Notwithstanding prevalence gaps in micronutrients supporting immune functions, the significance of their deficits/supplementation for the efficacy of vaccines is underinvestigated. Thus, the influence of supplementation combining vitamins C and D, zinc, selenium, manganese, and N-acetyl cysteine on immune correlates/surrogates of protection conferred by a quadrivalent influenza vaccine (QIV) in mice was investigated. The supplementation starting 5 days before the first of two QIV injections given 28 days apart increased the serum titres of total and neutralizing IgG against each of four influenza strains from QIV. Accordingly, the frequencies of germinal center B cells, follicular CD4+ T helper (Th) cells, and IL-21-producing Th cells increased in secondary lymphoid organs (SLOs). Additionally, the supplementation improved already increased IgG response to the second QIV injection by augmenting not only neutralizing antibody production, but also IgG2a response, which is important for virus clearance, through favoring Th1 differentiation as indicated by Th1 (IFN-γ)/Th2 (IL-4) signature cytokine level ratio upon QIV restimulation in SLO cell cultures. This most likely partly reflected antioxidant action of the supplement as indicated by splenic redox status analyses. Thus, the study provides a solid scientific background for further research aimed at repurposing the use of this safe and inexpensive micronutrient combination to improve response to the influenza vaccine.
Collapse
Affiliation(s)
- Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia; (B.B.); (N.A.-R.)
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia; (B.B.); (N.A.-R.)
| | - Irena Živković
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (I.Ž.); (I.Ć.); (V.B.); (L.D.)
| | - Ivana Ćuruvija
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (I.Ž.); (I.Ć.); (V.B.); (L.D.)
| | - Veljko Blagojević
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (I.Ž.); (I.Ć.); (V.B.); (L.D.)
| | - Luka Dragačević
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (I.Ž.); (I.Ć.); (V.B.); (L.D.)
| | - Ana Kovačević
- Department for Virology Control, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia;
| | - Jelena Kotur-Stevuljević
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia;
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| |
Collapse
|
3
|
Cheang NYZ, Tan KS, Tan PS, Purushotorma K, Yap WC, Tullett KM, Chua BYL, Yeoh AYY, Tan CQH, Qian X, Chen H, Tay DJW, Caminschi I, Tan YJ, Macary PA, Tan CW, Lahoud MH, Alonso S. Single-shot dendritic cell targeting SARS-CoV-2 vaccine candidate induces broad, durable and protective systemic and mucosal immunity in mice. Mol Ther 2024; 32:2299-2315. [PMID: 38715364 PMCID: PMC11286822 DOI: 10.1016/j.ymthe.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/06/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
Current coronavirus disease 2019 vaccines face limitations including waning immunity, immune escape by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, limited cellular response, and poor mucosal immunity. We engineered a Clec9A-receptor binding domain (RBD) antibody construct that delivers the SARS-CoV-2 RBD to conventional type 1 dendritic cells. Compared with non-targeting approaches, single dose immunization in mice with Clec9A-RBD induced far higher RBD-specific antibody titers that were sustained for up to 21 months after vaccination. Uniquely, increasing neutralizing and antibody-dependent cytotoxicity activities across the sarbecovirus family was observed, suggesting antibody affinity maturation over time. Consistently and remarkably, RBD-specific follicular T helper cells and germinal center B cells persisted up to 12 months after immunization. Furthermore, Clec9A-RBD immunization induced a durable mono- and poly-functional T-helper 1-biased cellular response that was strongly cross-reactive against SARS-CoV-2 variants of concern, including Omicron subvariants, and with a robust CD8+ T cell signature. Uniquely, Clec9A-RBD single-shot systemic immunization effectively primed RBD-specific cellular and humoral immunity in lung and resulted in significant protection against homologous SARS-CoV-2 challenge as evidenced by limited body weight loss and approximately 2 log10 decrease in lung viral loads compared with non-immunized controls. Therefore, Clec9A-RBD immunization has the potential to trigger robust and sustained, systemic and mucosal protective immunity against rapidly evolving SARS-CoV2 variants.
Collapse
Affiliation(s)
- Nicholas You Zhi Cheang
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Kai Sen Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Peck Szee Tan
- Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Kiren Purushotorma
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wee Chee Yap
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Kirsteen McInnes Tullett
- Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Benson Yen Leong Chua
- Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Aileen Ying-Yan Yeoh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Caris Qi Hui Tan
- Histology Core Facility, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Xinlei Qian
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Huixin Chen
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Douglas Jie Wen Tay
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Irina Caminschi
- Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Department of Microbiology and Immunology, Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Yee Joo Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Paul Anthony Macary
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chee Wah Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mireille Hanna Lahoud
- Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Wang JN, Zheng G, Wu W, Huang H. Follicular helper T cells: emerging roles in lymphomagenesis. J Leukoc Biol 2024; 116:54-63. [PMID: 37939814 DOI: 10.1093/jleuko/qiad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/11/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023] Open
Abstract
Follicular helper T cells are a subset of CD4+ T cells that are fundamental to forming germinal centers, which are the primary sites of antibody affinity maturation and the proliferation of activated B cells. Follicular helper T cells have been extensively studied over the past 10 years, especially regarding their roles in cancer genesis. This review describes the characteristics of normal follicular helper T cells and focuses on the emerging link between follicular helper T cells and lymphomagenesis. Advances in lymphoma genetics have substantially expanded our understanding of the role of follicular helper T cells in lymphomagenesis. Moreover, we detail a range of agents and new therapies, with a major focus on chimeric antigen receptor T-cell therapy; these novel approaches may offer new treatment opportunities for patients with lymphomas.
Collapse
Affiliation(s)
- Ji-Nuo Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 311106, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
| | - Gaofeng Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 311106, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
| | - Wenjun Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 311106, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 311106, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
| |
Collapse
|
5
|
Hartmeier PR, Ostrowski SM, Busch EE, Empey KM, Meng WS. Lymphatic distribution considerations for subunit vaccine design and development. Vaccine 2024; 42:2519-2529. [PMID: 38494411 DOI: 10.1016/j.vaccine.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/30/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Subunit vaccines are an important platform for controlling current and emerging infectious diseases. The lymph nodes are the primary site generating the humoral response and delivery of antigens to these sites is critical to effective immunization. Indeed, the duration of antigen exposure within the lymph node is correlated with the antibody response. While current licensed vaccines are typically given through the intramuscular route, injecting vaccines subcutaneously allows for direct access to lymphatic vessels and therefore can enhance the transfer of antigen to the lymph nodes. However, protein subunit antigen uptake into the lymph nodes is inefficient, and subunit vaccines require adjuvants to stimulate the initial immune response. Therefore, formulation strategies have been developed to enhance the exposure of subunit proteins and adjuvants to the lymph nodes by increasing lymphatic uptake or prolonging the retention at the injection site. Given that lymph node exposure is a crucial consideration in vaccine design, in depth analyses of the pharmacokinetics of antigens and adjuvants should be the focus of future preclinical and clinical studies. This review will provide an overview of formulation strategies for targeting the lymphatics and prolonging antigen exposure and will discuss pharmacokinetic evaluations which can be applied toward vaccine development.
Collapse
Affiliation(s)
- Paul R Hartmeier
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Sarah M Ostrowski
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15213, USA
| | - Emelia E Busch
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Kerry M Empey
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, PA 15213, USA; Department of Immunology, School of Medicine University of Pittsburgh, PA 15213, USA
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA 15219, USA.
| |
Collapse
|
6
|
Hawiger D. Emerging T cell immunoregulatory mechanisms in multiple sclerosis and Alzheimer's disease. Front Aging Neurosci 2024; 16:1350240. [PMID: 38435400 PMCID: PMC10904586 DOI: 10.3389/fnagi.2024.1350240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Multiple sclerosis (MS) and Alzheimer's disease (AD) are neuroinflammatory and neurodegenerative diseases with considerable socioeconomic impacts but without definitive treatments. AD and MS have multifactorial pathogenesis resulting in complex cognitive and neurologic symptoms and growing evidence also indicates key functions of specific immune cells. Whereas relevant processes dependent on T cells have been elucidated in both AD and MS, mechanisms that can control such immune responses still remain elusive. Here, a brief overview of select recent findings clarifying immunomodulatory mechanisms specifically induced by tolerogenic dendritic cells to limit the activation and functions of neurodegenerative T cells is presented. These insights could become a foundation for new cutting-edge research as well as therapeutic strategies.
Collapse
Affiliation(s)
- Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
7
|
Gautam N, Ramamoorthi G, Champion N, Han HS, Czerniecki BJ. Reviewing the significance of dendritic cell vaccines in interrupting breast cancer development. Mol Aspects Med 2024; 95:101239. [PMID: 38150884 DOI: 10.1016/j.mam.2023.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
Breast cancer is a heterogeneous disease and is the most prevalent cancer in women. According to the U.S breast cancer statistics, about 1 in every 8 women develop an invasive form of breast cancer during their lifetime. Immunotherapy has been a significant advancement in the treatment of cancer with multiple studies reporting favourable patient outcomes by modulating the immune response to cancer cells. Here, we review the significance of dendritic cell vaccines in treating breast cancer patients. We discuss the involvement of dendritic cells and oncodrivers in breast tumorigenesis, highlighting the rationale for targeting oncodrivers and neoantigens using dendritic cell vaccine therapy. We review different dendritic cell subsets and maturation states previously used to develop vaccines and suggest the use of DC vaccines for breast cancer prevention. Further, we highlight that the intratumoral delivery of type 1 dendritic cell vaccines in breast cancer patients activates tumor antigen-specific CD4+ T helper cell type 1 (Th1) cells, promoting an anti-tumorigenic immune response while concurrently blocking pro-tumorigenic responses. In summary, this review provides an overview of the current state of dendritic cell vaccines in breast cancer highlighting the challenges and considerations necessary for an efficient dendritic cell vaccine design in interrupting breast cancer development.
Collapse
Affiliation(s)
- Namrata Gautam
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Ganesan Ramamoorthi
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Nicholas Champion
- Department of Breast Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Hyo S Han
- Department of Breast Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Brian J Czerniecki
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA; Department of Breast Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
8
|
Krenács L, Krenács D, Borbényi Z, Tóth E, Nagy A, Piukovics K, Bagdi E. Comparison of Follicular Helper T-Cell Markers with the Expression of the Follicular Homing Marker CXCR5 in Peripheral T-Cell Lymphomas-A Reappraisal of Follicular Helper T-Cell Lymphomas. Int J Mol Sci 2023; 25:428. [PMID: 38203606 PMCID: PMC10778845 DOI: 10.3390/ijms25010428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) expressing multiple follicular T helper (TFH) cell-related antigens are now classified as TFH lymphomas (TFHL), including angioimmunoblastic, follicular, and not otherwise specified (NOS) types. CXCR5 is the TFH cell-defining chemokine receptor that, together with its ligand CXCL13, plays a critical role in the development of follicles and the positioning of TFH and B cells within follicles. A comprehensive immunomorphologic study was performed to investigate the expression pattern of CXCR5 in a large cohort of nodal PTCLs, particularly those with a TFH cell phenotype, and to compare its expression with six other TFH cell-related antigens. We found that CXCR5 is widely expressed in neoplastic TFH cells, except in TFHL-NOS, and represents a specific marker of this lymphoma entity. Our results suggest that CXCR5 directs the distribution of neoplastic T cells in the affected lymph nodes and may influence the formation of the pathognomic pathological FDC network.
Collapse
Affiliation(s)
- László Krenács
- Laboratory of Tumor Pathology and Molecular Diagnostics, 6726 Szeged, Hungary (E.B.)
| | - Dóra Krenács
- Laboratory of Tumor Pathology and Molecular Diagnostics, 6726 Szeged, Hungary (E.B.)
- Division of Haematology, Department of Internal Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, 6721 Szeged, Hungary
| | - Zita Borbényi
- Division of Haematology, Department of Internal Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, 6721 Szeged, Hungary
| | - Erika Tóth
- Department of Pathology, National Institute of Oncology, 1122 Budapest, Hungary;
| | - Anna Nagy
- 1st Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Klára Piukovics
- Division of Haematology, Department of Internal Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, 6721 Szeged, Hungary
| | - Enikő Bagdi
- Laboratory of Tumor Pathology and Molecular Diagnostics, 6726 Szeged, Hungary (E.B.)
| |
Collapse
|
9
|
Hartmeier PR, Kosanovich JL, Velankar KY, Ostrowski SM, Busch EE, Lipp MA, Empey KM, Meng WS. Modeling the kinetics of lymph node retention and exposure of a cargo protein delivered by biotin-functionalized nanoparticles. Acta Biomater 2023; 170:453-463. [PMID: 37652212 PMCID: PMC10592217 DOI: 10.1016/j.actbio.2023.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Generation of protective immunity through vaccination arises from the adaptive immune response developed primarily in the lymph nodes drained from the immunization site. Relative to the intramuscular route, subcutaneous administration allows for direct and rapid access to the lymphatics, but accumulation of soluble protein antigens within the lymph nodes is limited. Subunit vaccines also require immune stimulating adjuvants which may not accumulate in the same lymph nodes simultaneously with antigen. Herein we report the use of biotinylated poly (lactic-co-glycolic acid) nanoparticles (bNPs) to enhance delivery of a model protein antigen to the lymphatics. bNPs provide dual functionality as adjuvant and vehicle to localize antigens with stimulated immune cells in the same draining lymph node. Using streptavidin as a model antigen, which can be loaded directly onto the bNP surface, we evaluated the kinetics of lymph node occupancy and adaptive immune responses in wildtype C57BL/6 mice. Antigen exposure in vivo was significantly improved through surface loading onto bNPs, and we developed a working kinetic model to account for the retention of both particles and antigen in draining lymph nodes. We observed enhanced T cell responses and antigen-specific B cell response in vivo when antigen was delivered on the particle surface. This work highlights the advantage of combining intrinsic adjuvant and antigen loading in a single entity, and the utility of kinetic modeling in the understanding of particle-based vaccines. STATEMENT OF SIGNIFICANCE: Development of safe and effective subunit vaccines depends on effective formulations that render optimized exposure and colocalization of antigens and adjuvants. In this work, we utilize a nanoparticle system which features self-adjuvanting properties and allows for surface loading of recombinant protein antigens. Using in vivo imaging, we demonstrated prolonged co-localization of the antigen and adjuvant particles in draining lymph nodes and provided evidence of B cell activation for up to 21 days following subcutaneous injection. A pharmacokinetic model was developed as a step towards bridging the translational gap between particulate-based vaccines and observed outcomes. The results have implications for the rational design of particle-based vaccines.
Collapse
Affiliation(s)
- Paul R Hartmeier
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Jessica L Kosanovich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15219, USA
| | - Ketki Y Velankar
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Sarah M Ostrowski
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15219, USA
| | - Emelia E Busch
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Madeline A Lipp
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15219, USA
| | - Kerry M Empey
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15219, USA; Department of Immunology, School of Medicine, University of Pittsburgh, PA 15219, USA.
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA 15219, USA.
| |
Collapse
|
10
|
Clement M. The association of microbial infection and adaptive immune cell activation in Alzheimer's disease. DISCOVERY IMMUNOLOGY 2023; 2:kyad015. [PMID: 38567070 PMCID: PMC10917186 DOI: 10.1093/discim/kyad015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/31/2023] [Accepted: 09/04/2023] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. Early symptoms include the loss of memory and mild cognitive ability; however, as the disease progresses, these symptoms can present with increased severity manifesting as mood and behaviour changes, disorientation, and a loss of motor/body control. AD is one of the leading causes of death in the UK, and with an ever-increasing ageing society, patient numbers are predicted to rise posing a significant global health emergency. AD is a complex neurophysiological disorder where pathology is characterized by the deposition and aggregation of misfolded amyloid-beta (Aβ)-protein that in-turn promotes excessive tau-protein production which together drives neuronal cell dysfunction, neuroinflammation, and neurodegeneration. It is widely accepted that AD is driven by a combination of both genetic and immunological processes with recent data suggesting that adaptive immune cell activity within the parenchyma occurs throughout disease. The mechanisms behind these observations remain unclear but suggest that manipulating the adaptive immune response during AD may be an effective therapeutic strategy. Using immunotherapy for AD treatment is not a new concept as the only two approved treatments for AD use antibody-based approaches to target Aβ. However, these have been shown to only temporarily ease symptoms or slow progression highlighting the urgent need for newer treatments. This review discusses the role of the adaptive immune system during AD, how microbial infections may be contributing to inflammatory immune activity and suggests how adaptive immune processes can pose as therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Mathew Clement
- Division of Infection and Immunity, Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
11
|
Suberi A, Grun MK, Mao T, Israelow B, Reschke M, Grundler J, Akhtar L, Lee T, Shin K, Piotrowski-Daspit AS, Homer RJ, Iwasaki A, Suh HW, Saltzman WM. Polymer nanoparticles deliver mRNA to the lung for mucosal vaccination. Sci Transl Med 2023; 15:eabq0603. [PMID: 37585505 PMCID: PMC11137749 DOI: 10.1126/scitranslmed.abq0603] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/26/2023] [Indexed: 08/18/2023]
Abstract
An inhalable platform for messenger RNA (mRNA) therapeutics would enable minimally invasive and lung-targeted delivery for a host of pulmonary diseases. Development of lung-targeted mRNA therapeutics has been limited by poor transfection efficiency and risk of vehicle-induced pathology. Here, we report an inhalable polymer-based vehicle for delivery of therapeutic mRNAs to the lung. We optimized biodegradable poly(amine-co-ester) (PACE) polyplexes for mRNA delivery using end-group modifications and polyethylene glycol. These polyplexes achieved high transfection of mRNA throughout the lung, particularly in epithelial and antigen-presenting cells. We applied this technology to develop a mucosal vaccine for severe acute respiratory syndrome coronavirus 2 and found that intranasal vaccination with spike protein-encoding mRNA polyplexes induced potent cellular and humoral adaptive immunity and protected susceptible mice from lethal viral challenge. Together, these results demonstrate the translational potential of PACE polyplexes for therapeutic delivery of mRNA to the lungs.
Collapse
Affiliation(s)
- Alexandra Suberi
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Molly K Grun
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Benjamin Israelow
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Melanie Reschke
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Julian Grundler
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Laiba Akhtar
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
| | - Teresa Lee
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Kwangsoo Shin
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | | | - Robert J Homer
- Department of Pathology, Yale University School of Medicine, CT 06510, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Hee-Won Suh
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
12
|
Ung T, Rutledge NS, Weiss AM, Esser-Kahn AP, Deak P. Cell-targeted vaccines: implications for adaptive immunity. Front Immunol 2023; 14:1221008. [PMID: 37662903 PMCID: PMC10468591 DOI: 10.3389/fimmu.2023.1221008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Recent advancements in immunology and chemistry have facilitated advancements in targeted vaccine technology. Targeting specific cell types, tissue locations, or receptors can allow for modulation of the adaptive immune response to vaccines. This review provides an overview of cellular targets of vaccines, suggests methods of targeting and downstream effects on immune responses, and summarizes general trends in the literature. Understanding the relationships between vaccine targets and subsequent adaptive immune responses is critical for effective vaccine design. This knowledge could facilitate design of more effective, disease-specialized vaccines.
Collapse
Affiliation(s)
- Trevor Ung
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Nakisha S. Rutledge
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Adam M. Weiss
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Peter Deak
- Chemical and Biological Engineering Department, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
13
|
Boyd MAA, Carey Hoppe A, Kelleher AD, Munier CML. T follicular helper cell responses to SARS-CoV-2 vaccination among healthy and immunocompromised adults. Immunol Cell Biol 2023; 101:504-513. [PMID: 36825370 PMCID: PMC10952589 DOI: 10.1111/imcb.12635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
The worldwide rollout of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccinations in the last 2 years has produced a multitude of studies investigating T-cell responses in the peripheral blood and a limited number in secondary lymphoid tissues. As a key component to an effective immune response, vaccine-specific T follicular helper (Tfh) cells are localized in the draining lymph node (LN) and assist in the selection of highly specific B-cell clones for the production of neutralizing antibodies. While these cells have been noted in the blood as circulating Tfh (cTfh) cells, they are not often taken into consideration when examining effective CD4+ T-cell responses, particularly in immunocompromised groups. Furthermore, site-specific analyses in locations such as the LN have recently become an attractive area of investigation. This is mainly a result of improved sampling methods via ultrasound-guided fine-needle biopsy (FNB)/fine-needle aspiration (FNA), which are less invasive than LN excision and able to be performed longitudinally. While these studies have been undertaken in healthy individuals, data from immunocompromised groups are lacking. This review will focus on both Tfh and cTfh responses after SARS-CoV-2 vaccination in healthy and immunocompromised individuals. This area of investigation could identify key characteristics of a successful LN response required for the prevention of infection and viral clearance. This furthermore may highlight responses that could be fine-tuned to improve vaccine efficacy within immunocompromised groups that are at a risk of more severe disease.
Collapse
Affiliation(s)
| | - Alexandra Carey Hoppe
- Immunovirology and Pathogenesis ProgramThe Kirby InstituteUNSWSydneyNSW2052Australia
| | - Anthony D Kelleher
- Immunovirology and Pathogenesis ProgramThe Kirby InstituteUNSWSydneyNSW2052Australia
- St Vincent's HospitalSydneyNSW2010Australia
| | - C Mee Ling Munier
- Immunovirology and Pathogenesis ProgramThe Kirby InstituteUNSWSydneyNSW2052Australia
| |
Collapse
|
14
|
Bourque J, Hawiger D. Activation, Amplification, and Ablation as Dynamic Mechanisms of Dendritic Cell Maturation. BIOLOGY 2023; 12:biology12050716. [PMID: 37237529 DOI: 10.3390/biology12050716] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
T cell responses to cognate antigens crucially depend on the specific functionality of dendritic cells (DCs) activated in a process referred to as maturation. Maturation was initially described as alterations of the functional status of DCs in direct response to multiple extrinsic innate signals derived from foreign organisms. More recent studies, conducted mainly in mice, revealed an intricate network of intrinsic signals dependent on cytokines and various immunomodulatory pathways facilitating communication between individual DCs and other cells for the orchestration of specific maturation outcomes. These signals selectively amplify the initial activation of DCs mediated by innate factors and dynamically shape DC functionalities by ablating DCs with specific functions. Here, we discuss the effects of the initial activation of DCs that crucially includes the production of cytokine intermediaries to collectively achieve amplification of the maturation process and further precise sculpting of the functional landscapes among DCs. By emphasizing the interconnectedness of the intracellular and intercellular mechanisms, we reveal activation, amplification, and ablation as the mechanistically integrated components of the DC maturation process.
Collapse
Affiliation(s)
- Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
15
|
Pankhurst TE, Buick KH, Lange JL, Marshall AJ, Button KR, Palmer OR, Farrand KJ, Montgomerie I, Bird TW, Mason NC, Kuang J, Compton BJ, Comoletti D, Salio M, Cerundolo V, Quiñones-Mateu ME, Painter GF, Hermans IF, Connor LM. MAIT cells activate dendritic cells to promote T FH cell differentiation and induce humoral immunity. Cell Rep 2023; 42:112310. [PMID: 36989114 PMCID: PMC10045373 DOI: 10.1016/j.celrep.2023.112310] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/02/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Protective immune responses against respiratory pathogens, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus, are initiated by the mucosal immune system. However, most licensed vaccines are administered parenterally and are largely ineffective at inducing mucosal immunity. The development of safe and effective mucosal vaccines has been hampered by the lack of a suitable mucosal adjuvant. In this study we explore a class of adjuvant that harnesses mucosal-associated invariant T (MAIT) cells. We show evidence that intranasal immunization of MAIT cell agonists co-administered with protein, including the spike receptor binding domain from SARS-CoV-2 virus and hemagglutinin from influenza virus, induce protective humoral immunity and immunoglobulin A production. MAIT cell adjuvant activity is mediated by CD40L-dependent activation of dendritic cells and subsequent priming of T follicular helper cells. In summary, we show that MAIT cells are promising vaccine targets that can be utilized as cellular adjuvants in mucosal vaccines.
Collapse
Affiliation(s)
- Theresa E Pankhurst
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Kaitlin H Buick
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Joshua L Lange
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Andrew J Marshall
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Kaileen R Button
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Olga R Palmer
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Kathryn J Farrand
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Isabelle Montgomerie
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Thomas W Bird
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Ngarangi C Mason
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Joanna Kuang
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Davide Comoletti
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Mariolina Salio
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | | | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Lisa M Connor
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Malaghan Institute of Medical Research, Wellington 6242, New Zealand.
| |
Collapse
|
16
|
Sun Z, Li G, Shang D, Zhang J, Ai L, Liu M. Identification of microsatellite instability and immune-related prognostic biomarkers in colon adenocarcinoma. Front Immunol 2022; 13:988303. [PMID: 36275690 PMCID: PMC9585257 DOI: 10.3389/fimmu.2022.988303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundColon adenocarcinoma (COAD) is a prevalent malignancy that causes significant mortality. Microsatellite instability plays a pivotal function in COAD development and immunotherapy resistance. However, the detailed underlying mechanism requires further investigation. Consequently, identifying molecular biomarkers with prognostic significance and revealing the role of MSI in COAD is important for addressing key obstacles in the available treatments.MethodsCIBERSORT and ESTIMATE analyses were performed to evaluate immune infiltration in COAD samples, followed by correlation analysis for MSI and immune infiltration. Then, differentially expressed genes (DEGs) in MSI and microsatellite stability (MSS) samples were identified and subjected to weighted gene co-expression network analysis (WGCNA). A prognostic model was established with univariate cox regression and LASSO analyses, then evaluated with Kaplan-Meier analysis. The correlation between the prognostic model and immune checkpoint inhibitor (ICI) response was also analyzed.ResultsIn total, 701 significant DEGs related to MSI status were identified, and WGCNA revealed two modules associated with the immune score. Then, a seven-gene prognostic model was constructed using LASSO and univariate cox regression analyses to predict survival and ICI response. The high-risk score patients in TCGA and GEO cohorts presented a poor prognosis, as well as a high immune checkpoint expression, so they are more likely to benefit from ICI treatment.ConclusionThe seven-gene prognostic model constructed could predict the survival of COAD and ICI response and serve as a reference for immunotherapy decisions.
Collapse
Affiliation(s)
- Ziquan Sun
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guodong Li
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Desi Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jinning Zhang
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lianjie Ai
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Liu
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Ming Liu,
| |
Collapse
|
17
|
TLR agonists induce sustained IgG to hemagglutinin stem and modulate T cells following newborn vaccination. NPJ Vaccines 2022; 7:102. [PMID: 36038596 PMCID: PMC9424286 DOI: 10.1038/s41541-022-00523-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The newborn immune system is characterized by diminished immune responses that leave infants vulnerable to virus-mediated disease and make vaccination more challenging. Optimal vaccination strategies for influenza A virus (IAV) in newborns should result in robust levels of protective antibodies, including those with broad reactivity to combat the variability in IAV strains across seasons. The stem region of the hemagglutinin (HA) molecule is a target of such antibodies. Using a nonhuman primate model, we investigate the capacity of newborns to generate and maintain antibodies to the conserved stem region following vaccination. We find adjuvanting an inactivated vaccine with the TLR7/8 agonist R848 is effective in promoting sustained HA stem-specific IgG. Unexpectedly, HA stem-specific antibodies were generated with a distinct kinetic pattern compared to the overall response. Administration of R848 was associated with increased influenza-specific T follicular helper cells as well as Tregs with a less suppressive phenotype, suggesting adjuvant impacts multiple cell types that have the potential to contribute to the HA-stem response.
Collapse
|
18
|
Nabavi-Rad A, Sadeghi A, Asadzadeh Aghdaei H, Yadegar A, Smith SM, Zali MR. The double-edged sword of probiotic supplementation on gut microbiota structure in Helicobacter pylori management. Gut Microbes 2022; 14:2108655. [PMID: 35951774 PMCID: PMC9373750 DOI: 10.1080/19490976.2022.2108655] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
As Helicobacter pylori management has become more challenging and less efficient over the last decade, the interest in innovative interventions is growing by the day. Probiotic co-supplementation to antibiotic therapies is reported in several studies, presenting a moderate reduction in drug-related side effects and a promotion in positive treatment outcomes. However, the significance of gut microbiota involvement in the competence of probiotic co-supplementation is emphasized by a few researchers, indicating the alteration in the host gastrointestinal microbiota following probiotic and drug uptake. Due to the lack of long-term follow-up studies to determine the efficiency of probiotic intervention in H. pylori eradication, and the delicate interaction of the gut microbiota with the host wellness, this review aims to discuss the gut microbiota alteration by probiotic co-supplementation in H. pylori management to predict the comprehensive effectiveness of probiotic oral administration.Abbreviations: acyl-CoA- acyl-coenzyme A; AMP- antimicrobial peptide; AMPK- AMP-activated protein kinase; AP-1- activator protein 1; BA- bile acid; BAR- bile acid receptor; BCAA- branched-chain amino acid; C2- acetate; C3- propionate; C4- butyrate; C5- valeric acid; CagA- Cytotoxin-associated gene A; cAMP- cyclic adenosine monophosphate; CD- Crohn's disease; CDI- C. difficile infection; COX-2- cyclooxygenase-2; DC- dendritic cell; EMT- epithelial-mesenchymal transition; FMO- flavin monooxygenases; FXR- farnesoid X receptor; GPBAR1- G-protein-coupled bile acid receptor 1; GPR4- G protein-coupled receptor 4; H2O2- hydrogen peroxide; HCC- hepatocellular carcinoma; HSC- hepatic stellate cell; IBD- inflammatory bowel disease; IBS- irritable bowel syndrome; IFN-γ- interferon-gamma; IgA immunoglobulin A; IL- interleukin; iNOS- induced nitric oxide synthase; JAK1- janus kinase 1; JAM-A- junctional adhesion molecule A; LAB- lactic acid bacteria; LPS- lipopolysaccharide; MALT- mucosa-associated lymphoid tissue; MAMP- microbe-associated molecular pattern; MCP-1- monocyte chemoattractant protein-1; MDR- multiple drug resistance; mTOR- mammalian target of rapamycin; MUC- mucin; NAFLD- nonalcoholic fatty liver disease; NF-κB- nuclear factor kappa B; NK- natural killer; NLRP3- NLR family pyrin domain containing 3; NOC- N-nitroso compounds; NOD- nucleotide-binding oligomerization domain; PICRUSt- phylogenetic investigation of communities by reconstruction of unobserved states; PRR- pattern recognition receptor; RA- retinoic acid; RNS- reactive nitrogen species; ROS- reactive oxygen species; rRNA- ribosomal RNA; SCFA- short-chain fatty acids; SDR- single drug resistance; SIgA- secretory immunoglobulin A; STAT3- signal transducer and activator of transcription 3; T1D- type 1 diabetes; T2D- type 2 diabetes; Th17- T helper 17; TLR- toll-like receptor; TMAO- trimethylamine N-oxide; TML- trimethyllysine; TNF-α- tumor necrosis factor-alpha; Tr1- type 1 regulatory T cell; Treg- regulatory T cell; UC- ulcerative colitis; VacA- Vacuolating toxin A.
Collapse
Affiliation(s)
- Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran,CONTACT Abbas Yadegar ; Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Shahid Arabi Ave., Yemen St., Velenjak, Tehran, Iran
| | - Sinéad Marian Smith
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland,Sinéad Marian Smith Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Mary R, Chalmin F, Accogli T, Bruchard M, Hibos C, Melin J, Truntzer C, Limagne E, Derangère V, Thibaudin M, Humblin E, Boidot R, Chevrier S, Arnould L, Richard C, Klopfenstein Q, Bernard A, Urade Y, Harker JA, Apetoh L, Ghiringhelli F, Végran F. Hematopoietic Prostaglandin D2 Synthase Controls Tfh/Th2 Communication and Limits Tfh Antitumor Effects. Cancer Immunol Res 2022; 10:900-916. [PMID: 35612500 DOI: 10.1158/2326-6066.cir-21-0568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/06/2021] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
T follicular helper (Tfh) cells are a subset of CD4+ T cells essential in immunity and have a role in helping B cells produce antibodies against pathogens. However, their role during cancer progression remains unknown. The mechanism of action of Tfh cells remains elusive because contradictory data have been reported on their protumor or antitumor responses in human and murine tumors. Like Tfh cells, Th2 cells are also involved in humoral immunity and are regularly associated with tumor progression and poor prognosis, mainly through their secretion of IL4. Here, we showed that Tfh cells expressed hematopoietic prostaglandin D2 (PGD2) synthase in a pSTAT1/pSTAT3-dependent manner. Tfh cells produced PGD2, which led to recruitment of Th2 cells via the PGD2 receptor chemoattractant receptor homologous molecule expressed on Th type 2 cells (CRTH2) and increased their effector functions. This cross-talk between Tfh and Th2 cells promoted IL4-dependent tumor growth. Correlation between Th2 cells, Tfh cells, and hematopoietic PGD2 synthase was observed in different human cancers and associated with outcome. This study provides evidence that Tfh/Th2 cross-talk through PGD2 limits the antitumor effects of Tfh cells and, therefore, could serve as a therapeutic target.
Collapse
Affiliation(s)
- Romain Mary
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Fanny Chalmin
- CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Théo Accogli
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Mélanie Bruchard
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | - Christophe Hibos
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Joséphine Melin
- LipSTIC LabEx, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | | | | | - Valentin Derangère
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | | | - Etienne Humblin
- CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,Precision Immunology Institute, New York, New York
| | - Romain Boidot
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | | | | | - Corentin Richard
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | | | - Antoine Bernard
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Yoshihiro Urade
- Intemational Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - James A Harker
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Lionel Apetoh
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France
| | - François Ghiringhelli
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | - Frédérique Végran
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France.,CRI INSERM UMR1231 "Lipids, Nutrition and Cancer", Dijon, France.,LipSTIC LabEx, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| |
Collapse
|
20
|
Gelmez MY, Betul Oktelik F, Cinar S, Ozbalak M, Ozluk O, Aktan M, Deniz G. High expression of OX-40, ICOS, and low expression PD-L1 of follicular helper and follicular cytotoxic T cells in chronic lymphocytic leukemia. J Hematop 2022. [DOI: 10.1007/s12308-022-00497-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
21
|
Houser CL, Lawrence BP. The Aryl Hydrocarbon Receptor Modulates T Follicular Helper Cell Responses to Influenza Virus Infection in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2319-2330. [PMID: 35444027 PMCID: PMC9117429 DOI: 10.4049/jimmunol.2100936] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/28/2022] [Indexed: 05/17/2023]
Abstract
T follicular helper (Tfh) cells support Ab responses and are a critical component of adaptive immune responses to respiratory viral infections. Tfh cells are regulated by a network of signaling pathways that are controlled, in part, by transcription factors. The aryl hydrocarbon receptor (AHR) is an environment-sensing transcription factor that modulates many aspects of adaptive immunity by binding a range of small molecules. However, the contribution of AHR signaling to Tfh cell differentiation and function is not known. In this article, we report that AHR activation by three different agonists reduced the frequency of Tfh cells during primary infection of C57BL/6 mice with influenza A virus (IAV). Further, using the high-affinity and AHR-specific agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin, we show that AHR activation reduced Tfh cell differentiation and T cell-dependent B cell responses. Using conditional AHR knockout mice, we demonstrated that alterations of Tfh cells and T cell-dependent B cell responses after AHR activation required the AHR in T cells. AHR activation reduced the number of T follicular regulatory (Tfr) cells; however, the ratio of Tfr to Tfh cells was amplified. These alterations to Tfh and Tfr cells during IAV infection corresponded with differences in expression of BCL6 and FOXP3 in CD4+ T cells and required the AHR to have a functional DNA-binding domain. Overall, these findings support that the AHR modulates Tfh cells during viral infection, which has broad-reaching consequences for understanding how environmental factors contribute to variation in immune defenses against infectious pathogens, such as influenza and severe acute respiratory syndrome coronavirus.
Collapse
Affiliation(s)
- Cassandra L Houser
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY; and
| | - B Paige Lawrence
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY; and
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
22
|
Bufan B, Arsenović-Ranin N, Živković I, Petrović R, Leposavić G. B-cell response to seasonal influenza vaccine in mice is amenable to pharmacological modulation through β-adrenoceptor. Life Sci 2022; 301:120617. [PMID: 35533760 DOI: 10.1016/j.lfs.2022.120617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
AIMS Given that deprivation of noradrenaline acting on lymphocytes through β-adrenoceptor influences antibody response, the effects of propranolol treatment beginning two days before immunization with quadrivalent inactivated influenza vaccine (QIV) on IgG response and underlying cellular molecular mechanism in mice were investigated. MAIN METHODS Twenty-one days post-immunization the total QIV antigen-specific IgG titer and IgG subclass titers in sera were determined using ELISA. Additionally, the total counts of germinal centre (GC) B cells, T follicular helper (Tfh) and T follicular regulatory (Tfr) cells in draining lymph nodes (dLNs) and spleens, in vitro proliferation of interacting B cells and Th cells and IL-21 synthesis in Th cells in response to QIV antigens and/or mitogen were attested using flow cytometry analysis. In QIV antigen-stimulated dLN cell and splenocyte cultures were also measured concentrations of INF-γ and IL-4, cytokines upregulating IgG2a and IgG1 synthesis, respectively. KEY FINDINGS Propranolol decreased the total QIV antigen-specific IgG titer. This correlated with lower GC B cell count and the shift in Tfr/Tfh cell and Tfr/GC B cell ratio towards Tfr in propranolol-treated mice compared with controls. Consistently, QIV antigen-stimulated proliferation of B cells and Th cells from propranolol-treated mice in vitro was impaired. This correlated with the lower frequency of QIV antigen-specific IL-21-producing cells among Th cells. Additionally, in propranolol-treated mice, in accordance with the changes in INF-γ/IL-4 ratio in dLN cell/splenocyte cultures, serum IgG2a/IgG1 ratio was shifted towards IgG1 reflecting decreased IgG2a response. SIGNIFICANCE The study indicates that chronic propranolol treatment may impair response to QIV.
Collapse
Affiliation(s)
- Biljana Bufan
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Irena Živković
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Raisa Petrović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia.
| |
Collapse
|
23
|
Mayberry CL, Logan NA, Wilson JJ, Chang CH. Providing a Helping Hand: Metabolic Regulation of T Follicular Helper Cells and Their Association With Disease. Front Immunol 2022; 13:864949. [PMID: 35493515 PMCID: PMC9047778 DOI: 10.3389/fimmu.2022.864949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/25/2022] [Indexed: 01/02/2023] Open
Abstract
T follicular helper (Tfh) cells provide support to B cells upon arrival in the germinal center, and thus are critical for the generation of a robust adaptive immune response. Tfh express specific transcription factors and cellular receptors including Bcl6, CXCR5, PD-1, and ICOS, which are critical for homing and overall function. Generally, the induction of an immune response is tightly regulated. However, deviation during this process can result in harmful autoimmunity or the inability to successfully clear pathogens. Recently, it has been shown that Tfh differentiation, activation, and proliferation may be linked with the cellular metabolic state. In this review we will highlight recent discoveries in Tfh differentiation and explore how these cells contribute to functional immunity in disease, including autoimmune-related disorders, cancer, and of particular emphasis, during infection.
Collapse
Affiliation(s)
| | | | | | - Chih-Hao Chang
- The Jackson Laboratory, Bar Harbor, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- *Correspondence: Chih-Hao Chang,
| |
Collapse
|
24
|
Iberg CA, Bourque J, Fallahee I, Son S, Hawiger D. TNF-α sculpts a maturation process in vivo by pruning tolerogenic dendritic cells. Cell Rep 2022; 39:110657. [PMID: 35417681 PMCID: PMC9113652 DOI: 10.1016/j.celrep.2022.110657] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
It remains unclear how the pro-immunogenic maturation of conventional dendritic cells (cDCs) abrogates their tolerogenic functions. Here, we report that the loss of tolerogenic functions depends on the rapid death of BTLAhi cDC1s, which, in the steady state, are present in systemic peripheral lymphoid organs and promote tolerance that limits subsequent immune responses. A canonical inducer of maturation, lipopolysaccharide (LPS), initiates a burst of tumor necrosis factor alpha (TNF-α) production and the resultant acute death of BTLAhi cDC1s mediated by tumor necrosis factor receptor 1. The ablation of these individual tolerogenic cDCs is amplified by TNF-α produced by neighboring cells. This loss of tolerogenic cDCs is transient, accentuating the restoration of homeostatic conditions through biological turnover of cDCs in vivo. Therefore, our results reveal that the abrogation of tolerogenic functions during an acute immunogenic maturation depends on an ablation of the tolerogenic cDC population, resulting in a dynamic remodeling of the cDC functional landscape.
Collapse
Affiliation(s)
- Courtney A Iberg
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Ian Fallahee
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Sungho Son
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
25
|
Pardy RD, Gentile ME, Carter AM, Condotta SA, King IL, Richer MJ. An Epidemic Zika Virus Isolate Drives Enhanced T Follicular Helper Cell and B Cell-Mediated Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1719-1728. [PMID: 35346966 PMCID: PMC8976755 DOI: 10.4049/jimmunol.2100049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/27/2022] [Indexed: 11/19/2022]
Abstract
Zika virus (ZIKV) is a mosquito-borne pathogen that recently caused a series of increasingly severe outbreaks. We previously demonstrated that, compared with a pre-epidemic isolate (ZIKVCDN), a Brazilian ZIKV isolate (ZIKVBR) possesses a novel capacity to suppress host immunity, resulting in delayed viral clearance. However, whether ZIKVBR modulates CD4 T cell responses remains unknown. In this study, we show that, in comparison with ZIKVCDN infection, CD4 T cells are less polarized to the Th1 subtype following ZIKVBR challenge in mice. In contrast, we observed an enhanced accumulation of T follicular helper cells 10, 14, and 21 d postinfection with ZIKVBR This response correlated with an enhanced germinal center B cell response and robust production of higher avidity-neutralizing Abs following ZIKVBR infection. Taken together, our data suggest that contemporary ZIKV strains have evolved to differentially induce CD4 T cell, B cell, and Ab responses and this could provide a model to further define the signals required for T follicular helper cell development.
Collapse
Affiliation(s)
- Ryan D Pardy
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Maria E Gentile
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, McGill University Health Centre, McGill University, Montreal, Quebec, Canada; and
| | - Alexandria M Carter
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Stephanie A Condotta
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Irah L King
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, McGill University Health Centre, McGill University, Montreal, Quebec, Canada; and
| | - Martin J Richer
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada;
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
26
|
Suberi A, Grun MK, Mao T, Israelow B, Reschke M, Grundler J, Akhtar L, Lee T, Shin K, Piotrowski-Daspit AS, Homer RJ, Iwasaki A, Suh HW, Saltzman WM. Inhalable polymer nanoparticles for versatile mRNA delivery and mucosal vaccination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.22.485401. [PMID: 35350207 PMCID: PMC8963702 DOI: 10.1101/2022.03.22.485401] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An inhalable platform for mRNA therapeutics would enable minimally invasive and lung targeted delivery for a host of pulmonary diseases. Development of lung targeted mRNA therapeutics has been limited by poor transfection efficiency and risk of vehicle-induced pathology. Here we report an inhalable polymer-based vehicle for delivery of therapeutic mRNAs to the lung. We optimized biodegradable poly(amine-co-ester) polyplexes for mRNA delivery using end group modifications and polyethylene glycol. Our polyplexes achieved high transfection of mRNA throughout the lung, particularly in epithelial and antigen-presenting cells. We applied this technology to develop a mucosal vaccine for SARS-CoV-2. Intranasal vaccination with spike protein mRNA polyplexes induced potent cellular and humoral adaptive immunity and protected K18-hACE2 mice from lethal viral challenge. One-sentence summary Inhaled polymer nanoparticles (NPs) achieve high mRNA expression in the lung and induce protective immunity against SARS-CoV-2.
Collapse
|
27
|
Liu D, Duan L, Cyster JG. Chemo- and mechanosensing by dendritic cells facilitate antigen surveillance in the spleen. Immunol Rev 2022; 306:25-42. [PMID: 35147233 PMCID: PMC8852366 DOI: 10.1111/imr.13055] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 12/30/2022]
Abstract
Spleen dendritic cells (DC) are critical for initiation of adaptive immune responses against blood-borne invaders. Key to DC function is their positioning at sites of pathogen entry, and their abilities to selectively capture foreign antigens and promptly engage T cells. Focusing on conventional DC2 (cDC2), we discuss the contribution of chemoattractant receptors (EBI2 or GPR183, S1PR1, and CCR7) and integrins to cDC2 positioning and function. We give particular attention to a newly identified role in cDC2 for adhesion G-protein coupled receptor E5 (Adgre5 or CD97) and its ligand CD55, detailing how this mechanosensing system contributes to splenic cDC2 positioning and homeostasis. Additional roles of CD97 in the immune system are reviewed. The ability of cDC2 to be activated by circulating missing self-CD47 cells and to integrate multiple red blood cell (RBC)-derived inputs is discussed. Finally, we describe the process of activated cDC2 migration to engage and prime helper T cells. Throughout the review, we consider the insights into cDC function in the spleen that have emerged from imaging studies.
Collapse
Affiliation(s)
- Dan Liu
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Lihui Duan
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| |
Collapse
|
28
|
Strong influenza-induced T FH generation requires CD4 effectors to recognize antigen locally and receive signals from continuing infection. Proc Natl Acad Sci U S A 2022; 119:2111064119. [PMID: 35177472 PMCID: PMC8872786 DOI: 10.1073/pnas.2111064119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 11/18/2022] Open
Abstract
Influenza infection elicits strong, long-lived protective antibodies, but most current influenza vaccines give weaker, short-lived protection. We noted that live virus is still replicating, making antigen and causing inflammation at 7 d postinfection (dpi), while an inactivated vaccine provides antigen for at most 4 dpi. We show that the generation of key T follicular helper cells (TFH) requires they recognize antigen locally at 6 dpi in the presence of ongoing viral infection. This creates a checkpoint that restricts TFH responses to dangerous infections that persist through the checkpoint. Using a live attenuated vaccine, akin to Flumist, we found that adding a second dose at 6 d generated a strong TFH response, suggesting an approach to improve vaccine strategies. While influenza infection induces robust, long-lasting, antibody responses and protection, including the T follicular helper cells (TFH) required to drive B cell germinal center (GC) responses, most influenza vaccines do not. We investigated the mechanisms that drive strong TFH responses during infection. Infection induces viral replication and antigen (Ag) presentation lasting through the CD4 effector phase, but Ag and pathogen recognition receptor signals are short-lived after vaccination. We analyzed the need for both infection and Ag presentation at the effector phase, using an in vivo sequential transfer model to time their availability. Differentiation of CD4 effectors into TFH and GC-TFH required that they recognize Ag locally in the site of TFH development, at the effector phase, but did not depend on specific Ag-presenting cells (APCs). In addition, concurrent signals from infection were necessary even when sufficient Ag was presented. Providing these signals with a second dose of live attenuated influenza vaccine at the effector phase drove TFH and GC-TFH development equivalent to live infection. The results suggest that vaccine approaches can induce strong TFH development that supports GC responses akin to infection, if they supply these effector phase signals at the right time and site. We suggest that these requirements create a checkpoint that ensures TFH only develop fully when infection is still ongoing, thereby avoiding unnecessary, potentially autoimmune, responses.
Collapse
|
29
|
Bourque J, Hawiger D. Variegated Outcomes of T Cell Activation by Dendritic Cells in the Steady State. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:539-547. [PMID: 35042789 DOI: 10.4049/jimmunol.2100932] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
Conventional dendritic cells (cDC) control adaptive immunity by sensing damage- and pathogen-associated molecular patterns and then inducing defined differentiation programs in T cells. Nevertheless, in the absence of specific proimmunogenic innate signals, generally referred to as the steady state, cDC also activate T cells to induce specific functional fates. Consistent with the maintenance of homeostasis, such specific outcomes of T cell activation in the steady state include T cell clonal anergy, deletion, and conversion of peripheral regulatory T cells (pTregs). However, the robust induction of protolerogenic mechanisms must be reconciled with the initiation of autoimmune responses and cancer immunosurveillance that are also observed under homeostatic conditions. Here we review the diversity of fates and functions of T cells involved in the opposing immunogenic and tolerogenic processes induced in the steady state by the relevant mechanisms of systemic cDC present in murine peripheral lymphoid organs.
Collapse
Affiliation(s)
- Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
30
|
Lee JL, Linterman MA. Mechanisms underpinning poor antibody responses to vaccines in ageing. Immunol Lett 2022; 241:1-14. [PMID: 34767859 PMCID: PMC8765414 DOI: 10.1016/j.imlet.2021.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
Vaccines are a highly effective intervention for conferring protection against infections and reducing the associated morbidity and mortality in vaccinated individuals. However, ageing is often associated with a functional decline in the immune system that results in poor antibody production in older individuals after vaccination. A key contributing factor of this age-related decline in vaccine efficacy is the reduced size and function of the germinal centre (GC) response. GCs are specialised microstructures where B cells undergo affinity maturation and diversification of their antibody genes, before differentiating into long-lived antibody-secreting plasma cells and memory B cells. The GC response requires the coordinated interaction of many different cell types, including B cells, T follicular helper (Tfh) cells, T follicular regulatory (Tfr) cells and stromal cell subsets like follicular dendritic cells (FDCs). This review discusses how ageing affects different components of the GC reaction that contribute to its limited output and ultimately impaired antibody responses in older individuals after vaccination. An understanding of the mechanisms underpinning the age-related decline in the GC response is crucial in informing strategies to improve vaccine efficacy and extend the healthy lifespan amongst older people.
Collapse
Affiliation(s)
- Jia Le Lee
- Immunology Program, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Michelle A Linterman
- Immunology Program, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
31
|
Chen Z, Gao X, Yu D. Longevity of vaccine protection: Immunological mechanism, assessment methods, and improving strategy. VIEW 2022. [DOI: 10.1002/viw.20200103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zhian Chen
- The University of Queensland Diamantina Institute, Faculty of Medicine The University of Queensland Brisbane Queensland Australia
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research Australian National University Canberra Australia
| | - Xin Gao
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research Australian National University Canberra Australia
| | - Di Yu
- The University of Queensland Diamantina Institute, Faculty of Medicine The University of Queensland Brisbane Queensland Australia
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research Australian National University Canberra Australia
| |
Collapse
|
32
|
Ndeupen S, Bouteau A, Herbst C, Qin Z, Jacobsen S, Powers NE, Hutchins Z, Kurup D, Diba LZ, Watson M, Ramage H, Igyártó BZ. Langerhans cells and cDC1s play redundant roles in mRNA-LNP induced protective anti-influenza and anti-SARS-CoV-2 immune responses. PLoS Pathog 2022; 18:e1010255. [PMID: 35073387 PMCID: PMC8812972 DOI: 10.1371/journal.ppat.1010255] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/03/2022] [Accepted: 01/07/2022] [Indexed: 12/21/2022] Open
Abstract
Nucleoside modified mRNA combined with Acuitas Therapeutics' lipid nanoparticles (LNPs) has been shown to support robust humoral immune responses in many preclinical animal vaccine studies and later in humans with the SARS-CoV-2 vaccination. We recently showed that this platform is highly inflammatory due to the LNPs' ionizable lipid component. The inflammatory property is key to support the development of potent humoral immune responses. However, the mechanism by which this platform drives T follicular helper (Tfh) cells and humoral immune responses remains unknown. Here we show that lack of Langerhans cells or cDC1s neither significantly affected the induction of PR8 HA and SARS-CoV-2 RBD-specific Tfh cells and humoral immune responses, nor susceptibility towards the lethal challenge of influenza and SARS-CoV-2. However, the combined deletion of these two DC subsets led to a significant decrease in the induction of PR8 HA and SARS-CoV-2 RBD-specific Tfh cell and humoral immune responses. Despite these observed defects, these mice remained protected from lethal influenza and SARS-CoV-2 challenges. We further found that IL-6, unlike neutrophils, was required to generate normal Tfh cells and antibody responses, but not for protection from influenza challenge. In summary, here we bring evidence that the mRNA-LNP platform can support the induction of protective immune responses in the absence of certain innate immune cells and cytokines.
Collapse
Affiliation(s)
- Sonia Ndeupen
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America
| | - Aurélie Bouteau
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America
- Baylor University, Department of Biomedical Studies, Waco, Texas, United States of America
| | - Christopher Herbst
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America
| | - Zhen Qin
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America
| | - Sonya Jacobsen
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America
| | - Nicholas E. Powers
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America
| | - Zachary Hutchins
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America
| | - Drishya Kurup
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America
| | - Leila Zabihi Diba
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America
| | - Megan Watson
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America
| | - Holly Ramage
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America
| | - Botond Z. Igyártó
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
33
|
Zachariah NN, Basu A, Gautam N, Ramamoorthi G, Kodumudi KN, Kumar NB, Loftus L, Czerniecki BJ. Intercepting Premalignant, Preinvasive Breast Lesions Through Vaccination. Front Immunol 2021; 12:786286. [PMID: 34899753 PMCID: PMC8652247 DOI: 10.3389/fimmu.2021.786286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) prevention remains the ultimate cost-effective method to reduce the global burden of invasive breast cancer (IBC). To date, surgery and chemoprevention remain the main risk-reducing modalities for those with hereditary cancer syndromes, as well as high-risk non-hereditary breast lesions such as ADH, ALH, or LCIS. Ductal carcinoma in situ (DCIS) is a preinvasive malignant lesion of the breast that closely mirrors IBC and, if left untreated, develops into IBC in up to 50% of lesions. Certain high-risk patients with DCIS may have a 25% risk of developing recurrent DCIS or IBC, even after surgical resection. The development of breast cancer elicits a strong immune response, which brings to prominence the numerous advantages associated with immune-based cancer prevention over drug-based chemoprevention, supported by the success of dendritic cell vaccines targeting HER2-expressing BC. Vaccination against BC to prevent or interrupt the process of BC development remains elusive but is a viable option. Vaccination to intercept preinvasive or premalignant breast conditions may be possible by interrupting the expression pattern of various oncodrivers. Growth factors may also function as potential immune targets to prevent breast cancer progression. Furthermore, neoantigens also serve as effective targets for interception by virtue of strong immunogenicity. It is noteworthy that the immune response also needs to be strong enough to result in target lesion elimination to avoid immunoediting as it may occur in IBC arising from DCIS. Overall, if the issue of vaccine targets can be solved by interrupting premalignant lesions, there is a potential to prevent the development of IBC.
Collapse
Affiliation(s)
| | - Amrita Basu
- Clinical Science Division, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Namrata Gautam
- Clinical Science Division, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Ganesan Ramamoorthi
- Clinical Science Division, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Krithika N Kodumudi
- Clinical Science Division, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Nagi B Kumar
- Clinical Science Division, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Loretta Loftus
- Department of Breast Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Brian J Czerniecki
- Department of Breast Surgery, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| |
Collapse
|
34
|
Kadiri JJ, Tadayon S, Thapa K, Suominen A, Hollmén M, Rinne P. Melanocortin 1 Receptor Deficiency in Hematopoietic Cells Promotes the Expansion of Inflammatory Leukocytes in Atherosclerotic Mice. Front Immunol 2021; 12:774013. [PMID: 34868038 PMCID: PMC8640177 DOI: 10.3389/fimmu.2021.774013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Melanocortin receptor 1 (MC1-R) is expressed in leukocytes, where it mediates anti-inflammatory actions. We have previously observed that global deficiency of MC1-R signaling perturbs cholesterol homeostasis, increases arterial leukocyte accumulation and accelerates atherosclerosis in apolipoprotein E knockout (Apoe-/-) mice. Since various cell types besides leukocytes express MC1-R, we aimed at investigating the specific contribution of leukocyte MC1-R to the development of atherosclerosis. For this purpose, male Apoe-/- mice were irradiated, received bone marrow from either female Apoe-/- mice or MC1-R deficient Apoe-/- mice (Apoe-/- Mc1re/e) and were analyzed for tissue leukocyte profiles and atherosclerotic plaque phenotype. Hematopoietic MC1-R deficiency significantly elevated total leukocyte counts in the blood, bone marrow and spleen, an effect that was amplified by feeding mice a cholesterol-rich diet. The increased leukocyte counts were largely attributable to expanded lymphocyte populations, particularly CD4+ T cells. Furthermore, the number of monocytes was elevated in Apoe-/- Mc1re/e chimeric mice and it paralleled an increase in hematopoietic stem cell count in the bone marrow. Despite robust leukocytosis, atherosclerotic plaque size and composition as well as arterial leukocyte counts were unaffected by MC1-R deficiency. To address this discrepancy, we performed an in vivo homing assay and found that MC1-R deficient CD4+ T cells and monocytes were preferentially entering the spleen rather than homing in peri-aortic lymph nodes. This was mechanistically associated with compromised chemokine receptor 5 (CCR5)-dependent migration of CD4+ T cells and a defect in the recycling capacity of CCR5. Finally, our data demonstrate for the first time that CD4+ T cells also express MC1-R. In conclusion, MC1-R regulates hematopoietic stem cell proliferation and tissue leukocyte counts but its deficiency in leukocytes impairs cell migration via a CCR5-dependent mechanism.
Collapse
Affiliation(s)
- James J Kadiri
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Drug Research Doctoral Programme (DRDP), University of Turku, Turku, Finland
| | - Sina Tadayon
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Keshav Thapa
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Drug Research Doctoral Programme (DRDP), University of Turku, Turku, Finland
| | - Anni Suominen
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Drug Research Doctoral Programme (DRDP), University of Turku, Turku, Finland
| | - Maija Hollmén
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Petteri Rinne
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland
| |
Collapse
|
35
|
Wang H, Li X, Kajikawa T, Shin J, Lim JH, Kourtzelis I, Nagai K, Korostoff JM, Grossklaus S, Naumann R, Chavakis T, Hajishengallis G. Stromal cell-derived DEL-1 inhibits Tfh cell activation and inflammatory arthritis. J Clin Invest 2021; 131:e150578. [PMID: 34403362 PMCID: PMC8483759 DOI: 10.1172/jci150578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
The secreted protein developmental endothelial locus 1 (DEL-1) regulates inflammatory cell recruitment and protects against inflammatory pathologies in animal models. Here, we investigated DEL-1 in inflammatory arthritis using collagen-induced arthritis (CIA) and collagen Ab-induced arthritis (CAIA) models. In both models, mice with endothelium-specific overexpression of DEL-1 were protected from arthritis relative to WT controls, whereas arthritis was exacerbated in DEL-1-deficient mice. Compared with WT controls, mice with collagen VI promoter-driven overexpression of DEL-1 in mesenchymal cells were protected against CIA but not CAIA, suggesting a role for DEL-1 in the induction of the arthritogenic Ab response. Indeed, DEL-1 was expressed in perivascular stromal cells of the lymph nodes and inhibited Tfh and germinal center B cell responses. Mechanistically, DEL-1 inhibited DC-dependent induction of Tfh cells by targeting the LFA-1 integrin on T cells. Overall, DEL-1 restrained arthritis through a dual mechanism, one acting locally in the joints and associated with the anti-recruitment function of endothelial cell-derived DEL-1; the other mechanism acting systemically in the lymph nodes and associated with the ability of stromal cell-derived DEL-1 to restrain Tfh responses. DEL-1 may therefore be a promising therapeutic for the treatment of inflammatory arthritis.
Collapse
Affiliation(s)
- Hui Wang
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tetsuhiro Kajikawa
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jieun Shin
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jong-Hyung Lim
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ioannis Kourtzelis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Kosuke Nagai
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jonathan M. Korostoff
- Department of Periodontics, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sylvia Grossklaus
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ronald Naumann
- Transgenic Core Facility, Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
36
|
Ritzau-Jost J, Hutloff A. T Cell/B Cell Interactions in the Establishment of Protective Immunity. Vaccines (Basel) 2021; 9:vaccines9101074. [PMID: 34696182 PMCID: PMC8536969 DOI: 10.3390/vaccines9101074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Follicular helper T cells (Tfh) are the T cell subset providing help to B cells for the generation of high-affinity antibodies and are therefore of key interest for the development of vaccination strategies against infectious diseases. In this review, we will discuss how the generation of Tfh cells and their interaction with B cells in secondary lymphoid organs can be optimized for therapeutic purposes. We will summarize different T cell subsets including Tfh-like peripheral helper T cells (Tph) capable of providing B cell help. In particular, we will highlight the novel concept of T cell/B cell interaction in non-lymphoid tissues as an important element for the generation of protective antibodies directly at the site of pathogen invasion.
Collapse
|
37
|
The Role of T Follicular Helper Cells and Interleukin-21 in the Pathogenesis of Inflammatory Bowel Disease. Gastroenterol Res Pract 2021; 2021:9621738. [PMID: 34471409 PMCID: PMC8405314 DOI: 10.1155/2021/9621738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/17/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
T follicular helper (Tfh) cells represent a novel subset of CD4+ T cells which can provide critical help for germinal center (GC) formation and antibody production. The Tfh cells are characterized by the expression of CXC chemokine receptor 5 (CXCR5), programmed death 1 (PD-1), inducible costimulatory molecule (ICOS), B cell lymphoma 6 (BCL-6), and the secretion of interleukin-21 (IL-21). Given the important role of Tfh cells in B cell activation and high-affinity antibody production, Tfh cells are involved in the pathogenesis of many human diseases. Inflammatory bowel disease (IBD) is a group of chronic inflammatory diseases characterized by symptoms such as diarrhea, abdominal pain, and weight loss. Ulcerative colitis (UC) and Crohn's disease (CD) are the most studied types of IBD. Dysregulated mucosal immune response plays an important role in the pathogenesis of IBD. In recent years, many studies have identified the critical role of Tfh cells and IL-21 in the pathogenic process IBD. In this paper, we will discuss the role of Tfh cells and IL-21 in IBD pathogenesis.
Collapse
|
38
|
Beurier P, Ricard L, Eshagh D, Malard F, Siblany L, Fain O, Mohty M, Gaugler B, Mekinian A. TFH cells in systemic sclerosis. J Transl Med 2021; 19:375. [PMID: 34461933 PMCID: PMC8407089 DOI: 10.1186/s12967-021-03049-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Systemic sclerosis is an autoimmune disease characterized by excessive dermal fibrosis with progression to internal organs, vascular impairment and immune dysregulation evidenced by the infiltration of inflammatory cells in affected tissues and the production of auto antibodies. While the pathogenesis remains unclear, several data highlight that T and B cells deregulation is implicated in the disease pathogenesis. Over the last decade, aberrant responses of circulating T follicular helper cells, a subset of CD4 T cells which are able to localise predominantly in the B cell follicles through a high level of chemokine receptor CXCR5 expression are described in pathogenesis of several autoimmune diseases and chronic graft-versus-host-disease. In the present review, we summarized the observed alteration of number and frequency of circulating T follicular helper cells in systemic sclerosis. We described their role in aberrant B cell activation and differentiation though interleukine-21 secretion. We also clarified T follicular helper-like cells involvement in fibrogenesis in both human and mouse model. Finally, because T follicular helper cells are involved in both fibrosis and autoimmune abnormalities in systemic sclerosis patients, we presented the different strategies could be used to target T follicular helper cells in systemic sclerosis, the therapeutic trials currently being carried out and the future perspectives from other auto-immune diseases and graft-versus-host-disease models.
Collapse
Affiliation(s)
- Pauline Beurier
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France
| | - Laure Ricard
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France.,Service D'Hématologie Clinique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Deborah Eshagh
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France
| | - Florent Malard
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France.,Service D'Hématologie Clinique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Lama Siblany
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France
| | - Olivier Fain
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France
| | - Mohamad Mohty
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France.,Service D'Hématologie Clinique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Béatrice Gaugler
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France
| | - Arsène Mekinian
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France. .,Sorbonne Université, Paris, France. .,Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DMU 3iD), AP-HP, Hôpital Saint-Antoine, 75012, Paris, France.
| |
Collapse
|
39
|
Ndeupen S, Bouteau A, Herbst C, Qin Z, Hutchins Z, Kurup D, Diba LZ, Igyártó BZ. Langerhans cells and cDC1s play redundant roles in mRNA-LNP induced protective anti-influenza and anti-SARS-CoV-2 responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.01.454662. [PMID: 34373854 PMCID: PMC8351776 DOI: 10.1101/2021.08.01.454662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nucleoside modified mRNA combined with Acuitas Therapeutics' lipid nanoparticles (LNP) have been shown to support robust humoral immune responses in many preclinical animal vaccine studies and later in humans with the SARS-CoV-2 vaccination. We recently showed that this platform is highly inflammatory due to the LNPs' ionizable lipid component. The inflammatory property is key to support the development of potent humoral immune responses. However, the mechanism by which this platform drives T follicular helper cells (Tfh) and humoral immune responses remains unknown. Here we show that lack of Langerhans cells or cDC1s neither significantly affected the induction of PR8 HA and SARS-CoV-2 RBD-specific Tfh cells and humoral immune responses, nor susceptibility towards the lethal challenge of influenza and SARS-CoV-2. However, the combined deletion of these two DC subsets led to a significant decrease in the induction of PR8 HA and SARS-CoV-2 RBD-specific Tfh cell and humoral immune responses. Despite these observed defects, the still high antibody titers were sufficient to confer protection towards lethal viral challenges. We further found that IL-6, but not neutrophils, was required to generate Tfh cells and antibody responses. In summary, here we bring evidence that the mRNA-LNP platform can support protective adaptive immune responses in the absence of specific DC subsets through an IL-6 dependent and neutrophil independent mechanism.
Collapse
Affiliation(s)
- Sonia Ndeupen
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, PA
| | - Aurélie Bouteau
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, PA
- Baylor University, Department of Biomedical Studies, Waco, TX
| | - Christopher Herbst
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, PA
| | - Zhen Qin
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, PA
| | - Zachary Hutchins
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, PA
| | - Drishya Kurup
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, PA
| | - Leila Zabihi Diba
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, PA
| | - Botond Z. Igyártó
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, PA
| |
Collapse
|
40
|
Clemens EA, Alexander-Miller MA. Understanding Antibody Responses in Early Life: Baby Steps towards Developing an Effective Influenza Vaccine. Viruses 2021; 13:v13071392. [PMID: 34372597 PMCID: PMC8310046 DOI: 10.3390/v13071392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
The immune system of young infants is both quantitatively and qualitatively distinct from that of adults, with diminished responsiveness leaving these individuals vulnerable to infection. Because of this, young infants suffer increased morbidity and mortality from respiratory pathogens such as influenza viruses. The impaired generation of robust and persistent antibody responses in these individuals makes overcoming this increased vulnerability through vaccination challenging. Because of this, an effective vaccine against influenza viruses in infants under 6 months is not available. Furthermore, vaccination against influenza viruses is challenging even in adults due to the high antigenic variability across viral strains, allowing immune evasion even after induction of robust immune responses. This has led to substantial interest in understanding how specific antibody responses are formed to variable and conserved components of influenza viruses, as immune responses tend to strongly favor recognition of variable epitopes. Elicitation of broadly protective antibody in young infants, therefore, requires that both the unique characteristics of young infant immunity as well as the antibody immunodominance present among epitopes be effectively addressed. Here, we review our current understanding of the antibody response in newborns and young infants and discuss recent developments in vaccination strategies that can modulate both magnitude and epitope specificity of IAV-specific antibody.
Collapse
|
41
|
Sun JY, Hua Y, Shen H, Qu Q, Kan JY, Kong XQ, Sun W, Shen YY. Identification of key genes in calcific aortic valve disease via weighted gene co-expression network analysis. BMC Med Genomics 2021; 14:135. [PMID: 34020624 PMCID: PMC8138987 DOI: 10.1186/s12920-021-00989-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/17/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is the most common subclass of valve heart disease in the elderly population and a primary cause of aortic valve stenosis. However, the underlying mechanisms remain unclear. METHODS The gene expression profiles of GSE83453, GSE51472, and GSE12644 were analyzed by 'limma' and 'weighted gene co-expression network analysis (WGCNA)' package in R to identify differentially expressed genes (DEGs) and key modules associated with CAVD, respectively. Then, enrichment analysis was performed based on Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, DisGeNET, and TRRUST database. Protein-protein interaction network was constructed using the overlapped genes of DEGs and key modules, and we identified the top 5 hub genes by mixed character calculation. RESULTS We identified the blue and yellow modules as the key modules. Enrichment analysis showed that leukocyte migration, extracellular matrix, and extracellular matrix structural constituent were significantly enriched. SPP1, TNC, SCG2, FAM20A, and CD52 were identified as hub genes, and their expression levels in calcified or normal aortic valve samples were illustrated, respectively. CONCLUSIONS This study suggested that SPP1, TNC, SCG2, FAM20A, and CD52 might be hub genes associated with CAVD. Further studies are required to elucidate the underlying mechanisms and provide potential therapeutic targets.
Collapse
Affiliation(s)
- Jin-Yu Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Yang Hua
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Hui Shen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Qiang Qu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Jun-Yan Kan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Xiang-Qing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China.
| | - Yue-Yun Shen
- Department of Cardiology, Liyang People's Hospital, Liyang, 213300, China.
| |
Collapse
|
42
|
Basu A, Ramamoorthi G, Albert G, Gallen C, Beyer A, Snyder C, Koski G, Disis ML, Czerniecki BJ, Kodumudi K. Differentiation and Regulation of T H Cells: A Balancing Act for Cancer Immunotherapy. Front Immunol 2021; 12:669474. [PMID: 34012451 PMCID: PMC8126720 DOI: 10.3389/fimmu.2021.669474] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Current success of immunotherapy in cancer has drawn attention to the subsets of TH cells in the tumor which are critical for activation of anti-tumor response either directly by themselves or by stimulating cytotoxic T cell activity. However, presence of immunosuppressive pro-tumorigenic TH subsets in the tumor milieu further contributes to the complexity of regulation of TH cell-mediated immune response. In this review, we present an overview of the multifaceted positive and negative effects of TH cells, with an emphasis on regulation of different TH cell subtypes by various immune cells, and how a delicate balance of contradictory signals can influence overall success of cancer immunotherapy. We focus on the regulatory network that encompasses dendritic cell-induced activation of CD4+ TH1 cells and subsequent priming of CD8+ cytotoxic T cells, along with intersecting anti-inflammatory and pro-tumorigenic TH2 cell activity. We further discuss how other tumor infiltrating immune cells such as immunostimulatory TH9 and Tfh cells, immunosuppressive Treg cells, and the duality of TH17 function contribute to tip the balance of anti- vs pro-tumorigenic TH responses in the tumor. We highlight the developing knowledge of CD4+ TH1 immune response against neoantigens/oncodrivers, impact of current immunotherapy strategies on CD4+ TH1 immunity, and how opposing action of TH cell subtypes can be explored further to amplify immunotherapy success in patients. Understanding the nuances of CD4+ TH cells regulation and the molecular framework undergirding the balancing act between anti- vs pro-tumorigenic TH subtypes is critical for rational designing of immunotherapies that can bypass therapeutic escape to maximize the potential of immunotherapy.
Collapse
Affiliation(s)
- Amrita Basu
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | | | - Gabriella Albert
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Corey Gallen
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Amber Beyer
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Colin Snyder
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Gary Koski
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Mary L Disis
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, WA, United States
| | - Brian J Czerniecki
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States.,Department of Oncological Sciences, University of South Florida, Tampa, FL, United States.,Department of Breast Cancer Program, Moffitt Cancer Center, Tampa, FL, United States
| | - Krithika Kodumudi
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States.,Department of Biological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
43
|
Marschall P, Wei R, Segaud J, Yao W, Hener P, German BF, Meyer P, Hugel C, Ada Da Silva G, Braun R, Kaplan DH, Li M. Dual function of Langerhans cells in skin TSLP-promoted T FH differentiation in mouse atopic dermatitis. J Allergy Clin Immunol 2021; 147:1778-1794. [PMID: 33068561 DOI: 10.1016/j.jaci.2020.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is among the most common chronic inflammatory skin diseases, usually occurring early in life, and often preceding other atopic diseases such as asthma. TH2 has been believed to play a crucial role in cellular and humoral response in AD, but accumulating evidence has shown that follicular helper T cell (TFH), a critical player in humoral immunity, is associated with disease severity and plays an important role in AD pathogenesis. OBJECTIVES This study aimed at investigating how TFHs are generated during the pathogenesis of AD, particularly what is the role of keratinocyte-derived cytokine TSLP and Langerhans cells (LCs). METHODS Two experimental AD mouse models were employed: (1) triggered by the overproduction of TSLP through topical application of MC903, and (2) induced by epicutaneous allergen ovalbumin (OVA) sensitization. RESULTS This study demonstrated that the development of TFHs and germinal center (GC) response were crucially dependent on TSLP in both the MC903 model and the OVA sensitization model. Moreover, we found that LCs promoted TFH differentiation and GC response in the MC903 model, and the depletion of Langerin+ dendritic cells (DCs) or selective depletion of LCs diminished the TFH/GC response. By contrast, in the model with OVA sensitization, LCs inhibited TFH/GC response and suppressed TH2 skin inflammation and the subsequent asthma. Transcriptomic analysis of Langerin+ and Langerin- migratory DCs revealed that Langerin+ DCs became activated in the MC903 model, whereas these cells remained inactivated in OVA sensitization model. CONCLUSIONS Together, these studies revealed a dual functionality of LCs in TSLP-promoted TFH and TH2 differentiation in AD pathogenesis.
Collapse
Affiliation(s)
- Pierre Marschall
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Ruicheng Wei
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Justine Segaud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Wenjin Yao
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Pierre Hener
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Beatriz Falcon German
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Pierre Meyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Cecile Hugel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Grace Ada Da Silva
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France
| | | | - Daniel H Kaplan
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Mei Li
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique Unite Mixte de Recherche 7104, Institut National de la Santé et de la Recherch Médicale U1258, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
44
|
Baumjohann D, Fazilleau N. Antigen-dependent multistep differentiation of T follicular helper cells and its role in SARS-CoV-2 infection and vaccination. Eur J Immunol 2021; 51:1325-1333. [PMID: 33788271 PMCID: PMC8250352 DOI: 10.1002/eji.202049148] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 01/20/2023]
Abstract
T follicular helper (Tfh) cells play an essential role in regulating the GC reaction and, consequently, the generation of high‐affinity antibodies and memory B cells. Therefore, Tfh cells are critical for potent humoral immune responses against various pathogens and their dysregulation has been linked to autoimmunity and cancer. Tfh cell differentiation is a multistep process, in which cognate interactions with different APC types, costimulatory and coinhibitory pathways, as well as cytokines are involved. However, it is still not fully understood how a subset of activated CD4+ T cells begins to express the Tfh cell‐defining chemokine receptor CXCR5 during the early stage of the immune response, how some CXCR5+ pre‐Tfh cells enter the B‐cell follicles and mature further into GC Tfh cells, and how Tfh cells are maintained in the memory compartment. In this review, we discuss recent advances on how antigen and cognate interactions are important for Tfh cell differentiation and long‐term persistence of Tfh cell memory, and how this is relevant to the current understanding of COVID‐19 pathogenesis and the development of potent SARS‐CoV‐2 vaccines.
Collapse
Affiliation(s)
- Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Nicolas Fazilleau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Inserm, Toulouse, U1291, France.,French Germinal Center Club, French Society for Immunology (SFI), Paris, France
| |
Collapse
|
45
|
Pohlmeyer CW, Shang C, Han P, Cui ZH, Jones RM, Clarke AS, Murray BP, Lopez DA, Newstrom DW, Inzunza MD, Matzkies FG, Currie KS, Di Paolo JA. Characterization of the mechanism of action of lanraplenib, a novel spleen tyrosine kinase inhibitor, in models of lupus nephritis. BMC Rheumatol 2021; 5:15. [PMID: 33781343 PMCID: PMC8008554 DOI: 10.1186/s41927-021-00178-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Background B cells are critical mediators of systemic lupus erythematosus (SLE) and lupus nephritis (LN), and antinuclear antibodies can be found in the serum of approximately 98% of patients with SLE. Spleen tyrosine kinase (SYK) is a nonreceptor tyrosine kinase that mediates signaling from immunoreceptors, including the B cell receptor. Active, phosphorylated SYK has been observed in tissues from patients with SLE or cutaneous lupus erythematosus, and its inhibition is hypothesized to ameliorate disease pathogenesis. We sought to evaluate the efficacy and characterize the mechanism of action of lanraplenib, a selective oral SYK inhibitor, in the New Zealand black/white (NZB/W) murine model of SLE and LN. Methods Lanraplenib was evaluated for inhibition of primary human B cell functions in vitro. Furthermore, the effect of SYK inhibition on ameliorating LN-like disease in vivo was determined by treating NZB/W mice with lanraplenib, cyclophosphamide, or a vehicle control. Glomerulopathy and immunoglobulin G (IgG) deposition were quantified in kidneys. The concentration of proinflammatory cytokines was measured in serum. Splenocytes were analyzed by flow cytometry for B cell maturation and T cell memory maturation, and the presence of T follicular helper and dendritic cells. Results In human B cells in vitro, lanraplenib inhibited B cell activating factor-mediated survival as well as activation, maturation, and immunoglobulin M production. Treatment of NZB/W mice with lanraplenib improved overall survival, prevented the development of proteinuria, and reduced blood urea nitrogen concentrations. Kidney morphology was significantly preserved by treatment with lanraplenib as measured by glomerular diameter, protein cast severity, interstitial inflammation, vasculitis, and frequency of glomerular crescents; treatment with lanraplenib reduced glomerular IgG deposition. Mice treated with lanraplenib had reduced concentrations of serum proinflammatory cytokines. Lanraplenib blocked disease-driven B cell maturation and T cell memory maturation in the spleen. Conclusions Lanraplenib blocked the progression of LN-like disease in NZB/W mice. Human in vitro and murine in vivo data suggest that lanraplenib may be efficacious in preventing disease progression in patients with LN at least in part by inhibiting B cell maturation. These data provide additional rationale for the use of lanraplenib in the treatment of SLE and LN. Supplementary Information The online version contains supplementary material available at 10.1186/s41927-021-00178-3.
Collapse
Affiliation(s)
| | - Ching Shang
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Pei Han
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Zhi-Hua Cui
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Randall M Jones
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Astrid S Clarke
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Bernard P Murray
- Department of Drug Metabolism, Gilead Sciences, Inc., Foster City, CA, USA
| | - David A Lopez
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - David W Newstrom
- Department of Nonclinical Safety and Pathobiology, Gilead Sciences, Inc., Foster City, CA, USA
| | - M David Inzunza
- Department of Nonclinical Safety and Pathobiology, Gilead Sciences, Inc., Foster City, CA, USA
| | | | - Kevin S Currie
- Department of Chemistry, Gilead Sciences, Inc., Foster City, CA, USA
| | - Julie A Di Paolo
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| |
Collapse
|
46
|
Abstract
As one of the most important weapons against infectious diseases, vaccines have saved countless lives since their first use in the late eighteenth century. Antibodies produced by effector B cells upon vaccination play a critical role in mediating protection. The past several decades of research have led to a revolution in our understanding of B cell response to vaccination. Vaccines against SARS-CoV-2 coronavirus were developed at an unprecedented speed to power our global fight against COVID-19 pandemic. Nevertheless, we still face many challenges in the development of vaccines against many other deadly viruses, such as human immunodeficiency virus (HIV) and influenza virus. In this review, we summarize the latest findings on B cell response to vaccination and pathogen infection. We also discuss the current challenges in the field and the potential strategies targeting B cell response to improve vaccine efficacy.Key abbreviations box: BCR: B cell receptor; bNAb: broadly neutralizing antibody; DC: dendritic cells; DZ: dark zone; EF response: extrafollicular response; FDC: follicular dendritic cell; GC: germinal center; HIV: human immunodeficiency virus; IC: immune complex; LLPC: long-lived plasma cell; LZ: light zone; MBC: memory B cell; SLPB: short-lived plasmablast; TFH: T follicular helper cells; TLR: Toll-like receptor.
Collapse
Affiliation(s)
- Wei Luo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Qian Yin
- Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
47
|
Schroeder AR, Zhu F, Hu H. Stepwise Tfh cell differentiation revisited: new advances and long-standing questions. Fac Rev 2021; 10. [PMID: 33644779 PMCID: PMC7894273 DOI: 10.12703/r/10-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
T follicular helper (Tfh) cells play an essential role in germinal center formation and the generation of high-affinity antibodies. Studies have proposed that Tfh cell differentiation is a multi-step process. However, it is still not fully understood how a subset of activated CD4+ T cells begin to express CXCR5 during the early stage of the response and, shortly after, how some CXCR5+ precursor Tfh (pre-Tfh) cells enter B cell follicles and differentiate further into germinal center Tfh (GC-Tfh) cells while others have a different fate. In this mini-review, we summarize the recent advances surrounding these two aspects of Tfh cell differentiation and discuss related long-standing questions, including Tfh memory.
Collapse
Affiliation(s)
- Andrew R Schroeder
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fangming Zhu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hui Hu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
48
|
Duckworth BC, Groom JR. Conversations that count: Cellular interactions that drive T cell fate. Immunol Rev 2021; 300:203-219. [PMID: 33586207 PMCID: PMC8048805 DOI: 10.1111/imr.12945] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
The relationship between the extrinsic environment and the internal transcriptional network is circular. Naive T cells first engage with antigen‐presenting cells to set transcriptional differentiation networks in motion. In turn, this regulates specific chemokine receptors that direct migration into distinct lymph node niches. Movement into these regions brings newly activated T cells into contact with accessory cells and cytokines that reinforce the differentiation programming to specify T cell function. We and others have observed similarities in the transcriptional networks that specify both CD4+ T follicular helper (TFH) cells and CD8+ central memory stem‐like (TSCM) cells. Here, we compare and contrast the current knowledge for these shared differentiation programs, compared to their effector counterparts, CD4+ T‐helper 1 (TH1) and CD8+ short‐lived effector (TSLEC) cells. Understanding the interplay between cellular interactions and transcriptional programming is essential to harness T cell differentiation that is fit for purpose; to stimulate potent T cell effector function for the elimination of chronic infection and cancer; or to amplify the formation of humoral immunity and longevity of cellular memory to prevent infectious diseases.
Collapse
Affiliation(s)
- Brigette C Duckworth
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
49
|
Synergistic effect of GRA7 and profilin proteins in vaccination against chronic Toxoplasma gondii infection. Vaccine 2021; 39:933-942. [PMID: 33451777 DOI: 10.1016/j.vaccine.2020.12.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 11/22/2022]
Abstract
Toxoplasmosis is a zoonotic disease with worldwide prevalence in humans and warm-blooded animal populations. In livestock Toxoplasma gondii is the causal agent of significant economic losses since it can cause abortions in goats and sheep. It is estimated that one third of the world population is infected. Although there are effective therapies for acute infection, these are sometimes poorly tolerated, teratogenic, and have a long administration time. Considering the deficiencies that exist related to the prevention and treatment of toxoplasmosis, the development of a safe and effective vaccine would be extremely valuable in fighting against this infection. In the present work, we characterize for the first time the adjuvant and immunogenic potential of a recombinant profilin protein (rTgPF), in a vaccine formulation alone or in combination with the well-known GRA7 antigen candidate in a murine toxoplasmosis model. Since TgPF acts as a ligand for TLR11 and 12 inducing innate immune responses that promote type 1 adaptive responses, we first study the capacity of the mix rGRA7 + rTgPF to initiate an immune response by evaluating dendritic cell activation. Both rTgPF and rGRA7 induces activation of mouse BMDCs more efficiently than the single proteins, evidenced by increased expression of CD80 and CD86 co-stimulatory proteins and secretion of IL-6, IL-10 and IL-12 cytokines after in vitro stimulation. The sum of the effects of rGRA7 and rTgPF on BMDCs maturation led us to assay them in a vaccination protocol. BALB/c mice vaccinated with this mix elicited a Th1-biased immunity via the induction of lymphocyte proliferation, activation of CD4+T cells and increased IFN-γ production that resulted in enhanced protection against chronic Toxoplama gondii infection. Profilin per se induce only cellular immunity but augments the effect of rGRA7 immune responses when used together, thus allowing us to postulate rTgPF as a potential adjuvant in a protein vaccine.
Collapse
|
50
|
Cao Y, Dong L, He Y, Hu X, Hou Y, Dong Y, Yang Q, Bi Y, Liu G. The direct and indirect regulation of follicular T helper cell differentiation in inflammation and cancer. J Cell Physiol 2021; 236:5466-5480. [PMID: 33421124 DOI: 10.1002/jcp.30263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/03/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
Follicular T helper (Tfh) cells play important roles in facilitating B-cell differentiation and inducing the antibody response in humoral immunity and immune-associated inflammatory diseases, including infections, autoimmune diseases, and cancers. However, Tfh cell differentiation is mainly achieved through self-directed differentiation regulation and the indirect regulation mechanism of antigen-presenting cells (APCs). During the direct intrinsic differentiation of naïve CD4+ T cells into Tfh cells, Bcl-6, as the characteristic transcription factor, plays the core role of transcriptional regulation. APCs indirectly drive Tfh cell differentiation mainly by changing cytokine secretion mechanisms. Altered metabolic signaling is also critically involved in Tfh cell differentiation. This review summarizes the recent progress in understanding the direct and indirect regulatory signals and metabolic mechanisms of Tfh cell differentiation and function in immune-associated diseases.
Collapse
Affiliation(s)
- Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Lin Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Ying He
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Xuelian Hu
- Immunochina Pharmaceuticals Co., Ltd., No. 80, Xingshikou Road, Haidian District, Beijing, China
| | - Yueru Hou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Yingjie Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, East Street, Fengtai District, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, China
| |
Collapse
|