1
|
Halder N, Yadav S, Lal G. Neuroimmune communication of the cholinergic system in gut inflammation and autoimmunity. Autoimmun Rev 2024; 23:103678. [PMID: 39500481 DOI: 10.1016/j.autrev.2024.103678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Neuroimmune communication in the body forms a bridge between two central regulatory systems of the body, i.e., nervous and immune systems. The cholinergic system is a crucial modulatory neurotransmitter in the central and peripheral nervous system. It includes the neurotransmitter acetylcholine (ACh), the enzyme required for the synthesis of ACh (choline acetyltransferase, ChAT), the enzyme required for its degradation (acetylcholinesterase, AChE), and cholinergic receptors (Nicotinic acetylcholine receptors and muscarinic acetylcholine receptors). The cholinergic system in neurons is well known for its role in cognitive function, sensory perception, motor control, learning, and memory processes. It has been shown that the non-neuronal cholinergic system (NNCS) is present in various tissues and immune cells and forms a neuroimmune communications system. In the present review, we discussed the NNCS on immune cells, its role in homeostasis and inflammatory reactions in the gut, and how it can be exploited in treating inflammatory responses.
Collapse
Affiliation(s)
- Namrita Halder
- Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), SPPU campus, Ganeshkhind, Pune, MH-411007, India
| | - Sourabh Yadav
- Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), SPPU campus, Ganeshkhind, Pune, MH-411007, India
| | - Girdhari Lal
- Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), SPPU campus, Ganeshkhind, Pune, MH-411007, India.
| |
Collapse
|
2
|
de Melo PS, Gianlorenco AC, Marduy A, Kim CK, Choi H, Song JJ, Fregni F. A Mechanistic Analysis of the Neural Modulation of the Inflammatory System Through Vagus Nerve Stimulation: A Systematic Review and Meta-analysis. Neuromodulation 2024:S1094-7159(24)00065-5. [PMID: 38795094 DOI: 10.1016/j.neurom.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 05/27/2024]
Abstract
OBJECTIVE We aimed to conduct a systematic review and meta-analysis assessing the antiinflammatory effects of various VNS methods while exploring multiple antiinflammatory pathways. MATERIALS AND METHODS We included clinical trials that used electrical stimulation of the vagus nerve and assessed inflammatory markers up to October 2022. We excluded studies lacking control groups, those with combined interventions, or abstracts without full text. We adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and the Cochrane Handbook for Systematic Reviews. For each inflammatory marker, a random-effects meta-analysis using the inverse variance method was performed. Methods used include transcutaneous auricular VNS (taVNS), transcutaneous cervical VNS (tcVNS), invasive cervical VNS (iVNS), and electroacupuncture VNS (eaVNS). Main reported outcomes included tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1ß, C-reactive protein (CRP), and IL-10. Risk of bias was evaluated using the Cochrane Collaboration Tool (RoB 2.0). RESULTS This review included 15 studies, involving 597 patients. No statistically significant general VNS effect was observed on TNF-α, IL-6, and IL-1ß. However, CRP, IL-10, and interferon (IFN)-γ were significantly modulated by VNS across all methods. Subgroup analysis revealed specific stimulation techniques producing significant results, such as taVNS effects in IL-1ß and IL-10, and iVNS in IL-6, whereas tcVNS and eaVNS did not convey significant pooled results individually. Cumulative exposure to VNS, higher risk of bias, study design, and pulse width were identified as effect size predictors in our meta-regression models. CONCLUSIONS Pooling all VNS techniques indicated the ability of VNS to modulate inflammatory markers such as CRP, IL-10, and IFN-γ. Individually, methods such as taVNS were effective in modulating IL-1ß and IL-10, whereas iVNS modulated IL-6. However, different VNS techniques should be separately analyzed in larger, homogeneous, and powerful studies to achieve a clearer and more consistent understanding of the effect of each VNS method on the inflammatory system.
Collapse
Affiliation(s)
- Paulo S de Melo
- Medicine, Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil; Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna C Gianlorenco
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Physical Therapy, Federal University of São Carlos, Brazil
| | - Anna Marduy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Medicine, União Metropolitana de Ensino e Cultura (UNIME), Salvador, Bahia, Brazil
| | - Chi K Kim
- Department of Neurology, Korea University Guro Hospital, Seoul, South Korea
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, South Korea; Neurive Co, Ltd, Gimhae, South Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Seoul, South Korea; Neurive Co, Ltd, Gimhae, South Korea
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Hesampour F, Bernstein CN, Ghia JE. Brain-Gut Axis: Invasive and Noninvasive Vagus Nerve Stimulation, Limitations, and Potential Therapeutic Approaches. Inflamm Bowel Dis 2024; 30:482-495. [PMID: 37738641 DOI: 10.1093/ibd/izad211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Indexed: 09/24/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing condition with no known etiology and is characterized by disrupted gut homeostasis, chronic inflammation, and ulcerative lesions. Although current treatments can reduce disease activity, IBD frequently recurs once treatments are discontinued, indicating that treatments are ineffective in providing long-term remission. The lack of responsiveness and reluctance of some affected persons to take medications because of potential adverse effects has enhanced the need for novel therapeutic approaches. The vagus nerve (VN) is likely important in the pathogenesis of IBD, considering the decreased activity of the parasympathetic nervous system, especially the VN, and the impaired interaction between the enteric nervous system and central nervous system in patients with IBD. Vagus nerve stimulation (VNS) has demonstrated anti-inflammatory effects in various inflammatory disorders, including IBD, by inhibiting the production of inflammatory cytokines by immune cells. It has been suggested that stimulating the vagus nerve to induce its anti-inflammatory effects may be a potential therapeutic approach for IBD. Noninvasive techniques for VNS have been developed. Considering the importance of VN function in the brain-gut axis, VNS is a promising treatment option for IBD. This review discusses the potential therapeutic advantages and drawbacks of VNS, particularly the use of noninvasive transcutaneous auricular vagus nerve stimulation.
Collapse
Affiliation(s)
| | - Charles N Bernstein
- Internal Medicine, University of Manitoba, Winnipeg, Canada
- Inflammatory Bowel Disease Clinical and Research Centre, University of Manitoba, Winnipeg, Canada
| | - Jean-Eric Ghia
- Immunology, University of Manitoba, Winnipeg, Canada
- Internal Medicine, University of Manitoba, Winnipeg, Canada
- Inflammatory Bowel Disease Clinical and Research Centre, University of Manitoba, Winnipeg, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| |
Collapse
|
4
|
Huang Y, Dong S, Li X, Shi J, Zhang Y, Liu S, Zhang Y, Yu J. VNS-mediated α7nAChR signaling promotes SPM synthesis via regulation of netrin-1 expression during LPS-induced ALI. FASEB J 2024; 38:e9664. [PMID: 38038805 DOI: 10.1096/fj.202301623r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023]
Abstract
The α7 nicotinic acetylcholine receptor (α7nAChR) plays a crucial role in the cholinergic anti-inflammatory pathway (CAP) during sepsis-associated acute lung injury (ALI). Increasing evidence suggests that specialized pro-resolving mediators (SPMs) are important in resolving α7nAChR-mediated ALI resolution. Our study aims to elucidate the pivotal role of α7nAChR in the CAP during LPS-associated acute lung injury (ALI). By employing vagus nerve stimulation (VNS), we identified α7nAChR as the key CAP subunit in ALI mice, effectively reducing lung permeability and the release of inflammatory cytokines. We further investigated the alterations in SPMs regulated by α7nAChR, revealing a predominant synthesis of lipoxin A4 (LXA4). The significance of α7nAChR-netrin-1 pathway in governing SPM synthesis was confirmed through the use of netrin-1 knockout mice and siRNA-transfected macrophages. Additionally, our evaluation identified a synchronous alteration of LXA4 synthesis in the α7nAChR-netrin-1 pathway accompanied by 5-lipoxygenase (5-LOX), thereby confirming an ameliorative effect of LXA4 on lung injury and macrophage inflammatory response. Concurrently, inhibiting the function of LXA4 annulled the lung-protective effect of VNS. As a result, our findings reveal a novel anti-inflammatory pathway wherein VNS modulates netrin-1 expression via α7nAChR, ultimately leading to LXA4 synthesis and subsequent lung protection.
Collapse
Affiliation(s)
- Yan Huang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shuan Dong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xiangyun Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jia Shi
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yuan Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shasha Liu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Ye Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jianbo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
D’Haens G, Eberhardson M, Cabrijan Z, Danese S, van den Berg R, Löwenberg M, Fiorino G, Schuurman PR, Lind G, Almqvist P, Olofsson PS, Tracey KJ, Hanauer SB, Zitnik R, Chernoff D, Levine YA. Neuroimmune Modulation Through Vagus Nerve Stimulation Reduces Inflammatory Activity in Crohn's Disease Patients: A Prospective Open-label Study. J Crohns Colitis 2023; 17:1897-1909. [PMID: 37738465 PMCID: PMC10798868 DOI: 10.1093/ecco-jcc/jjad151] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Indexed: 09/24/2023]
Abstract
BACKGROUND AND AIMS Crohn's disease [CD] is a debilitating, inflammatory condition affecting the gastrointestinal tract. There is no cure and sustained clinical and endoscopic remission is achieved by fewer than half of patients with current therapies. The immunoregulatory function of the vagus nerve, the 'inflammatory reflex', has been established in patients with rheumatoid arthritis and biologic-naive CD. The aim of this study was to explore the safety and efficacy of vagus nerve stimulation in patients with treatment-refractory CD, in a 16-week, open-label, multicentre, clinical trial. METHODS A vagus nerve stimulator was implanted in 17 biologic drug-refractory patients with moderately to severely active CD. One patient exited the study pre-treatment, and 16 patients were treated with vagus nerve stimulation [4/16 receiving concomitant biologics] during 16 weeks of induction and 24 months of maintenance treatment. Endpoints included clinical improvement, patient-reported outcomes, objective measures of inflammation [endoscopic/molecular], and safety. RESULTS There was a statistically significant and clinically meaningful decrease in CD Activity Index at Week 16 [mean ± SD: -86.2 ± 92.8, p = 0.003], a significant decrease in faecal calprotectin [-2923 ± 4104, p = 0.015], a decrease in mucosal inflammation in 11/15 patients with paired endoscopies [-2.1 ± 1.7, p = 0.23], and a decrease in serum tumour necrosis factor and interferon-γ [46-52%]. Two quality-of-life indices improved in 7/11 patients treated without biologics. There was one study-related severe adverse event: a postoperative infection requiring device explantation. CONCLUSIONS Neuroimmune modulation via vagus nerve stimulation was generally safe and well tolerated, with a clinically meaningful reduction in clinical disease activity associated with endoscopic improvement, reduced levels of faecal calprotectin and serum cytokines, and improved quality of life.
Collapse
Affiliation(s)
- Geert D’Haens
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Michael Eberhardson
- Department of Medicine, Karolinska Institutet, Solna, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Zeljko Cabrijan
- Division of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, Zagreb, Croatia
- Division of Gastroenterology, University of Applied Health Sciences, Zagreb, Croatia
- Josip Juraj Strossmayer University of Osijek School of Medicine, Osijek, Croatia
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Italy
- Department of Gastroenterology and Endoscopy, University Vita-Salute San Raffaele, Milano, Italy
| | - Remco van den Berg
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Mark Löwenberg
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gionata Fiorino
- Department of Gastroenterology and Digestive Endoscopy, VIta-Salute San Raffaele Hospital, Milan, Italy
- IBD Unit, Department of Gastroenterology and Digestive Endoscopy, San Camillo-Forlanini Hospital, Rome, Italy
| | | | - Göran Lind
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Per Almqvist
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
- Neurosurgery Stockholm AB, Stockholm, Sweden
| | - Peder S Olofsson
- Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Feinstein Institutes for Medical Research, Manhasset, New York
| | - Kevin J Tracey
- Feinstein Institutes for Medical Research, Manhasset, New York
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Stephen B Hanauer
- Division of Gastroenterology and Hepatology, Northwestern University–Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ralph Zitnik
- SetPoint Medical, Valencia, California, USA
- Valerio Consulting, Santa Barbara, California, USA
| | | | - Yaakov A Levine
- Department of Medicine, Karolinska Institutet, Solna, Sweden
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- SetPoint Medical, Valencia, California, USA
| |
Collapse
|
6
|
Li H, Zou Q, Wang X. Bisdemethoxycurcumin alleviates LPS-induced acute lung injury via activating AMPKα pathway. BMC Pharmacol Toxicol 2023; 24:63. [PMID: 37986186 PMCID: PMC10662695 DOI: 10.1186/s40360-023-00698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
OBJECTIVE Inflammation and oxidative stress contribute to the pathogenesis of acute lung injury (ALI), and subsequently result in rapid deterioration in health. Considering the indispensable role of bisdemethoxycurcumin (BDMC) in inflammation and oxidative stress, the present study aims to examine the effect of BDMC on sepsis-related ALI. METHODS C57BL/6 mice were administered with BDMC (100 mg/kg) or an equal volume of vehicle, and then injected with lipopolysaccharides (LPS) to induce ALI. We assessed the parameters of lung injury, inflammatory response and oxidative stress in lung tissues. Consistently, the macrophages with or without BDMC treatment were exposed to LPS to verify the effect of BDMC in vitro. RESULTS BDMC suppressed LPS-induced lung injury, inflammation and oxidative stress in vivo and in vitro. Mechanistically, BDMC increased the phosphorylation of AMPKα in response to LPS stimulation, and AMPK inhibition with Compound C almost completely blunted the protective effect of BDMC in LPS-treated mice and macrophages. Moreover, we demonstrated that BDMC activated AMPKα via the cAMP/Epac pathway. CONCLUSION Our study identifies the protective effect of BDMC against LPS-induced ALI, and the underlying mechanism may be related to the activation of cAMP/Epac/AMPKα signaling pathway.
Collapse
Affiliation(s)
- Huifang Li
- Department of respiration medicine, Huangzhou District People's Hospital, Huanggang, 438000, Hubei, China
| | - Qi Zou
- Department of respiration medicine, Huangzhou District People's Hospital, Huanggang, 438000, Hubei, China
| | - Xueming Wang
- Department of intensive care unit, Huangzhou District People's Hospital, Zhonghuan Road 31, Huanggang, 438000, Hubei, China.
| |
Collapse
|
7
|
Anchesi I, Schepici G, Chiricosta L, Gugliandolo A, Salamone S, Caprioglio D, Pollastro F, Mazzon E. Δ 8-THC Induces Up-Regulation of Glutamatergic Pathway Genes in Differentiated SH-SY5Y: A Transcriptomic Study. Int J Mol Sci 2023; 24:ijms24119486. [PMID: 37298437 DOI: 10.3390/ijms24119486] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Cannabinoids, natural or synthetic, have antidepressant, anxiolytic, anticonvulsant, and anti-psychotic properties. Cannabidiol (CBD) and delta-9-tetrahydrocannabinol (Δ9-THC) are the most studied cannabinoids, but recently, attention has turned towards minor cannabinoids. Delta-8-tetrahydrocannabinol (Δ8-THC), an isomer of Δ9-THC, is a compound for which, to date, there is no evidence of its role in the modulation of synaptic pathways. The aim of our work was to evaluate the effects of Δ8-THC on differentiated SH-SY5Y human neuroblastoma cells. Using next generation sequencing (NGS), we investigated whether Δ8-THC could modify the transcriptomic profile of genes involved in synapse functions. Our results showed that Δ8-THC upregulates the expression of genes involved in the glutamatergic pathway and inhibits gene expression at cholinergic synapses. Conversely, Δ8-THC did not modify the transcriptomic profile of genes involved in the GABAergic and dopaminergic pathways.
Collapse
Affiliation(s)
- Ivan Anchesi
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Giovanni Schepici
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- PlantaChem S.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Diego Caprioglio
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- PlantaChem S.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- PlantaChem S.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
8
|
Shelukhina I, Siniavin A, Kasheverov I, Ojomoko L, Tsetlin V, Utkin Y. α7- and α9-Containing Nicotinic Acetylcholine Receptors in the Functioning of Immune System and in Pain. Int J Mol Sci 2023; 24:ijms24076524. [PMID: 37047495 PMCID: PMC10095066 DOI: 10.3390/ijms24076524] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) present as many different subtypes in the nervous and immune systems, muscles and on the cells of other organs. In the immune system, inflammation is regulated via the vagus nerve through the activation of the non-neuronal α7 nAChR subtype, affecting the production of cytokines. The analgesic properties of α7 nAChR-selective compounds are mostly based on the activation of the cholinergic anti-inflammatory pathway. The molecular mechanism of neuropathic pain relief mediated by the inhibition of α9-containing nAChRs is not fully understood yet, but the role of immune factors in this process is becoming evident. To obtain appropriate drugs, a search of selective agonists, antagonists and modulators of α7- and α9-containing nAChRs is underway. The naturally occurring three-finger snake α-neurotoxins and mammalian Ly6/uPAR proteins, as well as neurotoxic peptides α-conotoxins, are not only sophisticated tools in research on nAChRs but are also considered as potential medicines. In particular, the inhibition of the α9-containing nAChRs by α-conotoxins may be a pathway to alleviate neuropathic pain. nAChRs are involved in the inflammation processes during AIDS and other viral infections; thus they can also be means used in drug design. In this review, we discuss the role of α7- and α9-containing nAChRs in the immune processes and in pain.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuri Utkin
- Correspondence: or ; Tel.: +7-495-3366522
| |
Collapse
|
9
|
Pavlov VA, Tracey KJ. Bioelectronic medicine: Preclinical insights and clinical advances. Neuron 2022; 110:3627-3644. [PMID: 36174571 PMCID: PMC10155266 DOI: 10.1016/j.neuron.2022.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/28/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
The nervous system maintains homeostasis and health. Homeostatic disruptions underlying the pathobiology of many diseases can be controlled by bioelectronic devices targeting CNS and peripheral neural circuits. New insights into the regulatory functions of the nervous system and technological developments in bioelectronics drive progress in the emerging field of bioelectronic medicine. Here, we provide an overview of key aspects of preclinical research, translation, and clinical advances in bioelectronic medicine.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Institute of Bioelectronic Medicine, the Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, the Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
10
|
Johnson K, Doucette A, Edwards A, Verdi A, McFarland R, Hulke S, Fowler A, Watts VJ, Klein AH. Reduced activity of adenylyl cyclase 1 attenuates morphine induced hyperalgesia and inflammatory pain in mice. Front Pharmacol 2022; 13:937741. [PMID: 36120355 PMCID: PMC9479488 DOI: 10.3389/fphar.2022.937741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Opioid tolerance, opioid-induced hyperalgesia during repeated opioid administration, and chronic pain are associated with upregulation of adenylyl cyclase activity. The objective of this study was to test the hypothesis that a reduction in adenylyl cyclase 1 (AC1) activity or expression would attenuate morphine tolerance and hypersensitivity, and inflammatory pain using murine models. To investigate opioid tolerance and opioid-induced hyperalgesia, mice were subjected to twice daily treatments of saline or morphine using either a static (15 mg/kg, 5 days) or an escalating tolerance paradigm (10–40 mg/kg, 4 days). Systemic treatment with an AC1 inhibitor, ST03437 (2.5–10 mg/kg, IP), reduced morphine-induced hyperalgesia in mice. Lumbar intrathecal administration of a viral vector incorporating a short-hairpin RNA targeting Adcy1 reduced morphine-induced hypersensitivity compared to control mice. In contrast, acute morphine antinociception, along with thermal paw withdrawal latencies, motor performance, exploration in an open field test, and burrowing behaviors were not affected by intrathecal Adcy1 knockdown. Knockdown of Adcy1 by intrathecal injection also decreased inflammatory mechanical hyperalgesia and increased burrowing and nesting activity after intraplantar administration of Complete Freund’s Adjuvant (CFA) one-week post-injection.
Collapse
Affiliation(s)
- Kayla Johnson
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Alexis Doucette
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Alexis Edwards
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Aleeya Verdi
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Ryan McFarland
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Shelby Hulke
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Amanda Fowler
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Val J. Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Amanda H. Klein
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
- *Correspondence: Amanda H. Klein,
| |
Collapse
|
11
|
Kelly MJ, Breathnach C, Tracey KJ, Donnelly SC. Manipulation of the inflammatory reflex as a therapeutic strategy. Cell Rep Med 2022; 3:100696. [PMID: 35858588 PMCID: PMC9381415 DOI: 10.1016/j.xcrm.2022.100696] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 06/20/2021] [Accepted: 06/23/2022] [Indexed: 02/07/2023]
Abstract
The cholinergic anti-inflammatory pathway is the efferent arm of the inflammatory reflex, a neural circuit through which the CNS can modulate peripheral immune responses. Signals communicated via the vagus and splenic nerves use acetylcholine, produced by Choline acetyltransferase (ChAT)+ T cells, to downregulate the inflammatory actions of macrophages expressing α7 nicotinic receptors. Pre-clinical studies using transgenic animals, cholinergic agonists, vagotomy, and vagus nerve stimulation have demonstrated this pathway's role and therapeutic potential in numerous inflammatory diseases. In this review, we summarize what is understood about the inflammatory reflex. We also demonstrate how pre-clinical findings are being translated into promising clinical trials, and we draw particular attention to innovative bioelectronic methods of harnessing the cholinergic anti-inflammatory pathway for clinical use.
Collapse
Affiliation(s)
- Mark J Kelly
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland; Tallaght University Hospital, Dublin, Ireland
| | | | - Kevin J Tracey
- Center for Biomedical Science and Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Seamas C Donnelly
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland; Tallaght University Hospital, Dublin, Ireland.
| |
Collapse
|
12
|
Caravaca AS, Gallina AL, Tarnawski L, Shavva VS, Colas RA, Dalli J, Malin SG, Hult H, Arnardottir H, Olofsson PS. Vagus nerve stimulation promotes resolution of inflammation by a mechanism that involves Alox15 and requires the α7nAChR subunit. Proc Natl Acad Sci U S A 2022; 119:e2023285119. [PMID: 35622894 PMCID: PMC9295760 DOI: 10.1073/pnas.2023285119] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/09/2022] [Indexed: 12/31/2022] Open
Abstract
Nonresolving inflammation underlies a range of chronic inflammatory diseases, and therapeutic acceleration of resolution of inflammation may improve outcomes. Neural reflexes regulate the intensity of inflammation (for example, through signals in the vagus nerve), but whether activation of the vagus nerve promotes the resolution of inflammation in vivo has been unknown. To investigate this, mice were subjected to electrical vagus nerve stimulation (VNS) or sham surgery at the cervical level followed by zymosan-induced peritonitis. The duration of inflammation resolution was significantly reduced and efferocytosis was significantly increased in mice treated with VNS as compared with sham. Lipid mediator (LM) metabololipidomics revealed that mice treated with VNS had higher levels of specialized proresolving mediators (SPMs), particularly from the omega-3 docosahexaenoic (DHA) and docosapentaenoic (n-3 DPA) metabolomes, in peritoneal exudates. VNS also shifted the ratio between proinflammatory and proresolving LMs toward a proresolving profile, but this effect by VNS was inverted in mice deficient in 12/15-lipoxgenase (Alox15), a key enzyme in this SPM biosynthesis. The significant VNS-mediated reduction of neutrophil numbers in peritoneal exudates was absent in mice deficient in the cholinergic α7-nicotinic acetylcholine receptor subunit (α7nAChR), an essential component of the inflammatory reflex. Thus, VNS increased local levels of SPM and accelerated resolution of inflammation in zymosan-induced peritonitis by a mechanism that involves Alox15 and requires the α7nAChR.
Collapse
Affiliation(s)
- April S. Caravaca
- Laboratory of Immunobiology, Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, 171 76, Sweden
- Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, 171 76, Sweden
| | - Alessandro L. Gallina
- Laboratory of Immunobiology, Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, 171 76, Sweden
- Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, 171 76, Sweden
| | - Laura Tarnawski
- Laboratory of Immunobiology, Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, 171 76, Sweden
- Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, 171 76, Sweden
| | - Vladimir S. Shavva
- Laboratory of Immunobiology, Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, 171 76, Sweden
| | - Romain A. Colas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Stephen G. Malin
- Laboratory of Immunobiology, Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, 171 76, Sweden
| | - Henrik Hult
- Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, 171 76, Sweden
- Department of Mathematics, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden
| | - Hildur Arnardottir
- Laboratory of Immunobiology, Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, 171 76, Sweden
| | - Peder S. Olofsson
- Laboratory of Immunobiology, Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, 171 76, Sweden
- Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, 171 76, Sweden
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, 11030
| |
Collapse
|
13
|
Ostrom KF, LaVigne JE, Brust TF, Seifert R, Dessauer CW, Watts VJ, Ostrom RS. Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiol Rev 2022; 102:815-857. [PMID: 34698552 PMCID: PMC8759965 DOI: 10.1152/physrev.00013.2021] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. Mammals possess nine isoforms of transmembrane ACs, dubbed AC1-9, that serve as major effector enzymes of G protein-coupled receptors (GPCRs). The transmembrane ACs display varying expression patterns across tissues, giving the potential for them to have a wide array of physiological roles. Cells express multiple AC isoforms, implying that ACs have redundant functions. Furthermore, all transmembrane ACs are activated by Gαs, so it was long assumed that all ACs are activated by Gαs-coupled GPCRs. AC isoforms partition to different microdomains of the plasma membrane and form prearranged signaling complexes with specific GPCRs that contribute to cAMP signaling compartments. This compartmentation allows for a diversity of cellular and physiological responses by enabling unique signaling events to be triggered by different pools of cAMP. Isoform-specific pharmacological activators or inhibitors are lacking for most ACs, making knockdown and overexpression the primary tools for examining the physiological roles of a given isoform. Much progress has been made in understanding the physiological effects mediated through individual transmembrane ACs. GPCR-AC-cAMP signaling pathways play significant roles in regulating functions of every cell and tissue, so understanding each AC isoform's role holds potential for uncovering new approaches for treating a vast array of pathophysiological conditions.
Collapse
Affiliation(s)
| | - Justin E LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| |
Collapse
|
14
|
Falvey A, Metz CN, Tracey KJ, Pavlov VA. Peripheral nerve stimulation and immunity: the expanding opportunities for providing mechanistic insight and therapeutic intervention. Int Immunol 2022; 34:107-118. [PMID: 34498051 PMCID: PMC8783605 DOI: 10.1093/intimm/dxab068] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/07/2021] [Indexed: 12/29/2022] Open
Abstract
Pre-clinical research advances our understanding of the vagus nerve-mediated regulation of immunity and clinical trials successfully utilize electrical vagus nerve stimulation in the treatment of patients with inflammatory disorders. This symbiotic relationship between pre-clinical and clinical research exploring the vagus nerve-based 'inflammatory reflex' has substantially contributed to establishing the field of bioelectronic medicine. Recent studies identify a crosstalk between the vagus nerve and other neural circuitries in controlling inflammation and delineate new neural immunoregulatory pathways. Here we outline current mechanistic insights into the role of vagal and non-vagal neural pathways in neuro-immune communication and inflammatory regulation. We also provide a timely overview of expanding opportunities for bioelectronic neuromodulation in the treatment of various inflammatory disorders.
Collapse
Affiliation(s)
- Aidan Falvey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Christine N Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kevin J Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Valentin A Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
15
|
Caravaca AS, Levine YA, Drake A, Eberhardson M, Olofsson PS. Vagus Nerve Stimulation Reduces Indomethacin-Induced Small Bowel Inflammation. Front Neurosci 2022; 15:730407. [PMID: 35095387 PMCID: PMC8789651 DOI: 10.3389/fnins.2021.730407] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
Crohn's disease is a chronic, idiopathic condition characterized by intestinal inflammation and debilitating gastrointestinal symptomatology. Previous studies of inflammatory bowel disease (IBD), primarily in colitis, have shown reduced inflammation after electrical or pharmacological activation of the vagus nerve, but the scope and kinetics of this effect are incompletely understood. To investigate this, we studied the effect of electrical vagus nerve stimulation (VNS) in a rat model of indomethacin-induced small intestinal inflammation. 1 min of VNS significantly reduced small bowel total inflammatory lesion area [(mean ± SEM) sham: 124 ± 14 mm2, VNS: 62 ± 14 mm2, p = 0.002], intestinal peroxidation and chlorination rates, and intestinal and systemic pro-inflammatory cytokine levels as compared with sham-treated animals after 24 h following indomethacin administration. It was not known whether this observed reduction of inflammation after VNS in intestinal inflammation was mediated by direct innervation of the gut or if the signals are relayed through the spleen. To investigate this, we studied the VNS effect on the small bowel lesions of splenectomized rats and splenic nerve stimulation (SNS) in intact rats. We observed that VNS reduced small bowel inflammation also in splenectomized rats but SNS alone failed to significantly reduce small bowel lesion area. Interestingly, VNS significantly reduced small bowel lesion area for 48 h when indomethacin administration was delayed. Thus, 1 min of electrical activation of the vagus nerve reduced indomethacin-induced intestinal lesion area by a spleen-independent mechanism. The surprisingly long-lasting and spleen-independent effect of VNS on the intestinal response to indomethacin challenge has important implications on our understanding of neural control of intestinal inflammation and its potential translation to improved therapies for IBD.
Collapse
Affiliation(s)
- April S. Caravaca
- Laboratory of Immunobiology, Department of Medicine, Karolinska University Hospital, Solna, Sweden
- MedTechLabs, BioClinicum, Stockholm Center for Bioelectronic Medicine, Karolinska University Hospital, Solna, Sweden
- SetPoint Medical, Inc., Valencia, CA, United States
| | - Yaakov A. Levine
- Laboratory of Immunobiology, Department of Medicine, Karolinska University Hospital, Solna, Sweden
- MedTechLabs, BioClinicum, Stockholm Center for Bioelectronic Medicine, Karolinska University Hospital, Solna, Sweden
- SetPoint Medical, Inc., Valencia, CA, United States
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, New York, NY, United States
| | - Anna Drake
- SetPoint Medical, Inc., Valencia, CA, United States
| | - Michael Eberhardson
- Laboratory of Immunobiology, Department of Medicine, Karolinska University Hospital, Solna, Sweden
- MedTechLabs, BioClinicum, Stockholm Center for Bioelectronic Medicine, Karolinska University Hospital, Solna, Sweden
- Department of Gastroenterology and Hepatology, University Hospital of Linköping, Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Peder S. Olofsson
- Laboratory of Immunobiology, Department of Medicine, Karolinska University Hospital, Solna, Sweden
- MedTechLabs, BioClinicum, Stockholm Center for Bioelectronic Medicine, Karolinska University Hospital, Solna, Sweden
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, New York, NY, United States
| |
Collapse
|
16
|
Incerpi S, Gionfra F, De Luca R, Candelotti E, De Vito P, Percario ZA, Leone S, Gnocchi D, Rossi M, Caruso F, Scapin S, Davis PJ, Lin HY, Affabris E, Pedersen JZ. Extranuclear effects of thyroid hormones and analogs during development: An old mechanism with emerging roles. Front Endocrinol (Lausanne) 2022; 13:961744. [PMID: 36213288 PMCID: PMC9540375 DOI: 10.3389/fendo.2022.961744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Thyroid hormones, T3 (triiodothyronine) and T4 (thyroxine), induce a variety of long-term effects on important physiological functions, ranging from development and growth to metabolism regulation, by interacting with specific nuclear or cytosolic receptors. Extranuclear or nongenomic effects of thyroid hormones are mediated by plasma membrane or cytoplasmic receptors, mainly by αvβ3 integrin, and are independent of protein synthesis. A wide variety of nongenomic effects have now been recognized to be elicited through the binding of thyroid hormones to this receptor, which is mainly involved in angiogenesis, as well as in cell cancer proliferation. Several signal transduction pathways are modulated by thyroid hormone binding to αvβ3 integrin: protein kinase C, protein kinase A, Src, or mitogen-activated kinases. Thyroid hormone-activated nongenomic effects are also involved in the regulation of Na+-dependent transport systems, such as glucose uptake, Na+/K+-ATPase, Na+/H+ exchanger, and amino acid transport System A. Of note, the modulation of these transport systems is cell-type and developmental stage-dependent. In particular, dysregulation of Na+/K+-ATPase activity is involved in several pathological situations, from viral infection to cancer. Therefore, this transport system represents a promising pharmacological tool in these pathologies.
Collapse
Affiliation(s)
- Sandra Incerpi
- Department of Sciences, University Roma Tre, Roma, Italy
- *Correspondence: Sandra Incerpi, ; Jens Z. Pedersen,
| | - Fabio Gionfra
- Department of Sciences, University Roma Tre, Roma, Italy
| | - Roberto De Luca
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | | | - Paolo De Vito
- Department of Biology, University Tor Vergata, Rome, Italy
| | | | - Stefano Leone
- Department of Sciences, University Roma Tre, Roma, Italy
| | - Davide Gnocchi
- Interdisciplinary Department of Medicine, University of Bari, School of Medicine, Bari, Italy
| | - Miriam Rossi
- Department of Chemistry, Vassar College, Poughkeepsie, NY, United States
| | - Francesco Caruso
- Department of Chemistry, Vassar College, Poughkeepsie, NY, United States
| | - Sergio Scapin
- Department of Cellular and Developmental Biology, Sapienza University, Rome, Italy
| | - Paul J. Davis
- Department of Medicine, Albany Medical College, Albany, NY, United States
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Hung-Yun Lin
- Department of Medicine, Albany Medical College, Albany, NY, United States
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center of Taipei, Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Jens Z. Pedersen
- Department of Biology, University Tor Vergata, Rome, Italy
- *Correspondence: Sandra Incerpi, ; Jens Z. Pedersen,
| |
Collapse
|
17
|
Tarnawski L, Olofsson PS. Inflammation neuroscience: neuro-immune crosstalk and interfaces. Clin Transl Immunology 2021; 10:e1352. [PMID: 34754449 PMCID: PMC8558388 DOI: 10.1002/cti2.1352] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/01/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a key process in antimicrobial defence and tissue repair, and failure to properly regulate inflammation can result in tissue damage and death. Neural circuits play important roles throughout the course of an inflammatory response, and the neurophysiological and molecular mechanisms are only partly understood. Here, we review key evidence for the neural regulation of inflammation and discuss emerging technologies to further map and harness this neurophysiology, a cornerstone in the rapidly evolving field of inflammation neuroscience.
Collapse
Affiliation(s)
- Laura Tarnawski
- Laboratory of ImmunobiologyDivision of Cardiovascular MedicineDepartment of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Stockholm Center for Bioelectronic MedicineMedTechLabsBioclinicumKarolinska University HospitalSolnaSweden
| | - Peder S Olofsson
- Laboratory of ImmunobiologyDivision of Cardiovascular MedicineDepartment of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Stockholm Center for Bioelectronic MedicineMedTechLabsBioclinicumKarolinska University HospitalSolnaSweden
- Institute of Bioelectronic MedicineFeinstein Institutes for Medical ResearchManhassetNYUSA
| |
Collapse
|
18
|
Metz CN, Pavlov VA. Treating disorders across the lifespan by modulating cholinergic signaling with galantamine. J Neurochem 2021; 158:1359-1380. [PMID: 33219523 PMCID: PMC10049459 DOI: 10.1111/jnc.15243] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Advances in understanding the regulatory functions of the nervous system have revealed neural cholinergic signaling as a key regulator of cytokine responses and inflammation. Cholinergic drugs, including the centrally acting acetylcholinesterase inhibitor, galantamine, which are in clinical use for the treatment of Alzheimer's disease and other neurodegenerative and neuropsychiatric disorders, have been rediscovered as anti-inflammatory agents. Here, we provide a timely update on this active research and clinical developments. We summarize the involvement of cholinergic mechanisms and inflammation in the pathobiology of Alzheimer's disease, Parkinson's disease, and schizophrenia, and the effectiveness of galantamine treatment. We also highlight recent findings demonstrating the effects of galantamine in preclinical and clinical settings of numerous conditions and diseases across the lifespan that are characterized by immunological, neurological, and metabolic dysfunction.
Collapse
Affiliation(s)
- Christine N. Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Valentin A. Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
19
|
Fujiu K, Manabe I. Nerve-macrophage interactions in cardiovascular disease. Int Immunol 2021; 34:81-95. [PMID: 34173833 DOI: 10.1093/intimm/dxab036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023] Open
Abstract
The heart is highly innervated by autonomic neurons, and dynamic autonomic regulation of the heart and blood vessels is essential for animals to carry out the normal activities of life. Cardiovascular diseases, including heart failure and myocardial infarction, are often characterized in part by an imbalance in autonomic nervous system activation, with excess sympathetic and diminished parasympathetic activation. Notably, however, this is often accompanied by chronic inflammation within the cardiovascular tissues, which suggests there are interactions between autonomic dysregulation and inflammation. Recent studies have been unraveling the mechanistic links between autonomic nerves and immune cells within cardiovascular disease. The autonomic nervous system and immune system also act in concert to coordinate the actions of multiple organs that not only maintain homeostasis but also likely play key roles in disease-disease interactions, such as cardiorenal syndrome and multimorbidity. In this review, we summarize the physiological and pathological interactions between autonomic nerves and macrophages in the context of cardiovascular disease.
Collapse
Affiliation(s)
- Katsuhito Fujiu
- Department of Cardiovascular Medicine, the University of Tokyo, Hongo, Bunkyo, Tokyo, Japan.,Department of Advanced Cardiology, the University of Tokyo, Hongo, Bunkyo, Tokyo, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo, Chiba, Chiba, Japan
| |
Collapse
|
20
|
Pavlov VA. The evolving obesity challenge: targeting the vagus nerve and the inflammatory reflex in the response. Pharmacol Ther 2021; 222:107794. [PMID: 33310156 PMCID: PMC8027699 DOI: 10.1016/j.pharmthera.2020.107794] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Obesity and the metabolic syndrome (MetS), which have reached pandemic proportions significantly increase the risk for type 2 diabetes, cardiovascular disease, and other serious conditions. Recent data with COVID-19 patients indicate that obesity also is a significant risk factor for this novel viral disease and poor outcome of associated critical illness. These findings considerably change the view of obesity as a driver of serious, but slowly-progressing chronic diseases, and emphasize the urgency to explore new therapeutic approaches. Inflammation is a recognized driver of metabolic derangements in obesity and MetS, and a core feature of COVID-19 pathobiology. Recent advances in our understanding of inflammatory regulation have highlighted the role of the nervous system and the vagus nerve-based inflammatory reflex. Current bioelectronic and pharmacological therapeutic explorations centered on the inflammatory reflex offer new approaches for conditions characterized by immune and metabolic dysregulation and for ameliorating the escalating burden of obesity, MetS, and COVID-19.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA.
| |
Collapse
|
21
|
Azabou E, Bao G, Bounab R, Heming N, Annane D. Vagus Nerve Stimulation: A Potential Adjunct Therapy for COVID-19. Front Med (Lausanne) 2021; 8:625836. [PMID: 34026778 PMCID: PMC8137825 DOI: 10.3389/fmed.2021.625836] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) through excessive end organ inflammation. Despite improved understanding of the pathophysiology, management, and the great efforts worldwide to produce effective drugs, death rates of COVID-19 patients remain unacceptably high, and effective treatment is unfortunately lacking. Pharmacological strategies aimed at modulating inflammation in COVID-19 are being evaluated worldwide. Several drug therapies targeting this excessive inflammation, such as tocilizumab, an interleukin (IL)-6 inhibitor, corticosteroids, programmed cell death protein (PD)-1/PD-L1 checkpoint inhibition, cytokine-adsorption devices, and intravenous immunoglobulin have been identified as potentially useful and reliable approaches to counteract the cytokine storm. However, little attention is currently paid for non-drug therapeutic strategies targeting inflammatory and immunological processes that may be useful for reducing COVID-19-induced complications and improving patient outcome. Vagus nerve stimulation attenuates inflammation both in experimental models and preliminary data in human. Modulating the activity of cholinergic anti-inflammatory pathways (CAPs) described by the group of KJ Tracey has indeed become an important target of therapeutic research strategies for inflammatory diseases and sepsis. Non-invasive transcutaneous vagal nerve stimulation (t-VNS), as a non-pharmacological adjuvant, may help reduce the burden of COVID-19 and deserve to be investigated. VNS as an adjunct therapy in COVID-19 patients should be investigated in clinical trials. Two clinical trials on this topic are currently underway (NCT04382391 and NCT04368156). The results of these trials will be informative, but additional larger studies are needed.
Collapse
Affiliation(s)
- Eric Azabou
- Clinical Neurophysiology and Neuromodulation Unit, Departments of Physiology and Critical Care Medicine, Raymond Poincaré Hospital, Assistance Publique- Hôpitaux de Paris, Inserm UMR 1173, Infection and Inflammation (2I), University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Guillaume Bao
- Clinical Neurophysiology and Neuromodulation Unit, Departments of Physiology and Critical Care Medicine, Raymond Poincaré Hospital, Assistance Publique- Hôpitaux de Paris, Inserm UMR 1173, Infection and Inflammation (2I), University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Rania Bounab
- General Intensive Care Unit - Assistance Publique Hôpitaux de Paris, Raymond Poincaré Hospital, Assistance Publique- Hôpitaux de Paris, Inserm UMR 1173, Infection and Inflammation (2I), University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Nicholas Heming
- General Intensive Care Unit - Assistance Publique Hôpitaux de Paris, Raymond Poincaré Hospital, Assistance Publique- Hôpitaux de Paris, Inserm UMR 1173, Infection and Inflammation (2I), University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Djillali Annane
- General Intensive Care Unit - Assistance Publique Hôpitaux de Paris, Raymond Poincaré Hospital, Assistance Publique- Hôpitaux de Paris, Inserm UMR 1173, Infection and Inflammation (2I), University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France
| |
Collapse
|
22
|
Gauthier AG, Lin M, Wu J, Kennedy TP, Daley LA, Ashby CR, Mantell LL. From nicotine to the cholinergic anti-inflammatory reflex - Can nicotine alleviate the dysregulated inflammation in COVID-19? J Immunotoxicol 2021; 18:23-29. [PMID: 33860730 DOI: 10.1080/1547691x.2021.1875085] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The coronavirus SARS-CoV-2 of 2019 (COVID-19) causes a pandemic that has been diagnosed in more than 70 million people worldwide. Mild-to-moderate COVID-19 symptoms include coughing, fever, myalgia, shortness of breath, and acute inflammatory lung injury (ALI). In contrast, acute respiratory distress syndrome (ARDS) and respiratory failure occur in patients diagnosed with severe COVID-19. ARDS is mediated, at least in part, by a dysregulated inflammatory response due to excessive levels of circulating cytokines, a condition known as the "cytokine-storm syndrome." Currently, there are FDA-approved therapies that attenuate the dysregulated inflammation that occurs in COVID-19 patients, such as dexamethasone or other corticosteroids and IL-6 inhibitors, including sarilumab, tocilizumab, and siltuximab. However, the efficacy of these treatments have been shown to be inconsistent. Compounds that activate the vagus nerve-mediated cholinergic anti-inflammatory reflex, such as the α7 nicotinic acetylcholine receptor agonist, GTS-21, attenuate ARDS/inflammatory lung injury by decreasing the extracellular levels of high mobility group box-1 (HMGB1) in the airways and the circulation. It is possible that HMGB1 may be an important mediator of the "cytokine-storm syndrome." Notably, high plasma levels of HMGB1 have been reported in patients diagnosed with severe COVID-19, and there is a significant negative correlation between HMGB1 plasma levels and clinical outcomes. Nicotine can activate the cholinergic anti-inflammatory reflex, which attenuates the up-regulation and the excessive release of pro-inflammatory cytokines/chemokines. Therefore, we hypothesize that low molecular weight compounds that activate the cholinergic anti-inflammatory reflex, such as nicotine or GTS-21, may represent a potential therapeutic approach to attenuate the dysregulated inflammatory responses in patients with severe COVID-19.
Collapse
Affiliation(s)
- Alex G Gauthier
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | - Mosi Lin
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | - Jiaqi Wu
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | | | - Lee-Anne Daley
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | - Lin L Mantell
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, USA.,The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, USA
| |
Collapse
|
23
|
Eberhardson M, Levine YA, Tarnawski L, Olofsson PS. The brain-gut axis, inflammatory bowel disease and bioelectronic medicine. Int Immunol 2021; 33:349-356. [PMID: 33912906 DOI: 10.1093/intimm/dxab018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
The hallmark of inflammatory bowel diseases (IBD) is chronic intestinal inflammation with typical onset in adolescents and young adults. An abundance of neutrophils is seen in the inflammatory lesions, but adaptive immunity is also an important player in the chronicity of the disease. There is an unmet need for new treatment options since modern medicines such as biological therapy with anti-cytokine antibodies still leave a substantial number of patients with persisting disease activity. The role of the central nervous system and its interaction with the gut in the pathophysiology of IBD have been brought to attention both in animal models and in humans after the discovery of the inflammatory reflex. The suggested control of gut immunity by the brain-gut axis represents a novel therapeutic target suitable for bioelectronic intervention. In this review, we discuss the role of the inflammatory reflex in gut inflammation and the recent advances in the treatment of IBD by intervening with the brain-gut axis through bioelectronic devices.
Collapse
Affiliation(s)
- Michael Eberhardson
- Department of Gastroenterology and Hepatology, University Hospital of Linköping, 581 91 Linköping, Sweden.,Department of Medicine, Center for Bioelectronic Medicine, Bioclinicum, Karolinska Institutet, 171 64 Stockholm, Sweden.,Department of Health, Medicine and Caring Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Yaakov A Levine
- Department of Medicine, Center for Bioelectronic Medicine, Bioclinicum, Karolinska Institutet, 171 64 Stockholm, Sweden.,SetPoint Medical, Valencia, CA 91355, USA
| | - Laura Tarnawski
- Department of Medicine, Center for Bioelectronic Medicine, Bioclinicum, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Peder S Olofsson
- Department of Medicine, Center for Bioelectronic Medicine, Bioclinicum, Karolinska Institutet, 171 64 Stockholm, Sweden.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| |
Collapse
|
24
|
Halder N, Lal G. Cholinergic System and Its Therapeutic Importance in Inflammation and Autoimmunity. Front Immunol 2021; 12:660342. [PMID: 33936095 PMCID: PMC8082108 DOI: 10.3389/fimmu.2021.660342] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurological and immunological signals constitute an extensive regulatory network in our body that maintains physiology and homeostasis. The cholinergic system plays a significant role in neuroimmune communication, transmitting information regarding the peripheral immune status to the central nervous system (CNS) and vice versa. The cholinergic system includes the neurotransmitter\ molecule, acetylcholine (ACh), cholinergic receptors (AChRs), choline acetyltransferase (ChAT) enzyme, and acetylcholinesterase (AChE) enzyme. These molecules are involved in regulating immune response and playing a crucial role in maintaining homeostasis. Most innate and adaptive immune cells respond to neuronal inputs by releasing or expressing these molecules on their surfaces. Dysregulation of this neuroimmune communication may lead to several inflammatory and autoimmune diseases. Several agonists, antagonists, and inhibitors have been developed to target the cholinergic system to control inflammation in different tissues. This review discusses how various molecules of the neuronal and non-neuronal cholinergic system (NNCS) interact with the immune cells. What are the agonists and antagonists that alter the cholinergic system, and how are these molecules modulate inflammation and immunity. Understanding the various functions of pharmacological molecules could help in designing better strategies to control inflammation and autoimmunity.
Collapse
Affiliation(s)
- Namrita Halder
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| |
Collapse
|
25
|
Zhu S, Huang S, Xia G, Wu J, Shen Y, Wang Y, Ostrom RS, Du A, Shen C, Xu C. Anti-inflammatory effects of α7-nicotinic ACh receptors are exerted through interactions with adenylyl cyclase-6. Br J Pharmacol 2021; 178:2324-2338. [PMID: 33598912 DOI: 10.1111/bph.15412] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/20/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Nicotinic ACh receptors containing the α7 sub-unit (α7-nAChRs) suppress inflammation through a wide range of pathways in immune cells. These receptors are thus potentially involved in a number of inflammatory diseases. However, the detailed mechanisms underlying the anti-inflammatory effects of α7-nAChRs remain to be described. EXPERIMENTAL APPROACH Anti-inflammatory effects of α7-nAChR agonists were assessed in both murine macrophages (RAW 264.7) and bone marrow-derived macrophages (BMDM), stimulated with LPS, using immunoblotting, RT-PCR and luciferase reporter assays. The role of adenylyl cyclase-6 in the degradation of Toll-like receptor 4 (TLR4) following endocytosis, was explored via overexpression and knockdown. A mouse model of chronic obstructive pulmonary disease (COPD) induced by porcine pancreatic elastase was used to confirm key findings. RESULTS Anti-inflammatory effects of α7-nAChRs were largely dependent on adenylyl cyclase-6 activation, as knockdown of adenylyl cyclase-6 considerably reduced the effects of α7-nAChR agonists while adenylyl cyclase-6 overexpression promoted them. We found that α7-nAChRs and adenylyl cyclase-6 are co-localized in lipid rafts of macrophages and directly interact. Activation of adenylyl cyclase-6 led to increased degradation of TLR4. Administration of the α7-nAChR agonist PNU-282987 attenuated pathological and inflammatory end points in a mouse model of COPD. CONCLUSION AND IMPLICATIONS The α7-nAChRs inhibit inflammation through activating adenylyl cyclase-6 and promoting degradation of TLR4. The use of α7-nAChR agonists may represent a novel therapeutic approach for treating COPD and possibly other inflammatory diseases.
Collapse
Affiliation(s)
- Simeng Zhu
- Department of Cardiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai Jiaotong University School of Medicine (SJTUSM), Shanghai, China
| | - Shiqian Huang
- Department of Cardiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai Jiaotong University School of Medicine (SJTUSM), Shanghai, China.,Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guofang Xia
- Department of Cardiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai Jiaotong University School of Medicine (SJTUSM), Shanghai, China
| | - Jin Wu
- Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Wang
- Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, California, United States
| | - Ailian Du
- Department of Neurology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chengxing Shen
- Department of Cardiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai Jiaotong University School of Medicine (SJTUSM), Shanghai, China
| | - Congfeng Xu
- Department of Cardiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai Jiaotong University School of Medicine (SJTUSM), Shanghai, China.,Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Kressel AM, Tsaava T, Levine YA, Chang EH, Addorisio ME, Chang Q, Burbach BJ, Carnevale D, Lembo G, Zador AM, Andersson U, Pavlov VA, Chavan SS, Tracey KJ. Identification of a brainstem locus that inhibits tumor necrosis factor. Proc Natl Acad Sci U S A 2020; 117:29803-29810. [PMID: 33168718 PMCID: PMC7703602 DOI: 10.1073/pnas.2008213117] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the brain, compact clusters of neuron cell bodies, termed nuclei, are essential for maintaining parameters of host physiology within a narrow range optimal for health. Neurons residing in the brainstem dorsal motor nucleus (DMN) project in the vagus nerve to communicate with the lungs, liver, gastrointestinal tract, and other organs. Vagus nerve-mediated reflexes also control immune system responses to infection and injury by inhibiting the production of tumor necrosis factor (TNF) and other cytokines in the spleen, although the function of DMN neurons in regulating TNF release is not known. Here, optogenetics and functional mapping reveal cholinergic neurons in the DMN, which project to the celiac-superior mesenteric ganglia, significantly increase splenic nerve activity and inhibit TNF production. Efferent vagus nerve fibers terminating in the celiac-superior mesenteric ganglia form varicose-like structures surrounding individual nerve cell bodies innervating the spleen. Selective optogenetic activation of DMN cholinergic neurons or electrical activation of the cervical vagus nerve evokes action potentials in the splenic nerve. Pharmacological blockade and surgical transection of the vagus nerve inhibit vagus nerve-evoked splenic nerve responses. These results indicate that cholinergic neurons residing in the brainstem DMN control TNF production, revealing a role for brainstem coordination of immunity.
Collapse
Affiliation(s)
- Adam M Kressel
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030
- Department of Surgery, North Shore University Hospital, Northwell Health, Manhasset, NY 11030
| | - Tea Tsaava
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | | | - Eric H Chang
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Meghan E Addorisio
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Qing Chang
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | | | - Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, IS, Italy
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Giuseppe Lembo
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, IS, Italy
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Valentin A Pavlov
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030;
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY 11549
| | - Sangeeta S Chavan
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030;
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY 11549
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030;
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY 11549
| |
Collapse
|
27
|
Sitapara RA, Gauthier AG, Valdés-Ferrer SI, Lin M, Patel V, Wang M, Martino AT, Perron JC, Ashby CR, Tracey KJ, Pavlov VA, Mantell LL. The α7 nicotinic acetylcholine receptor agonist, GTS-21, attenuates hyperoxia-induced acute inflammatory lung injury by alleviating the accumulation of HMGB1 in the airways and the circulation. Mol Med 2020; 26:63. [PMID: 32600307 PMCID: PMC7322715 DOI: 10.1186/s10020-020-00177-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/29/2020] [Indexed: 01/08/2023] Open
Abstract
Background Oxygen therapy, using supraphysiological concentrations of oxygen (hyperoxia), is routinely administered to patients who require respiratory support including mechanical ventilation (MV). However, prolonged exposure to hyperoxia results in acute lung injury (ALI) and accumulation of high mobility group box 1 (HMGB1) in the airways. We previously showed that airway HMGB1 mediates hyperoxia-induced lung injury in a mouse model of ALI. Cholinergic signaling through the α7 nicotinic acetylcholine receptor (α7nAChR) attenuates several inflammatory conditions. The aim of this study was to determine whether 3–(2,4 dimethoxy-benzylidene)-anabaseine dihydrochloride, GTS-21, an α7nAChR partial agonist, inhibits hyperoxia-induced HMGB1 accumulation in the airways and circulation, and consequently attenuates inflammatory lung injury. Methods Mice were exposed to hyperoxia (≥99% O2) for 3 days and treated concurrently with GTS-21 (0.04, 0.4 and 4 mg/kg, i.p.) or the control vehicle, saline. Results The systemic administration of GTS-21 (4 mg/kg) significantly decreased levels of HMGB1 in the airways and the serum. Moreover, GTS-21 (4 mg/kg) significantly reduced hyperoxia-induced acute inflammatory lung injury, as indicated by the decreased total protein content in the airways, reduced infiltration of inflammatory monocytes/macrophages and neutrophils into the lung tissue and airways, and improved lung injury histopathology. Conclusions Our results indicate that GTS-21 can attenuate hyperoxia-induced ALI by inhibiting extracellular HMGB1-mediated inflammatory responses. This suggests that the α7nAChR represents a potential pharmacological target for the treatment regimen of oxidative inflammatory lung injury in patients receiving oxygen therapy.
Collapse
Affiliation(s)
- Ravikumar A Sitapara
- Department of Pharmaceutical Sciences, St, College of Pharmacy and Health Sciences, St. John's University College of Pharmacy and Health Sciences, St. Albert Hall, 8000 Utopia Parkway, Queens, New York, 11439, USA
| | - Alex G Gauthier
- Department of Pharmaceutical Sciences, St, College of Pharmacy and Health Sciences, St. John's University College of Pharmacy and Health Sciences, St. Albert Hall, 8000 Utopia Parkway, Queens, New York, 11439, USA
| | - Sergio I Valdés-Ferrer
- Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, New York, 11030, USA
| | - Mosi Lin
- Department of Pharmaceutical Sciences, St, College of Pharmacy and Health Sciences, St. John's University College of Pharmacy and Health Sciences, St. Albert Hall, 8000 Utopia Parkway, Queens, New York, 11439, USA
| | - Vivek Patel
- Department of Pharmaceutical Sciences, St, College of Pharmacy and Health Sciences, St. John's University College of Pharmacy and Health Sciences, St. Albert Hall, 8000 Utopia Parkway, Queens, New York, 11439, USA
| | - Mao Wang
- Department of Pharmaceutical Sciences, St, College of Pharmacy and Health Sciences, St. John's University College of Pharmacy and Health Sciences, St. Albert Hall, 8000 Utopia Parkway, Queens, New York, 11439, USA
| | - Ashley T Martino
- Department of Pharmaceutical Sciences, St, College of Pharmacy and Health Sciences, St. John's University College of Pharmacy and Health Sciences, St. Albert Hall, 8000 Utopia Parkway, Queens, New York, 11439, USA
| | - Jeanette C Perron
- Department of Pharmaceutical Sciences, St, College of Pharmacy and Health Sciences, St. John's University College of Pharmacy and Health Sciences, St. Albert Hall, 8000 Utopia Parkway, Queens, New York, 11439, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St, College of Pharmacy and Health Sciences, St. John's University College of Pharmacy and Health Sciences, St. Albert Hall, 8000 Utopia Parkway, Queens, New York, 11439, USA
| | - Kevin J Tracey
- Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, New York, 11030, USA
| | - Valentin A Pavlov
- Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, New York, 11030, USA.
| | - Lin L Mantell
- Department of Pharmaceutical Sciences, St, College of Pharmacy and Health Sciences, St. John's University College of Pharmacy and Health Sciences, St. Albert Hall, 8000 Utopia Parkway, Queens, New York, 11439, USA. .,Feinstein Institutes for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, New York, 11030, USA.
| |
Collapse
|
28
|
Chu C, Artis D, Chiu IM. Neuro-immune Interactions in the Tissues. Immunity 2020; 52:464-474. [PMID: 32187517 PMCID: PMC10710744 DOI: 10.1016/j.immuni.2020.02.017] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/11/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
The ability of the nervous system to sense environmental stimuli and to relay these signals to immune cells via neurotransmitters and neuropeptides is indispensable for effective immunity and tissue homeostasis. Depending on the tissue microenvironment and distinct drivers of a certain immune response, the same neuronal populations and neuro-mediators can exert opposing effects, promoting or inhibiting tissue immunity. Here, we review the current understanding of the mechanisms that underlie the complex interactions between the immune and the nervous systems in different tissues and contexts. We outline current gaps in knowledge and argue for the importance of considering infectious and inflammatory disease within a conceptual framework that integrates neuro-immune circuits both local and systemic, so as to better understand effective immunity to develop improved approaches to treat inflammation and disease.
Collapse
Affiliation(s)
- Coco Chu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Eberhardson M, Tarnawski L, Centa M, Olofsson PS. Neural Control of Inflammation: Bioelectronic Medicine in Treatment of Chronic Inflammatory Disease. Cold Spring Harb Perspect Med 2020; 10:a034181. [PMID: 31358521 PMCID: PMC7050580 DOI: 10.1101/cshperspect.a034181] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammation is important for antimicrobial defense and for tissue repair after trauma. The inflammatory response and its resolution are both active processes that must be tightly regulated to maintain homeostasis. Excessive inflammation and nonresolving inflammation cause tissue damage and chronic disease, including autoinflammatory and cardiovascular diseases. An improved understanding of the cellular and molecular mechanisms that regulate inflammation has supported development of novel therapies for several inflammatory diseases, including rheumatoid arthritis and inflammatory bowel disease. Many of the specific anticytokine therapies carry a risk for excessive immunosuppression and serious side effects. The discovery of the inflammatory reflex and the increasingly detailed understanding of the molecular interactions between homeostatic neural reflexes and the immune system have laid the foundation for bioelectronic medicine in the field of inflammatory diseases. Neural interfaces and nerve stimulators are now being tested in human clinical trials and may, as the technology develops further, have advantages over conventional drugs in terms of better compliance, continuously adaptable control of dosing, better monitoring, and reduced risks for unwanted side effects. Here, we review the current mechanistic understanding of common autoinflammatory conditions, consider available therapies, and discuss the potential use of increasingly capable devices in the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Michael Eberhardson
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Laura Tarnawski
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Monica Centa
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Peder S Olofsson
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, 17177 Stockholm, Sweden
- Center for Biomedical Science, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
| |
Collapse
|
30
|
Malin SG, Shavva VS, Tarnawski L, Olofsson PS. Functions of acetylcholine-producing lymphocytes in immunobiology. Curr Opin Neurobiol 2020; 62:115-121. [PMID: 32126362 DOI: 10.1016/j.conb.2020.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/26/2022]
Abstract
Recent advances in neuroscience and immunology have shown that cholinergic signals are vital in the regulation of inflammation and immunity. Choline acetyltransferase+ (ChAT+) lymphocytes have the capacity to biosynthesize and release acetylcholine, the cognate ligand for cholinergic receptors. Acetylcholine-producing T cells relay neural signals in the 'inflammatory reflex' that regulate cytokine release in spleen. Mice deficient in acetylcholine-producing T cells have increased blood pressure, show reduced local vasodilatation and viral control in lymphocytic choriomeningitis virus infection, and display changes in gut microbiota compared with littermates. These observations indicate that ChAT+ lymphocytes play physiologically important roles in regulation of inflammation and anti-microbial defense. However, the full scope and importance of ChAT+ lymphocytes in immunity and vascular biology remains to be elucidated. Here, we review key findings in this emerging area.
Collapse
Affiliation(s)
- Stephen G Malin
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vladmir S Shavva
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laura Tarnawski
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peder S Olofsson
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
31
|
Caravaca AS, Centa M, Gallina AL, Tarnawski L, Olofsson PS. Neural reflex control of vascular inflammation. Bioelectron Med 2020; 6:3. [PMID: 32232111 PMCID: PMC7065709 DOI: 10.1186/s42234-020-0038-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/14/2020] [Indexed: 12/26/2022] Open
Abstract
Atherosclerosis is a multifactorial chronic inflammatory disease that underlies myocardial infarction and stroke. Efficacious treatment for hyperlipidemia and hypertension has significantly reduced morbidity and mortality in cardiovascular disease. However, atherosclerosis still confers a considerable risk of adverse cardiovascular events. In the current mechanistic understanding of the pathogenesis of atherosclerosis, inflammation is pivotal both in disease development and progression. Recent clinical data provided support for this notion and treatment targeting inflammation is currently being explored. Interestingly, neural reflexes regulate cytokine production and inflammation. Hence, new technology utilizing implantable devices to deliver electrical impulses to activate neural circuits are currently being investigated in treatment of inflammation. Hopefully, it may become possible to target vascular inflammation in cardiovascular disease using bioelectronic medicine. In this review, we discuss neural control of inflammation and the potential implications of new therapeutic strategies to treat cardiovascular disease.
Collapse
Affiliation(s)
- A. S. Caravaca
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - M. Centa
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| | - A. L. Gallina
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - L. Tarnawski
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - P. S. Olofsson
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| |
Collapse
|
32
|
Levine YA, Faltys M, Chernoff D. Harnessing the Inflammatory Reflex for the Treatment of Inflammation-Mediated Diseases. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a034330. [PMID: 30833463 DOI: 10.1101/cshperspect.a034330] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Treating diseases nonpharmacologically, using targeted neurostimulation instead of systemic drugs, is a hallmark of the burgeoning field of bioelectronic medicine. In this review, we provide a brief overview of the discovery and function of the prototypical neuroimmune reflex, the "inflammatory reflex." We discuss various biomarkers developed and used to translate early physiological discoveries into dosing parameters used in experimental settings, from the treatment of animal models of disease through a proof-of-concept clinical study in rheumatoid arthritis (RA). Finally, we relate how unique aspects of this form of therapy enabled the design of a next-generation implanted pulse generator using integrated electrodes, currently under evaluation in a U.S.-based clinical study for patients with drug refractory RA.
Collapse
|
33
|
Barış E, Arıcı M, Hamurtekin E. THE ROLE OF NICOTINIC ANTI-INFLAMMATORY PATHWAY IN PROSTAGLANDİN MEDIATED INFLAMMATORY RESPONSE IN SEPSIS: A short review. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2019. [DOI: 10.33808/clinexphealthsci.548030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Li W, Sang M, Hao X, Jia L, Wang Y, Shan B. Gene expression and DNA methylation analyses suggest that immune process-related ADCY6 is a prognostic factor of luminal-like breast cancer. J Cell Biochem 2019; 121:3537-3546. [PMID: 31886586 DOI: 10.1002/jcb.29633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022]
Abstract
Breast cancer is a malignant tumor that seriously threatens women's health, and luminal-like cancer subtypes account for the majority of the cases. The purpose of this study was to investigate the relationships among DNA methylation, gene expression profile, and the tumor-immune microenvironment of luminal-like breast cancer, and to identify the potential key genes that regulate immune cell infiltration in luminal-like breast cancer. The ESTIMATE algorithm was applied to calculate immune scores and stromal scores of patients with breast cancer. Kaplan-Meier curves were generated for survival analysis. The clusterProfile package was used for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. The protein-protein interaction (PPI) network was constructed using the STRING database and Cytoscape software. Correlations between ADCY6 expression and immune cell infiltration-related pathways were analyzed by gene set variation analysis. R software was used for the statistical analysis and figure generation. Disease-free survival was higher in the immune score-high group than it was in the immune score-low group, while the stromal score had no correlation with prognosis. There were 515 genes that differed in both gene expression and DNA methylation levels, and these genes were mainly enriched in immune process-related pathways. ADCY6 was enriched in module A of the PPI network. Patients with downregulation and hypermethylation of ADCY6 associated with a better prognosis. ADCY6 expression was negatively correlated with the activation of immune process-related signaling pathways, immune checkpoint receptors, and ligands, except for CLEC4G. DNA methylation was found to be involved in the regulation of the key cellular pathways of luminal-like breast cancer immune cell infiltration. Additionally, ADCY6 was identified as a prognostic factor involved in the DNA methylation-regulated immune processes in luminal-like breast cancer.
Collapse
Affiliation(s)
- Weijing Li
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meixiang Sang
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoguang Hao
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Radiological, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Jia
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong Wang
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baoen Shan
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
35
|
Caravaca AS, Gallina AL, Tarnawski L, Tracey KJ, Pavlov VA, Levine YA, Olofsson PS. An Effective Method for Acute Vagus Nerve Stimulation in Experimental Inflammation. Front Neurosci 2019; 13:877. [PMID: 31551672 PMCID: PMC6736627 DOI: 10.3389/fnins.2019.00877] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/05/2019] [Indexed: 11/29/2022] Open
Abstract
Neural reflexes regulate inflammation and electrical activation of the vagus nerve reduces inflammation in models of inflammatory disease. These discoveries have generated an increasing interest in targeted neurostimulation as treatment for chronic inflammatory diseases. Data from the first clinical trials that use vagus nerve stimulation (VNS) in treatment of rheumatoid arthritis and Crohn’s disease suggest that there is a therapeutic potential of electrical VNS in diseases characterized by excessive inflammation. Accordingly, there is an interest to further explore the molecular mechanisms and therapeutic potential of electrical VNS in a range of experimental settings and available genetic mouse models of disease. Here, we describe a method for electrical VNS in experimental inflammation in mice.
Collapse
Affiliation(s)
- April S Caravaca
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Alessandro L Gallina
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Laura Tarnawski
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Kevin J Tracey
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Valentin A Pavlov
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | | | - Peder S Olofsson
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| |
Collapse
|
36
|
Wang CCN, Li CY, Cai JH, Sheu PCY, Tsai JJP, Wu MY, Li CJ, Hou MF. Identification of Prognostic Candidate Genes in Breast Cancer by Integrated Bioinformatic Analysis. J Clin Med 2019; 8:jcm8081160. [PMID: 31382519 PMCID: PMC6723760 DOI: 10.3390/jcm8081160] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the most common malignancies. However, the molecular mechanisms underlying its pathogenesis remain to be elucidated. The present study aimed to identify the potential prognostic marker genes associated with the progression of breast cancer. Weighted gene coexpression network analysis was used to construct free-scale gene coexpression networks, evaluate the associations between the gene sets and clinical features, and identify candidate biomarkers. The gene expression profiles of GSE48213 were selected from the Gene Expression Omnibus database. RNA-seq data and clinical information on breast cancer from The Cancer Genome Atlas were used for validation. Four modules were identified from the gene coexpression network, one of which was found to be significantly associated with patient survival time. The expression status of 28 genes formed the black module (basal); 18 genes, dark red module (claudin-low); nine genes, brown module (luminal), and seven genes, midnight blue module (nonmalignant). These modules were clustered into two groups according to significant difference in survival time between the groups. Therefore, based on betweenness centrality, we identified TXN and ANXA2 in the nonmalignant module, TPM4 and LOXL2 in the luminal module, TPRN and ADCY6 in the claudin-low module, and TUBA1C and CMIP in the basal module as the genes with the highest betweenness, suggesting that they play a central role in information transfer in the network. In the present study, eight candidate biomarkers were identified for further basic and advanced understanding of the molecular pathogenesis of breast cancer by using co-expression network analysis.
Collapse
Affiliation(s)
- Charles C N Wang
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan
| | - Chia Ying Li
- Department of Surgery, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Jia-Hua Cai
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan
| | - Phillip C-Y Sheu
- Department of EECS and BME, University of California, Irvine, CA 92697, USA
| | - Jeffrey J P Tsai
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Ming-Feng Hou
- Division of Breast Surgery, Department of Surgery, Center for Cancer Research,Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 807, Taiwan.
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- National Sun Yat-Sen University-Kaohsiung Medical University Joint Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- National Chiao Tung University-Kaohsiung Medical University Joint Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
37
|
Pavlov VA. Collateral benefits of studying the vagus nerve in bioelectronic medicine. Bioelectron Med 2019; 5:5. [PMID: 32232096 PMCID: PMC7098239 DOI: 10.1186/s42234-019-0021-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022] Open
Abstract
Studies on the role of the vagus nerve in the regulation of immunity and inflammation have contributed to current preclinical and clinical efforts in bioelectronic medicine. In parallel, this research has generated new insights into the cellular and molecular mechanisms underlying the immunoregulatory functions of the vagus nerve within the inflammatory reflex. The vagus nerve and other cellular components of the inflammatory reflex are implicated in the regulation of bleeding, cancer, obesity, blood pressure, viral infections and other conditions. This collateral benefit broadens scientific horizons and provides new rationale for technological advances and therapeutic implications.
Collapse
Affiliation(s)
- Valentin A. Pavlov
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY 11030 USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11550 USA
| |
Collapse
|
38
|
Addorisio ME, Imperato GH, de Vos AF, Forti S, Goldstein RS, Pavlov VA, van der Poll T, Yang H, Diamond B, Tracey KJ, Chavan SS. Investigational treatment of rheumatoid arthritis with a vibrotactile device applied to the external ear. Bioelectron Med 2019; 5:4. [PMID: 32232095 PMCID: PMC7098240 DOI: 10.1186/s42234-019-0020-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/08/2019] [Indexed: 11/15/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic and debilitating inflammatory disease characterized by extensive joint tissue inflammation. Implantable bioelectronic devices targeting the inflammatory reflex reduce TNF production and inflammation in preclinical models of inflammatory disease, and in patients with RA and Crohn’s disease. Here, we assessed the effect of applying a vibrotactile device to the cymba concha of the external ear on inflammatory responses in healthy subjects, as well as its effect on disease activity in RA patients. Methods Six healthy subjects received vibrotactile treatment at the cymba concha, and TNF production was analyzed at different time points post-stimulation. In a separate study, nineteen healthy subjects were enrolled in a randomized cross-over study, and effects of vibrotactile treatment at either the cymba concha or gastrocnemius on cytokine levels were assessed. In addition, the clinical efficacy of vibrotactile treatment on disease activity in RA was assessed in nine patients with RA in a prospective interventional study. Results Vibrotactile treatment at the cymba concha reduced TNF levels, and the suppressive effect persisted up to 24 h. In the cross-over study with 19 healthy subjects, vibrotactile treatment at the cymba concha but not at the gastrocnemius significantly reduced TNF, IL-1β, and IL-6 levels compared to pre-treatment baseline (TNF p < 0.05, IL-6 p < 0.01, IL-1β p < 0.001). In healthy subjects, vibrotactile treatment at the cymba concha inhibited TNF by 80%, IL-6 by 73%, and IL-1β by 50% as compared to pre-treatment baseline levels. In RA patients, a significant decrease in DAS28-CRP scores was observed two days post-vibrotactile stimulation at the cymba concha (DAS28-CRP score pre-treatment = 4.19 ± 0.33 vs post-treatment = 3.12 ± 0.25, p < 0.05). Disease activity remained significantly reduced 7 days following vibrotactile treatment (DAS28-CRP score 7 days post-treatment = 2.79 ± 0.21, p < 0.01). In addition, a persistent improvement in visual analogue scale scores, a patient derived measure of global health assessment, was observed in RA patients following vibrotactile treatment. Conclusion Application of a vibrotactile device to the cymba concha inhibits peripheral blood production of TNF, IL-1β, and IL-6 in healthy subjects, and attenuates systemic inflammatory responses in RA patients. Trial registrations ClinicalTrials.gov Identifier: NCT01569789 and NCT00859859. The AMC trial conducted in The Netherlands does not have a ClinicalTrials.gov Identifier.
Collapse
Affiliation(s)
- Meghan E Addorisio
- 1Center for Biomedical Science and Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY USA
| | - Gavin H Imperato
- 1Center for Biomedical Science and Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY USA.,2Elmezzi Graduate School of Molecular Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY USA
| | - Alex F de Vos
- 4Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Valentin A Pavlov
- 1Center for Biomedical Science and Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY USA.,2Elmezzi Graduate School of Molecular Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY USA.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
| | - Tom van der Poll
- 4Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Huan Yang
- 1Center for Biomedical Science and Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY USA
| | - Betty Diamond
- 2Elmezzi Graduate School of Molecular Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY USA.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA.,7Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY USA
| | - Kevin J Tracey
- 1Center for Biomedical Science and Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY USA.,2Elmezzi Graduate School of Molecular Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY USA.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
| | - Sangeeta S Chavan
- 1Center for Biomedical Science and Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY USA.,2Elmezzi Graduate School of Molecular Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY USA.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
| |
Collapse
|
39
|
Chang EH, Chavan SS, Pavlov VA. Cholinergic Control of Inflammation, Metabolic Dysfunction, and Cognitive Impairment in Obesity-Associated Disorders: Mechanisms and Novel Therapeutic Opportunities. Front Neurosci 2019; 13:263. [PMID: 31024226 PMCID: PMC6460483 DOI: 10.3389/fnins.2019.00263] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/06/2019] [Indexed: 12/26/2022] Open
Abstract
Obesity and obesity-associated disorders have become world-wide epidemics, substantially increasing the risk of debilitating morbidity and mortality. A characteristic feature of these disorders, which include the metabolic syndrome (MetS) and type 2 diabetes, is chronic low-grade inflammation stemming from metabolic and immune dysregulation. Inflammation in the CNS (neuroinflammation) and cognitive impairment have also been associated with obesity-driven disorders. The nervous system has a documented role in the regulation of metabolic homeostasis and immune function, and recent studies have indicated the important role of vagus nerve and brain cholinergic signaling in this context. In this review, we outline relevant aspects of this regulation with a specific focus on obesity-associated conditions. We outline accumulating preclinical evidence for the therapeutic efficacy of cholinergic stimulation in alleviating obesity-associated inflammation, neuroinflammation, and metabolic derangements. Recently demonstrated beneficial effects of galantamine, a centrally acting cholinergic drug and cognitive enhancer, in patients with MetS are also summarized. These studies provide a rationale for further therapeutic developments using pharmacological and bioelectronic cholinergic modulation for clinical benefit in obesity-associated disorders.
Collapse
Affiliation(s)
- Eric H. Chang
- Center for Bioelectronic Medicine and Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Sangeeta S. Chavan
- Center for Bioelectronic Medicine and Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Valentin A. Pavlov
- Center for Bioelectronic Medicine and Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
40
|
Lehner KR, Silverman HA, Addorisio ME, Roy A, Al-Onaizi MA, Levine Y, Olofsson PS, Chavan SS, Gros R, Nathanson NM, Al-Abed Y, Metz CN, Prado VF, Prado MAM, Tracey KJ, Pavlov VA. Forebrain Cholinergic Signaling Regulates Innate Immune Responses and Inflammation. Front Immunol 2019; 10:585. [PMID: 31024522 PMCID: PMC6455130 DOI: 10.3389/fimmu.2019.00585] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/05/2019] [Indexed: 01/04/2023] Open
Abstract
The brain regulates physiological functions integral to survival. However, the insight into brain neuronal regulation of peripheral immune function and the neuromediator systems and pathways involved remains limited. Here, utilizing selective genetic and pharmacological approaches, we studied the role of forebrain cholinergic signaling in the regulation of peripheral immune function and inflammation. Forebrain-selective genetic ablation of acetylcholine release and vagotomy abolished the suppression of serum TNF by the centrally-acting cholinergic drug galantamine in murine endotoxemia. Selective stimulation of acetylcholine action on the M1 muscarinic acetylcholine receptor (M1 mAChR) by central administration of the positive allosteric modulator benzyl quinolone carboxylic acid (BQCA) suppressed serum TNF (TNFα) levels in murine endotoxemia. This effect was recapitulated by peripheral administration of the compound. BQCA also improved survival in murine endotoxemia and these effects were abolished in M1 mAChR knockout (KO) mice. Selective optogenetic stimulation of basal forebrain cholinergic neurons innervating brain regions with abundant M1 mAChR localization reduced serum TNF in endotoxemic mice. These findings reveal that forebrain cholinergic neurons regulate innate immune responses and inflammation, suggesting the possibility that in diseases associated with cholinergic dysfunction, including Alzheimer's disease this anti-inflammatory regulation can be impaired. These results also suggest novel anti-inflammatory approaches based on targeting forebrain cholinergic signaling in sepsis and other disorders characterized by immune dysregulation.
Collapse
Affiliation(s)
- Kurt R. Lehner
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Harold A. Silverman
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Meghan E. Addorisio
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Ashbeel Roy
- Schulich School of Medicine and Dentistry, Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Mohammed A. Al-Onaizi
- Schulich School of Medicine and Dentistry, Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Yaakov Levine
- SetPoint Medical Corporation, Valencia, CA, United States
| | - Peder S. Olofsson
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Medicine, Center for Bioelectronic Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sangeeta S. Chavan
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Robert Gros
- Schulich School of Medicine and Dentistry, Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Neil M. Nathanson
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Yousef Al-Abed
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Medicinal Chemistry, Center for Molecular Innovation, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Christine N. Metz
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Vania F. Prado
- Schulich School of Medicine and Dentistry, Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- Graduate Program in Neuroscience, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Marco A. M. Prado
- Schulich School of Medicine and Dentistry, Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- Graduate Program in Neuroscience, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Kevin J. Tracey
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Valentin A. Pavlov
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
41
|
Eberhardson M, Hedin CRH, Carlson M, Tarnawski L, Levine YA, Olofsson PS. Towards improved control of inflammatory bowel disease. Scand J Immunol 2019; 89:e12745. [DOI: 10.1111/sji.12745] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/18/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Michael Eberhardson
- Department of Medicine, Center for Bioelectronic Medicine; Bioclinicum, Karolinska Institutet and Karolinska University Hospital; Solna Sweden
| | - Charlotte R. H. Hedin
- Department of Medicine Solna; Karolinska Institutet and Karolinska University Hospital; Sweden
| | - Marie Carlson
- Department of Medical Science, Gastroenterology Research Group; Uppsala University Hospital; Uppsala Sweden
| | - Laura Tarnawski
- Department of Medicine, Center for Bioelectronic Medicine; Bioclinicum, Karolinska Institutet and Karolinska University Hospital; Solna Sweden
| | | | - Peder S. Olofsson
- Department of Medicine, Center for Bioelectronic Medicine; Bioclinicum, Karolinska Institutet and Karolinska University Hospital; Solna Sweden
| |
Collapse
|