1
|
Lin J, Liu S, Xue X, Lv J, Zhao L, Yu L, Wang H, Chen J. Injectable Genetic Engineering Hydrogel for Promoting Spatial Tolerance of Transplanted Kidney in Situ. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2408631. [PMID: 39498870 DOI: 10.1002/advs.202408631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/23/2024] [Indexed: 11/07/2024]
Abstract
The establishment of a tolerant space to realize the co-stimulation of cytokines and contact-dependent molecules remain challenging in allotransplant. Here, an injectable genetically engineered hydrogel (iGE-Gel) is reported, which developed with a multivalent network of FOXP3 engineered extracellular vesicles (Foe-EVs) through the hydrophobic interaction between stearic acid modified hyaluronic acid (HASA) and the membrane phospholipids of extracellular vesicles (EVs). The iGE-Gel exhibited self-healing properties, injectability and biocompatibility. It is revealed that iGE-Gel displayed with abundant regulatory cytokines and coinhibitory contact molecules, promoting the formation of immune tolerance in situ. The multiplex immunohistofluorescence confirmed tolerant niches is dominated by FOXP3+ Tregs and PDL1+ cells in the allograft, which reduced the drainage of alloantigens to subcapsular sinus of lymph nodes, and suppressed the formation of germinal centers. Remarkably, the proportion of alloreactive T cells (IFN-γ/IL-2) and B cells (IgG1/IgG2a/IgG3) as well as the serum titers of donor specific antibody (DSA) is decreased by iGE-Gel. In murine allogeneic transplantation, the injection of iGE-Gel significantly alleviated immune cell infiltration and complement damage in the graft, preserved the structure and function of renal cells and prolonged recipient survival period from 30.8 to 79.3 days, highlighting the potential of iGE-Gel as a transformative treatment in allotransplant.
Collapse
Affiliation(s)
- Jinwen Lin
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| | - Shuaihui Liu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| | - Xing Xue
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P. R. China
| | - Junhao Lv
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| | - Lingfei Zhao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| | - Liqin Yu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| | - Huiping Wang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| |
Collapse
|
2
|
Wang Y, Jia J, Wang F, Fang Y, Yang Y, Zhou Q, Yuan W, Gu X, Hu J, Yang S. Pre-metastatic niche: formation, characteristics and therapeutic implication. Signal Transduct Target Ther 2024; 9:236. [PMID: 39317708 PMCID: PMC11422510 DOI: 10.1038/s41392-024-01937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024] Open
Abstract
Distant metastasis is a primary cause of mortality and contributes to poor surgical outcomes in cancer patients. Before the development of organ-specific metastasis, the formation of a pre-metastatic niche is pivotal in promoting the spread of cancer cells. This review delves into the intricate landscape of the pre-metastatic niche, focusing on the roles of tumor-derived secreted factors, extracellular vesicles, and circulating tumor cells in shaping the metastatic niche. The discussion encompasses cellular elements such as macrophages, neutrophils, bone marrow-derived suppressive cells, and T/B cells, in addition to molecular factors like secreted substances from tumors and extracellular vesicles, within the framework of pre-metastatic niche formation. Insights into the temporal mechanisms of pre-metastatic niche formation such as epithelial-mesenchymal transition, immunosuppression, extracellular matrix remodeling, metabolic reprogramming, vascular permeability and angiogenesis are provided. Furthermore, the landscape of pre-metastatic niche in different metastatic organs like lymph nodes, lungs, liver, brain, and bones is elucidated. Therapeutic approaches targeting the cellular and molecular components of pre-metastatic niche, as well as interventions targeting signaling pathways such as the TGF-β, VEGF, and MET pathways, are highlighted. This review aims to enhance our understanding of pre-metastatic niche dynamics and provide insights for developing effective therapeutic strategies to combat tumor metastasis.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Jiachi Jia
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Yingshuai Fang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yabing Yang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Xiaoming Gu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| |
Collapse
|
3
|
Hovd AMK, Nayar S, Smith CG, Kanapathippillai P, Iannizzotto V, Barone F, Fenton KA, Pedersen HL. Podoplanin expressing macrophages and their involvement in tertiary lymphoid structures in mouse models of Sjögren's disease. Front Immunol 2024; 15:1455238. [PMID: 39355243 PMCID: PMC11442383 DOI: 10.3389/fimmu.2024.1455238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/21/2024] [Indexed: 10/03/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are formed in tissues targeted by chronic inflammation processes, such as infection and autoimmunity. In Sjögren's disease, the organization of immune cells into TLS is an important part of disease progression. Here, we investigated the dynamics of tissue resident macrophages in the induction and expansion of salivary gland TLS. We induced Sjögren's disease by cannulation of the submandibular glands of C57BL/6J mice with LucAdV5. In salivary gland tissues from these mice, we analyzed the different macrophage populations prior to cannulation on day 0 and on day 2, 5, 8, 16 and 23 post-infection using multicolored flow cytometry, mRNA gene analysis, and histological evaluation of tissue specific macrophages. The histological localization of macrophages in the LucAdV5 induced inflamed salivary glands was compared to salivary glands of NZBW/F1 lupus prone mice, a spontaneous mouse model of Sjögren's disease. The evaluation of the dynamics and changes in macrophage phenotype revealed that the podoplanin (PDPN) expressing CX3CR1+ macrophage population was increased in the salivary gland tissue during LucAdV5 induced inflammation. This PDPN+ CX3CR1+ macrophage population was, together with PDPN+CD206+ macrophages, observed to be localized in the parenchyma during the acute inflammation phase as well as surrounding the TLS structure in the later stages of inflammation. This suggests a dual role of tissue resident macrophages, contributing to both proinflammatory and anti-inflammatory processes, as well as their possible interactions with other immune cells within the inflamed tissue. These macrophages may be involved with lymphoid neogenesis, which is associated with disease severity and progression. In conclusion, our study substantiates the involvement of proinflammatory and regulatory macrophages in autoimmune pathology and underlines the possible multifaceted functions of macrophages in lymphoid cell organization.
Collapse
Affiliation(s)
- Aud-Malin Karlsson Hovd
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Saba Nayar
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Charlotte G. Smith
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Premasany Kanapathippillai
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Valentina Iannizzotto
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Francesca Barone
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Kristin Andreassen Fenton
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Hege Lynum Pedersen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
4
|
García-Silva S, Peinado H. Mechanisms of lymph node metastasis: An extracellular vesicle perspective. Eur J Cell Biol 2024; 103:151447. [PMID: 39116620 DOI: 10.1016/j.ejcb.2024.151447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
In several solid tumors such as breast cancer, prostate cancer, colorectal cancer or melanoma, tumor draining lymph nodes are the earliest tissues where colonization by tumor cells is detected. Lymph nodes act as sentinels of metastatic dissemination, the deadliest phase of tumor progression. Besides hematogenous dissemination, lymphatic spread of tumor cells has been demonstrated, adding more complexity to the mechanisms involved in metastasis. A network of blood and lymphatic vessels surrounds tumors providing routes for tumor soluble factors to mediate regional and long-distance effects. Additionally, extracellular vesicles (EVs), particularly small EVs/exosomes, have been shown to circulate through the blood and lymph, favoring the formation of pre-metastatic niches in the tumor-draining lymph nodes (TDLNs) and distant organs. In this review, we present an overview of the relevance of lymph node metastasis, the structural and immune changes occurring in TDLNs during tumor progression, and how extracellular vesicles contribute to modulating some of these alterations while promoting the formation of lymph node pre-metastatic niches.
Collapse
Affiliation(s)
- Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
5
|
Purić E, Nilsson UJ, Anderluh M. Galectin-8 inhibition and functions in immune response and tumor biology. Med Res Rev 2024; 44:2236-2265. [PMID: 38613488 DOI: 10.1002/med.22041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 03/03/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
Galectins are among organisms' most abundantly expressed lectins (carbohydrate-binding proteins) that specifically bind β-galactosides. They act not only outside the cell, where they bind to extracellular matrix glycans, but also inside the cell, where they have a significant impact on signaling pathways. Galectin-8 is a galectin family protein encoded by the LGALS8 gene. Its role is evident in both T- and B-cell immunity and in the innate immune response, where it acts directly on dendritic cells and induces some pro-inflammatory cytokines. Galectin-8 also plays an important role in the defense against bacterial and viral infections. It is known to promote antibacterial autophagy by recognizing and binding glycans present on the vacuolar membrane, thus acting as a danger receptor. The most important role of galectin-8 is the regulation of cancer growth, metastasis, tumor progression, and tumor cell survival. Importantly, the expression of galectins is typically higher in tumor tissues than in noncancerous tissues. In this review article, we focus on galectin-8 and its function in immune response, microbial infections, and cancer. Given all of these functions of galectin-8, we emphasize the importance of developing new and selective galectin-8 inhibitors and report the current status of their development.
Collapse
Affiliation(s)
- Edvin Purić
- Department of Pharmaceutical Chemistry, University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Ulf J Nilsson
- Department of Chemistry, Lund University, Lund, Sweden
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| |
Collapse
|
6
|
Iliopoulou M, Bajur AT, McArthur HCW, Gabai M, Coyle C, Ajao F, Köchl R, Cope AP, Spillane KM. Extracellular matrix rigidity modulates physical properties of subcapsular sinus macrophage-B cell immune synapses. Biophys J 2024; 123:2282-2300. [PMID: 37840242 PMCID: PMC11331050 DOI: 10.1016/j.bpj.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/17/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023] Open
Abstract
Subcapsular sinus macrophages (SSMs) play a key role in immune defense by forming immunological barriers that control the transport of antigens from lymph into lymph node follicles. SSMs participate in antibody responses by presenting antigens directly to naive B cells and by supplying antigens to follicular dendritic cells to propagate germinal center reactions. Despite the prominent roles that SSMs play during immune responses, little is known about their cell biology because they are technically challenging to isolate and study in vitro. Here, we used multicolor fluorescence microscopy to identify lymph node-derived SSMs in culture. We focused on the role of SSMs as antigen-presenting cells, and found that their actin cytoskeleton regulates the spatial organization and mobility of multivalent antigens (immune complexes [ICs]) displayed on the cell surface. Moreover, we determined that SSMs are mechanosensitive cells that respond to changes in extracellular matrix rigidity by altering the architecture of the actin cytoskeleton, leading to changes in cell morphology, membrane topography, and IC mobility. Changes to extracellular matrix rigidity also modulate actin remodeling by both SSMs and B cells when they form an immune synapse. This alters synapse duration but not IC internalization nor NF-κB activation in the B cell. Taken together, our data reveal that the mechanical microenvironment may influence B cell responses by modulating physical characteristics of antigen presentation by SSMs.
Collapse
Affiliation(s)
- Maro Iliopoulou
- Department of Physics, King's College London, London, United Kingdom
| | - Anna T Bajur
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell & Molecular Biophysics, King's College London, London, United Kingdom
| | | | - Michael Gabai
- Department of Physics, King's College London, London, United Kingdom
| | - Carl Coyle
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom
| | - Favour Ajao
- Department of Physics, King's College London, London, United Kingdom
| | - Robert Köchl
- Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Andrew P Cope
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom
| | - Katelyn M Spillane
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell & Molecular Biophysics, King's College London, London, United Kingdom.
| |
Collapse
|
7
|
Broomfield BJ, Groom JR. Defining the niche for stem-like CD8 + T cell formation and function. Curr Opin Immunol 2024; 89:102454. [PMID: 39154521 DOI: 10.1016/j.coi.2024.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
TCF-1+ CD8+ T cell populations have emerged as critical determinants for long-lived immunological memory. This cell population has stem-like properties and is implicated in improved disease outcomes by driving sustained killing of infected cells and maintaining the immune-cancer equilibrium. During an immune response, several factors, including antigen deposition and affinity, the inflammatory milieu, and T cell priming dynamics, aggregate to skew CD8+ T cell differentiation. Although these mechanisms are altered between acute and chronic disease settings, phenotypically similar stem-like TCF-1+ CD8+ T cell states are formed in each of these settings. Here, we characterize the specialized microenvironments within lymph nodes and the tumor microenvironment, which foster the generation or re-activation of stem-like TCF-1+ CD8+ T cell populations. We highlight the potential for targeting the stem-like CD8+ T cell niche to enhance vaccination and cancer immunotherapy and to track the trajectory of stem-like CD8+ T cells as biomarkers of therapeutic efficacy.
Collapse
Affiliation(s)
- Benjamin J Broomfield
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
8
|
Schott M, León-Periñán D, Splendiani E, Strenger L, Licha JR, Pentimalli TM, Schallenberg S, Alles J, Samut Tagliaferro S, Boltengagen A, Ehrig S, Abbiati S, Dommerich S, Pagani M, Ferretti E, Macino G, Karaiskos N, Rajewsky N. Open-ST: High-resolution spatial transcriptomics in 3D. Cell 2024; 187:3953-3972.e26. [PMID: 38917789 DOI: 10.1016/j.cell.2024.05.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/05/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Spatial transcriptomics (ST) methods unlock molecular mechanisms underlying tissue development, homeostasis, or disease. However, there is a need for easy-to-use, high-resolution, cost-efficient, and 3D-scalable methods. Here, we report Open-ST, a sequencing-based, open-source experimental and computational resource to address these challenges and to study the molecular organization of tissues in 2D and 3D. In mouse brain, Open-ST captured transcripts at subcellular resolution and reconstructed cell types. In primary head-and-neck tumors and patient-matched healthy/metastatic lymph nodes, Open-ST captured the diversity of immune, stromal, and tumor populations in space, validated by imaging-based ST. Distinct cell states were organized around cell-cell communication hotspots in the tumor but not the metastasis. Strikingly, the 3D reconstruction and multimodal analysis of the metastatic lymph node revealed spatially contiguous structures not visible in 2D and potential biomarkers precisely at the 3D tumor/lymph node boundary. All protocols and software are available at https://rajewsky-lab.github.io/openst.
Collapse
Affiliation(s)
- Marie Schott
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Hannoversche Str. 28, 10115 Berlin, Germany
| | - Daniel León-Periñán
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Hannoversche Str. 28, 10115 Berlin, Germany
| | - Elena Splendiani
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Hannoversche Str. 28, 10115 Berlin, Germany; Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Leon Strenger
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Hannoversche Str. 28, 10115 Berlin, Germany
| | - Jan Robin Licha
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Hannoversche Str. 28, 10115 Berlin, Germany
| | - Tancredi Massimo Pentimalli
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Hannoversche Str. 28, 10115 Berlin, Germany
| | - Simon Schallenberg
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Berlin, 10117 Berlin, Germany
| | - Jonathan Alles
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Hannoversche Str. 28, 10115 Berlin, Germany
| | - Sarah Samut Tagliaferro
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Hannoversche Str. 28, 10115 Berlin, Germany
| | - Anastasiya Boltengagen
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Hannoversche Str. 28, 10115 Berlin, Germany
| | - Sebastian Ehrig
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Hannoversche Str. 28, 10115 Berlin, Germany
| | - Stefano Abbiati
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Hannoversche Str. 28, 10115 Berlin, Germany; IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Steffen Dommerich
- Department of Otorhinolaryngology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 13353, Germany
| | - Massimiliano Pagani
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi, Milan, Italy
| | | | - Giuseppe Macino
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Hannoversche Str. 28, 10115 Berlin, Germany; Department of Cellular Biotechnologies and Hematology, La Sapienza University of Rome, 00161 Rome, Italy.
| | - Nikos Karaiskos
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Hannoversche Str. 28, 10115 Berlin, Germany.
| | - Nikolaus Rajewsky
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Hannoversche Str. 28, 10115 Berlin, Germany; Charité - Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany; German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany; NeuroCure Cluster of Excellence, Berlin, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Site Berlin, Berlin, Germany.
| |
Collapse
|
9
|
Dotta E, Maciola AK, Baccega T, Pasqual G. Dendritic cells steering antigen and leukocyte traffic in lymph nodes. FEBS Lett 2024. [PMID: 38997244 DOI: 10.1002/1873-3468.14982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Dendritic cells (DCs) play a central role in initiating and shaping the adaptive immune response, thanks to their ability to uptake antigens and present them to T cells. Once in the lymph node (LN), DCs can spread the antigen to other DCs, expanding the pool of cells capable of activating specific T-cell clones. Additionally, DCs can modulate the dynamics of other immune cells, by increasing naïve T-cell dwell time, thereby facilitating the scanning for cognate antigens, and by selectively recruiting other leukocytes. Here we discuss the role of DCs in orchestrating antigen and leukocyte trafficking within the LN, together with the implications of this trafficking on T-cell activation and commitment to effector function.
Collapse
Affiliation(s)
- Enrico Dotta
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Italy
| | - Agnieszka Katarzyna Maciola
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Italy
| | - Tania Baccega
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
10
|
Du Q, Dickinson A, Nakuleswaran P, Maghami S, Alagoda S, Hook AL, Ghaemmaghami AM. Targeting Macrophage Polarization for Reinstating Homeostasis following Tissue Damage. Int J Mol Sci 2024; 25:7278. [PMID: 39000385 PMCID: PMC11242417 DOI: 10.3390/ijms25137278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Tissue regeneration and remodeling involve many complex stages. Macrophages are critical in maintaining micro-environmental homeostasis by regulating inflammation and orchestrating wound healing. They display high plasticity in response to various stimuli, showing a spectrum of functional phenotypes that vary from M1 (pro-inflammatory) to M2 (anti-inflammatory) macrophages. While transient inflammation is an essential trigger for tissue healing following an injury, sustained inflammation (e.g., in foreign body response to implants, diabetes or inflammatory diseases) can hinder tissue healing and cause tissue damage. Modulating macrophage polarization has emerged as an effective strategy for enhancing immune-mediated tissue regeneration and promoting better integration of implantable materials in the host. This article provides an overview of macrophages' functional properties followed by discussing different strategies for modulating macrophage polarization. Advances in the use of synthetic and natural biomaterials to fabricate immune-modulatory materials are highlighted. This reveals that the development and clinical application of more effective immunomodulatory systems targeting macrophage polarization under pathological conditions will be driven by a detailed understanding of the factors that regulate macrophage polarization and biological function in order to optimize existing methods and generate novel strategies to control cell phenotype.
Collapse
Affiliation(s)
- Qiran Du
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Anna Dickinson
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Pruthvi Nakuleswaran
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK;
| | - Savindu Alagoda
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Andrew L. Hook
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Amir M. Ghaemmaghami
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
11
|
Wang C, Geng Y, Wang H, Ren Z, Hou Q, Fang A, Wu Q, Wu L, Shi X, Zhou M, Fu ZF, Lovell JF, Jin H, Zhao L. A broadly applicable protein-polymer adjuvant system for antiviral vaccines. EMBO Mol Med 2024; 16:1451-1483. [PMID: 38750307 PMCID: PMC11178928 DOI: 10.1038/s44321-024-00076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 06/16/2024] Open
Abstract
Although protein subunit vaccines generally have acceptable safety profiles with precise antigenic content, limited immunogenicity can lead to unsatisfactory humoral and cellular immunity and the need for vaccine adjuvants and delivery system. Herein, we assess a vaccine adjuvant system comprising Quillaja Saponaria-21(QS-21) and cobalt porphyrin polymeric micelles that enabling the display of His-tagged antigen on its surface. The nanoscale micelles promote antigen uptake and dendritic cell activation to induce robust cytotoxic T lymphocyte response and germinal center formation. Using the recombinant protein antigens from influenza A and rabies virus, the micelle adjuvant system elicited robust antiviral responses and protected mice from lethal challenge. In addition, this system could be combined with other antigens to induce high titers of neutralizing antibodies in models of three highly pathogenic viral pathogens: Ebola virus, Marburg virus, and Nipah virus. Collectively, our results demonstrate this polymeric micelle adjuvant system can be used as a potent nanoplatform for developing antiviral vaccine countermeasures that promote humoral and cellular immunity.
Collapse
Affiliation(s)
- Caiqian Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanyuan Geng
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haoran Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zeheng Ren
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingxiu Hou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - An Fang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiong Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liqin Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiujuan Shi
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
Le QV, Kang S, Lee J, Park H, Sun JG, Lee J, Shim G. Size-Dependent Effect of Indocyanine Green Nanoimaging Agent for Metastatic Lymph Node Detection. Biomater Res 2024; 28:0022. [PMID: 38628310 PMCID: PMC11018487 DOI: 10.34133/bmr.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Identification of metastatic lymph nodes is a crucial step in lymph node dissection to prevent further cancer spread and recurrence. However, the current limitations in metastatic lymph node detection often result in extensive resection of normal lymph nodes, leading to serious complications. The clinical application of indocyanine green (ICG) as a tool for lymph node detection is challenging because of its short plasma half-life and rapid light-induced decomposition and clearance. To overcome this limitation, we used polydopamine nanoparticles (PNs) as carriers for ICG and screened for the optimal particle size for detecting metastatic lymph nodes. ICG/PNs with sizes of 80, 160, 300, and 600 nm were synthesized, and their ICG loading efficiency, physical stability, and lymph node distribution were evaluated. The ICG absorbed on the PNs was found to be protected from light degradation, and its retention at the lymph nodes was improved. Notably, the ICG/PNs favored the fluorescence signal at the metastatic lymph nodes compared to the nonmetastatic lymph nodes. Among the tested particle sizes, the 80-nm ICG/PN showed a higher distribution in the metastatic lymph nodes. This study suggests that the 80-nm ICG/PN is a potentially valuable reagent for the detection and diagnosis of lymph node metastasis.
Collapse
Affiliation(s)
- Quoc-Viet Le
- Faculty of Pharmacy,
Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Sungtaek Kang
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences,
Soongsil University, Seoul 06978, Republic of Korea
| | - Jaeseong Lee
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences,
Soongsil University, Seoul 06978, Republic of Korea
| | - Hyeseon Park
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences,
Soongsil University, Seoul 06978, Republic of Korea
| | - Jeong Gil Sun
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences,
Soongsil University, Seoul 06978, Republic of Korea
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences,
Seoul National University, Seoul 08826, Republic of Korea
| | - Gayong Shim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences,
Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
13
|
Dohi A, Noguchi T, Yamashita M, Sasaguri K, Yamamoto T, Mori Y. Acute stress transiently activates macrophages and chemokines in cervical lymph nodes. Immunol Res 2024; 72:212-224. [PMID: 38351242 PMCID: PMC11031481 DOI: 10.1007/s12026-023-09409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/12/2023] [Indexed: 04/20/2024]
Abstract
Acute restraint stress (RS) is routinely used to study the effects of psychological and/or physiological stress. We evaluated the impact of RS on cervical lymph nodes in rats at molecular and cellular levels. Male Sprague-Dawley rats were subjected to stress by immobilization for 30, 60, and 120 min (RS30, RS60, and RS120, respectively) and compared with rats of a no-stress control (C) group. The expression of genes encoding chemokines CXCL1/CXCL2 (Cxcl1 and Cxcl2) and their receptor CXCR2 (Cxcr2) was analyzed using reverse transcription-quantitative PCR (RT-qPCR) and microarray analyses. Immunohistochemistry and in situ hybridization were performed to determine the expression of these proteins and the macrophage biomarker CD68. Microarray analysis revealed that the expression of 514 and 496 genes was upregulated and downregulated, respectively, in the RS30 group. Compared with the C group, the RS30 group exhibited a 23.0-, 13.0-, and 1.6-fold increase in Cxcl1, Cxcl2, and Cxcr2 expression. Gene Ontology analysis revealed the involvement of these three upregulated genes in the cytokine network, inflammation, and leukocyte chemotaxis and migration. RT-qPCR analysis indicated that the mRNA levels of Cxcl1 and Cxcl2 were significantly increased in the RS30 group but were reverted to normal levels in the RS60 and RS120 groups. Cxcr2 mRNA level was significantly increased in the RS30 and RS120 groups compared with that in the C group. RS-induced CXCL1-immunopositive cells corresponded to B/plasma cells, whereas CXCL2-immunopositive cells corresponded to endothelial cells of the high endothelial venules. Stress-induced CXCR2-immunopositive cells corresponded to macrophages. Psychological and/or physiological stress induces an acute stress response and formation of an immunoreactive microenvironment in cervical lymph nodes, with the CXCL1/CXCL2-CXCR2 axis being pivotal in the acute stress response.
Collapse
Affiliation(s)
- Akihiro Dohi
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Tadahide Noguchi
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, Tochigi, 329-0498, Japan.
| | - Masako Yamashita
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Kenichi Sasaguri
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Toshiharu Yamamoto
- Brain Functions and Neuroscience Division, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Kanagawa, Japan
| | - Yoshiyuki Mori
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, Tochigi, 329-0498, Japan
| |
Collapse
|
14
|
Kubara K, Yamazaki K, Miyazaki T, Kondo K, Kurotaki D, Tamura T, Suzuki Y. Lymph node macrophages drive innate immune responses to enhance the anti-tumor efficacy of mRNA vaccines. Mol Ther 2024; 32:704-721. [PMID: 38243602 PMCID: PMC10928146 DOI: 10.1016/j.ymthe.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
mRNA vaccines are promising for cancer treatment. Efficient delivery of mRNAs encoding tumor antigens to antigen-presenting cells (APCs) is critical to elicit anti-tumor immunity. Herein, we identified a novel lipid nanoparticle (LNP) formulation, L17-F05, for mRNA vaccines by screening 34 ionizable lipids and 28 LNP formulations using human primary APCs. Subcutaneous delivery of L17-F05 mRNA vaccine encoding Gp100 and Trp2 inhibited tumor growth and prolonged the survival of mice bearing B16F10 melanoma. L17-F05 efficiently delivered mRNAs to conventional dendritic cells (cDCs) and macrophages in draining lymph nodes (dLNs). cDCs functioned as the main APCs by presenting antigens along with enhanced expression of co-stimulatory molecules. Macrophages triggered innate immune responses centered on type-I interferon (IFN-I) in dLNs. Lymph node (LN) macrophage depletion attenuated APC maturation and anti-tumor activity of L17-F05 mRNA vaccines. Loss-of-function studies revealed that L17-F05 works as a self-adjuvant by activating the stimulator of interferon genes (STING) pathway in macrophages. Collectively, the self-adjuvanticity of L17-F05 triggered innate immune responses in LN macrophages via the STING-IFN-I pathway, contributing to APC maturation and potent anti-tumor activity of L17-F05 mRNA vaccines. Our findings provide strategies for further optimization of mRNA vaccines based on the innate immune response driven by LN macrophages.
Collapse
Affiliation(s)
- Kenji Kubara
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan; Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Kazuto Yamazaki
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Takayuki Miyazaki
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Keita Kondo
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Daisuke Kurotaki
- Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; Laboratory of Chromatin Organization in Immune Cell Development, International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Yuta Suzuki
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| |
Collapse
|
15
|
Lucas CJ, Sheridan RM, Reynoso GV, Davenport BJ, McCarthy MK, Martin A, Hesselberth JR, Hickman HD, Tamburini BA, Morrison TE. Chikungunya virus infection disrupts lymph node lymphatic endothelial cell composition and function via MARCO. JCI Insight 2024; 9:e176537. [PMID: 38194268 PMCID: PMC11143926 DOI: 10.1172/jci.insight.176537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
Infection with chikungunya virus (CHIKV) causes disruption of draining lymph node (dLN) organization, including paracortical relocalization of B cells, loss of the B cell-T cell border, and lymphocyte depletion that is associated with infiltration of the LN with inflammatory myeloid cells. Here, we found that, during the first 24 hours of infection, CHIKV RNA accumulated in MARCO-expressing lymphatic endothelial cells (LECs) in both the floor and medullary LN sinuses. The accumulation of viral RNA in the LN was associated with a switch to an antiviral and inflammatory gene expression program across LN stromal cells, and this inflammatory response - including recruitment of myeloid cells to the LN - was accelerated by CHIKV-MARCO interactions. As CHIKV infection progressed, both floor and medullary LECs diminished in number, suggesting further functional impairment of the LN by infection. Consistent with this idea, antigen acquisition by LECs, a key function of LN LECs during infection and immunization, was reduced during pathogenic CHIKV infection.
Collapse
Affiliation(s)
- Cormac J. Lucas
- Department of Immunology & Microbiology and
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ryan M. Sheridan
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Glennys V. Reynoso
- Viral Immunity & Pathogenesis Unit, Laboratory of Clinical Immunology & Microbiology, National Institutes of Allergy & Infectious Disease, NIH, Bethesda, Maryland, USA
| | | | | | - Aspen Martin
- Department of Biochemistry & Molecular Genetics and
| | - Jay R. Hesselberth
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Biochemistry & Molecular Genetics and
| | - Heather D. Hickman
- Viral Immunity & Pathogenesis Unit, Laboratory of Clinical Immunology & Microbiology, National Institutes of Allergy & Infectious Disease, NIH, Bethesda, Maryland, USA
| | - Beth A.J. Tamburini
- Department of Immunology & Microbiology and
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | |
Collapse
|
16
|
Su F, Zhang Y, Maimaiti S, Chen S, Shen Y, Feng M, Guo Z, Tan L, He J. Mechanisms and characteristics of subcapsular sinus macrophages in tumor immunity: a narrative review. Transl Cancer Res 2023; 12:3779-3791. [PMID: 38192994 PMCID: PMC10774050 DOI: 10.21037/tcr-23-2032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
Background and Objective Lymph nodes constitute an integral component of the secondary lymphoid organs, housing a diverse population of macrophages. Macrophages exhibit heterogeneity in terms of localization, phenotype and ontogeny. Recent evidence has established that subcapsular sinus macrophages (SCSMs) are the initial cells exposed to antigens from afferent lymph vessels, playing a crucial role in the host immune response against invading pathogens and tumor cells. In order to summarize the role and mechanisms of SCSM in tumor immunity, this study systematically reviews research on SCSMs in tumor immunity. Methods A systematic search was conducted in PubMed and Web of Science to identify articles investigating clinical significance and mechanisms of SCSMs. Study eligibility was independently evaluated by two authors based on the assessment of titles, abstracts and full-texts. Key Content and Findings The narrative review included a total of 17 studies. Previous research consistently showed that a high level of SCSM in patients with various carcinomas is associated with a favorable long-term prognosis. SCSM acts as the front-line defender in antitumor activity, engaging in intricate communication with other immune cells. Moreover, SCSM could directly and indirectly modulate tumor immunity, and the integrity of SCSM layer is interrupted in disease status. Several studies explored the feasibility of targeting SCSM to activate immunity against tumors. However, the direct molecular interactions and alternation in signal pathway in the tumor immunity of SCSM are less well established in previous researches. Conclusions This narrative review underscores the critical role of SCSM in tumor immunity. Future studies should focus on the deeper mechanism underlying SCSMs and explore their clinical applications.
Collapse
Affiliation(s)
- Feng Su
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yutao Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, China
| | | | - Shanglin Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yaxing Shen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingxiang Feng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiqiang Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Maiti G, Ashworth S, Choi T, Chakravarti S. Molecular cues for immune cells from small leucine-rich repeat proteoglycans in their extracellular matrix-associated and free forms. Matrix Biol 2023; 123:48-58. [PMID: 37793508 PMCID: PMC10841460 DOI: 10.1016/j.matbio.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/14/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
In this review we highlight emerging immune regulatory functions of lumican, keratocan, fibromodulin, biglycan and decorin, which are members of the small leucine-rich proteoglycans (SLRP) of the extracellular matrix (ECM). These SLRPs have been studied extensively as collagen-fibril regulatory structural components of the skin, cornea, bone and cartilage in homeostasis. However, SLRPs released from a remodeling ECM, or synthesized by activated fibroblasts and immune cells contribute to an ECM-free pool in tissues and circulation, that may have a significant, but poorly understood foot print in inflammation and disease. Their molecular interactions and the signaling networks they influence also require investigations. Here we present studies on the leucine-rich repeat (LRR) motifs of SLRP core proteins, their evolutionary and functional relationships with other LRR pathogen recognition receptors, such as the toll-like receptors (TLRs) to bring some molecular clarity in the immune regulatory functions of SLRPs. We discuss molecular interactions of fragments and intact SLRPs, and how some of these interactions are likely modulated by glycosaminoglycan side chains. We integrate findings on molecular interactions of these SLRPs together with what is known about their presence in circulation and lymph nodes (LN), which are important sites of immune cell regulation. Recent bulk and single cell RNA sequencing studies have identified subsets of stromal reticular cells that express these SLRPs within LNs. An understanding of the cellular source, molecular interactions and signaling consequences will lead to a fundamental understanding of how SLRPs modulate immune responses, and to therapeutic tools based on these SLRPs in the future.
Collapse
Affiliation(s)
- George Maiti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
| | - Sean Ashworth
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
| | - Tansol Choi
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
| | - Shukti Chakravarti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States; Department of Pathology, NYU Grossman School of Medicine, New York, NY, United States.
| |
Collapse
|
18
|
Ikeogu N, Ajibola O, Zayats R, Murooka TT. Identifying physiological tissue niches that support the HIV reservoir in T cells. mBio 2023; 14:e0205323. [PMID: 37747190 PMCID: PMC10653859 DOI: 10.1128/mbio.02053-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Successful antiretroviral therapy (ART) can efficiently suppress Human Immunodeficiency Virus-1 (HIV-1) replication to undetectable levels, but rare populations of infected memory CD4+ T cells continue to persist, complicating viral eradication efforts. Memory T cells utilize distinct homing and adhesion molecules to enter, exit, or establish residence at diverse tissue sites, integrating cellular and environmental cues that maintain homeostasis and life-long protection against pathogens. Critical roles for T cell receptor and cytokine signals driving clonal expansion and memory generation during immunity generation are well established, but whether HIV-infected T cells can utilize similar mechanisms for their own long-term survival is unclear. How infected, but transcriptionally silent T cells maintain their recirculation potential through blood and peripheral tissues, or whether they acquire new capabilities to establish unique peripheral tissue niches, is also not well understood. In this review, we will discuss the cellular and molecular cues that are important for memory T cell homeostasis and highlight opportunities for HIV to hijack normal immunological processes to establish long-term viral persistence.
Collapse
Affiliation(s)
- Nnamdi Ikeogu
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Oluwaseun Ajibola
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Romaniya Zayats
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thomas T. Murooka
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
19
|
Lucas CJ, Sheridan RM, Reynoso GV, Davenport BJ, McCarthy MK, Martin A, Hesselberth JR, Hickman HD, Tamburini BAJ, Morrison TE. Chikungunya virus infection disrupts lymph node lymphatic endothelial cell composition and function via MARCO. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.561615. [PMID: 37873393 PMCID: PMC10592756 DOI: 10.1101/2023.10.12.561615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Infection with chikungunya virus (CHIKV) causes disruption of draining lymph node (dLN) organization, including paracortical relocalization of B cells, loss of the B cell-T cell border, and lymphocyte depletion that is associated with infiltration of the LN with inflammatory myeloid cells. Here, we find that during the first 24 h of infection, CHIKV RNA accumulates in MARCO-expressing lymphatic endothelial cells (LECs) in both the floor and medullary LN sinuses. The accumulation of viral RNA in the LN was associated with a switch to an antiviral and inflammatory gene expression program across LN stromal cells, and this inflammatory response, including recruitment of myeloid cells to the LN, was accelerated by CHIKV-MARCO interactions. As CHIKV infection progressed, both floor and medullary LECs diminished in number, suggesting further functional impairment of the LN by infection. Consistent with this idea, we find that antigen acquisition by LECs, a key function of LN LECs during infection and immunization, was reduced during pathogenic CHIKV infection.
Collapse
|
20
|
Peng JM, Su YL. Lymph node metastasis and tumor-educated immune tolerance: Potential therapeutic targets against distant metastasis. Biochem Pharmacol 2023; 215:115731. [PMID: 37541450 DOI: 10.1016/j.bcp.2023.115731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Lymph node metastasis has been shown to positively associated with the prognosis of many cancers. However, in clinical treatment, lymphadenectomy is not always successful, suggesting that immune cells in the tumor and sentinel lymph nodes still play a pivotal role in tumor immunosuppression. Recent studies had shown that tumors can tolerate immune cells through multiple strategies, including tumor-induced macrophage reprogramming, T cells inactivation, production of B cells pathogenic antibodies and activation of regulatory T cells to promote tumor colonization, growth, and metastasis in lymph nodes. We reviewed the bidirectional effect of immune cells on anti-tumor or promotion of cancer cell metastasis during lymph node metastasis, and the mechanisms by which malignant cancer cells modify immune cells to create a more favorable environment for the growth and survival of cancer cells. Research and treatment strategies focusing on the immune system in lymph nodes and potential immune targets in lymph node metastasis were also be discussed.
Collapse
Affiliation(s)
- Jei-Ming Peng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan.
| | - Yu-Li Su
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan.
| |
Collapse
|
21
|
Suman S, Markovic SN. Melanoma-derived mediators can foster the premetastatic niche: crossroad to lymphatic metastasis. Trends Immunol 2023; 44:724-743. [PMID: 37573226 PMCID: PMC10528107 DOI: 10.1016/j.it.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/14/2023]
Abstract
The natural history of advanced malignant melanoma demonstrates that, in most cases, widespread tumor dissemination is preceded by regional metastases involving tumor-draining lymph nodes [sentinel lymph nodes (SLNs)]. Under physiological conditions, LNs play a central role in immunosurveillance to non-self-antigens to which they are exposed via afferent lymph. The dysfunctional immunity in SLNs is mediated by tumor secretory factors that allow the survival of metastatic melanoma cells within the LN by creating a premetastatic niche (PMN). Recent studies outline the altered microenvironment of LNs shaped by melanoma mediators. Here, we discuss tumor secretory factors involved in subverting tumor immunity and remodeling LNs and highlight emerging therapeutic strategies to reinvigorate antitumoral immunity in SLNs.
Collapse
Affiliation(s)
- Shankar Suman
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Svetomir N Markovic
- Department of Oncology, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
22
|
Velazquez-Salinas L, Medina GN, Valdez F, Zarate S, Collinson S, Zhu JJ, Rodriguez LL. Exploring the Molecular Basis of Vesicular Stomatitis Virus Pathogenesis in Swine: Insights from Expression Profiling of Primary Macrophages Infected with M51R Mutant Virus. Pathogens 2023; 12:896. [PMID: 37513744 PMCID: PMC10384765 DOI: 10.3390/pathogens12070896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Vesicular stomatitis virus (VSV) is an emergent virus affecting livestock in the US. Previously, using a recombinant VSV carrying the M51R mutation in the matrix protein (rNJ0612NME6-M51R), we evaluated the pathogenesis of this virus in pigs. Our results indicated that rNJ0612NME6-M51R represented an attenuated phenotype in in-vivo and in ex-vivo in pig macrophages, resembling certain clinical features observed in field VSV isolates. In order to gain more insight into the molecular basis leading to the attenuation of rNJ0612NME6-M51R in pigs, we conducted a microarray analysis to assess the gene expression profiles of primary porcine macrophages infected with rNJ0612NME6-M51R compared to its parental virus (rNJ0612NME6). Our results showed an overall higher gene expression in macrophages infected with rNJ0612NME6-M51R. Specifically, we observed that the pathways related with immune cytokine signaling and interferon (IFN)-related responses (including activation, signaling, induction, and antiviral mechanisms) were the ones comprising most of the relevant genes identified during this study. Collectively, the results presented herein highlight the relevance of type I interferon during the pathogenesis of VSV in pigs. The information generated from this study may represent a framework for future studies intended to understand the molecular bases of the pathogenesis of field strains in livestock.
Collapse
Affiliation(s)
- Lauro Velazquez-Salinas
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, NY 11944, USA
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
| | - Gisselle N Medina
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, NY 11944, USA
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
| | - Federico Valdez
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, NY 11944, USA
- Oak Ridge Institute for Science and Education (ORISE)-PIADC, Oak Ridge, TN 37831, USA
| | - Selene Zarate
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, Ciudad de Mexico 04510, Mexico
| | - Shannon Collinson
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, NY 11944, USA
- Oak Ridge Institute for Science and Education (ORISE)-PIADC, Oak Ridge, TN 37831, USA
| | - James J Zhu
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, NY 11944, USA
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
| | - Luis L Rodriguez
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, NY 11944, USA
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
| |
Collapse
|
23
|
Gunnarsdottir FB, Briem O, Lindgren AY, Källberg E, Andersen C, Grenthe R, Rosenqvist C, Millrud CR, Wallgren M, Viklund H, Bexell D, Johansson ME, Hedenfalk I, Hagerling C, Leandersson K. Breast cancer associated CD169 + macrophages possess broad immunosuppressive functions but enhance antibody secretion by activated B cells. Front Immunol 2023; 14:1180209. [PMID: 37404831 PMCID: PMC10315498 DOI: 10.3389/fimmu.2023.1180209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
CD169+ resident macrophages in lymph nodes of breast cancer patients are for unknown reasons associated with a beneficial prognosis. This contrasts CD169+ macrophages present in primary breast tumors (CD169+ TAMs), that correlate with a worse prognosis. We recently showed that these CD169+ TAMs were associated with tertiary lymphoid structures (TLSs) and Tregs in breast cancer. Here, we show that CD169+ TAMs can be monocyte-derived and express a unique mediator profile characterized by type I IFNs, CXCL10, PGE2 and inhibitory co-receptor expression pattern. The CD169+ monocyte-derived macrophages (CD169+ Mo-M) possessed an immunosuppressive function in vitro inhibiting NK, T and B cell proliferation, but enhanced antibody and IL6 secretion in activated B cells. Our findings indicate that CD169+ Mo-M in the primary breast tumor microenvironment are linked to both immunosuppression and TLS functions, with implications for future targeted Mo-M therapy.
Collapse
Affiliation(s)
- Frida Björk Gunnarsdottir
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Oscar Briem
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Aida Yifter Lindgren
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Eva Källberg
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Cajsa Andersen
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Robert Grenthe
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Cassandra Rosenqvist
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Camilla Rydberg Millrud
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Mika Wallgren
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Hannah Viklund
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Daniel Bexell
- Translational Cancer Research, TCR, Medicon Village, Lund University, Lund, Sweden
| | - Martin E. Johansson
- Sahlgrenska Center for Cancer Research, Department of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ingrid Hedenfalk
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Catharina Hagerling
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine Lund, Lund University, Lund, Sweden
| | - Karin Leandersson
- Cancer Immunology, Department for Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| |
Collapse
|
24
|
Lackner K, Ebner S, Watschinger K, Maglione M. Multiple Shades of Gray-Macrophages in Acute Allograft Rejection. Int J Mol Sci 2023; 24:8257. [PMID: 37175964 PMCID: PMC10179242 DOI: 10.3390/ijms24098257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Long-term results following solid organ transplantation do not mirror the excellent short-term results achieved in recent decades. It is therefore clear that current immunosuppressive maintenance protocols primarily addressing the adaptive immune system no longer meet the required clinical need. Identification of novel targets addressing this shortcoming is urgently needed. There is a growing interest in better understanding the role of the innate immune system in this context. In this review, we focus on macrophages, which are known to prominently infiltrate allografts and, during allograft rejection, to be involved in the surge of the adaptive immune response by expression of pro-inflammatory cytokines and direct cytotoxicity. However, this active participation is janus-faced and unspecific targeting of macrophages may not consider the different subtypes involved. Under this premise, we give an overview on macrophages, including their origins, plasticity, and important markers. We then briefly describe their role in acute allograft rejection, which ranges from sustaining injury to promoting tolerance, as well as the impact of maintenance immunosuppressants on macrophages. Finally, we discuss the observed immunosuppressive role of the vitamin-like compound tetrahydrobiopterin and the recent findings that suggest the innate immune system, particularly macrophages, as its target.
Collapse
Affiliation(s)
- Katharina Lackner
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
| | - Susanne Ebner
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Manuel Maglione
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
- Department of Visceral, Transplant, and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
25
|
Saito Y, Fujiwara Y, Miyamoto Y, Ohnishi K, Nakashima Y, Tabata Y, Baba H, Komohara Y. CD169 + sinus macrophages in regional lymph nodes do not predict mismatch-repair status of patients with colorectal cancer. Cancer Med 2023; 12:10199-10211. [PMID: 36846928 DOI: 10.1002/cam4.5747] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
AIMS Mismatch-repair deficiency and microsatellite instability-high (dMMR/MSI-H) colorectal cancer (CRC) is treated with programmed death (PD)-1 antibody regardless of PD-ligand (L)1 expression in tumor cells. We previously found that abundant CD169+ macrophages in regional lymph node (RLN) sinuses and CD8+ tumor-infiltrating lymphocytes (TILs) positively correlated in CRC and were associated with a favorable prognosis. However, associations between dMMR/MSI-H CRC and CD8+ TILs or prognoses vary among studies. In this study, we attempted to compare the association between MMR status, CD169+ macrophages in RLNs, CD8+ TILs, PD-L1 scores, and prognoses in CRC. METHODS AND RESULTS We immunostained 83 surgically resected CRC tumors that we previously analyzed for MMR proteins, and identified 9 that were dMMR. The number of CD169+ macrophages in RLNs and CD8+ TILs significantly correlated with overall survival, whereas MMR status did not. The number of cells positive for the TIL markers CD3, CD4, CD8, and TIA-1, and macrophage markers CD68 and CD169 in RLNs did not significantly differ between groups according to MMR status. Furthermore, combined positive scores (CPS) for PD-L1 expression in five of nine dMMR CRCs were all <1. We found that dMMR in CRC did not correlate with numbers of CD169+ macrophages in RLNs or CD8+ TILs. CONCLUSIONS CRC with CD169+ macrophages in RLNs and abundant CD8+ TILs indicates a better prognosis and it should be immunologically classified as a different antitumor group from dMMR CRC.
Collapse
Affiliation(s)
- Yoichi Saito
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Bioengineering, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Koji Ohnishi
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuta Nakashima
- Laboratory of Bioengineering, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan.,Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto, Japan.,International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan.,Fusion Oriented Research for Disruptive Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
26
|
CD169 + Macrophages in Primary Breast Tumors Associate with Tertiary Lymphoid Structures, T regs and a Worse Prognosis for Patients with Advanced Breast Cancer. Cancers (Basel) 2023; 15:cancers15041262. [PMID: 36831605 PMCID: PMC9954705 DOI: 10.3390/cancers15041262] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The presence of CD169+ macrophages in the draining lymph nodes of cancer patients is, for unknown reasons, associated with a beneficial prognosis. We here investigated the prognostic impact of tumor-infiltrating CD169+ macrophages in primary tumors (PTs) and their spatial relation to tumor-infiltrating B and T cells. Using two breast cancer patient cohorts, we show that CD169+ macrophages were spatially associated with the presence of B and T cell tertiary lymphoid-like structures (TLLSs) in both PTs and lymph node metastases (LNMs). While co-infiltration of CD169+/TLLS in PTs correlated with a worse prognosis, the opposite was found when present in LNMs. RNA sequencing of breast tumors further confirmed that SIGLEC1 (CD169) expression was associated with mature tertiary lymphoid structure (TLS), and Treg and Breg signatures. We propose that the negative prognostic value related to CD169+ macrophages in PTs is a consequence of an immunosuppressive tumor environment rich in TLSs, Tregs and Bregs.
Collapse
|
27
|
Holistic View on the Structure of Immune Response: Petri Net Model. Biomedicines 2023; 11:biomedicines11020452. [PMID: 36830988 PMCID: PMC9953182 DOI: 10.3390/biomedicines11020452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/08/2023] Open
Abstract
The simulation of immune response is a challenging task because quantitative data are scarce. Quantitative theoretical models either focus on specific cell-cell interactions or have to make assumptions about parameters. The broad variation of, e.g., the dimensions and abundance between lymph nodes as well as between individual patients hampers conclusive quantitative modeling. No theoretical model has been established representing a consensus on the set of major cellular processes involved in the immune response. In this paper, we apply the Petri net formalism to construct a semi-quantitative mathematical model of the lymph nodes. The model covers the major cellular processes of immune response and fulfills the formal requirements of Petri net models. The intention is to develop a model taking into account the viewpoints of experienced pathologists and computer scientists in the field of systems biology. In order to verify formal requirements, we discuss invariant properties and apply the asynchronous firing rule of a place/transition net. Twenty-five transition invariants cover the model, and each is assigned to a functional mode of the immune response. In simulations, the Petri net model describes the dynamic modes of the immune response, its adaption to antigens, and its loss of memory.
Collapse
|
28
|
Choe D, Choi D. Cancel cancer: The immunotherapeutic potential of CD200/CD200R blockade. Front Oncol 2023; 13:1088038. [PMID: 36756156 PMCID: PMC9900175 DOI: 10.3389/fonc.2023.1088038] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Immune checkpoint molecules function to inhibit and regulate immune response pathways to prevent hyperactive immune activity from damaging healthy tissues. In cancer patients, targeting these key molecules may serve as a valuable therapeutic mechanism to bolster immune function and restore the body's natural defenses against tumors. CD200, an immune checkpoint molecule, is a surface glycoprotein that is widely but not ubiquitously expressed throughout the body. By interacting with its inhibitory receptor CD200R, CD200 suppresses immune cell activity within the tumor microenvironment, creating conditions that foster tumor growth. Targeting the CD200/CD200R pathway, either through the use of monoclonal antibodies or peptide inhibitors, has shown to be effective in boosting anti-tumor immune activity. This review will explore CD200 and the protein's expression and role within the tumor microenvironment, blood endothelial cells, and lymph nodes. This paper will also discuss the advantages and challenges of current strategies used to target CD200 and briefly summarize relevant preclinical/clinical studies investigating the immunotherapeutic efficacy of CD200/CD200R blockade.
Collapse
|
29
|
Barut GT, Kreuzer M, Bruggmann R, Summerfield A, Talker SC. Single-cell transcriptomics reveals striking heterogeneity and functional organization of dendritic and monocytic cells in the bovine mesenteric lymph node. Front Immunol 2023; 13:1099357. [PMID: 36685557 PMCID: PMC9853064 DOI: 10.3389/fimmu.2022.1099357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Dendritic and monocytic cells co-operate to initiate and shape adaptive immune responses in secondary lymphoid tissue. The complexity of this system is poorly understood, also because of the high phenotypic and functional plasticity of monocytic cells. We have sequenced mononuclear phagocytes in mesenteric lymph nodes (LN) of three adult cows at the single-cell level, revealing ten dendritic-cell (DC) clusters and seven monocyte/macrophage clusters with clearly distinct transcriptomic profiles. Among DC, we defined LN-resident subsets and their progenitors, as well as subsets of highly activated migratory DC differing in transcript levels for T-cell attracting chemokines. Our analyses also revealed a potential differentiation path for cDC2, resulting in a cluster of inflammatory cDC2 with close transcriptional similarity to putative DC3 and monocyte-derived DC. Monocytes and macrophages displayed sub-clustering mainly driven by pro- or anti-inflammatory expression signatures, including a small cluster of cycling, presumably self-renewing, macrophages. With this transcriptomic snapshot of LN-derived mononuclear phagocytes, we reveal functional properties and differentiation trajectories in a "command center of immunity", and identify elements that are conserved across species.
Collapse
Affiliation(s)
- Güliz Tuba Barut
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Marco Kreuzer
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Stephanie C. Talker
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
30
|
Chakraborty A, Roy G, Swami B, Bhaskar S. Tumor targeted delivery of mycobacterial adjuvant encapsulated chitosan nanoparticles showed potential anti-cancer activity and immune cell activation in tumor microenvironment. Int Immunopharmacol 2023; 114:109463. [PMID: 36462337 DOI: 10.1016/j.intimp.2022.109463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/01/2022] [Accepted: 11/12/2022] [Indexed: 12/03/2022]
Abstract
Targeting immunotherapeutics inside the tumor microenvironment (TME) with intact biological activity remains a pressing issue. Mycobacterium indicus pranii (MIP), an approved adjuvant therapy for leprosy has exhibited promising results in clinical trials of lung (NSCLC) and bladder cancer. Whole MIP as well as its cell wall fraction have shown tumor growth suppression and enhanced survival in mice model of melanoma, when administered peritumorally. Clinically, peritumoral delivery remains a procedural limitation. In this study, a tumor targeted delivery system was designed, where chitosan nanoparticles loaded with MIP adjuvants, when administered intravenously showed preferential accumulation within the TME, exploiting the principle of enhanced permeability and retention effect. Bio-distribution studies revealed their highest concentration inside the tumor after 6 h of administration. Interestingly, MIP adjuvant nano-formulations significantly reduced the tumor volume in the treated groups and increased the frequency of activated immune cells inside the TME. For chemoimmunotherapeutics studies, MIP nano-formulation was combined with standard dosage regimen of Paclitaxel. Combined therapy exhibited a further reduction in tumor volume relative to either of the MIP nano formulations. From this study a three-pronged strategy emerged as the underlying mechanism; chitosan and Paclitaxel have shown direct role in tumor cell death and the MIP nano-formulation activates the tumor residing immune cells which ultimately leads to the reduced tumor growth.
Collapse
Affiliation(s)
- Anush Chakraborty
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Gargi Roy
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Bharati Swami
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sangeeta Bhaskar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
31
|
Repeated photodynamic therapy mediates the abscopal effect through multiple innate and adaptive immune responses with and without immune checkpoint therapy. Biomaterials 2023; 292:121918. [PMID: 36442438 DOI: 10.1016/j.biomaterials.2022.121918] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
In combination with immune checkpoint inhibitors, photodynamic therapy can induce robust immune responses capable of preventing local tumor recurrence and delaying the growth of distant, untreated disease (ie. the abscopal effect). Previously, we found that repeated photodynamic therapy (R-PDT) using porphyrin lipoprotein (PLP) as a photosensitizer, without the addition of an immune checkpoint inhibitor, can induce the abscopal effect. To understand why PLP mediated R-PDT alone can induce the abscopal effect, and how the addition of an immune checkpoint inhibitor can further strengthen the abscopal effect, we investigated the broader immune mechanisms facilitated by R-PDT and combination R-PDT + anti-PD-1 monoclonal antibody (αPD-1) in a highly aggressive, subcutaneous AE17-OVA mesothelioma dual tumor-bearing C57BL/6 mice. We found a 46.64-fold and 61.33-fold increase in interleukin-6 (IL-6) after R-PDT and combination R-PDT + αPD-1 relative to PBS respectively, suggesting broad innate immune activation. There was a greater propensity for antigen presentation in the spleen and distal, non-irradiated tumor draining lymph nodes, as dendritic cells and macrophages had increased expression of MHC class II, CD80, and CD86, after R-PDT and combination R-PDT + αPD-1. Concurrently, there was a shift in the proportions of CD4+ T cell subsets in the spleen, and an increase in the frequency of CD8+ T cells in the distal, non-irradiated tumor draining lymph nodes. While R-PDT had an acceptable safety profile, combination R-PDT + αPD-1 induced 1.26-fold higher serum potassium and 1.33-fold phosphorus, suggestive of mild laboratory tumor lysis syndrome. Histology revealed an absence of gross inflammation in critical organs after R-PDT and combination R-PDT + αPD-1 relative to PBS-treated mice. Taken together, our findings shed light on how the abscopal effect can be induced by PDT and strengthened by combination R-PDT + αPD-1, and suggests minimal toxicities after R-PDT.
Collapse
|
32
|
Cousin VN, Perez GF, Payne KJ, Voll RE, Rizzi M, Mueller CG, Warnatz K. Lymphoid stromal cells - potential implications for the pathogenesis of CVID. Front Immunol 2023; 14:1122905. [PMID: 36875120 PMCID: PMC9982092 DOI: 10.3389/fimmu.2023.1122905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Non-hematopoietic lymphoid stromal cells (LSC) maintain lymph node architecture and form niches allowing the migration, activation, and survival of immune cells. Depending on their localization in the lymph node, these cells display heterogeneous properties and secrete various factors supporting the different activities of the adaptive immune response. LSCs participate in the transport of antigen from the afferent lymph as well as in its delivery into the T and B cell zones and organize cell migration via niche-specific chemokines. While marginal reticular cells (MRC) are equipped for initial B-cell priming and T zone reticular cells (TRC) provide the matrix for T cell-dendritic cell interactions within the paracortex, germinal centers (GC) only form when both T- and B cells successfully interact at the T-B border and migrate within the B-cell follicle containing the follicular dendritic cell (FDC) network. Unlike most other LSCs, FDCs are capable of presenting antigen via complement receptors to B cells, which then differentiate within this niche and in proximity to T follicular helper (TFH) cells into memory and plasma cells. LSCs are also implicated in maintenance of peripheral immune tolerance. In mice, TRCs induce the alternative induction of regulatory T cells instead of TFH cells by presenting tissue-restricted self-antigens to naïve CD4 T cells via MHC-II expression. This review explores potential implications of our current knowledge of LSC populations regarding the pathogenesis of humoral immunodeficiency and autoimmunity in patients with autoimmune disorders or common variable immunodeficiency (CVID), the most common form of primary immunodeficiency in humans.
Collapse
Affiliation(s)
- Victoria N Cousin
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,University of Freiburg, Faculty of Biology, Freiburg, Germany.,Freiburg Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Faculty of Biology, Freiburg, Germany
| | - Guillermo F Perez
- Immunologie, Immunopathologie et Chimie Thérapeutique, CNRS UPR3572, Strasbourg, France.,Faculty of Life Science, University of Strasbourg, Strasbourg, France
| | - Kathryn J Payne
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,University of Freiburg, Faculty of Biology, Freiburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Division of Clinical and Experimental Immunology, Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Christopher G Mueller
- Immunologie, Immunopathologie et Chimie Thérapeutique, CNRS UPR3572, Strasbourg, France.,Faculty of Life Science, University of Strasbourg, Strasbourg, France
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Chang X, Li Y, Liu J, Wang Y, Guan X, Wu Q, Zhou Y, Zhang X, Chen Y, Huang Y, Liu R. ß-tubulin contributes to Tongyang Huoxue decoction-induced protection against hypoxia/reoxygenation-induced injury of sinoatrial node cells through SIRT1-mediated regulation of mitochondrial quality surveillance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154502. [PMID: 36274412 DOI: 10.1016/j.phymed.2022.154502] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND TYHX-Tongyang Huoxue decoction has been used clinically for nearly 40 years. The ingredients of TYHX are Radix Astragali (Huangqi), Red Ginseng (Hongshen), Rehmannia Glutinosa (Dihuang), Common Yam Rhizome (Shanyao) and Cassia-bark-tree Bark (Rougui). Our previous experiments confirmed that TYHX can protect sinoatrial node cells. However, its mechanism of action is not completely understood yet. PURPOSE The present study aimed to determine the protective effects of TYHX against Sinus node cell injury under hypoxic stress and elucidate the underlying mechanisms of protection. METHODS Through RNA sequencing analysis and network pharmacology analysis, we found significant differences in mitochondrial-related genes before and after hypoxia-mimicking SNC, resolved the main regulatory mechanism of TYHX. Through the intervention of TYHX on SNC, a series of detection methods such as laser confocal, fluorescence co-localization, mitochondrial membrane potential and RT-PCR. The regulatory effect of TYHX on β-tubulin in sinoatrial node cells was verified by in vitro experiments. The mechanism of action of TYHX and its active ingredient quercetin to maintain mitochondrial homeostasis and protect sinoatrial node cells through mitophagy, mitochondrial fusion/fission and mitochondrial biosynthesis was confirmed. RESULTS Through RNA sequencing analysis, we found that there were significant differences in mitochondrial related genes before and after SNC was modeled by hypoxia. Through pharmacological experiments, we showed that TYHX could inhibit the migration of Drp1 to mitochondria, inhibit excessive mitochondrial fission, activate mitophagy and increase the mitochondrial membrane potential. These protective effects were mainly mediated by β-tubulin. Furthermore, the active component quercetin in TYHX could inhibit excessive mitochondrial fission through SIRT1, maintain mitochondrial energy metabolism and protect SNCs. Our results showed that protection of mitochondrial function through the maintenance of β-tubulin and activation of SIRT1 is the main mechanism by which TYHX alleviates hypoxic stress injury in SNCs. The regulatory effects of TYHX and quercetin on mitochondrial quality surveillance are also necessary. Our findings provide empirical evidence supporting the use of TYHX as a targeted treatment for sick sinus syndrome. CONCLUSION Our data indicate that TYHX exerts protective effects against sinus node cell injury under hypoxic stress, which may be associated with the regulation of mitochondrial quality surveillance (MQS) and inhibition of mitochondrial homeostasis-mediated apoptosis.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yutong Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xinai Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yao Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yu Huang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
34
|
Nonclinical pharmacokinetics and biodistribution of VSV-GP using methods to decouple input drug disposition and viral replication. Mol Ther Methods Clin Dev 2022; 28:190-207. [PMID: 36700123 PMCID: PMC9843450 DOI: 10.1016/j.omtm.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Viral replication places oncolytic viruses (OVs) in a unique niche in the field of drug pharmacokinetics (PK) as their self-amplification obscures exposure-response relationships. Moreover, standard bioanalytical techniques are unable to distinguish the input from replicated drug products. Here, we combine two novel approaches to characterize PK and biodistribution (BD) after systemic administration of vesicular stomatitis virus pseudotyped with lymphocytic choriomeningitis virus glycoprotein (VSV-GP) in healthy mice. First: to decouple input drug PK/BD versus replication PK/BD, we developed and fully characterized a replication-incompetent tool virus that retained all other critical attributes of the drug. We used this approach to quantify replication in blood and tissues and to determine its impact on PK and BD. Second: to discriminate the genomic and antigenomic viral RNA strands contributing to replication dynamics in tissues, we developed an in situ hybridization method using strand-specific probes and assessed their spatiotemporal distribution in tissues. This latter approach demonstrated that distribution, transcription, and replication localized to tissue-resident macrophages, indicating their role in PK and BD. Ultimately, our study results in a refined PK/BD profile for a replicating OV, new proposed PK parameters, and deeper understanding of OV PK/BD using unique approaches that could be applied to other replicating vectors.
Collapse
|
35
|
Shah T, Leurgans SE, Mehta RI, Yang J, Galloway CA, de Mesy Bentley KL, Schneider JA, Mehta RI. Arachnoid granulations are lymphatic conduits that communicate with bone marrow and dura-arachnoid stroma. J Exp Med 2022; 220:213737. [PMID: 36469302 PMCID: PMC9728136 DOI: 10.1084/jem.20220618] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/12/2022] [Accepted: 11/08/2022] [Indexed: 12/07/2022] Open
Abstract
Arachnoid granulations (AG) are poorly investigated. Historical reports suggest that they regulate brain volume by passively transporting cerebrospinal fluid (CSF) into dural venous sinuses. Here, we studied the microstructure of cerebral AG in humans with the aim of understanding their roles in physiology. We discovered marked variations in AG size, lobation, location, content, and degree of surface encapsulation. High-resolution microscopy shows that AG consist of outer capsule and inner stromal core regions. The fine and porous framework suggests uncharacterized functions of AG in mechanical CSF filtration. Moreover, internal cytokine and immune cell enrichment imply unexplored neuroimmune properties of these structures that localize to the brain-meningeal lymphatic interface. Dramatic age-associated changes in AG structure are additionally identified. This study depicts for the first time microscopic networks of internal channels that communicate with perisinus spaces, suggesting that AG subserve important functions as transarachnoidal flow passageways. These data raise new theories regarding glymphatic-lymphatic coupling and mechanisms of CSF antigen clearance, homeostasis, and diseases.
Collapse
Affiliation(s)
- Trishna Shah
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL
| | - Sue E. Leurgans
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL
| | - Rashi I. Mehta
- Department of Neuroradiology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV,Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV
| | - Jingyun Yang
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL
| | - Chad A. Galloway
- Department of Pathology, University of Rochester Medical Center, Rochester, NY
| | | | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL,Department of Pathology, Rush University Medical Center, Chicago, IL
| | - Rupal I. Mehta
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL,Department of Pathology, Rush University Medical Center, Chicago, IL,Correspondence to Rupal I. Mehta:
| |
Collapse
|
36
|
Virgilio T, Bordini J, Cascione L, Sartori G, Latino I, Molina Romero D, Leoni C, Akhmedov M, Rinaldi A, Arribas AJ, Morone D, Seyed Jafari SM, Bersudsky M, Ottolenghi A, Kwee I, Chiaravalli AM, Sessa F, Hunger RE, Bruno A, Mortara L, Voronov E, Monticelli S, Apte RN, Bertoni F, Gonzalez SF. Subcapsular Sinus Macrophages Promote Melanoma Metastasis to the Sentinel Lymph Nodes via an IL1α-STAT3 Axis. Cancer Immunol Res 2022; 10:1525-1541. [PMID: 36206577 PMCID: PMC9716256 DOI: 10.1158/2326-6066.cir-22-0225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/18/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
During melanoma metastasis, tumor cells originating in the skin migrate via lymphatic vessels to the sentinel lymph node (sLN). This process facilitates tumor cell spread across the body. Here, we characterized the innate inflammatory response to melanoma in the metastatic microenvironment of the sLN. We found that macrophages located in the subcapsular sinus (SS) produced protumoral IL1α after recognition of tumoral antigens. Moreover, we confirmed that the elimination of LN macrophages or the administration of an IL1α-specific blocking antibody reduced metastatic spread. To understand the mechanism of action of IL1α in the context of the sLN microenvironment, we applied single-cell RNA sequencing to microdissected metastases obtained from animals treated with the IL1α-specific blocking antibody. Among the different pathways affected, we identified STAT3 as one of the main targets of IL1α signaling in metastatic tumor cells. Moreover, we found that the antitumoral effect of the anti-IL1α was not mediated by lymphocytes because Il1r1 knockout mice did not show significant differences in metastasis growth. Finally, we found a synergistic antimetastatic effect of the combination of IL1α blockade and STAT3 inhibition with stattic, highlighting a new immunotherapy approach to preventing melanoma metastasis.
Collapse
Affiliation(s)
- Tommaso Virgilio
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Joy Bordini
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,GenomSys SA, Lugano, Switzerland
| | - Luciano Cascione
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Giulio Sartori
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Irene Latino
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Daniel Molina Romero
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Graduate School Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Cristina Leoni
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Murodzhon Akhmedov
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,BigOmics Analytics, Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Alberto J. Arribas
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Diego Morone
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - S. Morteza Seyed Jafari
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marina Bersudsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Aner Ottolenghi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ivo Kwee
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,BigOmics Analytics, Lugano, Switzerland
| | - Anna Maria Chiaravalli
- Unit of Pathology, ASST dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Fausto Sessa
- Unit of Pathology, ASST dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Robert E. Hunger
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy.,Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Silvia Monticelli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Ron N. Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Francesco Bertoni
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | - Santiago F. Gonzalez
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Corresponding Author: Santiago F. Gonzalez, Institute for Research in Biomedicine, via Francesco Chiesa 5. CH-6500 Bellinzona. Switzerland. Phone: +41 58 666 7226; E-mail:
| |
Collapse
|
37
|
Kuroda C, Mochizuki C, Nakamura J, Nakamura M. Size-dependent distribution of fluorescent thiol-organosilica particles in popliteal lymph nodes of mice. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Schwarzenberg FL, Schütz P, Hammel JU, Riedel M, Bartl J, Bordbari S, Frank SC, Walkenfort B, Busse M, Herzen J, Lohr C, Wülfing C, Henne S. Three-dimensional analyses of vascular network morphology in a murine lymph node by X-ray phase-contrast tomography with a 2D Talbot array. Front Immunol 2022; 13:947961. [PMID: 36524111 PMCID: PMC9745095 DOI: 10.3389/fimmu.2022.947961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
With growing molecular evidence for correlations between spatial arrangement of blood vasculature and fundamental immunological functions, carried out in distinct compartments of the subdivided lymph node, there is an urgent need for three-dimensional models that can link these aspects. We reconstructed such models at a 1.84 µm resolution by the means of X-ray phase-contrast imaging with a 2D Talbot array in a short time without any staining. In addition reconstructions are verified in immunohistochemistry staining as well as in ultrastructural analyses. While conventional illustrations of mammalian lymph nodes depict the hilus as a definite point of blood and lymphatic vessel entry and exit, our method revealed that multiple branches enter and emerge from an area that extends up to one third of the organ's surface. This could be a prerequisite for the drastic and location-dependent remodeling of vascularization, which is necessary for lymph node expansion during inflammation. Contrary to corrosion cast studies we identified B-cell follicles exhibiting a two times denser capillary network than the deep cortical units of the T-cell zone. In addition to our observation of high endothelial venules spatially surrounding the follicles, this suggests a direct connection between morphology and B-cell homing. Our findings will deepen the understanding of functional lymph node composition and lymphocyte migration on a fundamental basis.
Collapse
Affiliation(s)
- Florian L. Schwarzenberg
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Paul Schütz
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Jörg U. Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Mirko Riedel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
- Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Jasmin Bartl
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Sharareh Bordbari
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Svea-Celina Frank
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Bernd Walkenfort
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Madleen Busse
- Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Julia Herzen
- Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Christian Lohr
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Clemens Wülfing
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Stephan Henne
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
39
|
Lin J, Lv J, Yu S, Chen Y, Wang H, Chen J. Transcript Engineered Extracellular Vesicles Alleviate Alloreactive Dynamics in Renal Transplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202633. [PMID: 36073846 PMCID: PMC9631077 DOI: 10.1002/advs.202202633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Direct contact of membrane molecules and cytokine interactions orchestrate immune homeostasis. However, overcoming the threshold of distance and velocity barriers, and achieving adhesion mediated immune interaction remain difficult. Here, inspired by the natural chemotaxis of regulatory T cells, multifunctionalized FOXP3 genetic engineered extracellular vesicles, termed Foe-TEVs, are designed, which display with adhesive molecules, regulatory cytokines, and coinhibitory contact molecules involving CTLA-4 and PD-1, by limited exogenous gene transduction. Foe-TEVs effectively adhere to the tubular, endothelial, and glomerular regions of allogeneic injury in the renal allograft, mitigating cell death in situ and chronic fibrosis transition. Remarkably, transcript engineering reverses the tracking velocity of vesicles to a retained phenotype and enhanced arrest coefficient by a factor of 2.16, directly interacting and attenuating excessive allosensitization kinetics in adaptive lymphoid organs. In murine allogeneic transplantation, immune adhesive Foe-TEVs alleviate pathological responses, restore renal function with well ordered ultrastructure and improved glomerular filtration rate, and prolong the survival period of the recipient from 30.16 to 92.81 days, demonstrating that the delivery of extracellular vesicles, genetically engineered for immune adhesive, is a promising strategy for the treatment of graft rejection.
Collapse
Affiliation(s)
- Jinwen Lin
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Kidney Disease Prevention and Control TechnologyNational Key Clinical Department of Kidney DiseasesInstitute of NephrologyZhejiang University, and Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhouZhejiang Province310003P. R. China
- Zhejiang University‐University of Edinburgh InstituteSchool of MedicineZhejiang UniversityHangzhouZhejiang Province310003P. R. China
| | - Junhao Lv
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Kidney Disease Prevention and Control TechnologyNational Key Clinical Department of Kidney DiseasesInstitute of NephrologyZhejiang University, and Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhouZhejiang Province310003P. R. China
| | - Shiping Yu
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Kidney Disease Prevention and Control TechnologyNational Key Clinical Department of Kidney DiseasesInstitute of NephrologyZhejiang University, and Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhouZhejiang Province310003P. R. China
| | - Ying Chen
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Kidney Disease Prevention and Control TechnologyNational Key Clinical Department of Kidney DiseasesInstitute of NephrologyZhejiang University, and Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhouZhejiang Province310003P. R. China
| | - Huiping Wang
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Kidney Disease Prevention and Control TechnologyNational Key Clinical Department of Kidney DiseasesInstitute of NephrologyZhejiang University, and Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhouZhejiang Province310003P. R. China
| | - Jianghua Chen
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Kidney Disease Prevention and Control TechnologyNational Key Clinical Department of Kidney DiseasesInstitute of NephrologyZhejiang University, and Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhouZhejiang Province310003P. R. China
| |
Collapse
|
40
|
Luozhong S, Yuan Z, Sarmiento T, Chen Y, Gu W, McCurdy C, Gao W, Li R, Wilkens S, Jiang S. Phosphatidylserine Lipid Nanoparticles Promote Systemic RNA Delivery to Secondary Lymphoid Organs. NANO LETTERS 2022; 22:8304-8311. [PMID: 36194390 DOI: 10.1021/acs.nanolett.2c03234] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Secondary lymphoid organs (SLOs) are an important target for mRNA delivery in various applications. While the current delivery method relies on the drainage of nanoparticles to lymph nodes by intramuscular (IM) or subcutaneous (SC) injections, an efficient mRNA delivery carrier for SLOs-targeting delivery by systemic administration (IV) is highly desirable but yet to be available. In this study, we developed an efficient SLOs-targeting carrier using phosphatidylserine (PS), a well-known signaling molecule that promotes the endocytic activity of phagocytes and cellular entry of enveloped viruses. We adopted these biomimetic strategies and added PS into the standard four-component MC3-based LNP formulation (PS-LNP) to facilitate the cellular uptake of immune cells beyond the charge-driven targeting principle commonly used today. As a result, PS-LNP performed efficient protein expression in both lymph nodes and the spleen after IV administration. In vitro and in vivo characterizations on PS-LNP demonstrated a monocyte/macrophage-mediated SLOs-targeting delivery mechanism.
Collapse
Affiliation(s)
- Sijin Luozhong
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zhefan Yuan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Tara Sarmiento
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Yu Chen
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Wenchao Gu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Caleb McCurdy
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Wenting Gao
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14853, United States
| | - Ruoxin Li
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, United States
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
41
|
Pang Z, Yan W, Yang J, Li Q, Guo Y, Zhou D, Jiang X. Multifunctional Gold Nanoclusters for Effective Targeting, Near-Infrared Fluorescence Imaging, Diagnosis, and Treatment of Cancer Lymphatic Metastasis. ACS NANO 2022; 16:16019-16037. [PMID: 36130729 PMCID: PMC9620408 DOI: 10.1021/acsnano.2c03752] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Developing effective lymph-node (LN) targeting and imaging probes is crucial for the early detection and diagnosis of tumor metastasis to improve patient survival. Most current clinical LN imaging probes are based on small organic dyes (e.g., indocyanine green) or radioactive 99mTc-complexes, which often suffer from limitations, such as rapid photobleaching, poor signal contrast, and potential biosafety issues. Moreover, these probes cannot easily incorporate therapeutic functions to realize beneficial theranostics without affecting their LN-targeting ability. Herein, we have developed dual-ligand-/multiligand-capped gold nanoclusters (GNCs) for specific targeting, near-infrared (NIR) fluorescence imaging, diagnosis, and treatment of LN cancer metastasis in in vivo mouse models. By optimizing the surface ligand coating, we have prepared Au25(SR1)n(SR2)18-n (where SR1 and SR2 are different functional thiol ligands)-type GNCs, which display highly effective LN targeting, excellent stability and biocompatibility, and optimal body-retention time. Moreover, they can provide continuous NIR fluorescence imaging of LNs for >3 h from a single dose, making them well-suited for fluorescence-guided surgery. Importantly, we have further incorporated methotrexate, a chemotherapeutic drug, into the GNCs without affecting their LN-targeting ability. Consequently, they can significantly improve the efficiency of methotrexate delivery to target LNs, achieving excellent therapeutic efficacy with up to 4-fold lower hepatotoxicity. Thus, the GNCs are highly effective and safe theranostic nanomedicines against cancer lymphatic metastasis.
Collapse
Affiliation(s)
- Zeyang Pang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials and Shenzhen Key
Laboratory of Smart Healthcare Engineering, Department of Biomedical
Engineering, Southern University of Science
and Technology, No 1088, Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Weixiao Yan
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials and Shenzhen Key
Laboratory of Smart Healthcare Engineering, Department of Biomedical
Engineering, Southern University of Science
and Technology, No 1088, Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Jie Yang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials and Shenzhen Key
Laboratory of Smart Healthcare Engineering, Department of Biomedical
Engineering, Southern University of Science
and Technology, No 1088, Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Qizhen Li
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials and Shenzhen Key
Laboratory of Smart Healthcare Engineering, Department of Biomedical
Engineering, Southern University of Science
and Technology, No 1088, Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yuan Guo
- School
of Food Science and Nutrition and Astbury Centre for Structural Molecular
Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dejian Zhou
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Xingyu Jiang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials and Shenzhen Key
Laboratory of Smart Healthcare Engineering, Department of Biomedical
Engineering, Southern University of Science
and Technology, No 1088, Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
42
|
Bauer A, Tatliadim H, Halin C. Leukocyte Trafficking in Lymphatic Vessels. Cold Spring Harb Perspect Med 2022; 12:a041186. [PMID: 35379657 PMCID: PMC9524389 DOI: 10.1101/cshperspect.a041186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To ensure proper immune function, most leukocytes constantly move within tissues or between them using the blood and lymphatic vessels as transport routes. While afferent lymphatic vessels transfer leukocytes from peripheral tissues to draining lymph nodes (dLNs), efferent lymphatics return lymphocytes from LNs back into the blood vascular circulation. Over the last decades, great progress has been made in our understanding of leukocyte migration into and within the lymphatic compartment, leading to the approval of new drugs targeting this process. In this review, we first introduce the anatomy of the lymphatic vasculature and the main cell types migrating through lymphatics. We primarily focus on dendritic cells (DCs) and T cells, the most prominent lymph-borne cell types, and discuss the functional significance as well as the main molecules and steps involved in their migration. Additionally, we provide an overview of the different techniques used to study lymphatic trafficking.
Collapse
Affiliation(s)
- Aline Bauer
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Hazal Tatliadim
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
43
|
Lymph-derived chemokines direct early neutrophil infiltration in the lymph nodes upon Staphylococcus aureus skin infection. Proc Natl Acad Sci U S A 2022; 119:e2111726119. [PMID: 35914162 PMCID: PMC9371737 DOI: 10.1073/pnas.2111726119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A large number of neutrophils infiltrate the lymph node (LN) within 4 h after Staphylococcus aureus skin infection (4 h postinfection [hpi]) and prevent systemic S. aureus dissemination. It is not clear how infection in the skin can remotely and effectively recruit neutrophils to the LN. Here, we found that lymphatic vessel occlusion substantially reduced neutrophil recruitment to the LN. Lymphatic vessels effectively transported bacteria and proinflammatory chemokines (i.e., Chemokine [C-X-C motif] motif 1 [CXCL1] and CXCL2) to the LN. However, in the absence of lymph flow, S. aureus alone in the LN was insufficient to recruit neutrophils to the LN at 4 hpi. Instead, lymph flow facilitated the earliest neutrophil recruitment to the LN by delivering chemokines (i.e., CXCL1, CXCL2) from the site of infection. Lymphatic dysfunction is often found during inflammation. During oxazolone (OX)-induced skin inflammation, CXCL1/2 in the LN was reduced after infection. The interrupted LN conduits further disrupted the flow of lymph and impeded its communication with high endothelial venules (HEVs), resulting in impaired neutrophil migration. The impaired neutrophil interaction with bacteria contributed to persistent infection in the LN. Our studies showed that both the flow of lymph from lymphatic vessels to the LN and the distribution of lymph in the LN are critical to ensure optimal neutrophil migration and timely innate immune protection in S. aureus infection.
Collapse
|
44
|
Zheng D, Bhuvan T, Payne NL, Heng TSP. Secondary Lymphoid Organs in Mesenchymal Stromal Cell Therapy: More Than Just a Filter. Front Immunol 2022; 13:892443. [PMID: 35784291 PMCID: PMC9243307 DOI: 10.3389/fimmu.2022.892443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have demonstrated therapeutic potential in inflammatory models of human disease. However, clinical translation has fallen short of expectations, with many trials failing to meet primary endpoints. Failure to fully understand their mechanisms of action is a key factor contributing to the lack of successful commercialisation. Indeed, it remains unclear how the long-ranging immunomodulatory effects of MSCs can be attributed to their secretome, when MSCs undergo apoptosis in the lung shortly after intravenous infusion. Their apoptotic fate suggests that efficacy is not based solely on their viable properties, but also on the immune response to dying MSCs. The secondary lymphoid organs (SLOs) orchestrate immune responses and play a key role in immune regulation. In this review, we will discuss how apoptotic cells can modify immune responses and highlight the importance of MSC-immune cell interactions in SLOs for therapeutic outcomes.
Collapse
Affiliation(s)
- Di Zheng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tejasvini Bhuvan
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Natalie L. Payne
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Tracy S. P. Heng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, Australia
- *Correspondence: Tracy S. P. Heng,
| |
Collapse
|
45
|
Naumenko VA, Stepanenko AA, Lipatova AV, Vishnevskiy DA, Chekhonin VP. Infection of non-cancer cells: A barrier or support for oncolytic virotherapy? MOLECULAR THERAPY - ONCOLYTICS 2022; 24:663-682. [PMID: 35284629 PMCID: PMC8898763 DOI: 10.1016/j.omto.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oncolytic viruses are designed to specifically target cancer cells, sparing normal cells. Although numerous studies demonstrate the ability of oncolytic viruses to infect a wide range of non-tumor cells, the significance of this phenomenon for cancer virotherapy is poorly understood. To fill the gap, we summarize the data on infection of non-cancer targets by oncolytic viruses with a special focus on tumor microenvironment and secondary lymphoid tissues. The review aims to address two major questions: how do attenuated viruses manage to infect normal cells, and whether it is of importance for oncolytic virotherapy.
Collapse
Affiliation(s)
- Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Corresponding author Victor A. Naumenko, PhD, V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia.
| | - Aleksei A. Stepanenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Anastasiia V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Daniil A. Vishnevskiy
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Vladimir P. Chekhonin
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
46
|
Liu J, Yu L, Wang C, Zhang Y, Xi H, Si J, Zhang L, Yan J. Preparation, Structural Features and in vitro Immunostimulatory Activity of a Glucomannan From Fresh Dendrobium catenatum Stems. Front Nutr 2022; 8:823803. [PMID: 35178419 PMCID: PMC8843939 DOI: 10.3389/fnut.2021.823803] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/30/2021] [Indexed: 02/02/2023] Open
Abstract
Dendrobium catenatum polysaccharides (DCPs) have attracted attention due to their multiple physiological activities and health benefits. In this study, a novel water-soluble DCP was obtained from fresh D. catenatum stems through three-phase partitioning and ethanol precipitation at room temperature. Its structural characteristics, rheological property, and in vitro immunostimulatory activity were evaluated. Results demonstrated that DCP was a homogenous polysaccharide with a carbohydrate content of 92.75% and a weight-average molecular weight of 2.21 × 105 Da. This polysaccharide is an O-acetylated glucomannan comprised by glucose, mannose, and galacturonic acid in a molar ratio of 30.2:69.5:0.3 and mainly comprises (1→4)-β-D-mannopyranosyl (Manp), 2-O-acetyl-(1→4)-β-D-Manp, (1→6)-α-D-glucopyranosyl (Glcp), and (1→4)-α-D-Glcp residues. DCP exhibits an extended rigid chain in an aqueous solution and favorable steady shear fluid and dynamic viscoelastic behaviors. In vitro immunostimulating assays indicated that DCP activates RAW264.7 cells, thus markedly promoting macrophage proliferation and phagocytosis and increasing the levels of nitric oxide, interferon-γ, interleukin-6, and interleukin-1β. Moreover, the presence of O-acetyl group and high Mw in DCP might be responsible for its potent immunostimulatory activity in vitro. Therefore, our data suggested that DCP could be developed as a promising immunostimulant in functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Jingjing Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Luyao Yu
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Chun Wang
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Yuefan Zhang
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, China
| | - Hangxian Xi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Lei Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, China
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, China
- *Correspondence: Lei Zhang
| | - Jingkun Yan
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
- Jingkun Yan ;
| |
Collapse
|
47
|
Pizzagalli DU, Pulfer A, Thelen M, Krause R, Gonzalez SF. In Vivo Motility Patterns Displayed by Immune Cells Under Inflammatory Conditions. Front Immunol 2022; 12:804159. [PMID: 35046959 PMCID: PMC8762290 DOI: 10.3389/fimmu.2021.804159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
The migration of immune cells plays a key role in inflammation. This is evident in the fact that inflammatory stimuli elicit a broad range of migration patterns in immune cells. Since these patterns are pivotal for initiating the immune response, their dysregulation is associated with life-threatening conditions including organ failure, chronic inflammation, autoimmunity, and cancer, amongst others. Over the last two decades, thanks to advancements in the intravital microscopy technology, it has become possible to visualize cell migration in living organisms with unprecedented resolution, helping to deconstruct hitherto unexplored aspects of the immune response associated with the dynamism of cells. However, a comprehensive classification of the main motility patterns of immune cells observed in vivo, along with their relevance to the inflammatory process, is still lacking. In this review we defined cell actions as motility patterns displayed by immune cells, which are associated with a specific role during the immune response. In this regard, we summarize the main actions performed by immune cells during intravital microscopy studies. For each of these actions, we provide a consensus name, a definition based on morphodynamic properties, and the biological contexts in which it was reported. Moreover, we provide an overview of the computational methods that were employed for the quantification, fostering an interdisciplinary approach to study the immune system from imaging data.
Collapse
Affiliation(s)
- Diego Ulisse Pizzagalli
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Euler institute, Università della Svizzera italiana, Lugano-Viganello, Switzerland
| | - Alain Pulfer
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology Zurich (ETHZ) Zürich, Zürich, Switzerland
| | - Marcus Thelen
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| | - Rolf Krause
- Euler institute, Università della Svizzera italiana, Lugano-Viganello, Switzerland
| | - Santiago F. Gonzalez
- Istituto di Ricerca in Biomedicina (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
48
|
O'Hagan DT, van der Most R, Lodaya RN, Coccia M, Lofano G. "World in motion" - emulsion adjuvants rising to meet the pandemic challenges. NPJ Vaccines 2021; 6:158. [PMID: 34934069 PMCID: PMC8692316 DOI: 10.1038/s41541-021-00418-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023] Open
Abstract
Emulsion adjuvants such as MF59 and AS03 have been used for more than two decades as key components of licensed vaccines, with over 100 million doses administered to diverse populations in more than 30 countries. Substantial clinical experience of effectiveness and a well-established safety profile, along with the ease of manufacturing have established emulsion adjuvants as one of the leading platforms for the development of pandemic vaccines. Emulsion adjuvants allow for antigen dose sparing, more rapid immune responses, and enhanced quality and quantity of adaptive immune responses. The mechanisms of enhancement of immune responses are well defined and typically characterized by the creation of an "immunocompetent environment" at the site of injection, followed by the induction of strong and long-lasting germinal center responses in the draining lymph nodes. As a result, emulsion adjuvants induce distinct immunological responses, with a mixed Th1/Th2 T cell response, long-lived plasma cells, an expanded repertoire of memory B cells, and high titers of cross-neutralizing polyfunctional antibodies against viral variants. Because of these various properties, emulsion adjuvants were included in pandemic influenza vaccines deployed during the 2009 H1N1 influenza pandemic, are still included in seasonal influenza vaccines, and are currently at the forefront of the development of vaccines against emerging SARS-CoV-2 pandemic variants. Here, we comprehensively review emulsion adjuvants, discuss their mechanism of action, and highlight their profile as a benchmark for the development of additional vaccine adjuvants and as a valuable tool to allow further investigations of the general principles of human immunity.
Collapse
|
49
|
Kim J, Archer PA, Thomas SN. Innovations in lymph node targeting nanocarriers. Semin Immunol 2021; 56:101534. [PMID: 34836772 DOI: 10.1016/j.smim.2021.101534] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022]
Abstract
Lymph nodes are secondary lymphoid tissues in the body that facilitate the co-mingling of immune cells to enable and regulate the adaptive immune response. They are also tissues implicated in a variety of diseases, including but not limited to malignancy. The ability to access lymph nodes is thus attractive for a variety of therapeutic and diagnostic applications. As nanotechnologies are now well established for their potential in translational biomedical applications, their high relevance to applications that involve lymph nodes is highlighted. Herein, established paradigms of nanocarrier design to enable delivery to lymph nodes are discussed, considering the unique lymph node tissue structure as well as lymphatic system physiology. The influence of delivery mechanism on how nanocarrier systems distribute to different compartments and cells that reside within lymph nodes is also elaborated. Finally, current advanced nanoparticle technologies that have been developed to enable lymph node delivery are discussed.
Collapse
Affiliation(s)
- Jihoon Kim
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Paul A Archer
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road NE, Atlanta, GA 30322, USA.
| |
Collapse
|
50
|
Kumar US, Afjei R, Ferrara K, Massoud TF, Paulmurugan R. Gold-Nanostar-Chitosan-Mediated Delivery of SARS-CoV-2 DNA Vaccine for Respiratory Mucosal Immunization: Development and Proof-of-Principle. ACS NANO 2021; 15:17582-17601. [PMID: 34705425 PMCID: PMC8565460 DOI: 10.1021/acsnano.1c05002] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/25/2021] [Indexed: 05/16/2023]
Abstract
The COVID-19 pandemic is caused by the coronavirus SARS-CoV-2 (SC2). A variety of anti-SC2 vaccines have been approved for human applications, including those using messenger RNA (mRNA), adenoviruses expressing SC2 spike (S) protein, and inactivated virus. The protective periods of immunization afforded by these intramuscularly administered vaccines are currently unknown. An alternative self-administrable vaccine capable of mounting long-lasting immunity via sterilizing neutralizing antibodies would be hugely advantageous in tackling emerging mutant SC2 variants. This could also diminish the possibility of vaccinated individuals acting as passive carriers of COVID-19. Here, we investigate the potential of an intranasal (IN)-delivered DNA vaccine encoding the S protein of SC2 in BALB/c and C57BL/6J immunocompetent mouse models. The immune response to IN delivery of this SC2-spike DNA vaccine transported on a modified gold-chitosan nanocarrier shows a strong and consistent surge in antibodies (IgG, IgA, and IgM) and effective neutralization of pseudoviruses expressing S proteins of different SC2 variants (Wuhan, beta, and D614G). Immunophenotyping and histological analyses reveal chronological events involved in the recognition of SC2 S antigen by resident dendritic cells and alveolar macrophages, which prime the draining lymph nodes and spleen for peak SC2-specific cellular and humoral immune responses. The attainable high levels of anti-SC2 IgA in lung mucosa and tissue-resident memory T cells can efficiently inhibit SC2 and its variants at the site of entry and also provide long-lasting immunity.
Collapse
Affiliation(s)
- Uday S. Kumar
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rayhaneh Afjei
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Katherine Ferrara
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Tarik F. Massoud
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|