1
|
Lin LY, Gantner P, Li S, Su B, Moog C. Unpredicted Protective Function of Fc-Mediated Inhibitory Antibodies for HIV and SARS-CoV-2 Vaccines. J Infect Dis 2025; 231:e1-e9. [PMID: 39302695 PMCID: PMC11793060 DOI: 10.1093/infdis/jiae464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/28/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024] Open
Abstract
Developing effective vaccines is necessary in combating new virus pandemics. For human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the induction of neutralizing antibodies (NAb) is important for vaccine protection; however, the exact mechanisms underlying protection require further study. Recent data emphasize that even Abs that do not exhibit neutralizing activity may contribute to immune defense by Ab Fc-mediated inhibition. Abs exhibiting this function may counter virus mutations, which are acquired to escape from NAbs, and therefore broaden the protective Ab response induced by vaccination. The steps leading to inhibition are complex. How can these functions be measured in vitro? What inhibitory assay is physiologically relevant at mimicking effective in vivo protection? This review provides a comprehensive update on the current knowledge gaps on the Ab Fc-mediated functions involved in HIV and SARS-CoV-2 protection. Understanding the inhibitory effects of these Abs is vital for designing the next generation of protective HIV and SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Li-Yun Lin
- Laboratoire d’Immunorhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, France
- Vaccine Research Institute, Créteil, France
| | - Pierre Gantner
- Laboratoire d’Immunorhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, France
- Institut Thématique Interdisciplinaire de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Shuang Li
- Beijing Key Laboratory for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Christiane Moog
- Laboratoire d’Immunorhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, France
- Institut Thématique Interdisciplinaire de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Vaccine Research Institute, Créteil, France
| |
Collapse
|
2
|
Sonawane A, Selvam D, Yue L, Nesakumar M, Vivekanandan S, Ashokkumar M, Hunter E, Hanna LE. Virulence and Replicative Fitness of HIV-1 Transmitted/Founder (T/F) Viruses Harbouring Drug Resistance-Associated Mutation. Viruses 2024; 16:1854. [PMID: 39772167 PMCID: PMC11680346 DOI: 10.3390/v16121854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
The biological characteristics of early transmitted/founder (T/F) variants are crucial factors for viral transmission and constitute key determinants for the development of better therapeutics and vaccine strategies. The present study aimed to generate T/F viruses and to characterize their biological properties. For this purpose, we constructed 18 full-length infectious molecular clones (IMCs) of HIV from recently infected infants. All the clones were characterized genotypically through whole genome sequencing and phenotypically for infectivity, replication kinetics, co-receptor usage, as well as their susceptibility to neutralizing antibodies and entry inhibitors using standard virological assays. Genotypic analysis revealed that all the T/F clones were of non-recombinant subtype C, but some of them harboured the Y181C drug resistance mutation associated with resistance to the non-nucleoside reverse transcriptase inhibitor (NNRTI) class of antiretroviral drugs. In vitro studies showed that while all the IMCs were capable of replicating in PBMCs and utilized the CCR5 co-receptor for cellular entry, the drug-resistant variants had significantly lower replicative capacity and per particle infectivity than the drug-sensitive viruses. Both exhibited similar sensitivities to a standard panel of broadly neutralizing monoclonal antibodies and viral entry inhibitors. These findings suggest that despite their diminished replicative fitness, the drug-resistant T/F variants retain transmission fitness and remain susceptible to neutralizing antibody-based interventions and viral entry inhibitors.
Collapse
Affiliation(s)
- Aanand Sonawane
- Department of Virology & Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, India; (A.S.); (D.S.); (M.N.); (S.V.)
- Department of Immunology, University of Madras, Chennai 600005, India
| | - Deepak Selvam
- Department of Virology & Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, India; (A.S.); (D.S.); (M.N.); (S.V.)
| | - Ling Yue
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA; (L.Y.); (E.H.)
| | - Manohar Nesakumar
- Department of Virology & Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, India; (A.S.); (D.S.); (M.N.); (S.V.)
| | - Sandhya Vivekanandan
- Department of Virology & Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, India; (A.S.); (D.S.); (M.N.); (S.V.)
- Department of Immunology, University of Madras, Chennai 600005, India
| | - Manickam Ashokkumar
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hil, NC 27599, USA;
| | - Eric Hunter
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA; (L.Y.); (E.H.)
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA 30329, USA
| | - Luke Elizabeth Hanna
- Department of Virology & Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, India; (A.S.); (D.S.); (M.N.); (S.V.)
| |
Collapse
|
3
|
Richard J, Sannier G, Zhu L, Prévost J, Marchitto L, Benlarbi M, Beaudoin-Bussières G, Kim H, Sun Y, Chatterjee D, Medjahed H, Bourassa C, Delgado GG, Dubé M, Kirchhoff F, Hahn BH, Kumar P, Kaufmann DE, Finzi A. CD4 downregulation precedes Env expression and protects HIV-1-infected cells from ADCC mediated by non-neutralizing antibodies. mBio 2024; 15:e0182724. [PMID: 39373535 PMCID: PMC11559134 DOI: 10.1128/mbio.01827-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024] Open
Abstract
HIV-1 envelope glycoprotein (Env) conformation substantially impacts antibody-dependent cellular cytotoxicity (ADCC). Envs from primary HIV-1 isolates adopt a prefusion "closed" conformation, which is targeted by broadly neutralizing antibodies (bnAbs). CD4 binding drives Env into more "open" conformations, which are recognized by non-neutralizing Abs (nnAbs). To better understand Env-Ab and Env-CD4 interaction in CD4+ T cells infected with HIV-1, we simultaneously measured antibody binding and HIV-1 mRNA expression using multiparametric flow cytometry and RNA flow fluorescent in situ hybridization (FISH) techniques. We observed that env mRNA is almost exclusively expressed by HIV-1 productively infected cells that already downmodulated CD4. This suggests that CD4 downmodulation precedes env mRNA expression. Consequently, productively infected cells express "closed" Envs on their surface, which renders them resistant to nnAbs. Cells recognized by nnAbs were all env mRNA negative, indicating Ab binding through shed gp120 or virions attached to their surface. Consistent with these findings, treatment of HIV-1-infected humanized mice with the ADCC-mediating nnAb A32 failed to lower viral replication or reduce the size of the viral reservoir. These findings confirm the resistance of productively infected CD4+ T cells to nnAbs-mediated ADCC and question the rationale of immunotherapy approaches using this strategy. IMPORTANCE Antibody-dependent cellular cytotoxicity (ADCC) represents an effective immune response for clearing virally infected cells, making ADCC-mediating antibodies promising therapeutic candidates for HIV-1 cure strategies. Broadly neutralizing antibodies (bNAbs) target epitopes present on the native "closed" envelope glycoprotein (Env), while non-neutralizing antibodies (nnAbs) recognize epitopes exposed upon Env-CD4 interaction. Here, we provide evidence that env mRNA is predominantly expressed by productively infected cells that have already downmodulated cell-surface CD4. This indicates that CD4 downmodulation by HIV-1 precedes Env expression, making productively infected cells resistant to ADCC mediated by nnAbs but sensitive to those mediated by bnAbs. These findings offer critical insights for the development of immunotherapy-based strategies aimed at targeting and eliminating productively infected cells in people living with HIV.
Collapse
Affiliation(s)
- Jonathan Richard
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Gérémy Sannier
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Li Zhu
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Hongil Kim
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yaping Sun
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | - Mathieu Dubé
- Centre de Recherche du CHUM, Montréal, Québec, Canada
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Beatrice H. Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Daniel E. Kaufmann
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
- Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
4
|
Mackin SR, Sariol A, Diamond MS. Antibody-mediated control mechanisms of viral infections. Immunol Rev 2024; 328:205-220. [PMID: 39162394 PMCID: PMC11661935 DOI: 10.1111/imr.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Antibodies generated after vaccination or natural pathogen exposure are essential mediators of protection against many infections. Most studies with viruses have focused on antibody neutralization, in which protection is conferred by the fragment antigen binding region (Fab) through targeting of different steps in the viral lifecycle including attachment, internalization, fusion, and egress. Beyond neutralization, the fragment crystallizable (Fc) region of antibodies can integrate innate and adaptive immune responses by engaging complement components and distinct Fc gamma receptors (FcγR) on different host immune cells. In this review, we discuss recent advances in our understanding of antibody neutralization and Fc effector functions, and the assays used to measure them. Additionally, we describe the contexts in which these mechanisms are associated with protection against viruses and highlight how Fc-FcγR interactions can improve the potency of antibody-based therapies.
Collapse
Affiliation(s)
- Samantha R. Mackin
- Department of Medicine, Washington University School of Medicine, MO 63110, USA
- Department of Pathology & Immunology and Center for Genome Sciences, Lab & Genomic Medicine, Washington University School of Medicine, MO 63110, USA
| | - Alan Sariol
- Department of Medicine, Washington University School of Medicine, MO 63110, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, MO 63110, USA
- Department of Pathology & Immunology and Center for Genome Sciences, Lab & Genomic Medicine, Washington University School of Medicine, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
- Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
Riley JS, Luks VL, Berkowitz CL, Dumitru AM, Kus NJ, Dave A, Menon P, De Paepe ME, Jain R, Li L, Dugoff L, Teefey CP, Alameh MG, Zoltick PW, Peranteau WH. Preexisting maternal immunity to AAV but not Cas9 impairs in utero gene editing in mice. J Clin Invest 2024; 134:e179848. [PMID: 38950310 PMCID: PMC11178531 DOI: 10.1172/jci179848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/01/2024] [Indexed: 07/03/2024] Open
Abstract
In utero gene editing (IUGE) is a potential treatment for inherited diseases that cause pathology before or soon after birth. Preexisting immunity to adeno-associated virus (AAV) vectors and Cas9 endonuclease may limit postnatal gene editing. The tolerogenic fetal immune system minimizes a fetal immune barrier to IUGE. However, the ability of maternal immunity to limit fetal gene editing remains a question. We investigated whether preexisting maternal immunity to AAV or Cas9 impairs IUGE. Using a combination of fluorescent reporter mice and a murine model of a metabolic liver disease, we demonstrated that maternal anti-AAV IgG antibodies were efficiently transferred from dam to fetus and impaired IUGE in a maternal titer-dependent fashion. By contrast, maternal cellular immunity was inefficiently transferred to the fetus, and neither maternal cellular nor humoral immunity to Cas9 impaired IUGE. Using human umbilical cord and maternal blood samples collected from mid- to late-gestation pregnancies, we demonstrated that maternal-fetal transmission of anti-AAV IgG was inefficient in midgestation compared with term, suggesting that the maternal immune barrier to clinical IUGE would be less relevant at midgestation. These findings support immunologic advantages for IUGE and inform maternal preprocedural testing protocols and exclusion criteria for future clinical trials.
Collapse
Affiliation(s)
- John S. Riley
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Valerie L. Luks
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cara L. Berkowitz
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ana Maria Dumitru
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nicole J. Kus
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Apeksha Dave
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Pallavi Menon
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Monique E. De Paepe
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Rajan Jain
- Division of Cardiology, Department of Medicine, and
| | - Li Li
- Division of Cardiology, Department of Medicine, and
| | - Lorraine Dugoff
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Mohamad-Gabriel Alameh
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Philip W. Zoltick
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - William H. Peranteau
- Center for Fetal Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Fetal Diagnosis and Treatment and
| |
Collapse
|
6
|
Akiso M, Muema D, Langat R, Naidoo KK, Oino G, Mutua G, Thobakgale C, Ochiel D, Chinyenze K, Anzala O, Mureithi MW. Early antiretroviral therapy and its impact on natural killer cell dynamics in HIV-1 infected men who have sex with men: a cross-sectional pilot study evaluating the impact of early ART initiation on NK cell perturbation in HIV infection. Microbiol Spectr 2024; 12:e0357023. [PMID: 38364104 PMCID: PMC10986508 DOI: 10.1128/spectrum.03570-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/17/2024] [Indexed: 02/18/2024] Open
Abstract
Phenotypic changes and functional impairment of natural killer (NK) cells occur early in HIV-1 infection. Antiretroviral therapy (ART) effectively restores CD4+ T cell counts and suppresses HIV-1 to undetectable levels. The role and efficacy of immediate ART initiation in mitigating NK cell aberrations remain to be elucidated comprehensively. This study hypothesized that HIV-1 infection negatively influences NK cell evolution and that early ART initiation restores these perturbations. Blood samples were collected longitudinally from five acutely HIV-1 infected men who have sex with men in Nairobi, Kenya. Participants were immediately initiated on ART after HIV-1 diagnosis. Blood samples were drawn pre-infection and at sequential bi-weekly post-infection time points. Peripheral blood mononuclear cells were stained with panel NK cells surface markers to assess HIV-induced phenotypic changes by flow cytometry. Some cells were also stimulated overnight with K562 cell line, IL-2, and IL-15 and stained for flow cytometry functionality. HIV-1 infection was associated with significant reductions in the production of IFN-γ (P = 0.0264), expression of CD69 (P = 0.0110), and expression of NK cell inhibitory receptor Siglec7 (P = 0.0418). We observed an increased NK cell degranulation (P = 0.0100) and an upregulated expression of cell exhaustion marker PD-1 (P = 0.0513) at post-infection time points. These changes mainly were restored upon immediate initiation of ART, except for Siglec7 expression, whose reduced expression persisted despite ART. Some HIV-associated changes in NK cells may persist despite the immediate initiation of ART in acute HIV-1 infections. Our findings suggest that understanding NK cell dynamics and their restoration after ART can offer insights into optimizing HIV-1 treatment and potentially slowing disease progression.IMPORTANCENatural killer (NK) cells play a crucial role in controlling of HIV-1 replication and progression to disease. Perturbations of their functionality may therefore result in deleterious disease outcomes. Previous studies have demonstrated reduced NK cell functionality in chronic HIV-1 infection that positively correlated to HIV-1 viral load. This may suggest that control of HIV-1 viremia in acute HIV-1 infection may aid in enhancing NK cell response boosting the inate immunity hence effective control of viral spread and establishment of viral reservoir. Antiretroviral therapy (ART) effectively supresses HIV-1 viremia to undectable levels and restores CD4+ T cell counts. Our study highlights the significant role of early ART initiation in mitigating NK cell disruptions caused by acute HIV-1 infection. Our results suggest that early initiation of ART could have benefits beyond suppressing viral load and restoring CD4+ T cell counts. In addition, it could boost the innate immunity necessary to control disease progression.
Collapse
Affiliation(s)
- Matrona Akiso
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
| | - Daniel Muema
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
- HIV Pathogenesis Programme, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Robert Langat
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota Twin Cities, Twin Cities, Minnesota, USA
| | - Kewreshini K. Naidoo
- HIV Pathogenesis Programme, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Geoffrey Oino
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Gaudensia Mutua
- International AIDS Vaccine Initiative, New York, New York, USA
| | - Christina Thobakgale
- Faculty of Health Sciences, School of Pathology, University of Witwatersrand, Witwatersrand, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Daniel Ochiel
- International AIDS Vaccine Initiative, New York, New York, USA
| | | | - Omu Anzala
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
| | - Marianne W. Mureithi
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
- Department of Medical Microbiology and Immunology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
7
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Yaffe ZA, Ding S, Sung K, Chohan V, Marchitto L, Doepker L, Ralph D, Nduati R, Matsen FA, Finzi A, Overbaugh J. Reconstruction of a polyclonal ADCC antibody repertoire from an HIV-1 non-transmitting mother. iScience 2023; 26:106762. [PMID: 37216090 PMCID: PMC10196594 DOI: 10.1016/j.isci.2023.106762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/24/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Human natural history and vaccine studies support a protective role of antibody dependent cellular cytotoxicity (ADCC) activity against many infectious diseases. One setting where this has consistently been observed is in HIV-1 vertical transmission, where passively acquired ADCC activity in HIV-exposed infants has correlated with reduced acquisition risk and reduced pathogenesis in HIV+ infants. However, the characteristics of HIV-specific antibodies comprising a maternal plasma ADCC response are not well understood. Here, we reconstructed monoclonal antibodies (mAbs) from memory B cells from late pregnancy in mother MG540, who did not transmit HIV to her infant despite several high-risk factors. Twenty mAbs representing 14 clonal families were reconstructed, which mediated ADCC and recognized multiple HIV Envelope epitopes. In experiments using Fc-defective variants, only combinations of several mAbs accounted for the majority of plasma ADCC of MG540 and her infant. We present these mAbs as evidence of a polyclonal repertoire with potent HIV-directed ADCC activity.
Collapse
Affiliation(s)
- Zak A. Yaffe
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Shilei Ding
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Vrasha Chohan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Lorie Marchitto
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Laura Doepker
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Duncan Ralph
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ruth Nduati
- Department of Paediatrics and Child Health, University of Nairobi, Kenyatta National Hospital, Nairobi, Kenya
| | - Frederick A. Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
9
|
Lourenço AL, Chuo SW, Bohn MF, Hann B, Khan S, Yevalekar N, Patel N, Yang T, Xu L, Lv D, Drakas R, Lively S, Craik CS. High-throughput optofluidic screening of single B cells identifies novel cross-reactive antibodies as inhibitors of uPAR with antibody-dependent effector functions. MAbs 2023; 15:2184197. [PMID: 36859773 PMCID: PMC9988344 DOI: 10.1080/19420862.2023.2184197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The urokinase-type plasminogen activator receptor (uPAR) is an essential regulator for cell signaling in tumor cell proliferation, adhesion, and metastasis. The ubiquitous nature of uPAR in many aggressive cancer types makes uPAR an attractive target for immunotherapy. Here, we present a rapid and successful workflow for developing cross-reactive anti-uPAR recombinant antibodies (rAbs) using high-throughput optofluidic screening of single B-cells from human uPAR-immunized mice. A total of 80 human and cynomolgus uPAR cross-reactive plasma cells were identified, and selected mouse VH/VL domains were linked to the trastuzumab (Herceptin®) constant domains for the expression of mouse-human chimeric antibodies. The resulting rAbs were characterized by their tumor-cell recognition, binding activity, and cell adhesion inhibition on triple-negative breast cancer cells. In addition, the rAbs were shown to enact antibody-dependent cellular cytotoxicity (ADCC) in the presence of either human natural killer cells or peripheral blood mononuclear cells, and were evaluated for the potential use of uPAR-targeting antibody-drug conjugates (ADCs). Three lead antibodies (11857, 8163, and 3159) were evaluated for their therapeutic efficacy in vivo and were shown to suppress tumor growth. Finally, the binding epitopes of the lead antibodies were characterized, providing information on their unique binding modes to uPAR. Altogether, the strategy identified unique cross-reactive antibodies with ADCC, ADC, and functional inhibitory effects by targeting cell-surface uPAR, that can be tested in safety studies and serve as potential immunotherapeutics.
Collapse
Affiliation(s)
- André Luiz Lourenço
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Shih-Wei Chuo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Markus F Bohn
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Byron Hann
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Shireen Khan
- ChemPartner, South San Francisco, California, USA
| | | | - Nitin Patel
- ChemPartner, South San Francisco, California, USA
| | - Teddy Yang
- Shanghai ChemPartner Co Ltd, Shanghai, China
| | - Lina Xu
- Shanghai ChemPartner Co Ltd, Shanghai, China
| | - Dandan Lv
- Shanghai ChemPartner Co Ltd, Shanghai, China
| | - Robert Drakas
- ShangPharma Innovation Inc, South San Francisco, California, USA
| | - Sarah Lively
- ChemPartner, South San Francisco, California, USA
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
10
|
Barrows BM, Krebs SJ, Jian N, Zemil M, Slike BM, Dussupt V, Tran U, Mendez-Rivera L, Chang D, O’Sullivan AM, Mann B, Sanders-Buell E, Shubin Z, Creegan M, Paquin-Proulx D, Ehrenberg P, Laurence-Chenine A, Srithanaviboonchai K, Thomas R, Eller MA, Ferrari G, Robb M, Rao V, Tovanabutra S, Polonis VR, Wieczorek L. Fc receptor engagement of HIV-1 Env-specific antibodies in mothers and infants predicts reduced vertical transmission. Front Immunol 2022; 13:1051501. [PMID: 36578481 PMCID: PMC9791209 DOI: 10.3389/fimmu.2022.1051501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Infants acquire maternal antibodies by Fc receptor transcytosis across the placenta during pregnancy. Fc receptors are expressed on immune cells and are important for activation of effector cell functions. Methods In this study, we evaluated Fc receptor engagement and ADCC activity of plasma binding antibodies from human immunodeficiency virus-1 (HIV) -infected mothers and to identify factors that may contribute to protection from HIV vertical transmission. Results HIV-specific binding and Fc receptor engagement of plasma antibodies varied between mothers by transmission status and infants by infection status. Non-transmitting (NT) mothers and HIV-uninfected infants had antibodies with higher neonatal Fc receptor (FcRn) and FcγR engagement, as compared to transmitting (T) mothers and HIV+ infants, respectively. A significant inverse correlation between plasma antibody FcRn and FcγR engagement was observed for T mothers, but not NT mothers. Conversely, a significant direct correlation was observed between plasma antibody FcRn and FcγR engagement for HIV- infants, but not for HIV+ infants. Consequently, we observed significantly higher plasma antibody ADCC potency and breadth in HIV- infants, as compared to HIV+ infants. However, no differences in overall ADCC potency and breadth were observed between mothers. FcRn-engagement of HIV-specific antibodies in both mothers and infants predicted a lack of vertical transmission of HIV. Discussion This study indicates that HIV-uninfected infants acquire HIV-specific antibodies with greater Fc receptor engagement and thus, greater ADCC capacity.
Collapse
Affiliation(s)
- Brittani M. Barrows
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Shelly J. Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Ningbo Jian
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Bonnie M. Slike
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Vincent Dussupt
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Ursula Tran
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Letzibeth Mendez-Rivera
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - David Chang
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Anne Marie O’Sullivan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Brendan Mann
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Zhanna Shubin
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Matt Creegan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Philip Ehrenberg
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Agnes Laurence-Chenine
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | | | - Rasmi Thomas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Michael A. Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Merlin Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Venigalla Rao
- Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Victoria R. Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| |
Collapse
|
11
|
Thomas AS, Coote C, Moreau Y, Isaac JE, Ewing AC, Kourtis AP, Sagar M. Antibody-dependent cellular cytotoxicity (ADCC) responses along with ADCC susceptibility influence HIV-1 mother to child transmission. JCI Insight 2022; 7:159435. [PMID: 35324477 PMCID: PMC9090239 DOI: 10.1172/jci.insight.159435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND HIV-1 vaccine efforts are primarily directed towards eliciting neutralizing antibodies (nAbs). However, vaccine trials and mother to child natural history cohort investigations indicate that antibody-dependent cellular cytotoxicity (ADCC), not nAbs, correlate with prevention. The ADCC characteristics associated with lack of HIV-1 acquisition remain unclear. METHODS Here we examine ADCC and nAb properties in pre-transmission plasma from HIV-1 exposed infants and from the corresponding transmitting and non-transmitting mothers' breast milk and plasma. Breadth and potency (BP) is assessed against a panel of heterologous, non-maternal, variants. ADCC and neutralization sensitivity is estimated for the strains present in the infected mothers. RESULTS Infants that eventually acquire HIV-1 and those that remain uninfected have similar pre-transmission ADCC BP. The viruses circulating in the transmitting and the non-transmitting mothers also have similar ADCC susceptibility. Infants with a combination of higher pre-transmission ADCC BP and exposure to more ADCC susceptible strains are less likely to acquire HIV-1. In contrast, higher pre-existing infant neutralization BP and greater maternal virus neutralization sensitivity does not associate with transmission. Infants have higher ADCC BP closer to birth and in the presence of high plasma IgG relative to IgA levels. Mothers with potent humoral responses against their autologous viruses harbor more ADCC sensitive strains. CONCLUSION ADCC sensitivity of the exposure variants along with preexisting ADCC BP influence mother to child HIV-1 transmission during breastfeeding. Vaccination strategies that enhance ADCC responses are likely not sufficient to prevent HIV-1 transmission because strains present in chronically infected individuals can have low ADCC susceptibility. TRIAL REGISTRATION NCT00164736 for BAN study.
Collapse
Affiliation(s)
- Allison S Thomas
- Department of Microbiology, Boston University School of Medicine, Boston, United States of America
| | - Carolyn Coote
- Department of Medicine, Boston Medical Center, Boston, United States of America
| | - Yvetane Moreau
- Department of Medicine, Boston Medical Center, Boston, United States of America
| | - John E Isaac
- Department of Medicine, Boston Medical Center, Boston, United States of America
| | - Alexander C Ewing
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, United States of America
| | - Athena P Kourtis
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, United States of America
| | - Manish Sagar
- Department of Medicine, Boston Medical Center, Boston, United States of America
| |
Collapse
|
12
|
Tolbert WD, Nguyen DN, Tuyishime M, Crowley AR, Chen Y, Jha S, Goodman D, Bekker V, Mudrak SV, DeVico AL, Lewis GK, Theis JF, Pinter A, Moody MA, Easterhoff D, Wiehe K, Pollara J, Saunders KO, Tomaras GD, Ackerman M, Ferrari G, Pazgier M. Structure and Fc-Effector Function of Rhesusized Variants of Human Anti-HIV-1 IgG1s. Front Immunol 2022; 12:787603. [PMID: 35069563 PMCID: PMC8770954 DOI: 10.3389/fimmu.2021.787603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/09/2021] [Indexed: 01/14/2023] Open
Abstract
Passive transfer of monoclonal antibodies (mAbs) of human origin into Non-Human Primates (NHPs), especially those which function predominantly by a Fc-effector mechanism, requires an a priori preparation step, in which the human mAb is reengineered to an equivalent NHP IgG subclass. This can be achieved by changing both the Fc and Fab sequence while simultaneously maintaining the epitope specificity of the parent antibody. This Ab reengineering process, referred to as rhesusization, can be challenging because the simple grafting of the complementarity determining regions (CDRs) into an NHP IgG subclass may impact the functionality of the mAb. Here we describe the successful rhesusization of a set of human mAbs targeting HIV-1 envelope (Env) epitopes involved in potent Fc-effector function against the virus. This set includes a mAb targeting a linear gp120 V1V2 epitope isolated from a RV144 vaccinee, a gp120 conformational epitope within the Cluster A region isolated from a RV305 vaccinated individual, and a linear gp41 epitope within the immunodominant Cys-loop region commonly targeted by most HIV-1 infected individuals. Structural analyses confirm that the rhesusized variants bind their respective Env antigens with almost identical specificity preserving epitope footprints and most antigen-Fab atomic contacts with constant regions folded as in control RM IgG1s. In addition, functional analyses confirm preservation of the Fc effector function of the rhesusized mAbs including the ability to mediate Antibody Dependent Cell-mediated Cytotoxicity (ADCC) and antibody dependent cellular phagocytosis by monocytes (ADCP) and neutrophils (ADNP) with potencies comparable to native macaque antibodies of similar specificity. While the antibodies chosen here are relevant for the examination of the correlates of protection in HIV-1 vaccine trials, the methods used are generally applicable to antibodies for other purposes.
Collapse
Affiliation(s)
- William D. Tolbert
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Dung N. Nguyen
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Marina Tuyishime
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Andrew R. Crowley
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Yaozong Chen
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Shalini Jha
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Derrick Goodman
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Valerie Bekker
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Sarah V. Mudrak
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Anthony L. DeVico
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - George K. Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - James F. Theis
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Abraham Pinter
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - M. Anthony Moody
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - David Easterhoff
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Kevin Wiehe
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Justin Pollara
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Kevin O. Saunders
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Georgia D. Tomaras
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Margaret Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD, United States,*Correspondence: Marzena Pazgier,
| |
Collapse
|
13
|
Ghasemzadeh M, Ghasemzadeh A, Hosseini E. Exhausted NK cells and cytokine storms in COVID-19: Whether NK cell therapy could be a therapeutic choice. Hum Immunol 2022; 83:86-98. [PMID: 34583856 PMCID: PMC8423992 DOI: 10.1016/j.humimm.2021.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 09/04/2021] [Indexed: 02/08/2023]
Abstract
The global outbreak of coronavirus-2019 (COVID-19) still claims more lives daily around the world due to the lack of a definitive treatment and the rapid tendency of virus to mutate, which even jeopardizes vaccination efficacy. At the forefront battle against SARS-CoV-2, an effective innate response to the infection has a pivotal role in the initial control and treatment of disease. However, SARS-CoV-2 subtly interrupts the equations of immune responses, disrupting the cytolytic antiviral effects of NK cells, while seriously activating infected macrophages and other immune cells to induce an unleashed "cytokine storm", a dangerous and uncontrollable inflammatory response causing life-threatening symptoms in patients. Notably, the NK cell exhaustion with ineffective cytolytic function against the sources of exaggerated cytokine release, acts as an Achilles' heel which exacerbates the severity of COVID-19. Given this, approaches that improve NK cell cytotoxicity may benefit treatment protocols. As a suggestion, adoptive transfer of NK or CAR-NK cells with proper cytotolytic potentials and the lowest capacity of cytokine-release (for example CD56dim NK cells brightly express activating receptors), to severe COVID-19 patients may provide an effective cure especially in cases suffering from cytokine storms. More intriguingly, the ongoing evidence for persistent clonal expansion of NK memory cells characterized by an activating phenotype in response to viral infections, can benefit the future studies on vaccine development and adoptive NK cell therapy in COVID-19. Whether vaccinated volunteers or recovered patients can also be considered as suitable candidates for cell donation could be the subject of future research.
Collapse
Affiliation(s)
- Mehran Ghasemzadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | | | - Ehteramolsadat Hosseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran; Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia; Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Mielke D, Bandawe G, Zheng J, Jones J, Abrahams MR, Bekker V, Ochsenbauer C, Garrett N, Abdool Karim S, Moore PL, Morris L, Montefiori D, Anthony C, Ferrari G, Williamson C. ADCC-mediating non-neutralizing antibodies can exert immune pressure in early HIV-1 infection. PLoS Pathog 2021; 17:e1010046. [PMID: 34788337 PMCID: PMC8598021 DOI: 10.1371/journal.ppat.1010046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022] Open
Abstract
Despite antibody-dependent cellular cytotoxicity (ADCC) responses being implicated in protection from HIV-1 infection, there is limited evidence that they control virus replication. The high mutability of HIV-1 enables the virus to rapidly adapt, and thus evidence of viral escape is a very sensitive approach to demonstrate the importance of this response. To enable us to deconvolute ADCC escape from neutralizing antibody (nAb) escape, we identified individuals soon after infection with detectable ADCC responses, but no nAb responses. We evaluated the kinetics of ADCC and nAb responses, and viral escape, in five recently HIV-1-infected individuals. In one individual we detected viruses that escaped from ADCC responses but were sensitive to nAbs. In the remaining four participants, we did not find evidence of viral evolution exclusively associated with ADCC-mediating non-neutralizing Abs (nnAbs). However, in all individuals escape from nAbs was rapid, occurred at very low titers, and in three of five cases we found evidence of viral escape before detectable nAb responses. These data show that ADCC-mediating nnAbs can drive immune escape in early infection, but that nAbs were far more effective. This suggests that if ADCC responses have a protective role, their impact is limited after systemic virus dissemination.
Collapse
Affiliation(s)
- Dieter Mielke
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
- Institute of Infectious Diseases and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | - Gama Bandawe
- Institute of Infectious Diseases and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
- Malawi University of Science and Technology, Thyolo, Malawi
| | - Jie Zheng
- University of Alabama at Birmingham, Department of Medicine, Birmingham, Alabama, United States of America
| | - Jennifer Jones
- University of Alabama at Birmingham, Department of Medicine, Birmingham, Alabama, United States of America
| | - Melissa-Rose Abrahams
- Institute of Infectious Diseases and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | - Valerie Bekker
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Christina Ochsenbauer
- University of Alabama at Birmingham, Department of Medicine, Birmingham, Alabama, United States of America
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu Natal, Durban, South Africa
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
- Department of Epidemiology, Columbia University, New York, New York, United States of America
| | - Penny L. Moore
- National Institute for Communicable Diseases, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
- University of Witswaterstrand, Johannesburg, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| | - Lynn Morris
- National Institute for Communicable Diseases, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
- University of Witswaterstrand, Johannesburg, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| | - David Montefiori
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Colin Anthony
- Institute of Infectious Diseases and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | - Guido Ferrari
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Carolyn Williamson
- Institute of Infectious Diseases and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
15
|
Thomas AS, Moreau Y, Jiang W, Isaac JE, Ewing A, White LF, Kourtis AP, Sagar M. Pre-existing infant antibody-dependent cellular cytotoxicity associates with reduced HIV-1 acquisition and lower morbidity. Cell Rep Med 2021; 2:100412. [PMID: 34755132 PMCID: PMC8561235 DOI: 10.1016/j.xcrm.2021.100412] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022]
Abstract
In humans, pre-existing anti-HIV-1 neutralizing antibodies (nAbs) have not been associated with decreased HIV-1 acquisition. Here, we evaluate antibody-dependent cellular cytotoxicity (ADCC) present in pre-transmission infant and maternal plasma and breast milk (BM) against the contemporaneous maternal HIV-1 variants. HIV-1-exposed uninfected compared with HIV-1-exposed infected infants have higher ADCC and a combination of ADCC and nAb responses against their corresponding mother's strains. ADCC does not correlate with nAbs, suggesting they are independent activities. The infected infants with high ADCC compared with low ADCC, but not those with higher ADCC plus nAbs, have lower morbidity up to 1 year after birth. A higher IgA to IgG ratio, observed in BM supernatants and in a higher proportion of the infected compared with the uninfected infants, associates with lower ADCC. Against the exposure strains, ADCC, more than nAbs, associates with both lower mother-to-child transmission and decreased post-infection infant morbidity.
Collapse
Affiliation(s)
- Allison S. Thomas
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Yvetane Moreau
- Department of Medicine, Boston Medical Center, Boston, MA, USA
| | - Wenqing Jiang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - John E. Isaac
- Department of Medicine, Boston Medical Center, Boston, MA, USA
| | - Alexander Ewing
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Laura F. White
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Athena P. Kourtis
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Manish Sagar
- Department of Medicine, Boston Medical Center, Boston, MA, USA
| |
Collapse
|
16
|
Humeau J, Le Naour J, Galluzzi L, Kroemer G, Pol JG. Trial watch: intratumoral immunotherapy. Oncoimmunology 2021; 10:1984677. [PMID: 34676147 PMCID: PMC8526014 DOI: 10.1080/2162402x.2021.1984677] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
While chemotherapy and radiotherapy remain the first-line approaches for the management of most unresectable tumors, immunotherapy has emerged in the past two decades as a game-changing treatment, notably with the clinical success of immune checkpoint inhibitors. Immunotherapies aim at (re)activating anticancer immune responses which occur in two main steps: (1) the activation and expansion of tumor-specific T cells following cross-presentation of tumor antigens by specialized myeloid cells (priming phase); and (2) the immunological clearance of malignant cells by these antitumor T lymphocytes (effector phase). Therapeutic vaccines, adjuvants, monoclonal antibodies, cytokines, immunogenic cell death-inducing agents including oncolytic viruses, anthracycline-based chemotherapy and radiotherapy, as well as adoptive cell transfer, all act at different levels of this cascade to (re)instate cancer immunosurveillance. Intratumoral delivery of these immunotherapeutics is being tested in clinical trials to promote superior antitumor immune activity in the context of limited systemic toxicity.
Collapse
Affiliation(s)
- Juliette Humeau
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Julie Le Naour
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Institut Universitaire de France, Paris, France
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Jonathan G. Pol
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Recent work defining Fc-mediated effector functions for both viral control and protection against infection is summarized and considered along with new strategies to drive robust Fc-mediated responses. RECENT FINDINGS In new human and nonhuman primate (NHP) vaccine trials as well as studies of natural infection, Fc-mediated effector responses have sometimes been observed to correlate with decreased risk of infection or with better clinical outcomes, suggesting a potential role for these responses in HIV-1 prevention and therapy. Recent highlights include use of antibody-dependent cellular cytotoxicity-sensitizing CD4-induced mimetic compounds, novel V1V2 immunogens, passive transfer studies, and vaccine regimens that successfully elicited Fc-mediated responses and were reported to decrease risk of infection in challenge studies in NHPs. Lastly, detailed studies of IgG3 forms of HIV-specific antibodies have reported that both neutralizing and Fc-mediated responses can be increased relative to the more prevalent IgG1 subclass. SUMMARY Successful harmonization of neutralizing and Fc-mediated responses may make key contributions to the goal of reducing HIV-1 infection via active and passive vaccination. New studies continue to highlight the importance of Fc-mediated antibody responses as correlates of decreased risk of infection and suggest enhanced phagocytosis is a potential mechanism of reduced risk of infection associated with human IgG3 responses. Results from recent studies may help guide the rational design of therapies and vaccines that aim to specifically leverage antibody effector function.
Collapse
|
18
|
Roles of fragment crystallizable-mediated effector functions in broadly neutralizing antibody activity against HIV. Curr Opin HIV AIDS 2021; 15:316-323. [PMID: 32732552 DOI: 10.1097/coh.0000000000000644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW 'Broadly neutralizing antibodies' (bNAbs), are rare HIV-specific antibodies which exhibit the atypical ability to potently neutralize diverse viral isolates. While efforts to elicit bNAbs through vaccination have yet to succeed, recent years have seen remarkable preclinical and clinical advancements of passive immunization approaches targeting both HIV prevention and cure. We focus here on the potential to build upon this success by moving beyond neutralization to additionally harness the diverse effector functionalities available to antibodies via fragment crystallizable-effector (Fc) functions. RECENT FINDINGS Recent studies have leveraged the ability to engineer bNAb Fc domains to either enhance or abrogate particular effector functions to demonstrate that activities such as antibody-dependent cell-mediated cytotoxicity contribute substantially to in-vivo antiviral activity. Intriguingly, recent studies in both nonhuman primates and in humans have suggested that passive bNAb infusion can lead to durable immunity by enhancing virus-specific T-cell responses through a 'vaccinal effect'. SUMMARY The combination of antibody engineering strategies designed to enhance effector functions, with the broad and potent antigen recognition profile of bNAbs, has the potential to give rise to powerful new therapeutics for HIV. We aim to provide a timely review of recent advances to catalyze this development.
Collapse
|
19
|
Singh L, Bajaj S, Gadewar M, Verma N, Ansari MN, Saeedan AS, Kaithwas G, Singh M. Modulation of Host Immune Response Is an Alternative Strategy to Combat SARS-CoV-2 Pathogenesis. Front Immunol 2021; 12:660632. [PMID: 34305892 PMCID: PMC8296981 DOI: 10.3389/fimmu.2021.660632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/24/2021] [Indexed: 01/04/2023] Open
Abstract
The novel SARS-CoV-2virus that caused the disease COVID-19 is currently a pandemic worldwide. The virus requires an alveolar type-2 pneumocyte in the host to initiate its life cycle. The viral S1 spike protein helps in the attachment of the virus on toACE-2 receptors present on type-2 pneumocytes, and the S2 spike protein helps in the fusion of the viral membrane with the host membrane. Fusion of the SARS-CoV-2virus and host membrane is followed by entry of viral RNA into the host cells which is directly translated into the replicase-transcriptase complex (RTC) following viral RNA and structural protein syntheses. As the virus replicates within type-2 pneumocytes, the host immune system is activated and alveolar macrophages start secreting cytokines and chemokines, acting as an inflammatory mediator, and chemotactic neutrophils, monocytes, natural NK cells, and CD8+ T cells initiate the local phagocytosis of infected cells. It is not the virus that kills COVID-19 patients; instead, the aberrant host immune response kills them. Modifying the response from the host immune system could reduce the high mortality due to SARS-CoV-2 infection. The present study examines the viral life cycle intype-2 pneumocytes and resultant host immune response along with possible therapeutic targets.
Collapse
Affiliation(s)
- Lakhveer Singh
- School of Medical and Allied Sciences, KR Mangalam University, Gurgaon, India
| | - Sakshi Bajaj
- Chaudhary Devi Lal College of Pharmacy, Yamuna Nagar, India
| | - Manoj Gadewar
- School of Medical and Allied Sciences, KR Mangalam University, Gurgaon, India
| | - Nitin Verma
- School of Medical and Allied Sciences, KR Mangalam University, Gurgaon, India
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulaziz S. Saeedan
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam Central University, Silchar, India
| |
Collapse
|
20
|
Chen X, Rostad CA, Anderson LJ, Sun HY, Lapp SA, Stephens K, Hussaini L, Gibson T, Rouphael N, Anderson EJ. The development and kinetics of functional antibody-dependent cell-mediated cytotoxicity (ADCC) to SARS-CoV-2 spike protein. Virology 2021; 559:1-9. [PMID: 33774551 PMCID: PMC7975276 DOI: 10.1016/j.virol.2021.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/12/2021] [Accepted: 03/14/2021] [Indexed: 12/19/2022]
Abstract
Since the COVID-19 pandemic, functional non-neutralizing antibody responses to SARS-CoV-2, including antibody-dependent cell-mediated cytotoxicity (ADCC), are poorly understood. We developed an ADCC assay utilizing a stably transfected, dual-reporter target cell line with inducible expression of a SARS-CoV-2 spike protein on the cell surface. Using this assay, we analyzed 61 convalescent serum samples from adults with PCR-confirmed COVID-19 and 15 samples from healthy uninfected controls. We found that 56 of 61 convalescent serum samples induced ADCC killing of SARS-CoV-2 S target cells, whereas none of the 15 healthy controls had detectable ADCC. We then found a modest decline in ADCC titer over a median 3-month follow-up in 21 patients who had serial samples available for analysis. We confirmed that the antibody-dependent target cell lysis was mediated primarily via the NK FcγRIIIa receptor (CD16). This ADCC assay had high sensitivity and specificity for detecting serologic immune responses to SARS-CoV-2.
Collapse
Affiliation(s)
- Xuemin Chen
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States; Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Christina A Rostad
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States; Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Larry J Anderson
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States; Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - He-Ying Sun
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Stacey A Lapp
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States; Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Kathy Stephens
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Laila Hussaini
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Theda Gibson
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Nadine Rouphael
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Evan J Anderson
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States; Center for Childhood Infections and Vaccines, Children's Healthcare of Atlanta, Atlanta, GA, United States; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
21
|
The immunological impact of adenovirus early genes on vaccine-induced responses in mice and nonhuman primates. J Virol 2021; 95:JVI.02253-20. [PMID: 33441339 PMCID: PMC8092689 DOI: 10.1128/jvi.02253-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adenovirus (Ad) is being explored for use in the prevention and treatment of a variety of infectious diseases and cancers. Ad with a deletion in early region 3 (ΔE3) provokes a stronger immune response than Ad with deletions in early regions 1 and E3 (ΔE1/ΔE3). The ΔE1/ΔE3 Ads are more popular because they can carry a larger transgene and because of the deleted E1 (E1A and E1B), are perceived safer for clinical use. Ad with a deletion in E1B55K (ΔE1B55K) has been in phase III clinical trials for use in cancer therapy in the US and has been approved for use in head and neck tumor therapy in China, demonstrating that Ad containing E1A are safe for clinical use. We have shown previously that ΔE1B55K Ad, even while promoting lower levels of an inserted transgene, promoted similar levels of transgene-specific immune responses as a ΔE3 Ad. Products of the Ad early region 4 (E4) limit the ability of cells to mount an innate immune response. Using this knowledge, we deleted the Ad E4 open reading frames 1-4 (E4orf1-4) from the ΔE1B55K Ad. Here, we show that innate cytokine network genes are elevated in the ΔE4 Ad-infected cells beyond that of ΔE3 Ad-infected cells. Further, in immunized mice the IgG2a subclass was favored as was the IgG1 subclass in immunized nonhuman primates. Thus, Ad E4 impacts immune responses in cells, in immunized mice, and immunized nonhuman primates. These Ad may offer advantages that are beneficial for clinical use.Importance: Adenovirus (Ad) is being explored for use in the prevention and treatment of a variety of infectious diseases and cancers. Here we provide evidence in cells, mice, and nonhuman primates supporting the notion that Ad early gene-products limit specific immune responses. Ad constructed with deletions in early genes and expressing HIV envelope protein was shown to induce greater HIV-specific cellular immune responses and higher titer antibodies compared to the parental Ad with the early genes. In addition to eliciting enhanced immunity, the deleted Ad possesses more space for insertion of additional or larger transgenes needed for targeting other infectious agents or cancers.
Collapse
|
22
|
Yüce M, Sert F, Torabfam M, Parlar A, Gürel B, Çakır N, Dağlıkoca DE, Khan MA, Çapan Y. Fractionated charge variants of biosimilars: A review of separation methods, structural and functional analysis. Anal Chim Acta 2021; 1152:238189. [PMID: 33648647 DOI: 10.1016/j.aca.2020.12.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022]
Abstract
The similarity between originator and biosimilar monoclonal antibody candidates are rigorously assessed based on primary, secondary, tertiary, quaternary structures, and biological functions. Minor differences in such parameters may alter target-binding, potency, efficacy, or half-life of the molecule. The charge heterogeneity analysis is a prerequisite for all biotherapeutics. Monoclonal antibodies are prone to enzymatic or non-enzymatic structural modifications during or after the production processes, leading to the formation of fragments or aggregates, various glycoforms, oxidized, deamidated, and other degraded residues, reduced Fab region binding activity or altered FcR binding activity. Therefore, the charge variant profiles of the monoclonal antibodies must be regularly and thoroughly evaluated. Comparative structural and functional analysis of physically separated or fractioned charged variants of monoclonal antibodies has gained significant attention in the last few years. The fraction-based charge variant analysis has proved very useful for the biosimilar candidates comprising of unexpected charge isoforms. In this report, the key methods for the physical separation of monoclonal antibody charge variants, structural and functional analyses by liquid chromatography-mass spectrometry, and surface plasmon resonance techniques were reviewed.
Collapse
Affiliation(s)
- Meral Yüce
- Sabanci University, SUNUM Nanotechnology Research and Application Center, 34956, Istanbul, Turkey.
| | - Fatma Sert
- Sabanci University, Faculty of Engineering and Natural Sciences, 34956, Istanbul, Turkey; ILKO ARGEM Biotechnology R&D Center, 34906, Pendik, Istanbul, Turkey
| | - Milad Torabfam
- Sabanci University, Faculty of Engineering and Natural Sciences, 34956, Istanbul, Turkey
| | - Ayhan Parlar
- Sabanci University, Faculty of Engineering and Natural Sciences, 34956, Istanbul, Turkey
| | - Büşra Gürel
- Sabanci University, SUNUM Nanotechnology Research and Application Center, 34956, Istanbul, Turkey
| | - Nilüfer Çakır
- Sabanci University, Faculty of Engineering and Natural Sciences, 34956, Istanbul, Turkey; ILKO ARGEM Biotechnology R&D Center, 34906, Pendik, Istanbul, Turkey
| | - Duygu E Dağlıkoca
- ILKO ARGEM Biotechnology R&D Center, 34906, Pendik, Istanbul, Turkey
| | - Mansoor A Khan
- Texas A&M Health Sciences Centre, Irma Lerma Rangel College of Pharmacy, TX, 77843, USA
| | - Yılmaz Çapan
- ILKO ARGEM Biotechnology R&D Center, 34906, Pendik, Istanbul, Turkey; Hacettepe University, Faculty of Pharmacy, 06100, Ankara, Turkey.
| |
Collapse
|
23
|
Tuyishime M, Garrido C, Jha S, Moeser M, Mielke D, LaBranche C, Montefiori D, Haynes BF, Joseph S, Margolis DM, Ferrari G. Improved killing of HIV-infected cells using three neutralizing and non-neutralizing antibodies. J Clin Invest 2020; 130:5157-5170. [PMID: 32584790 PMCID: PMC7524508 DOI: 10.1172/jci135557] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
The correlation of HIV-specific antibody-dependent cellular cytotoxicity (ADCC) responses with protection from and delayed progression of HIV-1 infection provides a rationale to leverage ADCC-mediating antibodies for treatment purposes. We evaluated ADCC mediated by different combinations of 2 to 6 neutralizing and non-neutralizing anti-HIV-1 Envelope (Env) mAbs, using concentrations ≤ 1 μg/mL, to identify combinations effective at targeting latent reservoir HIV-1 viruses from 10 individuals. We found that within 2 hours, combinations of 3 mAbs mediated more than 30% killing of HIV-infected primary CD4+ T cells in the presence of autologous NK cells, with the combination of A32 (C1C2), DH511.2K3 (MPER), and PGT121 (V3) mAbs being the most effective. Increasing the incubation of target and effector cells in the presence of mAb combinations from 2 to 24 hours resulted in increased specific killing of infected cells, even with neutralization-resistant viruses. The same combination eliminated reactivated latently HIV-1-infected cells in an ex vivo quantitative viral outgrowth assay. Therefore, administration of a combination of 3 mAbs should be considered in planning in vivo studies seeking to eliminate persistently HIV-1-infected cells.
Collapse
Affiliation(s)
- Marina Tuyishime
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Shalini Jha
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Matt Moeser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dieter Mielke
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine and
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Sarah Joseph
- UNC HIV Cure Center and
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology and
| | - David M. Margolis
- UNC HIV Cure Center and
- Department of Microbiology and Immunology and
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
24
|
Pierce S, Geanes ES, Bradley T. Targeting Natural Killer Cells for Improved Immunity and Control of the Adaptive Immune Response. Front Cell Infect Microbiol 2020; 10:231. [PMID: 32509600 PMCID: PMC7248265 DOI: 10.3389/fcimb.2020.00231] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are critical for targeting and killing tumor, virus-infected and stressed cells as a member of the innate immune system. Recently, NK cells have also emerged as key regulators of adaptive immunity and have become a prominent therapeutic target for cancer immunotherapy and infection control. NK cells display a diverse array of phenotypes and function. Determining how NK cells develop and are regulated is critical for understanding their role in both innate and adaptive immunity. In this review we discuss current research approaches into NK cell adaptive immunity and how these cells are being harnessed for improving cancer and vaccination outcomes.
Collapse
Affiliation(s)
- Stephen Pierce
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, United States
| | - Eric S Geanes
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, United States
| | - Todd Bradley
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, United States.,Departments of Pediatrics and Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States.,Department of Pediatrics, University of Missouri Kansas City Medical School, Kansas City, MO, United States
| |
Collapse
|