1
|
Allahverdiyeva S, Geyer CE, Veth J, de Vries LM, de Taeye SW, van Gils MJ, den Dunnen J, Chen H. Testosterone and estradiol reduce inflammation of human macrophages induced by anti-SARS-CoV-2 IgG. Eur J Immunol 2024; 54:e2451226. [PMID: 39246165 PMCID: PMC11628899 DOI: 10.1002/eji.202451226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
COVID-19, the disease caused by SARS-CoV-2, particularly causes severe inflammatory disease in elderly, obese, and male patients. Since both aging and obesity are associated with decreased testosterone and estradiol expression, we hypothesized that decreased hormone levels contribute to excessive inflammation in the context of COVID-19. Previously, we and others have shown that hyperinflammation in severe COVID-19 patients is induced by the production of pathogenic anti-spike IgG antibodies that activate alveolar macrophages. Therefore, we developed an in vitro assay in which we stimulated human macrophages with viral stimuli, anti-spike IgG immune complexes, and different sex hormones. Treatment with levels of testosterone reflecting young adults led to a significant reduction in TNF and IFN-γ production by human macrophages. In addition, estradiol significantly attenuated the production of a very broad panel of cytokines, including TNF, IL-1β, IL-6, IL-10, and IFN-γ. Both testosterone and estradiol reduced the expression of Fc gamma receptors IIa and III, the two main receptors responsible for anti-spike IgG-induced inflammation. Combined, these findings indicate that sex hormones reduce the inflammatory response of human alveolar macrophages to specific COVID-19-associated stimuli, thereby providing a potential immunological mechanism for the development of severe COVID-19 in both older male and female patients.
Collapse
Affiliation(s)
- Sona Allahverdiyeva
- Center for Experimental and Molecular MedicineAmsterdam Institute for Infection and ImmunityAmsterdam University Medical CenterAmsterdamthe Netherlands
- Medical Microbiology and Infection PreventionAmsterdam Institute for Infection and ImmunityAmsterdam University Medical CenterAmsterdamthe Netherlands
| | - Chiara E. Geyer
- Center for Experimental and Molecular MedicineAmsterdam Institute for Infection and ImmunityAmsterdam University Medical CenterAmsterdamthe Netherlands
| | - Jennifer Veth
- Center for Experimental and Molecular MedicineAmsterdam Institute for Infection and ImmunityAmsterdam University Medical CenterAmsterdamthe Netherlands
| | - Laura M. de Vries
- Center for Experimental and Molecular MedicineAmsterdam Institute for Infection and ImmunityAmsterdam University Medical CenterAmsterdamthe Netherlands
| | - Steven W. de Taeye
- Medical Microbiology and Infection PreventionAmsterdam Institute for Infection and ImmunityAmsterdam University Medical CenterAmsterdamthe Netherlands
| | - Marit J. van Gils
- Medical Microbiology and Infection PreventionAmsterdam Institute for Infection and ImmunityAmsterdam University Medical CenterAmsterdamthe Netherlands
| | - Jeroen den Dunnen
- Center for Experimental and Molecular MedicineAmsterdam Institute for Infection and ImmunityAmsterdam University Medical CenterAmsterdamthe Netherlands
| | - Hung‐Jen Chen
- Center for Experimental and Molecular MedicineAmsterdam Institute for Infection and ImmunityAmsterdam University Medical CenterAmsterdamthe Netherlands
| |
Collapse
|
2
|
Chen HJ, Sévin DC, Griffith GR, Vappiani J, Booty LM, van Roomen CPAA, Kuiper J, Dunnen JD, de Jonge WJ, Prinjha RK, Mander PK, Grandi P, Wyspianska BS, de Winther MPJ. Integrated metabolic-transcriptomic network identifies immunometabolic modulations in human macrophages. Cell Rep 2024; 43:114741. [PMID: 39276347 DOI: 10.1016/j.celrep.2024.114741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/08/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
Macrophages exhibit diverse phenotypes and respond flexibly to environmental cues through metabolic remodeling. In this study, we present a comprehensive multi-omics dataset integrating intra- and extracellular metabolomes with transcriptomic data to investigate the metabolic impact on human macrophage function. Our analysis establishes a metabolite-gene correlation network that characterizes macrophage activation. We find that the concurrent inhibition of tryptophan catabolism by IDO1 and IL4I1 inhibitors suppresses the macrophage pro-inflammatory response, whereas single inhibition leads to pro-inflammatory activation. We find that a subset of anti-inflammatory macrophages activated by Fc receptor signaling promotes glycolysis, challenging the conventional concept of reduced glycolysis preference in anti-inflammatory macrophages. We demonstrate that cholesterol accumulation suppresses macrophage IFN-γ responses. Our integrated network enables the discovery of immunometabolic features, provides insights into macrophage functional metabolic reprogramming, and offers valuable resources for researchers exploring macrophage immunometabolic characteristics and potential therapeutic targets for immune-related disorders.
Collapse
Affiliation(s)
- Hung-Jen Chen
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | | | - Guillermo R Griffith
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | | | - Lee M Booty
- Immunology Network, Immunology Research Unit, GSK, SG1 2NY Stevenage, UK
| | - Cindy P A A van Roomen
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333 CL Leiden, the Netherlands
| | - Jeroen den Dunnen
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 BK Amsterdam, the Netherlands
| | - Rab K Prinjha
- Immunology Research Unit, GSK Medicines Research Centre, SG1 2NY Stevenage, UK
| | - Palwinder K Mander
- Immunology Research Unit, GSK Medicines Research Centre, SG1 2NY Stevenage, UK
| | | | - Beata S Wyspianska
- Immunology Research Unit, GSK Medicines Research Centre, SG1 2NY Stevenage, UK
| | - Menno P J de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Martins F, Rosspopoff O, Carlevaro-Fita J, Forey R, Offner S, Planet E, Pulver C, Pak H, Huber F, Michaux J, Bassani-Sternberg M, Turelli P, Trono D. A Cluster of Evolutionarily Recent KRAB Zinc Finger Proteins Protects Cancer Cells from Replicative Stress-Induced Inflammation. Cancer Res 2024; 84:808-826. [PMID: 38345497 PMCID: PMC10940857 DOI: 10.1158/0008-5472.can-23-1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/15/2023] [Accepted: 01/19/2024] [Indexed: 03/16/2024]
Abstract
Heterochromatin loss and genetic instability enhance cancer progression by favoring clonal diversity, yet uncontrolled replicative stress leads to mitotic catastrophe and inflammatory responses that promote immune rejection. KRAB domain-containing zinc finger proteins (KZFP) contribute to heterochromatin maintenance at transposable elements (TE). Here, we identified an association of upregulation of a cluster of primate-specific KZFPs with poor prognosis, increased copy-number alterations, and changes in the tumor microenvironment in diffuse large B-cell lymphoma (DLBCL). Depleting two of these KZFPs targeting evolutionarily recent TEs, ZNF587 and ZNF417, impaired the proliferation of cells derived from DLBCL and several other tumor types. ZNF587 and ZNF417 depletion led to heterochromatin redistribution, replicative stress, and cGAS-STING-mediated induction of an interferon/inflammatory response, which enhanced susceptibility to macrophage-mediated phagocytosis and increased surface expression of HLA-I, together with presentation of a neoimmunopeptidome. Thus, cancer cells can exploit KZFPs to dampen TE-originating surveillance mechanisms, which likely facilitates clonal expansion, diversification, and immune evasion. SIGNIFICANCE Upregulation of a cluster of primate-specific KRAB zinc finger proteins in cancer cells prevents replicative stress and inflammation by regulating heterochromatin maintenance, which could facilitate the development of improved biomarkers and treatments.
Collapse
Affiliation(s)
- Filipe Martins
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Clinics of Medical Oncology, Cantonal Hospital of Fribourg (HFR), Fribourg, Switzerland
| | - Olga Rosspopoff
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Joana Carlevaro-Fita
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Romain Forey
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sandra Offner
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Evarist Planet
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cyril Pulver
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - HuiSong Pak
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Florian Huber
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Justine Michaux
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Priscilla Turelli
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
4
|
Geyer CE, Chen HJ, Bye AP, Manz XD, Guerra D, Caniels TG, Bijl TP, Griffith GR, Hoepel W, de Taeye SW, Veth J, Vlaar AP, Vidarsson G, Bogaard HJ, Aman J, Gibbins JM, van Gils MJ, de Winther MP, den Dunnen J. Identification of new drugs to counteract anti-spike IgG-induced hyperinflammation in severe COVID-19. Life Sci Alliance 2023; 6:e202302106. [PMID: 37699657 PMCID: PMC10497933 DOI: 10.26508/lsa.202302106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Previously, we and others have shown that SARS-CoV-2 spike-specific IgG antibodies play a major role in disease severity in COVID-19 by triggering macrophage hyperactivation, disrupting endothelial barrier integrity, and inducing thrombus formation. This hyperinflammation is dependent on high levels of anti-spike IgG with aberrant Fc tail glycosylation, leading to Fcγ receptor hyperactivation. For development of immune-regulatory therapeutics, drug specificity is crucial to counteract excessive inflammation whereas simultaneously minimizing the inhibition of antiviral immunity. We here developed an in vitro activation assay to screen for small molecule drugs that specifically counteract antibody-induced pathology. We identified that anti-spike-induced inflammation is specifically blocked by small molecule inhibitors against SYK and PI3K. We identified SYK inhibitor entospletinib as the most promising candidate drug, which also counteracted anti-spike-induced endothelial dysfunction and thrombus formation. Moreover, entospletinib blocked inflammation by different SARS-CoV-2 variants of concern. Combined, these data identify entospletinib as a promising treatment for severe COVID-19.
Collapse
Affiliation(s)
- Chiara E Geyer
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Hung-Jen Chen
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Alexander P Bye
- Institute for Cardiovascular and Metabolic Research, and School of Biological Sciences, University of Reading, Reading, UK
- Molecular and Clinical Sciences Research Institute, St George's University, London, UK
- School of Pharmacy, University of Reading, Reading, UK
| | - Xue D Manz
- Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Denise Guerra
- Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Tom G Caniels
- Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Tom Pl Bijl
- Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Guillermo R Griffith
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Willianne Hoepel
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Steven W de Taeye
- Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jennifer Veth
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Alexander Pj Vlaar
- Department of Intensive Care Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Harm Jan Bogaard
- Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jurjan Aman
- Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, and School of Biological Sciences, University of Reading, Reading, UK
| | - Marit J van Gils
- Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Menno Pj de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jeroen den Dunnen
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| |
Collapse
|
5
|
Nutma E, Fancy N, Weinert M, Tsartsalis S, Marzin MC, Muirhead RCJ, Falk I, Breur M, de Bruin J, Hollaus D, Pieterman R, Anink J, Story D, Chandran S, Tang J, Trolese MC, Saito T, Saido TC, Wiltshire KH, Beltran-Lobo P, Phillips A, Antel J, Healy L, Dorion MF, Galloway DA, Benoit RY, Amossé Q, Ceyzériat K, Badina AM, Kövari E, Bendotti C, Aronica E, Radulescu CI, Wong JH, Barron AM, Smith AM, Barnes SJ, Hampton DW, van der Valk P, Jacobson S, Howell OW, Baker D, Kipp M, Kaddatz H, Tournier BB, Millet P, Matthews PM, Moore CS, Amor S, Owen DR. Translocator protein is a marker of activated microglia in rodent models but not human neurodegenerative diseases. Nat Commun 2023; 14:5247. [PMID: 37640701 PMCID: PMC10462763 DOI: 10.1038/s41467-023-40937-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Microglial activation plays central roles in neuroinflammatory and neurodegenerative diseases. Positron emission tomography (PET) targeting 18 kDa Translocator Protein (TSPO) is widely used for localising inflammation in vivo, but its quantitative interpretation remains uncertain. We show that TSPO expression increases in activated microglia in mouse brain disease models but does not change in a non-human primate disease model or in common neurodegenerative and neuroinflammatory human diseases. We describe genetic divergence in the TSPO gene promoter, consistent with the hypothesis that the increase in TSPO expression in activated myeloid cells depends on the transcription factor AP1 and is unique to a subset of rodent species within the Muroidea superfamily. Finally, we identify LCP2 and TFEC as potential markers of microglial activation in humans. These data emphasise that TSPO expression in human myeloid cells is related to different phenomena than in mice, and that TSPO-PET signals in humans reflect the density of inflammatory cells rather than activation state.
Collapse
Affiliation(s)
- Erik Nutma
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
- Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Nurun Fancy
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Maria Weinert
- Department of Brain Sciences, Imperial College London, London, UK
| | - Stergios Tsartsalis
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Manuel C Marzin
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Robert C J Muirhead
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Irene Falk
- Viral Immunology Section, NIH, Bethesda, MD, USA
- Flow and Imaging Cytometry Core Facility, NIH, Bethesda, MD, USA
| | - Marjolein Breur
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Joy de Bruin
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - David Hollaus
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Robin Pieterman
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Jasper Anink
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - David Story
- UK Dementia Research Institute at Edinburgh, Edinburgh, UK
| | | | - Jiabin Tang
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Maria C Trolese
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan
| | - Takaomi C Saido
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, Nagoya, Japan
| | | | - Paula Beltran-Lobo
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alexandra Phillips
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Jack Antel
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Luke Healy
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Marie-France Dorion
- Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Canada
| | - Dylan A Galloway
- Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Canada
| | - Rochelle Y Benoit
- Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Canada
| | - Quentin Amossé
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Kelly Ceyzériat
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | | | - Enikö Kövari
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Caterina Bendotti
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Carola I Radulescu
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Jia Hui Wong
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Anna M Barron
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Amy M Smith
- UK Dementia Research Institute at Imperial College London, London, UK
- Centre for Brain Research and Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Samuel J Barnes
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | | | - Paul van der Valk
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | | | - Owain W Howell
- Institute of Life Science (ILS), Swansea University Medical School, Swansea, UK
| | - David Baker
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057, Rostock, Germany
| | - Hannes Kaddatz
- Institute of Anatomy, Rostock University Medical Center, 18057, Rostock, Germany
| | | | - Philippe Millet
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Division of Adult Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Craig S Moore
- Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Canada
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands.
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK.
- Institute of Anatomy, Rostock University Medical Center, 18057, Rostock, Germany.
| | - David R Owen
- Department of Brain Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute at Imperial College London, London, UK.
| |
Collapse
|
6
|
Tedjawirja VN, Mieremet A, Rombouts KB, Yap C, Neele AE, Northoff BH, Chen HJ, Vos M, Klaver D, Yeung KK, Balm R, de Waard V. Exploring the expression and potential function of follicle stimulating hormone receptor in extragonadal cells related to abdominal aortic aneurysm. PLoS One 2023; 18:e0285607. [PMID: 37228156 DOI: 10.1371/journal.pone.0285607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Follicle stimulating hormone (FSH) is identified to play a role in postmenopausal disease and hypothesized to affect abdominal aortic aneurysm (AAA) onset/progression in postmenopausal women. We aimed to detect FSHR gene expression in AAA tissue and cell types involved in AAA formation. METHODS FSH stimulation of human umbilical cord endothelial cells (HUVECs), smooth muscle cells (HUCs) and PMA-differentiated macrophages to assess gene expression of FSHR and various markers. Human macrophages activated with various stimuli were assessed for FSHR gene expression. AAA dataset, AAA tissue samples and AAA-derived smooth muscle cells (SMC) obtained from elderly female donors were assessed for FSHR gene expression. AAA-SMCs were stimulated with FSH to assess its effect on gene expression. Lastly, oxidized low-density-lipoprotein (ox-LDL) uptake and abundance of cell surface protein markers were assessed by flow cytometry after FSH stimulation of human monocytes. RESULTS FSH stimulation showed similar levels of gene expression in HUVECs and HUCs. Only ACTA2 was downregulated in HUCs. In PMA-differentiated macrophages, gene expression of inflammation markers was unchanged after FSH stimulation. FSHR gene expression was found to be low in the AAA datasets. Female AAA-SMCs show occasional FSHR gene expression at a very low level, yet stimulation with FSH did not affect gene expression of SMC- or inflammation markers. FSH stimulation did not impact ox-LDL uptake or alter cell surface protein expression in monocytes. While FSHR gene expression was detected in human testis tissue, it was below quantification level in all other investigated cell types, even upon activation of macrophages with various stimuli. CONCLUSION Despite previous reports, we did not detect FSHR gene expression in various extragonadal cell types, except in occasional female AAA-SMCs. No clear effect on cell activation was observed upon FSH stimulation in any cell type. Our data suggest that a direct effect of FSH in AAA-related extragonadal cells is unlikely to influence AAA.
Collapse
Affiliation(s)
- V N Tedjawirja
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - A Mieremet
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - K B Rombouts
- Department of Surgery and Physiology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - C Yap
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - A E Neele
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - B H Northoff
- Institute of Laboratory Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - H J Chen
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - M Vos
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - D Klaver
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - K K Yeung
- Department of Surgery and Physiology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - R Balm
- Department of Surgery, Amsterdam UMC, Location University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - V de Waard
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Kraus SE, Lee E. Engineering approaches to investigate the roles of lymphatics vessels in rheumatoid arthritis. Microcirculation 2023; 30:e12769. [PMID: 35611452 PMCID: PMC9684355 DOI: 10.1111/micc.12769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022]
Abstract
Rheumatoid arthritis (RA) is one of the most common chronic inflammatory joint disorders. While our understanding of the autoimmune processes that lead to synovial degradation has improved, a majority of patients are still resistant to current treatments and require new therapeutics. An understudied and promising area for therapy involves the roles of lymphatic vessels (LVs) in RA progression, which has been observed to have a significant effect on mediating chronic inflammation. RA disease progression has been shown to correlate with dramatic changes in LV structure and interstitial fluid drainage, manifesting in the retention of distinct immune cell phenotypes within the synovium. Advances in dynamic imaging technologies have demonstrated that LVs in RA undergo an initial expansion phase of increased LVs and abnormal contractions followed by a collapsed phase of reduced lymphatic function and immune cell clearance in vivo. However, current animal models of RA fail to decouple biological and biophysical factors that might be responsible for this lymphatic dysfunction in RA, and a few attempted in vitro models of the synovium in RA have not yet included the contributions from the LVs. Various methods of replicating LVs in vitro have been developed to study lymphatic biology, but these have yet not been integrated into the RA context. This review discusses the roles of LVs in RA and the current engineering approaches to improve our understanding of lymphatic pathophysiology in RA.
Collapse
Affiliation(s)
- Samantha E. Kraus
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Ruder AV, Temmerman L, van Dommelen JM, Nagenborg J, Lu C, Sluimer JC, Goossens P, Biessen EA. Culture density influences the functional phenotype of human macrophages. Front Immunol 2023; 14:1078591. [PMID: 36969194 PMCID: PMC10036771 DOI: 10.3389/fimmu.2023.1078591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Macrophages (MΦ) are commonly cultured in vitro as a model of their biology and functions in tissues. Recent evidence suggests MΦ to engage in quorum sensing, adapting their functions in response to cues about the proximity of neighboring cells. However, culture density is frequently overlooked in the standardization of culture protocols as well as the interpretation of results obtained in vitro. In this study, we investigated how the functional phenotype of MΦ was influenced by culture density. We assessed 10 core functions of human MΦ derived from the THP-1 cell line as well as primary monocyte-derived MΦ. THP-1 MΦ showed increasing phagocytic activity and proliferation with increasing density but decreasing lipid uptake, inflammasome activation, mitochondrial stress, and secretion of cytokines IL-10, IL-6, IL-1β, IL-8, and TNF-α. For THP-1 MΦ, the functional profile displayed a consistent trajectory with increasing density when exceeding a threshold (of 0.2 x 103 cells/mm2), as visualized by principal component analysis. Culture density was also found to affect monocyte-derived MΦ, with functional implications that were distinct from those observed in THP-1 MΦ, suggesting particular relevance of density effects for cell lines. With increasing density, monocyte-derived MΦ exhibited progressively increased phagocytosis, increased inflammasome activation, and decreased mitochondrial stress, whereas lipid uptake was unaffected. These different findings in THP-1 MΦ and monocyte-derived MΦ could be attributed to the colony-forming growth pattern of THP-1 MΦ. At the lowest density, the distance to the closest neighboring cells showed greater influence on THP-1 MΦ than monocyte-derived MΦ. In addition, functional differences between monocyte-derived MΦ from different donors could at least partly be attributed to differences in culture density. Our findings demonstrate the importance of culture density for MΦ function and demand for awareness of culture density when conducting and interpreting in vitro experiments.
Collapse
Affiliation(s)
- Adele V. Ruder
- Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University Medical Center (UMC), Maastricht, Netherlands
| | - Lieve Temmerman
- Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University Medical Center (UMC), Maastricht, Netherlands
| | - Joep M.A. van Dommelen
- Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University Medical Center (UMC), Maastricht, Netherlands
| | - Jan Nagenborg
- Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University Medical Center (UMC), Maastricht, Netherlands
| | - Chang Lu
- Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University Medical Center (UMC), Maastricht, Netherlands
| | - Judith C. Sluimer
- Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University Medical Center (UMC), Maastricht, Netherlands
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Pieter Goossens
- Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University Medical Center (UMC), Maastricht, Netherlands
| | - Erik A.L. Biessen
- Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University Medical Center (UMC), Maastricht, Netherlands
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
- *Correspondence: Erik A.L. Biessen,
| |
Collapse
|
9
|
Wang S, Zhou Y, Huang J, Li H, Pang H, Niu D, Li G, Wang F, Zhou Z, Liu Z. Advances in experimental models of rheumatoid arthritis. Eur J Immunol 2023; 53:e2249962. [PMID: 36330559 DOI: 10.1002/eji.202249962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/16/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by persistent articular inflammation and joint damage. RA was first described over 200 years ago; however, its etiology and pathophysiology remain insufficiently understood. The current treatment of RA is mainly empirical or based on the current understanding of etiology with limited efficacy and/or substantial side effects. Thus, the development of safer and more potent therapeutics, validated and optimized in experimental models, is urgently required. To improve the transition from bench to bedside, researchers must carefully select the appropriate experimental models as well as draw the right conclusions. Here, we summarize the establishment, pathological features, potential mechanisms, advantages, and limitations of the currently available RA models. The aim of the review is to help researchers better understand available RA models; discuss future trends in RA model development, which can help highlight new translational and human-based avenues in RA research.
Collapse
Affiliation(s)
- Siwei Wang
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China.,Honghu Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangtze University, Honghu, Hubei Province, China
| | - Yanhua Zhou
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China.,Honghu Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangtze University, Honghu, Hubei Province, China
| | - Jiangrong Huang
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Huilin Li
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Huidan Pang
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Dandan Niu
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Guangyao Li
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Fei Wang
- Department of Experiment and Training, Hubei College of Chinese Medicine, Hubei Province, China
| | - Zushan Zhou
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China.,Honghu Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangtze University, Honghu, Hubei Province, China
| | - Zhenzhen Liu
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| |
Collapse
|
10
|
Van Coillie J, Pongracz T, Rahmöller J, Chen HJ, Geyer CE, van Vught LA, Buhre JS, Šuštić T, van Osch TLJ, Steenhuis M, Hoepel W, Wang W, Lixenfeld AS, Nouta J, Keijzer S, Linty F, Visser R, Larsen MD, Martin EL, Künsting I, Lehrian S, von Kopylow V, Kern C, Lunding HB, de Winther M, van Mourik N, Rispens T, Graf T, Slim MA, Minnaar RP, Bomers MK, Sikkens JJ, Vlaar AP, van der Schoot CE, den Dunnen J, Wuhrer M, Ehlers M, Vidarsson G. The BNT162b2 mRNA SARS-CoV-2 vaccine induces transient afucosylated IgG1 in naive but not in antigen-experienced vaccinees. EBioMedicine 2022; 87:104408. [PMID: 36529104 PMCID: PMC9756879 DOI: 10.1016/j.ebiom.2022.104408] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Afucosylated IgG1 responses have only been found against membrane-embedded epitopes, including anti-S in SARS-CoV-2 infections. These responses, intrinsically protective through enhanced FcγRIIIa binding, can also trigger exacerbated pro-inflammatory responses in severe COVID-19. We investigated if the BNT162b2 SARS-CoV-2 mRNA also induced afucosylated IgG responses. METHODS Blood from vaccinees during the first vaccination wave was collected. Liquid chromatography-Mass spectrometry (LC-MS) was used to study anti-S IgG1 Fc glycoprofiles. Responsiveness of alveolar-like macrophages to produce proinflammatory cytokines in presence of sera and antigen was tested. Antigen-specific B cells were characterized and glycosyltransferase levels were investigated by Fluorescence-Activated Cell Sorting (FACS). FINDINGS Initial transient afucosylated anti-S IgG1 responses were found in naive vaccinees, but not in antigen-experienced ones. All vaccinees had increased galactosylated and sialylated anti-S IgG1. Both naive and antigen-experienced vaccinees showed relatively low macrophage activation potential, as expected, due to the low antibody levels for naive individuals with afucosylated IgG1, and low afucosylation levels for antigen-experienced individuals with high levels of anti-S. Afucosylation levels correlated with FUT8 expression in antigen-specific plasma cells in naive individuals. Interestingly, low fucosylation of anti-S IgG1 upon seroconversion correlated with high anti-S IgG levels after the second dose. INTERPRETATION Here, we show that BNT162b2 mRNA vaccination induces transient afucosylated anti-S IgG1 responses in naive individuals. This observation warrants further studies to elucidate the clinical context in which potent afucosylated responses would be preferred. FUNDING LSBR1721, 1908; ZonMW10430012010021, 09150161910033, 10430012010008; DFG398859914, 400912066, 390884018; PMI; DOI4-Nr. 3; H2020-MSCA-ITN 721815.
Collapse
Affiliation(s)
- Julie Van Coillie
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Tamas Pongracz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Johann Rahmöller
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany,Department of Anesthesiology and Intensive Care, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Hung-Jen Chen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Chiara Elisabeth Geyer
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - Lonneke A. van Vught
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands,Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Jana Sophia Buhre
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Tonći Šuštić
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Thijs Luc Junior van Osch
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Maurice Steenhuis
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands,Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Willianne Hoepel
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands,Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Amsterdam Rheumatology and Immunology Center, Amsterdam, the Netherlands
| | - Wenjun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Anne Sophie Lixenfeld
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sofie Keijzer
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands,Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Federica Linty
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Remco Visser
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Mads Delbo Larsen
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Emily Lara Martin
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Inga Künsting
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Selina Lehrian
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Vera von Kopylow
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Carsten Kern
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Hanna Bele Lunding
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Menno de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Niels van Mourik
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands,Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Theo Rispens
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands,Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Tobias Graf
- Medical Department 2, University Heart Center of Schleswig-Holstein, Lübeck, Germany
| | - Marleen Adriana Slim
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands,Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Marije Kristianne Bomers
- Department of Internal Medicine, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Jonne Jochum Sikkens
- Department of Internal Medicine, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Alexander P.J. Vlaar
- Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - C. Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Jeroen den Dunnen
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands,Corresponding author.
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany,Airway Research Center North, University of Lübeck, German Center for Lung Research (DZL), Lübeck, Germany,Corresponding author.
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands,Corresponding author.
| | | | | |
Collapse
|
11
|
Soe MTM, Spiller KL, Noh M. Dielectrophoretic characterization of macrophage phenotypes. Electrophoresis 2022; 43:2440-2452. [PMID: 36050869 DOI: 10.1002/elps.202200046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/31/2022] [Accepted: 08/10/2022] [Indexed: 12/14/2022]
Abstract
Different macrophage phenotypes play important roles in diverse biological processes and diseases. In this study, we have characterized the dielectrophoretic responses of human monocytes and macrophage phenotypes: nonactivated (M0), pro-inflammatory (M1), and pro-healing (M2a). Dielectrophoretic responses of cells change as a function of frequency of the applied electric field. We measured the crossover frequency at which cells transition from negative to positive dielectrophoresis (DEP) or vice versa using interdigitated electrodes. For these characterization experiments, we also developed a new low-conductivity media formulation that retained 100% of the initial viability for 1 h. Human THP1 monocytes showed a distinguishable DEP response from mature macrophages. M1 macrophages also showed a distinct DEP response compared to M0 and M2a macrophages. No clear distinction could be drawn between M0 and M2a. The median values of the crossover frequencies of monocytes, M0, M1, and M2a were 38, 21, 11, and 23 kHz, respectively. Membrane capacitances of these cells were calculated consequently, and the values were 0.0111, 0.0128, 0.0244, and 0.0117 F/m2 for monocytes, M0, M1, and M2a, respectively. These results show how bioelectric properties are influenced by changes in macrophage phenotype.
Collapse
Affiliation(s)
- Mi Thant Mon Soe
- Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania, USA
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Moses Noh
- Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Mumby S, Adcock IM. Recent evidence from omic analysis for redox signalling and mitochondrial oxidative stress in COPD. J Inflamm (Lond) 2022; 19:10. [PMID: 35820851 PMCID: PMC9277949 DOI: 10.1186/s12950-022-00308-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
COPD is driven by exogenous and endogenous oxidative stress derived from inhaled cigarette smoke, air pollution and reactive oxygen species from dysregulated mitochondria in activated inflammatory cells within the airway and lung. This is compounded by the loss in antioxidant defences including FOXO and NRF2 and other antioxidant transcription factors together with various key enzymes that attenuate oxidant effects. Oxidative stress enhances inflammation; airway remodelling including fibrosis and emphysema; post-translational protein modifications leading to autoantibody generation; DNA damage and cellular senescence. Recent studies using various omics technologies in the airways, lungs and blood of COPD patients has emphasised the importance of oxidative stress, particularly that derived from dysfunctional mitochondria in COPD and its role in immunity, inflammation, mucosal barrier function and infection. Therapeutic interventions targeting oxidative stress should overcome the deleterious pathologic effects of COPD if targeted to the lung. We require novel, more efficacious antioxidant COPD treatments among which mitochondria-targeted antioxidants and Nrf2 activators are promising.
Collapse
|
13
|
Barreto-Duran E, Szczepański A, Gałuszka-Bulaga A, Surmiak M, Siedlar M, Sanak M, Rajfur Z, Milewska A, Lenart M, Pyrć K. The interplay between the airway epithelium and tissue macrophages during the SARS-CoV-2 infection. Front Immunol 2022; 13:991991. [PMID: 36275746 PMCID: PMC9582145 DOI: 10.3389/fimmu.2022.991991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
The first line of antiviral immune response in the lungs is secured by the innate immunity. Several cell types take part in this process, but airway macrophages (AMs) are among the most relevant ones. The AMs can phagocyte infected cells and activate the immune response through antigen presentation and cytokine release. However, the precise role of macrophages in the course of SARS-CoV-2 infection is still largely unknown. In this study, we aimed to evaluate the role of AMs during the SARS-CoV-2 infection using a co-culture of fully differentiated primary human airway epithelium (HAE) and human monocyte-derived macrophages (hMDMs). Our results confirmed abortive SARS-CoV-2 infection in hMDMs, and their inability to transfer the virus to epithelial cells. However, we demonstrated a striking delay in viral replication in the HAEs when hMDMs were added apically after the epithelial infection, but not when added before the inoculation or on the basolateral side of the culture. Moreover, SARS-CoV-2 inhibition by hMDMs seems to be driven by cell-to-cell contact and not by cytokine production. Together, our results show, for the first time, that the recruitment of macrophages may play an important role during the SARS-CoV-2 infection, limiting the virus replication and its spread.
Collapse
Affiliation(s)
- Emilia Barreto-Duran
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Artur Szczepański
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Adrianna Gałuszka-Bulaga
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Zenon Rajfur
- Astronomy and Applied Computer Sciences, Institute of Physics, Jagiellonian University, Krakow, Poland
| | - Aleksandra Milewska
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marzena Lenart
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- *Correspondence: Krzysztof Pyrć, ; Marzena Lenart,
| | - Krzysztof Pyrć
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- *Correspondence: Krzysztof Pyrć, ; Marzena Lenart,
| |
Collapse
|
14
|
Hu X, Ni S, Zhao K, Qian J, Duan Y. Bioinformatics-Led Discovery of Osteoarthritis Biomarkers and Inflammatory Infiltrates. Front Immunol 2022; 13:871008. [PMID: 35734177 PMCID: PMC9207185 DOI: 10.3389/fimmu.2022.871008] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/12/2022] [Indexed: 12/27/2022] Open
Abstract
The molecular mechanisms of osteoarthritis, the most common chronic disease, remain unexplained. This study aimed to use bioinformatic methods to identify the key biomarkers and immune infiltration in osteoarthritis. Gene expression profiles (GSE55235, GSE55457, GSE77298, and GSE82107) were selected from the Gene Expression Omnibus database. A protein-protein interaction network was created, and functional enrichment analysis and genomic enrichment analysis were performed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) databases. Immune cell infiltration between osteoarthritic tissues and control tissues was analyzed using the CIBERSORT method. Identify immune patterns using the ConsensusClusterPlus package in R software using a consistent clustering approach. Molecular biological investigations were performed to discover the important genes in cartilage cells. A total of 105 differentially expressed genes were identified. Differentially expressed genes were enriched in immunological response, chemokine-mediated signaling pathway, and inflammatory response revealed by the analysis of GO and KEGG databases. Two distinct immune patterns (ClusterA and ClusterB) were identified using the ConsensusClusterPlus. Cluster A patients had significantly lower resting dendritic cells, M2 macrophages, resting mast cells, activated natural killer cells and regulatory T cells than Cluster B patients. The expression levels of TCA1, TLR7, MMP9, CXCL10, CXCL13, HLA-DRA, and ADIPOQSPP1 were significantly higher in the IL-1β-induced group than in the osteoarthritis group in an in vitro qPCR experiment. Explaining the differences in immune infiltration between osteoarthritic tissues and normal tissues will contribute to the understanding of the development of osteoarthritis.
Collapse
Affiliation(s)
- Xinyue Hu
- Department of Clinical Laboratory, Kunming First People’s Hospital, Kunming Medical University, Kunming, China
| | - Songjia Ni
- Department of Orthopedic Trauma, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Zhao
- Neurosurgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing Qian
- Department of Clinical Laboratory, Kunming First People’s Hospital, Kunming Medical University, Kunming, China
| | - Yang Duan
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yang Duan,
| |
Collapse
|
15
|
Willemsen L, Chen HJ, van Roomen CPAA, Griffith GR, Siebeler R, Neele AE, Kroon J, Hoeksema MA, de Winther MPJ. Monocyte and Macrophage Lipid Accumulation Results in Down-Regulated Type-I Interferon Responses. Front Cardiovasc Med 2022; 9:829877. [PMID: 35224060 PMCID: PMC8869252 DOI: 10.3389/fcvm.2022.829877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/18/2022] [Indexed: 01/27/2023] Open
Abstract
Macrophages are critical components of atherosclerotic lesions and their pro- and anti-inflammatory responses influence atherogenesis. Type-I interferons (IFNs) are cytokines that play an essential role in antiviral responses and inflammatory activation and have been shown to promote atherosclerosis. Although the impact of type-I IFNs on macrophage foam cell formation is well-documented, the effect of lipid accumulation in monocytes and macrophages on type-I IFN responses remains unknown. Here we examined IFN stimulated (ISG) and non-ISG inflammatory gene expression in mouse and human macrophages that were loaded with acetylated LDL (acLDL), as a model for foam cell formation. We found that acLDL loading in mouse and human macrophages specifically suppressed expression of ISGs and IFN-β secretion, but not other pro-inflammatory genes. The down regulation of ISGs could be rescued by exogenous IFN-β supplementation. Activation of the cholesterol-sensing nuclear liver X receptor (LXR) recapitulated the cholesterol-initiated type-I IFN suppression. Additional analyses of murine in vitro and in vivo generated foam cells confirmed the suppressed IFN signaling pathways and suggest that this phenotype is mediated via down regulation of interferon regulatory factor binding at gene promoters. Finally, RNA-seq analysis of monocytes of familial hypercholesterolemia (FH) patients also showed type-I IFN suppression which was restored by lipid-lowering therapy and not present in monocytes of healthy donors. Taken together, we define type-I IFN suppression as an athero-protective characteristic of foamy macrophages. These data provide new insights into the mechanisms that control inflammatory responses in hyperlipidaemic settings and can support future therapeutic approaches focusing on reprogramming of macrophages to reduce atherosclerotic plaque progression and improve stability.
Collapse
Affiliation(s)
- Lisa Willemsen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Hung-Jen Chen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Cindy P. A. A. van Roomen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Guillermo R. Griffith
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Ricky Siebeler
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Annette E. Neele
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Jeffrey Kroon
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Marten A. Hoeksema
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Menno P. J. de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands,*Correspondence: Menno P. J. de Winther
| |
Collapse
|
16
|
Tapmeier TT, Howell JH, Zhao L, Papiez BW, Schnabel JA, Muschel RJ, Gal A. Evolving polarisation of infiltrating and alveolar macrophages in the lung during metastatic progression of melanoma suggests CCR1 as a therapeutic target. Oncogene 2022; 41:5032-5045. [PMID: 36241867 PMCID: PMC9652148 DOI: 10.1038/s41388-022-02488-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 12/30/2022]
Abstract
Metastatic tumour progression is facilitated by tumour associated macrophages (TAMs) that enforce pro-tumour mechanisms and suppress immunity. In pulmonary metastases, it is unclear whether TAMs comprise tissue resident or infiltrating, recruited macrophages; and the different expression patterns of these TAMs are not well established. Using the mouse melanoma B16F10 model of experimental pulmonary metastasis, we show that infiltrating macrophages (IM) change their gene expression from an early pro-inflammatory to a later tumour promoting profile as the lesions grow. In contrast, resident alveolar macrophages (AM) maintain expression of crucial pro-inflammatory/anti-tumour genes with time. During metastatic growth, the pool of macrophages, which initially contains mainly alveolar macrophages, increasingly consists of infiltrating macrophages potentially facilitating metastasis progression. Blocking chemokine receptor mediated macrophage infiltration in the lung revealed a prominent role for CCR2 in Ly6C+ pro-inflammatory monocyte/macrophage recruitment during metastasis progression, while inhibition of CCR2 signalling led to increased metastatic colony burden. CCR1 blockade, in contrast, suppressed late phase pro-tumour MR+Ly6C- monocyte/macrophage infiltration accompanied by expansion of the alveolar macrophage compartment and accumulation of NK cells, leading to reduced metastatic burden. These data indicate that IM has greater plasticity and higher phenotypic responsiveness to tumour challenge than AM. A considerable difference is also confirmed between CCR1 and CCR2 with regard to the recruited IM subsets, with CCR1 presenting a potential therapeutic target in pulmonary metastasis from melanoma.
Collapse
Affiliation(s)
- Thomas T. Tapmeier
- grid.4991.50000 0004 1936 8948CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ UK ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168 Australia ,grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168 Australia
| | - Jake H. Howell
- grid.12477.370000000121073784School of Applied Sciences, University of Brighton, Brighton, BN2 4GJ UK
| | - Lei Zhao
- grid.440144.10000 0004 1803 8437Shandong Cancer Hospital and Institute, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, 250117 China
| | - Bartlomiej W. Papiez
- Li Ka Shing Centre for Health Information and Discovery, Big Data Institute, Oxford, OX3 7LF UK
| | - Julia A. Schnabel
- grid.13097.3c0000 0001 2322 6764School of Biomedical Imaging and Imaging Sciences, King’s College London, London, SE1 7EU UK ,grid.4567.00000 0004 0483 2525Helmholtz Center Munich – German Center for Environmental Health, 85764 Neuherberg, Germany ,grid.6936.a0000000123222966Faculty of Informatics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
| | - Ruth J. Muschel
- grid.4991.50000 0004 1936 8948CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ UK
| | - Annamaria Gal
- grid.4991.50000 0004 1936 8948CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ UK ,grid.12477.370000000121073784School of Applied Sciences, University of Brighton, Brighton, BN2 4GJ UK
| |
Collapse
|
17
|
Immuno-regenerative biomaterials for in situ cardiovascular tissue engineering - Do patient characteristics warrant precision engineering? Adv Drug Deliv Rev 2021; 178:113960. [PMID: 34481036 DOI: 10.1016/j.addr.2021.113960] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
In situ tissue engineering using bioresorbable material implants - or scaffolds - that harness the patient's immune response while guiding neotissue formation at the site of implantation is emerging as a novel therapy to regenerate human tissues. For the cardiovascular system, the use of such implants, like blood vessels and heart valves, is gradually entering the stage of clinical translation. This opens up the question if and to what extent patient characteristics influence tissue outcomes, necessitating the precision engineering of scaffolds to guide patient-specific neo-tissue formation. Because of the current scarcity of human in vivo data, herein we review and evaluate in vitro and preclinical investigations to predict the potential role of patient-specific parameters like sex, age, ethnicity, hemodynamics, and a multifactorial disease profile, with special emphasis on their contribution to the inflammation-driven processes of in situ tissue engineering. We conclude that patient-specific conditions have a strong impact on key aspects of in situ cardiovascular tissue engineering, including inflammation, hemodynamic conditions, scaffold resorption, and tissue remodeling capacity, suggesting that a tailored approach may be required to engineer immuno-regenerative biomaterials for safe and predictive clinical applicability.
Collapse
|
18
|
Geyer CE, Newling M, Sritharan L, Griffith GR, Chen HJ, Baeten DLP, den Dunnen J. C-Reactive Protein Controls IL-23 Production by Human Monocytes. Int J Mol Sci 2021; 22:ijms222111638. [PMID: 34769069 PMCID: PMC8583945 DOI: 10.3390/ijms222111638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023] Open
Abstract
C-reactive protein (CRP) is an acute-phase protein in humans that is produced in high quantities by the liver upon infection and under inflammatory conditions. Although CRP is commonly used as a marker of inflammation, CRP can also directly contribute to inflammation by eliciting pro-inflammatory cytokine production by immune cells. Since CRP is highly elevated in serum under inflammatory conditions, we have studied the CRP-induced cytokine profile of human monocytes, one of the main innate immune cell populations in blood. We identified that CRP is relatively unique in its capacity to induce production of the pro-inflammatory cytokine IL-23, which was in stark contrast to a wide panel of pattern recognition receptor (PRR) ligands. We show that CRP-induced IL-23 production was mediated at the level of gene transcription, since CRP particularly promoted gene transcription of IL23A (encoding IL-23p19) instead of IL12A (encoding IL-12p35), while PRR ligands induce the opposite response. Interestingly, when CRP stimulation was combined with PRR ligand stimulation, as for example, occurs in the context of sepsis, IL-23 production by monocytes was strongly reduced. Combined, these data identify CRP as a unique individual ligand to induce IL-23 production by monocytes, which may contribute to shaping systemic immune responses under inflammatory conditions.
Collapse
Affiliation(s)
- Chiara E. Geyer
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Melissa Newling
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (L.S.); (D.L.P.B.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Lathees Sritharan
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (L.S.); (D.L.P.B.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Guillermo R. Griffith
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (G.R.G.); (H.-J.C.)
| | - Hung-Jen Chen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (G.R.G.); (H.-J.C.)
| | - Dominique L. P. Baeten
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (L.S.); (D.L.P.B.)
| | - Jeroen den Dunnen
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Correspondence: ; Tel.: +31-205668043
| |
Collapse
|
19
|
Head and neck squamous cell carcinoma cell lines have an immunomodulatory effect on macrophages independent of hypoxia and toll-like receptor 9. BMC Cancer 2021; 21:990. [PMID: 34479492 PMCID: PMC8418007 DOI: 10.1186/s12885-021-08357-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background A low tissue oxygen level, < 1% O2, is a typical characteristic inside of solid tumors in head and neck cancer (HNSCC) affecting a wide array of cell populations, such as macrophages. However, the mechanisms of how hypoxia influences macrophages are not yet fully elucidated. Our research aimed to study the effect of soluble mediators produced by hypoxic cancer cells on macrophage polarization. Furthermore, we studied the effect of a hypoxic microenvironment on the expression of tumorigenic toll-like receptor 9 (TLR9) and the consecutive macrophage polarization. Methods Conditioned media (CMNOX or CMHOX) from cell lines UT-SCC-8, UT-SCC-74A, FaDu, MDA-MB-231 and HaCat cultured under normoxic (21% O2) and hypoxic (1% O2) conditions were used to polarize human monocyte-derived macrophages. Macrophage polarization was measured by flow cytometry and the production of cytokine mRNA using Taqman qPCR. To study the role of TLR9 in macrophage polarization, the lentiviral CRISPR/Cas9 method was used to establish a stable FaDuTLR9def clone. Results Our results demonstrate that the soluble mediators produced by the cancer cells under normoxia polarize macrophages towards a hybridized M1/M2a/M2c phenotype. Furthermore, the results suggest that hypoxia has a limited role in altering the array of cancer-produced soluble factors affecting macrophage polarization and cytokine production. Our data also indicates that increased expression of TLR9 due to hypoxia in malignant cells does not markedly influence the polarization of macrophages. TLR9 transcriptional response to hypoxia is dissimilar to a HIF1-α-regulated LDH-A. This may indicate a context-dependent expression of TLR9 under hypoxia. Conclusions HNSCC cell lines affect both macrophage activity (polarization) and functionality (cytokines), but with exception to iNOS expression, the effects appear independent of hypoxia and TLR9. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08357-8.
Collapse
|
20
|
Nakazaki M, Morita T, Lankford KL, Askenase PW, Kocsis JD. Small extracellular vesicles released by infused mesenchymal stromal cells target M2 macrophages and promote TGF-β upregulation, microvascular stabilization and functional recovery in a rodent model of severe spinal cord injury. J Extracell Vesicles 2021; 10:e12137. [PMID: 34478241 PMCID: PMC8408371 DOI: 10.1002/jev2.12137] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/22/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Intravenous (IV) infusion of bone marrow-derived mesenchymal stem/stromal cells (MSCs) stabilizes the blood-spinal cord barrier (BSCB) and improves functional recovery in experimental models of spinal cord injury (SCI). Although IV delivered MSCs do not traffic to the injury site, IV delivered small extracellular vesicles (sEVs) derived from MSCs (MSC-sEVs) do and are taken up by a subset of M2 macrophages. To test whether sEVs released by MSCs are responsible for the therapeutic effects of MSCs, we tracked sEVs produced by IV delivered DiR-labelled MSCs (DiR-MSCs) after transplantation into SCI rats. We found that sEVs were released by MSCs in vivo, trafficked to the injury site, associated specifically with M2 macrophages and co-localized with exosome markers. Furthermore, while a single MSC injection was sufficient to improve locomotor recovery, fractionated dosing of MSC-sEVs over 3 days (F-sEVs) was required to achieve similar therapeutic effects. Infusion of F-sEVs mimicked the effects of single dose MSC infusion on multiple parameters including: increased expression of M2 macrophage markers, upregulation of transforming growth factor-beta (TGF-β), TGF-β receptors and tight junction proteins, and reduction in BSCB permeability. These data suggest that release of sEVs by MSCs over time induces a cascade of cellular responses leading to improved functional recovery.
Collapse
Affiliation(s)
- Masahito Nakazaki
- Department of NeurologyYale University School of MedicineNew HavenConnecticutUSA
- Center for Neuroscience and Regeneration ResearchVA Connecticut Healthcare SystemWest HavenConnecticutUSA
- Department of Neural Regenerative MedicineResearch Institute for Frontier MedicineSapporo Medical University School of MedicineSapporoHokkaidoJapan
| | - Tomonori Morita
- Department of NeurologyYale University School of MedicineNew HavenConnecticutUSA
- Center for Neuroscience and Regeneration ResearchVA Connecticut Healthcare SystemWest HavenConnecticutUSA
- Department of Neural Regenerative MedicineResearch Institute for Frontier MedicineSapporo Medical University School of MedicineSapporoHokkaidoJapan
| | - Karen L. Lankford
- Department of NeurologyYale University School of MedicineNew HavenConnecticutUSA
- Center for Neuroscience and Regeneration ResearchVA Connecticut Healthcare SystemWest HavenConnecticutUSA
| | - Philip W Askenase
- Section of Rheumatology, Allergy and Clinical ImmunologyDepartment of Internal MedicineYale University School of MedicineConnecticutUSA
| | - Jeffery D. Kocsis
- Department of NeurologyYale University School of MedicineNew HavenConnecticutUSA
- Center for Neuroscience and Regeneration ResearchVA Connecticut Healthcare SystemWest HavenConnecticutUSA
| |
Collapse
|
21
|
Kempkes RWM, Issa F. Research Highlights. Transplantation 2021; 105:1635-1636. [PMID: 37779261 DOI: 10.1097/tp.0000000000003874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Rosalie W M Kempkes
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Fadi Issa
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
22
|
Bouaoud J, Foy JP, Tortereau A, Michon L, Lavergne V, Gadot N, Boyault S, Valantin J, De Souza G, Zrounba P, Bertolus C, Bendriss-Vermare N, Saintigny P. Early changes in the immune microenvironment of oral potentially malignant disorders reveal an unexpected association of M2 macrophages with oral cancer free survival. Oncoimmunology 2021; 10:1944554. [PMID: 34239777 PMCID: PMC8238000 DOI: 10.1080/2162402x.2021.1944554] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Understanding the dynamics of the immune microenvironment is critical to the development of immuno-based strategies for the prevention of oral potentially malignant disorders transformation to oral squamous cell carcinoma (OSCC). We used laser capture microdissection and RNA-sequencing to profile the expression of 13 matched pairs of epithelial versus stromal compartments from normal mucosa, hyperplasia, dysplasia, and invasive tumors in the 4-nitroquinolein (4-NQO) murine model of oral carcinogenesis. Genes differentially expressed at each step of transformation were defined. Immune cell deconvolution and enrichment scores of various biological processes including immune-related ones were computed. Immunohistochemistry was also performed to characterize the immune infiltrates by T-cells (T-cells CD3+, helper CD4+, cytotoxic CD8+, regulatory FoxP3+), B-cells (B220+), and macrophages (M1 iNOS+, M2 CD163+) at each histological step. Enrichment of three independent M2 macrophages signatures were computed in 86 oral leukoplakia with available clinical outcome. Most gene expression changes were observed in the stromal compartment and related to immune biological processes. Immune cell deconvolution identified infiltration by the macrophage population as the most important quantitatively especially at the stage of dysplasia. In 86 patients with oral leukoplakia, three M2 macrophages signatures were independently associated with improved oral cancer-free survival. This study provides a better understanding of the dynamics of the immune microenvironment during oral carcinogenesis and highlights an unexpected association of M2 macrophages gene expression signatures with oral cancer free survival in patients with oral leukoplakia.
Collapse
Affiliation(s)
- Jebrane Bouaoud
- Tumor Escape, Resistance and Immunity Department, Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre De Recherche En Cancérologie De Lyon, Lyon, France.,Department of Translational Medicine, Centre Léon Bérard, Lyon, France.,Department of Maxillo-Facial Surgery, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique Des Hôpitaux De Paris, Paris, France
| | - Jean-Philippe Foy
- Tumor Escape, Resistance and Immunity Department, Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre De Recherche En Cancérologie De Lyon, Lyon, France.,Department of Translational Medicine, Centre Léon Bérard, Lyon, France.,Department of Maxillo-Facial Surgery, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique Des Hôpitaux De Paris, Paris, France
| | | | - Lucas Michon
- Department of Translational Medicine, Centre Léon Bérard, Lyon, France
| | - Vincent Lavergne
- Department of Translational Medicine, Centre Léon Bérard, Lyon, France
| | - Nicolas Gadot
- Tumor Escape, Resistance and Immunity Department, Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre De Recherche En Cancérologie De Lyon, Lyon, France.,Department of Translational Medicine, Centre Léon Bérard, Lyon, France
| | - Sandrine Boyault
- Department of Translational Medicine, Centre Léon Bérard, Lyon, France
| | - Julie Valantin
- Tumor Escape, Resistance and Immunity Department, Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre De Recherche En Cancérologie De Lyon, Lyon, France.,Department of Translational Medicine, Centre Léon Bérard, Lyon, France
| | | | - Philippe Zrounba
- Department of Translational Medicine, Centre Léon Bérard, Lyon, France.,Department of Surgery, Centre Léon Bérard, Lyon, France
| | - Chloé Bertolus
- Department of Translational Medicine, Centre Léon Bérard, Lyon, France.,Department of Maxillo-Facial Surgery, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique Des Hôpitaux De Paris, Paris, France
| | - Nathalie Bendriss-Vermare
- Tumor Escape, Resistance and Immunity Department, Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre De Recherche En Cancérologie De Lyon, Lyon, France
| | - Pierre Saintigny
- Tumor Escape, Resistance and Immunity Department, Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre De Recherche En Cancérologie De Lyon, Lyon, France.,Department of Translational Medicine, Centre Léon Bérard, Lyon, France.,Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| |
Collapse
|
23
|
Zhao S, Bao Z, Zhao X, Xu M, Li MD, Yang Z. Identification of Diagnostic Markers for Major Depressive Disorder Using Machine Learning Methods. Front Neurosci 2021; 15:645998. [PMID: 34220416 PMCID: PMC8249859 DOI: 10.3389/fnins.2021.645998] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Background Major depressive disorder (MDD) is a global health challenge that impacts the quality of patients’ lives severely. The disorder can manifest in many forms with different combinations of symptoms, which makes its clinical diagnosis difficult. Robust biomarkers are greatly needed to improve diagnosis and to understand the etiology of the disease. The main purpose of this study was to create a predictive model for MDD diagnosis based on peripheral blood transcriptomes. Materials and Methods We collected nine RNA expression datasets for MDD patients and healthy samples from the Gene Expression Omnibus database. After a series of quality control and heterogeneity tests, 302 samples from six studies were deemed suitable for the study. R package “MetaOmics” was applied for systematic meta-analysis of genome-wide expression data. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic effectiveness of individual genes. To obtain a better diagnostic model, we also adopted the support vector machine (SVM), random forest (RF), k-nearest neighbors (kNN), and naive Bayesian (NB) tools for modeling, with the RF method being used for feature selection. Results Our analysis revealed six differentially expressed genes (AKR1C3, ARG1, KLRB1, MAFG, TPST1, and WWC3) with a false discovery rate (FDR) < 0.05 between MDD patients and control subjects. We then evaluated the diagnostic ability of these genes individually. With single gene prediction, we achieved a corresponding area under the curve (AUC) value of 0.63 ± 0.04, 0.67 ± 0.07, 0.70 ± 0.11, 0.64 ± 0.08, 0.68 ± 0.07, and 0.62 ± 0.09, respectively, for these genes. Next, we constructed the classifiers of SVM, RF, kNN, and NB with an AUC of 0.84 ± 0.09, 0.81 ± 0.10, 0.73 ± 0.11, and 0.83 ± 0.09, respectively, in validation datasets, suggesting that the SVM classifier might be superior for constructing an MDD diagnostic model. The final SVM classifier including 70 feature genes was capable of distinguishing MDD samples from healthy controls and yielded an AUC of 0.78 in an independent dataset. Conclusion This study provides new insights into potential biomarkers through meta-analysis of GEO data. Constructing different machine learning models based on these biomarkers could be a valuable approach for diagnosing MDD in clinical practice.
Collapse
Affiliation(s)
- Shu Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiwei Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengxiang Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Hoepel W, Chen HJ, Geyer CE, Allahverdiyeva S, Manz XD, de Taeye SW, Aman J, Mes L, Steenhuis M, Griffith GR, Bonta PI, Brouwer PJM, Caniels TG, van der Straten K, Golebski K, Jonkers RE, Larsen MD, Linty F, Nouta J, van Roomen CPAA, van Baarle FEHP, van Drunen CM, Wolbink G, Vlaar APJ, de Bree GJ, Sanders RW, Willemsen L, Neele AE, van de Beek D, Rispens T, Wuhrer M, Bogaard HJ, van Gils MJ, Vidarsson G, de Winther M, den Dunnen J. High titers and low fucosylation of early human anti-SARS-CoV-2 IgG promote inflammation by alveolar macrophages. Sci Transl Med 2021; 13:eabf8654. [PMID: 33979301 PMCID: PMC8158960 DOI: 10.1126/scitranslmed.abf8654] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/05/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
Patients diagnosed with coronavirus disease 2019 (COVID-19) become critically ill primarily around the time of activation of the adaptive immune response. Here, we provide evidence that antibodies play a role in the worsening of disease at the time of seroconversion. We show that early-phase severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) spike protein-specific immunoglobulin G (IgG) in serum of critically ill COVID-19 patients induces excessive inflammatory responses by human alveolar macrophages. We identified that this excessive inflammatory response is dependent on two antibody features that are specific for patients with severe COVID-19. First, inflammation is driven by high titers of anti-spike IgG, a hallmark of severe disease. Second, we found that anti-spike IgG from patients with severe COVID-19 is intrinsically more proinflammatory because of different glycosylation, particularly low fucosylation, of the antibody Fc tail. Low fucosylation of anti-spike IgG was normalized in a few weeks after initial infection with SARS-CoV-2, indicating that the increased antibody-dependent inflammation mainly occurs at the time of seroconversion. We identified Fcγ receptor (FcγR) IIa and FcγRIII as the two primary IgG receptors that are responsible for the induction of key COVID-19-associated cytokines such as interleukin-6 and tumor necrosis factor. In addition, we show that anti-spike IgG-activated human macrophages can subsequently break pulmonary endothelial barrier integrity and induce microvascular thrombosis in vitro. Last, we demonstrate that the inflammatory response induced by anti-spike IgG can be specifically counteracted by fostamatinib, an FDA- and EMA-approved therapeutic small-molecule inhibitor of Syk kinase.
Collapse
Affiliation(s)
- Willianne Hoepel
- Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Amsterdam Rheumatology and Immunology Center, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Hung-Jen Chen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Chiara E Geyer
- Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Amsterdam Rheumatology and Immunology Center, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Sona Allahverdiyeva
- Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Amsterdam Rheumatology and Immunology Center, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Xue D Manz
- Department of Pulmonary Medicine, Amsterdam UMC, location VUMC, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Steven W de Taeye
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, Plesmanlaan 125, 1066 CX Amsterdam, Netherlands
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, Netherlands
| | - Jurjan Aman
- Department of Pulmonary Medicine, Amsterdam UMC, location VUMC, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Lynn Mes
- Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Amsterdam Rheumatology and Immunology Center, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, Plesmanlaan 125, 1066 CX Amsterdam, Netherlands
| | - Guillermo R Griffith
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Peter I Bonta
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Philip J M Brouwer
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Tom G Caniels
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Karlijn van der Straten
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Korneliusz Golebski
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - René E Jonkers
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Mads D Larsen
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, Netherlands
| | - Federica Linty
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, Netherlands
| | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 AZ Leiden, Netherlands
| | - Cindy P A A van Roomen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Frank E H P van Baarle
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Cornelis M van Drunen
- Department of Otorhinolaryngology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Gertjan Wolbink
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, Plesmanlaan 125, 1066 CX Amsterdam, Netherlands
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, Reade, Admiraal Helfrichstraat 1, 1056 AA Amsterdam, Netherlands
| | - Alexander P J Vlaar
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Godelieve J de Bree
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
- Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | - Lisa Willemsen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Annette E Neele
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Diederik van de Beek
- Departments of Neurology and Neuroscience, University of Amsterdam, Meibergdreef, Amsterdam UMC, Amsterdam, Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, Plesmanlaan 125, 1066 CX Amsterdam, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 AZ Leiden, Netherlands
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam UMC, location VUMC, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, Netherlands
| | - Menno de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands.
| | - Jeroen den Dunnen
- Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Amsterdam Rheumatology and Immunology Center, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands.
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| |
Collapse
|
25
|
Liu JX, Chao XY, Chen P, Wang YD, Su TJ, Li M, Xu RY, Wu Q. Transcriptome Analysis of Selenium-Treated Porcine Alveolar Macrophages Against Lipopolysaccharide Infection. Front Genet 2021; 12:645401. [PMID: 33747052 PMCID: PMC7970123 DOI: 10.3389/fgene.2021.645401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/02/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jia-Xuan Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xin-Yu Chao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Peng Chen
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yi-Ding Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Tong-Jian Su
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Meng Li
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Ru-Yu Xu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Qiong Wu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
26
|
Lim N, Tesar S, Belmadani M, Poirier-Morency G, Mancarci BO, Sicherman J, Jacobson M, Leong J, Tan P, Pavlidis P. Curation of over 10 000 transcriptomic studies to enable data reuse. Database (Oxford) 2021; 2021:6143045. [PMID: 33599246 PMCID: PMC7904053 DOI: 10.1093/database/baab006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/09/2020] [Accepted: 01/28/2021] [Indexed: 01/07/2023]
Abstract
Vast amounts of transcriptomic data reside in public repositories, but effective reuse remains challenging. Issues include unstructured dataset metadata, inconsistent data processing and quality control, and inconsistent probe-gene mappings across microarray technologies. Thus, extensive curation and data reprocessing are necessary prior to any reuse. The Gemma bioinformatics system was created to help address these issues. Gemma consists of a database of curated transcriptomic datasets, analytical software, a web interface and web services. Here we present an update on Gemma's holdings, data processing and analysis pipelines, our curation guidelines, and software features. As of June 2020, Gemma contains 10 811 manually curated datasets (primarily human, mouse and rat), over 395 000 samples and hundreds of curated transcriptomic platforms (both microarray and RNA sequencing). Dataset topics were represented with 10 215 distinct terms from 12 ontologies, for a total of 54 316 topic annotations (mean topics/dataset = 5.2). While Gemma has broad coverage of conditions and tissues, it captures a large majority of available brain-related datasets, accounting for 34% of its holdings. Users can access the curated data and differential expression analyses through the Gemma website, RESTful service and an R package. Database URL: https://gemma.msl.ubc.ca/home.html.
Collapse
Affiliation(s)
- Nathaniel Lim
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC V6T1Z4, Canada,Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Stepan Tesar
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Manuel Belmadani
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Guillaume Poirier-Morency
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Burak Ogan Mancarci
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada,Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Jordan Sicherman
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada,Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Matthew Jacobson
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Justin Leong
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Patrick Tan
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | | |
Collapse
|
27
|
Larsen MD, de Graaf EL, Sonneveld ME, Plomp HR, Nouta J, Hoepel W, Chen HJ, Linty F, Visser R, Brinkhaus M, Šuštić T, de Taeye SW, Bentlage AEH, Toivonen S, Koeleman CAM, Sainio S, Kootstra NA, Brouwer PJM, Geyer CE, Derksen NIL, Wolbink G, de Winther M, Sanders RW, van Gils MJ, de Bruin S, Vlaar APJ, Rispens T, den Dunnen J, Zaaijer HL, Wuhrer M, Ellen van der Schoot C, Vidarsson G. Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity. Science 2020; 371:science.abc8378. [PMID: 33361116 PMCID: PMC7919849 DOI: 10.1126/science.abc8378] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/12/2020] [Accepted: 12/18/2020] [Indexed: 12/21/2022]
Abstract
Antibodies are divided into several classes based on their nonvariable tail (Fc) domains. These regions interact with disparate immune cell receptors and complement proteins to help instruct distinct immune responses. The Fc domain of immunoglobulin G (IgG) antibodies contains a conserved N-linked glycan at position 297. However, the particular glycan used at this position is highly variable. IgG lacking core fucosylation at this position initiates enhanced antibody-dependent cellular cytotoxicity by increased affinity to the Fc receptor FcRIIIa. Larsen et al. report that COVID-19 patients with severe symptoms have increased levels of anti–severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG afucosylation compared with patients with mild disease. These findings suggest that treatment of COVID-19 patients with fucosylated anti–SARS-CoV-2 antibodies may circumvent pathologies associated with severe COVID-19. Science, this issue p. eabc8378 INTRODUCTION Antibody function is often considered static and mostly determined by isotype and subclass. The conserved N-linked glycan at position 297 in the Fc domain of immunoglobulin G (IgG) is essential for an antibody’s effector functions. Moreover, this glycan is highly variable and functionally relevant, especially for the core fucose moiety. IgG lacking core fucosylation (afucosylated IgG) causes increased antibody-dependent cellular cytotoxicity (ADCC) through highly increased IgG-Fc receptor IIIa (FcγRIIIa) affinity. Despite constant levels of total plasma IgG-Fc fucosylation above 90%, specific IgG responses with low core fucosylation have been sporadically reported. These are directed against alloantigens on blood cells and glycoproteins of HIV and dengue virus. In this study, we investigated the induction of afucosylated IgG to various antigens and delineated its dynamics and proinflammatory potential in COVID-19. RATIONALE Afucosylated IgG responses have only been found in various alloimmune responses against cellular blood groups and two enveloped viruses. Therefore, we tested the hypothesis that foreign surface–exposed, membrane-embedded proteins induce a specific B cell response that results in afucosylated IgG. We compared immune responses to natural infections by enveloped viruses and nonenveloped viruses, protein subunit vaccination, and live attenuated virus vaccinations. We also assessed the relation to the clinical outcome of such a response in COVID-19. RESULTS Analogous to blood cell alloantigens, the response to all enveloped viruses showed clear signatures of afucosylation of the antigen-specific IgG. By contrast, IgG against the nonenveloped virus, parvovirus B19, were highly fucosylated. The extent of afucosylated IgG responses varied, both between individuals and between antigens. The viral context was essential to induce afucosylated IgG because induction did not occur after subunit vaccination against hepatitis B virus. However, afucosylated IgG responses were found in response to attenuated viruses. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)–specific afucosylated IgG were also found in critically ill COVID-19 patients but not in individuals with mild symptoms. Over the 2 weeks after seroconversion, the amount of fucosylated anti–SARS-CoV-2 IgG increased markedly, in most reaching relative levels similar to those found in total IgG. Afucosylated IgG promoted interleukin-6 (IL-6) release in macrophages cultured in vitro, which is in line with an observed association of SARS-CoV-2–specific IgG afucosylation with IL-6 and C-reactive protein (CRP) in these patients. CONCLUSION This work suggests that providing foreign B cell antigens in the context of host cells may be required to trigger an afucosylated IgG immune response. The strength of this response is highly variable for different antigens and between individuals. An afucosylated IgG response is a potent immune response, honed for the destruction of target cells by FcγRIII-expressing natural killer (NK) and myeloid cells. This may sometimes be desirable—for example, against HIV—and can be achieved in vaccines by providing the target as a surface protein, as is the case with attenuated viral vaccines or mRNA vaccines. However, for SARS-CoV-2, this afucosylated IgG response may promote the exacerbation of COVID-19 under conditions with high viral loads at the time of seroconversion. Immunoglobulin G (IgG) antibodies are crucial for protection against invading pathogens. A highly conserved N-linked glycan within the IgG-Fc tail, which is essential for IgG function, shows variable composition in humans. Afucosylated IgG variants are already used in anticancer therapeutic antibodies for their increased activity through Fc receptors (FcγRIIIa). Here, we report that afucosylated IgG (approximately 6% of total IgG in humans) are specifically formed against enveloped viruses but generally not against other antigens. This mediates stronger FcγRIIIa responses but also amplifies brewing cytokine storms and immune-mediated pathologies. Critically ill COVID-19 patients, but not those with mild symptoms, had high concentrations of afucosylated IgG antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), amplifying proinflammatory cytokine release and acute phase responses. Thus, antibody glycosylation plays a critical role in immune responses to enveloped viruses, including COVID-19.
Collapse
Affiliation(s)
- Mads Delbo Larsen
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Erik L de Graaf
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Myrthe E Sonneveld
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - H Rosina Plomp
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Willianne Hoepel
- Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Amsterdam Rheumatology and Immunology Center, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hung-Jen Chen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Cardiovascular Sciences, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Federica Linty
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Remco Visser
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maximilian Brinkhaus
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tonći Šuštić
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Steven W de Taeye
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Arthur E H Bentlage
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Neeltje A Kootstra
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Philip J M Brouwer
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Chiara Elisabeth Geyer
- Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Amsterdam Rheumatology and Immunology Center, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ninotska I L Derksen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Gertjan Wolbink
- Amsterdam Rheumatology and Immunology Center, Reade, Amsterdam, Netherlands
| | - Menno de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Cardiovascular Sciences, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands.,Weill Medical College, Cornell University, New York, USA
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Sanne de Bruin
- Department of Intensive Care Medicine, Amsterdam UMC (Location AMC), University of Amsterdam, Amsterdam, Netherlands
| | - Alexander P J Vlaar
- Department of Intensive Care Medicine, Amsterdam UMC (Location AMC), University of Amsterdam, Amsterdam, Netherlands
| | | | | | - Theo Rispens
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen den Dunnen
- Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Amsterdam Rheumatology and Immunology Center, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans L Zaaijer
- Department of Blood-borne Infections, Sanquin, Amsterdam, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands. .,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
28
|
Damerau A, Gaber T. Modeling Rheumatoid Arthritis In Vitro: From Experimental Feasibility to Physiological Proximity. Int J Mol Sci 2020; 21:ijms21217916. [PMID: 33113770 PMCID: PMC7663779 DOI: 10.3390/ijms21217916] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory, and systemic autoimmune disease that affects the connective tissue and primarily the joints. If not treated, RA ultimately leads to progressive cartilage and bone degeneration. The etiology of the pathogenesis of RA is unknown, demonstrating heterogeneity in its clinical presentation, and is associated with autoantibodies directed against modified self-epitopes. Although many models already exist for RA for preclinical research, many current model systems of arthritis have limited predictive value because they are either based on animals of phylogenetically distant origin or suffer from overly simplified in vitro culture conditions. These limitations pose considerable challenges for preclinical research and therefore clinical translation. Thus, a sophisticated experimental human-based in vitro approach mimicking RA is essential to (i) investigate key mechanisms in the pathogenesis of human RA, (ii) identify targets for new therapeutic approaches, (iii) test these approaches, (iv) facilitate the clinical transferability of results, and (v) reduce the use of laboratory animals. Here, we summarize the most commonly used in vitro models of RA and discuss their experimental feasibility and physiological proximity to the pathophysiology of human RA to highlight new human-based avenues in RA research to increase our knowledge on human pathophysiology and develop effective targeted therapies.
Collapse
Affiliation(s)
- Alexandra Damerau
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany;
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Timo Gaber
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany;
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
- Correspondence:
| |
Collapse
|
29
|
Nenasheva T, Gerasimova T, Serdyuk Y, Grigor'eva E, Kosmiadi G, Nikolaev A, Dashinimaev E, Lyadova I. Macrophages Derived From Human Induced Pluripotent Stem Cells Are Low-Activated "Naïve-Like" Cells Capable of Restricting Mycobacteria Growth. Front Immunol 2020; 11:1016. [PMID: 32582159 PMCID: PMC7287118 DOI: 10.3389/fimmu.2020.01016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
In peripheral tissues, immune protection critically depends on the activity of tissue resident macrophages, which makes our understanding of the biology of these cells of great significance. Until recently, human macrophage studies were largely based on the analysis of monocyte-derived macrophages that differ from tissue resident macrophages by many characteristics. To model tissue resident macrophages, methods of generating macrophages from pluripotent stem cells have been developed. However, the immunological properties of macrophages derived from pluripotent stem cells remain under-investigated. In this study, we aimed to perform the multifarious immunological characteristics of macrophages generated from human induced pluripotent stem cells (iMϕs), including an analysis of their phenotype, secretory and antibacterial activities, as well as their comparison with macrophages derived from blood monocytes and infected lung tissue. We report that iMϕs displayed the morphology and the CD11b+CD45+CD14+ phenotype typical for mononuclear phagocytes. The cells co-expressed markers known to be associated with classically (CD80, CD86, CCR5) and alternatively (CD163 and CD206) activated macrophages, with a bias toward a higher expression of the latter. iMϕs secreted pro-inflammatory (IL-6, CXCL8, CCL2, CCL4, CXCL1, CXCL10) and anti-inflammatory (IL-10, IL-1RA, CCL22) cytokines with a high IL-10/IL-12p70 index (>20). iMϕs were phagocytic and restricted Mycobacterium tuberculosis growth in vitro by >75%. iMϕs differed from blood monocytes/macrophages by a lower expression level of HLA-DR and the CD14+CD16int phenotype and shared several phenotypic characteristics with lung macrophages. In response to LPS, iMϕs up-regulated HLA-DR and produced TNF-α. IFN-γ increased iMϕ reactivity to LPS, but did not increase iMϕ mycobactericidal capacity. The results characterize iMϕs as differentiated but low-activated/low-polarized “naïve-like” macrophages that are capable of mounting inflammatory and antibacterial responses when exposed to inflammatory stimuli or pathogens. iMϕs represent a valuable model for studying antibacterial responses of tissue resident macrophages and for developing approaches to modulating macrophage activity.
Collapse
Affiliation(s)
- Tatiana Nenasheva
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Tatiana Gerasimova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Yana Serdyuk
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Elena Grigor'eva
- Laboratory of Developmental Epigenetics, Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - George Kosmiadi
- Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Alexander Nikolaev
- Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Erdem Dashinimaev
- Center for Genome Technologies, Pirogov Russian National Research Medical University, Moscow, Russia.,Laboratory of Cell Biology, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Irina Lyadova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| |
Collapse
|