1
|
Ran R, Trapecar M, Brubaker DK. Systematic analysis of human colorectal cancer scRNA-seq revealed limited pro-tumoral IL-17 production potential in gamma delta T cells. Neoplasia 2024; 58:101072. [PMID: 39454432 DOI: 10.1016/j.neo.2024.101072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Gamma delta T cells play a crucial role in anti-tumor immunity due to their cytotoxic properties. However, the role and extent of γδ T cells in production of pro-tumorigenic interleukin-17 (IL-17) within the tumor microenvironment of colorectal cancer (CRC) remains controversial. In this study, we re-analyzed nine published human CRC whole-tissue single-cell RNA sequencing datasets, identifying 18,483 γδ T cells out of 951,785 total cells, in the neoplastic or adjacent normal tissue of 165 human CRC patients. Our results confirm that tumor-infiltrating γδ T cells exhibit high cytotoxicity-related transcription in both tumor and adjacent normal tissues, but critically, none of the γδ T cell clusters showed IL-17 production potential. We also identified various γδ T cell subsets, including poised effector-like T cells, tissue-resident memory T cells, progenitor exhausted-like T cells, and exhausted T cells, and noted an increased expression of cytotoxic molecules in tumor-infiltrating γδ T cells compared to their normal area counterparts. We proposed anti-tumor γδ T effector cells may arise from tissue-resident progenitor cells based on the trajectory analysis. Our work demonstrates that γδ T cells in CRC primarily function as cytotoxic effector cells rather than IL-17 producers, mitigating the concerns about their potential pro-tumorigenic roles in CRC, highlighting the importance of accurately characterizing these cells for cancer immunotherapy research and the unneglectable cross-species discrepancy between the mouse and human immune system in the study of cancer immunology.
Collapse
Affiliation(s)
- Ran Ran
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Martin Trapecar
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Douglas K Brubaker
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH, USA.
| |
Collapse
|
2
|
Omrani M, Chiarelli RR, Acquaviva M, Bassani C, Dalla Costa G, Montini F, Preziosa P, Pagani L, Grassivaro F, Guerrieri S, Romeo M, Sangalli F, Colombo B, Moiola L, Zaffaroni M, Pietroboni A, Protti A, Puthenparampil M, Bergamaschi R, Comi G, Rocca MA, Martinelli V, Filippi M, Farina C. Machine learning-driven diagnosis of multiple sclerosis from whole blood transcriptomics. Brain Behav Immun 2024; 121:269-277. [PMID: 39097200 DOI: 10.1016/j.bbi.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024] Open
Abstract
Multiple sclerosis (MS) is a neurological disorder characterized by immune dysregulation. It begins with a first clinical manifestation, a clinically isolated syndrome (CIS), which evolves to definite MS in case of further clinical and/or neuroradiological episodes. Here we evaluated the diagnostic value of transcriptional alterations in MS and CIS blood by machine learning (ML). Deep sequencing of more than 200 blood RNA samples comprising CIS, MS and healthy subjects, generated transcriptomes that were analyzed by the binary classification workflow to distinguish MS from healthy subjects and the Time-To-Event pipeline to predict CIS conversion to MS along time. To identify optimal classifiers, we performed algorithm benchmarking by nested cross-validation with the train set in both pipelines and then tested models generated with the train set on an independent dataset for final validation. The binary classification model identified a blood transcriptional signature classifying definite MS from healthy subjects with 97% accuracy, indicating that MS is associated with a clear predictive transcriptional signature in blood cells. When analyzing CIS data with ML survival models, prediction power of CIS conversion to MS was about 72% when using paraclinical data and 74.3% when using blood transcriptomes, indicating that blood-based classifiers obtained at the first clinical event can efficiently predict risk of developing MS. Coupling blood transcriptomics with ML approaches enables retrieval of predictive signatures of CIS conversion and MS state, thus introducing early non-invasive approaches to MS diagnosis.
Collapse
Affiliation(s)
- Maryam Omrani
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rosaria Rita Chiarelli
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Acquaviva
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Bassani
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gloria Dalla Costa
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Federico Montini
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Preziosa
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | | | - Francesca Grassivaro
- Dipartimento di Neuroscienze, Azienda Ospedale - Università di Padova, Padova, Italy
| | - Simone Guerrieri
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marzia Romeo
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Sangalli
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bruno Colombo
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Moiola
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mauro Zaffaroni
- Centro Sclerosi Multipla, ASST della Valle Olona, Ospedale di Gallarate, Gallarate, Italy
| | - Anna Pietroboni
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Marco Puthenparampil
- Dipartimento di Neuroscienze, Azienda Ospedale - Università di Padova, Padova, Italy
| | | | - Giancarlo Comi
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Vittorio Martinelli
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
3
|
Chen Z, Jiang P, Su D, Zhao Y, Zhang M. Therapeutic inhibition of the JAK-STAT pathway in the treatment of inflammatory bowel disease. Cytokine Growth Factor Rev 2024; 79:1-15. [PMID: 39179485 DOI: 10.1016/j.cytogfr.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/26/2024]
Abstract
Inflammatory bowel disease (IBD) encompasses a group of non-specific chronic intestinal inflammatory conditions of unclear etiology. The current treatment and long-term management primarily involve biologics. Nevertheless, some patients experience treatment failure or intolerance to biologics [1], making these patients a primary focus of IBD research. The Janus kinase (JAK)-Signal Transducers and Activator of Transcription (STAT) signal transduction pathway is crucial to the regulation of immune and inflammatory responses [2], and plays an important role in the pathogenesis of IBD. JAK inhibitors alleviate IBD by suppressing the transmission of JAK-STAT signaling pathway. As the first small-molecule oral inhibitor for IBD, JAK inhibitors greatly improved the treatment of IBD and have demonstrated significant efficacy, with tofacitinib and upadacitinib being approved for the treatment of ulcerative colitis (UC) [3]. JAK inhibitors can effectively alleviate intestinal inflammation in IBD patients who have failed to receive biologics, which may bring new treatment opportunities for refractory IBD patients. This review aims to elucidate the crucial roles of JAK-STAT signal transduction pathway in IBD pathogenesis, examine its role in various cell types within IBD, and explore the research progress of JAK inhibitors as therapeutic agents, paving the road for new IBD treatment strategies.
Collapse
Affiliation(s)
- Zihan Chen
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Ping Jiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210093, China
| | - Dan Su
- FUJIFILM Diosynth Biotechnologies, Watertown, 02472, MA, United States
| | - Yu Zhao
- University of Chicago, Pritzker School of Molecular Engineering, Chicago, IL, 60637
| | - Mingming Zhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China.
| |
Collapse
|
4
|
Yuan Z, Shu L, Fu J, Yang P, Wang Y, Sun J, Zheng M, Liu Z, Yang J, Song J, Song S, Cai Z. Single-Cell RNA Sequencing Deconstructs the Distribution of Immune Cells Within Abdominal Aortic Aneurysms in Mice. Arterioscler Thromb Vasc Biol 2024; 44:1986-2003. [PMID: 39051127 DOI: 10.1161/atvbaha.124.321129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Inflammation is a key component in the development of abdominal aortic aneurysm (AAA), yet insights into the roles of immune cells and their interactions in this process are limited. METHODS Using single-cell RNA transcriptomic analysis, we deconstructed the CD45+ cell population in elastase-induced murine AAA at the single-cell level. We isolated each group of immune cells from murine AAA tissue at different time points and divided them into several subtypes, listed the remarkable differentially expressed genes, explored the developmental trajectories of immune cells, and demonstrated the interactions among them. RESULTS Our findings reveal significant differences in several immune cell subsets, including macrophages, dendritic cells, and T cells, within the AAA microenvironment compared with the normal aorta. Especially, conventional dendritic cell type 1 exclusively existed in the AAA tissue rather than the normal aortas. Via CellChat analysis, we identified several intercellular communication pathways like visfatin, which targets monocyte differentiation and neutrophil extracellular trap-mediated interaction between neutrophils and dendritic cells, which might contribute to AAA development. Some of these pathways were validated in human AAA. CONCLUSIONS Despite the absence of external pathogenic stimuli, AAA tissues develop a complex inflammatory microenvironment involving numerous immune cells. In-depth studies of the inflammatory network shall provide new strategies for patients with AAA.
Collapse
MESH Headings
- Aortic Aneurysm, Abdominal/immunology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Animals
- Single-Cell Analysis
- Disease Models, Animal
- Mice, Inbred C57BL
- Aorta, Abdominal/pathology
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/immunology
- Mice
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Humans
- Macrophages/metabolism
- Macrophages/immunology
- Male
- Transcriptome
- RNA-Seq
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Gene Expression Profiling/methods
- Pancreatic Elastase
- Cell Communication
Collapse
Affiliation(s)
- Zhen Yuan
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| | - Li Shu
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| | - Jiantao Fu
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, China (J.F., P.Y., J.Y.)
| | - Peipei Yang
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, China (J.F., P.Y., J.Y.)
| | - Yidong Wang
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| | - Jie Sun
- Pathology (J. Sun, M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengsha Zheng
- Pathology (J. Sun, M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenjie Liu
- Vascular Surgery (Z.L.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Yang
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, China (J.F., P.Y., J.Y.)
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China (J. Song, S.S.)
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China (J. Song, S.S.)
| | - Zhejun Cai
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| |
Collapse
|
5
|
Ran R, Trapecar M, Brubaker DK. Systematic Analysis of Human Colorectal Cancer scRNA-seq Revealed Limited Pro-tumoral IL-17 Production Potential in Gamma Delta T Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604156. [PMID: 39071278 PMCID: PMC11275756 DOI: 10.1101/2024.07.18.604156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Gamma delta (γδ) T cells play a crucial role in anti-tumor immunity due to their cytotoxic properties. However, the role and extent of γδ T cells in production of pro-tumorigenic interleukin- 17 (IL-17) within the tumor microenvironment (TME) of colorectal cancer (CRC) remains controversial. In this study, we re-analyzed nine published human CRC whole-tissue single-cell RNA sequencing (scRNA-seq) datasets, identifying 18,483 γδ T cells out of 951,785 total cells, in the neoplastic or adjacent normal tissue of 165 human CRC patients. Our results confirm that tumor-infiltrating γδ T cells exhibit high cytotoxicity-related transcription in both tumor and adjacent normal tissues, but critically, none of the γδ T cell clusters showed IL-17 production potential. We also identified various γδ T cell subsets, including Teff, TRM, Tpex, and Tex, and noted an increased expression of cytotoxic molecules in tumor-infiltrating γδ T cells compared to their normal area counterparts. Our work demonstrates that γδ T cells in CRC primarily function as cytotoxic effector cells rather than IL-17 producers, mitigating the concerns about their potential pro-tumorigenic roles in CRC, highlighting the importance of accurately characterizing these cells for cancer immunotherapy research and the unneglectable cross-species discrepancy between the mouse and human immune system in the study of cancer immunology.
Collapse
Affiliation(s)
- Ran Ran
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Martin Trapecar
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Douglas K. Brubaker
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
- The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH
| |
Collapse
|
6
|
Yu H, Tang J, Dong L, Tang M, Arif A, Zhang T, Zhang G, Xie K, Zhao Z, Dai G. Transcriptome analysis reveals that gga-miR-2954 inhibits the inflammatory response against Eimeria tenella infection. Int J Biol Macromol 2024; 269:131807. [PMID: 38670189 DOI: 10.1016/j.ijbiomac.2024.131807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
Coccidiosis is an important parasitic protozoan disease in poultry farming, causing huge economic losses in the global poultry industry every year. MicroRNAs (miRNAs) are a class of RNA macromolecules that play important roles in the immune response to pathogens. However, the expression profiles and functions of miRNAs during Eimeria tenella (E. tenella) infection in chickens remain mostly uncharacterized. In this study, high-throughput sequencing of cecal tissues of control (JC), resistant (JR), and susceptible (JS) chickens led to the identification of 35 differentially expressed miRNAs among the three groups. Functional enrichment analysis showed that the differentially expressed miRNAs were mainly associated with the TGF-beta, NF-kB, and Jak-STAT signaling pathways. Notably, gga-miR-2954 was found to be significantly upregulated after coccidial infection. Functional analysis showed that gga-miR-2954 inhibited the production of the inflammatory cytokines IL-6, IL-1β, TNF-α, and IL-8 in sporozoite-stimulated DF-1 cells. Mechanistically, we found that gga-miR-2954 targeted the RORC gene and that RORC promoted the inflammatory response in sporozoite-stimulated DF-1 cells. In conclusion, our study was the first to identify differentially expressed miRNAs in chicken cecal tissue during E. tenella infection and found that gga-miR-2954 regulates the host immune response to coccidial infection in chickens by targeting the RORC gene.
Collapse
Affiliation(s)
- Hailiang Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jianqiang Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liyue Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Meihui Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - AreeJ Arif
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhenhua Zhao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| |
Collapse
|
7
|
Soongsathitanon J, Homjan T, Pongcharoen S. Characteristic features of in vitro differentiation of human naïve CD4 + T cells to induced regulatory T cells (iTreg) and T helper (Th) 17 cells: Sharing of lineage-specific markers. Heliyon 2024; 10:e31394. [PMID: 38807879 PMCID: PMC11130651 DOI: 10.1016/j.heliyon.2024.e31394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
In vitro induced regulatory T cells (iTreg) and IL-17 producing T cells (Th17-like cells) can be generated in culture from native CD4+ T cells in peripheral blood by different sets of cytokines. In the presence of transforming growth factor (TGF)-β plus interleukin (IL)-2, cells differentiate into Treg cells with increased expression of the forkhead box P3 (FOXP3). In the presence of TGF-β, IL-6, IL-1β and IL-23, cells differentiate into Th17 cells that produce IL-17A. However, protocols for the generation of human iTreg and Th17 are still controversial. In this study, we characterized the biological features of iTreg and Th17 cells differentiated from peripheral blood naïve CD4+ T cells in vitro using the established protocols. We showed that cells obtained from Treg or Th17 culture conditions shared some phenotypic markers. Cells under Treg conditions had an up-regulated FOXP3 gene and a down-regulated RAR-related orphan receptor C (RORC) gene. Cells derived from the Th17 condition exhibited a down-regulated FOXP3 gene and had significantly higher RORC gene expression than Treg cells. Both resulting cells showed intracellular production of IL-17A and IL-10. Th17 condition-cultured cells exhibited more glycolytic activity and glucose uptake compared to the Treg cells. The findings suggest that cells obtained from established protocols for the differentiation of iTreg and Th17 cells in vitro are possibly in the intermediate stage of differentiation or may be two different types of cells that share a lineage-specific differentiation program.
Collapse
Affiliation(s)
- Jarupa Soongsathitanon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Ticha Homjan
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Suthatip Pongcharoen
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand
| |
Collapse
|
8
|
Zhu S, Wei W. Progress in research on the role of fluoride in immune damage. Front Immunol 2024; 15:1394161. [PMID: 38807586 PMCID: PMC11130356 DOI: 10.3389/fimmu.2024.1394161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Excessive fluoride intake from residential environments may affect multiple tissues and organs; however, the specific pathogenic mechanisms are unclear. Researchers have recently focused on the damaging effects of fluoride on the immune system. Damage to immune function seriously affects the quality of life of fluoride-exposed populations and increases the incidence of infections and malignant tumors. Probing the mechanism of damage to immune function caused by fluoride helps identify effective drugs and methods to prevent and treat fluorosis and improve people's living standards in fluorosis-affected areas. Here, the recent literature on the effects of fluoride on the immune system is reviewed, and research on fluoride damage to the immune system is summarized in terms of three perspectives: immune organs, immune cells, and immune-active substances. We reviewed that excessive fluoride can damage immune organs, lead to immune cells dysfunction and interfere with the expression of immune-active substances. This review aimed to provide a potential direction for future fluorosis research from the perspective of fluoride-induced immune function impairment. In order to seek the key regulatory indicators of fluoride on immune homeostasis in the future.
Collapse
Affiliation(s)
- Siqi Zhu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Altınönder İ, Kaya M, Yentür SP, Çakar A, Durmuş H, Yegen G, Özkan B, Parman Y, Sawalha AH, Saruhan-Direskeneli G. Thymic gene expression analysis reveals a potential link between HIF-1A and Th17/Treg imbalance in thymoma associated myasthenia gravis. J Neuroinflammation 2024; 21:126. [PMID: 38734662 PMCID: PMC11088784 DOI: 10.1186/s12974-024-03095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/07/2024] [Indexed: 05/13/2024] Open
Abstract
Myasthenia gravis (MG) is an immune-mediated disease frequently associated with thymic changes. Increased T helper 17 (Th17) cell activity and dysfunctional regulatory T (Treg) cells have been demonstrated in subgroups of MG. On the other hand, hypoxia-inducible factor 1 (HIF-1) has been shown to regulate the Th17/Treg balance by inducing Th17 differentiation while attenuating Treg development. To identify the underlying mechanisms of different thymic pathologies in MG development, we evaluated thymic samples from thymoma-associated myasthenia gravis (TAMG), MG with hyperplasia (TFH-MG) and thymoma without MG (TOMA) patients. Differential gene expression analysis revealed that TAMG and TFH-MG cells are associated with different functional pathways. A higher RORC/FOXP3 ratio provided evidence for Th17/Treg imbalance in TAMG potentially related to increased HIF1A. The hypoxic microenvironment in thymoma may be a driver of TAMG by increasing HIF1A. These findings may lead to new therapeutic approaches targeting HIF1A in the development of TAMG.
Collapse
Affiliation(s)
- İlayda Altınönder
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
| | - Mustafa Kaya
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
| | - Sibel P Yentür
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
| | - Arman Çakar
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
| | - Hacer Durmuş
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
| | - Gülçin Yegen
- Department of Thoracic Surgery, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
| | - Berker Özkan
- Department of Pathology, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
| | - Yeşim Parman
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, 34093, Turkey
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
10
|
Yuan X, Ou C, Li X, Zhuang Z, Chen Y. The skin circadian clock gene F3 as a potential marker for psoriasis severity and its bidirectional relationship with IL-17 signaling in keratinocytes. Int Immunopharmacol 2024; 132:111993. [PMID: 38565044 DOI: 10.1016/j.intimp.2024.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE Psoriasis is an immune-mediated skin disease where the IL-17 signaling pathway plays a crucial role in its development. Chronic circadian rhythm disorder in psoriasis pathogenesis is gaining more attention. The relationship between IL and 17 signaling pathway and skin clock genes remains poorly understood. METHODS GSE121212 with psoriatic lesion and healthy controls was used as the exploration cohort for searching analysis. Datasets GSE54456, GSE13355, GSE14905, GSE117239, GSE51440, and GSE137218 were applied to validation analysis. Single-cell RNA sequencing (scRNA-seq) dataset GSE173706 was used to explore the F3 expression and related pathway activities in single-cell levels. Through intersecting with high-expression DEGs, F3 was selected as the signature skin circadian gene in psoriasis for further investigation. Functional analyses, including correlation analyses, prediction of transcription factors, protein-protein interaction, and single gene GSEA to explore the potential roles of F3. ssGSEA algorithm was performed to uncover the immune-related characteristics of psoriasis. We further explored F3 expression in the specific cell population in scRNA-seq dataset, besides this, AUCell analysis was performed to explore the pathway activities and the results were further compared between the specific cell cluster. Immunohistochemistry experiment, RT-qPCR was used to validate the location and expression of F3, small interfering RNA (siRNA) transfection experiment in HaCaT, and transcriptome sequencing analysis were applied to explore the potential function of F3. RESULTS F3 was significantly down-regulated in psoriasis and interacted with IL-17 signaling pathway. Low expression of F3 could upregulate the receptor of JAK-STAT signaling, thereby promoting keratinocyte inflammation. CONCLUSION Our research revealed a bidirectional link between the skin circadian gene F3 and the IL-17 signaling pathway in psoriasis, suggesting that F3 may interact with the IL-17 pathway by activating JAK-STAT within keratinocytes and inducing abnormal intracellular inflammation.
Collapse
Affiliation(s)
- Xiuqing Yuan
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Caixin Ou
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Xinhui Li
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Zhe Zhuang
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yongfeng Chen
- Dermatology Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Di Giorgio C, Morretta E, Lupia A, Bellini R, Massa C, Urbani G, Bordoni M, Marchianò S, Lachi G, Rapacciuolo P, Finamore C, Sepe V, Chiara Monti M, Moraca F, Natalizi N, Graziosi L, Distrutti E, Biagioli M, Catalanotti B, Donini A, Zampella A, Fiorucci S. Bile acids serve as endogenous antagonists of the Leukemia inhibitory factor (LIF) receptor in oncogenesis. Biochem Pharmacol 2024; 223:116134. [PMID: 38494064 DOI: 10.1016/j.bcp.2024.116134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The leukemia inhibitory factor (LIF) is member of interleukin (IL)-6 family of cytokines involved immune regulation, morphogenesis and oncogenesis. In cancer tissues, LIF binds a heterodimeric receptor (LIFR), formed by a LIFRβ subunit and glycoprotein(gp)130, promoting epithelial mesenchymal transition and cell growth. Bile acids are cholesterol metabolites generated at the interface of host metabolism and the intestinal microbiota. Here we demonstrated that bile acids serve as endogenous antagonist to LIFR in oncogenesis. The tissue characterization of bile acids content in non-cancer and cancer biopsy pairs from gastric adenocarcinomas (GC) demonstrated that bile acids accumulate within cancer tissues, with glyco-deoxycholic acid (GDCA) functioning as negative regulator of LIFR expression. In patient-derived organoids (hPDOs) from GC patients, GDCA reverses LIF-induced stemness and proliferation. In summary, we have identified the secondary bile acids as the first endogenous antagonist to LIFR supporting a development of bile acid-based therapies in LIF-mediated oncogenesis.
Collapse
Affiliation(s)
| | - Elva Morretta
- University of Salerno, Department of Pharmacy, Salerno, Italy
| | - Antonio Lupia
- University of Cagliari, Department of Life and Environmental Sciences, Cagliari, Italy; Net4Science srl, University "Magna Græcia", Campus Salvatore Venuta, Viale Europa, Catanzaro 88100, Italy
| | - Rachele Bellini
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Carmen Massa
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Ginevra Urbani
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Martina Bordoni
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Silvia Marchianò
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Ginevra Lachi
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | | | - Claudia Finamore
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | - Valentina Sepe
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | | | - Federica Moraca
- Net4Science srl, University "Magna Græcia", Campus Salvatore Venuta, Viale Europa, Catanzaro 88100, Italy; University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | | | | | | | - Michele Biagioli
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Bruno Catalanotti
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | - Annibale Donini
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy
| | - Angela Zampella
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | - Stefano Fiorucci
- University of Perugia, Department of Medicine and Surgery, Perugia, Italy.
| |
Collapse
|
12
|
Elahi M, Ebrahim Soltani Z, Afrooghe A, Ahmadi E, Dehpour AR. Sex Dimorphism in Pain Threshold and Neuroinflammatory Response: The Protective Effect of Female Sexual Hormones on Behavior and Seizures in an Allergic Rhinitis Model. J Neuroimmune Pharmacol 2024; 19:16. [PMID: 38652402 DOI: 10.1007/s11481-024-10114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Our previous research demonstrated that allergic rhinitis could impact behavior and seizure threshold in male mice. However, due to the complex hormonal cycles and hormonal influences on behavior in female mice, male mice are more commonly used for behavioral tests. In this study, we aimed to determine whether these findings were replicable in female mice and to explore the potential involvement of sexual hormones in regulating neuroinflammation in an allergic model. Our results indicate that pain threshold was decreased in female mice with allergic rhinitis and the levels of IL-23/IL-17A/IL-17R were increased in their Dorsal root ganglia. However, unlike males, female mice with AR did not display neuropsychological symptoms such as learning and memory deficits, depression, and anxiety-like behavior. This was along with decreased levels of DNA methyl transferase 1 (DNMT1) and inflammatory cytokines in their hippocampus. Ovariectomized mice were used to mitigate hormonal effects, and the results showed that they had behavioral changes and neuroinflammation in their hippocampus similar to male mice, as well as increased levels of DNMT1. These findings demonstrate sex differences in how allergic rhinitis affects behavior, pain sensitivity, and seizure thresholds. Furthermore, our data suggest that DNMT1 may be influenced by sexual hormones, which could play a role in modulating inflammation in allergic conditions.
Collapse
Affiliation(s)
- Mohammad Elahi
- Center for Orthopedic Trans-disciplinary Applied Research, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Ebrahim Soltani
- Experimental Medicine Research Center, Tehran University of Medical Science, Tehran, Iran
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Arya Afrooghe
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Elham Ahmadi
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Science, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
13
|
Xiong Y, Ma X, He B, Zhi J, Liu X, Wang P, Zhou Z, Liu D. Multifaceted Effects of Subchronic Exposure to Chlorfenapyr in Mice: Implications from Serum Metabolomics, Hepatic Oxidative Stress, and Intestinal Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7423-7437. [PMID: 38502791 DOI: 10.1021/acs.jafc.3c09682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
As chlorfenapyr is a commonly used insecticide in agriculture, the health risks of subchronic exposure to chlorfenapyr remained unclear. This study aimed to extensively probe the health risks from subchronic exposure to chlorfenapyr at the NOAEL and 10-fold NOAEL dose in mice. Through pathological and biochemical examinations, the body metabolism, hepatic toxicity, and intestinal homeostasis were systematically assessed. After 12 weeks, a 10-fold NOAEL dose of chlorfenapyr resulted in weight reduction, increased daily food intake, and blood lipid abnormalities. Concurrently, this dosage induced hepatotoxicity and amplified oxidative stress in hepatocytes, a finding further supported in HepG2 cells. Moreover, chlorfenapyr resulted in intestinal inflammation, evidenced by increased inflammatory factors (IL-17a, IL-10, IL-1β, IL-6, IL-22), disrupted immune cells (RORγt, Foxp3), and compromised intestinal barriers (ZO-1 and occludin). By contrast, the NOAEL dose presented less toxicity in most evaluations. Serum metabolomic analyses unveiled widespread disruptions in pathways related to hepatotoxicity and intestinal inflammation, including NF-κB signaling, Th cell differentiation, and bile acid metabolism. Microbiomic analysis showed an increase in Lactobacillus, a decrease in Muribaculaceae, and diminished anti-inflammatory microbes, which further propelled the inflammatory response and leaded to intestinal inflammation. These findings revealed the molecular mechanisms underlying chlorfenapyr-induced hepatotoxicity and intestinal inflammation, highlighting the significant role of the gut microbiota.
Collapse
Affiliation(s)
- Yabing Xiong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoran Ma
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Bingying He
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jianwen Zhi
- Department of Proctology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xueke Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Peng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Donghui Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
14
|
Riondino S, Rosenfeld R, Formica V, Morelli C, Parisi G, Torino F, Mariotti S, Roselli M. Effectiveness of Immunotherapy in Non-Small Cell Lung Cancer Patients with a Diagnosis of COPD: Is This a Hidden Prognosticator for Survival and a Risk Factor for Immune-Related Adverse Events? Cancers (Basel) 2024; 16:1251. [PMID: 38610929 PMCID: PMC11011072 DOI: 10.3390/cancers16071251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The interplay between the immune system and chronic obstructive pulmonary disease (COPD) and non-small cell lung cancer (NSCLC) is complex and multifaceted. In COPD, chronic inflammation and oxidative stress can lead to immune dysfunction that can exacerbate lung damage, further worsening the respiratory symptoms. In NSCLC, immune cells can recognise and attack the cancer cells, which, however, can evade or suppress the immune response by various mechanisms, such as expressing immune checkpoint proteins or secreting immunosuppressive cytokines, thus creating an immunosuppressive tumour microenvironment that promotes cancer progression and metastasis. The interaction between COPD and NSCLC further complicates the immune response. In patients with both diseases, COPD can impair the immune response against cancer cells by reducing or suppressing the activity of immune cells, or altering their cytokine profile. Moreover, anti-cancer treatments can also affect the immune system and worsen COPD symptoms by causing lung inflammation and fibrosis. Immunotherapy itself can also cause immune-related adverse events that could worsen the respiratory symptoms in patients with COPD-compromised lungs. In the present review, we tried to understand the interplay between the two pathologies and how the efficacy of immunotherapy in NSCLC patients with COPD is affected in these patients.
Collapse
|
15
|
Petakh P, Kamyshna I, Oksenych V, Kamyshnyi O. Metformin Alters mRNA Expression of FOXP3, RORC, and TBX21 and Modulates Gut Microbiota in COVID-19 Patients with Type 2 Diabetes. Viruses 2024; 16:281. [PMID: 38400056 PMCID: PMC10893440 DOI: 10.3390/v16020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
COVID-19 remains a significant global concern, particularly for individuals with type 2 diabetes who face an elevated risk of hospitalization and mortality. Metformin, a primary treatment for type 2 diabetes, demonstrates promising pleiotropic properties that may substantially mitigate disease severity and expedite recovery. Our study of the gut microbiota and the mRNA expression of pro-inflammatory and anti-inflammatory T-lymphocyte subpopulations showed that metformin increases bacterial diversity while modulating gene expression related to T-lymphocytes. This study found that people who did not take metformin had a downregulated expression of FOXP3 by 6.62-fold, upregulated expression of RORC by 29.0-fold, and upregulated TBX21 by 1.78-fold, compared to the control group. On the other hand, metformin patients showed a 1.96-fold upregulation in FOXP3 expression compared to the control group, along with a 1.84-fold downregulation in RORC expression and an 11.4-fold downregulation in TBX21 expression. Additionally, we found a correlation with gut microbiota (F/B ratio and alpha-diversity index) and pro-inflammatory biomarkers. This novel observation of metformin's impact on T-cells and gut microbiota opens new horizons for further exploration through clinical trials to validate and confirm our data. The potential of metformin to modulate immune responses and enhance gut microbiota diversity suggests a promising avenue for therapeutic interventions in individuals with type 2 diabetes facing an increased risk of severe outcomes from COVID-19.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, 88000 Uzhhorod, Ukraine
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
16
|
Carmona-Rocha E, Rusiñol L, Puig L. New and Emerging Oral/Topical Small-Molecule Treatments for Psoriasis. Pharmaceutics 2024; 16:239. [PMID: 38399292 PMCID: PMC10892104 DOI: 10.3390/pharmaceutics16020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
The introduction of biologic therapies has led to dramatic improvements in the management of moderate-to-severe psoriasis. Even though the efficacy and safety of the newer biologic agents are difficult to match, oral administration is considered an important advantage by many patients. Current research is focused on the development of oral therapies with improved efficacy and safety compared with available alternatives, as exemplified by deucravacitinib, the first oral allosteric Tyk2 inhibitor approved for the treatment of moderate to severe psoriasis in adults. Recent advances in our knowledge of psoriasis pathogenesis have also led to the development of targeted topical molecules, mostly focused on intracellular signaling pathways such as AhR, PDE-4, and Jak-STAT. Tapinarof (an AhR modulator) and roflumilast (a PDE-4 inhibitor) have exhibited favorable efficacy and safety outcomes and have been approved by the FDA for the topical treatment of plaque psoriasis. This revision focuses on the most recent oral and topical therapies available for psoriasis, especially those that are currently under evaluation and development for the treatment of psoriasis.
Collapse
Affiliation(s)
- Elena Carmona-Rocha
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (E.C.-R.); (L.R.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Sant Pau Teaching Unit, School of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Lluís Rusiñol
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (E.C.-R.); (L.R.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Sant Pau Teaching Unit, School of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Lluís Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (E.C.-R.); (L.R.)
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Sant Pau Teaching Unit, School of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| |
Collapse
|
17
|
Najar M, Rahmani S, Faour WH, Alsabri SG, Lombard CA, Fayyad-Kazan H, Sokal EM, Merimi M, Fahmi H. Umbilical Cord Mesenchymal Stromal/Stem Cells and Their Interplay with Th-17 Cell Response Pathway. Cells 2024; 13:169. [PMID: 38247860 PMCID: PMC10814115 DOI: 10.3390/cells13020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
As a form of immunomodulatory therapeutics, mesenchymal stromal/stem cells (MSCs) from umbilical cord (UC) tissue were assessed for their dynamic interplay with the Th-17 immune response pathway. UC-MSCs were able to modulate lymphocyte response by promoting a Th-17-like profile. Such modulation depended on the cell ratio of the cocultures as well as the presence of an inflammatory setting underlying their plasticity. UC-MSCs significantly increased the expression of IL-17A and RORγt but differentially modulated T cell expression of IL-23R. In parallel, the secretion profile of the fifteen factors (IL1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-22, IL-21, IL-23, IL-25, IL-31, IL-33, INF-γ, sCD40, and TNF-α) involved in the Th-17 immune response pathway was substantially altered during these cocultures. The modulation of these factors demonstrates the capacity of UC-MSCs to sense and actively respond to tissue challenges. Protein network and functional enrichment analysis indicated that several biological processes, molecular functions, and cellular components linked to distinct Th-17 signaling interactions are involved in several trophic, inflammatory, and immune network responses. These immunological changes and interactions with the Th-17 pathway are likely critical to tissue healing and may help to identify molecular targets that will improve therapeutic strategies involving UC-MSCs.
Collapse
Affiliation(s)
- Mehdi Najar
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
- Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Saida Rahmani
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Wissam H. Faour
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos 5053, Lebanon
| | - Sami G. Alsabri
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Catherine A. Lombard
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, P.O. Box 6573/14, Beirut 1103, Lebanon
| | - Etienne M. Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Makram Merimi
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Hassan Fahmi
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| |
Collapse
|
18
|
Bratkovič T, Zahirović A, Bizjak M, Rupnik M, Štrukelj B, Berlec A. New treatment approaches for Clostridioides difficile infections: alternatives to antibiotics and fecal microbiota transplantation. Gut Microbes 2024; 16:2337312. [PMID: 38591915 PMCID: PMC11005816 DOI: 10.1080/19490976.2024.2337312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Clostridioides difficile causes a range of debilitating intestinal symptoms that may be fatal. It is particularly problematic as a hospital-acquired infection, causing significant costs to the health care system. Antibiotics, such as vancomycin and fidaxomicin, are still the drugs of choice for C. difficile infections, but their effectiveness is limited, and microbial interventions are emerging as a new treatment option. This paper focuses on alternative treatment approaches, which are currently in various stages of development and can be divided into four therapeutic strategies. Direct killing of C. difficile (i) includes beside established antibiotics, less studied bacteriophages, and their derivatives, such as endolysins and tailocins. Restoration of microbiota composition and function (ii) is achieved with fecal microbiota transplantation, which has recently been approved, with standardized defined microbial mixtures, and with probiotics, which have been administered with moderate success. Prevention of deleterious effects of antibiotics on microbiota is achieved with agents for the neutralization of antibiotics that act in the gut and are nearing regulatory approval. Neutralization of C. difficile toxins (iii) which are crucial virulence factors is achieved with antibodies/antibody fragments or alternative binding proteins. Of these, the monoclonal antibody bezlotoxumab is already in clinical use. Immunomodulation (iv) can help eliminate or prevent C. difficile infection by interfering with cytokine signaling. Small-molecule agents without bacteriolytic activity are usually selected by drug repurposing and can act via a variety of mechanisms. The multiple treatment options described in this article provide optimism for the future treatment of C. difficile infection.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Abida Zahirović
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maruša Bizjak
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, Prvomajska 1, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Borut Štrukelj
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Berlec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
19
|
Li H, Rahman MA, Ruesch M, Eisele CD, Anderson EM, Wright PW, Cao J, Ratnayake S, Chen Q, Yan C, Meerzaman D, Abraham RS, Freud AG, Anderson SK. Abundant binary promoter switches in lineage-determining transcription factors indicate a digital component of cell fate determination. Cell Rep 2023; 42:113454. [PMID: 37976160 PMCID: PMC10842785 DOI: 10.1016/j.celrep.2023.113454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 10/02/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Previous studies of the murine Ly49 and human KIR gene clusters implicated competing sense and antisense promoters in the control of variegated gene expression. In the current study, an examination of transcription factor genes defines an abundance of convergent and divergent sense/antisense promoter pairs, suggesting that competing promoters may control cell fate determination. Differentiation of CD34+ hematopoietic progenitors in vitro shows that cells with GATA1 antisense transcription have enhanced GATA2 transcription and a mast cell phenotype, whereas cells with GATA2 antisense transcription have increased GATA1 transcripts and an erythroblast phenotype. Detailed analyses of the AHR and RORC genes demonstrate the ability of competing promoters to act as binary switches and the association of antisense transcription with an immature/progenitor cell phenotype. These data indicate that alternative cell fates generated by promoter competition in lineage-determining transcription factors contribute to the programming of cell differentiation.
Collapse
Affiliation(s)
- Hongchuan Li
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Md Ahasanur Rahman
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Michael Ruesch
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Caprice D Eisele
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Erik M Anderson
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Paul W Wright
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jennie Cao
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Shashikala Ratnayake
- Cancer Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Qingrong Chen
- Cancer Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Chunhua Yan
- Cancer Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Daoud Meerzaman
- Cancer Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43210, USA; Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Aharon G Freud
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Stephen K Anderson
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
20
|
Lu Y, Zhang P, Xu F, Zheng Y, Zhao H. Advances in the study of IL-17 in neurological diseases and mental disorders. Front Neurol 2023; 14:1284304. [PMID: 38046578 PMCID: PMC10690603 DOI: 10.3389/fneur.2023.1284304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Interleukin-17 (IL-17), a cytokine characteristically secreted by T helper 17 (Th17) cells, has attracted increasing attention in recent years because of its importance in the pathogenesis of many autoimmune or chronic inflammatory diseases. Recent studies have shown that neurological diseases and mental disorders are closely related to immune function, and varying degrees of immune dysregulation may disrupt normal expression of immune molecules at critical stages of neural development. Starting from relevant mechanisms affecting immune regulation, this article reviews the research progress of IL-17 in a selected group of neurological diseases and mental disorders (autism spectrum disorder, Alzheimer's disease, epilepsy, and depression) from the perspective of neuroinflammation and the microbiota-gut-brain axis, summarizes the commonalities, and provides a prospective outlook of target application in disease treatment.
Collapse
Affiliation(s)
- Yu Lu
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, China
| | - Piaopiao Zhang
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fenfen Xu
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Zheng
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongyang Zhao
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
21
|
Vinkel J, Rib L, Buil A, Hedetoft M, Hyldegaard O. Key pathways and genes that are altered during treatment with hyperbaric oxygen in patients with sepsis due to necrotizing soft tissue infection (HBOmic study). Eur J Med Res 2023; 28:507. [PMID: 37946314 PMCID: PMC10636866 DOI: 10.1186/s40001-023-01466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND For decades, the basic treatment strategies of necrotizing soft tissue infections (NSTI) have remained unchanged, primarily relying on aggressive surgical removal of infected tissue, broad-spectrum antibiotics, and supportive intensive care. One treatment strategy that has been proposed as an adjunctive measure to improve patient outcomes is hyperbaric oxygen (HBO2) treatment. HBO2 treatment has been linked to several immune modulatory effects; however, investigating these effects is complicated due to the disease's acute life-threatening nature, metabolic and cell homeostasis dependent variability in treatment effects, and heterogeneity with respect to both patient characteristics and involved pathogens. To embrace this complexity, we aimed to explore the underlying biological mechanisms of HBO2 treatment in patients with NSTI on the gene expression level. METHODS We conducted an observational cohort study on prospective collected data, including 85 patients admitted to the intensive care unit (ICU) for NSTI. All patients were treated with one or two HBO2 treatments and had one blood sample taken before and after the intervention. Total RNAs from blood samples were extracted and mRNA purified with rRNA depletion, followed by whole-transcriptome RNA sequencing with a targeted sequencing depth of 20 million reads. A model for differentially expressed genes (DEGs) was fitted, and the functional aspects of the obtained set of genes was predicted with GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of genes and Genomes) enrichment analyses. All analyses were corrected for multiple testing with FDR. RESULTS After sequential steps of quality control, a final of 160 biological replicates were included in the present study. We found 394 protein coding genes that were significantly DEGs between the two conditions with FDR < 0.01, of which 205 were upregulated and 189 were downregulated. The enrichment analysis of these DEGs revealed 20 GO terms in biological processes and 12 KEGG pathways that were significantly overrepresented in the upregulated DEGs, of which the term; "adaptive immune response" (GO:0002250) (FDR = 9.88E-13) and "T cell receptor signaling pathway" (hsa04660) (FDR = 1.20E-07) were the most significant. Among the downregulated DEGs two biological processes were significantly enriched, of which the GO term "apoptotic process" (GO:0006915) was the most significant (FDR = 0.001), followed by "Positive regulation of T helper 1 cell cytokine production" (GO:2000556), and "NF-kappa B signaling pathway" (hsa04064) was the only KEGG pathway that was significantly overrepresented (FDR = 0.001). CONCLUSIONS When one or two sessions of HBO2 treatment were administered to patients with a dysregulated immune response and systemic inflammation due to NSTI, the important genes that were regulated during the intervention were involved in activation of T helper cells and downregulation of the disease-induced highly inflammatory pathway NF-κB, which was associated with a decrease in the mRNA level of pro-inflammatory factors. TRIAL REGISTRATION Biological material was collected during the INFECT study, registered at ClinicalTrials.gov (NCT01790698).
Collapse
Affiliation(s)
- Julie Vinkel
- Department of Anesthesiology, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Leonor Rib
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Alfonso Buil
- Institute for Biological Psychiatry, Mental Health Centre Sct. Hans, Roskilde, Denmark
| | - Morten Hedetoft
- Department of Anesthesiology, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark
- Department of Anesthesiology, Zealand University Hospital, Køge, Denmark
| | - Ole Hyldegaard
- Department of Anesthesiology, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Damasceno LEA, Cunha TM, Cunha FQ, Sparwasser T, Alves-Filho JC. A clinically-relevant STING agonist restrains human T H17 cell inflammatory profile. Int Immunopharmacol 2023; 124:111007. [PMID: 37778170 DOI: 10.1016/j.intimp.2023.111007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
The STING signaling pathway has gained attention over the last few years due to its ability to incite antimicrobial and antitumoral immunity. Conversely, in mouse models of autoimmunity such as colitis and multiple sclerosis, where TH17 cells are implicated in tissue inflammation, STING activation has been associated with the attenuation of immunogenic responses. In this line, STING was found to limit murine TH17 pro-inflammatory program in vitro. Here we demonstrate that 2'3'-c-di-AM(PS)2(Rp,Rp), a STING agonist that has been undergoing clinical trials for antitumor immunotherapy, activates the STING signalosome in differentiating human TH17 cells. Of particular interest, 2'3'-c-di-AM(PS)2(Rp,Rp) reduces IL-17A production and IL23R expression by human TH17 cells while it favors the generation of regulatory T (Treg) cells. These findings suggest that STING agonists may be promising approaches for treating human TH17-mediated chronic inflammation.
Collapse
Affiliation(s)
- Luis Eduardo Alves Damasceno
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil; Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil; Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil; Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil; Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - José Carlos Alves-Filho
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil; Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil.
| |
Collapse
|
23
|
Salehi N, Nourbakhsh M, Noori S, Rezaeizadeh H, Zarghi A. Tehranolid and Artemisinin Effects on Ameliorating Experimental Autoimmune Encephalomyelitis by Modulating Inflammation and Remyelination. Mol Neurobiol 2023; 60:5975-5986. [PMID: 37391648 DOI: 10.1007/s12035-023-03449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system. Artemisinin (ART) is a natural sesquiterpene lactone with an endoperoxide bond that is well-known for its anti-inflammatory effects in experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS. Tehranolide (TEH) is a novel compound with structural similarity to ART. In this study, we aimed to investigate the ameliorating effect of TEH on EAE development by targeting proteins and genes involved in this process and compare its effects with ART. Female C57BL/6 mice were immunized with MOG35-55. Twelve days post-immunization, mice were treated with 0.28 mg/kg/day TEH and 2.8 mg/kg/day ART for 18 consecutive days, and the clinical score was measured daily. The levels of pro-inflammatory and anti-inflammatory cytokines were assessed in mice serum and splenocytes by ELISA. We also evaluated the mRNA expression level of cytokines, as well as genes involved in T cell differentiation and myelination in the spinal cord tissue by qRT-PCR. Administration of TEH and ART significantly alleviated EAE signs. A significant reduction in IL-6 and IL-17 secretion and IL-17 and IL-1 gene expression in spinal cord were observed in the TEH-treated group. ART had similar or less significant effects. Moreover, TGF-β, IL-4, and IL-10 genes were stimulated by ART and TEH in the spinal cord, while the treatments did not affect IFN-γ expression. Both treatments dramatically increased the expression of FOXP3, GATA3, MBP, and AXL. Additionally, the T-bet gene was reduced after TEH administration. The compounds made no changes in RORγt, nestin, Gas6, Tyro3, and Mertk mRNA expression levels in the spinal cord. The study revealed that both TEH and ART can effectively modulate the genes responsible for inflammation and myelination that play a crucial role in EAE. Interestingly, TEH demonstrated a greater potency compared to ART and hence may have the potential to be evaluated in interventions for the management of MS.
Collapse
Affiliation(s)
- Niloufar Salehi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Nourbakhsh
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shokoofe Noori
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hossein Rezaeizadeh
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Hosseinalizadeh H, Rabiee F, Eghbalifard N, Rajabi H, Klionsky DJ, Rezaee A. Regulating the regulatory T cells as cell therapies in autoimmunity and cancer. Front Med (Lausanne) 2023; 10:1244298. [PMID: 37828948 PMCID: PMC10565010 DOI: 10.3389/fmed.2023.1244298] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Regulatory T cells (Tregs), possess a pivotal function in the maintenance of immune homeostasis. The dysregulated activity of Tregs has been associated with the onset of autoimmune diseases and cancer. Hence, Tregs are promising targets for interventions aimed at steering the immune response toward the desired path, either by augmenting the immune system to eliminate infected and cancerous cells or by dampening it to curtail the damage to self-tissues in autoimmune disorders. The activation of Tregs has been observed to have a potent immunosuppressive effect against T cells that respond to self-antigens, thus safeguarding our body against autoimmunity. Therefore, promoting Treg cell stability presents a promising strategy for preventing or managing chronic inflammation that results from various autoimmune diseases. On the other hand, Tregs have been found to be overactivated in several forms of cancer, and their role as immune response regulators with immunosuppressive properties poses a significant impediment to the successful implementation of cancer immunotherapy. However, the targeting of Tregs in a systemic manner may lead to the onset of severe inflammation and autoimmune toxicity. It is imperative to develop more selective methods for targeting the function of Tregs in tumors. In this review, our objective is to elucidate the function of Tregs in tumors and autoimmunity while also delving into numerous therapeutic strategies for reprogramming their function. Our focus is on reprogramming Tregs in a highly activated phenotype driven by the activation of key surface receptors and metabolic reprogramming. Furthermore, we examine Treg-based therapies in autoimmunity, with a specific emphasis on Chimeric Antigen Receptor (CAR)-Treg therapy and T-cell receptor (TCR)-Treg therapy. Finally, we discuss key challenges and the future steps in reprogramming Tregs that could lead to the development of novel and effective cancer immunotherapies.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Rabiee
- Department of Pharmacology and Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Negar Eghbalifard
- Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Rajabi
- Faculty of Medicine, ShahreKord University of Medical Sciences, Shahrekord, Iran
| | - Daniel J. Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Hausmann F, Ergen C, Khatri R, Marouf M, Hänzelmann S, Gagliani N, Huber S, Machart P, Bonn S. DISCERN: deep single-cell expression reconstruction for improved cell clustering and cell subtype and state detection. Genome Biol 2023; 24:212. [PMID: 37730638 PMCID: PMC10510283 DOI: 10.1186/s13059-023-03049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Single-cell sequencing provides detailed insights into biological processes including cell differentiation and identity. While providing deep cell-specific information, the method suffers from technical constraints, most notably a limited number of expressed genes per cell, which leads to suboptimal clustering and cell type identification. RESULTS Here, we present DISCERN, a novel deep generative network that precisely reconstructs missing single-cell gene expression using a reference dataset. DISCERN outperforms competing algorithms in expression inference resulting in greatly improved cell clustering, cell type and activity detection, and insights into the cellular regulation of disease. We show that DISCERN is robust against differences between batches and is able to keep biological differences between batches, which is a common problem for imputation and batch correction algorithms. We use DISCERN to detect two unseen COVID-19-associated T cell types, cytotoxic CD4+ and CD8+ Tc2 T helper cells, with a potential role in adverse disease outcome. We utilize T cell fraction information of patient blood to classify mild or severe COVID-19 with an AUROC of 80% that can serve as a biomarker of disease stage. DISCERN can be easily integrated into existing single-cell sequencing workflow. CONCLUSIONS Thus, DISCERN is a flexible tool for reconstructing missing single-cell gene expression using a reference dataset and can easily be applied to a variety of data sets yielding novel insights, e.g., into disease mechanisms.
Collapse
Affiliation(s)
- Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Can Ergen
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Mohamed Marouf
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Nicola Gagliani
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Pierre Machart
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
- Hamburg Center for Translational Immunology (HCTI), I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
26
|
Gautam S, Kumar R, Kumar U, Kumar S, Luthra K, Dada R. Yoga maintains Th17/Treg cell homeostasis and reduces the rate of T cell aging in rheumatoid arthritis: a randomized controlled trial. Sci Rep 2023; 13:14924. [PMID: 37696876 PMCID: PMC10495372 DOI: 10.1038/s41598-023-42231-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
The pathogenesis of rheumatoid arthritis (RA) is characterized by a Th17/Treg cell imbalance. A pro-inflammatory cytokine milieu that promotes the continued proliferation of Th17 cells is related to the development of autoinflammation. In RA, T cells have several hallmarks of cellular aging, and they accumulate DNA damage, predisposing to the occurrence of mutations and epigenetic alterations. Since the onset, progression, and treatment response are influenced by a variety of external stressors and environmental factors, this study aimed to evaluate the impact of 8-week yoga practice on disease severity, T cell subsets, markers of T cell ageing and inflammation, epigenetic alterations and gene expression patterns in active RA patients on standard disease-modifying anti-rheumatic drugs (DMARDs). A total of 64 participants with active RA were randomized into 2 groups, yoga group (n = 32) or non-yoga group (n = 32); that were assessed for disease severity, at baseline and after 8 week duration, for Disease Activity Score (DAS28-ESR), T cell subsets [Th17 (CD3+ CD4+ IL17+ RORγt+) cells and Treg (CD3+ CD4+ CD25+ CD127-Foxp3+) cells], markers of T cell aging [aged Th17 cells (CD3+ CD4+ IL17+ RORγt+ CD28-) and aged Treg cells (CD3+ CD4+ CD25+ CD127-Foxp3+ CD28-)], pro-inflammatory markers [IL-6, and IL-17], anti-inflammatory markers [TGF-β, and IL-10], epigenetic alterations [5-methyl cytosine, 5-hydroxymethyl cytosine, and HDAC1] and gene expression patterns [RORγt, FoxP3, IL-17, IL-6, TGF-β, CXCL2, CXCR2, and JUN]. In yoga group, there was a significant improvement in DAS28-ESR scores at the end of 8-weeks of yoga program. The Th17 cells and aged T cell subsets showed a significant decline whereas Treg cell population showed a significant elevation in yoga group. There were significant improvements observed in epigenetic markers as well as inflammatory markers post 8-weeks of yoga practice. The yoga group showed downregulation of RORγt, IL-17, IL-6, CXCL2, CXCR2, and upregulation of FoxP3 and TGF-β transcripts. Yoga enables the maintenance of immune-homeostasis as evident by increased Treg cell population and reduced Th17 cell population. Yoga reduces the rate of immunological aging in T cells, as seen by the reduction in population of aged Th17 cells and aged Treg cells. Yoga positively modifies transcriptome and epigenome by normalization of various inflammatory markers, gene expression patterns and epigenetic alterations. Taken together, yoga reduces RA severity, and aids in immune-modulation and hence can be beneficial as an adjunct therapy.
Collapse
Affiliation(s)
- Surabhi Gautam
- Department of Anatomy, Molecular Reproduction and Genetics Facility, All India Institute of Medical Sciences (AIIMS), New Delhi, India
- Department of Orthopaedics, Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, USA
| | - Romsha Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Uma Kumar
- Department of Rheumatology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sanjeev Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rima Dada
- Department of Anatomy, Molecular Reproduction and Genetics Facility, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| |
Collapse
|
27
|
Liu P, Xiao Z, Lu X, Zhang X, Huang J, Li C. Fasudil and SR1001 synergistically protect against sepsis-associated pancreatic injury by inhibiting RhoA/ROCK pathway and Th17/IL-17 response. Heliyon 2023; 9:e20118. [PMID: 37809525 PMCID: PMC10559842 DOI: 10.1016/j.heliyon.2023.e20118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Sepsis is defined as a dysregulated host response to infection that can result in organ dysfunction and high mortality, which needs more effective treatment urgently. Pancreas is one of the most vulnerable organs in sepsis, resulting in sepsis-associated pancreatic injury, which is a fatal complication of sepsis. The aim of this study was to investigate the effect of combination of fasudil and SR1001 on sepsis-associated pancreatic injury and to explore the underlying mechanisms. The model of sepsis-associated pancreatic injury was induced by cecal ligation and puncture. Pancreatic injury was evaluated by HE staining, histopathological scores and amylase activity. The frequency of Th17 cells was analyzed by flow cytometry. Serum IL-17 level was determined by ELISA. Protein levels of RORγt, p-STAT3, GEF-H1, RhoA and ROCK1 were determined by Western blot. The apoptosis of pancreatic cells was examined by TUNEL analysis and Hoechst33342/PI staining. Compared to the sham group, the model group showed significant pathological injury including edema, hyperemia, vacuolization and necrosis. After treatment with fasudil, model mice showed an obvious reduction of Th17 cells and IL-17. SR1001 significantly reduced the expressions of GEF-H1, RhoA and ROCK1 in the model mice. The combination treatment with fasudil and SR1001 significantly inhibited the differentiation of Th17 cells, expressions of IL-17, GEF-H1, RhoA and ROCK1, which were more effective than each mono-treatment. In addition, our data revealed a remarkable decrease of apoptosis in pancreatic acinar cells culturing with fasudil or SR1001, which was further inhibited by their combination culture. Lipopolysaccharide remarkably upregulated the differentiation of Th17 cells in vitro, which could be significantly downregulated by fasudil or SR1001, and further downregulated by their combination treatment. Taken together, the combination of fasudil with SR1001 has a synergistic effect on protecting against sepsis-associated pancreatic injury in C57BL/6 mice.
Collapse
Affiliation(s)
- Pingping Liu
- Department of Emergency, Key Laboratory of Pediatric Emergency Medicine of Hunan Province, Hunan Children's Hospital, Changsha, 410007, Hunan, PR China
| | - Zhenghui Xiao
- Department of Emergency, Key Laboratory of Pediatric Emergency Medicine of Hunan Province, Hunan Children's Hospital, Changsha, 410007, Hunan, PR China
| | - Xiulan Lu
- Department of Emergency, Key Laboratory of Pediatric Emergency Medicine of Hunan Province, Hunan Children's Hospital, Changsha, 410007, Hunan, PR China
| | - Xinping Zhang
- Department of Emergency, Key Laboratory of Pediatric Emergency Medicine of Hunan Province, Hunan Children's Hospital, Changsha, 410007, Hunan, PR China
| | - Jiaotian Huang
- Department of Emergency, Key Laboratory of Pediatric Emergency Medicine of Hunan Province, Hunan Children's Hospital, Changsha, 410007, Hunan, PR China
| | - Cheng Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, PR China
| |
Collapse
|
28
|
Morales M, Xue X. Hypoxia in the Pathophysiology of Inflammatory Bowel Disease. Compr Physiol 2023; 13:4767-4783. [PMID: 37358514 PMCID: PMC10799609 DOI: 10.1002/cphy.c220002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic disease of disordered chronic inflammation in the intestines that affects many people across the world. While the disease is still being better characterized, greater progress has been made in understanding the many components that intersect in the disease. Among these components are the many pieces that compose the intestinal epithelial barrier, the various cytokines and immune cells, and the population of microbes that reside in the intestinal lumen. Since their discovery, the hypoxia-inducible factors (HIFs) have been found to play an expansive role in physiology as well as diseases such as inflammation due to their role in oxygen sensing-related gene transcription, and metabolic control. Making use of existing and developing paradigms in the immuno-gastroenterology of IBD, we summarized that hypoxic signaling plays as another component in the status and progression of IBD, which may include possible functions at the origins of inflammatory dysregulation. © 2023 American Physiological Society. Compr Physiol 13:4767-4783, 2023.
Collapse
Affiliation(s)
- Michael Morales
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
29
|
Wan M, Yang X, Chen Z, Su W, Cai L, Hou A, Sun B, Zhang Y, Kong W, Jiang C, Zhou Y. Comparison of Effects of Multiple Adjuvants and Immunization Routes on the Immunogenicity and Protection of HSV-2 gD Subunit Vaccine. Immunol Lett 2023:S0165-2478(23)00097-4. [PMID: 37290556 DOI: 10.1016/j.imlet.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Genital herpes caused by herpes simplex virus type 2 (HSV-2) poses a global health issue. HSV-2 infection increases the risk of acquiring HIV infection. Studies have demonstrated that HSV-2 subunit vaccines have potential benefits, but require adjuvants to induce a balanced Th1/Th2 response. To develop a novel, effective vaccine, in this study, a truncated glycoprotein D (aa 1-285) of HSV-2 was formulated with an Al(OH)3 adjuvant, three squalene adjuvants, MF59, AS03, and AS02, or a mucosal adjuvant, bacterium-like particles (BLPs). The immunogenicity of these subunit vaccines was evaluated in mice. After three immunizations, vaccines formulated with Al(OH)3, MF59, AS03, and AS02 (intramuscularly) induced higher titers of neutralizing antibody than that formulated without adjuvant, and in particular, mice immunized with the vaccine plus AS02 had the highest neutralizing antibody titers and tended to produce a more balanced immune reaction than others. Intranasal gD2-PA-BLPs also induced excellent IgA levels and a more balanced Th1 and Th2 responses than intranasal gD2. After challenge with a lethal dose of HSV-2, all five adjuvants exhibited a positive effect in improving the survival rate. AS02 and gD2-PA-BLPs enhanced survival by 50% and 25%, respectively, when compared with the vaccine without adjuvant. AS02 was the only adjuvant that resulted in complete vaginal virus clearance and genital lesion healing within eight days. These results demonstrate the potential of using AS02 as a subunit vaccine adjuvant, and BLPs as a mucosal vaccine adjuvant.
Collapse
Affiliation(s)
- Mingming Wan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiao Yang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhijun Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ali Hou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yan Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
30
|
Qu Y, Li D, Xiong H, Shi D. Transcriptional regulation on effector T cells in the pathogenesis of psoriasis. Eur J Med Res 2023; 28:182. [PMID: 37270497 PMCID: PMC10239166 DOI: 10.1186/s40001-023-01144-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/15/2023] [Indexed: 06/05/2023] Open
Abstract
Psoriasis is one of the most common inflammatory diseases, characterized by scaly erythematous plaques on the skin. The accumulated evidence on immunopathology of psoriasis suggests that inflammatory reaction is primarily mediated by T helper (Th) cells. The differentiation of Th cells plays important roles in psoriatic progression and it is regulated by transcription factors such as T-bet, GATA3, RORγt, and FOXP3, which can convert naïve CD4+ T cells, respectively, into Th1, Th2, Th17 and Treg subsets. Through the activation of the JAK/STAT and Notch signaling pathways, together with their downstream effector molecules including TNF-α, IFN-γ, IL-17, TGF-β, these subsets of Th cells are then deeply involved in the pathogenesis of psoriasis. As a result, keratinocytes are abnormally proliferated and abundant inflammatory immune cells are infiltrated in psoriatic lesions. We hypothesize that modulation of the expression of transcription factors for each Th subset could be a new therapeutic target for psoriasis. In this review, we will focus on the recent literature concerning the transcriptional regulation of Th cells in psoriasis.
Collapse
Affiliation(s)
- Yuying Qu
- College of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining, 272067, Shandong, China.
| | - Dongmei Shi
- Department of Dermatology, Jining No. 1 People's Hospital, Jining, 272067, Shandong, China.
| |
Collapse
|
31
|
Hinshaw DC, Benavides GA, Metge BJ, Swain CA, Kammerud SC, Alsheikh HA, Elhamamsy A, Chen D, Darley-Usmar V, Rathmell JC, Welner RS, Samant RS, Shevde LA. Hedgehog Signaling Regulates Treg to Th17 Conversion Through Metabolic Rewiring in Breast Cancer. Cancer Immunol Res 2023; 11:687-702. [PMID: 37058110 PMCID: PMC10159910 DOI: 10.1158/2326-6066.cir-22-0426] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/18/2022] [Accepted: 02/28/2023] [Indexed: 04/15/2023]
Abstract
The tumor immune microenvironment dynamically evolves to support tumor growth and progression. Immunosuppressive regulatory T cells (Treg) promote tumor growth and metastatic seeding in patients with breast cancer. Deregulation of plasticity between Treg and Th17 cells creates an immune regulatory framework that enables tumor progression. Here, we discovered a functional role for Hedgehog (Hh) signaling in promoting Treg differentiation and immunosuppressive activity, and when Hh activity was inhibited, Tregs adopted a Th17-like phenotype complemented by an enhanced inflammatory profile. Mechanistically, Hh signaling promoted O-GlcNAc modifications of critical Treg and Th17 transcription factors, Foxp3 and STAT3, respectively, that orchestrated this transition. Blocking Hh reprogramed Tregs metabolically, dampened their immunosuppressive activity, and supported their transdifferentiation into inflammatory Th17 cells that enhanced the recruitment of cytotoxic CD8+ T cells into tumors. Our results demonstrate a previously unknown role for Hh signaling in the regulation of Treg differentiation and activity and the switch between Tregs and Th17 cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Dominique C. Hinshaw
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gloria A. Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon J. Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Courtney A. Swain
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarah C. Kammerud
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Heba A. Alsheikh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amr Elhamamsy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongquan Chen
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, VUMC, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert S. Welner
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S. Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Birmingham VA Medical Center, Birmingham, AL, USA
| | - Lalita A. Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Senior author
| |
Collapse
|
32
|
Al-Hetty HRAK, Abdulameer SJ, Alkubaisy SA, Zaid SA, Jalil AT, Jasim IK. STAT3 signaling in pancreatic ductal adenocarcinoma: a candidate therapeutic target. Pathol Res Pract 2023; 245:154425. [PMID: 37019018 DOI: 10.1016/j.prp.2023.154425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with a poor prognosis which is lethal in over 90% of cases despite the standard therapies. Mainly activated by Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3) is a key transcription factor, capable of exerting the expression of multitude of genes involved in survival. Moreover, STAT3 activity is regulated by the interleukin 28 receptor α (IL28RA) and glutathione s-transferase mu-3 (GSTM3), up-regulation of both contributes to the invasiveness of pancreatic cancer cells. In this regard, STAT3 overactivity has an important pathogenic role in the development of PDAC as it is associated with enhanced cell proliferation, survival, angiogenesis, and metastasis. STAT3-associated expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinase 3 and 9 are implicated in the angiogenic and metastatic behavior of the PDAC. Multitude of evidence underline the protective role of STAT3 inhibition against PDAC both in cell cultures and in tumor grafts. However, specific inhibition of STAT3 was not feasible until recently, when a selective potent chemical STAT3 inhibitor, termed N4, were developed and it turned out to be highly effective against PDAC in vitro, as well as in vivo. This review aims to discuss the most recent advances in our understanding of STAT3 role in the pathogenesis of PDAC and its therapeutic applications.
Collapse
|
33
|
Kheradmand F, Zhang Y, Corry DB. Contribution of adaptive immunity to human COPD and experimental models of emphysema. Physiol Rev 2023; 103:1059-1093. [PMID: 36201635 PMCID: PMC9886356 DOI: 10.1152/physrev.00036.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 02/01/2023] Open
Abstract
The pathophysiology of chronic obstructive pulmonary disease (COPD) and the undisputed role of innate immune cells in this condition have dominated the field in the basic research arena for many years. Recently, however, compelling data suggesting that adaptive immune cells may also contribute to the progressive nature of lung destruction associated with COPD in smokers have gained considerable attention. The histopathological changes in the lungs of smokers can be limited to the large or small airways, but alveolar loss leading to emphysema, which occurs in some individuals, remains its most significant and irreversible outcome. Critically, however, the question of why emphysema progresses in a subset of former smokers remained a mystery for many years. The recognition of activated and organized tertiary T- and B-lymphoid aggregates in emphysematous lungs provided the first clue that adaptive immune cells may play a crucial role in COPD pathophysiology. Based on these findings from human translational studies, experimental animal models of emphysema were used to determine the mechanisms through which smoke exposure initiates and orchestrates adaptive autoreactive inflammation in the lungs. These models have revealed that T helper (Th)1 and Th17 subsets promote a positive feedback loop that activates innate immune cells, confirming their role in emphysema pathogenesis. Results from genetic studies and immune-based discoveries have further provided strong evidence for autoimmunity induction in smokers with emphysema. These new findings offer a novel opportunity to explore the mechanisms underlying the inflammatory landscape in the COPD lung and offer insights for development of precision-based treatment to halt lung destruction.
Collapse
Affiliation(s)
- Farrah Kheradmand
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas
| | - Yun Zhang
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - David B Corry
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas
| |
Collapse
|
34
|
Warren WC, Rice ES, Meyer A, Hearn CJ, Steep A, Hunt HD, Monson MS, Lamont SJ, Cheng HH. The immune cell landscape and response of Marek's disease resistant and susceptible chickens infected with Marek's disease virus. Sci Rep 2023; 13:5355. [PMID: 37005445 PMCID: PMC10067856 DOI: 10.1038/s41598-023-32308-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Genetically resistant or susceptible chickens to Marek's disease (MD) have been widely used models to identify the molecular determinants of these phenotypes. However, these prior studies lacked the basic identification and understanding of immune cell types that could be translated toward improved MD control. To gain insights into specific immune cell types and their responses to Marek's disease virus (MDV) infection, we used single-cell RNA sequencing (scRNAseq) on splenic cells from MD resistant and susceptible birds. In total, 14,378 cells formed clusters that identified various immune cell types. Lymphocytes, specifically T cell subtypes, were the most abundant with significant proportional changes in some subtypes upon infection. The largest number of differentially expressed genes (DEG) response was seen in granulocytes, while macrophage DEGs differed in directionality by subtype and line. Among the most DEG in almost all immune cell types were granzyme and granulysin, both associated with cell-perforating processes. Protein interactive network analyses revealed multiple overlapping canonical pathways within both lymphoid and myeloid cell lineages. This initial estimation of the chicken immune cell type landscape and its accompanying response will greatly aid efforts in identifying specific cell types and improving our knowledge of host response to viral infection.
Collapse
Affiliation(s)
- Wesley C Warren
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA.
| | - Edward S Rice
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Ashley Meyer
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Cari J Hearn
- Avian Disease and Oncology Laboratory, USDA, ARS, USNPRC, East Lansing, MI, USA
| | - Alec Steep
- Department of Human Genetics Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Henry D Hunt
- Avian Disease and Oncology Laboratory, USDA, ARS, USNPRC, East Lansing, MI, USA
| | - Melissa S Monson
- Department of Animal Science, Iowa State University, Ames, IA, USA
- Food Safety and Enteric Pathogens Research Unit, USDA, ARS, NADC, Ames, IA, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Hans H Cheng
- Avian Disease and Oncology Laboratory, USDA, ARS, USNPRC, East Lansing, MI, USA.
| |
Collapse
|
35
|
Ghelichli M, Mohtasham N, Mohajertehran F, Farshbaf A, Anvari K, Taghipour A, Pakfetrat A, Ansari AH. Associations between RORγt and T-bet Expressions, clinicopathological indices and survival rate in oral Squamous cell carcinoma patients. Cytokine 2023; 163:156116. [PMID: 36621309 DOI: 10.1016/j.cyto.2022.156116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND Oral cancers are the sixth most common cancers around the world. According to the pivotal role of immune cells in the pathogenesis of oral squamous cell carcinoma (OSCC), as the frequent form of malignant epithelial neoplasm in the oral cavity, we investigated the association between the expression of RORγt and T-bet genes as two transcription factors, clinicopathologic indices, and survival rate. METHODS AND MATERIALS Forty-two OSCC paraffin embded-blocks tissue samples and their surgical healthy margins (as a control group) were collected. Demographic information like age and gender, and medical history including tumor stage/grade, and following-up time were registered. The RORγt and T-bet expression were assessed by qPCR. The overall survival (OS) and disease free survival (DFS) were analyzed by SPSS V.23 software. RESULTS The expression of RORγt and T-bet genes in OSCC patients were significantly higher than in surgical healthy margins (P < 0.001). Both expression demonstrated a significant difference between surgical healthy margins and tumor tissues related to gender and clinicopathological indices including stage and grade (P < 0.05). The expression of both genes in stage I patients was significant compared to stage IV (P < 0.05). The relation between expressions, OS, and DFS with clinical stage and histological grade of tumors was not statistically significant (P > 0.05). CONCLUSION Overexpression of RORγt and T-bet in OSCC patients with higher grade and stage in compare to surgical healthy margin highlighted their critical role in OSCC pathogenesis including oral epithelial cell differentiation, tumorigenesis process, and malignant transformation. Moreover, both mentioned genes can apply as prognostic biomarkers in OSCC patients. We suggest surgical healthy margin be considered as valuable biological area.
Collapse
Affiliation(s)
- Maryam Ghelichli
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farnaz Mohajertehran
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alieh Farshbaf
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Kazem Anvari
- Department of Radiotherapy Oncology and Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Taghipour
- Department of Epidemiology, School of Public Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Atessa Pakfetrat
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amir Houshang Ansari
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
36
|
Gallic acid diminishes pro-inflammatory interferon-γ- and interleukin-17-producing sub-populations in vitro in patients with psoriasis. Immunol Res 2023; 71:475-487. [PMID: 36754913 DOI: 10.1007/s12026-023-09361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/10/2023] [Indexed: 02/10/2023]
Abstract
Psoriasis is an inflammation of the skin mediated via the IL-23/Thl17/IL-17 pathway. We have previously demonstrated that the anthocyanin delphinidin diminishes in vitro the IL-17 and IFN-γ production of peripheral monocytes isolated by psoriasis patients (PBMCs). The degradation product of delphinidin is gallic acid (GA). This phenolic acid compound found in fruits, red wine, or green tea exerts pleiotropic antioxidant, anticarcinogenic, antimicrobial, and anti-inflammatory properties. Previous research has demonstrated the inhibitory effect of GA on pro-inflammatory transcription factors, such as STAT3, RORγt, and NF-κB, or cytokines as IL-1β and TNF, which contribute to psoriasis development. We investigated the effect of GA in vitro on PBMCs, which were stimulated ex vivo, from 40 individuals (28 diagnosed with psoriasis vulgaris and 12 healthy controls (HCs)). In our experiments, PBMCs were cultured untreated or were activated in the presence of phorbol 12-myristate 13-acetate/ionomycin with or without GA. We utilized multicolor flow cytometry to assess the production of inteleukin-17 (IL-17) and interferon-γ (IFN-γ) in T and NK cells. GA did not alter the fractions of IL-17- or IFN-γ-producing T and IFN-γ-producing NK cells in HCs. However, in psoriasis patients, the effect of GA on that cell population was significant. Specifically, GA decreased the frequency of IL-17-producing cells within the CD3+ (T) and CD3+CD4+ (Th) compartment; the frequency of IFN-γ-producing cells within the CD3+, CD3+CD4+, and CD3+CD4- (Tc) compartment, and the frequency of IFN-γ-producing cells within the CD3-CD56+ (NK) compartment. Whether GA's effect also appears in vivo needs to be investigated in future.
Collapse
|
37
|
Wu M, Sun J, Wang L, Wang P, Xiao T, Wang S, Liu Q. The lncRNA HOTAIR via miR-17-5p is involved in arsenite-induced hepatic fibrosis through regulation of Th17 cell differentiation. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130276. [PMID: 36332283 DOI: 10.1016/j.jhazmat.2022.130276] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Arsenic compounds are toxins that are widely distributed in the environment. Chronic exposure to low levels of these compounds can cause hepatic fibrosis and other damage. Th17 differentiation of CD4+ T cells and the secretion of IL-17 activates hepatic stellate cells (HSCs), which are involved in hepatic fibrosis, but their mechanisms in arsenic-induced hepatic fibrosis are unclear. We found, in arsenite-induced fibrotic livers of mice, increases of CD4+ T cell infiltration, Th17 cell nuclear receptor retinoic acid receptor-related orphan receptor γt (RORγt), and secretion of the pro-inflammatory cytokine IL-17. There were also elevated levels of the lncRNA, HOTAIR. For Jurkat cells, arsenite elevated levels of HOTAIR and protein levels of RORγt and IL-17A, decreased miR-17-5p, promoted Th17 cell differentiation, and released IL-17. The culture medium of arsenite-treated Jurkat cells activated LX-2 cells. Down-regulation of HOTAIR or up-regulation of miR-17-5p blocked arsenite-induced Th17 cell differentiation, which inhibited the LX-2 cell activation. However, down-regulation of HOTAIR and miR-17-5p reversed this inhibitory effect. For mice, silencing of HOTAIR diminished the hepatic levels of RORγt and IL-17A and alleviated arsenite-induced hepatic fibrosis. These results demonstrate that, for CD4+ T cells, arsenite promotes RORγt-mediated Th17 cell differentiation through HOTAIR down-regulation of miR-17-5p, and increases the secretion of cytokine IL-17A, which activates HSCs; the activated HSCs facilitate hepatic fibrosis. The findings reveal a new mechanism and a potential therapeutic target for arsenite-induced hepatic fibrosis.
Collapse
Affiliation(s)
- Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Jing Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Department of Nutrition, Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Li Wang
- Department of Toxicology, School of Public Health, Baotou Medical College, Baotou 014040, Inner Mongolia, People's Republic of China
| | - Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Suhua Wang
- Department of Toxicology, School of Public Health, Baotou Medical College, Baotou 014040, Inner Mongolia, People's Republic of China.
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
38
|
Singh Gautam A, Kumar Singh R. Therapeutic potential of targeting IL-17 and its receptor signaling in neuroinflammation. Drug Discov Today 2023; 28:103517. [PMID: 36736763 DOI: 10.1016/j.drudis.2023.103517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/26/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
T helper 17 cells are thought to significantly contribute to the neuroinflammation process during neurogenerative diseases via their signature cytokine, interleukin (IL)-17. Recently, an emerging key role of IL-17 and its receptors has been documented in inflammatory and autoimmune diseases. The clinical studies conducted on patients with neurodegenerative disease have also shown an increase in IL-17 levels in serum as well as cerebrospinal fluid samples. Therapeutic targeting of either IL-17 receptors or direct IL-17 neutralizing antibodies has shown a promising preclinical and clinical proof of concept for treating chronic autoimmune neurodegenerative diseases such as multiple sclerosis. Thus, IL-17 and its receptors have a central role in regulation of neuroinflammation and can be considered as one of the major therapeutic targets in chronic neuroinflammatory diseases.
Collapse
Affiliation(s)
- Avtar Singh Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India.
| |
Collapse
|
39
|
Doghish AS, Ismail A, El-Mahdy HA, Elkhawaga SY, Elsakka EGE, Mady EA, Elrebehy MA, Khalil MAF, El-Husseiny HM. miRNAs insights into rheumatoid arthritis: Favorable and detrimental aspects of key performers. Life Sci 2023; 314:121321. [PMID: 36574943 DOI: 10.1016/j.lfs.2022.121321] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Rheumatoid arthritis (RA) is a severe autoimmune inflammation that mostly affects the joints. It's a multifactorial disease. Its clinical picture depends on genetic and epigenetic factors such as miRNAs. The miRNAs are small noncoding molecules that are able to negatively or positively modulate their target gene expression. In RA, miRNAs are linked to its pathogenesis. They disrupt immunity balance by controlling granulocytes, triggering the release of several proinflammatory cytokines such as interleukin-6 and tumor necrosis factor-α, finally leading to synovium hyperplasia and inflammation. Besides, they also may trigger activation of some pathways as nuclear factor kappa-β disrupts the balance between osteoclast and osteoblast activity, leading to increased bone destruction. Moreover, miRNAs are also applied with efficiency in RA diagnosis and prognosis. Besides the significant association between miRNAs and RA response to treatment, they are also applied as a choice for treatment based on their effects on the immune system and inflammatory cytokines. Hence, the review aims to present an updated overview of miRNAs, their biogenesis, implications in RA pathogenesis, and finally, the role of miRNAs in RA treatment.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Eman A Mady
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukfh, Elqaliobiya 13736, Egypt; Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A F Khalil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| |
Collapse
|
40
|
Friedman MJ, Lee H, Lee JY, Oh S. Transcriptional and Epigenetic Regulation of Context-Dependent Plasticity in T-Helper Lineages. Immune Netw 2023; 23:e5. [PMID: 36911799 PMCID: PMC9995996 DOI: 10.4110/in.2023.23.e5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Th cell lineage determination and functional specialization are tightly linked to the activation of lineage-determining transcription factors (TFs) that bind cis-regulatory elements. These lineage-determining TFs act in concert with multiple layers of transcriptional regulators to alter the epigenetic landscape, including DNA methylation, histone modification and three-dimensional chromosome architecture, in order to facilitate the specific Th gene expression programs that allow for phenotypic diversification. Accumulating evidence indicates that Th cell differentiation is not as rigid as classically held; rather, extensive phenotypic plasticity is an inherent feature of T cell lineages. Recent studies have begun to uncover the epigenetic programs that mechanistically govern T cell subset specification and immunological memory. Advances in next generation sequencing technologies have allowed global transcriptomic and epigenomic interrogation of CD4+ Th cells that extends previous findings focusing on individual loci. In this review, we provide an overview of recent genome-wide insights into the transcriptional and epigenetic regulation of CD4+ T cell-mediated adaptive immunity and discuss the implications for disease as well as immunotherapies.
Collapse
Affiliation(s)
- Meyer J. Friedman
- Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Haram Lee
- College of Pharmacy Korea University, Sejong 30019, Korea
| | - June-Yong Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute of Genetic Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soohwan Oh
- College of Pharmacy Korea University, Sejong 30019, Korea
| |
Collapse
|
41
|
Montilla A, Zabala A, Er-Lukowiak M, Rissiek B, Magnus T, Rodriguez-Iglesias N, Sierra A, Matute C, Domercq M. Microglia and meningeal macrophages depletion delays the onset of experimental autoimmune encephalomyelitis. Cell Death Dis 2023; 14:16. [PMID: 36635255 PMCID: PMC9835747 DOI: 10.1038/s41419-023-05551-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
In multiple sclerosis and the experimental autoimmune encephalomyelitis (EAE) model, both resident microglia and infiltrating macrophages contribute to demyelination as well as spontaneous remyelination. Nevertheless, the specific roles of microglia versus macrophages are unknown. We investigated the influence of microglia in EAE using the colony stimulating factor 1 receptor (CSF-1R) inhibitor, PLX5622, to deplete microglial population and Ccr2RFP/+ fmsEGFP/+ mice, to distinguish blood-derived macrophages from microglia. PLX5622 treatment depleted microglia and meningeal macrophages, and provoked a massive infiltration of CCR2+ macrophages into demyelinating lesions and spinal cord parenchyma, albeit it did not alter EAE chronic phase. In contrast, microglia and meningeal macrophages depletion reduced the expression of major histocompatibility complex II and CD80 co-stimulatory molecule in dendritic cells, macrophages and microglia. In addition, it diminished T cell reactivation and proliferation in the spinal cord parenchyma, inducing a significant delay in EAE onset. Altogether, these data point to a specific role of CNS microglia and meningeal macrophages in antigen presentation and T cell reactivation at initial stages of EAE.
Collapse
Affiliation(s)
- Alejandro Montilla
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Alazne Zabala
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Marco Er-Lukowiak
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 20251, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 20251, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 20251, Hamburg, Germany
| | - Noelia Rodriguez-Iglesias
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
- Ikerbasque Foundation, E-48009, Bilbao, Spain
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain.
| | - María Domercq
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain.
| |
Collapse
|
42
|
Breast cancer tumor microenvironment affects Treg/IL-17-producing Treg/Th17 cell axis: Molecular and therapeutic perspectives. Mol Ther Oncolytics 2023; 28:132-157. [PMID: 36816749 PMCID: PMC9922830 DOI: 10.1016/j.omto.2023.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The tumor microenvironment (TME) comprises a variety of immune cells, among which T cells exert a prominent axial role in tumor development or anti-tumor responses in patients with breast cancer (BC). High or low levels of anti-inflammatory cytokines, such as transforming growth factor β, in the absence or presence of proinflammatory cytokines, such as interleukin-6 (IL-6), delineate the fate of T cells toward either regulatory T (Treg) or T helper 17 (Th17) cells, respectively. The transitional state of RORγt+Foxp3+ Treg (IL-17-producing Treg) resides in the middle of this reciprocal polarization, which is known as Treg/IL-17-producing Treg/Th17 cell axis. TME secretome, including microRNAs, cytokines, and extracellular vesicles, can significantly affect this axis. Furthermore, immune checkpoint inhibitors may be used to reconstruct immune cells; however, some of these novel therapies may favor tumor development. Therefore, understanding secretory and cell-associated factors involved in their differentiation or polarization and functions may be targeted for BC management. This review discusses microRNAs, cytokines, and extracellular vesicles (as secretome), as well as transcription factors and immune checkpoints (as cell-associated factors), which influence the Treg/IL-17-producing Treg/Th17 cell axis in BC. Furthermore, approved or ongoing clinical trials related to the modulation of this axis in the TME of BC are described to broaden new horizons of promising therapeutic approaches.
Collapse
|
43
|
Lu J, Liang T, Li P, Yin Q. Regulatory effects of IRF4 on immune cells in the tumor microenvironment. Front Immunol 2023; 14:1086803. [PMID: 36814912 PMCID: PMC9939821 DOI: 10.3389/fimmu.2023.1086803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
The tumor microenvironment (TME) is implicated in tumorigenesis, chemoresistance, immunotherapy failure and tumor recurrence. Multiple immunosuppressive cells and soluble secreted cytokines together drive and accelerate TME disorders, T cell immunodeficiency and tumor growth. Thus, it is essential to comprehensively understand the TME status, immune cells involved and key transcriptional factors, and extend this knowledge to therapies that target dysfunctional T cells in the TME. Interferon regulatory factor 4 (IRF4) is a unique IRF family member that is not regulated by interferons, instead, is mainly induced upon T-cell receptor signaling, Toll-like receptors and tumor necrosis factor receptors. IRF4 is largely restricted to immune cells and plays critical roles in the differentiation and function of effector cells and immunosuppressive cells, particularly during clonal expansion and the effector function of T cells. However, in a specific biological context, it is also involved in the transcriptional process of T cell exhaustion with its binding partners. Given the multiple effects of IRF4 on immune cells, especially T cells, manipulating IRF4 may be an important therapeutic target for reversing T cell exhaustion and TME disorders, thus promoting anti-tumor immunity. This study reviews the regulatory effects of IRF4 on various immune cells in the TME, and reveals its potential mechanisms, providing a novel direction for clinical immune intervention.
Collapse
Affiliation(s)
- Jing Lu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Taotao Liang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Ping Li
- Department of Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qingsong Yin
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
44
|
Chopp L, Redmond C, O'Shea JJ, Schwartz DM. From thymus to tissues and tumors: A review of T-cell biology. J Allergy Clin Immunol 2023; 151:81-97. [PMID: 36272581 PMCID: PMC9825672 DOI: 10.1016/j.jaci.2022.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
T cells are critical orchestrators of the adaptive immune response that optimally eliminate a specific pathogen. Aberrant T-cell development and function are implicated in a broad range of human disease including immunodeficiencies, autoimmune diseases, and allergic diseases. Accordingly, therapies targeting T cells and their effector cytokines have markedly improved the care of patients with immune dysregulatory diseases. Newer discoveries concerning T-cell-mediated antitumor immunity and T-cell exhaustion have further prompted development of highly effective and novel treatment modalities for malignancies, including checkpoint inhibitors and antigen-reactive T cells. Recent discoveries are also uncovering the depth and variability of T-cell phenotypes: while T cells have long been described using a subset-based classification system, next-generation sequencing technologies suggest an astounding degree of complexity and heterogeneity at the single-cell level.
Collapse
Affiliation(s)
- Laura Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda
| | - Christopher Redmond
- Clinical Fellowship Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda; Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh.
| |
Collapse
|
45
|
Wang Z, Dai R, Ahmed SA. MicroRNA-183/96/182 cluster in immunity and autoimmunity. Front Immunol 2023; 14:1134634. [PMID: 36891312 PMCID: PMC9986322 DOI: 10.3389/fimmu.2023.1134634] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
MicroRNAs (miRNAs) are crucial post-transcriptional regulators of gene expression in ubiquitous biological processes, including immune-related pathways. This review focuses on the miR-183/96/182 cluster (miR-183C), which contains three miRNAs, miR-183, -96, and -182, having almost identical seed sequences with minor differences. The similarity among seed sequences allows these three miRNAs to act cooperatively. In addition, their minor differences permit them to target distinct genes and regulate unique pathways. The expression of miR-183C was initially identified in sensory organs. Subsequently, abnormal expression of miR-183C miRNAs in various cancers and autoimmune diseases has been reported, implying their potential role in human diseases. The regulatory effects of miR-183C miRNAs on the differentiation and function of both innate and adaptive immune cells have now been documented. In this review, we have discussed the complex role of miR-183C in the immune cells in both normal and autoimmune backgrounds. We highlighted the dysregulation of miR-183C miRNAs in several autoimmune diseases, including systemic lupus erythematosus (SLE), multiple sclerosis (MS), and ocular autoimmune disorders, and discussed the potential for utilizing miR-183C as biomarkers and therapeutic targets of specific autoimmune diseases.
Collapse
Affiliation(s)
- Zhuang Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
| | - Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
| | - Sattar Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
46
|
Alrashidi HE, Alotiby AA. Zinc Modulates the Priming of T Helper 1, T Helper 17, and T Regulatory Cells in Allogeneic and Autologous in vitro Models. J Inflamm Res 2022; 15:6931-6939. [PMID: 36605132 PMCID: PMC9809170 DOI: 10.2147/jir.s391407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Introduction Zinc is essential for the growth and differentiation of immune cells. Zinc insufficiency affects immune system function, thereby increasing infection susceptibility, autoimmunity, and allergies. Here, we aimed to determine the effects of zinc supplementation on T cell subpopulations, regulatory T (Tregs), T helper 1 (Th1), and T helper 17 (Th17) cells, in mixed lymphocyte cultures (MLC). Methods Allogeneic immune reactions were imitative using mixed lymphocyte cultures, followed by incubation with zinc to further monitor their effects. Cells were analyzed by flow cytometry. Production of Interferon-gamma (IFNγ), Interleukin-17 A (IL17A), and IL10 were analyzed by enzyme-linked immunosorbent assay. Th1 cell-specific Tbet, Th17 cell-specific RORC2, and Tregs-specific Foxp3 expression levels were determined by quantitative real-time PCR. Results Zinc supplementation at a physiological dose significantly increased CD4+ Foxp3+ Tregs and CD25+ Foxp3+ Tregs numbers and slightly decreased CD4+ RORC2+ and CD25+ RORC2+ Th17 cell numbers. A significant reduction in IFNγ production was observed in both restimulated T cells with autologous peripheral blood mononuclear cell (PBMC) and allogeneic PBMC compared to that in untreated T cells. Zinc significantly reduced IL17 expression, but the increase in IL10 expression was insignificant. In zinc-supplemented MLC, a non-significant decrease in Th1 or Th17 cell-specific transcription factors expression was observed, whereas there was a significant increase in Tregs-specific transcription factor expression. Conclusion Zinc can stabilize Tregs participating in adverse immune reactions or in an in vitro transplantation model.
Collapse
Affiliation(s)
- Hanan E Alrashidi
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Amna A Alotiby
- Haematology and Immunology Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia,Correspondence: Amna A Alotiby, Haematology and Immunology Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia, Email
| |
Collapse
|
47
|
Park J, Son MJ, Ho CC, Lee SH, Kim Y, An J, Lee SK. Transcriptional inhibition of STAT1 functions in the nucleus alleviates Th1 and Th17 cell-mediated inflammatory diseases. Front Immunol 2022; 13:1054472. [PMID: 36591260 PMCID: PMC9800178 DOI: 10.3389/fimmu.2022.1054472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
T helper 1 cells (Th1 cells) and T helper 17 cells (Th17 cells) play pivotal roles in the pathogenesis of various autoimmune diseases, including psoriasis and inflammatory bowel disease (IBD). Signal transducer and activator of transcription 1 (STAT1) regulates the Th1 and Th17 cell lineage commitment at an early stage and maintains their immunological functions in vitro and in vivo. The previous strategies to block STAT1 functions to treat autoimmune diseases inhibit Th1 cell activity but simultaneously cause hyper-activation of Th17 cells. Herein, to modulate the functions of pathogenic Th1 and Th17 cells without genetic modification in normal physiological conditions, we generated the nucleus-deliverable form of the transcription modulation domain of STAT1 (ndSTAT1-TMD), which can be transduced into the nucleus of the target cells in a dose- and time-dependent manner without affecting the cell viability and T cell activation signaling events. ndSTAT1-TMD significantly blocked the differentiation of naïve CD4+ T cells into Th1 or Th17 cells via competitive inhibition of endogenous STAT1-mediated transcription, which did not influence Th2 and Treg cell differentiation. When the gene expression profile of Th1 or Th17 cells after ndSTAT1-TMD treatment was analyzed by mRNA sequencing, the expression of the genes involved in the differentiation capacity and the immunological functions of Th1 or Th17 cells were substantially reduced. The therapeutic potential of ndSTAT1-TMD was tested in the animal model of psoriasis and colitis, whose pathogenesis is mainly contributed by Th1 or/and Th17 cells. The symptoms and progression of psoriasis and colitis were significantly alleviated by ndSTAT1-TMD treatment, comparable to anti-IL-17A antibody treatment. In conclusion, our study demonstrates that ndSTAT1-TMD can be a new therapeutic reagent for Th1/17 cell-mediated autoimmune diseases by modulating the functions of pathogenic Th1 and Th17 cells together.
Collapse
Affiliation(s)
- Jiyoon Park
- Department of Biotechnology, Yonsei University of Life Science and Biotechnology, Seoul, South Korea
| | - Min-Ji Son
- Department of Biotechnology, Yonsei University of Life Science and Biotechnology, Seoul, South Korea
| | - Chun-Chang Ho
- Department of Biotechnology, Yonsei University of Life Science and Biotechnology, Seoul, South Korea
| | - Su-Hyeon Lee
- Department of Biotechnology, Yonsei University of Life Science and Biotechnology, Seoul, South Korea
| | - Yuna Kim
- Department of Biotechnology, Yonsei University of Life Science and Biotechnology, Seoul, South Korea
| | - Jaekyeung An
- Department of Biotechnology, Yonsei University of Life Science and Biotechnology, Seoul, South Korea
| | - Sang-Kyou Lee
- Department of Biotechnology, Yonsei University of Life Science and Biotechnology, Seoul, South Korea
- Good T Cells, Inc., Seoul, South Korea
| |
Collapse
|
48
|
Paroli M, Caccavale R, Fiorillo MT, Spadea L, Gumina S, Candela V, Paroli MP. The Double Game Played by Th17 Cells in Infection: Host Defense and Immunopathology. Pathogens 2022; 11:pathogens11121547. [PMID: 36558881 PMCID: PMC9781511 DOI: 10.3390/pathogens11121547] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
T-helper 17 (Th17) cells represent a subpopulation of CD4+ T lymphocytes that play an essential role in defense against pathogens. Th17 cells are distinguished from Th1 and Th2 cells by their ability to produce members of the interleukin-17 (IL-17) family, namely IL-17A and IL-17F. IL-17 in turn induces several target cells to synthesize and release cytokines, chemokines, and metalloproteinases, thereby amplifying the inflammatory cascade. Th17 cells reside predominantly in the lamina propria of the mucosa. Their main physiological function is to maintain the integrity of the mucosal barrier against the aggression of infectious agents. However, in an appropriate inflammatory microenvironment, Th17 cells can transform into immunopathogenic cells, giving rise to inflammatory and autoimmune diseases. This review aims to analyze the complex mechanisms through which the interaction between Th17 and pathogens can be on the one hand favorable to the host by protecting it from infectious agents, and on the other hand harmful, potentially generating autoimmune reactions and tissue damage.
Collapse
Affiliation(s)
- Marino Paroli
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| | - Rosalba Caccavale
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Spadea
- Post Graduate School of Public Health, University of Siena, 53100 Siena, Italy
| | - Stefano Gumina
- Department of Anatomy, Histology, Legal Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
| | - Vittorio Candela
- Department of Anatomy, Histology, Legal Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Pia Paroli
- Eye Clinic, Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
49
|
Thio CLP, Lai ACY, Wang JC, Chi PY, Chang YL, Ting YT, Chen SY, Chang YJ. Identification of a PD-L1+Tim-1+ iNKT subset that protects against fine particulate matter-induced airway inflammation. JCI Insight 2022; 7:164157. [PMID: 36477357 PMCID: PMC9746902 DOI: 10.1172/jci.insight.164157] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/19/2022] [Indexed: 12/12/2022] Open
Abstract
Although air pollutants such as fine particulate matter (PM2.5) are associated with acute and chronic lung inflammation, the etiology of PM2.5-induced airway inflammation remains poorly understood. Here we report that PM2.5 triggered airway hyperreactivity (AHR) and neutrophilic inflammation with concomitant increases in Th1 and Th17 responses and epithelial cell apoptosis. We found that γδ T cells promoted neutrophilic inflammation and AHR through IL-17A. Unexpectedly, we found that invariant natural killer T (iNKT) cells played a protective role in PM2.5-induced pulmonary inflammation. Specifically, PM2.5 activated a suppressive CD4- iNKT cell subset that coexpressed Tim-1 and programmed cell death ligand 1 (PD-L1). Activation of this suppressive subset was mediated by Tim-1 recognition of phosphatidylserine on apoptotic cells. The suppressive iNKT subset inhibited γδ T cell expansion and intrinsic IL-17A production, and the inhibitory effects of iNKT cells on the cytokine-producing capacity of γδ T cells were mediated in part by PD-1/PD-L1 signaling. Taken together, our findings underscore a pathogenic role for IL-17A-producing γδ T cells in PM2.5-elicited inflammation and identify PD-L1+Tim-1+CD4- iNKT cells as a protective subset that prevents PM2.5-induced AHR and neutrophilia by inhibiting γδ T cell function.
Collapse
Affiliation(s)
| | | | - Jo-Chiao Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-Yu Chi
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Lin Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Tse Ting
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan
| |
Collapse
|
50
|
West SJ, Boehning D, Akimzhanov AM. Regulation of T cell function by protein S-acylation. Front Physiol 2022; 13:1040968. [PMID: 36467682 PMCID: PMC9709458 DOI: 10.3389/fphys.2022.1040968] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/02/2022] [Indexed: 10/26/2023] Open
Abstract
S-acylation, the reversible lipidation of free cysteine residues with long-chain fatty acids, is a highly dynamic post-translational protein modification that has recently emerged as an important regulator of the T cell function. The reversible nature of S-acylation sets this modification apart from other forms of protein lipidation and allows it to play a unique role in intracellular signal transduction. In recent years, a significant number of T cell proteins, including receptors, enzymes, ion channels, and adaptor proteins, were identified as S-acylated. It has been shown that S-acylation critically contributes to their function by regulating protein localization, stability and protein-protein interactions. Furthermore, it has been demonstrated that zDHHC protein acyltransferases, the family of enzymes mediating this modification, also play a prominent role in T cell activation and differentiation. In this review, we aim to highlight the diversity of proteins undergoing S-acylation in T cells, elucidate the mechanisms by which reversible lipidation can impact protein function, and introduce protein acyltransferases as a novel class of regulatory T cell proteins.
Collapse
Affiliation(s)
- Savannah J. West
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and University of Texas Health Science at Houston Graduate School, Houston, TX, United States
| | - Darren Boehning
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Askar M. Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center and University of Texas Health Science at Houston Graduate School, Houston, TX, United States
| |
Collapse
|