1
|
Arto C, Rusu EC, Clavero-Mestres H, Barrientos-Riosalido A, Bertran L, Mahmoudian R, Aguilar C, Riesco D, Chicote JU, Parada D, Martínez S, Sabench F, Richart C, Auguet T. Metabolic profiling of tryptophan pathways: Implications for obesity and metabolic dysfunction-associated steatotic liver disease. Eur J Clin Invest 2024; 54:e14279. [PMID: 38940215 DOI: 10.1111/eci.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND AND AIMS The rise in obesity highlights the need for improved therapeutic strategies, particularly in addressing metabolic dysfunction-associated steatotic liver disease (MASLD). We aim to assess the role of tryptophan metabolic pathways in the pathogenesis of obesity and in the different histological stages of MASLD. MATERIALS AND METHODS We used ultra-high performance liquid chromatography to quantify circulating levels of 15 tryptophan-related metabolites from the kynurenine, indole and serotonin pathways. A cohort of 76 subjects was analysed, comprising 18 subjects with normal weight and 58 with morbid obesity, these last being subclassified into normal liver (NL), simple steatosis (SS) and metabolic dysfunction-associated steatohepatitis (MASH). Then, we conducted gene expression analysis of hepatic IDO-1 and kynyrenine-3-monooxygenase (KMO). RESULTS Key findings in obesity revealed a distinct metabolic signature characterized by a higher concentration of different kynurenine-related metabolites, a decrease in indole-3-acetic acid and indole-3-propionic acid, and an alteration in the serotonin pathway. Elevated tryptophan levels were associated with MASLD presence (37.659 (32.577-39.823) μM of tryptophan in NL subjects; 41.522 (38.803-45.276) μM in patients with MASLD). Overall, pathway fluxes demonstrated an induction of tryptophan catabolism via the serotonin pathway in SS subjects and into the kynurenine pathway in MASH. We found decreased IDO-1 and KMO hepatic expression in NL compared to SS. CONCLUSIONS We identified a distinctive metabolic signature in obesity marked by changes in tryptophan catabolic pathways, discernible through altered metabolite profiles. We observed stage-specific alterations in tryptophan catabolism fluxes in MASLD, highlighting the potential utility of targeting these pathways in therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Arto
- Servei Medicina Interna, Hospital Sant Pau i Santa Tecla de Tarragona, Tarragona, Spain
| | - Elena Cristina Rusu
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Helena Clavero-Mestres
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Andrea Barrientos-Riosalido
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Laia Bertran
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Razieh Mahmoudian
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Carmen Aguilar
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - David Riesco
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Servei Medicina Interna, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Javier Ugarte Chicote
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Servei Anatomia Patològica, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - David Parada
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Servei Anatomia Patològica, Hospital Sant Joan de Reus, Avinguda Doctor Josep Laporte, Reus, Spain
| | - Salomé Martínez
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Servei Anatomia Patològica, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Fàtima Sabench
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Departament de Medicina i Cirurgia, Servei de Cirurgia, Hospital Sant Joan de Reus, URV, IISPV, Avinguda Doctor Josep Laporte, Reus, Spain
| | - Cristóbal Richart
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Teresa Auguet
- Departament de Medicina i Cirurgia, Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Universitat Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Servei Medicina Interna, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| |
Collapse
|
2
|
Kim SM, Oh S, Lee SS, Park S, Hur YM, Ansari A, Lee G, Paik MJ, You YA, Kim YJ. Maternal Diet during Pregnancy Alters the Metabolites in Relation to Metabolic and Neurodegenerative Diseases in Young Adult Offspring. Int J Mol Sci 2024; 25:11046. [PMID: 39456828 PMCID: PMC11508017 DOI: 10.3390/ijms252011046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/06/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Maternal nutrition during the critical period of pregnancy increases the susceptibility of offspring to the development of diseases later in life. This study aimed to analyze metabolite profiles to investigate the effect of maternal diet during pregnancy on changes in offspring plasma metabolites and to identify correlations with metabolic parameters. Pregnant Sprague-Dawley rats were exposed to under- and overnutrition compared to controls, and their offspring were fed a standard diet after birth. Plasma metabolism was profiled in offspring at 16 weeks of age using liquid chromatography-mass spectrometry (LC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS). We analyzed 80 metabolites to identify distinct metabolites and metabolic and neurodegenerative disease-associated metabolites that were sex-differentially altered in each group compared to controls (p < 0.05, VIP score > 1.0). Specifically, changes in 3-indolepropionic acid, anthranilic acid, linoleic acid, and arachidonic acid, which are involved in tryptophan and linoleic acid metabolism, were observed in male offspring and correlated with plasma leptin levels in male offspring. Our results suggest that fatty acids involved in tryptophan and linoleic acid metabolism, which are altered by the maternal diet during pregnancy, may lead to an increased risk of metabolic and neurodegenerative diseases in the early life of male offspring.
Collapse
Affiliation(s)
- Soo-Min Kim
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University Mokdong Hospital, Seoul 07985, Republic of Korea; (S.-M.K.); (S.P.); (Y.-M.H.); (A.A.); (G.L.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Songjin Oh
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea; (S.O.); (S.S.L.); (M.-J.P.)
| | - Sang Suk Lee
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea; (S.O.); (S.S.L.); (M.-J.P.)
| | - Sunwha Park
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University Mokdong Hospital, Seoul 07985, Republic of Korea; (S.-M.K.); (S.P.); (Y.-M.H.); (A.A.); (G.L.)
| | - Young-Min Hur
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University Mokdong Hospital, Seoul 07985, Republic of Korea; (S.-M.K.); (S.P.); (Y.-M.H.); (A.A.); (G.L.)
| | - AbuZar Ansari
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University Mokdong Hospital, Seoul 07985, Republic of Korea; (S.-M.K.); (S.P.); (Y.-M.H.); (A.A.); (G.L.)
| | - Gain Lee
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University Mokdong Hospital, Seoul 07985, Republic of Korea; (S.-M.K.); (S.P.); (Y.-M.H.); (A.A.); (G.L.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea; (S.O.); (S.S.L.); (M.-J.P.)
| | - Young-Ah You
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University Mokdong Hospital, Seoul 07985, Republic of Korea; (S.-M.K.); (S.P.); (Y.-M.H.); (A.A.); (G.L.)
| | - Young Ju Kim
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, College of Medicine, Ewha Womans University Mokdong Hospital, Seoul 07985, Republic of Korea; (S.-M.K.); (S.P.); (Y.-M.H.); (A.A.); (G.L.)
| |
Collapse
|
3
|
Abstract
Obesity is a multi-factorial disease that is influenced by genetic, epigenetic, and environmental factors. Precision medicine is a practice wherein prevention and treatment strategies take individual variability into account. It involves using a variety of factors including deep phenotyping using clinical, physiologic, and behavioral characteristics, 'omics assays (eg, genomics, epigenomics, transcriptomics, and microbiomics among others), and environmental factors to devise practices that are individualized to subsets of patients. Personalizing the therapeutic modality to the individual can lead to enhanced effectiveness and tolerability. The authors review advances in precision medicine made in the field of bariatrics and discuss future avenues and challenges.
Collapse
Affiliation(s)
- Khushboo Gala
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55902, USA. https://twitter.com/KhushbooSGala
| | - Wissam Ghusn
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55902, USA; Department of Internal Medicine, Boston University Medical Center, Harrison Avenue, Boston, MA 02111, USA. https://twitter.com/Wissam_Ghusn
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55902, USA.
| |
Collapse
|
4
|
Luo Z, Liu Y, Wang X, Fan F, Yang Z, Luo D. Exploring tryptophan metabolism: The transition from disturbed balance to diagnostic and therapeutic potential in metabolic diseases. Biochem Pharmacol 2024; 230:116554. [PMID: 39332693 DOI: 10.1016/j.bcp.2024.116554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
The rapidly rising prevalence of metabolic diseases has turned them into an escalating global health concern. By producing or altering metabolic products, the gut microbiota plays a pivotal role in maintaining human health and influencing disease development. These metabolites originate from the host itself or the external environment. In the system of interactions between microbes and the host, tryptophan (Trp) plays a central role in metabolic processes. As the amino acid in the human body that must be obtained through dietary intake, it is crucial for various physiological functions. Trp can be metabolized in the gut into three main products: The gut microbiota regulates the transformation of 5-hydroxytryptamine (5-HT, serotonin), kynurenine (Kyn), and various indole derivatives. It has been revealed that a substantial correlation exists between alterations in Trp metabolism and the initiation and progression of metabolic disorders, including obesity, diabetes, non-alcoholic fatty liver disease, and atherosclerosis, but Trp metabolites have not been comprehensively reviewed in metabolic diseases. As such, this review summarizes and analyzes the latest research, emphasizing the importance of further studying Trp metabolism within the gut microbiota to understand and treat metabolic diseases. This carries potential significance for improving human health and may introduce new therapeutic strategies.
Collapse
Affiliation(s)
- Zhizhong Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Yuqing Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Xin Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Faxin Fan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Zhenzhen Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| |
Collapse
|
5
|
Van Hul M, Neyrinck AM, Everard A, Abot A, Bindels LB, Delzenne NM, Knauf C, Cani PD. Role of the intestinal microbiota in contributing to weight disorders and associated comorbidities. Clin Microbiol Rev 2024; 37:e0004523. [PMID: 38940505 PMCID: PMC11391702 DOI: 10.1128/cmr.00045-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
SUMMARYThe gut microbiota is a major factor contributing to the regulation of energy homeostasis and has been linked to both excessive body weight and accumulation of fat mass (i.e., overweight, obesity) or body weight loss, weakness, muscle atrophy, and fat depletion (i.e., cachexia). These syndromes are characterized by multiple metabolic dysfunctions including abnormal regulation of food reward and intake, energy storage, and low-grade inflammation. Given the increasing worldwide prevalence of obesity, cachexia, and associated metabolic disorders, novel therapeutic strategies are needed. Among the different mechanisms explaining how the gut microbiota is capable of influencing host metabolism and energy balance, numerous studies have investigated the complex interactions existing between nutrition, gut microbes, and their metabolites. In this review, we discuss how gut microbes and different microbiota-derived metabolites regulate host metabolism. We describe the role of the gut barrier function in the onset of inflammation in this context. We explore the importance of the gut-to-brain axis in the regulation of energy homeostasis and glucose metabolism but also the key role played by the liver. Finally, we present specific key examples of how using targeted approaches such as prebiotics and probiotics might affect specific metabolites, their signaling pathways, and their interactions with the host and reflect on the challenges to move from bench to bedside.
Collapse
Affiliation(s)
- Matthias Van Hul
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France/Belgium
| | - Audrey M Neyrinck
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
| | - Amandine Everard
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| | | | - Laure B Bindels
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| | - Nathalie M Delzenne
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
| | - Claude Knauf
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France/Belgium
- INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), Université Paul Sabatier, Toulouse III, CHU Purpan, Toulouse, France
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France/Belgium
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium
| |
Collapse
|
6
|
Ranhotra HS. Discrete interplay of gut microbiota L-tryptophan metabolites in host biology and disease. Mol Cell Biochem 2024; 479:2273-2290. [PMID: 37861881 DOI: 10.1007/s11010-023-04867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023]
Abstract
The gut microbiota and the host maintain a conjoint relationship and together achieve optimal physiology via a multitude of interactive signalling cues. Dietary-derived L-tryptophan (L-trp) is enzymatically metabolized by the resident symbiotic gut microbiota to indole and various indole derivatives. Indole and indole metabolites secreted by the gut bacteria act locally in the intestinal cells as well as distally and modulate tissue-specific functions which are beneficial to the host. Functions attributed to these microbial indole metabolites in the host include regulation of intestinal permeability, immunity and mucosal roles, inflammation, and insulin sensitivity. On the other hand, dysregulation of gut microbiota L-trp metabolism compromises the optimal availability of indole and indole metabolites and can induce the onset of metabolic disorders, inflammation, liver steatosis, and decrease gut barrier integrity. Gut dysbiosis is regarded as one of the prime reasons for this deregulated microbial-derived indole metabolites. A number of indole metabolites from the gut bacteria have been identified recently displaying variable affinity towards xenobiotic nuclear receptors. Microbial metabolite mimicry concept can be used to design and develop novel indole-moiety-containing compounds with higher affinity towards the receptors and efficacy in preclinical studies. Such compounds may serve as therapeutic drugs in clinical trials in the future. In this article, I review L-trp metabolism in the host and gut microbiota and the various physiological functions, patho-physiologies associated with the microbial-released indole metabolites in the host, including the metabolite mimicry-based concept to develop tailored indole-containing novel experimental drugs.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- Department of Biochemistry, St. Edmund's College, Shillong, 793 003, India.
| |
Collapse
|
7
|
Fatriani R, Pratiwi FAK, Annisa A, Septaningsih DA, Aziz SA, Miladiyah I, Kusumastuti SA, Nasution MAF, Ramadhan D, Kusuma WA. Unveiling the anti-obesity potential of Kemuning (Murraya paniculata): A network pharmacology approach. PLoS One 2024; 19:e0305544. [PMID: 39208245 PMCID: PMC11361609 DOI: 10.1371/journal.pone.0305544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/30/2024] [Indexed: 09/04/2024] Open
Abstract
Obesity has become a global issue that affects the emergence of various chronic diseases such as diabetes mellitus, dysplasia, heart disorders, and cancer. In this study, an integration method was developed between the metabolite profile of the active compound of Murraya paniculata and the exploration of the targeting mechanism of adipose tissue using network pharmacology, molecular docking, molecular dynamics simulation, and in vitro tests. Network pharmacology results obtained with the skyline query technique using a block-nested loop (BNL) showed that histone acetyltransferase p300 (EP300), peroxisome proliferator-activated receptor gamma (PPARG), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) are potential targets for treating obesity. Enrichment analysis of these three proteins revealed their association with obesity, thermogenesis, energy metabolism, adipocytokines, fat cell differentiation, and glucose homeostasis. Metabolite profiling of M. paniculata leaves revealed sixteen active compounds, ten of which were selected for molecular docking based on drug-likeness and ADME results. Molecular docking results between PPARG and EP300 with the ten active compounds showed a binding affinity value of ≤ -5.0 kcal/mol in all dockings, indicating strong binding. The stability of the protein-ligand complex resulting from docking was examined using molecular dynamics simulations, and we observed the best average root mean square deviation (RMSD) of 0.99 Å for PPARG with trans-3-indoleacrylic acid, which was lower than with the native ligand BRL (2.02 Å). Furthermore, the RMSD was 2.70 Å for EP300 and the native ligand 99E, and the lowest RMSD with the ligand (1R,9S)-5-[(E)-2-(4-Chlorophenyl)vinyl]-11-(5-pyrimidinylcarbonyl)-7,11-diazatricyclo[7.3.1.02,7]trideca-2,4-dien-6-one was 3.33 Å. The in vitro tests to validate the potential of M. paniculata in treating obesity showed that there was a significant decrease in PPARG and EP300 gene expressions in 3T3-L1 mature adipocytes treated with M. paniculata ethanolic extract starting at concentrations 62.5 μg/ml and 15.625 μg/ml, respectively. These results indicate that M. paniculata can potentially treat obesity by disrupting adipocyte maturation and influencing intracellular lipid metabolism.
Collapse
Affiliation(s)
- Rizka Fatriani
- Tropical Biopharmaca Research Center, IPB University, Bogor, Indonesia
| | | | - Annisa Annisa
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | - Dewi Anggraini Septaningsih
- Department of Chemistry, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Bogor, Indonesia
| | - Sandra Arifin Aziz
- Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor, Indonesia
| | | | - Siska Andrina Kusumastuti
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | - Donny Ramadhan
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Wisnu Ananta Kusuma
- Tropical Biopharmaca Research Center, IPB University, Bogor, Indonesia
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| |
Collapse
|
8
|
Pi Y, Fang M, Li Y, Cai L, Han R, Sun W, Jiang X, Chen L, Du J, Zhu Z, Li X. Interactions between Gut Microbiota and Natural Bioactive Polysaccharides in Metabolic Diseases: Review. Nutrients 2024; 16:2838. [PMID: 39275156 PMCID: PMC11397228 DOI: 10.3390/nu16172838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
The gut microbiota constitutes a complex ecosystem, comprising trillions of microbes that have co-evolved with their host over hundreds of millions of years. Over the past decade, a growing body of knowledge has underscored the intricate connections among diet, gut microbiota, and human health. Bioactive polysaccharides (BPs) from natural sources like medicinal plants, seaweeds, and fungi have diverse biological functions including antioxidant, immunoregulatory, and metabolic activities. Their effects are closely tied to the gut microbiota, which metabolizes BPs into health-influencing compounds. Understanding how BPs and gut microbiota interact is critical for harnessing their potential health benefits. This review provides an overview of the human gut microbiota, focusing on its role in metabolic diseases like obesity, type II diabetes mellitus, non-alcoholic fatty liver disease, and cardiovascular diseases. It explores the basic characteristics of several BPs and their impact on gut microbiota. Given their significance for human health, we summarize the biological functions of these BPs, particularly in terms of immunoregulatory activities, blood sugar, and hypolipidemic effect, thus providing a valuable reference for understanding the potential benefits of natural BPs in treating metabolic diseases. These properties make BPs promising agents for preventing and treating metabolic diseases. The comprehensive understanding of the mechanisms by which BPs exert their effects through gut microbiota opens new avenues for developing targeted therapies to improve metabolic health.
Collapse
Affiliation(s)
- Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miaoyu Fang
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Cai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruyi Han
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Chen
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Jun Du
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Zhigang Zhu
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
9
|
Liikonen V, Näätänen M, Kårlund A, Hanhineva K, Karhunen L, Kolehmainen M. Association between whole-grain consumption, tryptophan metabolism and psychological distress: a secondary analysis of a randomised controlled trial. Br J Nutr 2024; 132:330-340. [PMID: 38826077 PMCID: PMC11473202 DOI: 10.1017/s0007114524001077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 06/04/2024]
Abstract
This study aimed to investigate whether psychological distress, whole-grain consumption and tryptophan metabolism are associated with participants undergoing weight management intervention. Seventy-nine women and men (mean age 49·7 (sd 9·0) years; BMI 34·2(sd 2·5) kg/m2) participated in a 7-week weight-loss (WL) period and in a 24-week weight maintenance (WM) intervention period. Whole-grain consumption was measured using 4 d food diaries. Psychological distress was assessed with the General Health Questionnaire-12 (GHQ), and participants were divided into three GHQ groups based on the GHQ scores before WL. Tryptophan metabolites were determined from the participants' fasting plasma using liquid chromatography-MS. GHQ scores were not associated with the whole-grain consumption. A positive association was observed between the whole-grain consumption and indole propionic acid (IPA) during the WM (P = 0·033). Serotonin levels were higher after the WL in the lowest GHQ tertile (P = 0·033), while the level at the end of the WM was higher compared with other timepoints in the highest GHQ tertile (P = 0·015 and P = 0·001). This difference between groups was not statistically significant. Furthermore, levels of several tryptophan metabolites changed within the groups during the study. Tryptophan metabolism changed during the study in the whole study group, independently from the level of psychological distress. The association between whole-grain consumption and IPA is possibly explained by the effects of dietary fibre on gut microbiota. This broadens the understanding of the pathways behind the health benefits associated with the intake of whole grains.
Collapse
Affiliation(s)
- Vilma Liikonen
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, 70211Kuopio, Finland
| | - Mari Näätänen
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, 70211Kuopio, Finland
| | - Anna Kårlund
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, 70211Kuopio, Finland
- Department of Biotechnology, Food Sciences unit, University of Turku, 20014Turku, Finland
| | - Kati Hanhineva
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, 70211Kuopio, Finland
- Department of Biotechnology, Food Sciences unit, University of Turku, 20014Turku, Finland
| | - Leila Karhunen
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, 70211Kuopio, Finland
| | - Marjukka Kolehmainen
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, 70211Kuopio, Finland
| |
Collapse
|
10
|
Lin GC, Tevini J, Mair L, Friedl HP, Fuchs D, Felder T, Gostner JM, Neuhaus W. Investigations Towards Tryptophan Uptake and Transport Across an In Vitro Model of the Oral Mucosa Epithelium. Int J Tryptophan Res 2024; 17:11786469241266312. [PMID: 39092002 PMCID: PMC11292681 DOI: 10.1177/11786469241266312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/03/2024] [Indexed: 08/04/2024] Open
Abstract
Tryptophan is an essential amino acid and plays an important role in several metabolic processes relevant for the human health. As the main metabolic pathway for tryptophan along the kynurenine axis is involved in inflammatory responses, changed metabolite levels can be used to monitor inflammatory diseases such as ulcerative colitis. As a progenitor of serotonin, altered tryptophan levels have been related to several neurogenerative diseases as well as depression or anxiety. While tryptophan concentrations are commonly evaluated in serum, a non-invasive detection approach using saliva might offer significant advantages, especially during long-term treatments of patients or elderly. In order to estimate whether active transport processes for tryptophan might contribute to a potential correlation between blood and saliva tryptophan concentrations, we investigated tryptophan's transport across an established oral mucosa in vitro model. Interestingly, treatment with tryptophan revealed a concentration dependent secretion of tryptophan and the presence of a saturable transporter while transport studies with deuterated tryptophan displayed increased permeability from the saliva to the blood compartment. Protein analysis demonstrated a distinct expression of L-type amino acid transporter 1 (LAT1), the major transporter for tryptophan, and exposure to inhibitors (2 -amino-2-norbornanecarboxylic acid (BCH), L-leucine) led to increased tryptophan levels on the saliva side. Additionally, exposure to tryptophan in equilibrium studies resulted in a regulation of LAT1 at the mRNA level. The data collected in this study suggest the participation of active transport mechanisms for tryptophan across the oral mucosa epithelium. Future studies should investigate the transport of tryptophan across salivary gland epithelia in order to enable a comprehensive understanding of tryptophan exchange at the blood-saliva barrier.
Collapse
Affiliation(s)
- Grace C. Lin
- AIT – Austrian Institute of Technology GmbH, Competence Unit Molecular Diagnostics, Center for Health and Bioresources, Vienna, Austria
| | - Julia Tevini
- Medical University of Innsbruck, Biocenter, Institute of Medical Biochemistry, Austria
- Paracelsus Medical University, Department of Laboratory Medicine, Salzburg, Austria
| | - Lisa Mair
- Medical University of Innsbruck, Biocenter, Institute of Medical Biochemistry, Austria
| | - Heinz-Peter Friedl
- AIT – Austrian Institute of Technology GmbH, Competence Unit Molecular Diagnostics, Center for Health and Bioresources, Vienna, Austria
| | - Dietmar Fuchs
- Medical University of Innsbruck, Biocenter, Institute of Biological Chemistry, Austria
| | - Thomas Felder
- Paracelsus Medical University, Department of Laboratory Medicine, Salzburg, Austria
| | - Johanna M. Gostner
- Medical University of Innsbruck, Biocenter, Institute of Medical Biochemistry, Austria
| | - Winfried Neuhaus
- AIT – Austrian Institute of Technology GmbH, Competence Unit Molecular Diagnostics, Center for Health and Bioresources, Vienna, Austria
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| |
Collapse
|
11
|
Jiang L, Han D, Hao Y, Song Z, Sun Z, Dai Z. Linking serotonin homeostasis to gut function: Nutrition, gut microbiota and beyond. Crit Rev Food Sci Nutr 2024; 64:7291-7310. [PMID: 36861222 DOI: 10.1080/10408398.2023.2183935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Serotonin (5-HT) produced by enterochromaffin (EC) cells in the digestive tract is crucial for maintaining gut function and homeostasis. Nutritional and non-nutritional stimuli in the gut lumen can modulate the ability of EC cells to produce 5-HT in a temporal- and spatial-specific manner that toning gut physiology and immune response. Of particular interest, the interactions between dietary factors and the gut microbiota exert distinct impacts on gut 5-HT homeostasis and signaling in metabolism and the gut immune response. However, the underlying mechanisms need to be unraveled. This review aims to summarize and discuss the importance of gut 5-HT homeostasis and its regulation in maintaining gut metabolism and immune function in health and disease with special emphasis on different types of nutrients, dietary supplements, processing, and gut microbiota. Cutting-edge discoveries in this area will provide the basis for the development of new nutritional and pharmaceutical strategies for the prevention and treatment of serotonin homeostasis-related gut and systematic disorders and diseases.
Collapse
Affiliation(s)
- Lili Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Youling Hao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhuan Song
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhiyuan Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
12
|
Nelson BN, Friedman JE. Developmental Programming of the Fetal Immune System by Maternal Western-Style Diet: Mechanisms and Implications for Disease Pathways in the Offspring. Int J Mol Sci 2024; 25:5951. [PMID: 38892139 PMCID: PMC11172957 DOI: 10.3390/ijms25115951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Maternal obesity and over/undernutrition can have a long-lasting impact on offspring health during critical periods in the first 1000 days of life. Children born to mothers with obesity have reduced immune responses to stimuli which increase susceptibility to infections. Recently, maternal western-style diets (WSDs), high in fat and simple sugars, have been associated with skewing neonatal immune cell development, and recent evidence suggests that dysregulation of innate immunity in early life has long-term consequences on metabolic diseases and behavioral disorders in later life. Several factors contribute to abnormal innate immune tolerance or trained immunity, including changes in gut microbiota, metabolites, and epigenetic modifications. Critical knowledge gaps remain regarding the mechanisms whereby these factors impact fetal and postnatal immune cell development, especially in precursor stem cells in bone marrow and fetal liver. Components of the maternal microbiota that are transferred from mothers consuming a WSD to their offspring are understudied and identifying cause and effect on neonatal innate and adaptive immune development needs to be refined. Tools including single-cell RNA-sequencing, epigenetic analysis, and spatial location of specific immune cells in liver and bone marrow are critical for understanding immune system programming. Considering the vital role immune function plays in offspring health, it will be important to understand how maternal diets can control developmental programming of innate and adaptive immunity.
Collapse
Affiliation(s)
- Benjamin N. Nelson
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Physiology and Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
13
|
Abad C, Karahoda R, Orbisova A, Kastner P, Heblik D, Kucera R, Portillo R, Staud F. Pathological shifts in tryptophan metabolism in human term placenta exposed to LPS or poly I:C†. Biol Reprod 2024; 110:722-738. [PMID: 38145492 PMCID: PMC11017130 DOI: 10.1093/biolre/ioad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/25/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023] Open
Abstract
Maternal immune activation during pregnancy is a risk factor for offspring neuropsychiatric disorders. Among the mechanistic pathways by which maternal inflammation can affect fetal brain development and programming, those involving tryptophan (TRP) metabolism have drawn attention because various TRP metabolites have neuroactive properties. This study evaluates the effect of bacterial (lipopolysaccharides/LPS) and viral (polyinosinic:polycytidylic acid/poly I:C) placental infection on TRP metabolism using an ex vivo model. Human placenta explants were exposed to LPS or poly I:C, and the release of TRP metabolites was analyzed together with the expression of related genes and proteins and the functional activity of key enzymes in TRP metabolism. The rate-limiting enzyme in the serotonin pathway, tryptophan hydroxylase, showed reduced expression and functional activity in explants exposed to LPS or poly I:C. Conversely, the rate-limiting enzyme in the kynurenine pathway, indoleamine dioxygenase, exhibited increased activity, gene, and protein expression, suggesting that placental infection mainly promotes TRP metabolism via the kynurenine (KYN) pathway. Furthermore, we observed that treatment with LPS or poly I:C increased activity in the kynurenine monooxygenase branch of the KYN pathway. We conclude that placental infection impairs TRP homeostasis, resulting in decreased production of serotonin and an imbalance in the ratio between quinolinic acid and kynurenic acid. This disrupted homeostasis may eventually expose the fetus to suboptimal/toxic levels of neuroactive molecules and impair fetal brain development.
Collapse
Affiliation(s)
- Cilia Abad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Rona Karahoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Anna Orbisova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Petr Kastner
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Daniel Heblik
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Radim Kucera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Ramon Portillo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
14
|
Williams LM, Cao S. Harnessing and delivering microbial metabolites as therapeutics via advanced pharmaceutical approaches. Pharmacol Ther 2024; 256:108605. [PMID: 38367866 PMCID: PMC10985132 DOI: 10.1016/j.pharmthera.2024.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/05/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Microbial metabolites have emerged as key players in the interplay between diet, the gut microbiome, and host health. Two major classes, short-chain fatty acids (SCFAs) and tryptophan (Trp) metabolites, are recognized to regulate inflammatory, immune, and metabolic responses within the host. Given that many human diseases are associated with dysbiosis of the gut microbiome and consequent reductions in microbial metabolite production, the administration of these metabolites represents a direct, multi-targeted treatment. While a multitude of preclinical studies showcase the therapeutic potential of both SCFAs and Trp metabolites, they often rely on high doses and frequent dosing regimens to achieve systemic effects, thereby constraining their clinical applicability. To address these limitations, a variety of pharmaceutical formulations approaches that enable targeted, delayed, and/or sustained microbial metabolite delivery have been developed. These approaches, including enteric encapsulations, esterification to dietary fiber, prodrugs, and nanoformulations, pave the way for the next generation of microbial metabolite-based therapeutics. In this review, we first provide an overview of the roles of microbial metabolites in maintaining host homeostasis and outline how compromised metabolite production contributes to the pathogenesis of inflammatory, metabolic, autoimmune, allergic, infectious, and cancerous diseases. Additionally, we explore the therapeutic potential of metabolites in these disease contexts. Then, we provide a comprehensive and up-to-date review of the pharmaceutical strategies that have been employed to enhance the therapeutic efficacy of microbial metabolites, with a focus on SCFAs and Trp metabolites.
Collapse
Affiliation(s)
- Lindsey M Williams
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Shijie Cao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
15
|
Hernandez N, Lokhnygina Y, Ramaker ME, Ilkayeva O, Muehlbauer MJ, Crawford ML, Grant RP, Hsia DS, Jain N, Bain JR, Armstrong S, Newgard CB, Freemark M, Gumus Balikcioglu P. Sex Differences in Branched-chain Amino Acid and Tryptophan Metabolism and Pathogenesis of Youth-onset Type 2 Diabetes. J Clin Endocrinol Metab 2024; 109:e1345-e1358. [PMID: 38066593 PMCID: PMC10940256 DOI: 10.1210/clinem/dgad708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Indexed: 03/16/2024]
Abstract
OBJECTIVES Insulin resistance is associated with elevations in plasma branched-chain amino acids (BCAAs). BCAAs compete with aromatic amino acids including tryptophan for uptake into β cells. To explore relationships between BCAAs and tryptophan metabolism, adiposity, and glucose tolerance, we compared urine metabolites in overweight/obese youth with type 2 diabetes (T2D) with those in nondiabetic overweight/obese and lean youth. METHODS Metabolites were measured in 24-hour and first-morning urine samples of 56 nondiabetic adolescents with overweight/obesity, 42 adolescents with T2D, and 43 lean controls, aged 12 to 21 years. Group differences were assessed by Kruskal Wallis or ANOVA. RESULTS Groups were comparable for age, pubertal status, and ethnicity. Youth with T2D were predominantly female and had highest percent body fat. BCAAs, branched-chain ketoacids (BCKAs), tryptophan, and kynurenine were higher in urine of subjects with T2D. There were no differences between lean controls and nondiabetic youth with overweight/obesity. T2D was associated with diversion of tryptophan from the serotonin to the kynurenine pathway, with higher urinary kynurenine/serotonin ratio and lower serotonin/tryptophan and 5-HIAA/kynurenine ratios. Urinary BCAAs, BCKAs, tryptophan, and ratios reflecting diversion to the kynurenine pathway correlated positively with metrics of body fat and hemoglobin A1c. Increases in these metabolites in the obese T2D group were more pronounced and statistically significant only in adolescent girls. CONCLUSION Increases in urinary BCAAs and BCKAs in adolescent females with T2D are accompanied by diversion of tryptophan metabolism from the serotonin to the kynurenine pathway. These adaptations associate with higher risks of T2D in obese adolescent females than adolescent males.
Collapse
Affiliation(s)
- Natalie Hernandez
- Division of Pediatric Endocrinology and Diabetes, Duke University Medical Center, Durham, NC 27710, USA
| | - Yuliya Lokhnygina
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - Megan Elizabeth Ramaker
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27705, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael J Muehlbauer
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27705, USA
| | - Matthew L Crawford
- Department of Research and Development, LabCorp, Burlington, NC 27215, USA
| | - Russell P Grant
- Department of Research and Development, LabCorp, Burlington, NC 27215, USA
| | - Daniel S Hsia
- Clinical Trials Unit, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Nina Jain
- Division of Endocrinology, Department of Pediatrics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - James R Bain
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27705, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Sarah Armstrong
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC 27701, USA
- Division of General Pediatrics and Adolescent Health, Duke University Medical Center, Durham, NC 27710, USA
- Department of Family Medicine and Community Health, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher B Newgard
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27705, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael Freemark
- Division of Pediatric Endocrinology and Diabetes, Duke University Medical Center, Durham, NC 27710, USA
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27705, USA
| | - Pinar Gumus Balikcioglu
- Division of Pediatric Endocrinology and Diabetes, Duke University Medical Center, Durham, NC 27710, USA
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27705, USA
| |
Collapse
|
16
|
Roach J, Mital R, Haffner JJ, Colwell N, Coats R, Palacios HM, Liu Z, Godinho JLP, Ness M, Peramuna T, McCall LI. Microbiome metabolite quantification methods enabling insights into human health and disease. Methods 2024; 222:81-99. [PMID: 38185226 DOI: 10.1016/j.ymeth.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Many of the health-associated impacts of the microbiome are mediated by its chemical activity, producing and modifying small molecules (metabolites). Thus, microbiome metabolite quantification has a central role in efforts to elucidate and measure microbiome function. In this review, we cover general considerations when designing experiments to quantify microbiome metabolites, including sample preparation, data acquisition and data processing, since these are critical to downstream data quality. We then discuss data analysis and experimental steps to demonstrate that a given metabolite feature is of microbial origin. We further discuss techniques used to quantify common microbial metabolites, including short-chain fatty acids (SCFA), secondary bile acids (BAs), tryptophan derivatives, N-acyl amides and trimethylamine N-oxide (TMAO). Lastly, we conclude with challenges and future directions for the field.
Collapse
Affiliation(s)
- Jarrod Roach
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Rohit Mital
- Department of Biology, University of Oklahoma
| | - Jacob J Haffner
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Nathan Colwell
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Randy Coats
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Horvey M Palacios
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma
| | | | - Monica Ness
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Thilini Peramuna
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma; Department of Chemistry and Biochemistry, San Diego State University.
| |
Collapse
|
17
|
Niu B, Pan T, Xiao Y, Wang H, Zhu J, Tian F, Lu W, Chen W. The therapeutic potential of dietary intervention: based on the mechanism of a tryptophan derivative-indole propionic acid on metabolic disorders. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38189263 DOI: 10.1080/10408398.2023.2299744] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Tryptophan (TRP) contributes to individual immune homeostasis and good condition via three complex metabolism pathways (5-hydroxytryptamine (5-HT), kynurenine (KP), and gut microbiota pathway). Indole propionic acid (IPA), one of the TRP derivatives of the microbiota pathway, has raised more attention because of its impact on metabolic disorders. Here, we retrospect increasing evidence that TRP metabolites/IPA derived from its proteolysis impact host health and disease. IPA can activate the immune system through aryl hydrocarbon receptor (AHR) and/or Pregnane X receptor (PXR) as a vital mediator among diet-caused host and microbe cross-talk. Different levels of IPA in systemic circulation can predict the risk of NAFLD, T2DM, and CVD. IPA is suggested to alleviate cognitive impairment from oxidative damage, reduce gut inflammation, inhibit lipid accumulation and attenuate the symptoms of NAFLD, putatively enhance the intestinal epithelial barrier, and maintain intestinal homeostasis. Now, we provide a general description of the relationships between IPA and various physiological and pathological processes, which support an opportunity for diet intervention for metabolic diseases.
Collapse
Affiliation(s)
- Ben Niu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tong Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
18
|
Yanko R, Levashov M, Chaka OG, Nosar V, Khasabov SG, Khasabova I. Tryptophan Prevents the Development of Non-Alcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2023; 16:4195-4204. [PMID: 38152280 PMCID: PMC10752026 DOI: 10.2147/dmso.s444278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023] Open
Abstract
Purpose The main aim of this research is to study the protective effects of tryptophan on the histomorphological and biochemical abnormalities in the liver caused by a high-calorie diet (HCD), as well as its ability to normalize mitochondrial functions in order to prevent the development of non-alcoholic fatty liver disease (NAFLD). Methods The study was conducted in male Wistar rats aged 3 months at the start of the experiment. Control animals (group I) were fed a standard diet. Group II experimental animals were fed a diet with an excess of fat (45%) and carbohydrates (31%) for 12 weeks. Group III experimental animals also received L-tryptophan at a dose of 80 mg/kg body weight in addition to the HCD. The presence of NAFLD, functional activity, physiological regeneration, and the state of the liver parenchyma and connective tissue were assessed using physiological, morphological, histo-morphometric, biochemical, and biophysical research methods. Results HCD induced the development of NAFLD, which is characterized by an increase in liver weight, hypertrophy of hepatocytes and an increase in the concentration of lipids, cholesterol and triglycerides in liver tissue. Increased alanine aminotransferase activity in the liver of obese rats also confirm hepatocytes damage. Tryptophan added to the diet lowered the severity of NAFLD by reducing fat accumulation and violations of bioelectric properties, and prevented a decrease in mitochondrial ATP synthesis. Conclusion The addition of tryptophan can have a potential positive effect on the liver, reducing the severity of structural, biochemical, mitochondrial and bioelectric damage caused by HCD.
Collapse
Affiliation(s)
- Roman Yanko
- Department of Clinical Physiology of Connective Tissue, Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Mikhail Levashov
- Department of Clinical Physiology of Connective Tissue, Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Olena Georgievna Chaka
- Department of Clinical Physiology of Connective Tissue, Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Valentina Nosar
- Department of Clinical Physiology of Connective Tissue, Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Sergey G Khasabov
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Iryna Khasabova
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
19
|
Teunis CJ, Stroes ESG, Boekholdt SM, Wareham NJ, Murphy AJ, Nieuwdorp M, Hazen SL, Hanssen NMJ. Tryptophan metabolites and incident cardiovascular disease: The EPIC-Norfolk prospective population study. Atherosclerosis 2023; 387:117344. [PMID: 37945449 DOI: 10.1016/j.atherosclerosis.2023.117344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND AIMS Cardiovascular disease (CVD) remains the largest cause of death globally due to various risk factors. One novel potential contributor to CVD might be the metabolism of the essential amino acid tryptophan (Trp), which through many pathways can produce immunomodulatory metabolites such as kynurenine, indole-3-propionate and serotonin. We aim to identify the metabolites with the strongest association with cardiovascular disease, utilizing a substantial and diverse cohort of individuals. In our pursuit of this aim, our primary focus is to validate and reinforce the findings from previous cross-sectional studies. METHODS We used the community-based EPIC-Norfolk cohort (46.3 % men, age 59.8 ± 9.0) with a median follow-up of 22.1 (17.6-23.3) years to study associations between the relative levels of Trp metabolites measured with untargeted metabolomics and incident development of CVD. Serum from n = 11,972 apparently healthy subjects was analysed, of which 6982 individuals had developed CVD at the end of follow-up. Cox proportional hazard models were used to study associations, adjusted for sex, age, conventional cardiovascular risk factors and CRP. All metabolites were Ln-normalised prior to analysis. RESULTS Higher levels of Trp were inversely associated with mortality (HR 0.73; CI 0.64-0.83) and fatal CVD (HR 0.76; CI 0.59-0.99). Higher levels of kynurenine (HR 1.33; CI 1.19-1.49) and the [Kynurenine]/[Tryptophan]-ratio (HR 1.24; CI 1.14-1.35) were associated with a higher incident development of CVD. Serotonin was not associated with overall CVD, but we did find associations for myocardial infarction and stroke. Adjustment for CRP did not yield any discernible differences in effect size. CONCLUSIONS Tryptophan levels were inversely correlated with CVD, while several of its major metabolites (especially kynurenine and serotonin) were positively correlated. These findings indicate that mechanistic studies are required to understand the role of Trp metabolism in CVD with the goal to identify new therapeutic targets.
Collapse
Affiliation(s)
- Charlotte J Teunis
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ, Amsterdam, the Netherlands.
| | - Erik S G Stroes
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ, Amsterdam, the Netherlands
| | - S Matthijs Boekholdt
- Department of Cardiology, Amsterdam University Medical Center, 1105 AZ, Amsterdam, the Netherlands
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, United Kingdom
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, 3004, Australia; Department of Immunology, Monash University, Melbourne, 3004, Australia
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ, Amsterdam, the Netherlands
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, and Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Nordin M J Hanssen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ, Amsterdam, the Netherlands
| |
Collapse
|
20
|
Hu Y, Li J, Wang B, Zhu L, Li Y, Ivey KL, Lee KH, Eliassen AH, Chan A, Huttenhower C, Hu FB, Qi Q, Rimm EB, Sun Q. Interplay between diet, circulating indolepropionate concentrations and cardiometabolic health in US populations. Gut 2023; 72:2260-2271. [PMID: 37739776 PMCID: PMC10841831 DOI: 10.1136/gutjnl-2023-330410] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/23/2023] [Indexed: 09/24/2023]
Abstract
OBJECTIVES To identify indolepropionate (IPA)-predicting gut microbiota species, investigate potential diet-microbiota interactions, and examine the prospective associations of circulating IPA concentrations with type 2 diabetes (T2D) and coronary heart disease (CHD) risk in free-living individuals. DESIGN We included 287 men from the Men's Lifestyle Validation Study, a substudy of the Health Professionals Follow-Up Study (HPFS), who provided up to two pairs of faecal samples and two blood samples. Diet was assessed using 7-day diet records. Associations between plasma concentrations of tryptophan metabolites and T2D CHD risk were examined in 13 032 participants from Nurses' Health Study (NHS), NHSII and HPFS. RESULTS We identified 17 microbial species whose abundance was significantly associated with plasma IPA concentrations. A significant association between higher tryptophan intake and higher IPA concentrations was only observed among men who had higher fibre intake and a higher microbial species score consisting of the 17 species (p-interaction<0.01). Dietary and plasma concentrations of tryptophan and most kynurenine pathway metabolites were positively associated with T2D risk (HRQ5 vs Q1 ranged from 1.17 to 1.46) while a significant inverse association was found for IPA (HRQ5 vs Q1 (95% CI) 0.70 (0.56 to 0.88)). No associations were found in CHD for any plasma tryptophan metabolites. CONCLUSIONS Specific microbial species and dietary fibre jointly predicted significantly higher circulating IPA concentrations at higher tryptophan intake. Dietary and plasma tryptophan, as well as its kynurenine pathway metabolites, demonstrated divergent associations from those for IPA, which was significantly predictive of lower risk of T2D.
Collapse
Affiliation(s)
- Yang Hu
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Jun Li
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Biqi Wang
- Department of Medicine, UMASS Medical School, Worcester, Massachusetts, USA
| | - Lu Zhu
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Yanping Li
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Kerry L Ivey
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Kyu Ha Lee
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - A Heather Eliassen
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew Chan
- Clinical and Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Immunology and Infectious Diseases, Harvard University T. H. Chan School of Public Health, Boston, Boston, Massachusetts, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Immunology and Infectious Diseases, Harvard University T. H. Chan School of Public Health, Boston, Boston, Massachusetts, USA
- Eli and Edythe L. Broad Institute of Harvard and MIT, Flinders University College of Nursing and Health Sciences, Cambridge, MA, USA
| | - Frank B Hu
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eric B Rimm
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Qi Sun
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Turpin T, Thouvenot K, Gonthier MP. Adipokines and Bacterial Metabolites: A Pivotal Molecular Bridge Linking Obesity and Gut Microbiota Dysbiosis to Target. Biomolecules 2023; 13:1692. [PMID: 38136564 PMCID: PMC10742113 DOI: 10.3390/biom13121692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Adipokines are essential mediators produced by adipose tissue and exert multiple biological functions. In particular, adiponectin, leptin, resistin, IL-6, MCP-1 and PAI-1 play specific roles in the crosstalk between adipose tissue and other organs involved in metabolic, immune and vascular health. During obesity, adipokine imbalance occurs and leads to a low-grade pro-inflammatory status, promoting insulin resistance-related diabetes and its vascular complications. A causal link between obesity and gut microbiota dysbiosis has been demonstrated. The deregulation of gut bacteria communities characterizing this dysbiosis influences the synthesis of bacterial substances including lipopolysaccharides and specific metabolites, generated via the degradation of dietary components, such as short-chain fatty acids, trimethylamine metabolized into trimethylamine-oxide in the liver and indole derivatives. Emerging evidence suggests that these bacterial metabolites modulate signaling pathways involved in adipokine production and action. This review summarizes the current knowledge about the molecular links between gut bacteria-derived metabolites and adipokine imbalance in obesity, and emphasizes their roles in key pathological mechanisms related to oxidative stress, inflammation, insulin resistance and vascular disorder. Given this interaction between adipokines and bacterial metabolites, the review highlights their relevance (i) as complementary clinical biomarkers to better explore the metabolic, inflammatory and vascular complications during obesity and gut microbiota dysbiosis, and (ii) as targets for new antioxidant, anti-inflammatory and prebiotic triple action strategies.
Collapse
Affiliation(s)
| | | | - Marie-Paule Gonthier
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97410 Saint-Pierre, La Réunion, France; (T.T.); (K.T.)
| |
Collapse
|
22
|
Chumphoochai K, Manohong P, Niamnont N, Tamtin M, Sobhon P, Meemon K. Anti-Obesity Effects of Marine Macroalgae Extract Caulerpa lentillifera in a Caenorhabditis elegans Model. Mar Drugs 2023; 21:577. [PMID: 37999401 PMCID: PMC10672060 DOI: 10.3390/md21110577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Obesity is a multifactorial disease characterized by an excessive accumulation of fat, which in turn poses a significant risk to health. Bioactive compounds obtained from macroalgae have demonstrated their efficacy in combating obesity in various animal models. The green macroalgae Caulerpa lentillifera (CL) contains numerous active constituents. Hence, in the present study, we aimed to elucidate the beneficial anti-obesity effects of extracts derived from C. lentillifera using a Caenorhabditis elegans obesity model. The ethanol (CLET) and ethyl acetate (CLEA) extracts caused a significant decrease in fat consumption, reaching up to approximately 50-60%. Triglyceride levels in 50 mM glucose-fed worms were significantly reduced by approximately 200%. The GFP-labeled dhs-3, a marker for lipid droplets, exhibited a significant reduction in its level to approximately 30%. Furthermore, the level of intracellular ROS displayed a significant decrease of 18.26 to 23.91% in high-glucose-fed worms treated with CL extracts, while their lifespan remained unchanged. Additionally, the mRNA expression of genes associated with lipogenesis, such as sbp-1, showed a significant down-regulation following treatment with CL extracts. This finding was supported by a significant decrease (at 16.22-18.29%) in GFP-labeled sbp-1 gene expression. These results suggest that C. lentillifera extracts may facilitate a reduction in total fat accumulation induced by glucose through sbp-1 pathways. In summary, this study highlights the anti-obesity potential of compounds derived from C. lentillifera extracts in a C. elegans model of obesity, mediated by the suppression of lipogenesis pathways.
Collapse
Affiliation(s)
- Kawita Chumphoochai
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand; (K.C.); (P.S.)
| | - Preeyanuch Manohong
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bang Mod, Bangkok 10140, Thailand; (P.M.); (N.N.)
| | - Nakorn Niamnont
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bang Mod, Bangkok 10140, Thailand; (P.M.); (N.N.)
| | - Montakan Tamtin
- Kung Krabaen Bay Royal Development of Fisheries, Khlong Khut Sub-District, Tha Mai, Chantaburi 22000, Thailand;
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand; (K.C.); (P.S.)
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand; (K.C.); (P.S.)
| |
Collapse
|
23
|
Zhao J, Zhao F, Yuan J, Liu H, Wang Y. Gut microbiota metabolites, redox status, and the related regulatory effects of probiotics. Heliyon 2023; 9:e21431. [PMID: 38027795 PMCID: PMC10643359 DOI: 10.1016/j.heliyon.2023.e21431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Oxidative stress is a state of imbalance between oxidation and antioxidation. It is caused by excess levels of free radicals and leads to the damage of DNA, proteins, and lipids. The crucial role of gut microbiota in regulating oxidative stress has been widely demonstrated. Studies have suggested that the redox regulatory effects of gut microbiota are related to gut microbiota metabolites, including fatty acids, lipopolysaccharides, tryptophan metabolites, trimethylamine-N-oxide and polyphenolic metabolites. In recent years, the potential benefits of probiotics have been gaining increasing scientific interest owing to their ability to modulate gut microbiota and oxidative stress. In this review, we summarise the adverse health effects of oxidative stress and discuss the role of the gut microbiota and its metabolites in redox regulation. Based on the influence of gut microbiota metabolites, the roles of probiotics in preventing oxidative stress are highlighted.
Collapse
Affiliation(s)
| | | | - Junmeng Yuan
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| |
Collapse
|
24
|
Farup PG, Rootwelt H, Hestad K. APOE Polymorphism Is Associated with Changes in the Kynurenine Pathway. Genes (Basel) 2023; 14:1955. [PMID: 37895304 PMCID: PMC10606170 DOI: 10.3390/genes14101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND APOE polymorphism and the Kynurenine pathway (KP) are associated with many disorders, but little is known about associations between APOE polymorphism and the KP. This study explored the associations between the KP and APOE polymorphism in disorders associated with APOE polymorphism and changes in the KP. METHODS Subjects with morbid obesity before and after bariatric surgery (numbers 139 and 95, respectively), depression (number 49), and unspecified neurological symptoms (number 39) were included. The following grouping of the APOE genotypes was used: E2 = ɛ2ɛ2 + ɛ2ɛ3, E3 = ɛ3ɛ3 + ɛ2ɛ4, and E4 = ɛ3ɛ4 + ɛ4ɛ4. The KP metabolites Tryptophan, Kynurenine, Kynurenic acid, Quinolinic acid, and Xanthurenic acid were quantified in serum. RESULTS The main findings were a significant positive association between E3 and Quinolinic acid (difference between E3 and E2E4: 12.0 (3.5; 18.6) ng/mL); p = 0.005), and a negative association between E4 and Kynurenine (difference between E4 and E2E3: -31.3 (-54.2; -3.2) ng/mL; p = 0.008). Quinolinic acid has been ascribed neurotoxic and inflammatory effects, and Kynurenine is a marker of inflammation. CONCLUSIONS The findings indicate that APOE polymorphism might cause changes in the KP that contribute to the disease. Inflammation could be the link between APOE and the KP.
Collapse
Affiliation(s)
- Per G. Farup
- Department of Research, Innlandet Hospital Trust, 2381 Brumunddal, Norway;
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Helge Rootwelt
- Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway;
| | - Knut Hestad
- Department of Research, Innlandet Hospital Trust, 2381 Brumunddal, Norway;
- Department of Psychology, Faculty of Social and Educational Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
25
|
Wences Chirino T, Rangel López E, Luna Angulo A, Carrillo Mora P, Landa Solis C, Samudio Cruz MA, Fuentes Bello AC, Paniagua Pérez R, Ríos Martínez J, Sánchez Chapul L. Crosstalk between Exercise-Derived Endocannabinoidome and Kynurenines: Potential Target Therapies for Obesity and Depression Symptoms. Pharmaceuticals (Basel) 2023; 16:1421. [PMID: 37895892 PMCID: PMC10609722 DOI: 10.3390/ph16101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
The kynurenine pathway (KP) and the endocannabinoid system (ECS) are known to be deregulated in depression and obesity; however, it has been recognized that acute physical exercise has an important modulating role inducing changes in the mobilization of their respective metabolites-endocannabinoids (eCBs) and kynurenines (KYNs)-which overlap at some points, acting as important antidepressant, anti-nociceptive, anti-inflammatory, and antioxidant biomarkers. Therefore, the aim of this review is to analyze and discuss some recently performed studies to investigate the potential interactions between both systems, particularly those related to exercise-derived endocannabinoidome and kynurenine mechanisms, and to elucidate how prescription of physical exercise could represent a new approach for the clinical management of these two conditions.
Collapse
Affiliation(s)
- Tiffany Wences Chirino
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (T.W.C.); (A.L.A.); (A.C.F.B.)
| | - Edgar Rangel López
- Cell Reprogramming Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| | - Alexandra Luna Angulo
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (T.W.C.); (A.L.A.); (A.C.F.B.)
| | - Paul Carrillo Mora
- Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (P.C.M.); (M.A.S.C.)
| | - Carlos Landa Solis
- Tissue Engineering, Cell Therapy, and Regenerative Medicine Unit, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico;
| | - María Alejandra Samudio Cruz
- Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (P.C.M.); (M.A.S.C.)
| | - Alim C. Fuentes Bello
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (T.W.C.); (A.L.A.); (A.C.F.B.)
| | - Rogelio Paniagua Pérez
- Biochemistry Laboratory, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico;
| | - Juan Ríos Martínez
- Health Sciences Research Institute, Mexican Navy, Mexico City 04470, Mexico;
| | - Laura Sánchez Chapul
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (T.W.C.); (A.L.A.); (A.C.F.B.)
| |
Collapse
|
26
|
Zeitler EM, Li Y, Schroder M, Falk RJ, Sumner S. Characterizing the metabolic response of the zebrafish kidney to overfeeding. Am J Physiol Renal Physiol 2023; 325:F491-F502. [PMID: 37589050 PMCID: PMC10639026 DOI: 10.1152/ajprenal.00113.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023] Open
Abstract
Obesity is a global epidemic and risk factor for the development of chronic kidney disease. Obesity induces systemic changes in metabolism, but how it affects kidney metabolism specifically is not known. Zebrafish have previously been shown to develop obesity-related kidney pathology and dysfunction when fed hypercaloric diets. To understand the direct effects of obesity on kidney metabolic function, we treated zebrafish for 8 wk with a control and an overfeeding diet. At the end of treatment, we assessed changes in kidney and fish weights and used electron microscopy to evaluate cell ultrastructure. We then performed an untargeted metabolomic analysis on the kidney tissue of fish using ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry and used mummichog and gene set enrichment analysis to uncover differentially affected metabolic pathways. Kidney metabolomes differed significantly and consistently between the control and overfed diets. Among 9,593 features, we identified 235 that were significantly different (P < 0.05) between groups (125 upregulated in overfed diet, 110 downregulated). Pathway analysis demonstrated perturbations in glycolysis and fatty acid synthesis pathways, and analysis of specific metabolites points to perturbations in tryptophan metabolism. Our key findings show that diet-induced obesity leads to metabolic changes in the kidney tissue itself and implicates specific metabolic pathways, including glycolysis and tryptophan metabolism in the pathogenesis of obesity-related kidney disease, demonstrating the power of untargeted metabolomics to identify pathways of interest by directly interrogating kidney tissue.NEW & NOTEWORTHY Obesity causes systemic metabolic dysfunction, but how this affects kidney metabolism is less understood. This study used ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry to analyze the kidneys of overfed zebrafish. Metabolites in the kidneys of obese zebrafish revealed perturbations in metabolic pathways including glycolysis and tryptophan metabolism. These data suggest obesity alters metabolism within the kidney, which may play an important role in obesity-related kidney dysfunction.
Collapse
Affiliation(s)
- Evan M Zeitler
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Yuanyuan Li
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Madison Schroder
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Ronald J Falk
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Susan Sumner
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
27
|
Diedrich JD, Gonzalez-Pons R, Medeiros HCD, Ensink E, Liby KT, Wellberg EA, Lunt SY, Bernard JJ. Adipocyte-derived kynurenine stimulates malignant transformation of mammary epithelial cells through the aryl hydrocarbon receptor. Biochem Pharmacol 2023; 216:115763. [PMID: 37625554 PMCID: PMC10587895 DOI: 10.1016/j.bcp.2023.115763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Anti-hormone therapies are not efficacious for reducing the incidence of triple negative breast cancer (TNBC), which lacks both estrogen and progesterone receptors. While the etiology of this aggressive breast cancer subtype is unclear, visceral obesity is a strong risk factor for both pre- and post-menopausal cases. The mechanism by which excessive deposition of visceral adipose tissue (VAT) promotes the malignant transformation of hormone receptor-negative mammary epithelial cells is currently unknown. We developed a novel in vitro system of malignant transformation in which non-tumorigenic human breast epithelial cells (MCF-10A) grow in soft agar when cultured with factors released from VAT. These cells, which acquire the capacity for 3D growth, show elevated aryl hydrocarbon receptor (AhR) protein and AhR target genes, suggesting that AhR activity may drive malignant transformation by VAT. AhR is a ligand-dependent transcription factor that generates biological responses to exogenous carcinogens and to the endogenous tryptophan pathway metabolite, kynurenine. The serum kynurenine to tryptophan ratio has been shown to be elevated in patients with obesity. Herein, we demonstrate that AhR inhibitors or knockdown of AhR in MCF-10A cells prevents VAT-induced malignant transformation. Specifically, VAT-induced transformation is inhibited by Kyn-101, an inhibitor for the endogenous ligand binding site of AhR. Mass spectrometry analysis demonstrates that adipocytes metabolize tryptophan and release kynurenine, which is taken up by MCF-10A cells and activates the AhR to induce CYP1B1 and promote malignant transformation. This novel hormone receptor-independent mechanism of malignant transformation suggests targeting AhR for TNBC prevention in the context of visceral adiposity.
Collapse
Affiliation(s)
- Jonathan D Diedrich
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA
| | - Romina Gonzalez-Pons
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA
| | - Hyllana C D Medeiros
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Elliot Ensink
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Karen T Liby
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA
| | - Elizabeth A Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Center, Oklahoma City, OK, USA
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 USA
| | - Jamie J Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA; Department of Medicine, Michigan State University, East Lansing, MI 48824 USA.
| |
Collapse
|
28
|
Oluwagbemigun K, Anesi A, Vrhovsek U, Mattivi F, Martino Adami P, Pentzek M, Scherer M, Riedel-Heller SG, Weyerer S, Bickel H, Wiese B, Schmid M, Cryan JF, Ramirez A, Wagner M, Nöthlings U. An Investigation into the Relationship of Circulating Gut Microbiome Molecules and Inflammatory Markers with the Risk of Incident Dementia in Later Life. Mol Neurobiol 2023:10.1007/s12035-023-03513-6. [PMID: 37605096 DOI: 10.1007/s12035-023-03513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/15/2023] [Indexed: 08/23/2023]
Abstract
The gut microbiome may be involved in the occurrence of dementia primarily through the molecular mechanisms of producing bioactive molecules and promoting inflammation. Epidemiological evidence linking gut microbiome molecules and inflammatory markers to dementia risk has been mixed, and the intricate interplay between these groups of biomarkers suggests that their joint investigation in the context of dementia is warranted. We aimed to simultaneously investigate the association of circulating levels of selected gut microbiome molecules and inflammatory markers with dementia risk. This case-cohort epidemiological study included 805 individuals (83 years, 66% women) free of dementia at baseline. Plasma levels of 19 selected gut microbiome molecules comprising lipopolysaccharide, short-chain fatty acids, and indole-containing tryptophan metabolites as well as four inflammatory markers measured at baseline were linked to incident all-cause (ACD) and Alzheimer's disease dementia (AD) in binary outcomes and time-to-dementia analyses. Independent of several covariates, seven gut microbiome molecules, 5-hydroxyindole-3-acetic acid, indole-3-butyric acid, indole-3-acryloylglycine, indole-3-lactic acid, indole-3-acetic acid methyl ester, isobutyric acid, and 2-methylbutyric acid, but no inflammatory markers discriminated incident dementia cases from non-cases. Furthermore, 5-hydroxyindole-3-acetic acid (hazard ratio: 0.58; 0.36-0.94, P = 0.025) was associated with time-to-ACD. These molecules underpin gut microbiome-host interactions in the development of dementia and they may be crucial in its prevention and intervention strategies. Future larger epidemiological studies are needed to confirm our findings, specifically in exploring the repeatedly measured circulating levels of these molecules and investigating their causal relationship with dementia risk.
Collapse
Affiliation(s)
- Kolade Oluwagbemigun
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, 53115, Bonn, Germany.
| | - Andrea Anesi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), 38098, San Michele all'Adige, Italy
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), 38098, San Michele all'Adige, Italy
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), 38098, San Michele all'Adige, Italy
| | - Pamela Martino Adami
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, 50924, Cologne, Germany
| | - Michael Pentzek
- Institute of General Practice, University Hospital Essen, 45147, Essen, Germany
| | - Martin Scherer
- Department of Primary Medical Care, Center for Psychosocial Medicine, University Medical Center, 20246, Hamburg-Eppendorf, Germany
| | - Steffi G Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, 04103, Leipzig, Germany
| | - Siegfried Weyerer
- Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Horst Bickel
- Department of Psychiatry, Technical University of Munich, 80336, Munich, Germany
| | - Birgitt Wiese
- Institute of General Practice, Hannover Medical School, 30625, Hannover, Germany
| | - Matthias Schmid
- Institute for Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases, 53127, Bonn, Germany
| | - John F Cryan
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork, T12 XF62, Ireland
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, 50924, Cologne, Germany
- German Center for Neurodegenerative Diseases, 53127, Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, 53127, Bonn, Germany
- Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, 78229, USA
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases, 53127, Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, 53127, Bonn, Germany
| | - Ute Nöthlings
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
29
|
Pirozzi C, Coretti L, Opallo N, Bove M, Annunziata C, Comella F, Turco L, Lama A, Trabace L, Meli R, Lembo F, Mattace Raso G. Palmitoylethanolamide counteracts high-fat diet-induced gut dysfunction by reprogramming microbiota composition and affecting tryptophan metabolism. Front Nutr 2023; 10:1143004. [PMID: 37599675 PMCID: PMC10434518 DOI: 10.3389/fnut.2023.1143004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
Obesity is associated with gastrointestinal (GI) tract and central nervous system (CNS) disorders. High-fat diet (HFD) feeding-induced obesity in mice induces dysbiosis, causing a shift toward bacteria-derived metabolites with detrimental effects on metabolism and inflammation: events often contributing to the onset and progression of both GI and CNS disorders. Palmitoylethanolamide (PEA) is an endogenous lipid mediator with beneficial effects in mouse models of GI and CNS disorders. However, the mechanisms underlining its enteroprotective and neuroprotective effects still need to be fully understood. Here, we aimed to study the effects of PEA on intestinal inflammation and microbiota alterations resulting from lipid overnutrition. Ultramicronized PEA (30 mg/kg/die per os) was administered to HFD-fed mice for 7 weeks starting at the 12th week of HFD regimen. At the termination of the study, the effects of PEA on inflammatory factors and cells, gut microbial features and tryptophan (TRP)-kynurenine metabolism were evaluated. PEA regulates the crosstalk between the host immune system and gut microbiota via rebalancing colonic TRP metabolites. PEA treatment reduced intestinal immune cell recruitment, inflammatory response triggered by HFD feeding, and corticotropin-releasing hormone levels. In particular, PEA modulated HFD-altered TRP metabolism in the colon, rebalancing serotonin (5-HT) turnover and reducing kynurenine levels. These effects were associated with a reshaping of gut microbiota composition through increased butyrate-promoting/producing bacteria, such as Bifidobacterium, Oscillospiraceae and Turicibacter sanguinis, with the latter also described as 5-HT sensor. These data indicate that the rebuilding of gut microbiota following PEA supplementation promotes host 5-HT biosynthesis, which is crucial in regulating intestinal function.
Collapse
Affiliation(s)
- Claudio Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Lorena Coretti
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Nicola Opallo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maria Bove
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Chiara Annunziata
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Federica Comella
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Luigia Turco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Adriano Lama
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Rosaria Meli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Francesca Lembo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Giuseppina Mattace Raso
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
30
|
Ismael S, Rodrigues C, Santos GM, Castela I, Barreiros-Mota I, Almeida MJ, Calhau C, Faria A, Araújo JR. IPA and its precursors differently modulate the proliferation, differentiation, and integrity of intestinal epithelial cells. Nutr Res Pract 2023; 17:616-630. [PMID: 37529264 PMCID: PMC10375328 DOI: 10.4162/nrp.2023.17.4.616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/08/2023] [Accepted: 03/02/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES Indole-3-propionic acid (IPA) is a tryptophan-derived microbial metabolite that has been associated with protective effects against inflammatory and metabolic diseases. However, there is a lack of knowledge regarding the effects of IPA under physiological conditions and at the intestinal level. MATERIALS/METHODS Human intestinal epithelial Caco-2 cells were treated for 2, 24, and/or 72 h with IPA or its precursors - indole, tryptophan, and propionate - at 1, 10, 100, 250, or 500 μM to assess cell viability, integrity, differentiation, and proliferation. RESULTS IPA induced cell proliferation and this effect was associated with a higher expression of extracellular signal-regulated kinase 2 (ERK2) and a lower expression of c-Jun. Although indole and propionate also induced cell proliferation, this involved ERK2 and c-Jun independent mechanisms. On the other hand, both tryptophan and propionate increased cell integrity and reduced the expression of claudin-1, whereas propionate decreased cell differentiation. CONCLUSIONS In conclusion, these findings suggested that IPA and its precursors distinctly contribute to the proliferation, differentiation, and barrier function properties of human intestinal epithelial cells. Moreover, the pro-proliferative effect of IPA in intestinal epithelial cells was not explained by its precursors and is rather related to its whole chemical structure. Maintaining IPA at physiological levels, e.g., through IPA-producing commensal bacteria, may be important to preserve the integrity of the intestinal barrier and play an integral role in maintaining metabolic homeostasis.
Collapse
Affiliation(s)
- Shámila Ismael
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CINTESIS, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CHRC, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Catarina Rodrigues
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CHRC, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Gilberto Maia Santos
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Inês Castela
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CINTESIS, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CHRC, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Inês Barreiros-Mota
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CHRC, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria João Almeida
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Conceição Calhau
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CINTESIS, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- Unidade Universitária Lifestyle Medicine José de Mello Saúde by NOVA Medical School, 1169-056 Lisboa, Portugal
| | - Ana Faria
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CHRC, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - João Ricardo Araújo
- Nutrição e Metabolismo, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- CINTESIS, NOVA Medical School - Faculdade de Ciências Médicas (NMS - FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
31
|
Masse KE, Lu VB. Short-chain fatty acids, secondary bile acids and indoles: gut microbial metabolites with effects on enteroendocrine cell function and their potential as therapies for metabolic disease. Front Endocrinol (Lausanne) 2023; 14:1169624. [PMID: 37560311 PMCID: PMC10407565 DOI: 10.3389/fendo.2023.1169624] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal tract hosts the largest ecosystem of microorganisms in the body. The metabolism of ingested nutrients by gut bacteria produces novel chemical mediators that can influence chemosensory cells lining the gastrointestinal tract. Specifically, hormone-releasing enteroendocrine cells which express a host of receptors activated by these bacterial metabolites. This review will focus on the activation mechanisms of glucagon-like peptide-1 releasing enteroendocrine cells by the three main bacterial metabolites produced in the gut: short-chain fatty acids, secondary bile acids and indoles. Given the importance of enteroendocrine cells in regulating glucose homeostasis and food intake, we will also discuss therapies based on these bacterial metabolites used in the treatment of metabolic diseases such as diabetes and obesity. Elucidating the mechanisms gut bacteria can influence cellular function in the host will advance our understanding of this fundamental symbiotic relationship and unlock the potential of harnessing these pathways to improve human health.
Collapse
Affiliation(s)
| | - Van B. Lu
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
32
|
Mohamed EL Kafoury B, Ebrahim AT, Abd-El Hamid Ali MS, Shaker Mehanna N, Ibrahim Ramadan GES, Ezzat Morsy W. Short chain fatty acids and GIT hormones mitigate gut barrier disruption in high fat diet fed rats supplemented by synbiotics. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2023; 16:139-163. [DOI: 10.3233/mnm-230026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
High fat diet (HFD) predisposes to many metabolic changes; it may disrupt gut barrier integrity and gut microbiota composition. Synbiotic supplementation may promote host’s metabolic health by selective activation of the healthy microorganisms. This study aimed to probe the interaction between synbiotic supplementation, gut microbiota and gut hormones in HFD states. Twenty-seven adult male albino rats, 3 groups, group I: control, group II: HFD received HFD for 12 weeks and group III: synbiotic-supplemented HFD received synbiotic in the last 6 weeks. The anthropometric measurments were measured. Liver transaminases, lipid profile, parameters of insulin resistance, serum serotonin, glucagon like polypeptide-1 (GLP-1), oxidant/antioxidant markers (MDA/GPx), zonulin levels and quantitative cecal short chain fatty acids (SCFA) were assessed. Samples of liver and colon were employed for histopathological studies. Compared to HFD group, synbiotic led to a significant reduction in anthropometric measurements, liver enzymes, atherogenic index, HOMA-IR and MDA denoting improved dyslipidemia, insulin resistance and oxidative state. Moreover, synbiotic supplementation decreased serum zonulin and increased both serum serotonin, GLP-1 and cecal SCFAs. Synbiotic supplementation ameliorated the metabolic derangements and the disturbed integrity of the intestinal barrier induced by HFD. As synbiotics can increase gut hormones (serum GLP-1&serotonin) and SCFAs.
Collapse
Affiliation(s)
| | - Asmaa Tarek Ebrahim
- Assistant Lecturer of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Manal Said Abd-El Hamid Ali
- Assistant Professor of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Assistant Professor of Physiology, Armed Forces College of Medicine, Cairo, Egypt
| | - Nayra Shaker Mehanna
- Professor of Dairy and Food Microbiology, National Research Center, Cairo, Egypt
| | | | - Wessam Ezzat Morsy
- Assistant Professor of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Assistant Professor of Physiology, Armed Forces College of Medicine, Cairo, Egypt
| |
Collapse
|
33
|
Rafiq T, Stearns JC, Shanmuganathan M, Azab SM, Anand SS, Thabane L, Beyene J, Williams NC, Morrison KM, Teo KK, Britz-McKibbin P, de Souza RJ. Integrative multiomics analysis of infant gut microbiome and serum metabolome reveals key molecular biomarkers of early onset childhood obesity. Heliyon 2023; 9:e16651. [PMID: 37332914 PMCID: PMC10272340 DOI: 10.1016/j.heliyon.2023.e16651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Evidence supports a complex interplay of gut microbiome and host metabolism as regulators of obesity. The metabolic phenotype and microbial metabolism of host diet may also contribute to greater obesity risk in children early in life. This study aimed to identify features that discriminated overweight/obese from normal weight infants by integrating gut microbiome and serum metabolome profiles. This prospective analysis included 50 South Asian children living in Canada, selected from the SouTh Asian biRth cohorT (START). Serum metabolites were measured by multisegment injection-capillary electrophoresis-mass spectrometry and the relative abundance of bacterial 16S rRNA gene amplicon sequence variant was evaluated at 1 year. Cumulative body mass index (BMIAUC) and skinfold thickness (SSFAUC) scores were calculated from birth to 3 years as the total area under the growth curve (AUC). BMIAUC and/or SSFAUC >85th percentile was used to define overweight/obesity. Data Integration Analysis for Biomarker discovery using Latent cOmponent (DIABLO) was used to identify discriminant features associated with childhood overweight/obesity. The associations between identified features and anthropometric measures were examined using logistic regression. Circulating metabolites including glutamic acid, acetylcarnitine, carnitine, and threonine were positively, whereas γ-aminobutyric acid (GABA), symmetric dimethylarginine (SDMA), and asymmetric dimethylarginine (ADMA) were negatively associated with childhood overweight/obesity. The abundance of the Pseudobutyrivibrio and Lactobacillus genera were positively, and Clostridium sensu stricto 1 and Akkermansia were negatively associated with childhood overweight/obesity. Integrative analysis revealed that Akkermansia was positively whereas Lactobacillus was inversely correlated with GABA and SDMA, and Pseudobutyrivibrio was inversely correlated with GABA. This study provides insights into metabolic and microbial signatures which may regulate satiety, energy metabolism, inflammatory processes, and/or gut barrier function, and therefore, obesity trajectories in childhood. Understanding the functional capacity of these molecular features and potentially modifiable risk factors such as dietary exposures early in life may offer a novel approach for preventing childhood obesity.
Collapse
Affiliation(s)
- Talha Rafiq
- Medical Sciences Graduate Program, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, ON L8L 2X2, Canada
| | - Jennifer C. Stearns
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Meera Shanmuganathan
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Sandi M. Azab
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Pharmacognosy, Alexandria University, Alexandria 21521, Egypt
| | - Sonia S. Anand
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, ON L8L 2X2, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Lehana Thabane
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biostatistics Unit, Father Sean O’Sullivan Research Centre, The Research Institute, St Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
- Faculty of Health Sciences, University of Johannesburg, Johannesburg 524, South Africa
| | - Joseph Beyene
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
| | | | - Katherine M. Morrison
- Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Koon K. Teo
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, ON L8L 2X2, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Russell J. de Souza
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, ON L8L 2X2, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
34
|
Leleiwi I, Rodriguez-Ramos J, Shaffer M, Sabag-Daigle A, Kokkinias K, Flynn RM, Daly RA, Kop LFM, Solden LM, Ahmer BMM, Borton MA, Wrighton KC. Exposing new taxonomic variation with inflammation - a murine model-specific genome database for gut microbiome researchers. MICROBIOME 2023; 11:114. [PMID: 37210515 PMCID: PMC10199544 DOI: 10.1186/s40168-023-01529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/21/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND The murine CBA/J mouse model widely supports immunology and enteric pathogen research. This model has illuminated Salmonella interactions with the gut microbiome since pathogen proliferation does not require disruptive pretreatment of the native microbiota, nor does it become systemic, thereby representing an analog to gastroenteritis disease progression in humans. Despite the value to broad research communities, microbiota in CBA/J mice are not represented in current murine microbiome genome catalogs. RESULTS Here we present the first microbial and viral genomic catalog of the CBA/J murine gut microbiome. Using fecal microbial communities from untreated and Salmonella-infected, highly inflamed mice, we performed genomic reconstruction to determine the impacts on gut microbiome membership and functional potential. From high depth whole community sequencing (~ 42.4 Gbps/sample), we reconstructed 2281 bacterial and 4516 viral draft genomes. Salmonella challenge significantly altered gut membership in CBA/J mice, revealing 30 genera and 98 species that were conditionally rare and unsampled in non-inflamed mice. Additionally, inflamed communities were depleted in microbial genes that modulate host anti-inflammatory pathways and enriched in genes for respiratory energy generation. Our findings suggest decreases in butyrate concentrations during Salmonella infection corresponded to reductions in the relative abundance in members of the Alistipes. Strain-level comparison of CBA/J microbial genomes to prominent murine gut microbiome databases identified newly sampled lineages in this resource, while comparisons to human gut microbiomes extended the host relevance of dominant CBA/J inflammation-resistant strains. CONCLUSIONS This CBA/J microbiome database provides the first genomic sampling of relevant, uncultivated microorganisms within the gut from this widely used laboratory model. Using this resource, we curated a functional, strain-resolved view on how Salmonella remodels intact murine gut communities, advancing pathobiome understanding beyond inferences from prior amplicon-based approaches. Salmonella-induced inflammation suppressed Alistipes and other dominant members, while rarer commensals like Lactobacillus and Enterococcus endure. The rare and novel species sampled across this inflammation gradient advance the utility of this microbiome resource to benefit the broad research needs of the CBA/J scientific community, and those using murine models for understanding the impact of inflammation on the gut microbiome more generally. Video Abstract.
Collapse
Affiliation(s)
- Ikaia Leleiwi
- Department of Cell and Molecular Biology, The Colorado State University, Fort Collins, CO USA
- Department of Soil and Crop Sciences, The Colorado State University, Fort Collins, CO USA
| | - Josué Rodriguez-Ramos
- Department of Soil and Crop Sciences, The Colorado State University, Fort Collins, CO USA
- Graduate Degree Program in Ecology, The Colorado State University, Fort Collins, CO USA
| | - Michael Shaffer
- Department of Soil and Crop Sciences, The Colorado State University, Fort Collins, CO USA
| | - Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH USA
| | - Katherine Kokkinias
- Department of Soil and Crop Sciences, The Colorado State University, Fort Collins, CO USA
- Department of Microbiology, Immunology, and Pathology, The Colorado State University, Fort Collins, CO USA
| | - Rory M. Flynn
- Department of Soil and Crop Sciences, The Colorado State University, Fort Collins, CO USA
| | - Rebecca A. Daly
- Department of Soil and Crop Sciences, The Colorado State University, Fort Collins, CO USA
| | - Linnea F. M. Kop
- Department of Microbiology, RIBES, Radbound University, Nijmegen, The Netherlands
- Department of Microbiology and Biophysics, The Ohio State University, Columbus, OH USA
| | - Lindsey M. Solden
- Department of Soil and Crop Sciences, The Colorado State University, Fort Collins, CO USA
| | - Brian M. M. Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH USA
| | - Mikayla A. Borton
- Department of Soil and Crop Sciences, The Colorado State University, Fort Collins, CO USA
| | - Kelly C. Wrighton
- Department of Cell and Molecular Biology, The Colorado State University, Fort Collins, CO USA
- Department of Soil and Crop Sciences, The Colorado State University, Fort Collins, CO USA
- Graduate Degree Program in Ecology, The Colorado State University, Fort Collins, CO USA
- Department of Microbiology, Immunology, and Pathology, The Colorado State University, Fort Collins, CO USA
| |
Collapse
|
35
|
Li M, Cheng D, Peng C, Huang Y, Geng J, Huang G, Wang T, Xu A. Therapeutic mechanisms of the medicine and food homology formula Xiao-Ke-Yin on glucolipid metabolic dysfunction revealed by transcriptomics, metabolomics and microbiomics in mice. Chin Med 2023; 18:57. [PMID: 37202792 DOI: 10.1186/s13020-023-00752-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/13/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND In recent decades, the prevalence of metabolic diseases, particularly diabetes, hyperlipidemia, obesity, and non-alcoholic fatty liver disease (NAFLD), has increased dramatically, causing great public health and economic burdens worldwide. Traditional Chinese medicine (TCM) serves as an effective therapeutic choice. Xiao-Ke-Yin (XKY) is a medicine and food homology TCM formula consisting of nine "medicine and food homology" herbs and is used to ameliorate metabolic diseases, such as insulin resistance, diabetes, hyperlipidemia and NAFLD. However, despite its therapeutic potential in metabolic disorders, the underlying mechanisms of this TCM remain unclear. This study aimed to evaluate the therapeutic effectiveness of XKY on glucolipid metabolism dysfunction and explore the potential mechanisms in db/db mice. METHODS To verify the effects of XKY, db/db mice were treated with different concentrations of XKY (5.2, 2.6 and 1.3 g/kg/d) and metformin (0.2 g/kg/d, a hypoglycemic positive control) for 6 weeks, respectively. During this study, we detected the body weight (BW) and fasting blood glucose (FBG), oral glucose tolerance test (OGTT), insulin tolerance test (ITT), daily food intake and water intake. At the end of the animal experiment, blood samples, feces, liver and intestinal tissue of mice in all groups were collected. The potential mechanisms were investigated by using hepatic RNA sequencing, 16 S rRNA sequencing of the gut microbiota and metabolomics analysis. RESULTS XKY efficiently mitigated hyperglycemia, IR, hyperlipidemia, inflammation and hepatic pathological injury in a dose dependent manner. Mechanistically, hepatic transcriptomic analysis showed that XKY treatment significantly reversed the upregulated cholesterol biosynthesis which was further confirmed by RT-qPCR. Additionally, XKY administration maintained intestinal epithelial homeostasis, modulated gut microbiota dysbiosis, and regulated its metabolites. In particular, XKY decreased secondary bile acid producing bacteria (Clostridia and Lachnospircaeae) and lowered fecal secondary bile acid (lithocholic acid (LCA) and deoxycholic acid (DCA)) levels to promote hepatic bile acid synthesis by inhibiting the LCA/DCA-FXR-FGF15 signalling pathway. Furthermore, XKY regulated amino acid metabolism including arginine biosynthesis, alanine, aspartate and glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and tryptophan metabolism likely by increasing Bacilli, Lactobacillaceae and Lactobacillus, and decreasing Clostridia, Lachnospircaeae, Tannerellaceae and Parabacteroides abundances. CONCLUSION Taken together, our findings demonstrate that XKY is a promising "medicine food homology" formula for ameliorating glucolipid metabolism and reveal that the therapeutic effects of XKY may due to its downregulation of hepatic cholesterol biosynthesis and modulation of the dysbiosis of the gut microbiota and metabolites.
Collapse
Affiliation(s)
- Mei Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ding Cheng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Chuan Peng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujiao Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Geng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
36
|
Wang ME, Hodge AM, Li SX, Southey MC, Giles GG, Dugué PA. Adiposity and plasma concentrations of kynurenine pathway metabolites and traditional markers of inflammation. Obes Res Clin Pract 2023:S1871-403X(23)00028-5. [PMID: 37121824 DOI: 10.1016/j.orcp.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023]
Abstract
AIM The kynurenine pathway is increasingly recognised to play a role in inflammation and disease. We assessed the cross-sectional and longitudinal associations of adiposity measures (body mass index, waist-hip ratio, waist circumference and fat mass ratio) with plasma concentrations of kynurenine pathway metabolites and traditional markers of inflammation. METHODS We used data from 970 Melbourne Collaborative Cohort Study participants who had plasma markers measured at baseline (median age 59 years) and follow-up (median age 70 years). Linear regression was used to assess cross-sectional and longitudinal associations between four adiposity measures and concentrations of i) nine kynurenine pathway metabolites; ii) two derived markers; iii) eight traditional inflammatory markers. RESULTS Cross-sectionally, most kynurenine metabolites were strongly associated with adiposity measures at both time points; associations were generally stronger than for most inflammation markers except CRP (e.g. body mass index at baseline, quinolinic acid (per S.D. β = 0.30, 95%CI: 0.24-0.36, P = 10-21), kynurenine (β = 0.25, 95%CI: 0.19-0.31, P = 10-16) and CRP (β = 0.31, 95%CI: 0.25-0.37, P = 10-24), and remained largely unchanged after adjustment for confounders. Longitudinally, changes in adiposity measures over approximately a decade were positively associated with changes in kynurenine metabolite concentrations (in particular for 3-hydroxyanthranilic acid, kynurenine and quinolinic acid), and more strongly so than for other markers of inflammation, including CRP. CONCLUSIONS In middle-aged and older adults, plasma concentrations of kynurenine metabolites are strongly associated with adiposity, both cross-sectionally and longitudinally. Our study demonstrates that kynurenine metabolites may be valuable markers to monitor the adverse consequences of obesity.
Collapse
Affiliation(s)
- Mengmei E Wang
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Allison M Hodge
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia; Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Sherly X Li
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia; Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia; Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia; Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Graham G Giles
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia; Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Pierre-Antoine Dugué
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia; Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia.
| |
Collapse
|
37
|
Auguet T, Bertran L, Capellades J, Abelló S, Aguilar C, Sabench F, del Castillo D, Correig X, Yanes O, Richart C. LC/MS-Based Untargeted Metabolomics Analysis in Women with Morbid Obesity and Associated Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:7761. [PMID: 37175468 PMCID: PMC10177925 DOI: 10.3390/ijms24097761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity is a chronic and complex disease, with an increasing incidence worldwide that is associated with metabolic disorders such as type 2 diabetes mellitus (T2DM). Thus, it is important to determine the differences between metabolically healthy obese individuals and those with metabolic disorders. The aim of this study was to perform an untargeted metabolomics assay in women with morbid obesity (MO) compared to a normal weight group, and to differentiate the metabolome of these women with MO who present with T2DM. We carried out a liquid chromatography-mass spectrometry-based untargeted metabolomics assay using serum samples of 209 Caucasian women: 73 with normal weight and 136 with MO, of which 71 had T2DM. First, we found increased levels of choline and acylglycerols and lower levels of bile acids, steroids, ceramides, glycosphingolipids, lysophosphatidylcholines, and lysophosphatidylethanolamines in MO women than in the control group. Then, in MO women with T2DM, we found increased levels of glutamate, propionyl-carnitine, bile acids, ceramides, lysophosphatidylcholine 14:0, phosphatidylinositols and phosphoethanolamines, and lower levels of Phe-Ile/Leu. Thus, we found metabolites with opposite trends of concentration in the two metabolomic analyses. These metabolites could be considered possible new factors of study in the pathogenesis of MO and associated T2DM in women.
Collapse
Affiliation(s)
- Teresa Auguet
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, 43005 Tarragona, Spain; (T.A.); (L.B.); (C.A.); (F.S.); (D.d.C.)
| | - Laia Bertran
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, 43005 Tarragona, Spain; (T.A.); (L.B.); (C.A.); (F.S.); (D.d.C.)
| | - Jordi Capellades
- Department of Electronic Engineering, Universitat Rovira i Virgili (URV), IISPV, 43007 Tarragona, Spain; (J.C.); (X.C.); (O.Y.)
| | - Sonia Abelló
- Servei de Recursos Científics i Tècnics, Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain;
| | - Carmen Aguilar
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, 43005 Tarragona, Spain; (T.A.); (L.B.); (C.A.); (F.S.); (D.d.C.)
| | - Fàtima Sabench
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, 43005 Tarragona, Spain; (T.A.); (L.B.); (C.A.); (F.S.); (D.d.C.)
- Unitat de Cirurgia, Facultad de Medicina i Ciències de la Salut, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili (URV), IISPV, 43204 Reus, Spain
| | - Daniel del Castillo
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, 43005 Tarragona, Spain; (T.A.); (L.B.); (C.A.); (F.S.); (D.d.C.)
- Unitat de Cirurgia, Facultad de Medicina i Ciències de la Salut, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili (URV), IISPV, 43204 Reus, Spain
| | - Xavier Correig
- Department of Electronic Engineering, Universitat Rovira i Virgili (URV), IISPV, 43007 Tarragona, Spain; (J.C.); (X.C.); (O.Y.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 43204 Madrid, Spain
| | - Oscar Yanes
- Department of Electronic Engineering, Universitat Rovira i Virgili (URV), IISPV, 43007 Tarragona, Spain; (J.C.); (X.C.); (O.Y.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 43204 Madrid, Spain
| | - Cristóbal Richart
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, 43005 Tarragona, Spain; (T.A.); (L.B.); (C.A.); (F.S.); (D.d.C.)
| |
Collapse
|
38
|
Natural Product Skatole Ameliorates Lipotoxicity-Induced Multiple Hepatic Damage under Hyperlipidemic Conditions in Hepatocytes. Nutrients 2023; 15:nu15061490. [PMID: 36986221 PMCID: PMC10052055 DOI: 10.3390/nu15061490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 03/22/2023] Open
Abstract
Skatole (3-methylindole, 3MI) is a natural-origin compound derived from plants, insects, and microbial metabolites in human intestines. Skatole has an anti-lipid peroxidation effect and is a biomarker for several diseases. However, its effect on hepatocyte lipid metabolism and lipotoxicity has not been elucidated. Hepatic lipotoxicity is induced by excess saturated free fatty acids in hyperlipidemia, which directly damages the hepatocytes. Lipotoxicity is involved in several metabolic diseases and hepatocytes, particularly affecting nonalcoholic fatty liver disease (NAFLD) progression. NAFLD is caused by the accumulation of fat by excessive free fatty acids (FFAs) in the blood and is accompanied by hepatic damage, such as endoplasmic reticulum (ER) stress, abnormal glucose and insulin metabolism, oxidative stress, and lipoapoptosis with lipid accumulation. Hepatic lipotoxicity causes multiple hepatic damages in NAFLD and has a directly effect on the progression from NAFLD to nonalcoholic steatohepatitis (NASH). This study confirmed that the natural compound skatole improves various damages to hepatocytes caused by lipotoxicity in hyperlipidemic conditions. To induce lipotoxicity, we exposed HepG2, SNU-449, and Huh7 cells to palmitic acid, a saturated fatty acid, and confirmed the protective effect of skatole. Skatole inhibited fat accumulation in the hepatocytes, reduced ER and oxidative stress, and recovered insulin resistance and glucose uptake. Importantly, skatole reduced lipoapoptosis by regulating caspase activity. In conclusion, skatole ameliorated multiple types of hepatocyte damage induced by lipotoxicity in the presence of excess free fatty acids.
Collapse
|
39
|
Lassen JK, Wang T, Nielsen KL, Hasselstrøm JB, Johannsen M, Villesen P. Large-Scale metabolomics: Predicting biological age using 10,133 routine untargeted LC-MS measurements. Aging Cell 2023; 22:e13813. [PMID: 36935524 DOI: 10.1111/acel.13813] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 03/21/2023] Open
Abstract
Untargeted metabolomics is the study of all detectable small molecules, and in geroscience, metabolomics has shown great potential to describe the biological age-a complex trait impacted by many factors. Unfortunately, the sample sizes are often insufficient to achieve sufficient power and minimize potential biases caused by, for example, demographic factors. In this study, we present the analysis of biological age in ~10,000 toxicologic routine blood measurements. The untargeted screening samples obtained from ultra-high pressure liquid chromatography-quadruple time of flight mass spectrometry (UHPLC- QTOF) cover + 300 batches and + 30 months, lack pooled quality controls, lack controlled sample collection, and has previously only been used in small-scale studies. To overcome experimental effects, we developed and tested a custom neural network model and compared it with existing prediction methods. Overall, the neural network was able to predict the chronological age with an rmse of 5.88 years (r2 = 0.63) improving upon the 6.15 years achieved by existing normalization methods. We used the feature importance algorithm, Shapley Additive exPlanations (SHAP), to identify compounds related to the biological age. Most importantly, the model returned known aging markers such as kynurenine, indole-3-aldehyde, and acylcarnitines along with a potential novel aging marker, cyclo (leu-pro). Our results validate the association of tryptophan and acylcarnitine metabolism to aging in a highly uncontrolled large-s cale sample. Also, we have shown that by using robust computational methods it is possible to deploy large LC-MS datasets for metabolomics studies to reduce the risk of bias and empower aging studies.
Collapse
Affiliation(s)
- Johan K Lassen
- Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
| | - Tingting Wang
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - Palle Villesen
- Bioinformatics Research Center, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
40
|
Šmon J, Kočar E, Pintar T, Dolenc-Grošelj L, Rozman D. Is obstructive sleep apnea a circadian rhythm disorder? J Sleep Res 2023:e13875. [PMID: 36922163 DOI: 10.1111/jsr.13875] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/06/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
Obstructive sleep apnea is the most common sleep-related breathing disorder worldwide and remains underdiagnosed. Its multiple associated comorbidities contribute to a decreased quality of life and work performance as well as an increased risk of death. Standard treatment seems to have limited effects on cardiovascular and metabolic aspects of the disease, emphasising the need for early diagnosis and additional therapeutic approaches. Recent evidence suggests that the dysregulation of circadian rhythms, processes with endogenous rhythmicity that are adjusted to the environment through various cues, is involved in the pathogenesis of comorbidities. In patients with obstructive sleep apnea, altered circadian gene expression patterns have been demonstrated. Obstructive respiratory events may promote circadian dysregulation through the effects of sleep disturbance and intermittent hypoxia, with subsequent inflammation and disruption of neural and hormonal homeostasis. In this review, current knowledge on obstructive sleep apnea, circadian rhythm regulation, and circadian rhythm sleep disorders is summarised. Studies that connect obstructive sleep apnea to circadian rhythm abnormalities are critically evaluated. Furthermore, pathogenetic mechanisms that may underlie this association, most notably hypoxia signalling, are presented. A bidirectional relationship between obstructive sleep apnea and circadian rhythm dysregulation is proposed. Approaching obstructive sleep apnea as a circadian rhythm disorder may prove beneficial for the development of new, personalised diagnostic, therapeutic and prognostic tools. However, further studies are needed before the clinical approach to obstructive sleep apnea includes targeting the circadian system.
Collapse
Affiliation(s)
- Julija Šmon
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Kočar
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadeja Pintar
- Department of Abdominal Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Leja Dolenc-Grošelj
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
41
|
Kupjetz M, Patt N, Joisten N, Ueland PM, McCann A, Gonzenbach R, Bansi J, Zimmer P. The serum kynurenine pathway metabolic profile is associated with overweight and obesity in multiple sclerosis. Mult Scler Relat Disord 2023; 72:104592. [PMID: 36881945 DOI: 10.1016/j.msard.2023.104592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Overweight and obesity increase multiple sclerosis (MS) susceptibility, disease severity, and disability progression. Kynurenine pathway (KP) dysregulation is present in overweight and obesity, and in MS. Since the effect of overweight and obesity on KP dysregulation in persons with MS (pwMS) remains to be established, this study primarily aims to explore the effect of overweight and obesity on the serum KP metabolic profile in pwMS. METHODS This cross-sectional study represents a secondary analysis of a randomized clinical trial at Valens rehabilitation clinic, Switzerland. Registration was performed on 22 April 2020 at clinicaltrials.gov (NCT04356248, https://clinicaltrials.gov/ct2/show/NCT04356248). The first participant was enrolled on 13 July 2020. Based on body mass index (BMI), 106 MS inpatients (Expanded Disability Status Scale (EDSS) score ≤ 6.5) were dichotomised to a lean group (LG, BMI < 25 kg/m2), and an overweight/obese group (OG, BMI ≥ 25 kg/m2). Targeted metabolomics (LC-MS/MS) was performed to determine serum concentrations of tryptophan (TRP), KP downstream metabolites, and neopterin (Neopt). Correlations between BMI, kynurenine-to-TRP ratio (KTR), and serum concentrations of TRP, KP downstream metabolites, and Neopt were calculated. ANCOVA was used to determine differences in KTR, and serum concentrations of TRP, KP downstream metabolites and Neopt between OG and LG, and across MS phenotypes. RESULTS Higher BMI correlated with higher KTR (r = 0.425, p <0.001) and serum concentrations of most KP downstream metabolites, but not with EDSS score. Higher KTR (r = 0.470, p < .001) and serum concentrations of most KP downstream metabolites correlated with a higher serum concentration of Neopt. The OG (n = 44, 59% female, 51.68 (9.98) years, EDSS: 4.71 (1.37)) revealed higher KTR (0.026 (0.007) vs. 0.022 (0.006), p=.001) and serum concentrations of most KP downstream metabolites than the LG (n = 62, 71% female, 48.37 (9.63) years, EDSS: 4.60 (1.29)). KP metabolic profiles did not differ between MS phenotypes. CONCLUSION Overweight and obesity are associated with a systemic elevation of KP metabolic flux and an accumulation of most KP downstream metabolites in pwMS. Further research is needed to clarify if KP involvement serves as a mechanism linking overweight and obesity with symptom expression, disease severity, and disability progression in pwMS.
Collapse
Affiliation(s)
- Marie Kupjetz
- Department of Performance and Health (Sports Medicine), Institute of Sport and Sport Science, TU Dortmund University, Otto-Hahn-Str. 3, 44227 Dortmund, Germany
| | - Nadine Patt
- Department of Neurology, Clinics of Valens, Rehabilitation Centre Valens, Taminaplatz 1, 7317 Valens, Switzerland
| | - Niklas Joisten
- Department of Performance and Health (Sports Medicine), Institute of Sport and Sport Science, TU Dortmund University, Otto-Hahn-Str. 3, 44227 Dortmund, Germany
| | - Per Magne Ueland
- Bevital AS, Laboratoriebygget, 9 etg, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Adrian McCann
- Bevital AS, Laboratoriebygget, 9 etg, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Roman Gonzenbach
- Department of Neurology, Clinics of Valens, Rehabilitation Centre Valens, Taminaplatz 1, 7317 Valens, Switzerland
| | - Jens Bansi
- Department of Neurology, Clinics of Valens, Rehabilitation Centre Valens, Taminaplatz 1, 7317 Valens, Switzerland; Department of Health, OST - Eastern Switzerland University of Applied Sciences, Rosenbergstrasse 59, 9000 Sankt Gallen, Switzerland
| | - Philipp Zimmer
- Department of Performance and Health (Sports Medicine), Institute of Sport and Sport Science, TU Dortmund University, Otto-Hahn-Str. 3, 44227 Dortmund, Germany.
| |
Collapse
|
42
|
Yang J, Lee R, Schulz Z, Hsu A, Pai J, Yang S, Henning SM, Huang J, Jacobs JP, Heber D, Li Z. Mixed Nuts as Healthy Snacks: Effect on Tryptophan Metabolism and Cardiovascular Risk Factors. Nutrients 2023; 15:569. [PMID: 36771274 PMCID: PMC9921623 DOI: 10.3390/nu15030569] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
We recently demonstrated that the consumption of mixed tree nuts (MTNs) during caloric restriction decreased cardiovascular risk factors and increased satiety. Tryptophan (Trp) metabolism has been indicated as a factor in cardiovascular disease. Here, we investigated the effect of MTNs on Trp metabolism and the link to cardiovascular risk markers. Plasma and stool were collected from 95 overweight individuals who consumed either MTNs (or pretzels) daily as part of a hypocaloric weight loss diet for 12 weeks followed by an isocaloric weight maintenance program for an additional 12 weeks. Plasma and fecal samples were evaluated for Trp metabolites by LC-MS and for gut microbiota by 16S rRNA sequencing. Trp-kynurenine metabolism was reduced only in the MTNs group during weight loss (baseline vs. week 12). Changes in Trp-serotonin (week 24) and Trp-indole (week 12) metabolism from baseline were increased in the MTNs group compared to the pretzel group. Intergroup analysis between MTN and pretzel groups does not identify significant microbial changes as indicated by alpha diversity and beta diversity. Changes in the relative abundance of genus Paludicola during intervention are statistically different between the MTNs and pretzel group with p < 0.001 (q = 0.07). Our findings suggest that consumption of MTNs affects Trp host and microbial metabolism in overweight and obese subjects.
Collapse
Affiliation(s)
- Jieping Yang
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Rupo Lee
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Zachary Schulz
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Albert Hsu
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jonathan Pai
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Scarlet Yang
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Susanne M. Henning
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jianjun Huang
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jonathan P. Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - David Heber
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Zhaoping Li
- Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA
| |
Collapse
|
43
|
Li Y, Yao H, Chen S, Xu N, Lin JM. Effect of Tryptophan Metabolites on Cell Damage Revealed by Bacteria-Cell Interactions in Hydrogel Microspheres. Anal Chem 2023; 95:1402-1408. [PMID: 36595555 DOI: 10.1021/acs.analchem.2c04355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This work presented an alternative approach for studying bacteria-cell interactions in three-dimensional (3D) hydrogel microspheres formed by the cross-linking reaction of alginate and calcium-ethylenediaminetetraacetic acid (EDTA-Ca) produced in a microfluidic chip. During the co-culture process of hepatocytes (HepG2) and Escherichia coli (E. coli) 25922, we concluded that the content change of tryptophan metabolites detected via ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was related to the cell damage level and the change of interleukin (IL-22) detected by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) was related to the ways of co-cultivation. Compared to the two-dimensional (2D) adherent cell culture process in a Petri dish (2D), the co-culture process of HepG2 and E. coli 25922 in hydrogel microspheres indicated more information about metabolism such as the appearance of indole-3-propionic acid (IPA) and possibly IL-22. The method provides a new perspective to investigate the bacteria-cell interaction and it could be a promising tool in the study of gut microbiota and human health.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Hongren Yao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Shulang Chen
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Ning Xu
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
44
|
Franzago M, Orecchini E, Porreca A, Mondanelli G, Orabona C, Dalla Ragione L, Di Nicola M, Stuppia L, Vitacolonna E, Beccari T, Ceccarini MR. SLC6A4 DNA Methylation Levels and Serum Kynurenine/Tryptophan Ratio in Eating Disorders: A Possible Link with Psychopathological Traits? Nutrients 2023; 15:nu15020406. [PMID: 36678277 PMCID: PMC9866524 DOI: 10.3390/nu15020406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Background: The incidence of eating disorders (EDs), serious mental and physical conditions characterized by a disturbance in eating or eating-related behaviors, has increased steadily. The present study aims to develop insights into the pathophysiology of EDs, spanning over biochemical, epigenetic, psychopathological, and clinical data. In particular, we focused our attention on the relationship between (i) DNA methylation profiles at promoter-associated CpG sites of the SCL6A4 gene, (ii) serum kynurenine/tryptophan levels and ratio (Kyn/Trp), and (iii) psychopathological traits in a cohort of ED patients. Among these, 45 patients were affected by restricting anorexia nervosa (AN0), 21 by purging AN (AN1), 21 by bulimia (BN), 31 by binge eating disorders (BED), 23 by unspecified feeding or eating disorders (UFED), and finally 14 by other specified eating disorders (OSFED) were compared to 34 healthy controls (CTRs). Results: Kyn level was higher in BED, UFED, and OSFED compared to CTRs (p ≤ 0.001). On the other hand, AN0, AN1, and BN patients showed significatively lower Kyn levels compared to the other three ED groups but were closed to CTRs. Trp was significantly higher in AN0, AN1, and BN in comparison to other ED groups. Moreover, AN1 and BN showed more relevant Trp levels than CTRs (p <0.001). BED patients showed a lower Trp as compared with CTRs (p ≤ 0.001). In addition, Kyn/Trp ratio was lower in the AN1 subtype but higher in BED, UFED, and OSFED patients than in CTRs (p ≤ 0.001). SCL6A4 DNA methylation level at CpG5 was lower in AN0 compared to BED (p = 0.021), and the CpG6 methylation was also significantly lower in AN0 in comparison to CTRs (p = 0.025). The mean methylation levels of the six CpGs analyzed were lower only in the AN0 subgroup compared to CTRs (p = 0.008). Relevant psychological trait EDI-3 subscales were correlated with biochemical and epigenetic data. Conclusions: These findings underline the complexity of psychological and pathophysiological components of EDs.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy
- Center for Advanced Studies and Technology, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Elena Orecchini
- Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Annamaria Porreca
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Giada Mondanelli
- Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Ciriana Orabona
- Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Laura Dalla Ragione
- Food Science and Human Nutrition Unit, University Campus Biomedico of Rome, 00128 Rome, Italy
| | - Marta Di Nicola
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology, “G. d’Annunzio” University, 66100 Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy
- Center for Advanced Studies and Technology, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
- Correspondence: ; Tel.: +39-075-585-7905
| |
Collapse
|
45
|
Bian Z, Jian X, Liu G, Jian S, Wen J, Zhang H, Lin X, Huang H, Deng J, Deng B, Zhang L. Wet-food diet promotes the recovery from surgery of castration and control of body weight in adult young cats. J Anim Sci 2023; 101:skad039. [PMID: 36734030 PMCID: PMC9997781 DOI: 10.1093/jas/skad039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 02/02/2023] [Indexed: 02/04/2023] Open
Abstract
Inappropriate dietary management may lead to delayed recovery from castration surgery and significant weight gain in cats after castration. Wet canned food often exhibits more advantageous characteristics than dry food (e.g., higher palatability and digestibility, and lower energy density). This study compared the effects of canned and dry food on surgical recovery and weight management in cats after castration. Eighteen healthy cats (weighed 4.33 ± 1.04 kg and aged 18-months old) were allocated to one of the two dietary treatments (N = 9/group), dry (CON) and canned food (CAN) balanced for sex and initial BW. Cats were fed ad libitum for 7 weeks, including one week before surgery (week 0) and 6 weeks after surgery (week 1-6). Daily dry matter intake (DMI), and weekly body weight (BW) and body condition score (BCS) was obtained. Feces were collected for measuring nutrient digestibility and concentrations of short-chain fatty acids (SCFA) and branched-chain fatty acids (BCFA). Physical pain and wound surface assessment were performed at week 1. Blood was also collected intermittently for measuring biochemical indices and untargeted metabolomics analysis. Results indicated that BW, BCS and daily DMI in CON group increased (P < 0.05) over time after castration, but were maintained relatively stable in CAN group. Cats in CAN group exhibited less pain-related behavior as reflected by lower score of comfort (P < 0.05) and vocalization (P < 0.10), improved wound surface assessment (P < 0.10), lower level of lipase (P < 0.10) and ratio of blood urea nitrogen/serum creatinine (BUN/SC; P < 0.05), and higher level of superoxide dismutase (SOD; P < 0.05) in week 1 than CON cats. Meanwhile, the CAN group had significantly higher concentration of immunoglobulin G (IgG) on days 5 and 7, and higher level of high-density lipoprotein cholesterol (HDL-C; P < 0.10) but lower triglyceride (TG; P < 0.05) than CON group on day 20 and 48. Fecal total and most individual SCFA increased significantly from week 1 to week 6 regardless of diet, but the increase of butyric acid over time only occurred in CON group (P < 0.05). Also, serum metabolomic analysis revealed differential metabolic pathways between the two groups. Overall, compared with the dry food, the canned food tested in our study promoted cat wound recovery by reducing pain and increasing immune and antioxidative capacity after sterilizing surgery, and helped to maintain healthy body condition in cats after castration.
Collapse
Affiliation(s)
- Zhaowei Bian
- Department of Animal Science, Laboratory of Companion Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoying Jian
- Department of Animal Science, Laboratory of Companion Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guanbao Liu
- Department of Animal Science, Laboratory of Companion Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shiyan Jian
- Department of Animal Science, Laboratory of Companion Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiawei Wen
- Department of Animal Science, Laboratory of Companion Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Han Zhang
- Department of Animal Science, Laboratory of Companion Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xinye Lin
- Department of Animal Science, Laboratory of Companion Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongcan Huang
- Department of Animal Science, Laboratory of Companion Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Munchkin Biotechnology Co., Ltd, Guangzhou 510642, China
| | - Jinping Deng
- Department of Animal Science, Laboratory of Companion Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baichuan Deng
- Department of Animal Science, Laboratory of Companion Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lingna Zhang
- Department of Animal Science, Laboratory of Companion Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
46
|
Barone M, Garelli S, Rampelli S, Agostini A, Matysik S, D'Amico F, Krautbauer S, Mazza R, Salituro N, Fanelli F, Iozzo P, Sanz Y, Candela M, Brigidi P, Pagotto U, Turroni S. Multi-omics gut microbiome signatures in obese women: role of diet and uncontrolled eating behavior. BMC Med 2022; 20:500. [PMID: 36575453 PMCID: PMC9795652 DOI: 10.1186/s12916-022-02689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 08/31/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Obesity and related co-morbidities represent a major health challenge nowadays, with a rapidly increasing incidence worldwide. The gut microbiome has recently emerged as a key modifier of human health that can affect the development and progression of obesity, largely due to its involvement in the regulation of food intake and metabolism. However, there are still few studies that have in-depth explored the functionality of the human gut microbiome in obesity and even fewer that have examined its relationship to eating behaviors. METHODS In an attempt to advance our knowledge of the gut-microbiome-brain axis in the obese phenotype, we thoroughly characterized the gut microbiome signatures of obesity in a well-phenotyped Italian female cohort from the NeuroFAST and MyNewGut EU FP7 projects. Fecal samples were collected from 63 overweight/obese and 37 normal-weight women and analyzed via a multi-omics approach combining 16S rRNA amplicon sequencing, metagenomics, metatranscriptomics, and lipidomics. Associations with anthropometric, clinical, biochemical, and nutritional data were then sought, with particular attention to cognitive and behavioral domains of eating. RESULTS We identified four compositional clusters of the gut microbiome in our cohort that, although not distinctly associated with weight status, correlated differently with eating habits and behaviors. These clusters also differed in functional features, i.e., transcriptional activity and fecal metabolites. In particular, obese women with uncontrolled eating behavior were mostly characterized by low-diversity microbial steady states, with few and poorly interconnected species (e.g., Ruminococcus torques and Bifidobacterium spp.), which exhibited low transcriptional activity, especially of genes involved in secondary bile acid biosynthesis and neuroendocrine signaling (i.e., production of neurotransmitters, indoles and ligands for cannabinoid receptors). Consistently, high amounts of primary bile acids as well as sterols were found in their feces. CONCLUSIONS By finding peculiar gut microbiome profiles associated with eating patterns, we laid the foundation for elucidating gut-brain axis communication in the obese phenotype. Subject to confirmation of the hypotheses herein generated, our work could help guide the design of microbiome-based precision interventions, aimed at rewiring microbial networks to support a healthy diet-microbiome-gut-brain axis, thus counteracting obesity and related complications.
Collapse
Affiliation(s)
- Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy.,Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Silvia Garelli
- Unit of Endocrinology and Prevention and Care of Diabetes, Center for Applied Biomedical Research, S. Orsola Polyclinic, Istituto Di Ricovero E Cure a Carattere Scientifico (IRCCS), Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Alessandro Agostini
- Department of Experimental, Diagnostic, and Specialty Medicine, S. Orsola Polyclinic, Istituto Di Ricovero E Cure a Carattere Scientifico (IRCCS), University of Bologna, 40138, Bologna, Italy
| | - Silke Matysik
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Federica D'Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy.,Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Roberta Mazza
- Unit of Endocrinology and Prevention and Care of Diabetes, Center for Applied Biomedical Research, S. Orsola Polyclinic, Istituto Di Ricovero E Cure a Carattere Scientifico (IRCCS), Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy.,Present Address: Research Development - Life Sciences and Bioeconomy Unit, Research Services Division (ARIC), University of Bologna, 40126, Bologna, Italy
| | - Nicola Salituro
- Unit of Endocrinology and Prevention and Care of Diabetes, Center for Applied Biomedical Research, S. Orsola Polyclinic, Istituto Di Ricovero E Cure a Carattere Scientifico (IRCCS), Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
| | - Flaminia Fanelli
- Unit of Endocrinology and Prevention and Care of Diabetes, Center for Applied Biomedical Research, S. Orsola Polyclinic, Istituto Di Ricovero E Cure a Carattere Scientifico (IRCCS), Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council, 56124, Pisa, Italy
| | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980, Valencia, Spain
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
| | - Uberto Pagotto
- Unit of Endocrinology and Prevention and Care of Diabetes, Center for Applied Biomedical Research, S. Orsola Polyclinic, Istituto Di Ricovero E Cure a Carattere Scientifico (IRCCS), Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy.
| |
Collapse
|
47
|
Michaudel C, Danne C, Agus A, Magniez A, Aucouturier A, Spatz M, Lefevre A, Kirchgesner J, Rolhion N, Wang Y, Lavelle A, Galbert C, Da Costa G, Poirier M, Lapière A, Planchais J, Nádvorník P, Illes P, Oeuvray C, Creusot L, Michel ML, Benech N, Bourrier A, Nion-Larmurier I, Landman C, Richard ML, Emond P, Seksik P, Beaugerie L, Arguello RR, Moulin D, Mani S, Dvorák Z, Bermúdez-Humarán LG, Langella P, Sokol H. Rewiring the altered tryptophan metabolism as a novel therapeutic strategy in inflammatory bowel diseases. Gut 2022:gutjnl-2022-327337. [PMID: 36270778 DOI: 10.1136/gutjnl-2022-327337] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/06/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE The extent to which tryptophan (Trp) metabolism alterations explain or influence the outcome of inflammatory bowel diseases (IBDs) is still unclear. However, several Trp metabolism end-products are essential to intestinal homeostasis. Here, we investigated the role of metabolites from the kynurenine pathway. DESIGN Targeted quantitative metabolomics was performed in two large human IBD cohorts (1069 patients with IBD). Dextran sodium sulphate-induced colitis experiments in mice were used to evaluate effects of identified metabolites. In vitro, ex vivo and in vivo experiments were used to decipher mechanisms involved. Effects on energy metabolism were evaluated by different methods including Single Cell mEtabolism by profiling Translation inHibition. RESULTS In mice and humans, intestinal inflammation severity negatively correlates with the amount of xanthurenic (XANA) and kynurenic (KYNA) acids. Supplementation with XANA or KYNA decreases colitis severity through effects on intestinal epithelial cells and T cells, involving Aryl hydrocarbon Receptor (AhR) activation and the rewiring of cellular energy metabolism. Furthermore, direct modulation of the endogenous tryptophan metabolism, using the recombinant enzyme aminoadipate aminotransferase (AADAT), responsible for the generation of XANA and KYNA, was protective in rodent colitis models. CONCLUSION Our study identified a new mechanism linking Trp metabolism to intestinal inflammation and IBD. Bringing back XANA and KYNA has protective effects involving AhR and the rewiring of the energy metabolism in intestinal epithelial cells and CD4+ T cells. This study paves the way for new therapeutic strategies aiming at pharmacologically correcting its alterations in IBD by manipulating the endogenous metabolic pathway with AADAT.
Collapse
Affiliation(s)
- Chloé Michaudel
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Camille Danne
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France
| | - Allison Agus
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Aurélie Magniez
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Anne Aucouturier
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Madeleine Spatz
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Antoine Lefevre
- UMR 1253, iBrain, University of Tours, Inserm, 37044 Tours, France
| | - Julien Kirchgesner
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Gastroenterology department, Saint Antoine Hospital, APHP, Paris, France
| | - Nathalie Rolhion
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France
| | - Yazhou Wang
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Aonghus Lavelle
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France
| | - Chloé Galbert
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France
| | - Gregory Da Costa
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Maxime Poirier
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Alexia Lapière
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Julien Planchais
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Petr Nádvorník
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Peter Illes
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Cyriane Oeuvray
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France
| | - Laura Creusot
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France
| | - Marie-Laure Michel
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Nicolas Benech
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France.,Gastroenterology department, Saint Antoine Hospital, APHP, Paris, France
| | - Anne Bourrier
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Gastroenterology department, Saint Antoine Hospital, APHP, Paris, France
| | - Isabelle Nion-Larmurier
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Gastroenterology department, Saint Antoine Hospital, APHP, Paris, France
| | - Cecilia Landman
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Gastroenterology department, Saint Antoine Hospital, APHP, Paris, France
| | - Mathias L Richard
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Patrick Emond
- UMR 1253, iBrain, University of Tours, Inserm, 37044 Tours, France.,CHRU Tours, Medical Biology Center, Tours, France
| | - Philippe Seksik
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France.,Gastroenterology department, Saint Antoine Hospital, APHP, Paris, France
| | - Laurent Beaugerie
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Gastroenterology department, Saint Antoine Hospital, APHP, Paris, France
| | - Rafael Rose Arguello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - David Moulin
- CNRS, IMoPA, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Sridhar Mani
- Molecular Pharmacology, Genetics and Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Zdenek Dvorák
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Luis G Bermúdez-Humarán
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Philippe Langella
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Harry Sokol
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France .,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France.,Gastroenterology department, Saint Antoine Hospital, APHP, Paris, France
| |
Collapse
|
48
|
Riazati N, Kable ME, Newman JW, Adkins Y, Freytag T, Jiang X, Stephensen CB. Associations of microbial and indoleamine-2,3-dioxygenase-derived tryptophan metabolites with immune activation in healthy adults. Front Immunol 2022; 13:917966. [PMID: 36248784 PMCID: PMC9558171 DOI: 10.3389/fimmu.2022.917966] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background Tryptophan (Trp) metabolites from intestinal bacteria (indole, indole acetic acid [IAA] and indole propionic acid [IPA]), and the Trp metabolite kynurenine (Kyn) from the indoleamine 2,3-dioxygenase (IDO) pathway, are aryl hydrocarbon receptor (AhR) agonists and thus, can regulate immune activity via the AhR pathway. We hypothesized that plasma concentrations of these metabolites would be associated with markers of immune activation in a cohort of healthy adults in a manner consistent with AhR-mediated immune-regulation. We also hypothesized that the plasma Kyn/Trp ratio, a marker of IDO activity, would be associated with immune markers reflecting IDO activation in innate immune cells. Finally, we hypothesized that some intestinal bacteria would be associated with plasma indole, IPA and IAA, and that these bacteria themselves would be associated with immune markers. Methods A novel set of 88 immune markers, and plasma Trp metabolites, were measured in 362 healthy adults. Bacterial taxa from stool were identified by 16S rRNA gene analysis. Multiple linear regression analysis was used to identify significant associations with immune markers. Results The sum of indole and IAA was positively associated with natural killer T-cells levels. Kyn and Kyn/Trp were positively associated with neopterin and IP-10, markers of type 1 immunity, and TNF-α and C-reactive protein (CRP), markers of the acute phase response, and the regulatory cytokine IL-10. Three bacteria negatively associated with Trp metabolites were associated with markers of immune activation: the family Lachnospiraceae with higher lymphocyte counts but lower level of activated CD4 T-cells, the genus Dorea with higher production of IFN-γ by T-cells in PBMC cultures, and the genus Ruminococcus with higher production IL-6 in PBMC cultures stimulated with bacterial lipopolysaccharide (LPS). Conclusions In this cohort of healthy adults bacterial Trp metabolites were not strongly associated with immune markers. Conversely, the Kyn/Trp ratio was strongly associated with markers of systemic inflammation and the acute phase response, consistent with IDO activation in innate immune cells. Finally, commensal bacteria associated with lower plasma (and perhaps intestinal) levels of bacterial Trp metabolites were associated with greater immune activation, possibly reflecting decreased regulatory immune activity related to lower intestinal levels of bacterial indole metabolites.
Collapse
Affiliation(s)
- Niknaz Riazati
- Graduate group of Molecular, Cellular, and Integrative Physiology, University of California, Davis, Davis, CA, United States
| | - Mary E. Kable
- USDA Western Human Nutrition Research Center, University of California, Davis, Davis, CA, United States,Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - John W. Newman
- USDA Western Human Nutrition Research Center, University of California, Davis, Davis, CA, United States,Department of Nutrition, University of California, Davis, Davis, CA, United States,West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
| | - Yuriko Adkins
- USDA Western Human Nutrition Research Center, University of California, Davis, Davis, CA, United States
| | - Tammy Freytag
- USDA Western Human Nutrition Research Center, University of California, Davis, Davis, CA, United States
| | - Xiaowen Jiang
- USDA Western Human Nutrition Research Center, University of California, Davis, Davis, CA, United States
| | - Charles B. Stephensen
- USDA Western Human Nutrition Research Center, University of California, Davis, Davis, CA, United States,Department of Nutrition, University of California, Davis, Davis, CA, United States,*Correspondence: Charles B. Stephensen,
| |
Collapse
|
49
|
Lin K, Zhu L, Yang L. Gut and obesity/metabolic disease: Focus on microbiota metabolites. MedComm (Beijing) 2022; 3:e171. [PMID: 36092861 PMCID: PMC9437302 DOI: 10.1002/mco2.171] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
Obesity is often associated with the risk of chronic inflammation and other metabolic diseases, such as diabetes, cardiovascular disease, and cancer. The composition and activity of the gut microbiota play an important role in this process, affecting a range of physiological processes, such as nutrient absorption and energy metabolism. The active gut microbiota can produce a large number of physiologically active substances during the process of intestinal metabolism and reproduction, including short-chain/long-chain fatty acids, secondary bile acids, and tryptophan metabolites with beneficial effects on metabolism, as well as negative metabolites, including trimethylamine N-oxide, delta-valerobetaine, and imidazole propionate. How gut microbiota specifically affect and participate in metabolic and immune activities, especially the metabolites directly produced by gut microbiota, has attracted extensive attention. So far, some animal and human studies have shown that gut microbiota metabolites are correlated with host obesity, energy metabolism, and inflammation. Some pathways and mechanisms are slowly being discovered. Here, we will focus on the important metabolites of gut microbiota (beneficial and negative), and review their roles and mechanisms in obesity and related metabolic diseases, hoping to provide a new perspective for the treatment and remission of obesity and other metabolic diseases from the perspective of metabolites.
Collapse
Affiliation(s)
- Ke Lin
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Lixin Zhu
- Guangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseSixth Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
- Department of Colorectal SurgerySixth Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
50
|
Garcia-Ibañez P, Moreno DA, Carvajal M. Nanoencapsulation of Bimi® extracts increases its bioaccessibility after in vitro digestion and evaluation of its activity in hepatocyte metabolism. Food Chem 2022; 385:132680. [PMID: 35294902 DOI: 10.1016/j.foodchem.2022.132680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/04/2022]
Abstract
Isothiocyanates (ITCs) have low stability in aqueous conditions, reducing their bioavailability when used as food ingredients. Therefore, the aim of this work was to increase the stability of the ITCs present in extracts of Bimi® edible parts by nanoencapsulation using cauliflower-derived plasma membrane vesicles. The bioactivity of these nanoencapsulates was evaluated in a HepG2 hepatocyte cell line in a model for low-grade chronic inflammation. The vesicles showed a higher capacity of retention in the in vitro gastrointestinal digestion for 3,3-diindolylmethane (DIM), indole-3-carbinol (I3C) and sulforaphane (SFN). Furthermore, Transmission Electron Microscopy (TEM) analysis of the vesicles revealed a decreased size under acidic pH and a release of their cargo after the intestinal digestion. The HepG2 experiments revealed differences in metabolism under the condition of chronic inflammation. The cauliflower-derived plasma membrane vesicles are able to enhance the stability of ITCs through the in vitro gastrointestinal digestion, improving their bioaccesibility and potential bioavailability.
Collapse
Affiliation(s)
- Paula Garcia-Ibañez
- Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Campus de Espinardo - 25, E-30100 Murcia, Spain; Phytochemistry and Healthy Food Lab (LabFAS), Department of Food Science Technology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Campus de Espinardo-25, E-30100 Murcia, Spain
| | - Diego A Moreno
- Phytochemistry and Healthy Food Lab (LabFAS), Department of Food Science Technology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Campus de Espinardo-25, E-30100 Murcia, Spain.
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Campus de Espinardo - 25, E-30100 Murcia, Spain
| |
Collapse
|