1
|
Mansouri P, Mansouri P, Behmard E, Najafipour S, Kouhpayeh A, Farjadfar A. Novel targets for mucosal healing in inflammatory bowel disease therapy. Int Immunopharmacol 2025; 144:113544. [PMID: 39571265 DOI: 10.1016/j.intimp.2024.113544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 12/15/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic condition affecting the gastrointestinal tract, primarily manifesting as ulcerative colitis (UC) or Crohn's disease (CD). Both inflammation and disruption of the intestinal epithelial barrier are key factors in IBD pathogenesis. Substantial evidence has revealed a significant association between aberrant immune responses and impairment of the intestinal epithelial barrier in IBD pathogenesis. The components of the intestinal epithelium, particularly goblet cells and Paneth cells, are crucial to gut homeostasis, as they secrete mucin, antimicrobial peptides (AMPs), and cytokines. Furthermore, impairment of epithelial integrity, which is regulated by tight junctions, is a hallmark of IBD pathology. While common treatments for IBD, such as anti-inflammatory drugs, target various signaling pathways with varying efficacies, therapeutic approaches focused on mucosal and epithelial barrier healing have been largely neglected. Moreover, high costs, side effects, and insufficient or inconsistent therapeutic outcomes remain major drawbacks of conventional anti-IBD drugs. Recent studies on epithelial barrier regeneration and permeability reduction have introduced promising therapeutic targets, including farnesoid X receptor (FXR), urokinase-type plasminogen activator (uPA)-urokinase-type plasminogen activator receptor (uPAR) interaction, fecal microbiota transplantation (FMT), and insulin receptor (INSR). Notably, the simultaneous targeting of intestinal inflammation and promotion of epithelial barrier healing shows promise for efficient IBD treatment. Future research should explore targeted therapies and combination treatments, including natural remedies, microbiota colonization, stem cell approaches, and computer-aided drug design. It is also crucial to focus on accurate prognosis and developing a thorough understanding of IBD development mechanisms.
Collapse
Affiliation(s)
- Pardis Mansouri
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Pegah Mansouri
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran; Zarrin Avaye Kowsar Salamat (ZAX Company), Fasa, Iran
| | - Sohrab Najafipour
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran; Zarrin Avaye Kowsar Salamat (ZAX Company), Fasa, Iran
| | - Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran; Zarrin Avaye Kowsar Salamat (ZAX Company), Fasa, Iran.
| | - Akbar Farjadfar
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran; Zarrin Avaye Kowsar Salamat (ZAX Company), Fasa, Iran.
| |
Collapse
|
2
|
Prochera A, Muppirala AN, Kuziel GA, Soualhi S, Shepherd A, Sun L, Issac B, Rosenberg HJ, Karim F, Perez K, Smith KH, Archibald TH, Rakoff-Nahoum S, Hagen SJ, Rao M. Enteric glia regulate Paneth cell secretion and intestinal microbial ecology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589545. [PMID: 38659931 PMCID: PMC11042301 DOI: 10.1101/2024.04.15.589545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Glial cells of the enteric nervous system (ENS) interact closely with the intestinal epithelium and secrete signals that influence epithelial cell proliferation and barrier formation in vitro. Whether these interactions are important in vivo, however, is unclear because previous studies reached conflicting conclusions [1]. To better define the roles of enteric glia in steady state regulation of the intestinal epithelium, we characterized the glia in closest proximity to epithelial cells and found that the majority express PLP1 in both mice and humans. To test their functions using an unbiased approach, we genetically depleted PLP1+ cells in mice and transcriptionally profiled the small and large intestines. Surprisingly, glial loss had minimal effects on transcriptional programs and the few identified changes varied along the gastrointestinal tract. In the ileum, where enteric glia had been considered most essential for epithelial integrity, glial depletion did not drastically alter epithelial gene expression but caused a modest enrichment in signatures of Paneth cells, a secretory cell type important for innate immunity. In the absence of PLP1+ glia, Paneth cell number was intact, but a subset appeared abnormal with irregular and heterogenous cytoplasmic granules, suggesting a secretory deficit. Consistent with this possibility, ileal explants from glial-depleted mice secreted less functional lysozyme than controls with corresponding effects on fecal microbial composition. Collectively, these data suggest that enteric glia do not exert broad effects on the intestinal epithelium but have an essential role in regulating Paneth cell function and gut microbial ecology.
Collapse
Affiliation(s)
- Aleksandra Prochera
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Anoohya N Muppirala
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Gavin A Kuziel
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
- Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Salima Soualhi
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Amy Shepherd
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Biju Issac
- Research Computing, Department of Information Technology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Harry J Rosenberg
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Farah Karim
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
| | - Kristina Perez
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Kyle H Smith
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tonora H Archibald
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Seth Rakoff-Nahoum
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
- Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Susan J Hagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Meenakshi Rao
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
3
|
Tasegian A, Dikovskaya D, Scott MM, Chawla AS, Pemberton R, Helps T, Meus T, McLean MH, Swamy M. LRRK2 is not required for lysozyme expression in Paneth cells. Nat Immunol 2024; 25:2037-2039. [PMID: 39379660 DOI: 10.1038/s41590-024-01972-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024]
Affiliation(s)
- Anna Tasegian
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Amphista Therapeutics, Cambridge, UK
| | - Dina Dikovskaya
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Molly M Scott
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, UK
| | - Amanpreet Singh Chawla
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Rebecca Pemberton
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Thomas Helps
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, UK
| | - Tosca Meus
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Mairi H McLean
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, UK
| | - Mahima Swamy
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
4
|
Hurtado-Lorenzo A, Swantek JL. The landscape of new therapeutic opportunities for IBD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:1-83. [PMID: 39521596 DOI: 10.1016/bs.apha.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This chapter presents an overview of the emerging strategies to address the unmet needs in the management of inflammatory bowel diseases (IBD). IBD poses significant challenges, as over half of patients experience disease progression despite interventions, leading to irreversible complications, and a substantial proportion do not respond to existing therapies, such as biologics. To overcome these limitations, we describe a diverse array of novel therapeutic approaches. In the area of immune homeostasis restoration, the focus is on targeting cytokine networks, leukocyte trafficking, novel immune pathways, and cell therapies involving regulatory T cells and mesenchymal stem cells (MSC). Recognizing the critical role of impaired intestinal barrier integrity in IBD, we highlight therapies aimed at restoring barrier function and promoting mucosal healing, such as those targeting cell proliferation, tight junctions, and lipid mediators. Addressing the challenges posed by fibrosis and fistulas, we describe emerging targets for reversing fibrosis like kinase and cytokine inhibitors and nuclear receptor agonists, as well as the potential of MSC for fistulas. The restoration of a healthy gut microbiome, through strategies like fecal microbiota transplantation, rationally defined bacterial consortia, and targeted antimicrobials, is also highlighted. We also describe innovative approaches to gut-targeted drug delivery to enhance efficacy and minimize side effects. Reinforcing these advancements is the critical role of precision medicine, which emphasizes the use of multiomics analysis for the discovery of biomarkers to enable personalized IBD care. Overall, the emerging landscape of therapeutic opportunities for IBD holds great potential to surpass the therapeutic ceiling of current treatments.
Collapse
Affiliation(s)
- Andrés Hurtado-Lorenzo
- Translational Research & IBD Ventures, Research Department, Crohn's & Colitis Foundation, New York, NY, United States.
| | - Jennifer L Swantek
- Translational Research & IBD Ventures, Research Department, Crohn's & Colitis Foundation, New York, NY, United States
| |
Collapse
|
5
|
Peng L. Necroptosis and autoimmunity. Clin Immunol 2024; 266:110313. [PMID: 39002793 DOI: 10.1016/j.clim.2024.110313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Autoimmunity is a normal physiological state that requires immunological homeostasis and surveillance, whereas necroptosis is a type of inflammatory cell death. When necroptosis occurs, various immune system cells must perform their appropriate duties to preserve immunological homeostasis, whether the consequence is expanding or limiting the inflammatory response and the pathological condition is cleared or progresses to the autoimmune disease stage. This article discusses necroptosis based on RIP homotypic interaction motif (RHIM) interaction under various physiological and pathological situations, with the RIPK1-RIPK3-MLKL necrosome serving as the regulatory core. In addition, the cell biology of necroptosis involved in autoimmunity and its application in autoimmune diseases were also reviewed.
Collapse
Affiliation(s)
- Lin Peng
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road No.305, Nanjing, Jiangsu 210002, China.
| |
Collapse
|
6
|
Sun J, Chen M, Hu Z, Xu N, Wang W, Ping Z, Zhu J, Sun D, Zhu Z, Li H, Ge X, Luo L, Zhou W, Bai R, Xu Z, Sheng J. Ribonuclease 4 functions as an intestinal antimicrobial protein to maintain gut microbiota and metabolite homeostasis. Nat Commun 2024; 15:5778. [PMID: 38987259 PMCID: PMC11237007 DOI: 10.1038/s41467-024-50223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Antimicrobial proteins contribute to host-microbiota interactions and are associated with inflammatory bowel disease (IBD), but our understanding on antimicrobial protein diversity and functions remains incomplete. Ribonuclease 4 (Rnase4) is a potential antimicrobial protein with no known function in the intestines. Here we find that RNASE4 is expressed in intestinal epithelial cells (IEC) including Paneth and goblet cells, and is detectable in human and mouse stool. Results from Rnase4-deficient mice and recombinant protein suggest that Rnase4 kills Parasutterella to modulate intestinal microbiome, thereby enhancing indoleamine-2,3-dioxygenase 1 (IDO1) expression and subsequently kynurenic and xanthurenic acid production in IECs to reduce colitis susceptibility. Furthermore, deceased RNASE4 levels are observed in the intestinal tissues and stool from patients with IBD, correlating with increased stool Parasutterella. Our results thus implicate Rnase4 as an intestinal antimicrobial protein regulating gut microbiota and metabolite homeostasis, and as a potential diagnostic biomarker and therapeutic target for IBD.
Collapse
Affiliation(s)
- Jun Sun
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310012, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Muxiong Chen
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhen Hu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310012, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Ningqin Xu
- Division of Health Sciences, Hangzhou Normal University, Hangzhou, 310015, China
| | - Wenguang Wang
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310012, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zejun Ping
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310012, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Jiayi Zhu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Desen Sun
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Zhehao Zhu
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Hangyu Li
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiaolong Ge
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Liang Luo
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wei Zhou
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Rongpan Bai
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Zhengping Xu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310012, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Jinghao Sheng
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310012, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
7
|
Sharma TT, Edassery SL, Rajinikanth N, Karra V, Bury MI, Sharma AK. Proteomic profiling of regenerated urinary bladder tissue in a non-human primate augmentation model. Sci Rep 2024; 14:15757. [PMID: 38977772 PMCID: PMC11231185 DOI: 10.1038/s41598-024-66088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Urinary bladder dysfunction can be caused by environmental, genetic, and developmental insults. Depending upon insult severity, the bladder may lose its ability to maintain volumetric capacity and intravesical pressure resulting in renal deterioration. Bladder augmentation enterocystoplasty (BAE) is utilized to increase bladder capacity to preserve renal function using autologous bowel tissue as a "patch." To avoid the clinical complications associated with this procedure, we have engineered composite grafts comprised of autologous bone marrow mesenchymal stem cells (MSCs) co-seeded with CD34+ hematopoietic stem/progenitor cells (HSPCs) onto a pliable synthetic scaffold [poly(1,8-octamethylene-citrate-co-octanol)(POCO)] or a biological scaffold (SIS; small intestinal submucosa) to regenerate bladder tissue in our baboon bladder augmentation model. We set out to determine the global protein expression profile of bladder tissue that has undergone regeneration with the aforementioned stem cell seeded scaffolds along with baboons that underwent BAE. Data demonstrate that POCO and SIS grafted animals share high protein homogeneity between native and regenerated tissues while BAE animals displayed heterogeneous protein expression between the tissues following long-term engraftment. We posit that stem cell-seeded scaffolds can recapitulate tissue that is nearly indistinguishable from native tissue at the protein level and may be used in lieu of procedures such as BAE.
Collapse
Affiliation(s)
- Tiffany T Sharma
- Division of Pediatric Urology, Ann and Robert H. Lurie Children's Hospital, Chicago, IL, 60611, USA.
- Stanley Manne Children's Research Institute, Simpson Querrey Biomedical Research Center, 303 E. Superior Street, Chicago, IL, 60611, USA.
| | - Seby L Edassery
- Cell and Molecular Physiology Department, Center for Translational Research and Education, Loyola University Chicago, Chicago, IL, 60153, USA
| | - Nachiket Rajinikanth
- Stanley Manne Children's Research Institute, Simpson Querrey Biomedical Research Center, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Vikram Karra
- Stanley Manne Children's Research Institute, Simpson Querrey Biomedical Research Center, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Matthew I Bury
- Division of Pediatric Urology, Ann and Robert H. Lurie Children's Hospital, Chicago, IL, 60611, USA
- Stanley Manne Children's Research Institute, Simpson Querrey Biomedical Research Center, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Arun K Sharma
- Division of Pediatric Urology, Ann and Robert H. Lurie Children's Hospital, Chicago, IL, 60611, USA.
- Stanley Manne Children's Research Institute, Simpson Querrey Biomedical Research Center, 303 E. Superior Street, Chicago, IL, 60611, USA.
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Simpson Querrey Institute (SQI), Northwestern University, 303 East Superior Street, Chicago, IL, 60611, USA.
| |
Collapse
|
8
|
Alharbi E, Rajaram A, Côté K, Farag M, Maleki F, Gao ZH, Maedler-Kron C, Marcus V, Fiset PO. A Deep Learning-Based Approach to Estimate Paneth Cell Granule Area in Celiac Disease. Arch Pathol Lab Med 2024; 148:828-835. [PMID: 37852171 DOI: 10.5858/arpa.2023-0074-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 10/20/2023]
Abstract
CONTEXT.— Changes in Paneth cell numbers can be associated with chronic inflammatory diseases of the gastrointestinal tract. So far, no consensus has been achieved on the number of Paneth cells and their relevance to celiac disease (CD). OBJECTIVES.— To compare crypt and Paneth cell granule areas between patients with CD and those without CD (non-CD) using an artificial intelligence-based solution. DESIGN.— Hematoxylin-eosin-stained sections of duodenal biopsies from 349 patients at the McGill University Health Centre were analyzed. Of these, 185 had a history of CD and 164 were controls. Slides were digitized, and NoCodeSeg, a code-free workflow using open-source software (QuPath, DeepMIB), was implemented to train deep learning models to segment crypts and Paneth cell granules. The total area of the entire analyzed tissue, epithelium, crypts, and Paneth cell granules was documented for all slides, and comparisons were performed. RESULTS.— A mean intersection-over-union score of 88.76% and 91.30% was achieved for crypt areas and Paneth cell granule segmentations, respectively. On normalization to total tissue area, the crypt to total tissue area in CD was increased and the Paneth cell granule area to total tissue area decreased when compared to non-CD controls. CONCLUSIONS.— Crypt hyperplasia was confirmed in CD compared to non-CD controls. The area of Paneth cell granules, an indirect measure of Paneth cell function, decreased with increasing severity of CD. More importantly, our study analyzed complete hematoxylin-eosin slide sections using an efficient and easy to use coding-free artificial intelligence workflow.
Collapse
Affiliation(s)
- Ebtihal Alharbi
- From the Department of Pathology, McGill University, Montreal, Quebec, Canada (Alharbi, Rajaram, Côté, Farag, Gao, Maedler-Kron, Marcus, Fiset)
- Department of Pathology, Faculty of Medicine in Rabigh, King Abdulaziz University, Saudi Arabia (Alharbi)
| | - Ajay Rajaram
- From the Department of Pathology, McGill University, Montreal, Quebec, Canada (Alharbi, Rajaram, Côté, Farag, Gao, Maedler-Kron, Marcus, Fiset)
| | - Kevin Côté
- From the Department of Pathology, McGill University, Montreal, Quebec, Canada (Alharbi, Rajaram, Côté, Farag, Gao, Maedler-Kron, Marcus, Fiset)
| | - Mina Farag
- From the Department of Pathology, McGill University, Montreal, Quebec, Canada (Alharbi, Rajaram, Côté, Farag, Gao, Maedler-Kron, Marcus, Fiset)
| | - Farhad Maleki
- Augmented Intelligence & Precision Health Laboratory, Research Institute and Department of Radiology, McGill University Health Centre, Montreal, Quebec, Canada (Maleki)
- Department of Computer Science, University of Calgary, Calgary, Alberta, Canada (Maleki)
| | - Zu-Hua Gao
- From the Department of Pathology, McGill University, Montreal, Quebec, Canada (Alharbi, Rajaram, Côté, Farag, Gao, Maedler-Kron, Marcus, Fiset)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (Gao)
| | - Chelsea Maedler-Kron
- From the Department of Pathology, McGill University, Montreal, Quebec, Canada (Alharbi, Rajaram, Côté, Farag, Gao, Maedler-Kron, Marcus, Fiset)
- Research Institute of McGill University Health Center, Montreal, Quebec, Canada (Maedler-Kron, Fiset)
| | - Victoria Marcus
- From the Department of Pathology, McGill University, Montreal, Quebec, Canada (Alharbi, Rajaram, Côté, Farag, Gao, Maedler-Kron, Marcus, Fiset)
| | - Pierre Olivier Fiset
- From the Department of Pathology, McGill University, Montreal, Quebec, Canada (Alharbi, Rajaram, Côté, Farag, Gao, Maedler-Kron, Marcus, Fiset)
- Research Institute of McGill University Health Center, Montreal, Quebec, Canada (Maedler-Kron, Fiset)
| |
Collapse
|
9
|
Ragab M, Schlichting H, Hicken M, Mester P, Hirose M, Almeida LN, Christiansen L, Ibrahim S, Tews HC, Divanovic S, Sina C, Derer S. Azathioprine promotes intestinal epithelial cell differentiation into Paneth cells and alleviates ileal Crohn's disease severity. Sci Rep 2024; 14:12879. [PMID: 38839896 PMCID: PMC11153537 DOI: 10.1038/s41598-024-63730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/30/2024] [Indexed: 06/07/2024] Open
Abstract
Paneth cells (PCs), a subset of intestinal epithelial cells (IECs) found at the base of small intestinal crypts, play an essential role in maintaining intestinal homeostasis. Altered PCs function is associated with diverse intestinal pathologies, including ileal Crohn's disease (CD). CD patients with ileal involvement have been previously demonstrated to display impairment in PCs and decreased levels of anti-microbial peptides. Although the immunosuppressive drug Azathioprine (AZA) is widely used in CD therapy, the impact of AZA on IEC differentiation remains largely elusive. In the present study, we hypothesized that the orally administered drug AZA also exerts its effect through modulation of the intestinal epithelium and specifically via modulation of PC function. AZA-treated CD patients exhibited an ileal upregulation of AMPs on both mRNA and protein levels compared to non-AZA treated patients. Upon in vitro AZA stimulation, intestinal epithelial cell line MODE-K exhibited heightened expression levels of PC marker in concert with diminished cell proliferation but boosted mitochondrial OXPHOS activity. Moreover, differentiation of IECs, including PCs differentiation, was boosted in AZA-treated murine small intestinal organoids and was associated with decreased D-glucose consumption and decreased growth rates. Of note, AZA treatment strongly decreased Lgr5 mRNA expression as well as Ki67 positive cells. Further, AZA restored dysregulated PCs associated with mitochondrial dysfunction. AZA-dependent inhibition of IEC proliferation is accompanied by boosted mitochondria function and IEC differentiation into PC.
Collapse
Affiliation(s)
- Mohab Ragab
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Heidi Schlichting
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Maren Hicken
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Patricia Mester
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital, Regensburg, Germany
| | - Misa Hirose
- Lübeck Institute of Experimental Dermatology and Center for Research On Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Larissa N Almeida
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Lea Christiansen
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Saleh Ibrahim
- Lübeck Institute of Experimental Dermatology and Center for Research On Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Hauke Christian Tews
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital, Regensburg, Germany
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christian Sina
- Institute of Nutritional Medicine and 1st Department of Medicine, Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Stefanie Derer
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
10
|
Stange EF. Dysbiosis in inflammatory bowel diseases: egg, not chicken. Front Med (Lausanne) 2024; 11:1395861. [PMID: 38846142 PMCID: PMC11153678 DOI: 10.3389/fmed.2024.1395861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
There is agreement that inflammatory bowel diseases are, both in terms of species composition and function, associated with an altered intestinal microbiome. This is usually described by the term "dysbiosis," but this is a vague definition lacking quantitative precision. In this brief narrative review, the evidence concerning the primary or secondary role of this dysbiotic state is critically evaluated. Among others, the following facts argue against a primary etiological impact: 1) There is no specific dysbiotic microbiome in IBD, 2) the presence or absence of mucosal inflammation has a profound impact on the composition of the microbiome, 3) dysbiosis is not specific for IBD but linked to many unrelated diseases, 4) antibiotics, probiotics, and microbiome transfer have a very limited therapeutic effect, 5) the microbiome in concordant twins is similar to disease-discordant twins, and 6) the microbiome in relatives of IBD patients later developing IBD is altered, but these individuals already display subclinical inflammation.
Collapse
Affiliation(s)
- Eduard F. Stange
- Klinik für Innere Medizin I, Universitätsklinik Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Ren X, Liu Q, Zhou P, Zhou T, Wang D, Mei Q, Flavell RA, Liu Z, Li M, Pan W, Zhu S. DHX9 maintains epithelial homeostasis by restraining R-loop-mediated genomic instability in intestinal stem cells. Nat Commun 2024; 15:3080. [PMID: 38594251 PMCID: PMC11004185 DOI: 10.1038/s41467-024-47235-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Epithelial barrier dysfunction and crypt destruction are hallmarks of inflammatory bowel disease (IBD). Intestinal stem cells (ISCs) residing in the crypts play a crucial role in the continuous self-renewal and rapid recovery of intestinal epithelial cells (IECs). However, how ISCs are dysregulated in IBD remains poorly understood. Here, we observe reduced DHX9 protein levels in IBD patients, and mice with conditional DHX9 depletion in the intestinal epithelium (Dhx9ΔIEC) exhibit an increased susceptibility to experimental colitis. Notably, Dhx9ΔIEC mice display a significant reduction in the numbers of ISCs and Paneth cells. Further investigation using ISC-specific or Paneth cell-specific Dhx9-deficient mice demonstrates the involvement of ISC-expressed DHX9 in maintaining epithelial homeostasis. Mechanistically, DHX9 deficiency leads to abnormal R-loop accumulation, resulting in genomic instability and the cGAS-STING-mediated inflammatory response, which together impair ISC function and contribute to the pathogenesis of IBD. Collectively, our findings highlight R-loop-mediated genomic instability in ISCs as a risk factor in IBD.
Collapse
Affiliation(s)
- Xingxing Ren
- Hefei National Research Center for Physical Sciences at the Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, 510145, Guangzhou, China
| | - Qiuyuan Liu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Peirong Zhou
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, 510145, Guangzhou, China
| | - Tingyue Zhou
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Decai Wang
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiao Mei
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zhanju Liu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Mingsong Li
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, 510145, Guangzhou, China.
| | - Wen Pan
- Hefei National Research Center for Physical Sciences at the Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Shu Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- School of Data Science, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
12
|
Ramos-León J, Valencia C, Gutiérrez-Mariscal M, Rivera-Miranda DA, García-Meléndrez C, Covarrubias L. The loss of antioxidant activities impairs intestinal epithelium homeostasis by altering lipid metabolism. Exp Cell Res 2024; 437:113965. [PMID: 38378126 DOI: 10.1016/j.yexcr.2024.113965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Reactive oxygens species (ROS) are common byproducts of metabolic reactions and could be at the origin of many diseases of the elderly. Here we investigated the role of ROS in the renewal of the intestinal epithelium in mice lacking catalase (CAT) and/or nicotinamide nucleotide transhydrogenase (NNT) activities. Cat-/- mice have delayed intestinal epithelium renewal and were prone to develop necrotizing enterocolitis upon starvation. Interestingly, crypts lacking CAT showed fewer intestinal stem cells (ISC) and lower stem cell activity than wild-type. In contrast, crypts lacking NNT showed a similar number of ISCs as wild-type but increased stem cell activity, which was also impaired by the loss of CAT. No alteration in the number of Paneth cells (PCs) was observed in crypts of either Cat-/- or Nnt-/- mice, but they showed an evident decline in the amount of lysozyme. Cat deficiency caused fat accumulation in crypts, and a fall in the remarkable high amount of adipose triglyceride lipase (ATGL) in PCs. Notably, the low levels of ATGL in the intestine of Cat -/- mice increased after a treatment with the antioxidant N-acetyl-L-cysteine. Supporting a role of ATGL in the regulation of ISC activity, its inhibition halt intestinal organoid development. These data suggest that the reduction in the renewal capacity of intestine originates from fatty acid metabolic alterations caused by peroxisomal ROS.
Collapse
Affiliation(s)
- Javier Ramos-León
- Departamento de Genética Del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| | - Concepción Valencia
- Departamento de Genética Del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| | - Mariana Gutiérrez-Mariscal
- Departamento de Genética Del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| | - David-Alejandro Rivera-Miranda
- Departamento de Genética Del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| | - Celina García-Meléndrez
- Departamento de Genética Del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| | - Luis Covarrubias
- Departamento de Genética Del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico.
| |
Collapse
|
13
|
Biedermann L, Kreienbühl A, Rogler G. Microbiota Therapy in Inflammatory Bowel Disease. Visc Med 2024; 40:92-101. [PMID: 38584861 PMCID: PMC10995964 DOI: 10.1159/000536254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/11/2024] [Indexed: 04/09/2024] Open
Abstract
Background In both Crohn's disease (CD) and ulcerative colitis (UC), the two major forms of inflammatory bowel disease (IBD) the immune reaction is - at least partially - directed against components of the luminal microbiota of the gut. These immune responses as well as other factors contribute to a phenomenon frequently described as "dysbiosis" meaning an alteration of the composition of the colonic microbiota. To improve the dysbiosis and to restore the normal composition of the colonic microbiota, fecal microbiota transplantation (FMT) has been tested as a therapeutic option to induce and maintain remission in IBD patients. Summary This review will first discuss changes in the composition of the intestinal microbiota found in IBD patients and second the therapeutic potential of microbiological interventions for the treatment of these patients. FMT has been studied in several clinical trials in both, CD and UC. Reported results and subsequent meta-analyses indicate that FMT may be effective to induce remission in UC. However, the optimal route of FMT, the necessary number of administrations and the question whether life bacteria of freshly prepared stool is more effective than frozen are still unclear. Concepts associated with an optimization of FMT such as the "super donor concept" or the "consortia-approach" will be discussed to illustrate open questions and difficulties associated with microbiota therapy in IBD. Key Messages The microbiota composition in IBD patients shows significant alterations compared to healthy individuals termed as "dysbiosis". FMT and other therapeutic approaches to modify the microbiota composition have been studied in clinical trials in recent years. Efficacy has been shown in UC; however, many questions with respect to the optimization of microbiota therapy remain to be answered.
Collapse
Affiliation(s)
- Luc Biedermann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andrea Kreienbühl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Flood P, Hanrahan N, Nally K, Melgar S. Human intestinal organoids: Modeling gastrointestinal physiology and immunopathology - current applications and limitations. Eur J Immunol 2024; 54:e2250248. [PMID: 37957831 DOI: 10.1002/eji.202250248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/15/2023]
Abstract
Human intestinal organoids are an ideal model system for studying gastrointestinal physiology and immunopathology. Altered physiology and mucosal immune response are hallmarks of numerous intestinal functional and inflammatory diseases, including inflammatory bowel disease (IBD), coeliac disease, irritable bowel syndrome (IBS), and obesity. These conditions impact the normal epithelial functions of the intestine, such as absorption, barrier function, secretion, and host-microbiome communication. They are accompanied by characteristic intestinal symptoms and have significant societal, economic, and healthcare burdens. To develop new treatment options, cutting-edge research is required to investigate their etiology and pathology. Human intestinal organoids derived from patient tissue recapitulate the key physiological and immunopathological aspects of these conditions, providing a promising platform for elucidating disease mechanisms. This review will summarize recent reports on patient-derived human small intestinal and colonic organoids and highlight how these models have been used to study intestinal epithelial functions in the context of inflammation, altered physiology, and immune response. Furthermore, it will elaborate on the various organoid systems in use and the techniques/assays currently available to study epithelial functions. Finally, it will conclude by discussing the limitations and future perspectives of organoid technology.
Collapse
Affiliation(s)
- Peter Flood
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Naomi Hanrahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, School of Medicine, University College Cork, Cork, Ireland
- Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
Bautista GM, Cera AJ, Schoenauer RJ, Persiani M, Lakshminrusimha S, Chandrasekharan P, Gugino SF, Underwood MA, McElroy SJ. Paneth cell ontogeny in term and preterm ovine models. Front Vet Sci 2024; 11:1275293. [PMID: 38318150 PMCID: PMC10839032 DOI: 10.3389/fvets.2024.1275293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Paneth cells are critically important to intestinal health, including protecting intestinal stem cells, shaping the intestinal microbiome, and regulating host immunity. Understanding Paneth cell biology in the immature intestine is often modeled in rodents with little information in larger mammals such as sheep. Previous studies have only established the distribution pattern of Paneth cells in healthy adult sheep. Our study aimed to examine the ontogeny, quantification, and localization of Paneth cells in fetal and newborn lambs at different gestational ages and with perinatal transient asphyxia. We hypothesized that ovine Paneth cell distribution at birth resembles the pattern seen in humans (highest concentrations in the ileum) and that ovine Paneth cell density is gestation-dependent. Methods Intestinal samples were obtained from 126-127 (preterm, with and without perinatal transient asphyxia) and 140-141 (term) days gestation sheep. Samples were quantified per crypt in at least 100 crypts per animal and confirmed as Paneth cells through in immunohistochemistry. Results Paneth cells had significantly higher density in the ileum compared to the jejunum and were absent in the colon. Discussion Exposure to perinatal transient asphyxia acutely decreased Paneth cell numbers. These novel data support the possibility of utilizing ovine models for understanding Paneth cell biology in the fetus and neonate.
Collapse
Affiliation(s)
- Geoanna M. Bautista
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States
| | - Anjali J. Cera
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States
| | - Rebecca J. Schoenauer
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Michele Persiani
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States
| | - Satyan Lakshminrusimha
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States
| | | | - Sylvia F Gugino
- Department of Pediatrics, University of Buffalo, Buffalo, NY, United States
| | - Mark A. Underwood
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States
| | - Steven J. McElroy
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
16
|
Posta E, Fekete I, Gyarmati E, Stündl L, Zold E, Barta Z. The Effects of Artificial Sweeteners on Intestinal Nutrient-Sensing Receptors: Dr. Jekyll or Mr. Hyde? Life (Basel) 2023; 14:10. [PMID: 38276259 PMCID: PMC10817473 DOI: 10.3390/life14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
The consumption of artificial and low-calorie sweeteners (ASs, LCSs) is an important component of the Western diet. ASs play a role in the pathogenesis of metabolic syndrome, dysbiosis, inflammatory bowel diseases (IBDs), and various inflammatory conditions. Intestinal nutrient-sensing receptors act as a crosstalk between dietary components, the gut microbiota, and the regulation of immune, endocrinological, and neurological responses. This narrative review aimed to summarize the possible effects of ASs and LCSs on intestinal nutrient-sensing receptors and their related functions. Based on the findings of various studies, long-term AS consumption has effects on the gut microbiota and intestinal nutrient-sensing receptors in modulating incretin hormones, antimicrobial peptides, and cytokine secretion. These effects contribute to the regulation of glucose metabolism, ion transport, gut permeability, and inflammation and modulate the gut-brain, and gut-kidney axes. Based on the conflicting findings of several in vitro, in vivo, and randomized and controlled studies, artificial sweeteners may have a role in the pathogenesis of IBDs, functional bowel diseases, metabolic syndrome, and cancers via the modulation of nutrient-sensing receptors. Further studies are needed to explore the exact mechanisms underlying their effects to decide the risk/benefit ratio of sugar intake reduction via AS and LCS consumption.
Collapse
Affiliation(s)
- Edit Posta
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (E.G.); (Z.B.)
| | - Istvan Fekete
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (I.F.); (L.S.)
| | - Eva Gyarmati
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (E.G.); (Z.B.)
- Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Nagyerdei Blvd. 98, 4032 Debrecen, Hungary
| | - László Stündl
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (I.F.); (L.S.)
| | - Eva Zold
- Department of Clinical Immunology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, Móricz Zsigmond Str. 22, 4032 Debrecen, Hungary;
| | - Zsolt Barta
- GI Unit, Department of Infectology, Faculty of Medicine, University of Debrecen, Bartok Bela Street 2-26, 4031 Debrecen, Hungary; (E.G.); (Z.B.)
| |
Collapse
|
17
|
Zhou QM, Zheng L. Research progress on the relationship between Paneth cells-susceptibility genes, intestinal microecology and inflammatory bowel disease. World J Clin Cases 2023; 11:8111-8125. [PMID: 38130785 PMCID: PMC10731169 DOI: 10.12998/wjcc.v11.i34.8111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/26/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a disorder of the immune system and intestinal microecosystem caused by environmental factors in genetically susceptible people. Paneth cells (PCs) play a central role in IBD pathogenesis, especially in Crohn's disease development, and their morphology, number and function are regulated by susceptibility genes. In the intestine, PCs participate in the formation of the stem cell microenvironment by secreting antibacterial particles and play a role in helping maintain the intestinal microecology and intestinal mucosal homeostasis. Moreover, PC proliferation and maturation depend on symbiotic flora in the intestine. This paper describes the interactions among susceptibility genes, PCs and intestinal microecology and their effects on IBD occurrence and development.
Collapse
Affiliation(s)
- Qi-Ming Zhou
- Department of Nephrology, Lanxi Hospital of Traditional Chinese Medicine, Lanxi 321100, Zhejiang Province, China
| | - Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| |
Collapse
|
18
|
Fetter K, Weigel M, Ott B, Fritzenwanker M, Stricker S, de Laffolie J, Hain T. The microbiome landscape in pediatric Crohn's disease and therapeutic implications. Gut Microbes 2023; 15:2247019. [PMID: 37614093 PMCID: PMC10453987 DOI: 10.1080/19490976.2023.2247019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
Dysbiosis of the gut microbiome and a pathological immune response in intestinal tissues form the basis of Crohn's disease (CD), which is a debilitating disease with relevant morbidity and mortality. It is increasing in childhood and adolescents, due to western life-style and nutrition and a large set of predisposing genetic factors. Crohn's disease-associated genetic mutations play an essential role in killing pathogens, altering mucosal barrier function, and protecting the host microbiome, suggesting an important pathogenic link. The intestinal microbiome is highly variable and can be influenced by environmental factors. Changes in microbial composition and a reduction in species diversity have been shown to be central features of disease progression and are therefore the target of therapeutic approaches. In this review, we summarize the current literature on the role of the gut microbiome in childhood, adolescent, and adult CD, current therapeutic options, and their impact on the microbiome.
Collapse
Affiliation(s)
- Karin Fetter
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, Giessen, Germany
| | - Markus Weigel
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Benjamin Ott
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Moritz Fritzenwanker
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Sebastian Stricker
- Department of Pediatrics, Justus Liebig University Giessen, Giessen, Germany
| | - Jan de Laffolie
- Department of Pediatrics, Justus Liebig University Giessen, Giessen, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
19
|
Prame Kumar K, Ooi JD, Goldberg R. The interplay between the microbiota, diet and T regulatory cells in the preservation of the gut barrier in inflammatory bowel disease. Front Microbiol 2023; 14:1291724. [PMID: 38107848 PMCID: PMC10722198 DOI: 10.3389/fmicb.2023.1291724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Inflammatory bowel disease (IBD) is becoming more common in the Western world due to changes in diet-related microbial dysbiosis, genetics and lifestyle. Incidences of gut permeability can predate IBD and continued gut barrier disruptions increase the exposure of bacterial antigens to the immune system thereby perpetuating chronic inflammation. Currently, most of the approved IBD therapies target individual pro-inflammatory cytokines and pathways. However, they fail in approximately 50% of patients due to their inability to overcome the redundant pro inflammatory immune responses. There is increasing interest in the therapeutic potential of T regulatory cells (Tregs) in inflammatory conditions due to their widespread capability to dampen inflammation, promote tolerance of intestinal bacteria, facilitate healing of the mucosal barrier and ability to be engineered for more targeted therapy. Intestinal Treg populations are inherently shaped by dietary molecules and gut microbiota-derived metabolites. Thus, understanding how these molecules influence Treg-mediated preservation of the intestinal barrier will provide insights into immune tolerance-mediated mucosal homeostasis. This review comprehensively explores the interplay between diet, gut microbiota, and immune system in influencing the intestinal barrier function to attenuate the progression of colitis.
Collapse
Affiliation(s)
- Kathryn Prame Kumar
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | | | | |
Collapse
|
20
|
Eng SJ, Nonnecke EB, de Lorimier AJ, Ali MR, Tsolis RM, Bevins CL, Ashwood P. FOXO inhibition rescues α-defensin expression in human intestinal organoids. Proc Natl Acad Sci U S A 2023; 120:e2312453120. [PMID: 37956278 PMCID: PMC10666032 DOI: 10.1073/pnas.2312453120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/05/2023] [Indexed: 11/15/2023] Open
Abstract
To mediate critical host-microbe interactions in the human small intestine, Paneth cells constitutively produce abundant levels of α-defensins and other antimicrobials. We report that the expression profile of these antimicrobials is dramatically askew in human small intestinal organoids (enteroids) as compared to that in paired tissue from which they are derived, with a reduction of α-defensins to nearly undetectable levels. Murine enteroids, however, recapitulate the expression profile of Paneth cell α-defensins seen in tissue. WNT/TCF signaling has been found to be instrumental in the regulation of α-defensins, yet in human enteroids exogenous stimulation of WNT signaling appears insufficient to rescue α-defensin expression. By stark contrast, forkhead box O (FOXO) inhibitor AS1842856 induced the expression of α-defensin mRNA in enteroids by >100,000-fold, restoring DEFA5 and DEFA6 to levels comparable to those found in primary human tissue. These results newly identify FOXO signaling as a pathway of biological and potentially therapeutic relevance for the regulation of human Paneth cell α-defensins in health and disease.
Collapse
Affiliation(s)
- Serena J. Eng
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA95616
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis, Sacramento, CA95817
| | - Eric B. Nonnecke
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA95616
| | - Arthur J. de Lorimier
- University of California Davis Medical Center, Department of Pediatrics, Sacramento, CA95817
| | - Mohamed R. Ali
- University of California Davis Medical Center, Department of Surgery, Sacramento, CA95817
| | - Renée M. Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA95616
| | - Charles L. Bevins
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA95616
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA95616
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis, Sacramento, CA95817
| |
Collapse
|
21
|
Balasubramanian I, Bandyopadhyay S, Flores J, Bianchi‐Smak J, Lin X, Liu H, Sun S, Golovchenko NB, Liu Y, Wang D, Patel R, Joseph I, Suntornsaratoon P, Vargas J, Green PHR, Bhagat G, Lagana SM, Ying W, Zhang Y, Wang Z, Li WV, Singh S, Zhou Z, Kollias G, Farr LA, Moonah SN, Yu S, Wei Z, Bonder EM, Zhang L, Kiela PR, Edelblum KL, Ferraris R, Liu T, Gao N. Infection and inflammation stimulate expansion of a CD74 + Paneth cell subset to regulate disease progression. EMBO J 2023; 42:e113975. [PMID: 37718683 PMCID: PMC10620768 DOI: 10.15252/embj.2023113975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Paneth cells (PCs), a specialized secretory cell type in the small intestine, are increasingly recognized as having an essential role in host responses to microbiome and environmental stresses. Whether and how commensal and pathogenic microbes modify PC composition to modulate inflammation remain unclear. Using newly developed PC-reporter mice under conventional and gnotobiotic conditions, we determined PC transcriptomic heterogeneity in response to commensal and invasive microbes at single cell level. Infection expands the pool of CD74+ PCs, whose number correlates with auto or allogeneic inflammatory disease progressions in mice. Similar correlation was found in human inflammatory disease tissues. Infection-stimulated cytokines increase production of reactive oxygen species (ROS) and expression of a PC-specific mucosal pentraxin (Mptx2) in activated PCs. A PC-specific ablation of MyD88 reduced CD74+ PC population, thus ameliorating pathogen-induced systemic disease. A similar phenotype was also observed in mice lacking Mptx2. Thus, infection stimulates expansion of a PC subset that influences disease progression.
Collapse
Affiliation(s)
| | | | - Juan Flores
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | | | - Xiang Lin
- Department of Computer ScienceNew Jersey Institute of TechnologyNewarkNJUSA
| | - Haoran Liu
- Department of Computer ScienceNew Jersey Institute of TechnologyNewarkNJUSA
| | - Shengxiang Sun
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMOUSA
| | | | - Yue Liu
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Dahui Wang
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Radha Patel
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Ivor Joseph
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Panan Suntornsaratoon
- Department of Pharmacology, Physiology & NeuroscienceRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Justin Vargas
- Department of Medicine, Celiac Disease CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Peter HR Green
- Department of Medicine, Celiac Disease CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Govind Bhagat
- Department of Medicine, Celiac Disease CenterColumbia University Irving Medical CenterNew YorkNYUSA
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Stephen M Lagana
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Wang Ying
- Hackensack Meridian Health Center for Discovery and InnovationNutleyNJUSA
| | - Yi Zhang
- Hackensack Meridian Health Center for Discovery and InnovationNutleyNJUSA
| | - Zhihan Wang
- Department of StatisticsRutgers UniversityNew BrunswickNJUSA
| | - Wei Vivian Li
- Department of Biostatistics and EpidemiologyRutgers UniversityNew BrunswickNJUSA
| | - Sukhwinder Singh
- Department of PathologyRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Zhongren Zhou
- Department of Pathology & Laboratory Medicine, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNJUSA
| | - George Kollias
- Biomedical Sciences Research Centre, “Alexander Fleming”VariGreece
| | - Laura A Farr
- Division of Infectious Diseases and International HealthUniversity of VirginiaCharlottesvilleVAUSA
| | - Shannon N Moonah
- Division of Infectious Diseases and International HealthUniversity of VirginiaCharlottesvilleVAUSA
| | - Shiyan Yu
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Zhi Wei
- Department of Computer ScienceNew Jersey Institute of TechnologyNewarkNJUSA
| | - Edward M Bonder
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Lanjing Zhang
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
- Department of PathologyPenn Medicine Princeton Medical CenterPlainsboroNJUSA
| | - Pawel R Kiela
- Departments of Pediatrics and Immunology, and Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children's Research CenterThe University of Arizona Health SciencesTucsonAZUSA
| | - Karen L Edelblum
- Center for Immunity and InflammationRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Ronaldo Ferraris
- Department of Pharmacology, Physiology & NeuroscienceRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Ta‐Chiang Liu
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMOUSA
| | - Nan Gao
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| |
Collapse
|
22
|
An Y, Wang C, Fan B, Wang Z, Li Y, Kong F, Zhou C, Cao Z, Wang M, Sun H, Zhao S, Gong Y. LSR targets YAP to modulate intestinal Paneth cell differentiation. Cell Rep 2023; 42:113118. [PMID: 37703178 DOI: 10.1016/j.celrep.2023.113118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/26/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
Lipolysis-stimulated lipoprotein receptor (LSR) is a multi-functional protein that is best known for its roles in assembly of epithelial tricellular tight junctions and hepatic clearance of lipoproteins. Here, we investigated whether LSR contributes to intestinal epithelium homeostasis and pathogenesis of intestinal disease. By using multiple conditional deletion mouse models and ex vivo cultured organoids, we find that LSR elimination in intestinal stem cells results in the disappearance of Paneth cells without affecting the differentiation of other cell lineages. Mechanistic studies reveal that LSR deficiency increases abundance of YAP by modulating its phosphorylation and proteasomal degradation. Using gain- and loss-of-function studies, we show that LSR protects against necrotizing enterocolitis through enhancement of Paneth cell differentiation in small-intestinal epithelium. Thus, this study identifies LSR as an upstream negative regulator of YAP activity, an essential factor for Paneth cell differentiation, and a potential therapeutic target for necrotizing enterocolitis.
Collapse
Affiliation(s)
- Yanan An
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China; Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China
| | - Chao Wang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Baozhen Fan
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Ziqi Wang
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
| | - Ying Li
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
| | - Feng Kong
- Shandong Provincial Engineering Laboratory of Urologic Tissue Reconstruction, Jinan, Shandong, China; Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhang Cao
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Mingxia Wang
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
| | - Hui Sun
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
| | - Shengtian Zhao
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China; Shandong Provincial Engineering Laboratory of Urologic Tissue Reconstruction, Jinan, Shandong, China; Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Yongfeng Gong
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China; Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China.
| |
Collapse
|
23
|
Triantaphyllopoulos KA. Long Non-Coding RNAs and Their "Discrete" Contribution to IBD and Johne's Disease-What Stands out in the Current Picture? A Comprehensive Review. Int J Mol Sci 2023; 24:13566. [PMID: 37686376 PMCID: PMC10487966 DOI: 10.3390/ijms241713566] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Non-coding RNAs (ncRNA) have paved the way to new perspectives on the regulation of gene expression, not only in biology and medicine, but also in associated fields and technologies, ensuring advances in diagnostic means and therapeutic modalities. Critical in this multistep approach are the associations of long non-coding RNA (lncRNA) with diseases and their causal genes in their networks of interactions, gene enrichment and expression analysis, associated pathways, the monitoring of the involved genes and their functional roles during disease progression from one stage to another. Studies have shown that Johne's Disease (JD), caused by Mycobacterium avium subspecies partuberculosis (MAP), shares common lncRNAs, clinical findings, and other molecular entities with Crohn's Disease (CD). This has been a subject of vigorous investigation owing to the zoonotic nature of this condition, although results are still inconclusive. In this review, on one hand, the current knowledge of lncRNAs in cells is presented, focusing on the pathogenesis of gastrointestinal-related pathologies and MAP-related infections and, on the other hand, we attempt to dissect the associated genes and pathways involved. Furthermore, the recently characterized and novel lncRNAs share common pathologies with IBD and JD, including the expression, molecular networks, and dataset analysis results. These are also presented in an attempt to identify potential biomarkers pertinent to cattle and human disease phenotypes.
Collapse
Affiliation(s)
- Kostas A Triantaphyllopoulos
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| |
Collapse
|
24
|
Meng G, Monaghan TM, Duggal NA, Tighe P, Peerani F. Microbial-Immune Crosstalk in Elderly-Onset Inflammatory Bowel Disease: Unchartered Territory. J Crohns Colitis 2023; 17:1309-1325. [PMID: 36806917 DOI: 10.1093/ecco-jcc/jjad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 02/23/2023]
Abstract
Elderly-onset inflammatory bowel disease [IBD] patients exhibit a distinct natural history compared to younger IBD patients, with unique disease phenotypes, differential responses to therapy, and increased surgical morbidity and mortality. Despite the foreseeable high demand for personalized medicine and specialized IBD care in the elderly, current paradigms of IBD management fail to capture the required nuances of care for elderly-onset IBD patients. Our review postulates the roles of systemic and mucosal immunosenescence, inflammageing and a dysbiotic microbial ecosystem in the pathophysiology of elderly-onset IBD. Ultimately, a better understanding of elderly-onset IBD can lead to improved patient outcomes and the tailoring of future preventative and treatment strategies.
Collapse
Affiliation(s)
- Guanmin Meng
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Niharika A Duggal
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Paddy Tighe
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Farhad Peerani
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
25
|
Shi J, Wang W, Sun S, Xu X, Fei J, Zhou Q, Qin C, Ou S, Wu F, Wu FT, Xu T, Bai L, Xie F. Advanced oxidation protein products induce Paneth cells defects by endoplasmic reticulum stress in Crohn's disease. iScience 2023; 26:107312. [PMID: 37539032 PMCID: PMC10393771 DOI: 10.1016/j.isci.2023.107312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/09/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
Paneth cells (PC) play a key role in the innate immune response of intestine epithelium, and PC defects contribute to the pathogenesis of Crohn's disease (CD). In this study, we utilized active CD tissues and advanced oxidation protein products (AOPP)-challenged C57BL/6 mouse model to investigate the effect of AOPP on PC defects in CD. We found that AOPP accumulated in active CD tissues and was negatively associated with lysozyme expression, while positively correlated with the presence of ER stress markers. Furthermore, AOPP treatment induced PC defects mainly through excessive ER stress in vivo, and AOPP also caused mitochondria-associated ER membranes formation and mitochondrial dysfunction. In addition, the effects of AOPP could be attenuated by the administration of ER stress inhibitor, TUDCA. These findings suggest a pathogenic role of AOPP contributing to PC defects and may provide the basis for developing new strategies to managing CD.
Collapse
Affiliation(s)
- Jie Shi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Weidong Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shibo Sun
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaoping Xu
- Department of Gastroenterology, Hunan Provincial People’s Hospital, Changsha, Hunan 410005, China
| | - Jieying Fei
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qian Zhou
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Caolitao Qin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Shiyu Ou
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fengfei Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fang ting Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Tianyan Xu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lan Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fang Xie
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
26
|
Fu J, Zong X, Jin M, Min J, Wang F, Wang Y. Mechanisms and regulation of defensins in host defense. Signal Transduct Target Ther 2023; 8:300. [PMID: 37574471 PMCID: PMC10423725 DOI: 10.1038/s41392-023-01553-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
As a family of cationic host defense peptides, defensins are mainly synthesized by Paneth cells, neutrophils, and epithelial cells, contributing to host defense. Their biological functions in innate immunity, as well as their structure and activity relationships, along with their mechanisms of action and therapeutic potential, have been of great interest in recent years. To highlight the key research into the role of defensins in human and animal health, we first describe their research history, structural features, evolution, and antimicrobial mechanisms. Next, we cover the role of defensins in immune homeostasis, chemotaxis, mucosal barrier function, gut microbiota regulation, intestinal development and regulation of cell death. Further, we discuss their clinical relevance and therapeutic potential in various diseases, including infectious disease, inflammatory bowel disease, diabetes and obesity, chronic inflammatory lung disease, periodontitis and cancer. Finally, we summarize the current knowledge regarding the nutrient-dependent regulation of defensins, including fatty acids, amino acids, microelements, plant extracts, and probiotics, while considering the clinical application of such regulation. Together, the review summarizes the various biological functions, mechanism of actions and potential clinical significance of defensins, along with the challenges in developing defensins-based therapy, thus providing crucial insights into their biology and potential clinical utility.
Collapse
Affiliation(s)
- Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
27
|
Bao W, Wang L, Liu X, Li M. Predicting diagnostic biomarkers associated with immune infiltration in Crohn's disease based on machine learning and bioinformatics. Eur J Med Res 2023; 28:255. [PMID: 37496049 PMCID: PMC10369716 DOI: 10.1186/s40001-023-01200-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
OBJECTIVE The objective of this study is to investigate potential biomarkers of Crohn's disease (CD) and the pathological importance of infiltration of associated immune cells in disease development using machine learning. METHODS Three publicly accessible CD gene expression profiles were obtained from the GEO database. Inflammatory tissue samples were selected and differentiated between colonic and ileal tissues. To determine the differentially expressed genes (DEGs) between CD and healthy controls, the larger sample size was merged as a training unit. The function of DEGs was comprehended through disease enrichment (DO) and gene set enrichment analysis (GSEA) on DEGs. Promising biomarkers were identified using the support vector machine-recursive feature elimination and lasso regression models. To further clarify the efficacy of potential biomarkers as diagnostic genes, the area under the ROC curve was observed in the validation group. Additionally, using the CIBERSORT approach, immune cell fractions from CD patients were examined and linked with potential biomarkers. RESULTS Thirty-four DEGs were identified in colon tissue, of which 26 were up-regulated and 8 were down-regulated. In ileal tissues, 50 up-regulated and 50 down-regulated DEGs were observed. Disease enrichment of colon and ileal DEGs primarily focused on immunity, inflammatory bowel disease, and related pathways. CXCL1, S100A8, REG3A, and DEFA6 in colon tissue and LCN2 and NAT8 in ileum tissue demonstrated excellent diagnostic value and could be employed as CD gene biomarkers using machine learning methods in conjunction with external dataset validation. In comparison to controls, antigen processing and presentation, chemokine signaling pathway, cytokine-cytokine receptor interactions, and natural killer cell-mediated cytotoxicity were activated in colonic tissues. Cytokine-cytokine receptor interactions, NOD-like receptor signaling pathways, and toll-like receptor signaling pathways were activated in ileal tissues. NAT8 was found to be associated with CD8 T cells, while CXCL1, S100A8, REG3A, LCN2, and DEFA6 were associated with neutrophils, indicating that immune cell infiltration in CD is closely connected. CONCLUSION CXCL1, S100A8, REG3A, and DEFA6 in colonic tissue and LCN2 and NAT8 in ileal tissue can be employed as CD biomarkers. Additionally, immune cell infiltration is crucial for CD development.
Collapse
Affiliation(s)
- Wenhui Bao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Spleen and Gastroenterology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, No.354 Beima Road, Hongqiao District, Tianjin, China
| | - Lin Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoxiao Liu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Comprehensive Rehabilitation, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ming Li
- Spleen and Gastroenterology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, No.354 Beima Road, Hongqiao District, Tianjin, China.
| |
Collapse
|
28
|
Rath T, Atreya R, Neurath MF. A spotlight on intestinal permeability and inflammatory bowel diseases. Expert Rev Gastroenterol Hepatol 2023; 17:893-902. [PMID: 37606514 DOI: 10.1080/17474124.2023.2242772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/27/2023] [Indexed: 08/23/2023]
Abstract
INTRODUCTION The intestinal barrier is a multi-faced structure lining the surface of the intestinal mucosa of the GI tract. To exert its main functions as a physical and immunological defense barrier, several components of the intestinal barrier act in a concerted and cooperative manner. AREAS COVERED Herein, we first introduce to the basic organization of the intestinal barrier and then summarize different methods to assess barrier function in and ex vivo. Finally, we provide an in-depth overview of the relevance of intestinal barrier dysfunction in inflammatory bowel diseases. EXPERT OPINION In parallel to a more fundamental understanding of the intestinal barrier as a key component for intestinal integrity is the notion that intestinal barrier defects are associated with a variety of diseases such as inflammatory bowel diseases. Recent research has fueled and perpetuated the concept that barrier defects are critical components of disease development, disease behavior, and potentially also an area of therapeutic intervention in IBD patients. Although being far away from standard, new technologies can be used to easily assess barrier healing in IBD and to derive clinical consequences from these findings such as more accurate forecasting of future disease behavior or the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Timo Rath
- Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Raja Atreya
- Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie DZI, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| |
Collapse
|
29
|
Padoan A, Musso G, Contran N, Basso D. Inflammation, Autoinflammation and Autoimmunity in Inflammatory Bowel Diseases. Curr Issues Mol Biol 2023; 45:5534-5557. [PMID: 37504266 PMCID: PMC10378236 DOI: 10.3390/cimb45070350] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
In this review, the role of innate and adaptive immunity in the pathogenesis of inflammatory bowel diseases (IBD) is reported. In IBD, an altered innate immunity is often found, with increased Th17 and decreased Treg cells infiltrating the intestinal mucosa. An associated increase in inflammatory cytokines, such as IL-1 and TNF-α, and a decrease in anti-inflammatory cytokines, such as IL-10, concur in favoring the persistent inflammation of the gut mucosa. Autoinflammation is highlighted with insights in the role of inflammasomes, which activation by exogenous or endogenous triggers might be favored by mutations of NOD and NLRP proteins. Autoimmunity mechanisms also take place in IBD pathogenesis and in this context of a persistent immune stimulation by bacterial antigens and antigens derived from intestinal cells degradation, the adaptive immune response takes place and results in antibodies and autoantibodies production, a frequent finding in these diseases. Inflammation, autoinflammation and autoimmunity concur in altering the mucus layer and enhancing intestinal permeability, which sustains the vicious cycle of further mucosal inflammation.
Collapse
Affiliation(s)
- Andrea Padoan
- Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Giulia Musso
- Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Nicole Contran
- Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Daniela Basso
- Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
30
|
Dahlgren D, Lennernäs H. Review on the effect of chemotherapy on the intestinal barrier: Epithelial permeability, mucus and bacterial translocation. Biomed Pharmacother 2023; 162:114644. [PMID: 37018992 DOI: 10.1016/j.biopha.2023.114644] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Chemotherapy kills fast-growing cells including gut stem cells. This affects all components of the physical and functional intestinal barrier, i.e., the mucus layer, epithelium, and immune system. This results in an altered intestinal permeability of toxic compounds (e.g., endotoxins) as well as luminal bacterial translocation into the mucosa and central circulation. However, there is uncertainty regarding the relative contributions of the different barrier components for the development of chemotherapy-induced gut toxicity. This review present an overview of the intestinal mucosal barrier determined with various types of molecular probes and methods, and how they are affected by chemotherapy based on reported rodent and human data. We conclude that there is overwhelming evidence that chemotherapy increases bacterial translocation, and that it affects the mucosal barrier by rendering the mucosa more permeable to large permeability probes. Chemotherapy also seems to impede the intestinal mucus barrier, even though this has been less clearly evaluated from a functional standpoint but certainly plays a role in bacteria translocation. Combined, it is however difficult to outline a clear temporal or succession between the different gastrointestinal events and barrier functions, especially as chemotherapy-induced neutropenia is also involved in intestinal immunological homeostasis and bacterial translocation. A thorough characterization of this would need to include a time dependent development of neutropenia, intestinal permeability, and bacterial translocation, ideally after a range of chemotherapeutics and dosing regimens.
Collapse
|
31
|
Huang C, Tan H, Song M, Liu K, Liu H, Wang J, Shi Y, Hou F, Zhou Q, Huang R, Shen B, Lin X, Qin X, Zhi F. Maternal Western diet mediates susceptibility of offspring to Crohn's-like colitis by deoxycholate generation. MICROBIOME 2023; 11:96. [PMID: 37131223 PMCID: PMC10155335 DOI: 10.1186/s40168-023-01546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/07/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND The Western dietary pattern, characterized by high consumption of fats and sugars, has been strongly associated with an increased risk of developing Crohn's disease (CD). However, the potential impact of maternal obesity or prenatal exposure to a Western diet on offspring's susceptibility to CD remains unclear. Herein, we investigated the effects and underlying mechanisms of a maternal high-fat/high-sugar Western-style diet (WD) on offspring's susceptibility to 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced Crohn's-like colitis. METHODS Maternal dams were fed either a WD or a normal control diet (ND) for eight weeks prior to mating and continued throughout gestation and lactation. Post-weaning, the offspring were subjected to WD and ND to create four groups: ND-born offspring fed a normal diet (N-N) or Western diet (N-W), and WD-born offspring fed a normal (W-N) or Western diet (W-W). At eight weeks of age, they were administered TNBS to induce a CD model. RESULTS Our findings revealed that the W-N group exhibited more severe intestinal inflammation than the N-N group, as demonstrated by a lower survival rate, increased weight loss, and a shorter colon length. The W-N group displayed a significant increase in Bacteroidetes, which was accompanied by an accumulation of deoxycholic acid (DCA). Further experimentation confirmed an increased generation of DCA in mice colonized with gut microbes from the W-N group. Moreover, DCA administration aggravated TNBS-induced colitis by promoting Gasdermin D (GSDMD)-mediated pyroptosis and IL-1beta (IL-1β) production in macrophages. Importantly, the deletion of GSDMD effectively restrains the effect of DCA on TNBS-induced colitis. CONCLUSIONS Our study demonstrates that a maternal Western-style diet can alter gut microbiota composition and bile acid metabolism in mouse offspring, leading to an increased susceptibility to CD-like colitis. These findings highlight the importance of understanding the long-term consequences of maternal diet on offspring health and may have implications for the prevention and management of Crohn's disease. Video Abstract.
Collapse
Affiliation(s)
- Chongyang Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huishi Tan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengyao Song
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongbin Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanqiang Shi
- Institute of Dermatology and Venereology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Fengyi Hou
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Zhou
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruo Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Binghai Shen
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinlong Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoming Qin
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
32
|
Cui C, Wang X, Li L, Wei H, Peng J. Multifaceted involvements of Paneth cells in various diseases within intestine and systemically. Front Immunol 2023; 14:1115552. [PMID: 36993974 PMCID: PMC10040535 DOI: 10.3389/fimmu.2023.1115552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
Serving as the guardians of small intestine, Paneth cells (PCs) play an important role in intestinal homeostasis maintenance. Although PCs uniquely exist in intestine under homeostasis, the dysfunction of PCs is involved in various diseases not only in intestine but also in extraintestinal organs, suggesting the systemic importance of PCs. The mechanisms under the participation of PCs in these diseases are multiple as well. The involvements of PCs are mostly characterized by limiting intestinal bacterial translocation in necrotizing enterocolitis, liver disease, acute pancreatitis and graft-vs-host disease. Risk genes in PCs render intestine susceptible to Crohn’s disease. In intestinal infection, different pathogens induce varied responses in PCs, and toll-like receptor ligands on bacterial surface trigger the degranulation of PCs. The increased level of bile acid dramatically impairs PCs in obesity. PCs can inhibit virus entry and promote intestinal regeneration to alleviate COVID-19. On the contrary, abundant IL-17A in PCs aggravates multi-organ injury in ischemia/reperfusion. The pro-angiogenic effect of PCs aggravates the severity of portal hypertension. Therapeutic strategies targeting PCs mainly include PC protection, PC-derived inflammatory cytokine elimination, and substituting AMP treatment. In this review, we discuss the influence and importance of Paneth cells in both intestinal and extraintestinal diseases as reported so far, as well as the potential therapeutic strategies targeting PCs.
Collapse
Affiliation(s)
- Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinru Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lindeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- *Correspondence: Jian Peng,
| |
Collapse
|
33
|
Decreased Paneth cell α-defensins promote fibrosis in a choline-deficient L-amino acid-defined high-fat diet-induced mouse model of nonalcoholic steatohepatitis via disrupting intestinal microbiota. Sci Rep 2023; 13:3953. [PMID: 36894646 PMCID: PMC9998432 DOI: 10.1038/s41598-023-30997-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a chronic liver disease characterized by fibrosis that develops from fatty liver. Disruption of intestinal microbiota homeostasis, dysbiosis, is associated with fibrosis development in NASH. An antimicrobial peptide α-defensin secreted by Paneth cells in the small intestine is known to regulate composition of the intestinal microbiota. However, involvement of α-defensin in NASH remains unknown. Here, we show that in diet-induced NASH model mice, decrease of fecal α-defensin along with dysbiosis occurs before NASH onset. When α-defensin levels in the intestinal lumen are restored by intravenous administration of R-Spondin1 to induce Paneth cell regeneration or by oral administration of α-defensins, liver fibrosis is ameliorated with dissolving dysbiosis. Furthermore, R-Spondin1 and α-defensin improved liver pathologies together with different features in the intestinal microbiota. These results indicate that decreased α-defensin secretion induces liver fibrosis through dysbiosis, further suggesting Paneth cell α-defensin as a potential therapeutic target for NASH.
Collapse
|
34
|
Zhao X, Lu M, Liu Z, Zhang M, Yuan H, Dan Z, Wang D, Ma B, Yang Y, Yang F, Sun R, Li L, Dang C. Comprehensive analysis of alfa defensin expression and prognosis in human colorectal cancer. Front Oncol 2023; 12:974654. [PMID: 36703795 PMCID: PMC9872005 DOI: 10.3389/fonc.2022.974654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is a serious threat to human health. Screening new biomarkers can provide basis for improving the prognosis and individualized treatment of CRC. Although some members of the defensin family were found increased in pancreatic cancer and CRC, their exact function and clinical significance remain unclear. Methods In this study, the expression, correlation, mutation, and functional enrichment of several defensin family members in pancreatic cancer and CRC were analyzed using tumor public databases and verified in several patients. Results Results showed no significant correlation between the expression levels of DEFA1-4 and CRC. The expression levels of DEFA5 and DEFA6 significantly increased in CRC tissues compared with those in normal tissues. DEFA5 may be associated with better prognosis of CRC, while DEFA6 may be associated with poor prognosis. Immunohistochemistry (IHC) experiments showed that the expression of DEFA6 was significantly higher in adenoma than in normal mucosa and slightly higher in carcinoma than in normal mucosa. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that DEFAs were closely related to hsa05202: transcriptional misregulation in cancer and Hsa04015: Rap1 signaling pathway. DEFA5 may be a stable and good prognostic marker, and DEFA6 may be a poor prognostic marker in CRC of metastasis. Conclusion Overall, DEFA5 and DEFA6 have a certain degree of sensitivity and specificity in predicting CRC.
Collapse
Affiliation(s)
- Xinliang Zhao
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of General Surgery, 521 Hospital of Norinco Group, Xi’an, Shaanxi, China,Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Mengnan Lu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhigang Liu
- Department of Thoracic Surgery, Shaanxi Provincial Tumor Hospital, Xi’an, Shaanxi, China
| | - Mingming Zhang
- Department of Medical Section, 521 Hospital of Norinco Group, Xi’an, Shaanxi, China
| | - Hongmei Yuan
- Department of General Surgery, 521 Hospital of Norinco Group, Xi’an, Shaanxi, China
| | - Zhaoqiang Dan
- Department of General Surgery, 521 Hospital of Norinco Group, Xi’an, Shaanxi, China
| | - Daihua Wang
- Department of General Surgery, 521 Hospital of Norinco Group, Xi’an, Shaanxi, China
| | - Bingbing Ma
- Department of Cardio-Thoracic Surgery, 521 Hospital of Norinco Group, Xi’an, Shaanxi, China
| | - Yanqi Yang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Funing Yang
- Department of General Surgery, 521 Hospital of Norinco Group, Xi’an, Shaanxi, China
| | - Ruifang Sun
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Ruifang Sun, ; Lin Li, ; Chengxue Dang,
| | - Lin Li
- Department of Clinical Laboratory, Shaanxi Provincial Tumor Hospital, Xi’an, Shaanxi, China,*Correspondence: Ruifang Sun, ; Lin Li, ; Chengxue Dang,
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Ruifang Sun, ; Lin Li, ; Chengxue Dang,
| |
Collapse
|
35
|
Wallaeys C, Garcia‐Gonzalez N, Libert C. Paneth cells as the cornerstones of intestinal and organismal health: a primer. EMBO Mol Med 2022; 15:e16427. [PMID: 36573340 PMCID: PMC9906427 DOI: 10.15252/emmm.202216427] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 12/28/2022] Open
Abstract
Paneth cells are versatile secretory cells located in the crypts of Lieberkühn of the small intestine. In normal conditions, they function as the cornerstones of intestinal health by preserving homeostasis. They perform this function by providing niche factors to the intestinal stem cell compartment, regulating the composition of the microbiome through the production and secretion of antimicrobial peptides, performing phagocytosis and efferocytosis, taking up heavy metals, and preserving barrier integrity. Disturbances in one or more of these functions can lead to intestinal as well as systemic inflammatory and infectious diseases. This review discusses the multiple functions of Paneth cells, and the mechanisms and consequences of Paneth cell dysfunction. It also provides an overview of the tools available for studying Paneth cells.
Collapse
Affiliation(s)
- Charlotte Wallaeys
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Natalia Garcia‐Gonzalez
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Claude Libert
- Center for Inflammation Research‐VIBGhentBelgium,Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| |
Collapse
|
36
|
Gustafsson JK, Johansson MEV. The role of goblet cells and mucus in intestinal homeostasis. Nat Rev Gastroenterol Hepatol 2022; 19:785-803. [PMID: 36097076 DOI: 10.1038/s41575-022-00675-x] [Citation(s) in RCA: 216] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/08/2022]
Abstract
The intestinal tract faces numerous challenges that require several layers of defence. The tight epithelium forms a physical barrier that is further protected by a mucus layer, which provides various site-specific protective functions. Mucus is produced by goblet cells, and as a result of single-cell RNA sequencing identifying novel goblet cell subpopulations, our understanding of their various contributions to intestinal homeostasis has improved. Goblet cells not only produce mucus but also are intimately linked to the immune system. Mucus and goblet cell development is tightly regulated during early life and synchronized with microbial colonization. Dysregulation of the developing mucus systems and goblet cells has been associated with infectious and inflammatory conditions and predisposition to chronic disease later in life. Dysfunctional mucus and altered goblet cell profiles are associated with inflammatory conditions in which some mucus system impairments precede inflammation, indicating a role in pathogenesis. In this Review, we present an overview of the current understanding of the role of goblet cells and the mucus layer in maintaining intestinal health during steady-state and how alterations to these systems contribute to inflammatory and infectious disease.
Collapse
Affiliation(s)
- Jenny K Gustafsson
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemisty and Cell biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
37
|
Woo J, Schoenfeld M, Sun X, Iraguha T, Zhou Z, Zhang Q. Mouse Paneth Cell-Enriched Proteome Enabled by Laser Capture Microdissection. J Proteome Res 2022; 21:2435-2442. [PMID: 36153828 PMCID: PMC9671084 DOI: 10.1021/acs.jproteome.2c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Paneth cells are antimicrobial peptide-secreting cells located at the base of the crypts of the small intestine. The proteome of Paneth cells is not well defined because of their coexistence with stem cells, making it difficult to culture Paneth cells alone in vitro. Using a simplified toluidine blue O method for staining mouse intestinal tissue, laser capture microdissection (LCM) to isolate cells from the crypt region, and surfactant-assisted one-pot protein digestion, we identified more than 1300 proteins from crypts equivalent to 18,000 cells. Compared with the proteomes of villi and smooth muscle regions, the crypt proteome is highly enriched in defensins, lysozymes, and other antimicrobial peptides that are characteristic of Paneth cells. The sensitivity of the LCM-based proteomics approach was also assessed using a smaller number of cell equivalent tissues: a comparable proteomic coverage can be achieved with 3600 cells. This work is the first proteomics study of intestinal tissue enriched with Paneth cells. The simplified workflow enables profiling of Paneth cell-associated pathological changes at the proteome level directly from frozen intestinal tissue. It may also be useful for proteomics studies of other spatially resolved cell types from other tissues.
Collapse
Affiliation(s)
- Jongmin Woo
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081
| | - Madeline Schoenfeld
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081
| | - Xinguo Sun
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081
| | - Thierry Iraguha
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27402
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402
| |
Collapse
|
38
|
Nowak JK, Adams AT, Kalla R, Lindstrøm JC, Vatn S, Bergemalm D, Keita ÅV, Gomollón F, Jahnsen J, Vatn MH, Ricanek P, Ostrowski J, Walkowiak J, Halfvarson J, Satsangi J. Characterisation of the Circulating Transcriptomic Landscape in Inflammatory Bowel Disease Provides Evidence for Dysregulation of Multiple Transcription Factors Including NFE2, SPI1, CEBPB, and IRF2. J Crohns Colitis 2022; 16:1255-1268. [PMID: 35212366 PMCID: PMC9426667 DOI: 10.1093/ecco-jcc/jjac033] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/11/2022] [Accepted: 02/23/2022] [Indexed: 01/11/2023]
Abstract
AIM To assess the pathobiological and translational importance of whole-blood transcriptomic analysis in inflammatory bowel disease [IBD]. METHODS We analysed whole-blood expression profiles from paired-end sequencing in a discovery cohort of 590 Europeans recruited across six countries in the IBD Character initiative (newly diagnosed patients with Crohn's disease [CD; n = 156], ulcerative colitis [UC; n = 167], and controls [n = 267]), exploring differential expression [DESeq2], co-expression networks [WGCNA], and transcription factor involvement [EPEE, ChEA, DoRothEA]. Findings were validated by analysis of an independent replication cohort [99 CD, 100 UC, 95 controls]. In the discovery cohort, we also defined baseline expression correlates of future treatment escalation using cross-validated elastic-net and random forest modelling, along with a pragmatic ratio detection procedure. RESULTS Disease-specific transcriptomes were defined in IBD [8697 transcripts], CD [7152], and UC [8521], with the most highly significant changes in single genes, including CD177 (log2-fold change [LFC] = 4.63, p = 4.05 × 10-118), MCEMP1 [LFC = 2.45, p = 7.37 × 10-109], and S100A12 [LFC = 2.31, p = 2.15 × 10-93]. Significantly over-represented pathways included IL-1 [p = 1.58 × 10-11], IL-4, and IL-13 [p = 8.96 × 10-9]. Highly concordant results were obtained using multiple regulatory activity inference tools applied to the discovery and replication cohorts. These analyses demonstrated central roles in IBD for the transcription factors NFE2, SPI1 [PU.1], CEBPB, and IRF2, all regulators of cytokine signalling, based on a consistent signal across cohorts and transcription factor ranking methods. A number of simple transcriptome-based models were associated with the need for treatment escalation, including the binary CLEC5A/CDH2 expression ratio in UC (hazard ratio = 23.4, 95% confidence interval [CI] 5.3-102.0). CONCLUSIONS Transcriptomic analysis has allowed for a detailed characterisation of IBD pathobiology, with important potential translational implications.
Collapse
Affiliation(s)
- Jan K Nowak
- Corresponding authors: Dr Jan K. Nowak, Translational Gastroenterology Unit, Experimental Medicine Division, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK.
| | | | - Rahul Kalla
- MRC Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Jonas C Lindstrøm
- Health Services Research Unit, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Simen Vatn
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Daniel Bergemalm
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Åsa V Keita
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Jørgen Jahnsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Morten H Vatn
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- EpiGen Institute, Akershus University Hospital, University of Oslo, Oslo, Norway
| | - Petr Ricanek
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Jerzy Ostrowski
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, Warsaw, Poland
| | - Jaroslaw Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Jack Satsangi
- Jack Satsangi, Translational Gastroenterology Unit, Experimental Medicine Division, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK.
| | | |
Collapse
|
39
|
Zaki MSA, El-Kott AF, AlGwaiz HIM, Sideeg AM, Andarawi M, Eid RA. The effectiveness of vitamin C on quinalphos ileal toxicity: a study of histological, ultrastructural, and oxidative stress markers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57896-57904. [PMID: 35359206 DOI: 10.1007/s11356-022-19820-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
There is a significant hazard of human exposure to the organophosphates which is a constant threat, and they are responsible for numerous cases of poisoning and mammalian toxicity annually in non-target wildlife. The antioxidants, including the vitamin C (Vit C), have a protective effect on some organophosphorus compounds-induced organ damage. Quinalphos (QP) is one of these compounds. The investigation's objective is to see if there was any effect of QP on the rat ileum which could be rectified by using Vit C. Three groups of 24 animals were created. As a control, the first group was given pure water. Second group subjected to oral gavages of QPs. Third group rats were given oral gavages of Vit C plus QPs for 10 days. The reaction of ileal enterocytes to food-borne QPs was marked by poorly organized microvilli, numerous vacuoles within them, disrupted nuclei with chromatin margination, disoriented mitochondria, and an expanded intercellular space. The absorptive columnar cell illustrated many vacuoles inside with herniation of microvilli, and normal goblet cells were also seen. Many Paneth cells towards the lumen of intestinal gland contained secretory granules of different sizes and shapes. The histological architecture of the ileal mucosa in the QP plus Vit C group was found to be close to those of healthy controls. The outcomes of this study suggest that administering Vit C in rats treated with QPs protects them from ill dysfunction caused by QP.
Collapse
Affiliation(s)
- Mohamed Samir Ahmed Zaki
- Department of Anatomy, College of Medicine, King Khalid University, P.O. 62529, Abha, Saudi Arabia.
- College of Medicine, Zagazig University, Zagazig, Egypt.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
- Department of Zoology, College of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Hussah I M AlGwaiz
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11474, Saudi Arabia
| | - Abulqasim M Sideeg
- Department of Anatomy, College of Medicine, King Khalid University, P.O. 62529, Abha, Saudi Arabia
| | - Mohamed Andarawi
- Department of Pathology, College of Medicine, King Khalid University, P.O. 62529, Abha, Saudi Arabia
| | - Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, P.O. 62529, Abha, Saudi Arabia
| |
Collapse
|
40
|
Mazumder S, Bindu S, De R, Debsharma S, Pramanik S, Bandyopadhyay U. Emerging role of mitochondrial DAMPs, aberrant mitochondrial dynamics and anomalous mitophagy in gut mucosal pathogenesis. Life Sci 2022; 305:120753. [PMID: 35787999 DOI: 10.1016/j.lfs.2022.120753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022]
Abstract
Gastroduodenal inflammation and ulcerative injuries are increasing due to expanding socio-economic stress, unhealthy food habits-lifestyle, smoking, alcoholism and usage of medicines like non-steroidal anti-inflammatory drugs. In fact, gastrointestinal (GI) complications, associated with the prevailing COVID-19 pandemic, further, poses a challenge to global healthcare towards safeguarding the GI tract. Emerging evidences have discretely identified mitochondrial dysfunctions as common etiological denominators in diseases. However, it is worth realizing that mitochondrial dysfunctions are not just consequences of diseases. Rather, damaged mitochondria severely aggravate the pathogenesis thereby qualifying as perpetrable factors worth of prophylactic and therapeutic targeting. Oxidative and nitrosative stress due to endogenous and exogenous stimuli triggers mitochondrial injury causing production of mitochondrial damage associated molecular patterns (mtDAMPs), which, in a feed-forward loop, inflicts inflammatory tissue damage. Mitochondrial structural dynamics and mitophagy are crucial quality control parameters determining the extent of mitopathology and disease outcomes. Interestingly, apart from endogenous factors, mitochondria also crosstalk and in turn get detrimentally affected by gut pathobionts colonized during luminal dysbiosis. Although mitopathology is documented in various pre-clinical/clinical studies, a comprehensive account appreciating the mitochondrial basis of GI mucosal pathologies is largely lacking. Here we critically discuss the molecular events impinging on mitochondria along with the interplay of mitochondria-derived factors in fueling mucosal pathogenesis. We specifically emphasize on the potential role of aberrant mitochondrial dynamics, anomalous mitophagy, mitochondrial lipoxidation and ferroptosis as emerging regulators of GI mucosal pathogenesis. We finally discuss about the prospect of mitochondrial targeting for next-generation drug discovery against GI disorders.
Collapse
Affiliation(s)
- Somnath Mazumder
- Department of Zoology, Raja Peary Mohan College, 1 Acharya Dhruba Pal Road, Uttarpara, West Bengal 712258, India
| | - Samik Bindu
- Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal 736101, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, West Bengal 700135, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India; Division of Molecular Medicine, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, West Bengal 700091, India.
| |
Collapse
|
41
|
A potent HNF4α agonist reveals that HNF4α controls genes important in inflammatory bowel disease and Paneth cells. PLoS One 2022; 17:e0266066. [PMID: 35385524 PMCID: PMC8985954 DOI: 10.1371/journal.pone.0266066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/11/2022] [Indexed: 11/19/2022] Open
Abstract
HNF4α has been implicated in IBD through a number of genome-wide association studies. Recently, we developed potent HNF4α agonists, including N-trans caffeoyltyramine (NCT). NCT was identified by structural similarity to previously the previously identified but weak HNF4α agonists alverine and benfluorex. Here, we administered NCT to mice fed a high fat diet, with the goal of studying the role of HNF4α in obesity-related diseases. Intestines from NCT-treated mice were examined by RNA-seq to determine the role of HNF4α in that organ. Surprisingly, the major classes of genes altered by HNF4α were involved in IBD and Paneth cell biology. Multiple genes downregulated in IBD were induced by NCT. Paneth cells identified by lysozyme expression were reduced in high fat fed mice. NCT reversed the effect of high fat diet on Paneth cells, with multiple markers being induced, including a number of defensins, which are critical for Paneth cell function and intestinal barrier integrity. NCT upregulated genes that play important role in IBD and that are downregulated in that disease. It reversed the loss of Paneth cell markers that occurred in high fat diet fed mice. These data suggest that HNF4α could be a therapeutic target for IBD and that the agonists that we have identified could be candidate therapeutics.
Collapse
|
42
|
Akahoshi DT, Bevins CL. Flagella at the Host-Microbe Interface: Key Functions Intersect With Redundant Responses. Front Immunol 2022; 13:828758. [PMID: 35401545 PMCID: PMC8987104 DOI: 10.3389/fimmu.2022.828758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
Many bacteria and other microbes achieve locomotion via flagella, which are organelles that function as a swimming motor. Depending on the environment, flagellar motility can serve a variety of beneficial functions and confer a fitness advantage. For example, within a mammalian host, flagellar motility can provide bacteria the ability to resist clearance by flow, facilitate access to host epithelial cells, and enable travel to nutrient niches. From the host’s perspective, the mobility that flagella impart to bacteria can be associated with harmful activities that can disrupt homeostasis, such as invasion of epithelial cells, translocation across epithelial barriers, and biofilm formation, which ultimately can decrease a host’s reproductive fitness from a perspective of natural selection. Thus, over an evolutionary timescale, the host developed a repertoire of innate and adaptive immune countermeasures that target and mitigate this microbial threat. These countermeasures are wide-ranging and include structural components of the mucosa that maintain spatial segregation of bacteria from the epithelium, mechanisms of molecular recognition and inducible responses to flagellin, and secreted effector molecules of the innate and adaptive immune systems that directly inhibit flagellar motility. While much of our understanding of the dynamics of host-microbe interaction regarding flagella is derived from studies of enteric bacterial pathogens where flagella are a recognized virulence factor, newer studies have delved into host interaction with flagellated members of the commensal microbiota during homeostasis. Even though many aspects of flagellar motility may seem innocuous, the host’s redundant efforts to stop bacteria in their tracks highlights the importance of this host-microbe interaction.
Collapse
|
43
|
Nonnecke EB, Castillo PA, Johansson MEV, Hollox EJ, Shen B, Lönnerdal B, Bevins CL. Human intelectin-2 (ITLN2) is selectively expressed by secretory Paneth cells. FASEB J 2022; 36:e22200. [PMID: 35182405 PMCID: PMC9262044 DOI: 10.1096/fj.202101870r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/04/2023]
Abstract
Intelectins (intestinal lectins) are highly conserved across chordate evolution and have been implicated in various human diseases, including Crohn's disease (CD). The human genome encodes two intelectin genes, intelectin-1 (ITLN1) and intelectin-2 (ITLN2). Other than its high sequence similarity with ITLN1, little is known about ITLN2. To address this void in knowledge, we report that ITLN2 exhibits discrete, yet notable differences from ITLN1 in primary structure, including a unique amino terminus, as well as changes in amino acid residues associated with the glycan-binding activity of ITLN1. We identified that ITLN2 is a highly abundant Paneth cell-specific product, which localizes to secretory granules, and is expressed as a multimeric protein in the small intestine. In surgical specimens of ileal CD, ITLN2 mRNA levels were reduced approximately five-fold compared to control specimens. The ileal expression of ITLN2 was unaffected by previously reported disease-associated variants in ITLN2 and CD-associated variants in neighboring ITLN1 as well as NOD2 and ATG16L1. ITLN2 mRNA expression was undetectable in control colon tissue; however, in both ulcerative colitis (UC) and colonic CD, metaplastic Paneth cells were found to express ITLN2. Together, the data reported establish the groundwork for understanding ITLN2 function(s) in the intestine, including its possible role in CD.
Collapse
Affiliation(s)
- Eric B Nonnecke
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Patricia A Castillo
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Malin E V Johansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Edward J Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Bo Shen
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Charles L Bevins
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
44
|
The Fast Track for Intestinal Tumor Cell Differentiation and In Vitro Intestinal Models by Inorganic Topographic Surfaces. Pharmaceutics 2022; 14:pharmaceutics14010218. [PMID: 35057113 PMCID: PMC8781367 DOI: 10.3390/pharmaceutics14010218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Three-dimensional (3D) complex in vitro cell systems are well suited to providing meaningful and translatable results in drug screening, toxicity measurements, and biological studies. Reliable complex gastrointestinal in vitro models as a testbed for oral drug administration and toxicity are very valuable in achieving predictive results for clinical trials and reducing animal testing. However, producing these models is time-consuming due to the lengthy differentiation of HT29 or other cells into mucus-producing goblet cells or other intestinal cell lineages. In the present work, HT29 cells were grown on an inorganic topographic surface decorated with a periodic pattern of micrometre-sized amorphous SiO2 structures for up to 35 days. HT29 cells on topographic surfaces were compared to undifferentiated HT29 in glucose-containing medium on glass or culture dish and with HT29 cells differentiated for 30 days in the presence of methotrexate (HT29-MTX). The cells were stained with Alcian blue for mucus, antibodies for mucus 2 (goblet cells), villin (enterocytes), lysozyme (Paneth cells), and FITC-labeled lectins to identify different cells, glycomic profiles, and cell features. We observed that HT29 cells on topographic surfaces showed more similarities with the differentiated HT29-MTX than with undifferentiated HT29. They formed islands of cell clusters, as observed for HT29-MTX. Already after 2 days, the first mucus secretion was shown by Alcian blue stain and FITC-wheat germ agglutinin. After 4–6 days, mucus was observed on the cell surface and in the intercellular space. The cell layer was undulated, and in 3D reconstruction, the cells showed a clear polarisation with a strong actin signal to one membrane. The lectins and the antibody-staining confirmed the heterogeneous composition of differentiated HT29 cells on topographic surfaces after 6–8 days, or after 6–8 days following MTX differentiation (30 days).
Collapse
|
45
|
Jensen SK, Pærregaard SI, Brandum EP, Jørgensen AS, Hjortø GM, Jensen BAH. OUP accepted manuscript. Gastroenterol Rep (Oxf) 2022; 10:goac008. [PMID: 35291443 PMCID: PMC8915887 DOI: 10.1093/gastro/goac008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/07/2022] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Organismal survival depends on a well-balanced immune system and maintenance of host–microbe mutualism. The fine-tuned relationship between the gut microbiota and host immunity is constantly challenged by opportunistic bacteria testing the integrity of gastrointestinal (GI) barrier defenses. Barrier dysfunction reduces immunological tolerance towards otherwise innocuous microbes; it is a process that may instigate chronic inflammation. Paradoxically, sustained inflammation further diminishes barrier function, enabling bacterial translocation to extra-intestinal tissues. Once translocated, these bacteria stimulate systemic inflammation, thereby compromising organ function. While genetic risk alleles associate with barrier dysfunction, environmental stressors are key triggers of GI inflammation and associated breakdown in immune tolerance towards resident gut microbes. As dietary components dictate substrate availability, they also orchestrate microbiota composition and function, including migratory and pro-inflammatory potential, thus holding the capacity to fuel both GI and extra-intestinal inflammation. Additionally, Western diet consumption may weaken barrier defenses via curbed Paneth cell function and diminished host-defense peptide secretion. This review focuses on intervenable niches of host–microbe interactions and mucosal immunity with the ambition to provide a framework of plausible strategies to improve barrier function and regain tolerance in the inflamed mucosa via nutritional intervention.
Collapse
Affiliation(s)
- Sune K Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simone I Pærregaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emma P Brandum
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid S Jørgensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gertrud M Hjortø
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin A H Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Corresponding author. Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Build. 22.5.39, Copenhagen N 2200, Denmark. Tel: +45-35330188;
| |
Collapse
|
46
|
Di Tommaso N, Gasbarrini A, Ponziani FR. Intestinal Barrier in Human Health and Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312836. [PMID: 34886561 PMCID: PMC8657205 DOI: 10.3390/ijerph182312836] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023]
Abstract
The intestinal mucosa provides a selective permeable barrier for nutrient absorption and protection from external factors. It consists of epithelial cells, immune cells and their secretions. The gut microbiota participates in regulating the integrity and function of the intestinal barrier in a homeostatic balance. Pathogens, xenobiotics and food can disrupt the intestinal barrier, promoting systemic inflammation and tissue damage. Genetic and immune factors predispose individuals to gut barrier dysfunction, and changes in the composition and function of the gut microbiota are central to this process. The progressive identification of these changes has led to the development of the concept of ‘leaky gut syndrome’ and ‘gut dysbiosis’, which underlie the relationship between intestinal barrier impairment, metabolic diseases and autoimmunity. Understanding the mechanisms underlying this process is an intriguing subject of research for the diagnosis and treatment of various intestinal and extraintestinal diseases.
Collapse
Affiliation(s)
- Natalia Di Tommaso
- Division of Internal Medicine, Gastroenterology—Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (N.D.T.); (A.G.)
| | - Antonio Gasbarrini
- Division of Internal Medicine, Gastroenterology—Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (N.D.T.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Division of Internal Medicine, Gastroenterology—Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (N.D.T.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-3471227242
| |
Collapse
|
47
|
Ma Y, Nenkov M, Chen Y, Press AT, Kaemmerer E, Gassler N. Fatty acid metabolism and acyl-CoA synthetases in the liver-gut axis. World J Hepatol 2021; 13:1512-1533. [PMID: 34904027 PMCID: PMC8637682 DOI: 10.4254/wjh.v13.i11.1512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/28/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Fatty acids are energy substrates and cell components which participate in regulating signal transduction, transcription factor activity and secretion of bioactive lipid mediators. The acyl-CoA synthetases (ACSs) family containing 26 family members exhibits tissue-specific distribution, distinct fatty acid substrate preferences and diverse biological functions. Increasing evidence indicates that dysregulation of fatty acid metabolism in the liver-gut axis, designated as the bidirectional relationship between the gut, microbiome and liver, is closely associated with a range of human diseases including metabolic disorders, inflammatory disease and carcinoma in the gastrointestinal tract and liver. In this review, we depict the role of ACSs in fatty acid metabolism, possible molecular mechanisms through which they exert functions, and their involvement in hepatocellular and colorectal carcinoma, with particular attention paid to long-chain fatty acids and small-chain fatty acids. Additionally, the liver-gut communication and the liver and gut intersection with the microbiome as well as diseases related to microbiota imbalance in the liver-gut axis are addressed. Moreover, the development of potentially therapeutic small molecules, proteins and compounds targeting ACSs in cancer treatment is summarized.
Collapse
Affiliation(s)
- Yunxia Ma
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Miljana Nenkov
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Yuan Chen
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Adrian T Press
- Department of Anesthesiology and Intensive Care Medicine and Center for Sepsis Control and Care, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Elke Kaemmerer
- Department of Pediatrics, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Nikolaus Gassler
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany.
| |
Collapse
|
48
|
Honig G, Larkin PB, Heller C, Hurtado-Lorenzo A. Research-Based Product Innovation to Address Critical Unmet Needs of Patients with Inflammatory Bowel Diseases. Inflamm Bowel Dis 2021; 27:S1-S16. [PMID: 34791292 PMCID: PMC8922161 DOI: 10.1093/ibd/izab230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 12/09/2022]
Abstract
Despite progress in recent decades, patients with inflammatory bowel diseases face many critical unmet needs, demonstrating the limitations of available treatment options. Addressing these unmet needs will require interventions targeting multiple aspects of inflammatory bowel disease pathology, including disease drivers that are not targeted by available therapies. The vast majority of late-stage investigational therapies also focus primarily on a narrow range of fundamental mechanisms. Thus, there is a pressing need to advance to clinical stage differentiated investigational therapies directly targeting a broader range of key mechanistic drivers of inflammatory bowel diseases. In addition, innovations are critically needed to enable treatments to be tailored to the specific underlying abnormal biological pathways of patients; interventions with improved safety profiles; biomarkers to develop prognostic, predictive, and monitoring tests; novel devices for nonpharmacological approaches such as minimally invasive monitoring; and digital health technologies. To address these needs, the Crohn's & Colitis Foundation launched IBD Ventures, a venture philanthropy-funding mechanism, and IBD Innovate®, an innovative, product-focused scientific conference. This special IBD Innovate® supplement is a collection of articles reflecting the diverse and exciting research and development that is currently ongoing in the inflammatory bowel disease field to deliver innovative and differentiated products addressing critical unmet needs of patients. Here, we highlight the pipeline of new product opportunities currently advancing at the preclinical and early clinical development stages. We categorize and describe novel and differentiated potential product opportunities based on their potential to address the following critical unmet patient needs: (1) biomarkers for prognosis of disease course and prediction/monitoring of treatment response; (2) restoration of eubiosis; (3) restoration of barrier function and mucosal healing; (4) more effective and safer anti-inflammatories; (5) neuromodulatory and behavioral therapies; (6) management of disease complications; and (7) targeted drug delivery.
Collapse
|
49
|
Abstract
Antimicrobial peptides (AMPs) are short and generally positively charged peptides found in a wide variety of life forms from microorganisms to humans. Their wide range of activity against pathogens, including Gram-positive and -negative bacteria, yeasts, fungi, and enveloped viruses makes them a fundamental component of innate immunity. Marra et al. (A. Marra, M. A. Hanson, S. Kondo, B. Erkosar, B. Lemaitre, mBio 12:e0082421, 2021, https://doi.org/10.1128/mBio.00824-21) use the analytical potential of Drosophila to show that AMPs and lysozymes play a direct role in controlling the composition and abundance of the beneficial gut microbiome. By comparing mutant and wild-type flies, they demonstrated that the specific loss of AMPs and lysozyme production results in changes in microbiome abundance and composition. Furthermore, they established that AMPs and lysozyme are particularly essential in aging flies. Studies of early emerging metazoans, other invertebrates, and humans support the view of an ancestral function of AMPs in controlling microbial colonization.
Collapse
|
50
|
Bittel M, Reichert P, Sarfati I, Dressel A, Leikam S, Uderhardt S, Stolzer I, Phu TA, Ng M, Vu NK, Tenzer S, Distler U, Wirtz S, Rothhammer V, Neurath MF, Raffai RL, Günther C, Momma S. Visualizing transfer of microbial biomolecules by outer membrane vesicles in microbe-host-communication in vivo. J Extracell Vesicles 2021; 10:e12159. [PMID: 34664784 PMCID: PMC8524437 DOI: 10.1002/jev2.12159] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/29/2022] Open
Abstract
The intestinal microbiota influences mammalian host physiology in health and disease locally in the gut but also in organs devoid of direct contact with bacteria such as the liver and brain. Extracellular vesicles (EVs) or outer membrane vesicles (OMVs) released by microbes are increasingly recognized for their potential role as biological shuttle systems for inter-kingdom communication. However, physiologically relevant evidence for the transfer of functional biomolecules from the intestinal microbiota to individual host cells by OMVs in vivo is scarce. By introducing Escherichia coli engineered to express Cre-recombinase (E. coliCre ) into mice with a Rosa26.tdTomato-reporter background, we leveraged the Cre-LoxP system to report the transfer of bacterial OMVs to recipient cells in vivo. Colonizing the intestine of these mice with E. coliCre , resulted in Cre-recombinase induced fluorescent reporter gene-expression in cells along the intestinal epithelium, including intestinal stem cells as well as mucosal immune cells such as macrophages. Furthermore, even far beyond the gut, bacterial-derived Cre induced extended marker gene expression in a wide range of host tissues, including the heart, liver, kidney, spleen, and brain. Together, our findings provide a method and proof of principle that OMVs can serve as a biological shuttle system for the horizontal transfer of functional biomolecules between bacteria and mammalian host cells.
Collapse
Affiliation(s)
- Miriam Bittel
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
| | - Patrick Reichert
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
| | - Ilann Sarfati
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
- Deutsches Zentrum ImmuntherapieFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Anja Dressel
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
- Deutsches Zentrum ImmuntherapieFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Stefanie Leikam
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
| | - Stefan Uderhardt
- Department of Internal Medicine 3University Hospital Erlangen and Friedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)ErlangenGermany
- Exploratory Research UnitOptical Imaging Centre ErlangenFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Iris Stolzer
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
- Deutsches Zentrum ImmuntherapieFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Tuan Anh Phu
- Northern California Institute for Research and EducationSan FranciscoCaliforniaUSA
| | - Martin Ng
- Northern California Institute for Research and EducationSan FranciscoCaliforniaUSA
| | - Ngan K. Vu
- Northern California Institute for Research and EducationSan FranciscoCaliforniaUSA
| | - Stefan Tenzer
- Institute of ImmunologyUniversity Medical Centre of the Johannes‐Gutenberg University MainzMainzGermany
- Research Centre for Immunotherapy (FZI)University Medical Center of the Johannes‐Gutenberg University MainzMainzGermany
| | - Ute Distler
- Institute of ImmunologyUniversity Medical Centre of the Johannes‐Gutenberg University MainzMainzGermany
- Research Centre for Immunotherapy (FZI)University Medical Center of the Johannes‐Gutenberg University MainzMainzGermany
| | - Stefan Wirtz
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
- Deutsches Zentrum ImmuntherapieFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Veit Rothhammer
- Neurology Department (Experimental Glia Biology)University Hospital Erlangen and Friedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Markus F. Neurath
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
- Deutsches Zentrum ImmuntherapieFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Robert L. Raffai
- Department of SurgeryDivision of Vascular and Endovascular SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of Veterans AffairsSurgical Service (112G)San Francisco VA Medical CentreSan FranciscoCaliforniaUSA
| | - Claudia Günther
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
- Deutsches Zentrum ImmuntherapieFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Stefan Momma
- Institute of Neurology (Edinger Institute)Goethe UniversityFrankfurt am MainGermany
| |
Collapse
|